
The problems of reachability in a Petri and emptiness of

intersection of commutative languages are equivalent

Pawe l Parys
University of Warsaw, Poland

October 19, 2009

As a Petri net we understand a Petri net with given initial and final configuration, and with
transitions labeled by letters from some alphabet Σ. A word w ∈ Σ∗ is accepted by a Petri net
when there is a sequence of transitions leading from the initial to the final configuration such that
the letters on that transitions form the word w. A language accepted by a Petri Net N , denoted
L(N), consists of all such words. The well known reachability problem can be stated as: ,,is L(N)
empty?” (a typical presentation does not use the language, but the equivalence is obvious).

On the other hand we have commutative languages. We will not go into the original definition;
it is easy to see that equivalently they can be defined as languages of the form L(N) for a Petri
net N in which each transition consumes exactly one token (it has only one incoming place with
arity one; the number of outgoing places is arbitrary).

Theorem 1. The following two problems are equivalent:

(a) for given Petri net N , is L(N) = ∅? (reachability in a Petri net);

(b) for given two Petri nets N1 and N2 in which each transition consumes exactly one token, is
L(N1) ∩ L(N2) = ∅? (emptiness of intersection of two commutative languages).

The reduction of problem (b) to problem (a) is easy. We produce a net N with L(N1)∩L(N2) =
L(N). To N we take places of both N1 and N2. For each pair of transitions t1 from N1 and t2
from N2, both labeled by the same letter a ∈ Σ, we create a transition in N labeled by a, which
consumes tokens from all (namely: two) places from which any of t1 and t2 consumes a token,
and produces tokens to all places to which any of t1 and t2 produces a token. Directly from the
definition follows that N accepts exactly words from the intersection.

Now we come to the reduction from (a) to (b). We use here an easy folklore fact that having
any net N we may create a net N ′ in which each transition consumes exactly two tokens such
that L(N) = ∅ ⇔ L(N ′) = ∅ (even more: L(N) = L(N ′)|Σ, where L(N ′)|Σ consists of words
from L(N ′) with removed letters not being in the original alphabet Σ). Roughly speaking, each
transition consuming n tokens is replaced by n transitions consuming 2 tokens: one as in the
original transition and one from an added control place. The special control places are organized
in such a way that all n transitions corresponding to the original one have to fire one after another.
We also need to convert transitions consuming one or zero tokens; but it is enough to add a new
place from which one or two tokens are consumed an then produced there again.

So we may assume that in N each transition consumes exactly two tokes. Now we describe
how N1 and N2 are created. They both have (an own copy of) the same set of places as N , plus
one additional place p0 used for initialization. Assume N also has the place p0, but it is never
used. So all the three nets have the same set of n places, assume they are numbered from 1 to n.

A configuration of a net may be described by a vector v ∈ Zn
+ of n nonnegative integers,

where vp is the number of tokens on place p. On the other hand a transition may be described by
t = (p1, p2, v) where p1, p2 are numbers of places from which tokens are consumed and v ∈ Zn

+ is a
vector of produced tokens. Let 1p be the vector consisting of 1 on position p and zeroes on all other

1

positions. A transition t = (p1, p2, v) may be used in a configuration u when u− 1p1 − 1p2 ∈ Zn
+;

as a result we get a configuration u− 1p1 − 1p2 + v. Transitions in N1 and N2 will be of the form
(p, v) as they consume just one token.

For each transition t = (p1, p2, v) of N several transitions are produced. For each vector
v1 ≤ v, v1 ∈ Zn

+ we produce a pair of transitions: in N1 a transition (p1, v1) and in N2 a transition
(p2, v − v1). We label both transitions in the pair by the same new unique label (the label is
different for each v1 and for each t; each label is used only twice: one in N1 and once in N2).

Let v0 be the initial configuration of N . For each v1 ≤ v0, v1 ∈ Zn
+ we generate a pair of

transitions: (p0, v1) in N1 and (p0, v
0 − v1) in N2, where p0 is the additional place, never used

in N . Both these transitions are labeled by the same new unique letter (different for each pair).
The initial configurations of N1 and N2 are 1p0 (one token on the additional place p0). The final
configuration of N1 is the same as of N , while the final configuration of N2 contains no tokens.

Now we need to prove that L(N1)∩L(N2) 6= ∅ iff L(N) 6= ∅. First we consider the implication
from left to right. Let w be a word accepted by both N1 and N2. Then we have two sequences
of transitions, one in N1, one in N2, leading from the initial to the final configurations. Both are
labeled by the same word w, so they are of the same length and the corresponding transitions
belong to some of our pairs of transitions, since only such pairs are labeled by the same letter.
Look at the configurations v1 and v2 after the first transition (at least one transition has to exist,
since the initial and the final configurations of N1 or N2 are different). Notice that v1 + v2 = v0,
the initial configuration of N . This is because in N1 only the transition (p0, v1) could be used (as
only on p0 we had a token), which is in pair with (p0, v

0 − v1).
We will prove by induction on the number of used transitions that whenever in N1 and N2

we reach configurations v1 and v2, then in N we can reach v1 + v2. Then, since word w leads to
the final configurations of N1 and N2 and their sum gives the final configuration of N , the final
configuration of N can be reached. The thesis is true after the first step, as v1 + v2 = v0 is the
initial configuration in N . Now assume that v1 + v2 can be reached in N and consider transitions
(p1, u1) in N1 and (p2, u2) in N2, going from v1 and v2 labeled by the same letter. These transitions
are from one pair, corresponding to some transition (p1, p2, u1 + u2) of N . This transition can be
used in N from v1 + v2, and by applying it we get configuration v1 + v2 − 1p1 − 1p2 + u1 + u2,
while in N1 and in N2 the next configurations are, respectively, v1 − 1p1 + u1 and v2 − 1p2 + u2,
so the thesis holds.

Now consider the implication from right to left. Take a sequence of transitions leading from
the initial to the final configuration of N . Appropriate sequences in N1 and N2 will be constructed
starting from the end. Namely, the following thesis will be proved by induction on the number of
used transitions: whenever from a configuration v the final configuration may be reached in N ,
then there are configurations v1, v2 of N1, N2 such that v1 + v2 = v and from which there are two
sequences of transitions (one in N1, one in N2) generating the same word and leading to the final
configurations of N1 and N2.

For v being the final configuration the thesis is true, since the final configuration of N is the
sum of final configurations of N1 and N2. Now take any configuration v of N satisfying the
thesis and a preceding configuration from which a transition (p1, p2, u) leads to v. The preceding
configuration is v − u + 1p1 + 1p2 . Because the transition was possible, we have v − u ∈ Zn

+, in
other words u ≤ v (each element of u is ≤ than the corresponding element of v). Let v1, v2 be
(from the induction assumption) the configurations of N1, N2 such that v1 + v2 = v and from v1

and v2 we may reach the final configurations using a common word. Then we may distribute u
into u1, u2 ∈ Zn

+, u1 + u2 = u such that u1 ≤ v1 and u2 ≤ v2. We have transitions (p1, u1) in N1

and (p2, u2) in N2, labeled by the same letter. Since u1 ≤ v1 and u2 ≤ v2, they may be applied
from configurations v1 − u1 + 1p1 in N1 and v2 − u2 + 1p2 in N2, which leads to v1 in N1 and v2

in N2. Moreover the sum of these configurations is v − u + 1p1 + 1p2 , as we wanted.
From the above we conclude that there are configurations v1 in N1 and v2 in N2 from which

the final configuration may be reached using a common word, such that v1 + v2 = v0, the initial
configuration in N . But then there exists a pair of transitions (p0, v1) in N1 and (p0, v2) in
N2, reading the same letter. They may be used to get v1 in N1 and v2 in N2 from the initial
configuration 1p0 .

2

