
XPath Evaluation in Linear Time with Polynomial
Combined Complexity

Pawe l Parys∗
Warsaw University, Poland
parys@mimuw.edu.pl

ABSTRACT

We consider a fragment of XPath 1.0, where attribute and
text values may be compared. We show that for any unary
query in this fragment, the set of nodes that satisfy the query
can be calculated in time linear in the document size and
polynomial in the size of the query. The previous algorithm
for this fragment also had linear data complexity but had
exponential complexity in the query size.

Categories and Subject Descriptors. F.4.1 [Mathema-
tical logic and formal languages]: Mathematical lo-
gic; H.2.3 [Database management]: Languages—Que-
ry languages

General Terms. Algorithms, Languages, Theory

1. Introduction

In this paper, we present an algorithm that, given an XPath
node selecting query ϕ and an XML document t, returns the
set of nodes in t that satisfy ϕ. XPath evaluation algorithms
that are built into browsers are very inefficient, and can have
running times that are exponential in the size of the query
and high-degree polynomial in the size of the queried XML
document [5]. There have been a number of papers devoted
to improving XPath evaluation, which can be grouped into
two main approaches, see e.g. [8] for a survey.

One idea, as used in e.g. [5] and improved in [4], is to use
dynamic programming. This allows evaluation algorithms
that are polynomial (but not linear) in both the node test (we
∗Author supported by Polish government grant no. N206
008 32/0810.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM PODS ’09 Providence, RI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

use this term for node selecting queries, although the terms
predicate or filter are sometimes used in the literature) ϕ and
the size of the document t. The best known algorithms for
full XPath 1.0 [4] have running time |t|4.

Another idea is to compile queries into finite-state tree au-
tomata, see [9] for a survey. This approach only works if the
node-test does not refer to attribute or text values (a fragment
called CoreXPath), and therefore an XML document can be
identified with a finitely labeled tree (the label of a node is
its tag name). In this setting, an XPath node test can be
compiled into a finite-state automaton; and this automaton
can be evaluated on the tree in linear time. In general, the
automaton may be exponential in the size of the query. (It
is worth noting that using dynamic programming, one can
evaluate CoreXPath node tests in time linear in both query
and document, see [5].)

The only linear-time algorithm was proposed in [2]. This
paper and [2] can be seen as a generalization of the automata-
theoretic framework to node tests that use attribute values.
The general structure of these two algorithms is similar.
However in [2] monoids are used and compilation of XPath
queries to monoids causes exponential blowup. As a side
effect, the algorithm works also for an extension of XPath, in
which the Kleene star may be used in path expressions. Here,
instead, we use the fact, that the Kleene star is not allowed in
XPath and we observe that automata recognizing XPath path
expressions have a special form. This allows to do a special
things in polynomial time directly with the automata, which
in general are possible only for monoids, thus avoiding the
exponential blowup.

The following aspects of the algorithm from [2] are im-
proved here:

• The previous algorithm had exponential complexity in
the size of the query. Here we have polynomial com-
plexity in the size of the query (with the exception of
queries using sum or count, which are not considered
in [2] at all).

• The previous algorithm had linear complexity in the
number of bits of the XML document (it was important
that the alphabet had constant size). Here the com-
plexity is linear in the number of nodes plus the total
length of text, where the text length is measured in
bytes. These bytes may be of size logarithmic in the

1

input size, if we assume that some basic operations on
them may be done in constant time. This is a more
classical complexity measurement.

• The previous algorithm was able to compare only at-
tribute values (or text values of leaf text nodes). How-
ever the XPath specification [3] also defines a string-
value for inner nodes, this is the concatenation of the
string-values of all its text node descendants in doc-
ument order. It should be possible to compare these
string-values. This definition means that the total length
of string-values of all nodes may be quadratic in the
document size, so calculating all of them explicitly is
impossible in a linear time algorithm. We show how to
handle them implicitly in linear time.

• The previous algorithm worked only for a limited frag-
ment of XPath. Here we extend it to almost full Agg-
XPath fragment (as defined in [8]), with the exception
of id() function. So in addition to fragment in [2]
we handle inequalities <,>,≤,≥ (which is an easy
extension) and calculating aggregates count and sum,
together with arithmetic operations on them. How-
ever when a query uses count or sum, the algorithm is
exponential in the size of the query.

The only thing, which is better in [2], is that it allows to
use the Kleene star in path expressions. This is an extension
of XPath standard and we do not handle it.

The following are our main results:

Theorem 1.1. Let ϕ be a node test of XPath (as defined
in section 2.2) in which sum and count are not used,
and t an XML document. The set of nodes of t that
satisfy ϕ can be computed in time O(|t| · |ϕ|3). When
sum or count are used, the same may be done in time
O(|t| · c|ϕ|) for some c.

The length |t| is the length of the text file representing the
XML document. Note that the alphabet used in the text need
not to be of fixed size (for example just 2 or 256 letters).
We rather treat letters as numbers. We only require, that
there are at most polynomially many letters (that the letters
are of the logarithmic size) and that all standard operations
(like comparing, arithmetic operations, etc.) on the letters
are done in constant time. This is a standard complexity
measurement. Even with such assumptions the algorithm
works in time linear in |t|.

One may ask why we give a linear time algorithm only for
node tests and not for path expressions. However for path
expressions a linear time algorithm is impossible, since they
may select quadratically many pairs of nodes. Algorithm
given here allows to evaluate path expressions in quadratic
time.

The paper is structured as follows. In Section 2, we present
preliminary definitions, the data model, and we define the
fragment of XPath considered in this paper. In Section 3,
we present a high level overview of the algorithm. The algo-
rithm is then detailed in Sections 4 to 11. In general terms,

Section 4 and 5 show some necessary precomputations, Sec-
tion 6 is devoted to node tests using inequalities, Section 7
to node tests using sum and Sections 8 to 11 to node tests
using equalities. Finally, in Section 12, we discuss possible
extensions of this work.

2. Data model and XPath

2.1 Data model

In this section we define the data model. We represent
an XML document as a tree, called a data tree. The tree
is unranked, i.e. a node may have any number of children,
and the children are ordered. There are three types of nodes:
element nodes, attribute nodes and text nodes. Attribute and
text nodes are always leaves. Every element and attribute
node is assigned a name which is a tag name or an attribute
name, and which is taken from a finite alphabet. Text nodes
do not have names, we assume that their name is text. We
call the whole alphabet Σ—every node is labeled with a
name from the set Σ. Moreover every node has a string
value. A string value of an attribute node is the value of the
corresponding attribute, which is a string. A string value of
a text node is just a text. But, what is important, the string
value of an element node is the concatenation of the string
values of all text node descendants of the element node in
document order. The total length of all string values may be
quadratic in the input size. So, the string values of element
nodes are not remembered explicitly. Since most of the time
we will be dealing with data trees, we will sometimes write
tree instead of data tree.

Consider for instance the following XML document:
〈a〉
〈b〉abc〈/b〉xyz
〈b at1 = ”01” at2 = ”0101”〉〈/b〉

〈/a〉
The data tree representing this document will use names
Σ = {a, b, at1, at2, text}. The data tree will look like this
(string values in italic are not remembered):

b
text
xyz

b
abc

text
abc

at1
01

at2
0101

a
abcxyz

�� PPP

"" aaa

�
�

�
�

����

text node

element node

attribute
node

Trees will be denoted by a letter t and binary trees by a
letter t̂. Nodes will be denoted by u, v, w. String values
will be denoted by d. Whenever we use words descendant or
ancestor, they need not to be proper.

The size of a data tree is the number of nodes plus the sum
of lengths of string values of its attribute and text nodes. This
size measure is linear in the size for the text file representa-
tion, since the only difference is in the special characters like
〈 or ”.

2

2.2 XPath

In this section we define the fragment of XPath that is
used in this paper. This is almost a fragment called Agg-
XPath. Basically, these are almost all queries, including
value comparing, computing aggregates and manipulating
integers. Comparing to the AggXPath fragment, only using
of id() function is forbidden. From constructs important
for evaluation complexity, in full XPath 1.0 there are also
position() and last() functions, which are forbidden here
too. In fact the specification [3] of XPath 1.0 contains a lot of
other constructs. However these are technical details, such
as type converting, etc. and they may be easily added.

In XPath, the primitives employed for navigation along
the tree structure are called axes. We consider the following
one-step axes (their names here are slightly different than
usual): child, next and their inverses parent, prev. They
correspond to going to a child and to the next sibling. More-
over we consider their transitive-reflexive closures, called
multistep axes: child∗, next∗, parent∗, prev∗.

For simplicity we treat strings and numbers as the same.
The idea is that all numbers are represented as strings. Since
according to the XPath specification all numbers are constant-
size floating point reals, there is no problem with complexity:
we may assume, that all operations on numbers are done in
constant time. We do not define what happens, when some-
one tries to do an arithmetic operation on a string, which does
not represent any number.

There are three types of expressions: path expressions,
node tests and string-typed expressions. We may look on
them as on functions, for every node returning respectively:
node sets, booleans and strings. Another way for looking on
a path expression is that it is a binary query. In each tree,
a path expression will select a set of pairs (u, v) of nodes.
Intuitively a path expression will describe the path from u
to v, although the path might not be the shortest one. A
typical path expression is parent · child, it selects a pair
(u, v) if v is a sibling of u, possibly u = v. A node test is
a unary query: it selects a set of nodes. A typical node test
is a, it selects nodes that are labeled by the tag name a. A
string-typed expression produces a string value i for every
node v. A typical string-typed expression is count(child),
which for every node v calculates a string representation of
the number of children of v. In general in XPath, the three
types of expression are mutually recursive, as defined below:

• Every name a ∈ Σ is a node test, which holds in nodes
with a name a.

• Node tests admit negation, conjunction and disjunction.

• If α, β are path expressions, ϑ, ϑ′ are string-typed ex-
pressions and RelOp ∈ {=,≤, <, >,≥, 6=},

α RelOp β and α RelOp ϑ and ϑ RelOp ϑ′

are node tests. The first of them selects a node u if
there exist nodes v, w such that (u, v) is selected by α
and (u, w) is selected by β and that the string values
of v and w satisfy the relation RelOp. The second of

them selects a node u if there exists a node v such that
(u, v) is selected by α and that the string value of v
and the value of ϑ calculated in u satisfy the relation
RelOp. The third of them selects a node u if values of
ϑ and ϑ′ calculated in u satisfy the relation RelOp. The
inequalities ≤, <, >,≥ correspond to the linear order
of numbers. Only = and 6= may be done on arbitrary
strings.

• There are two types of atomic path expressions. Every
axis, including the multistep axes, is an atomic path ex-
pression. Furthermore, a node test ϕ can be interpreted
as an atomic path expression [ϕ], which holds in pairs
(u, u) such that ϕ holds in u.

• In general, a path expression is a concatenation (com-
position) or union of simpler path expressions.

• A string constant ’c’ is a string-typed expression. It is
equal to ’c’ in every node u.

• If α is a path expression,

count(α) and sum(α)

are string-typed expression. For a node u it calculates
the number of nodes v such that (u, v) is selected by α
or, appropriately, the sum of all string values of nodes
v such that (u, v) is selected by α.

• String-typed expressions (representing numbers) may
be added, multiplied, etc.

Note that the operators = and 6= in node tests α RelOp β
and α RelOp ϑ are not mutually exclusive. A node may
satisfy none or one or both of α = β and α 6= β (similarly
for <,≥, etc.). However always exactly one of the node
tests ϑ = ϑ′ and ϑ 6= ϑ′ is satisfied in a node, as string-typed
expressions produce exactly one value in every node.

Note that, following XPath specification, we do not allow
the Kleene star in path expressions, which is different from
[2]. Our algorithm does not work for path expressions with
the Kleene star.

When referring to XPath, we mean the fragment above.

3. Proof strategy

In this section we describe the high-level structure of our
linear time algorithm.

To allow storing of intermediate results, we slightly extend
the definition of node names. Now a tree t comes with some
constant k and in every node of t there is an array of k names
from Σ. A node test that checks for a name is now of the
form name[i] = a where 1 ≤ i ≤ k is an integer constant
and a ∈ Σ; it holds in nodes whose i-th name is a. We do
not change the definition of the tree size—the size of t is the
number of nodes plus the sum of lengths of string values of
its attribute and text nodes. In particular the size does not
depend on k (so also the complexity of all the algorithms
does not depend on k).

3

Consider a node test ϕ defined in XPath. We will present
an algorithm that selects the nodes of a tree t satisfying ϕ.
Simultaneously we show an algorithm, which for a string-
typed expression ϑ calculates its value in every node of a
tree t (the result of ϑ may be only a number, in which case
it has constant size by assumption, or a constant from the
query, in which case its size is bounded by |ϑ|). We want the
algorithms to run in time linear in |t|. Although the constant
in the linear time will depend on the size of node test or
string-typed expression—it should be cubic when sum and
count are not used anywhere inside the query, otherwise it
may be exponential. The algorithm works by induction on
the size of ϕ or ϑ.

There are a few easy cases: when ϕ just tests a name, when
it is a negation, conjunction or disjunction of smaller node
tests, when ϕ is of the form ϑ RelOp ϑ′, when ϑ is just a
constant or when ϑ is an arithmetical operation of smaller
string-typed expressions. For example to evaluate a node test
ϑ = ϑ′, first we evaluate both ϑ and ϑ′ from the induction
assumption, which gives in every node of t some number or
some string constant (when one of ϑ, ϑ′ is a constant), and
then in every node we check, whether the two results are
equal or not.

Consider now the first nontrivial induction step: a string-
typed expression sum(α). Let ϕ1, . . . , ϕn be the node tests
that appear in the path expression α. Using the induction
assumption, we run a linear time algorithm for each of these
node tests, and label each node in the tree with the set of node
tests from ϕ1, . . . , ϕn that it satisfies. Formally we enrich Σ
by constants true and false and we construct a new data
tree t′. It is almost the tree t, but the name array of every
node consists of n + k elements (instead of k). The first k
elements of the array contain the original names of this node
from the tree t. The i + k-th element is true if the node
satisfies ϕi and false otherwise. Due to specific definition
of size, both trees have the same size. Then we replace every
ϕi in α by a name test checking if i + k-th element of the
name array is equal to true and we run sum(α) on the tree
t′. In other words, we may assume without loss of generality
that the only node tests appearing in atomic path expressions
in α are name tests. This case is solved in Section 7.

In the same way we may reduce the node test of the form
α RelOp β to the case when the only node tests appearing
in atomic path expressions in α and β are name tests. Such
node tests are solved in the farther sections.

The node test count(α) may be easily simulated by a node
test sum(α′). We construct a tree t′, which is a modified
version of t: under every node of t we add a new, rightmost
attribute child with a string value 1. The name array would
be extended with an additional field, which is true in the
new children and false in the nodes from t. The node
test sum(α′) in t′ should return the same as count(α) in t by
summing the ones in the added children of the nodes selected
by α. To get α′ from α, we should append at its end a path
expression going to a child and checking in its name that it is
an added child. We also have to avoid using the new nodes
elsewhere in α: after every axis we add a name test checking
that we are not in a new child. Note that the tree size is at

most multiplicated by some constant.

Similarly α RelOp ϑ may be simulated by α′ RelOp β: We
add a new, rightmost attribute child under every node, which
would contain in a string value the result of the string-typed
expression ϑ in that node; β just goes to the new child and
α′ does the same as α omitting the new children. Whenever
ϑ is not a constant, then its result is a number, which we
assume has constant size. When ϑ is a constant, then the tree
t′ could be too big, so we proceed in a slightly different way:
we add a new child only under the root; β goes to the root
and then to its new child. Then under the natural assumption
|t| ≥ |ϑ|, we have |t′| ≤ |t| · 2.

Concluding, only the constructions α RelOp β and sum(α)
are left for the next sections, and only in the case, when the
only node tests appearing in atomic path expressions in α
and β are name tests.

4. Classifying nodes by string values

In this section we show the following result:
Proposition 4.1. Nodes of a data tree t may be divided
into classes with equal string values in time O(|t|).

We assign some natural number to each of these classes
and in every node we remember what is the number of its
string value. Thanks to that, we may later in constant time
compare string values for equality. String values representing
numbers will be also compared for inequalities (<,≤, >,≥),
but such string values are of constant size.

As a side remark note, that the assignment of numbers
to classes of equal string values may be done in such way,
that the order on these numbers would agree with the lexi-
cographical order of the string values (this follows from the
proof below). Thanks to that, the operators <, ≤, >, ≥
may be also used to lexicographically compare string values.
However this is not included in XPath standard.

Proof (of Proposition 4.1) The suffix array is a lexico-
graphically sorted array of the suffixes of a string (of course
in this array we do not remember the whole suffixes, only
their numbers). Kärkkäinen and Sanders [7] show how to
construct a suffix array in linear time. Moreover they show
that some additional data can be calculated such that in con-
stant time we can find a longest common prefix of any two
suffixes. Note that they do not assume that the alphabet has
constant size, their complexity measurement agrees with the
one declared by us in the introduction.

We use the algorithm in the following way: We concatenate
the string values of all text nodes in the document order and
after them the string values of all attribute nodes. Note that
this string contains the string values of all element nodes as
infixes, however they overlap. Moreover for every node we
may calculate which infix it is (the start position and length).
Now we run the suffix array algorithm on that string. Addi-
tionally we sort all nodes by length of their string values—we
can do this in linear time using counting sort (or bucket sort),
because these lengths are bounded by the document size.

4

Now we process every length of string values separately
(only string values with equal length may be equal). For
every string value we consider a suffix starting at the position
where this string value starts. We process string values of
given length in the (already calculated) lexicographical order
of these suffixes. We know (in constant time) what is the
length of the common fragment of a suffix and a next suffix
corresponding to a string value of the same length. If it
is equal or longer than the length of the string values, then
these string values are equal. If not, they are not equal and
moreover the first one can not be equal to any further string
value, since the farther suffixes differ at at least the same or
even more first positions. �

5. From path expressions to automata

In this section we show how automata may be used to
calculate path expressions.

From an arbitrary data tree t we create its binary version t̂
(using the first child / next sibling encoding). It has the same
set of nodes, with the same string values, but we change the
way in which the nodes are connected. The leftmost child of
a node u from t becomes its left child in t̂. The next sibling
of u from t becomes its right child in t̂. Node names will also
be changed in some way (more about this later). For nodes
u, v of t̂, we say that u is a t-child (or t-parent, etc.) of v,
when it is his child (or parent) in the original tree t. Writing
just child or parent we mean the relation in the binary tree t̂.

A path in a binary tree is a sequence of nodes u1, . . . , un

where each two consecutive nodes are connected (one is a
child of the other). A string description of a path u1, . . . , un

is a word A1m1A2m2 · · ·An−1mn−1An over the alphabet
{1, . . . , k}×Σ∪{child, next, parent, prev}, where k is
the number of elements in the name array of every node of
t̂. The letter mi is a name of one of the four one-step axes
depending on the relationship between ui and ui+1 in t. So
it is child, next, parent or prev when in t̂ the node ui+1

is the left child of ui, the right child of ui, ui is the left
child of ui+1 or the right child of ui+1, respectively. We
use the new axis child instead of child because a node
is connected by the child axis only with its leftmost child
from t, not with all children (similarly for parent). The
word Ai consist of some pairs (j, a) such that j-th name of
ui is a. So a path has a lot of (infinitely many) different string
descriptions, depending on which pairs (j, a) are included in
it. In particular some words Ai may be empty.

A simple path between two nodes is the (unique) path on
which no node appears more than once. A simple string
description is a string description in which every word Ai

contains at most one letter.

LetA be a nondeterministic automaton with states Q read-
ing string descriptions. Let u, v be any two nodes in a binary
tree t̂. We write transall

A,bt(u, v) for the set of state pairs (p, q)
such that some string description of some path from u to v
can take the automaton A from a state p to a state q. Note

that three objects are quantified existentially here: the path
from u to v, the string description and the run of the non-
deterministic automaton. Similarly we write transA,bt(u, v)
for the set of state pairs (p, q) such that some simple string
description of the simple path from u to v can take the au-
tomaton A from state p to state q. When both t̂ and A are
clear from the context, we simply write trans(u, v).

Definition 1. A nondeterministic word automatonAwith
states Q = {q1, . . . , qn} reading string descriptions is called
an XPath automaton for a binary tree t̂ when:

1. transitions from qi to qj exist only for i ≤ j;
2. if for some i there is a transition from qi to qi reading

child (respectively, parent) then there is also such
transition reading next (respectively, prev);

3. the automaton has O(|Q|2) transitions;
4. transall

A,bt(u, v) = transA,bt(u, v) holds for any two
nodes u, v.

The third condition just says that the number of transitions
does not depend on the number of names in the name array of
every node. Note that the last condition depends on the tree
t̂; the definition talks about a pair: an automaton and a tree.
The main result of this section is the following theorem:

Theorem 5.1. Let t be a data tree and α a path expres-
sion such that the only node tests appearing in atomic
path expressions in α are name tests. We may calcu-
late a binary version t̂ of t and an XPath automaton
A for t̂ with O(|α|) states such that a pair of nodes
u, v is selected by α in t iff (qI , qF) ∈ transA,bt(u, v) for
some initial state qI and accepting state qF . Moreover
for any node u we may calculate (and remember in t̂)
transA,bt(u, u) and transA,bt(u, v) for v being the parent
of u or the left or right child of u. All this may be done
in time Θ(|t||α|3).

It may be proved using standard techniques. Condition 1
of Definition 1 comes from the fact, that Kleene star is not
allowed in path expressions. We get condition 2, because
there is no multistep axis going only to the leftmost child
several times, we have to go to an arbitrary descendant. To
get condition 4, which says that we may consider only simple
paths instead of all, we use the following lemma:

Lemma 5.2. For a nondeterministic automaton A and
a binary tree t̂ we may in time O(|t̂||Q|3) calculate for
every node u of t̂ the set

loop(u) = transall
A′,bt′(u, u)

Once we have the sets loop, we may remember them in the
name array of every node and modify the automaton, in such
a way that it will be reading these values instead of making
loops.

6. Inequalities

5

In this section we deal with node tests of the form:

α RelOp β

where RelOp is one of the inequalities: 6=, <, >,≤,≥. If
(u, v) is a node pair selected by the path expression α, a
string value d of v is called a representative for α in u.
Likewise for β. For the relations <,>,≤,≥ only string val-
ues representing numbers may be representatives and there is
a natural order on them. For 6= we may use any linear order
on all string values and we use the order on the numbers
given to each string value in Section 4.

The basic idea is as follows. For each node u of a bi-
nary data tree t̂, we calculate the minimal and the maximal
representative for α in u, or if there is no representative at
all. Likewise for β. This information is sufficient to test if
α RelOp β holds. For example a node u satisfies α < β if
and only if there exist some representatives for α and for β
and the minimal representative for α is less than the maximal
representative for β. Similarly for the other inequalities.

It remains to show that the information about the represen-
tatives can be calculated efficiently. In order to do this, we
slightly generalize the problem, so that a dynamic algorithm
can be applied. Let A be an XPath automaton with states
Q. A representative for a state q ∈ Q in a node u is a string
value d of some node v with (q, qF) ∈ trans(u, v), where
qF is some accepting state.

Finding representatives (a minimal and a maximal repre-
sentative) in this new sense is a generalization of the problem
for path expressions, since any path expression α or β can
be simulated by an XPath automaton reading simple string
descriptions of simple paths (Theorem 5.1). It is worth not-
ing that in this section, as well as in Section 7, we do not use
conditions 1 and 2 from the definition of XPath automaton
(Definition 1). So these algorithms would also work for path
expressions allowing the Kleene star. The special form of
an XPath automaton is necessary for evaluating node tests
α = β and will be used in Sections 9 and 11.

In order to find the representatives, we use the standard
two-step (first a bottom-up pass, then a top-down pass) ap-
proach. In the bottom-up pass we take into account only
representatives which are in descendants of the current node.
For example, to find the minimal such representative for a
state q in a node u, we should consider: the string value of u
if q is accepting, and the minimal such representative in the
left child v of u for any state p such that (q, p) ∈ trans(u, v),
similarly for the right child. Such a step may be done even in
time O(|Q|2), similarly a top-down step, in which we look
for the representatives in the rest of the tree (not being de-
scendants of the current node), so the whole processing is
done in time O(|t||Q|2).

7. Aggregates

In this section we deal with string-typed expressions of the
form sum(α). Recall that they take into account only string
values representing numbers, and calculate sums of appropri-
ate string values understood as numbers. In particular these

sums are commutative. As in the previous section we gen-
eralize the problem to automata and we use it for the XPath
automatonAwith states Q corresponding to α reading string
descriptions of simple paths (from Theorem 5.1).

For each node u of a binary tree t̂ and for each set of states
P ⊆ Q we define sum(u, P) as the sum of string values
in every node v such that (q, qF) ∈ trans(u, v) for some
accepting state qF and some q ∈ P . As we consider each set
of states, the algorithm is exponential in the size of α. In order
to compute the function sum we first do a bottom-up pass,
then a top-down pass. In the bottom-up pass we calculate
the part sumdown(u, P) of sum(u, P) corresponding only to
these nodes v, which are descendants of u. We see that
sumdown(u, P) depends only on sumdown in its two children
u1, u2. First we calculate sets Pi of all states q′ such that
(q, q′) ∈ trans(u, ui) for some q ∈ P . Then sumdown(u, P)
is equal to the sum of sumdown(ui, Pi) for i = 1, 2 plus the
string value in u, if some accepting state is in P . Similarly
we may do a top-down pass, calculating the part of sum(u, P)
corresponding to these nodes v, which are not descendants
of u. For both direction it is possible to process a node in
time O(|Q|32|Q|), so the total time is O(|t||Q|32|Q|).

Note that the information just for singleton sets P is
highly insufficient. For example if sumdown(u, {q1}) =
sumdown(u, {q2}) = 1 we don’t know whether these sums
come from the same or different node, but it is important in
the parent of u, for example if from some state q in the parent
we may reach both q1 and q2 in u.

8. Skeleton representation

Now we turn to node tests of the form α = β. These are
the most interesting node tests. Sections 8 to 11 are devoted
to this case. At the beginning we show how nodes with
the same string values are organized. Then in Section 9 we
speed up calculations of automata runs. In Section 10 the
whole problem is almost solved, but a most difficult theorem
is postponed to Section 11.

In this section we show how a binary data tree is stored in
memory by the algorithm while performing node tests of the
form α = β. An initial situation is that we have a record for
each node, called the node record. This record contains the
node name, the number of its string value, as well as pointers
to the node records of the: parent, left and right child. Some
of these may be empty, if the appropriate nodes do not exist.
Additionally the node record contains the level of the node
(i.e. distance from the root).

Let u and v be two nodes in a binary data tree t̂. The least
common ancestor (LCA) of u and v is the (unique) node
w that is an ancestor of both u and v, and has a minimal
possible distance from u and v.

Let the class of d be the set of all least common ancestors
of any two nodes u and v having string value d. In particular
every node with a string value d is in the class of d (since a
node u is the least common ancestor of u, u).

6

In the evaluation algorithm, it will be convenient to reason
about classes. Therefore, for each string value, we keep a
copy of the tree where only nodes from the class are kept, as
described below.

Let t̂ be a binary data tree and let d be a string value. The
d-skeleton of t̂, is a binary tree obtained by only keeping
the nodes of t̂ from the class of d. The tree structure in the
d-skeleton is inherited from t̂. In particular, u is a child of v
in the d-skeleton only if in the tree t̂, u is a descendant of v,
and no node between u and v belongs to the class of d.

The skeleton representation of a binary data tree t̂ con-
sists of the record representation of t̂ and all of its d-skeletons.
Furthermore, for each d-skeleton, each node record contains
a pointer to the corresponding node in t̂ and each node record
in t̂ contains a list of corresponding nodes in all d-skeletons
to which it belongs.

Note that the sum of sizes of all skeletons in t̂ is linear in t̂,
since each node may be a leaf only in one skeleton. Moreover
the skeleton representation can also be calculated in linear
time. The crucial operation is finding the LCA of any two
given nodes. Harel and Tarjan [6] show an algorithm, which
first does a preprocessing on a tree t̂ in time O(|t̂|) and then in
time O(1) can answer queries: ,,where is the least common
ancestor of nodes u and v?”. A much simpler algorithm
doing the same was given later by Bender and Farach-Colton
[1]. These algorithms allow us to prove the proposition:

Proposition 8.1. The skeleton representation of a binary
data tree can be calculated in time O(|t̂|).

9. Precomputing automaton runs

In this section we show that, after appropriate preprocess-
ing, we may run an XPath automaton in time constant in the
length of its input.

Fix an XPath automaton A with states Q and a binary tree
t̂. For every node u and its t-parent v (parent in the original
tree t) we remember in u sets trans(u, v) and trans(v, u).
Additionally in every node u we remember a pointer to its
rightmost t-child. It is easy to calculate these values while
moving from left to right through all t-children of a fixed
node.

For every node u of t̂ and every two states p, q we define
firstup(u, p, q) as a pointer to the lowest (farthest from the
root) ancestor v of u such that (p, q) ∈ trans(u, v). It is
possible that such an ancestor does not exist, in such case
we remember an empty pointer instead. These pointers are
stored in the node u. Similarly let firstdown(u, p, q) be
a pointer to the lowest ancestor v of u such that (p, q) ∈
trans(v, u). Notice the broken symmetry here: although
firstup describes runs of the automata going up in the tree
and firstdown these going down, but both of them contain
pointers to nodes somewhere above in the tree. Intuitively,
pointers to nodes below are impossible, because there are
multiple branches of the tree. The following lemma shows,

that these functions may be efficiently calculated.

Lemma 9.1. We may calculate the functions firstdown

and firstup in time O(|t||Q|3).

Proof Let v be the parent of u. Then firstup(u, p, q) is equal
to u, if (p, q) ∈ trans(u, u), otherwise it is the lowest from
nodes firstup(v, p′, q) for all states p′ such that (p, p′) ∈
trans(u, v). We may calculate all the pointers in a single
top-down pass, in every node we quantify over three states
p, p′, q, so it takes time O(|t||Q|3). Similarly we calculate
firstdown. �

The second lemma says, that these functions may be used
to speed up the automaton. Here is the first time when we use
the fact, that XPath automaton does not have nontrivial cycles
(that the Kleene star is not allowed in path expressions). The
fact is used also in Section 11.

Lemma 9.2. For any two nodes u, v such that one is an
ancestor of the other, and for any set of states Qv ⊆ Q
we may compute in time O(|Q|3) the set

prec(u, v,Qv) = {p : ∃q∈Qv (p, q) ∈ trans(u, v)}

Before we come to the proof, we give some intuitions
staying behind it. Every run between distant nodes has to
use a multistep axis, which means that it stays in some state q
using a transition reading some axis. Instead of considering
an arbitrary run, we may (for a run going upwards) reach last
such state q as fast as possible (which is described by the
firstup function), then go up staying in this state and finally
do only a few more arbitrary steps. Similarly for a run going
downwards, we have to reach such state quite fast, then we
go down staying in this state as long as possible, and finally
do some transitions described by firstdown.

Proof (of Lemma 9.2) First assume that v is an ancestor of
u. Let w be this right t-sibling of v, which is a t-ancestor of u.
To find w we go from v to his t-parent, then to his rightmost
t-child w′ and then w is the least common ancestor of u and
w′ in t̂, which we may find in constant time.1 Then

prec(u, v,Qv) = prec(u, w, prec(w, v,Qv))

so its enough to solve the cases, when v is a t-ancestor of u
and when v is a t-sibling of u.

Consider the case when v is a t-ancestor of u. Consider
the nodes u = u0, u1, . . . , un = v, where ui+1 is the t-
parent of ui (we are not allowed to find all of them and for
example remember on a list, as the complexity should be
independent on n). Recall, that we already have calculated
trans(ui, ui+1), it is stored in the node ui. So we may cal-
culate prec(ui, ui+1, Q̃) for any set Q̃, even in time O(|Q|2).
When n ≤ |Q| we may calculate prec(u, v,Qv) step by step
1It is possible to avoid using the LCA algorithm in this
lemma and in Section 11. Instead while calling the calcula-
tion of prec some additional data should be remembered for
the path from the root to v (the descendant). To maintain
this data, the calls to the calculation of prec should appear
in some specific order. This technique was used in [2].

7

in time O(|Q|3), observing that prec(ui, v,Qv) is equal to
prec(ui, ui+1, prec(ui+1, v,Qv)) for any 0 ≤ i < n.

Otherwise first we calculate sets Qi = prec(ui, v,Qv) for
n − |Q| ≤ i ≤ n in time O(|Q|3) (before that we have
to find nodes ui, but ui is the least common ancestor of u
and the rightmost t-child of ui+1). We say that a state q
has a parent loop, when there is a transition from q to
q reading the letter parent (similarly for the other axes).
Recall from Definition 1 that if a state has a parent loop,
then it has a prev loop as well. We write lev(ui) to denote
the level (distance from the root) of the node ui; the levels
are remembered in the node record. We calculate a set Q0: a
state p is in Q0 if for some n−|Q| ≤ i ≤ n and for some state
q ∈ Qi with a parent loop there is lev(firstup(u, p, q)) ≥
lev(ui) (which means that the state q may be reached in
some node below ui, while going up from the state p in the
node u); in particular firstup(u, p, q) should be nonempty
pointer. Finally we hope that Q0 = prec(u, v,Qv).

First observe that Q0 ⊆ prec(u, v,Qv): We always have
(p, q) ∈ trans(u, firstup(u, p, q)), from the definition of
firstup. When lev(firstup(u, p, q)) ≥ lev(ui) there is
also (p, q) ∈ trans(u, ui), because the state q has parent
and prev loops.

To see that prec(u, v,Qv) ⊆ Q0 take any state q0 from
prec(u, v,Qv). This means that on some string description
of the simple path from u to v the automaton may be taken
from state q0 to some state qn ∈ Qv . Let q1, . . . , qn−1 be
the states of the run after the nodes u1, . . . , un−1. Because
there are only |Q| states and because an XPath automaton
has only trivial cycles, there has to be qr = qr+1 for some
n − |Q| ≤ r < n. In particular state qr has a parent
loop. Because the run exists, there has to be qr ∈ Qr

and lev(firstup(u, q0, qr)) ≥ lev(ur). This means that
q0 ∈ Q0.

The case when v is a left t-sibling of u is very similar, even
simpler. We consider the sequence u = u0, u1, . . . , un = v
in which ui+1 is the previous t-sibling of ui (so it is just its
parent in t̂) and we consider states with a prev loop instead
of these with parent loop.

Although the situation when v is a descendant of u is not
completely symmetric, it is similar. Once again we divide
the problem into two cases. Consider the case, when v is a t-
descendant of u and take the sequence u = u0, u1, . . . , un =
v in which ui+1 is a t-child of ui. First for 0 ≤ i ≤ |Q| we
calculate sets Q̃i: state p is in Q̃i if it has a child loop and
for some q ∈ Qv there is lev(transdown(v, p, q)) ≥ lev(ui).
Then we do Qi = Q̃i∪prec(ui, ui+1, Qi+1) for 0 ≤ i < |Q|
and Q|Q| = Q̃|Q|. Argumentation that Q0 ⊆ prec(u, v,Qv)
is very similar to the previous one. �

10. The core problem

In this section, we identify the main difficulty in calculating
node tests α = β. The strategy will be as follows: first we
define three kinds of sets. Then we show, that knowing them

is enough to solve the node test α = β. Finally we show how
to calculate the easier two of these types of sets. Calculating
of the third type is postponed to Section 11.

From Theorem 5.1 we know, that α and β may be rec-
ognized by XPath automata. By inspecting the proof of the
theorem it is easy to see, that for both α and β we may use a
common XPath automaton, denoted A, with states Q, work-
ing in a binary tree t̂ (being just the union of the automata
for α and β). The set of accepting states QF may also be
common. Only the initial states are different, say Qα

I for α,
and Qβ

I for β. Then a pair of nodes u, v is selected by α iff
(qα

I , qF) ∈ trans(u, v) for some qα
I ∈ Qα

I and qF ∈ QF ;
similarly for β.

For any string value d and a node u in the class of d we
calculate a set class(u, d) of states p such that (p, qF) ∈
trans(u, v) for some qF ∈ QF and for some node v with
string value d. Note that the requirement on u is weaker than
that on v: u only need be in the class of d.

For any node u we define the set core(u) of state pairs
(p↑, p↓) such that for some two nodes v↑,v↓ there is:

• v↑ is an ancestor of u and v↓ is a descendant of u (both
ancestor and descendant need not to be proper);

• for some d both nodes v↑ and v↓ are in the class of d
and no other node between them is the class of this d;

• for some q↑ ∈ class(v↑, d) and q↓ ∈ class(v↓, d) there
is:

(p↑, q↑) ∈ trans(u, v↑) (p↓, q↓) ∈ trans(u, v↓)
For any node u we define the set double(u) of state pairs

(p↑, p↓) such that for some node v and some states (q↑, q↓) ∈
core(v) there is:

(p↑, q↑) ∈ trans(u, v) (p↓, q↓) ∈ trans(u, v)
Lemma 10.1. A node u satisfies the node test α = β if
and only if (qα

I , aβ
I) ∈ double(u) or (qβ

I , aα
I) ∈ double(u)

for some initial states qα
I ∈ Qα

I and qβ
I ∈ Qβ

I .

Proof ⇐ Directly from the above definitions we see that for
some two nodes wα, wβ with the same string value d there is
(qα

I , qα
F) ∈ trans(u, wα) and (qβ

I , qβ
F) ∈ trans(u, wβ) for

some accepting states qα
F , qβ

F ∈ QF . This exactly means that
u is selected by α = β.

⇒ Take the two nodes wα, wβ with the same data value d,
such that α selects (u, wα) and β selects (u, wβ). Consider
the simple paths from u to wα and to wβ . First the two paths
go together to some node v, starting from which they are
disjoint. Let vα (and vβ) be the first node on the path from
v to wα (to wβ) in the class of d (where d is the common
string value in wα and wβ). One of the two paths from v, let
say this to wβ , has to go only down. So vβ is a descendant
of v. In such case vα has to be an ancestor of v, because the
least common ancestor of wα and wβ is in the class of d (and
it is an ancestor of v). Some of the mentioned nodes may
coincide.

r r r r rr
�

�
�� �

��

Q
Q
QQ
Q
QQu

vα

vβ

v

wβ

wα

8

Let qα
I , pα and qα (similarly qβ

I , pβ and qβ) be the states
in u, in v and in vα (in vβ) of the accepting run of A on the
path from u to wα (to wβ). Then we see that:

qα ∈ class(vα, d) (pα, pβ) ∈ core(v)
qβ ∈ class(vβ , d) (qα

I , qβ
I) ∈ double(u) �

Now we come to calculating the three types of sets. The
following lemma follows from Lemma 9.2:

Lemma 10.2. The set class(u, d) can be calculated for
every string value d and every node u in the class of d
in time O(|t||Q|3).

To remember the values of class we use the skeleton rep-
resentation. For each string value d, the set class(u, d) will
be stored in the d-skeleton, inside the node record that cor-
responds to the node u.

The main technical result is that the sets core(u) may be
efficiently calculated. The following theorem will be shown
in Section 11:

Theorem 10.3. The set core(u) for every node u may
be calculated in time O(|t||Q|3).

Finally we calculate the last type of sets:

Lemma 10.4. The set double(u) for every node u may
be calculated in time O(|t||Q|3).

Proof Here we also do a bottom-up pass followed by a top-
down pass. In the bottom-up pass we calculate the part
doubledown(u) of double(u) such that the node v from the
definition is a descendant of u. See how doubledown(u)
depends on this value in its two children u1, u2. It should
contain (for i = 1, 2) all pairs (p↑, p↓) such that for some
states (q↑, q↓) ∈ doubledown(ui) both pairs (p↑, q↑) and
(p↓, q↓) are in trans(u, ui). We have to be a little care-
ful to calculate them in O(|Q|3): In a first step we calculate
the set of state pairs (p↑, q↓) such that for some q↑ there
is (q↑, q↓) ∈ doubledown(ui) and (p↑, q↑) ∈ trans(u, ui).
In a second step we calculate the required set. Straight-
forward implementation of both steps gives time O(|Q|3).
To doubledown(u) we should also include all pairs from
core(u). The top-down pass is similar. �

11. Solving the core problem

We now come to the last part of Theorem 1.1, where we
prove Theorem 10.3. Recall, that we have to calculate the
set core(u) for every node u.

The main object used in this section is a bracket, which
is a tuple (v↑, v↓, Q↑, Q↓) where v↑ and v↓ are nodes such
that v↑ is an ancestor of v↓ and Q↑ and Q↓ are sets of states.
When both of the sets contain just one state, we simply write
(v↑, v↓, q↑, q↓). We say that the bracket generates a pair of
states (p↑, p↓) in a node u, when v↑ is an ancestor of u, v↓ is

a descendant of u (they need not to be proper) and for some
states q↑ ∈ Q↑, q↓ ∈ Q↓ there is (p↑, q↑) ∈ trans(u, v↑)
and (p↓, q↓) ∈ trans(u, v↓). We say that a set of brackets is
correct (respectively complete), when for every node u the
set of pairs of states generated in u by all the brackets from
the set is a subset (a superset) of core(u).

The algorithm will keep at each moment some correct and
complete set of brackets. Every bracket is remembered in its
v↓ node. The general idea of the algorithm is to convert one
brackets into other, simpler brackets. We say, that a bracket
is trivial, when it is of the form (v, v, q↑, q↓), i.e. when the
two nodes are equal and both of the two sets of states are
singletons. The goal is to calculate a correct and complete
set of trivial brackets. Once we only have trivial brackets,
we immediately have the function core(u) in any node u:
it contains all pairs (q↑, q↓) for which we have a bracket
(u, u, q↑, q↓) in our set.

The initial set of brackets is the following: For any nodes
v↑, v↓ such that v↑ is a parent of v↓ in some d-skeleton
and for any node v↑ = v↓ in some d-skeleton we have a
bracket (v↑, v↓, class(v↑, d), class(v↓, d)). Directly from
the definition of core(u) follows, that such set of brackets is
correct and complete. There are O(|t|) brackets in the set.

Step 1. After this step we want to have only brackets, in
which v↑ is a t-ancestor or a t-sibling of v↓ (i.e. ancestor or
sibling in the original tree t).

Take any bracket (v↑, v↓, Q↑, Q↓). Let v be the t-sibling
of v↑, which is a t-ancestor of v↓ (we may find v as the least
common ancestor of v↓ and the rightmost t-sibling of v↑). We
replace the bracket by brackets (v↑, v,Q↑, prec(v, v↓, Q↓))
and (v, v↓, prec(v, v↑, Q↑), Q↓), using Lemma 9.2 to calcu-
late prec. Then all pairs of states, which were generated by
the original bracket in any node between v↑ and v (including
v↑ and v) are generated by the first new bracket and in any
node between v and v↓ by the second new bracket. We still
have O(|t|) brackets.

Step 2. This is the most complex step. After it we should
have only brackets (v↑, v↓, q↑, q↓) of one of four types: trivial
brackets, brackets in which v↑ is the t-parent of v↓, brackets
in which state q↑ has a parent loop and brackets in which v↑
is a t-sibling of v↓ and state q↑ has a prev loop.

Brackets of the form (v, v,Q↑, Q↓) are easily converted
into at most O(|Q|2) trivial brackets: (v, v, q↑, q↓) for every
q↑ ∈ Q↑, q↓ ∈ Q↓.

Now we handle brackets (v↑, v↓, Q↑, Q↓) where v↑ is a
t-ancestor of v↓ (now only proper, since the case v↑ =
v↓ is already considered). Consider the sequence v↓ =
v0, v1, . . . , vn = v↑ where vi+1 is the t-parent of vi. Let
k = max(0, n − |Q|). We calculate the nodes vi and
sets Q↑

i = prec(vi, v↑, Q↑) for k ≤ i ≤ n. Each of
them is calculated using the previous one in time O(|Q|2),
as in the proof of Lemma 9.2. We also calculate Q↓

k =
prec(vk, v↓, Q↓) using Lemma 9.2 and then step by step sets
Q↓

i = prec(vi, v↓, Q↓) for k < i ≤ n. Then we add brackets
(vi+1, vi, q

↑
i+1, q

↓
i) for all q↑i+1 ∈ Q↑

i+1, q↓i ∈ Q↓
i , k ≤ i < n.

9

We also add brackets (vi, v↓, q
↑
i , q↓) for all states q↑i ∈ Q↑

i

with a parent loop, k ≤ i ≤ n. There are O(|Q|3) new
brackets. The first type of new brackets is allowed because
vi+1 is the t-parent of vi, the second type because q↑i has a
parent loop.

Now see that the new set of brackets is complete. State
pairs generated in all the nodes between vk and v↑ by the orig-
inal bracket are now generated by some of the new brackets
of the first type. Consider any pair (p↑, p↓) generated by the
original bracket in some node u below the node vk. This
means that on some string description of the simple path
from u to v↑ the automaton may be taken from state p↑ to
some state qn ∈ Q↑. Let qk, . . . , qn−1 be the states of the
run after the nodes vk, . . . , vn−1. Because there are only |Q|
states, there has to be qr = qr+1 for some k ≤ r < n. See
that qr has a parent loop and that qr ∈ Q↑

r , so there is a
new bracket (vr, v↓, qr, q↓) by which the pair (p↑, p↓) is also
generated.

Brackets (v↑, v↓, Q↑, Q↓) where v↑ is a left t-sibling of v↓
are handled in a very similar way. We consider the sequence
v↓ = v0, v1, . . . , vn = v↑ in which vi+1 is the previous t-
sibling of vi (so it is its parent in the binary tree t̂). In the part
near v↑ we add trivial brackets (as there are no other nodes
between vi and vi+1). In the second part we add brackets in
which q↑i has a prev loop (they are allowed because all the
nodes vi are t-siblings).

Step 3. After this step we should have only trivial brackets
and brackets (v↑, v↓, q↑, q↓) in which v↑ is the t-parent of v↓.

We want to eliminate brackets in which q↑ has a parent
loop. The key observation is that when we have two such
brackets (v↑, v↓, q↑, q↓) and (v′↑, v↓, q↑, q↓) and v↑ is an an-
cestor of v′↑, then the second bracket may be removed, be-
cause (q↑, q↑) ∈ trans(v′↑, v↑) (by Definition 1 state q↑ has
also prev loop). So for each v↓ we always keep only at most
|Q|2 brackets, for every pair of states at most one, and we
immediately remove the redundant ones. We consider every
v↓ starting from the lowest nodes and ending in the root. Let
v be the parent of v↓ in the binary tree t̂. We replace a bracket
(v↑, v↓, q↑, q↓) by brackets (v↑, v, q↑, q) for every q such
that (q, q↓) ∈ trans(v, v↓) (these brackets are processed
again, when we are in the node v) and by trivial brackets
(v↓, v↓, q, q↓) for every q such that lev(firstup(v, q, q↑)) ≥
lev(v↑). This may be done in time O(|Q|), so the whole
processing takes time O(|t||Q|3). Completeness of the new
set of brackets is clear. For correctness we use the fact that
q↑ has parent and prev loops, thanks to that (q↑, q↑) ∈
trans(firstup(v, q, q↑), v↑) (we may go up staying in the
state q↑.

Brackets (v↑, v↓, q↑, q↓) where q↑ has a prev loop and v↑
is a t-sibling of v↓ are eliminated in exactly the same way.
For correctness a parent loop in q↑ is not needed, because
v↑ may be reached from v↓ using only prev axis.

Step 4. In the last step we want to eliminate brackets in
which v↑ is the t-parent of v↓, leaving only trivial brackets.
Once again for every v↓ we have at most |Q|2 brackets, as

v↑ (the t-parent of v↓) is the same in all brackets for fixed
v↓. We consider every v↓ from the lowest nodes. Let v

be the parent of v↓ in the binary tree t̂. Then we replace
(v↑, v↓, q↑, q↓) by brackets (v↑, v, q↑, q) for every q such that
(q, q↓) ∈ trans(v, v↓) and by trivial brackets (v↓, v↓, q, q↓)
for every q such that (q, q↑) ∈ trans(v↓, v↑). This is done
in time O(|Q|) (recall, that we remember in the tree values
of trans between a node and its t-parent), so the whole
procedure takes time O(|t||Q|3).

12. Concluding remarks

Although the position() and last() functions are not
handled here, in the most natural case they may be replaced
by count() function. We mean the case, when they are
used with child axis—then position() returns the number
of left siblings, which satisfy some node test, and last()
returns the number of all such siblings. This may be easily
expressed by the count() function.

We leave as future work improvements of other fragments
of XPath. It is very likely, that evaluation of full XPath does
not require O(|t|4) data complexity. It would be also inter-
esting to give an algorithm which evaluates a path expression
in time linear in number of selected pairs.

13. References

[1] M. A. Bender and M. Farach-Colton. The lca problem
revisited. In Latin American Theoretical
Informatics, pages 88–94, 2000.

[2] M. Bojańczyk and P. Parys. XPath evaluation in linear
time. In PODS, pages 241–250, 2008.

[3] J. Clark and S. DeRose. XML Path language (XPath)
version 1.0, W3C recommendation. Technical report,
W3C, 1999.

[4] R. Pichler G. Gottlob, C. Koch. Xpath query evaluation:
Improving time and space eficiency. In ICDE’03, pages
379–390, 2003.

[5] R. Pichler G. Gottlob, C. Koch. Efficient algorithms for
processing XPath queries. ACM Transactions on
Database Systems, 30(2):444–491, 2005.

[6] D. Harel and R.E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal of
Computing, 13(2):338–355, 1984.

[7] J. Kärkkäinen and P. Sanders. Simple linear work suffix
array construction. In International Conference on
Automata, Languages and Programming, volume
2719 of Lecture Notes in Computer Science, pages
943–955, 2003.

[8] C. Koch M. Benedikt. XPath leashed. ACM
Computing Surveys.

[9] F. Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3), 2002.

10

APPENDIX

Proof (of Lemma 5.2) This is a fairly standard construction.
First, for each node u we calculate the subset down(u) of
state pairs in loop(u) that correspond to paths that only visit
descendants of u. The value of down for u depends only on
the values of down in the two children of u, and the names in
u. Assume for a moment that having this information we may
calculate down(u) effectively. Then the values down(u) can
be calculated in a single bottom-up pass through the tree.
Second, we calculate for each node u the subset up(u) of
loop(u) that correspond to paths that never visit descendants
of u. The value of up in u depends only on the value of
up in the parent of u and the value of down in the sibling
of u. In particular, the values up(u) can be calculated in a
single top-down pass through the tree. Once we have down
and up, the function loop(u) can easily be calculated, as the
transitive closure of union of down(u) and up(u).

The above algorithm would have the declared complexity,
if we can calculate down(u) basing on down in the two
children u1, u2 of u in time O(|Q|3). First note, that in time
O(|Q|3) we may calculate the transitive closure of a given
set of state pairs (understood as a relation on states) or the
composition of two given sets of state pairs. In down(u)
there should be pairs (p, q) such that from p to q there is a
transition reading letter (j, a) such that j-th name in u is a.
There should be also pairs corresponding to runs which read
a letter child, then do something from loop(u1) and then
read a letter parent. Let Rc be the set of pairs (p, q) such
that from p to q there is a transition reading child. Similarly
Rp for parent. Then to down(u) we add the composition
of Rc with loop(u1) and with Rp. Similarly for u2 and axes
next and prev. Then down(u) is the transitive closure of
all these pairs, since every string description of every path
from u to u using only descendants of u may be divided into
such fragments. Using similar technique we may calculate
values of up in the two children of u basing on up(u) and
the values of down in the children of u. �

Proof (of Theorem 5.1) By t̂′ we denote the binary version
of the tree t (as defined above) with the same node names
as in t (in the final t̂ we will have different names). In a
first step we modify α. We add the two new one-step axes
child and parent. We also add two new multistep axes
(child + next)∗ and (parent + prev)∗. The axis child
corresponds to going to the leftmost child and (child +
next)∗ corresponds to going several times to the leftmost
child or to the next sibling. The other two axes are their
inverses. Then we may replace in the path expression α
every use of child, parent, child∗ and parent∗ axes by
some combination of the other axes (the other four original
and the four new), so that the resulting α′ selects the same
pairs of nodes as α. For example every appearance of child
should be replaced by child · next∗: we go to the leftmost
child and then any number of times to its next sibling. The
paths selected by such α′ strictly correspond to structure of
the binary tree t̂′: child goes to the left child in t̂′, next
goes to the right child, etc.

In the natural way we compile α′ to a nondeterministic
automaton A′ reading string descriptions of paths in t̂′. This
means that a pair of nodes u, v is selected by α′ (or by α)
if and only if (qI , qF) ∈ transall

A′,bt′(u, v) for some initial
state qI and accepting state qF . Such automaton A′ sat-
isfies conditions 1-3 from Definition 1 (recall that in path
expressions we do not allow the Kleene star, only union and
concatenation).

To get condition 4, we use Lemma 5.2 to calculate the
values of the loop function. We remember them in the tree
t̂′, getting a tree t̂: in the name array for every node u we
add elements corresponding to all pairs (qi, qj) for i ≤ j
and we write there true or false depending on whether
(qi, qj) ∈ loop(u) or not. BecauseA′ is an XPath automaton,
only such pairs may be in the sets loop. We also modify A′

gettingA: between every two states (qi, qj) for i < j we add
a transition which reads true in the name corresponding to
(qi, qj).

If A accepts a string description of some path between
some u and v, then also A′ accepts a string description of
some (maybe longer) path between them, because the new
transition from qi to qj may be used only in a node for which
(qi, qj) ∈ loop(u). On the other hand see, that ifA accepts a
string description of some path between some u and v, then
it accepts also a simple string description of the simple path
between them.

The last part of the theorem is immediate: sets loop(u) =
transA,bt(u, u) are already calculated, sets transA,bt(u, v)
for v being a child or a parent of u are compositions of three
known sets. �

Proof (of Proposition 8.1) We use the algorithm, which in
constant time (after linear preprocessing) finds LCA of any
two nodes. Note, that using this algorithm we can also easily
check if one node is an ancestor of another node.

From Proposition 4.1 we already know leaves of all d-
skeletons. We need to find other nodes in the skeletons and
connect them appropriately. An almost naive use of the LCA
algorithm allows to calculate skeletons in linear time. We
consider each skeleton separately, all leaves in a skeleton
from left to right. At every moment we already have a
skeleton for some subset of leaves and all other leaves are to
the right of it. We want to add the next leaf to the skeleton.
We find the least common ancestor w of this new leaf v and
the rightmost already processed leaf u. We need to add w in
the appropriate place in the skeleton. We compare w with the
nodes on the rightmost path of the skeleton, starting from u
and going up. When w is between some node and its parent
in the skeleton, we add it there, together with attached v. It
is also possible that w is over the root of the current skeleton.

Why does it work in linear time? Possibly there are many
nodes on the rightmost path of the current version of a skele-
ton. However always only one of the visited nodes is an
ancestor of w. Other visited nodes, which are not ancestors
of w no longer will be on the rightmost path, so every node
can be visited only once in that role. �

11

Proof (of Lemma 10.2) We do the calculation separately
for every d-skeleton, in time proportional to its size. Once
again we use here a bottom-up pass followed by a top-down
pass. In the bottom-up pass for every node u of a d-skeleton
we calculate the part classdown(u, d) of class(u, d) such
that the node v from the definition is a descendant of u
(which includes v = u). The crucial observation is that the
set classdown(u, d) depends only on these sets for its two
d-children u1, u2 and that it may be calculated in O(|Q|3):
it is a union of prec(u, ui, classdown(ui, d)) for i = 1, 2 and
if the string value of u is d, it is also a union with the set of
accepting states QF .

In the top-down pass we calculate the part classup(u, d) of
class(u, d) such that the node v is not a descendant of u, this
is very similar to the above. The expected set class(u, d) is
the sum of classdown(u, d) and classup(u, d). �

12

