Maximum Matchings via Algebraic Methods for
Beginners

Pawel Parys
Warsaw University, Poland

November 5, 2009

Abstract

This is an introduction to algebraic methods for calculating maximum
matchings.

1 Bipartite graphs

Definitions We are given a graph G = (V, E). A maiching is a set of edges
from E such that each vertex is in at most one edge from the set. A matching
is mazximum if there is no matching of greater size. A matching is perfect, if it
contains all vertices.

In the first section we consider only bipartite graphs. A graph is bipartite,
it its set of vertices may be divided into two sets U, W such that there are no
edges inside U and inside W. Let n = |U| > m = |W| and U = {uy,...,upn},
W = {wl,...,wm}.

Classic algorithms The problem of finding a maximum matching in a bi-
partite graph was first considerd by Ford and Fulkerson, who have shown an
O(|E||V]) = O(n?) algorithm [6]. Then Hopcroft and Karp presented an im-
proved algorithm, which works in time O(|E|y/]V]) = O(n?®) [8]. It was the
best known algorithm until the (presented below) O(n?-38) algorithm was dis-
covered. Of course this algorithm is only theoretically better, since the fast
matrix multiplication algorithm is very complicated, so in practice (for typical
graph size) the Hopcroft-Karp algorithm is faster.

Adjacency matrix First fix some notation. For any matrix A its entry in
i-th row and j-th column is denoted by A; ;. When I and J are sets of numbers,
by Ay ; we denote a submatrix of A consisting of rows I and columns J. Finally,
by Agei(s,j) we denote a (n—1) x (n— 1) submatrix obtained from A by deleting
row ¢ and column j.

A symbolic bipartite adjacency matriz of G is an n X m matrix A\(G) such
that ()
-~ o Ti 5 if Ui, W5) € E
A(G)sj = { 0 otherwise
where the x; ; are unique variables corresponding to edges of G.

At the beginning we present the problem of finding a perfect matching (con-
taining all vertices) in a bipartite graph. A perfect matching may exist only if
|U| = |W| (n = m). In this case we get a squere matrix. It is easy to observe
that

Theorem 1.1 (Tutte [15]) For a bipartite graph G the symbolic determinant
det A(G) is non-zero iff G has a perfect matching.

Precisely, every component of det E(G) corresponds to a perfect matching. To
see that recall the definition of determinant

det A(G) = Y a(p)_Hfri,pq, :

p€Ell,

A non-zero component of this sum for every vertex wu; chooses another vertex
Wp, -
If we could calculate the determinant symbolically, the problem would be
solved. However there is no fast method to do that (moreover the result can be
very long). Lovész [10] proposed a randomized method: we substitute random
numbers for the variables in the matrix. Precisely, we choose a prime number
p = n°M) and substitute each variable in A(G) with a random number taken
from the field Z,,. Let us call the resulting matrix the random adjacency matriz
of G and denote A(G). We consider the matrix and its determinant in Z,. We
have the following theorem:

Theorem 1.2 If det E(G) # 0 then with probability at least 1 —n/p it holds
det A(G) # 0 (and if det A(G) = 0 then surely det A(G) =0).

This gives a randomized algorithm for deciding whether a given bipartite
graph has a perfect matching: Compute the determinant of A(G) (using Gaus-
sian elimination); with high probability this determinant is non-zero iff G has
a perfect matching. The algorithm can be easily implemented to run in time
O(n?®). As we will see, it can be also implemented to run in time O(n*) using
fast matrix multiplication (w is the matrix multiplication exponent, currently
w < 2.38, see Coppersmith and Winograd [3]). Observe that the sum and mul-
tiplication operations in Z, may be done in constant time. Division operation
requires O(logn) time, since one needs to perform the Euclid algorithm for
greatest common divisor. However in all the algorithms mentioned in this pa-
per division (namely taking inverse) is used only O(n) times, so the additional
logarithmic complexity of division does not impact the overall complexity.

The above theorem follows immediately from the following lemma proved in-
dependently by Zippel [16] and Schwartz [14], because det A(G) is a polynomial
of degree n:

Lemma 1.3 If P(z1,...,,) is a non-zero polynomial of degree d with coef-
ficients in a field Z,, then the probability that P evaluates to 0 on a random
element (s1,...,5m) € Zy' is at most d/p.

Proof
Induction on m (number of variables). For m = 1 we just have a one variable
polynomial of degree d; it simply has at most d different roots.

For m > 1 we represent the polynomial in the following way:

P21, Tm) = 2VPo(xa, ..y 2m) + -+ 2 P29, T

where we require that P; is a non-zero polynomial (i.e. that 2% is the highest
power of x1 appearing in P). The polynomial P; has degree at most d—i. Firstly
we randomly choose values so, ..., s, for 2, ..., ;. By induction assumption,
it holds P;(sa, ..., 8m) # 0 with probability at least d;i. Assume this is the
case and $a,..., S, are fixed. We have a nonzero polynomial P(z1,S2,...,Sm)
of one variable and degree i. We choose a value s for z;. With probability at
least 1 — % we have P(s1,...,8m) # 0 (it is also possible that P(s1,...,Sm) # 0
in the case when P;(ss,...,8,) = 0, which might cause that the probability
is higher, but we only prove a lower bound). So both of these succeed with

probabﬂll y

Perfect matchings in O(n%) Now we will see how to find a perfect matching
(till now we can only check if it exists). Let G be a bipartite graph having a
perfect matching and let A = A(G). Assume that det A # 0. The first trivial
approach is to take any edge and check whether the graph without its two
ends still has a perfect matching (by calculating the determinant of the matrix
for this smaller graph). If yes, we choose this edge and proceed in the smaller
graph; if no, we try another edge. This gives a randomized algorithm running in
time O(n®) (or O(n**?), when fast Gaussian elimination is used for computing
det A).

O

Perfect matchings in O(n*) An idea proposed by Ibarra and Moran [9] was
to look at the inverse matrix A~!. This is useful, because we have the following
theorem:

Theorem 1.4 The submatriz of A corresponding to the graph G —{u;, w;} has
a nonzero determinant iff A;zl #0.

Proof
The theorem follows immediately from the fact that A_ = (—1)" det Adel(m) oA
To see this formula it is enough to multiply the matrlx defined in this way with

the matrix A and see that we get the identity matrix. Indeed, on the i-th
element of the diagonal of the product we have

E a;k(—1)"* det Adel(ik) 5= »
pat det A

which is 1, because without the ﬁ factor we have the formula for det A. In
any other place in row ¢, column j of the product we have

§ a; e (—1)7T det Ager(jm ——
Pt det A

which is 0 because without the ﬁ factor we have the formula for the determi-
nant of a matrix A in which row ¢ is copied to row j (a matrix with two identical
rows). O

This theorem gives an algorithm working in time O(n*) (or O(n“*1)): We
compute A~!, we find an edge (u;,w;) for which A;jl = 0, we take the edge to
the matching and we repeat the same for the matrix Az¢(; ;) (i.e. for the graph
without the vertices u; and w;).

Perfect matchings in O(n?) The above algorithm calculates the inverse
matrix every time a row and a column is removed from the original matrix. But
it is not necessary to do that from scratch every time, as the new inverse matrix
differs only slightly from the previous one. Precisely, the following fact holds.

Lemma 1.5 Let

T G o7
_ a1 v -1 _ a1,1 UA

where @11 # 0. Then B™! = B— uol /@y 4.

Proof
Since AA™! = I, we have

a1715171 + ’UT?/,L\ = [1 al,lﬁT + ’UTB =0
u’dl,l +Bu=0 woT + BB = n—1 -

Using these equalities we get

B(B — 0T [ay1) = In_1 — uwd” — Buo? Jay, =

=Io1 —ud? +uar 107 fary = L1 — w0l +ud? =1,
and so B~! = B — @t /a1 as claimed. O

The modification of B described in this lemma is in fact a single step of the
well known Gaussian elimination procedure. In this case, we are eliminating

the first variable (column) using the first equation (row). Similarly, we can
eliminate from A~! any other variable (column) j using any equation (row) i,
such that AZ; #0.

As an immediate consequence of Lemma 1.5 we get simple O(n?) algorithm
for finding perfect matchings in bipartite graphs, by Mucha and Sankowski [12]:

SIMPLE-BIPARTITE-MATCHING(G):
B=A"1G)

M=

for c=1 to n do

1. find a row 7, not yet eliminated, and such that B, . # 0 and
A(G)er # 0 (Le. (uc,w,) is an allowed edge in G — V(M));

2. eliminate the c-th column of B using the r-th row;
3. add (ue,w,) to M.

Perfect matchings in O(n“) The last step is to get an algorithm working
in time O(n*). Bunch and Hopcroft [1] already in 1974 showed how to do
Gaussian elimination by fast matrix multiplication in time O(n*). It allows to
speed up previous algorithms, but it is not enough here: in the above algorithm
we separately do n single steps of the Gaussian elimination. However the Bunch
and Hopcroft algorithm may be adopted to solve our problem.

We consider first a particularly simple case of Gaussian elimination. Assume
that we are performing a Gaussian elimination on a nxn matrix B and we always
have B;; # 0 after eliminating the first ¢ — 1 rows and columns. In this case
we can avoid any row or column pivoting, and the following algorithm performs
Gaussian elimination of B in time O(n*):

SIMPLE-ELIMINATION(B):
fori=1ton do

1. lazily eliminate the i-th column of B using the i-th row;
2. let j be the largest integer such that 27|i;

3. UPDATE({i+1,...,i+27},{i+1,...,n});

4. UPDATE({i +2/ +1,...,n}, {i+1,...,i+27}).

By ,,lazy elimination” we mean storing the expression of the form uvT /c
describing the changes required in the remaining submatrix without actually
performing them. These changes are then executed in batches during calls to
UPDATE(R, C') which updates the Bg ¢ submatrix. Suppose that k changes
were accumulated for the submatrix Br ¢ and then UPDATE(R, C) was called.
Let these changes be ulv?/cl, ey ukv,{/ck. Then the accumulated change of
BR,C is

uvl Jey + - Fupvf fop = UV

where U is a |R| X k matrix with columns uy,...,u; and V is a k x |C| matrix
with rows v{ /c1,...,v} /e, The matrix UV can be computed using fast matrix
multiplication.

This algorithm has time complexity O(n“) because of the following lemma.

Lemma 1.6 The number of changes performed by the SIMPLE-ELIMINATION
algorithm in steps 8. and 4. is at most 2.

Proof

In the i-th iteration rows i + 1,...,7 + 27 and columns i 4+ 1,...,i + 2/ are
updated. Since 27|i, we have 2/71|i — 27 so these rows and columns were also
updated in step ¢ — 27. Thus, the number of changes is at most 27. O

It follows from this lemma, that the cost of the update in i-th iteration is
proportional to the cost of multiplying the 27 x 27 matrix by a 27 x n matrix.
By splitting the second matrix into 2/ x 27 square submatrices, this can be done
in time (27)“n/27 = n(27)“~1. Now, every j appears n/27 times, so we get the
total time complexity of

[log n] [logn]
> n@) n/2 =0 > (2972 = om0 = O(n®) .
j=0 j=0

This finishes the proof that a naive iterative Gaussian elimination without row
or column pivoting can be implemented in time O(n*) using a lazy updating
scheme.

Now move to the real problem of finding a perfect matching in a bipartite
graph. Let A = A(G) be a bipartite adjacency matrix and let B = A~!. We
may still eliminate columns from left to right. However now, when eliminating
column ¢, we can not always use row c¢ (like in the previous simple case), but we
need to choose a row r such that B, . # 0 as well as A., # 0. The algorithm
should be appropriately adopted.

The basic idea is that since columns are eliminated from left to right, we do
not need to update the whole rows, only the parts that will be needed soon:

BIPARTITE-MATCHING(G):
B=A"1Q)
M=90
forc=1ton do
1. find a row 7, not yet eliminated, and such that B, . # 0 and
A(G)er #0 (ie. (ue, wy) is an allowed edge in G — V(M));
2. lazily eliminate the c-th column of B using the r-th row;
3. add (ue,w,) to M;
4. let j be the largest integer such that 27|c;
5. update columns ¢+ 1,...,c+ 27.

Notice that in this case the update operation is a bit more complicated than
in the SIMPLE-ELIMINATION algorithm. Suppose we update columns ¢ +
1,...,c+ 27. These columns were updated in the (¢ — 27)-th iteration, so we
have to perform updates resulting from elimination of columns ¢ —27 4+ 1,...,c.

Let us assume without loss of generality that the corresponding rows have the
same numbers (otherwise we may renumber them). The first update comes from
elimination of the (c—27 +1)-th row using the (c—27+1)-th column. The second
update comes from elimination of the (¢ — 27 +2)-th row using the (¢—27 +2)-th
column, but we do not know the values B(c—2742,c+1),..., B(c—27+2,c+27)
in this row without performing the first update. Fortunately, we can use the
lazy computation trick again! We lazily perform the postponed updates one
after another and after performing the i-th update, we only compute the actual
values for the rows used in the next 2! updates, where [is the largest number,
such that 2!|i. In other words, for each i from 1 to 27 we update rows ¢ — 27 +
i+1,...,c—27 +i+2! (in all columns c¢+1,...,c+27) applying changes coming
from columns/rows ¢ — 27 +4 — 2! 4+ 1,...,¢— 2/ + i (note that values in these
rows have already been fully updated). In this manner rows c—27 +1,..., ¢ will
be correctly updated; we also need to update all rows below ¢, but this may be
done using straight matrix multiplication.

What is the time complexity of updating columns ¢ + 1,...,c + 27?7 We
have to perform 27 updates and performing i-th update requires multiplication
of a 2! x 2! matrix by a 2! x 27 matrix, where [as before. This is the same
situation as in the analysis of the SIMPLE-ELIMINATION algorithm, but now
we have only 27 rows instead of n. The complexity is thus O(27%). We also
have to count the time required to update the rows below ¢ and this requires
multiplication of a (n — ¢) x 2 matrix by a 2/ x 27 matrix. This can be done
in time O(27“n/27) = O(n(27)¥~!). We now have to sum it up over all j, but
again, this is the same sum as before and we get O(n®).

Maximum matchings The above algorithms were looking for a perfect match-
ing (a matching containing all vertices). If it does not exist, one may be inter-

ested in finding a maximum matching (a matching with maximum number of
edges). As previously, the basic object is the adjacency matrix of G, which now

is not necesarly a square matrix.

A rank of a matrix A (denoted rank(A)) is a maximum size of a square sub-
matrix of A with a nonzero determinant. Recall that each submatrix of A is an
adjacency matrix for a graph restricted to a subset of vertices corresponding to
the rows and columns of that submatrix. Hence from Theorem 1.1 immediatelly
follows

Theorem 1.7 (Lovasz [10]) The rank of the symbolic adjacency matriz A(G)
is equal to the size (the number of edges) of a mazimum matching of G. More-
over a mazimum matching contains vertices corresponding to rows and columns
of a squere submatriz of A(G) of size rank(A(G)) with a nonzero determinant.

Like previously, we may look at the random adjacency matrix A(G):

Theorem 1.8 With probability at least 1 —n/p it the ranks of A\(G) and A(G)
are equal.

Of course it follows from Lemma 1.3. Indeed, take any squere submatrix of
A(G) of size rank(A(G)) with a nonzero determinant. Its determinant is a

polynomial of degree < n, hence with probability > 1 — n/p the determinant of
the same submatrix in A(G) is also nonzero.

From the above follows that it is enough to find (in time O(n*)) a maximum
submatrix of the random adjacency matrix A(G) with a nonzero determinant.
Then we may apply the BIPARTITE-MATCHING algorithm for that subma-
trix and we have a maximum matching in G. A maximum submatrix with
nonzero determinant may be found using Gaussian elimination (which may be
implemented in time O(n®), very similarly to the BIPARTITE-MATCHING
algorithm): the columns and rows used for elimination form the demanded sub-
matrix. Indeed, after the elimination we get a form, which is similar to the
upper triangular form: everywhere under the pivots there are only zeroes, so
this submatrix has a nonzero determinant. Moreover all rows not used in elim-
ination contain only zeroes, so no bigger submatrix has nonzero determinant.
The key point is that a step of the elimination procedure does not change the
rank, since a step is invertible and the rank can not increase. Althrough a de-
terminant of a submatrix may change during elimination, this is not the case
for our submatrix, since all rows and columns used for elimination come from
inside this submatrix.

Monte Carlo vs Las Vegas In general there are two kinds of probabilistic
algorithms. Monte Carlo algorithms have fixed running time, but their result
is correct only with some high probability. On the other hand Las Vegas al-
gorithms return always correct results, but pesimistically they may work very
long (their expected running time is used as a complexity measure). See that
a Las Vegas algorithm can be always made a Monte Carlo algorithm with the
same complexity: just run the algorithm, and when it runs too long strop it
and return any result. The inverse is not true in general, one needs a (fast)
procedure which checks whether the result is correct. Then one may repeat the
Monte Carlo algorithm until it will return a correct answer.

All the algorithms presented above are Monte Carlo algorithms. However
they can be made Las Vegas. One method is described at the end of Section 2
and works also for general graphs. The algorithm is purely algebraic, however
the correctness proof is quite complicated. For bipartite graphs a much simpler
method works, but it is not algebraic. Assume the algorithm has found some,
in its opinion, maximum matching. We want to check if it is correct, which
means that no bigger matching exists or, equivalently, no augmenting path
exists. Existance of an augmenting path may be tested using a BFS algorithm
in time O(n?) (see [4]), so the expected running time of the Las Vegas algorithm
remains O(n®).

2 General graphs

In this section we show how the above ideas generalise to an arbitrary, not
necessarly bipartite, graph. Let now n = |V] and V = {v1,...,v,}.

Classic algorithms Solving the maximum matching problem in time poly-
nomial in n remained an elusive goal for a long time until Edmonds [5] gave
the first algorithm, with running time O(|V|2|E|) = O(n*). Several additional
improvements culminated in the O(y/[V[|E|) = O(n*?) algorithm of Micali and
Vazirani [11]. Unfortunately, both these algorithms mentioned above, as well
as the others, are quite complicated. In my oponion the randomized O(n?)
algebraic algorithm presented below is the simplest one.

Adjacency matrix We need an improved version of a adjacency matrix, since
now edges may lead between any two vertices. A skew symmetric adjacency
matriz of G is an n X n matrix A(G) such that

R Zi,j if (Ui,’l)j) eFandi<j
A(G)iyj = —Tji if (Ui,’l}j) € F and i > J
0 otherwise

where the z; ; are unique variables corresponding to edges of G (each variable
apears twice in the matrix).
Theorem 1.1 is true also for an adjacency matrix defined in this way:

Theorem 2.1 (Tutte [15]) For any graph G the symbolic determinant det A(G)
18 mon-zero iff G has a perfect matching.

Proof

Assume first that there is a perfect matching M. Look at the component of

det A(G) containing det A(G); ; and det A(G),; for each (v;,v;) € M. This is a

multiplication of xf ; for each (vi,vj) € M,i < j, so it is nonzero. Moreover such

component appears only once (so it does not reduce with some other its copy),

no other component may have all these variables in squeare. So det A\(G) #0.
Assume now that det A\(G) # 0. Recall that

det A(G) = > U(p)HA\(G)i’pi .

peH’Vl

Consider a permutation p with an odd-length cycle. Let p’ be the permutation p
with one odd-length cycle reversed (say this which contains the smallest number
through all numbers in all odd-length cycles). Compare the components for p
and for p’: odd number of factors A(G);,, is replaced by A(G),, : = —A(G)ip,-
Moreover o(p) = o(p’), so one component is opposite to the other and they
reduce. Hence (if det A(G) # 0) there is some permutation p with all cycles of
even length such that each A(G)i,pq: is nonzero. Such permutation gives a set
of cycles of even length in GG such that each vertex is on exactly one cycle. It is
enough to take every second edge from each cycle to get a perfect matching. [J

Like previously we may substitute random numbers for the variables in E(G),
getting a random adjacency matrix A; an analogue of Theorem 1.2 holds. It
allows us to check in time O(n?) if a perfect matching exists and to find one in
time O(n®).

Perfect matchings in O(n*) and O(n®) We consider the same O(n?*) al-
gorithm as for bipartite graphs: compute A~!, find an edge (vs,v;) for which
A 75 0, take the edge to the matching and repeat the same for the matrix A
Wlthout the i-th and the j-th row and column. This algorithm in the general
case was invented by Rabin and Vazirani [13] For correctness we need some
analogue of Theorem 1.4:

Theorem 2.2 Assume det A # 0. The submatriz of A corresponding to the
graph G — {v;,v;} has a nonzero determinant iff A;zl #0.

The proof is a little bit more complicated now: to get the submatrix of A
corresponding to G — {v;, v;} we need to remove from A both the i-th and the j-
th row and both the i-th and the j-th column. On the other hand A;jl guaranties
only that after removing the j-th row and the i-th column we get a nonzero
determinant (after removing the second row and column the determinant might
potentially become zero, but this in not the case). In the proof we use three easy
facts from the linear algebra. First, when after removing one row (or column)
from a matrix, its rank may decrease by at most one. Second, when some rows
are removed from a matrix, the rank stays the same iff the removed rows are
linear combinations of the remaining rows. Third, a determinant of any skew
symmetric matrix of odd size is zero. Indeed, det B = det BT = det(—B) =
det B (the last equality is true only for B of odd size; for B of even size we
have det(—B) = det B). In the proof we also need the following lemma (which
is used also further):

Lemma 2.3 For any skew symmetric matriz A, if Ag ¢ is a square submatriz
of A of size rank(A) with a nonzero determinant, then Ag r also has a nonzero
determinant.

Proof

Look at the subatrix Ap . consisting of rows R and all columns. Its rank is equal
to rank(A). Hence all rows outside R are linear combinations of the rows in R.
Since A is skew symmetric, also all columns outside R are linear combinations
of columns in R. This means that rank(Ag .) = rank(Ag r), thus Ag r has a
nonzero determinant. O

Proof
From theorem 1.1 the right side is equivalent to det Age(; ;) # 0.

Assume first that the left side holds: det Agei(fs,53,4i,51) # 0- As we have
already said, det Age;(;,5) = 0 (since the matrix is skew symmetric of odd size),
so the ranks of both these matrices are n — 2. Removing the j-th column from
Agei(i,j) do not change the rank, so this column is a linear combination of the
other columns (we mean here columns consisting of all rows except the i-th
row). Consider the matrix A withot row 7. Its rank is n — 1. As its j-th column
is a linear combination of the other columns (as previously here we also have
columns without row 7), removing the j-th column does not change the rank,
hence the rank of Age(; ;) is n — 1, which is what we should prove.

10

Now assume that that the left side does not hold. Then the rank of Age;((4,53,4i,51)

is at most n — 3. When it is n — 3, by Lemma 2.3 there is a skew symmetric
matrix of size n — 3 with nonzero determinant, which is impossible, sinse n—
is odd. Hence the rank of Agei(fi jy,s,53) 18 at most n —4. It is get from A by
removing two rows and two columns, hence after removing each of them the
rank should decrease by one, so the rank of Age(; 5y is n — 2. O

Like in the bipartite case, thanks to Lemma 1.5 we get a simple O(n?)
algorithm:

SIMPLE-BIPARTITE-MATCHING(G):
B=A"YQ)
M=10
for c=1ton do
if column c¢ is not yet eliminated then

1. find a row 7, not yet eliminated, and such that B, . # 0 and
A(G)er # 0 (Le. (ve,vy) is an allowed edge in G — V(M));

2. eliminate the c-th column of B using the r-th row;
3. eliminate the r-th column of B using the c-th row;
4. add (ve,v,) to M.

Perfect matchings in O(n“) For bipartite graphs we could use the lazy
computation mechanism because columns could be processed from left to right.
In the general case we need to process both rows and columns in an arbitrary
order; the lazy computation mechanism does not work any more.

A first randomized O(n*) algorithm for perfect matchings was given by
Mucha and Sankowski [12]. It relies on a nontrivial structural decomposition
of graphs called the ,,canonical partition”, and uses sophisticated dynamic con-
nectivity data structures to maintain this decomposition online.

A little simpler and strictly algebraic algorithm was given by Harvey [7]. It
uses a divide-and-conquer approach. Assume that the number of vertices of G
is a power of two. It can be easily achieved by adding new pairs of vertices
connected by an edge. The algorithm is outlined below:

FindAllowedEdges(S, B)
If this S was already processed then return
If |S] > 2 then
Partition S into 4 equal-sized parts Si,..., 5y
For each unordered pair {S,, Sp} of parts
FindAllowedEdges(S, U Sy, B)
Update B
Else
This is a base case: S consists of two vertices 7 and j
If A;; #0and B;; # 0 (i.e. edge {i,;} is allowed) then
Add {4, 7} to the matching

11

We start the function with § = V and B = A~!(G). The arguments to recursive
calls (in particular the matrix B) is passed by value, i.e. it is coppied and changes
from recursive calls are not visible outside. The ,,Update B” command means
that we eliminate rows and columns corresponding to vertices added to the
matching by the last recursive call to FindAllowedEdges. In particular values
in these rows and columns of B are made zero.

First see correctness of the algorithm. A crutial observation is that the
algorithm considers each pair of vertices in at least one base case. The proof
is an easy inductive argument: fix a pair of vertices {i,j}, and note that at
each level of the recursion, at least one unordered pair of parts {S,, Sy} has
{i,7} € S,US,. We may always look at the first such pair, then for sure S, USp
was not processed before, so the first condition would not return immediatelly
from the procedure. Hence, the algorithm is simply a variant of the Rabin-
Vazirani O(n*) algorithm that considers edges in an unusual order.

Now analyse the complexity. Let us suppose for now that the updating
scheme requires only O(|S|“) time for a subproblem with set S; this will be
demonstrated later. To get the desired complexity we need additionally assume
that the partition of S into 4 parts is done in a friendly way: there are only 2¢+1
parts on level ¢ (all parts are disjoint). This can be easily guaranted (fix some
order of vertices, choose the parts such that they consist of n/2!"1 consequtive
vertices, then S consists always of two fragments of consequtive vertices). The
issue of checking the first condition may be solved by a bit vector (of size O(n?))
indicating which subproblems have been solvedl queries and updates to the
vector are done in constant time. Let us analyse the recursion. At level i the
size of a subproblem is n2~% and the number of subproblems is (212+ 1) < 221,
The total time to apply updates at level i is O((n27%)~2%) = O(nw2~(@=2)7),
Suming over all levels yields a bound of O(n®) (assuming w > 2; if w = 2 we
get O(n?logn)).

The only thing left is to do the update of B. Note that we does not need to
update the whole B. Only the part corresponing to .S is used, so it is enough
to update this part. We need to eliminate columns and rows corresponing to
the vertices added to the matching in the call to FindAllowedEdges which have
just returned. So we already know which rows/columns should be eliminated
and in which order (in fact any order gives the same result). Hence we may
eliminate them using the lazy elimination scheme. Namely, we may renumber
the columns and rows so that in the i-th step we should eliminate column 7
using row i. Then we may simply apply the SIMPLE — ELIMINATION
algorithm (with the only difference that no all rows/columns are eliminated,
only some fixed number of them). Thus the update may be done in O(|S|*).
Beside the updates, we also need to copy the matrix B while doing a recursive
call. But, againg, only the fragent corresponding to B is needed, so it takes

time O(]S]?).

Maximum matchings Like for bipartite graphs, with probability 1 — n/p
the ranks of A(G) and A(G) are equal. Of course rank can not be greater than

12

the maximum size of matching: a matching gives a submatrix of the same size
with a nonzero determinant. The inverse is not immediate: it is possible that a
submatrix Agr c which witnessess the rank does not correspond to a subgraph,
because R is different than C. But according to Lemma 2.3 also Ar p has a
nonzero determinant, so in the subgraph corresponding to rows R there is a
perfect matching. We may find a submatrix witnessess the rank as previously,
using Gaussian elimination.

Monte Carlo vs Las Vegas There is an probabilistic algebraic algorithm,
which allows to find the size of a maximum matching, but makes mistakes in
the opposite direction: if the random adjacency matrix is incorrectly choosen it
may return too much. The algorithm is based on the Gallai-Edmonds decompo-
sition of a graph. So we have two algorithm calculating the size of a maximum
matching, one which may return too less and other which may return too much.
Hence both the algorithms returned correct values iff the values are the same.
The algoithm comes from [2].
To be extended...

A The fast matrix multiplication algorithm

To be written...

References

[1] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Mathematics of Computation, 28(125):231-236,
1974.

[2] J. Cheriyan. Randomized O(M (|V])) algorithms for problems in matching
theory. SIAM J. Comput., 26(6):1635-1669, 1997.

[3] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In STOC, pages 1-6, New York, NY, USA, 1987. ACM.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[5] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,
17:449-467, 1965.

[6] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[7] N. J. A. Harvey. Algebraic structures and algorithms for matching and
matroid problems. In FOCS, pages 531-542, 2006.

13

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973.

O. H. Ibarra and S. Moran. Deterministic and probabilistic algorithms for
maximum bipartite matching via fast matrix multiplication. Inf. Process.
Lett., 13(1):12-15, 1981.

L. Lovész. On determinants, matchings, and random algorithms. In FCT,
pages 565574, 1979.

S. Micali and V. V. Vazirani. An O(\/|V||E|) algorithm for finding maxi-
mum matching in general graphs. In FOCS, pages 17-27, 1980.

M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination.
In FOCS, pages 248-255, 2004.

M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs
through randomization. J. Algorithms, 10(4):557-567, 1989.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701-717, 1980.

W. T. Tutte. The factorization on linear graphs. J. London Math. Soc.,
22:107-111, 1947.

R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM,
pages 216—226, London, UK, 1979. Springer-Verlag.

14

