
XPath Evaluation in Linear Time

MIKO LAJ BOJAŃCZYK and PAWE L PARYS

Warsaw University

We consider a fragment of XPath 1.0, where attribute and text values may be compared. We
show that for any unary query ϕ in this fragment, the set of nodes that satisfy the query in a

document t can be calculated in time O(|ϕ|3|t|). We show that for a query in a bigger fragment

with Kleene star allowed, the same can be done in time O(2O(|ϕ|)|t|) or in time O(|ϕ|3|t| log |t|).
Finally, we present algorithms for binary queries of XPath, which do a precomputation on the

document and then output the selected pairs with constant delay.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Computational Logic; H.2.3 [Database Management]: Languages—Que-

ry Languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Tree with data, XML, XPath

1. INTRODUCTION

In this paper, we present an algorithm that, given an XPath node selecting query
ϕ and an XML document t, returns the set of nodes in t that satisfy ϕ. XPath
evaluation algorithms that are built into browsers are very inefficient, and may
have running times that are exponential in the size of the query and high-degree
polynomial in the size of the queried XML document [Gottlob et al. 2005]. The
existing papers devoted to improving XPath evaluation can be grouped into two
main approaches, as is explained next (see e.g. [Benedikt and Koch 2008] for a
survey).

One idea, as used in e.g. [Gottlob et al. 2002] and improved in [Gottlob et al.
2003], is to use dynamic programming; see also [Gottlob et al. 2005]. This gives
evaluation algorithms that are polynomial (but not linear) in both the node test (we
use this term for node selecting queries, although the terms predicate or filter are
sometimes used in the literature) ϕ and the size of the document t. The best known
algorithms for full XPath 1.0 [Gottlob et al. 2003] have running time O(|ϕ|2|t|4).

Another idea is to compile queries into finite-state tree automata, see [Neven
2002] for a survey. This approach works if the node test does not refer to attribute
or text values (a fragment called CoreXPath), and therefore an XML document

We acknowledge the financial support of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European Commission, under the

FET-Open grant agreement FOX, number FP7-ICT-233599.
Work supported by Polish government grant no. N N206 380037.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–38.

2 · M. Bojańczyk and P. Parys

can be identified with a finitely labeled tree (the label of a node is its tag name).
In this setting, an XPath node test can be compiled into a finite-state automaton;
and this automaton can be evaluated on the tree in linear time. In general, the
automaton may be exponential in the size of the query. (It is worth noting that
using dynamic programming, one can evaluate CoreXPath node tests in time linear
in both query and document, see [Gottlob et al. 2005].)

This paper, together with the conference papers on which it is based, [Bojańczyk
and Parys 2008] and [Parys 2009], can be seen as a generalization of the automata-
theoretic framework to node tests that use attribute and text values. In the termi-
nology of [Benedikt and Koch 2008], we study a fragment of XPath called FOXPath
(however without node identifiers). The first algorithm with linear time data com-
plexity for this fragment was given in [Bojańczyk and Parys 2008]. The constant
in the linear time of this algorithm was exponential in the query size. However,
the algorithm could handle an extension of XPath in which arbitrary regular ex-
pressions may appear as path expressions. We use the name regular extension for
this extension of regular XPath, as opposed to the basic fragment, which stands
for XPath where path expressions are not allowed to use the Kleene star, as in
the XPath specification [Clark and DeRose 1999]. The algorithm in [Bojańczyk
and Parys 2008] uses algebraic methods like finite monoids and Simon decomposi-
tions. We present here a different algorithm with the same complexity, which uses
deterministic automata instead of monoids.

Then in [Parys 2009], an algorithm with linear time data complexity and poly-
nomial time combined complexity was given. This algorithm used the special form
of path expressions in the basic fragment, which in fact are less expressive than
regular expressions. Hence the algorithm does not work for the regular extension,
only for the basic fragment.

There is also a third, unpublished algorithm, which is a simpler version of these in
[Bojańczyk and Parys 2008] and [Parys 2009]. It has O(|t| log |t|) time complexity in
the document size |t|, polynomial combined complexity, and works for the regular
extension as well. Probably among the three algorithms this one may be most
useful in the practice. It is easier to understand and implement, which probably
compensates for the additional log |t| factor.

The three algorithms described above are the content of this paper. They are
presented in the following theorem.

Theorem 1.1. Let t be an XML document and ϕ a node test of XPath (as
defined in section 2.2). The set of nodes of t that satisfy ϕ can be computed in time

—O(|ϕ|3|t| log |t|), or
—O(2O(|ϕ|)|t|), or
—when ϕ is from the basic fragment—in time O(|ϕ|3|t|).

The theorem above talks about evaluating node tests. What about path expres-
sions? In principle, path expressions can not be evaluated in time linear in the tree
size, as sometimes quadratically many pairs satisfy a path expression. However it
is possible to do the evaluation in time linear in the number of selected pairs or in
the tree size, whatever is bigger. Even more, we give a constant delay algorithm:
it finds some first pair satisfying α in time linear in the document, and each next
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 3

pair in constant time. Hence, when someone wants to find just one pair, or just a
linear number of pairs in the size of the document, this can be done in linear time.

Theorem 1.2. Let t be an XML document and α a path expression of XPath.
All pairs of nodes of t satisfying α can be computed one after another in time

—first pair: O(|α|3|t| log |t|), each next pair: O(|α|3 log |t|), or
—first pair: O(2O(|α|)|t|), each next pair: O(2O(|α|)) or
—when α is from the basic fragment—first pair: O(|α|3|t|), each next pair: O(|α|3).

The paper is structured as follows. In Section 2, we present preliminary defi-
nitions, the data model, and we define the fragment of XPath considered in this
paper. In Section 3, we present a high level overview of the algorithm from The-
orem 1.1. The algorithm is then detailed in Sections 4 to 10. Sections 4 to 7 are
common to all the three complexities; they reduce Theorem 1.1 to Theorems 7.1
and 7.8. These theorems are then shown in Sections 8, 9, and 10 in three different
ways, which gives the three different complexities of the algorithms. Finally, in
Section 11 we present a proof of Theorem 1.2.

Major contributions.. The major contributions of this paper are the three XPath
evaluation algorithms mentioned in Theorem 1.1. There are some differences be-
tween the algorithms, but they all share the following properties: a) the queries are
data-aware, i.e. the queries do not correspond to automata over a finite alphabet;
and b) when the query is fixed, the evaluation algorithm on a document t runs
in time O(|t|) or O(|t| · log(|t|)). Previous algorithms for data-aware fragments
of XPath would have at least quadratic data complexity, and conversely, previous
algorithms with linear data complexity would ignore data.

2. DATA MODEL AND XPATH

2.1 Data model

In this section we define the data model. We represent an XML document as a
tree, called a data tree. The tree is binary, i.e. a node may have two children: left
and right, one child: left or right, or no children. Although an XML document is
typically seen as an unranked tree, it can be also interpreted as a binary tree, using
the first child / next sibling encoding: the leftmost child of a node becomes its left
child, while its next sibling becomes its right child.

There are two reasons why we use binary trees. One reason is to simplify the
complexity analysis: for many operations it is obvious that processing two children
takes constant time, but it is less obvious that for many children it takes time
proportional to their number. A second reason is more important: the horizontal
axes of XPath do not correspond to any edge of an unranked tree; however each
axis can be simulated by a combination of axes going along edges of a binary tree.

In a data tree there are three types of nodes: element nodes, attribute nodes
and text nodes. Attribute and text nodes always have no left child (i.e. they are
leaves in the unranked tree). Every element and attribute node is assigned a label
which is a tag name or an attribute name, respectively, and which is taken from a
finite alphabet. Text nodes do not have names, we assume that their label is text.
We call the whole alphabet Σ—every node has a label from the set Σ. Moreover

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · M. Bojańczyk and P. Parys

���

��
��

""

"" QQ
PPP

�
�
�
�

PP

��

attribute
node

b
abc

text
abc

text
xyz

b

at2
0101

at1
01

a
abcxyz text node

element node

Fig. 1. Example data tree (string values in italic are not remembered)

every node has a string value. A string value of an attribute node is the value of
the corresponding attribute, which is a string. A string value of a text node is just
a text. But, what causes some difficulties, to get the string value of an element
node one has to concatenate the string values of all text node descendants of the
left child of the element node,1 in document order. The total length of all string
values may be quadratic in the input size. So, the string values of element nodes
are not remembered explicitly. Since most of the time we will be dealing with data
trees, we will sometimes write tree instead of data tree.

Consider for instance the following XML document:

〈a〉
〈b〉abc〈/b〉xyz
〈b at1 = ”01” at2 = ”0101”〉〈/b〉

〈/a〉

The data tree representing this document uses labels Σ = {a, b, at1, at2, text}.
The first two are tag names, the next two attribute names and the last one is the
special label for text nodes. The data tree is presented in Figure 1.

Trees will be denoted by letters t, s. Nodes will be denoted by x, y, z. String
values will be denoted by d. We write x ≤ y to denote that x is an ancestor of y.
Whenever we use words descendant or ancestor, they need not to be proper.

The size of a data tree is the number of nodes plus the sum of lengths of string
values of its attribute and text nodes. This size measure is linear in the size of the
text file representation, since the only difference is in the special characters like 〈
or ”.

2.2 XPath

In this section we define the fragments of XPath that are used in the paper. There
are two fragments: the basic fragment and the regular extension. The basic frag-
ment is almost a fragment called FOXPath in [Benedikt and Koch 2008]. Basically,
it contains queries that may navigate in a tree and compare string values. The spec-

1This stands for all text node descendants of the element node, when the document is interpreted

as an unranked tree.

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 5

ification [Clark and DeRose 1999] of XPath 1.0 contains a lot of constructs, which
can be easily added (like type conversions, etc.), but we omit them from this paper
to avoid going into technicalities. The constructs of full XPath 1.0 which are im-
portant for evaluation complexity, and which are not handled here, are: aggregates,
manipulating integers and position arithmetic.

The only difference between the basic fragment and the regular extension is
that the second allows Kleene star. The regular extension is not in the XPath
specification, but it is an often considered extension.

In XPath, the primitives employed for navigation along the tree structure are
called axes. We consider the following one-step axes: to−left, to−right and their
inverses from−left, from−right. They correspond to going to and from the left
and the right child. Moreover we consider their transitive-reflexive closures, called
multistep axes: to−left∗, to−right∗, from−left∗, from−right∗, (to−left +
to−right)∗, (from−left+from−right)∗. We comment on the relation to XPath
with the original set of axes below.

There are two types of expressions: path expressions and node tests. We may
look at them as on functions, for every node returning respectively: node sets and
booleans. Another way for looking at a path expression is that it is a binary query.
In each tree, a path expression will select a set of pairs (x, y) of nodes. Intuitively
a path expression will describe the path from x to y, although the path might not
be the shortest one. A typical path expression is to−left∗, it selects a pair (x, y)
if y can be reached from x by going several times to the left child, possibly x = y.
A node test is a unary query: it selects a set of nodes. A typical node test is a, it
selects nodes that have label a. In general in XPath, the two types of expression
are mutually recursive, as defined below:

— Every label a ∈ Σ is a node test, which selects nodes with a label a.
— Node tests admit negation, conjunction and disjunction.
— If α, β are path expressions, ϑ is a string constant and RelOp ∈ {=,≤, <,

>,≥, 6=}, then

α RelOp β and α RelOp ϑ

are node tests. The first of them selects a node x if there exist nodes y, z such
that (x, y) is selected by α and (x, z) is selected by β and that the string values of
y and z satisfy the relation RelOp. The second of them selects a node x if there
exists a node y such that (x, y) is selected by α and the string value of y and the
constant ϑ satisfy the relation RelOp. The inequalities ≤, <,>,≥ correspond to the
lexicographic order of strings (all the results hold as well for the order of integer
numbers).

— There are two types of atomic path expressions. Every axis, including the
multistep axes, is an atomic path expression. Furthermore, a node test ϕ may be
interpreted as an atomic path expression [ϕ], which holds in pairs (x, x) such that
ϕ holds in x.

— In general, a path expression is a concatenation (composition) or union of sim-
pler path expressions. In particular an empty concatenation is allowed, denoted ε.
Moreover in the regular extension (but not in the basic fragment) a path expression
may be a Kleene star of a simpler path expression.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · M. Bojańczyk and P. Parys

Note that the operators = and 6= in node tests α RelOp β and α RelOp ϑ are not
mutually exclusive. A node may satisfy none or one or both of α = β and α 6= β
(similarly for <,≥, etc.). Note also that in the regular extension the multistep axes
are not necessary, as they can be expressed using a star and the one-step axes; this
is not the case for the basic fragments, since Kleene star is not available.

When referring to XPath, we mean the fragments above. For a node test ϕ or a
path expression α, by |ϕ| and |α| we denote their size, understood as the length of
their text representations.

Relation to XPath with the original set of axes. All standard axes, navigating in
the unranked tree of a document, can be expressed by a combination of our axes,
even in the basic fragment. For example, the child axis is to−left · to−right∗;
the ancestor axis is (from−left + from−right)∗ · from−left, and the self
axis is ε (the empty path expression). The following axis can be written as
parent∗ · next−sibling · next−sibling∗ · child∗ in the unranked tree, which
should translate to (ε + (from−left + from−right)∗ · from−left) · to−right ·
to−right∗ · (ε+ to−left · (to−left + to−right)∗). Observe that the multistep
axes to−left∗ and from−left∗ are not necessary in this translation, but we add
them for symmetry.

3. PROOF STRATEGY

In this section we describe the high-level structure of our linear time algorithms.
Recall that the three algorithms have a common part; the discussion below concerns
this common part. The algorithms diverge after Section 7.

To allow storage of intermediate results, we slightly extend the definition of node
labels. Now a data tree t comes with some constant k and in every node of t there
is an array of k labels from Σ. A node test that checks for a label is now of the
form label[i] = a where 1 ≤ i ≤ k is an integer constant and a ∈ Σ; it holds
in nodes whose i-th label is a. We do not change the definition of the data tree
size—the size of t is the number of nodes plus the sum of lengths of string values
of its attribute and text nodes. In particular the size does not depend on k (and
also the complexity of all the algorithms does not depend on k).

Consider a node test ϕ defined in XPath. We will present an algorithm that
selects the nodes of a data tree t satisfying ϕ. The algorithm is defined by induction
on the structure of the query (which means that it is recursive and takes a subquery
as a parameter).

There are a few easy cases: when ϕ just tests a label or when it is a negation,
conjunction or disjunction of smaller node tests. For example to evaluate a node
test ϕ ∨ ϕ′, first we evaluate both ϕ and ϕ′ from the induction assumption, which
gives in every node of t two boolean values, and then in every node we check,
whether any of them is true.

Consider now the first nontrivial induction step: a node test α RelOp β. Let
ϕ1, . . . , ϕn be the node tests that appear in the path expressions α and β. Using the
induction assumption, we run a linear time algorithm for each of these node tests,
and label each node in the data tree with the set of node tests from ϕ1, . . . , ϕn that
it satisfies. Formally we enrich Σ by constants true and false and we construct
a new data tree t′. It is almost the data tree t, only the labels will be changed.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 7

In each node instead of one label we will have a label array consisting of n + 1
elements. The first element of the array contains the original label of this node
from the data tree t. The i + 1-th element is true if the node satisfies ϕi and
false otherwise. Due to our specific definition of size, the number of labels does
not count to the size, so both data trees have the same size. Then we create new
path expressions α′ and β′ by replacing every ϕi in α or β by a label test checking
if the i+ 1-th element of the label array is equal to true and we run the modified
node test α′ RelOp β′ on the data tree t′—it will be true in exactly the same nodes
as the original node test. Path expressions like α′ and β′ will be called unnested.

Definition 3.1. A path expression γ is unnested, when the only node tests ap-
pearing in atomic path expressions in γ are label tests.

The above discussion shows that, when the subqueries ϕ1, . . . , ϕn are already
evaluated, it is enough to give an algorithm for a node test where α′ and β are
unnested. Moreover note that |α′ RelOp β′| = O(|α RelOp β| − |ϕ1| − . . . − |ϕn|).
The remaining sections of the article are devoted to evaluating node tests of the
form α′ RelOp β′ where the path expressions α′ and β′ are unnested.

The same approach succeeds with node tests α RelOp ϑ: it is enough to evaluate
all node tests which appear in α and then α′ RelOp ϑ for some unnested α′ on
an appropriate data tree t′. We can even go further: the node test α′ RelOp ϑ
can be easily simulated by one of the other kind α′′ RelOp β, where α′′ and β are
also unnested. We construct a data tree t′′, which is a modified version of t′: we
add a new root above the current root of t′; it contains the constant ϑ in a string
value. The label array would be extended with an additional field, which is true
in the new root and false in the nodes from t′. The node test α′′ RelOp β in
t′′ should return the same as α′ RelOp ϑ in t: β just goes to the root, while α′′

does the same as α′ omitting the new root. To get such α′′ after every axis in α′

we add a label test checking that we are not in the new root. Note that under
the natural assumption2 |t| ≥ |ϑ|, we have |t′′| ≤ |t| · 2 = O(|t|). We also have
|α′′ RelOp β| = O(|α RelOp ϑ| − |ϕ1| − . . .− |ϕn|).

Concluding, only the construction α RelOp β, for various values of RelOp, is left
for the next sections, and only in the case when α and β are unnested. Moreover
the complexity of the whole algorithm is the same as a complexity of an algorithm
for this case.

Corollary 3.2. Assume we have an algorithm which, for unnested α and β,
evaluates the node test α RelOp β in a data tree t in time T (|α RelOp β|, |t|). Then
there is an algorithm evaluating any XPath node test ϕ in a data tree t in time
O(T (O(|ϕ|), O(|t|))).

4. PREPARING THE TREE

Before we come to solving node tests α RelOp β for unnested α and β, we describe
data structures used to represent a data tree. The operations described in this
section can be done without knowing the query; they prepare a tree to answer to
any query. In particular we show in this section how one can quickly compare data
in the nodes of a tree. We also define skeletons and we show how to construct them.

2A more careful analysis shows that Theorems 1.1 and 1.2 stay true even without this assumption.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · M. Bojańczyk and P. Parys

First, we say how a data tree is stored in memory by the algorithm. An initial
situation is that we have a record for each node, called the node record. This record
contains the array of node labels, the string value (in text and attribute nodes), as
well as pointers to the node records of the left child, the right child, and the parent.
Some of these may be empty, if the appropriate nodes do not exist. Moreover we
remember the level of each node (i.e. the distance from the root).

Let x and y be two nodes in a data tree t. The closest common ancestor (CCA)
of x and y is the (unique) node z that is an ancestor of both x and y, and has a
minimal possible distance from x and y (equivalently, maximal level).

Let the class of d be the set of all closest common ancestors of any two nodes
x and y having string value d. In particular every node with a string value d is
in the class of d (since a node x is the closest common ancestor of x, x). In the
evaluation algorithm, it will be convenient to reason about classes. Therefore, for
each string value, we keep a copy of the tree where only nodes from the class are
kept, as described below.

Let t be a data tree and let d be a string value. The d-skeleton of t, is a binary
tree obtained by only keeping the nodes of t from the class of d. The tree structure
in the d-skeleton is inherited from t. In particular, x is a child of y in the d-skeleton
only if in the tree t, x is a descendant of y, and no node between x and y belongs
to the class of d.

For instance, consider the following document, where the picture shows the nodes
and their string values.

ab

ab

ab

ba

ba

bb

bb

bb

bb

ba

There are three string values ab, ba and bb. Below we show the d-skeleton for each
of these classes. Note how these skeletons share nodes, e.g. all of them contain the
root of the document.

bb

bb

bb

bb

ba

ba

ba

ab

ab

ab

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 9

The skeleton representation of a data tree t consists of the record representation
of t and all of its d-skeletons. Furthermore, for each d-skeleton, each node record
contains a pointer to the corresponding node in t and each node record in t contains
a list of corresponding nodes in all d-skeletons to which it belongs.

Note that the sum of sizes of all skeletons in t is linear in |t|, since each node
may be a leaf only in one skeleton. Moreover the skeleton representation can also
be calculated in linear time. The crucial operations are comparing the string values
and finding the CCA of any two given nodes.

First, we discuss how string values of nodes can be quickly compared. If the sum
of their lengths is bounded by the size of the document, we could simply sort them
lexicographically. However the situation is complicated by the fact that the string
values overlap: a string value in an element node is a concatenation of all text node
descendants of its left child. Operations on string values needed by the algorithm
are described in the following two propositions. The first one is used for calculating
d-skeletons. The second one is useful during evaluation of node tests α RelOp β,
where RelOp is one of the inequalities.

Proposition 4.1. For a data tree t we can group all its nodes into sets of nodes
with the same string value, in time O(|t|).

Proposition 4.2. For a data tree t, after preprocessing in time O(|t|), we can
answer, in time O(1), queries of the form: for given two nodes x, y, is the string
value in x lexicographically smaller than the string value in y?

Proof of Propositions 4.1 and 4.2. A suffix array is the lexicographically
sorted array of the suffixes of a word (of course in this array we do not remember the
whole suffixes, only their numbers). Kärkkäinen and Sanders [2003] show how to
construct the suffix array in linear time. Moreover they show that some additional
data can be calculated such that in constant time we can find a longest common
prefix of any two suffixes.

We use the algorithm in the following way: We concatenate the string values of
all text nodes in the document order and after them the string values of all attribute
nodes; we get some word w. Note that w contains the string values of all element
nodes as infixes, however they overlap. For every node we calculate which infix it is
(the start position and the length). This can be done during one traversal through
the tree. Now we run the suffix array algorithm on the word w. We also calculate
the so-called reversed suffix array: for each suffix we remember its position in the
suffix array.

To get Proposition 4.1 we sort all nodes by the length of their string values—we
can do this in linear time using counting sort (or bucket sort), because these lengths
are bounded by the document size. Now we process every length of string values
separately (only string values with equal length may be equal). For every string
value we consider a suffix of w starting at the position where this string value starts.
We process string values of a given length in the (already calculated) lexicographical
order of these suffixes. We know (in constant time, from the Kärkkäinen and
Sanders algorithm) what is the length of the common fragment of a suffix and the
next suffix corresponding to a string value of the same length. If it is equal or
longer than the length of the string values, then these string values are equal. If

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · M. Bojańczyk and P. Parys

not, they are not equal and moreover the first one can not be equal to any further
string value, due to the lexicographic ordering in the suffix array.

Now see that Proposition 4.2 is also true. Assume one comes with two nodes x
and y. Their string values are prefixes of some suffixes of w. From the second part
of the Kärkkäinen and Sanders algorithm we know the first position on which the
two suffixes differ. When they differ further than the length of the shorter of our
string values, then the shorter string value is a prefix of the longer one, so it is also
lexicographically smaller. Otherwise the order of the string values is the same as
the order of the suffixes, which we know from the reversed suffix array.

To calculate d-skeletons we also need operations described by the following fact.

Fact 4.3. For a tree t, after preprocessing in time O(|t|), we can answer, in
time O(1), queries of the form: given two nodes x and y,

(1) where is the closest common ancestor of x and y?
(2) is x an ancestor of y?

Harel and Tarjan [1984] show an algorithm for queries of type 1 (a simpler algo-
rithm doing the same was given later by Bender and Farach-Colton [2000]). Queries
of type 2 follow immediately from queries of type 1: it is enough to check if the
CCA of x and y is equal to x.

We are now ready to prove the following proposition.

Proposition 4.4. The skeleton representation of a data tree t can be calculated
in time O(|t|).

Proof. From Proposition 4.1 we already know leaves of all d-skeletons. We need
to find other nodes in the skeletons and connect them appropriately. An almost
naive use of Fact 4.3 allows us to calculate skeletons in linear time. We consider
each skeleton separately, all leaves in the skeleton from left to right. At every
moment we already have a skeleton for some subset of leaves and all other leaves
are to the right of it. We want to add the next leaf to the skeleton. We find the
closest common ancestor z of this new leaf y and the rightmost already processed
leaf x. We need to add z in the appropriate place in the skeleton. We compare z
with the nodes on the rightmost path of the skeleton, starting from x and going
up. When z is between some node and its parent in the skeleton, we add it there,
together with attached y. It is also possible that z is over the root of the current
skeleton.

Why does it work in linear time? Potentially there are many nodes on the
rightmost path of the current version of a skeleton. However always at most one of
the visited nodes is an ancestor of z. Other visited nodes, which are not ancestors
of z no longer will be on the rightmost path after adding z, so every node may be
visited only once in that role.

5. FROM PATH EXPRESSIONS TO AUTOMATA

In this section we show how automata can be used to calculate path expressions.
These will be word automata and they will be reading string descriptions of paths.
The automata will be working on binary versions of trees.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 11

A path in a binary tree is a sequence of nodes x1, . . . , xn where each two consec-
utive nodes are connected (xi is a child or parent of xi+1). A path may loop. A
string description of a path x1, . . . , xn is a word A1m1A2m2 · · ·An−1mn−1An over
the alphabet ({1, . . . , k} × Σ) ∪ {to−left, to−right, from−left, from−right},
where k is the number of elements in the label array of every node of t. The mi

is a letter, which is the name of one of the four one-step axes depending on the
relationship between xi and xi+1 in t. So it is to−left, to−right, from−left,
or from−right when the node xi+1 is the left child of xi, the right child of xi, xi
is the left child of xi+1 or the right child of xi+1, respectively. The Ai is a word,
which consists of some pairs (j, a) such that the j-th label of xi is a. So a path
has a lot of (infinitely many) different string descriptions, depending on which pairs
(j, a) are included in it, allowing for reorderings and repetitions. In particular some
words Ai may be empty.

A simple path between two nodes is the (unique) path on which no node appears
more than once. A simple string description is a (not unique) string description in
which every word Ai contains at most one letter.

We will use nondeterministic automata to read string descriptions. Let A be
such an automaton, with states Q. Let x, y be any two nodes in a tree t. We write
transallA,t(x, y) for the set of state pairs (p, q) such that some string description of
some path from x to y can take the automaton A from a state p to a state q.
Note that three objects are quantified existentially here: the path from x to y,
the string description, and the run of the nondeterministic automaton. Similarly,
we write transA,t(x, y) for the set of state pairs (p, q) such that some simple string
description of the simple path from x to y can take the automaton A from state p to
state q. When both t and A are clear from the context, we simply write trans(x, y).

An unnested path expression can be translated into an automaton reading string
descriptions of paths, as described in the following lemma; this is the standard
translation of regular expressions into nondeterministic automata.

Lemma 5.1. Let α be an unnested path expression. There exists an automaton
A reading string descriptions such that a pair of nodes x, y of a data tree t is selected
by α if and only if (qI , qF) ∈ transallA,t(x, y) for some initial state qI and accepting
state qF . The automaton has O(|α|) states and can be constructed in time O(|α|2).

For path expressions from the basic fragment we get automata of a special form,
described by the following definition and lemma.

Definition 5.2. An automaton A is called basic, when its states can be numbered
Q = {q1, . . . , qn} in such way that transitions from qi to qj exist only for i ≤ j.

Lemma 5.3. When α is an unnested path expression from the basic fragment,
the automaton constructed in Lemma 5.1 is basic.

Proof. When translating a regular expression into an automaton, only the
Kleene star creates loops, and the Kleene star is forbidden in the basic fragment.
The multistep axes causes trivial loops.

Until now, our automata had to read string descriptions of all paths. We want to
get rid of this and concentrate only on simple string descriptions of simple paths.
This is described in the following definition.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · M. Bojańczyk and P. Parys

Definition 5.4. Let t, s be two data trees with the same nodes (but with different
labels) and let α be an unnested path expression. We say that an automaton A
in the tree s simulates α in the tree t, when for any two nodes x, y of t (and
simultaneously of s),

—transallA,s(x, y) = transA,s(x, y), and
—the pair x, y is selected by α in t if and only if (qI , qF) ∈ transA,s(x, y) for some

initial state qI and accepting state qF .

The main result of this section is the following theorem, which we are proving
through the rest of the section:

Theorem 5.5. Let t be a data tree and α an unnested path expression. We
can calculate, in time O(|t||α|3), a data tree s with the same nodes as t and an
automaton A with O(|α|) states such that A in s simulates α in t. When α is from
the basic fragment, A is basic.

To get the condition transallA,s(x, y) = transA,s(x, y), which says that we can
consider only simple paths instead of all paths, we will calculate all possible loops
which the automaton may do in the tree as described by the following lemma,
proved below.

Lemma 5.6. For a nondeterministic automaton A and a tree t we can calculate,
in time O(|Q|3|t|), for every node x of t the set

loop(x) = transallA,t(x, x).

Once we have the loop sets, we can remember them in the label array of every
node and modify the automaton, in such a way that it will be reading these values
instead of making loops. The complexities in the number of states in the proofs
below follow from the following easy proposition, which is used implicitly also in
the further sections.

Proposition 5.7. We can calculate in time O(|Q|3) the transitive closure of a
given set of state pairs (understood as a relation on states) or the composition of
two given sets of state pairs.

Proof of Lemma 5.6. This is a fairly standard construction. First, for each
node x we calculate the subset down(x) of state pairs in loop(x) that correspond to
paths that only visit descendants of x. The value of down for x depends only on the
values of down in the two children of x, and the labels in x. Assume for a moment
that having this information we can calculate down(x) effectively. Then the values
down(x) can be calculated in a single bottom-up pass through the tree. Second,
we calculate for each node x the subset up(x) of loop(x) that corresponds to paths
that never visit proper descendants of x, but they may visit e.g. descendants of the
sibling of x. The value of up in x depends only on the value of up in the parent of
x, the value of down in the sibling of x, and on the labels in x. In particular, the
values up(x) can be calculated in a single top-down pass through the tree, after the
values down(x) are known for all nodes x. Once we have down and up, the function
loop(x) can easily be calculated, as the transitive closure of the union of down(x)
and up(x).
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 13

The above algorithm would have the declared complexity, if we can calculate
down(x) basing on down in the two children x1, x2 of x in time O(|Q|3). In down(x)
there should be pairs (p, q) such that from p to q there is a transition reading letter
(j, a) and the j-th label of x is a. There should be also pairs corresponding to runs
which read a letter to−left, then do something from down(x1) and then read a
letter from−left. Let Rc be the set of pairs (p, q) such that from p to q there
is a transition reading to−left. Similarly Rp for from−left. Then to down(x)
we add the composition of Rc with down(x1) and with Rp. Similarly for x2 and
the axes to−right and from−right. Then down(x) is the transitive closure of
all these pairs, since every string description of every path from x to x using only
descendants of x can be divided into such fragments. The same way we can calculate
the values of up in the two children of x basing on up(x) and the values of down in
the children of x.

Proof of Theorem 5.5. First, let A′ be the automaton constructed in Lemma
5.1 from the path expression α. Then, we use Lemma 5.6 to calculate the values
of the loop function. We remember them in the tree t, getting a tree s: we forget
about the labels from t, instead in the label array of every node x we put elements
corresponding to all pairs (qi, qj) and we write there true or false depending on
whether (qi, qj) ∈ loop(x) or not. To get the automaton A we take the set of states,
the set of initial states, and the set of accepting states from A′. We remove all
transitions reading labels, but we leave transitions reading axes. Moreover between
every two states qi, qj we add a transition which reads true in the label correspond-
ing to (qi, qj). In the case of a basic path expression (and a basic automaton), there
are only two small differences. First, to the tree s we take the elements correspond-
ing only to pairs (qi, qj) for i ≤ j. Because A′ is basic, only such pairs may be in
the sets loop. Second, in A we add only transitions between states qi, qj for i ≤ j,
hence A is basic.

Take any two states p, q and any two nodes x, y. First see that if (p, q) ∈
transallA,s(x, y) then (p, q) ∈ transallA′,t(x, y). This is because the run reading a
string description of some path in s from x to y may use a transition from qi to qj
of the new type in a node z only when (qi, qj) ∈ loop(z). So we can replace each
such transition by the loop of A′ from qi in z to qj in z and we get a run of A′ in
t. Conversely, observe that if (p, q) ∈ transallA′,t(x, y) then (p, q) ∈ transA,s(x, y).
The crucial observation is that any path from x to y has to use all the edges of
the simple path. So we split the run of A′ into fragments of two alternating types:
loops staring/ending in a node of the simple path and edges of the simple path.
Then each loop can be replaced by a singe transition of A in s of the new type; the
transition is allowed in the node, because the corresponding loop exists. Moreover
trivially transA,s(x, y) ⊆ transallA,s(x, y). Summing up, we have proved that A in s
simulates α in t.

When the tree s is created, we calculate and remember in the node records the
following additional information: transA,s(x, x) for any node x and transA,s(x, y)
for y being the parent of x or the left or right child of x. The sets transA,s(x, x) =
loop(x) are indeed already calculated and stored, the sets transA,s(x, y) for y being
a child or a parent of x are compositions of three known sets, so they can be easily
calculated.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · M. Bojańczyk and P. Parys

In the next sections we will not be distinguishing between the trees t and s,
because these are just two labeling of the same tree. Whenever we talk about the
path expression α, it uses the labels defined by t, while the automatonA always uses
the labels defined by s. Furthermore, we simply write trans(x, y) for transA,s(x, y).

6. INEQUALITIES

In this section we deal with node tests of the form α RelOp β where RelOp is one
of the inequalities: 6=, <,>,≤,≥ and α and β are unnested. These can be solved
with linear time data complexity and polynomial time data complexity regardless
of the XPath fragment.

The basic idea is as follows. If (x, y) is a node pair selected by the path expression
α, a string value d of y is called a representative for α in x. Likewise for β. For each
node x of a data tree t, we calculate the minimal and the maximal representative
for α in x, or if there is no representative at all. Likewise for β. The ,,minimal” and
,,maximal” refers to the lexicographical order of string values. This information is
sufficient to test if α RelOp β holds. For example a node x satisfies α < β if and only
if there exist some representatives for α and for β and the minimal representative for
α is less than the maximal representative for β. Similarly for the other inequalities.
A node x satisfies α 6= β if and only if there exist some representatives for α and
for β, but it is not the case that there is only one representative for α and only the
same one for β.

It remains to show that the information about the representatives can be cal-
culated efficiently. In order to do this, we slightly generalize the problem, so that
a dynamic algorithm can be applied. Let A be an automaton with states Q. A
representative for a state q ∈ Q in a node x is a string value d of some node y with
(q, qF) ∈ trans(x, y), where qF is some accepting state.

Finding representatives (a minimal and a maximal representative) in this new
sense is a generalization of the problem for path expressions, since any unnested
path expression α or β can be simulated by an automaton reading simple string
descriptions of simple paths (Theorem 5.5).3

In order to find the representatives, we use the standard two-step (first a bottom-
up pass, then a top-down pass) approach. In the bottom-up pass we take into
account only representatives which are in descendants of the current node. For
example, to find the minimal such representative for a state q in a node x, we
should consider: the string value of x if (q, qF) ∈ trans(x, x) for some accepting
state qF , and the minimal such representative in the left child y of x for any state p
such that (q, p) ∈ trans(x, y), similarly for the right child. Such a step can be done
even in time O(|Q|2). It is important here that the string values can be compared
in constant time due to Proposition 4.2 (we do not remember the string value itself,
just a pointer to the node from which it comes). Similarly we do a top-down step, in
which we look for the representatives in the rest of the tree (not being descendants
of the current node), so the whole processing is done in time O(|Q|2|t|).4 It is worth

3Recall that this is not only a translation of a path expression into an automaton, but we also

need to relabel the tree.
4However the complexity of the whole algorithm is O(|Q|3|t|), since this is the complexity of the

preprocessing step described in the previous section.

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 15

noting that we get this complexity even for the regular extension. This contrasts
with the node tests α = β, which can be evaluated faster when the path expressions
are from the basic fragment and not from the regular extension.

7. EQUALITY TESTS—THE COMMON PART

In this section, we identify the main difficulty in calculating node tests α = β.
The strategy will be as follows: first we define snippets and trivial snippets. Then
we show how to find some set of snippets representing the solution of α = β.
Finally we show that having a set of trivial snippets is enough to solve the node
test α = β. Transformation of any snippets into trivial snippets is postponed to
the next sections. We also require here some fast method of calculating automata
runs, which also will be shown in the next sections.

From Theorem 5.5 we know that α and β can be recognized by automata (which
are basic when α and β are from the basic fragment). By inspecting the proof of the
theorem it is easy to see that for both α and β we can use a common automaton,
denoted A, with states Q (being just the union of the automata for α and β). The
set of accepting states QF can also be common. Only the initial states are different,
say QαI for α, and QβI for β. Then a pair of nodes x, y is selected by α if and only if
(qαI , qF) ∈ trans(x, y) for some qαI ∈ QαI and qF ∈ QF ; similarly for β. Recall that
during this translation we also need to change labels in the tree t, by adding state
pairs to the labels. We use the same letter t for both the original and the relabeled
tree, hoping that it will not introduce ambiguity.

A first component of the algorithm is a quick method of calculating possible
automata runs between distinct nodes. This is described by the following theorem,
which is proved in the Sections 8, 9, and 10; in each of them an algorithm with
different complexity is given.

Theorem 7.1. For a data tree t and an automaton A we can, after preprocess-
ing, answer queries of the form: for two nodes x, y such that5 x is an ancestor or
a descendant of y, and a set of states Qy ⊆ Q compute the set6

prec(x, y,Qy) = {p ∈ Q : ∃q∈Qy
(p, q) ∈ trans(x, y)}.

This can be done in time

—preprocessing: O(|Q|3|t| log |t|), query: O(|Q|3 log |t|), or
—preprocessing: O(2O(|Q|)|t|), query: O(2O(|Q|)), or
—when the automaton A is basic—preprocessing: O(|Q|3|t|), query: O(|Q|3).

Here we mean that there are three algorithms, one for each of the listed com-
plexities. Observe that prec is compositional in the following sense.

Proposition 7.2. Let z be any node on the simple path from x to y. Then

prec(x, y,Qy) = prec(x, z, prec(z, y,Qy)).

5The assumption that x is an ancestor or a descendant of y can be easily removed, but we do not

need the stronger version of the lemma.
6One may wonder why we use the prec sets instead of simply calculating trans(x, y). The reason
is that in the third version of the algorithm it would be slower: there would be |Q|4 instead |Q|3
in the complexities.

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · M. Bojańczyk and P. Parys

Now we define snippets. A snippet7 is a tuple (y1, y2, Q1, Q2) where y1, y2 are
nodes of the tree t and Q1 and Q2 are sets of states of the automaton A. A snippet
represents a piece of information about the output of the query α = β. The idea
is that there are nodes z1, z2 which have the same string value, and such that for
each i = 1, 2 and each state qi ∈ Qi there is a path from yi to zi that takes the
automaton from qi to an accepting state pi ∈ QF . This is presented in the picture
below (the dotted lines depict automaton paths, the highlighted nodes carry the
same string value).

z1

y1 z2

y2

Namely, we say that the snippet selects a node x when (qI1 , q1) ∈ trans(x, y1)
and (qI2 , q2) ∈ trans(x, y2) for some q1 ∈ Q1, q2 ∈ Q2 and qI1 ∈ QαI , qI2 ∈ Q

β
I or

qI1 ∈ Q
β
I , qI2 ∈ QαI . In other words, from two initial states in x, one for α, one for

β, A can reach a state from Q1 in y1 and a state from Q2 in y2, as in the picture
below.

y1

y2

x

We often use snippets in which both state sets are singletons; in such case we
simply write (y1, y2, q1, q2). In our snippets y1 will often be an ancestor of y2; we
call such snippets vertical, y1 a high node of the snippet, and y2 its low node. A
snippet is called trivial when y1 = y2 and both state sets are singletons.

We say that a set of snippets is sound when all nodes selected by these snippets
are also selected by α = β. Conversely, a set of snippets is complete when all nodes
selected by α = β are also selected by the set of snippets. Two sets of snippets

7In [Bojańczyk and Parys 2008] and [Parys 2009] we used the word bracket instead of snippet.

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 17

are equivalent if they select the same set of nodes. Our algorithm will first create
a sound and complete set of snippets. Then it will be converting the snippets into
simpler ones, ensuring that the set of snippets is equivalent to the previous one,
so it is always sound and complete. Finally, after this transformation, we get only
trivial snippets, from which the set of nodes selected by α = β will be calculated.

It is very easy to construct some sound and complete set of snippets. We simply
take a snippet (y1, y2, QF , QF) for each pair y1, y2 of nodes with the same string
value. It is obviously sound and complete, however it may be too big: it may have
quadratic size, for example when every node has the same string value. Our first
goal is to calculate a smaller set of snippets, as described by the following lemma.

Lemma 7.3. For a data tree t and a node test α = β given by an automaton A
we can find some sound and complete set of snippets in time

—O(|Q|3|t| log |t|), or
—O(2O(|Q|)|t|), or
—when the automaton A is basic—in time O(|Q|3|t|).

Moreover, there will be O(|t|) snippets, all of them vertical.

Proof. For any string value d and a node x in the class of d we define a set
class(x, d) of states p such that (p, qF) ∈ trans(x, y) for some qF ∈ QF and for
some node y with the string value d. Note that the requirement on x is weaker
than that on y: y needs to have string value d, while x only needs to be in the class
of d, so it may be a CCA of two nodes with the string value d.

We calculate all the sets class(x, d). We do the calculation separately for every
d-skeleton, in time proportional to its size. Once again we use here a bottom-up
pass followed by a top-down pass. In the bottom-up pass for every node x of a
d-skeleton we calculate the part classdown(x, d) of class(x, d) such that the node
y from the definition is a descendant of x (which includes y = x). The crucial
observation is that the set classdown(x, d) depends only on these sets for its two
d-children x1, x2, and on x itself: it is a union of prec(x, xi, classdown(xi, d)) for
i = 1, 2 and if the string value of x is d, it is also a union with prec(x, x,QF), where
QF stands for the set of accepting states. Thus, for one node x of a d-skeleton we
need to make three queries to Theorem 7.1. In total we have O(|t|) nodes in all
d-skeletons, hence we get the desired complexity (depending on which version of
Theorem 7.1 is used).

In the top-down pass we calculate the part classup(x, d) of class(x, d) such that
the node y is not a descendant of x, this is very similar to the above. The desired
set class(x, d) is the union of classdown(x, d) and classup(x, d).

We create our set of snippets as follows. For each data value d and each y↑, y↓
such that y↑ is the parent of y↓ in the d-skeleton we take to the set a snippet
(y↑, y↓, class(y

↑, d), class(y↓, d)). Additionally, for each d and each y in the d-
skeleton we take a snippet (y, y, class(y, d), class(y, d)).8

Looking at the definitions it is easy to see that these snippets are sound (we also
use here the fact that trans(x, y) = transall(x, y) for any x, y). Now see that the

8Equivalently, instead of the second kind of snippets, one could take a snippet (y, y, QF , QF) for

each y.

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · M. Bojańczyk and P. Parys

set is complete. Take any node x selected by α = β. Let zα, zβ be nodes with
the same string value d such that zα (respectively, zβ) is reachable from x using α
(β). Let yα be the first node in the d-skeleton on the simple path from x to zα;
similarly for β. If yα = yβ then x is selected by the snippet of the second kind for
y = yα = yβ . Otherwise yα is a parent or a child of yβ in the d-skeleton, because
we have a path from yα to yβ (through x) not going through any node from the
d-skeleton. Then x is selected by the snippet of the first kind for y↑ = yα, y↓ = yβ
or y↑ = yβ , y↓ = yα.

In the next stage, the algorithm should simplify the set of snippets, so that all
snippets become trivial. First we give a few ways how the snippets can be split,
following directly from the definitions.

Proposition 7.4. Let z be any node on the simple path from y1 to y2. Then a
snippet (y1, y2, Q1, Q2) is equivalent to the set of two snippets

(y1, z,Q1, prec(z, y2, Q2)) and (z, y2, prec(z, y1, Q1), Q2).

This is because when we have paths from some x to y1 and to y2, at least one of
them has to lead through z. The situation is illustrated below, with one of the
possible placements of the node x.

y1

y2

z

x

We can also do the split in another, slightly stronger way.

Proposition 7.5. Let z1, z2 be two nodes connected by an edge and both lying
on the simple path from y1 to y2 in such way that y1 is closer to z1 than to z2.
Then a snippet (y1, y2, Q1, Q2) is equivalent to the set of two snippets

(y1, z1, Q1, prec(z1, y2, Q2)) and (z2, y2, prec(z2, y1, Q1), Q2).

Now again, for any x, either the path from x to y2 crosses z1, or the path from x
to y1 crosses z2. The situation is illustrated below.

y1

z1

y2

z2

x

The next property allows us to remove unnecessary snippets.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 19

Proposition 7.6. Let (y↑1 , y↓, Q
↑
1, Q↓) and (y↑2 , y↓, Q

↑
2, Q↓) be two vertical snip-

pets such that y↑1 is an ancestor of y↑2 and Q↑2 ⊆ prec(y↑2 , y
↑
1 , Q

↑
1). Then the first

snippet is equivalent to the set of both these snippets.

This is because each run ending in a state from Q↑2 at y↑2 can be extended to a run
ending in a state from Q↑1 at y↑1 . Finally, we have yet another easy property, saying
that each snippet can be replaced by snippets with singleton state sets.

Proposition 7.7. Any snippet (y1, y2, Q1, Q2) is equivalent to the set of snippets
(y1, z1, q1, q2) for all q1 ∈ Q1, q2 ∈ Q2.

The following theorem will be shown in Sections 8, 9, and 10.

Theorem 7.8. For a data tree t, an automaton A, and a set S of O(|t|) vertical
snippets we can calculate an equivalent set S′ of O(|Q|2|t|) trivial snippets. It can
be done in time

—O(|Q|3|t| log |t|), or
—O(2O(|Q|)|t|), or
—when the automaton A is basic—in time O(|Q|3|t|).

Finally, when we have only trivial snippets, we have to find nodes selected by
them.

Lemma 7.9. For a data tree t, an automaton A, and a set S of O(|Q|2|t|) triv-
ial snippets we can calculate, in time O(|Q|3|t|), the set of nodes selected by the
snippets.

Proof. First, for any node x we define a set double(x) of state pairs (p↑, p↓)
such that for some snippet (y, y, q↑, q↓) from S it holds

(p↑, q↑) ∈ trans(x, y) and (p↓, q↓) ∈ trans(x, y).

Observe that a node x is selected by some of the snippets if and only if (qαI , q
β
I) ∈

double(x) or (qβI , q
α
I) ∈ double(x) for some initial states qαI ∈ QαI and qβI ∈ QβI .

Hence it is enough to calculate the sets double.
Here we also do a bottom-up pass followed by a top-down pass. In the bottom-up

pass we calculate the part doubledown(x) of double(x) such that the node y from
the definition is a descendant of x. See how doubledown(x) depends on this value
in its two children x1, x2. It should contain (for i = 1, 2) all pairs (p↑, p↓) such
that for some states (q↑, q↓) ∈ doubledown(xi) both pairs (p↑, q↑) and (p↓, q↓) are
in trans(x, xi). We have to be a little careful to calculate them in time O(|Q|3):
In a first step we calculate the set of state pairs (p↑, q↓) such that for some q↑
there is (q↑, q↓) ∈ doubledown(xi) and (p↑, q↑) ∈ trans(x, xi). In a second step we
calculate the required set. A straightforward implementation of both steps gives
time O(|Q|3). To doubledown(x) we should also add all pairs (q↑, q↓) for snippets
(x, x, q↑, q↓) from S. The top-down pass is similar.

Summing up, by composing the algorithm given by the above lemmas and theo-
rems, we get Theorem 1.1. All the lemmas are proved above, but Theorems 7.1 and
7.8 are not. Their proofs are given in Sections 8, 9, and 10. Each of these sections
give a different complexity of the algorithm.

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · M. Bojańczyk and P. Parys

8. LINEAR-LOGARITHMIC ALGORITHM

In this section we show the first parts of Theorems 7.1 and 7.8: we give an algorithm
with O(|Q|3|t| log |t|) or O(|Q|3 log |t|) complexities.9 This gives an O(|Q|3|t| log |t|)
algorithm for calculating node tests from the regular extension.

Before we do this, we complement the previous sections with two simplifications
possible in a linear-logarithmic algorithm. First, in Propositions 4.1 and 4.2 we
can calculate the suffix array using a standard and a little bit simpler O(|t| log |t|)
algorithm by Karp et al. [1972], instead of the linear time algorithm. Second, we
can also significantly simplify the algorithm hidden in Fact 4.3, which allows us to
find the closest common ancestor of given nodes. We just keep from each node a
pointer to the node 2k edges above it, for each k. Then the closest common ancestor
can be found in time O(log |t|) using some kind of the binary search algorithm.

8.1 Precomputing automaton runs

First we show a proof of Theorem 7.1, i.e. that after appropriate preprocessing we
can run an automaton in time logarithmic in the length of its input. This is a
straightforward divide and conquer approach.

Fix an automaton A with states Q and a tree t. Let K be the greatest number
such that 2K is not greater than the height of the data tree t. It holdsK = O(log |t|).
For every node x of t and every 0 ≤ k ≤ K we remember a pointer to its ancestor
y which is 2k edges above x. Together with the pointer we remember trans(x, y)
and trans(y, x). This information can be easily calculated in time O(|Q|3|t|K):
to find a node 2k edges above from x, we twice go 2k−1 edges up using previously
calculated pointers. Also trans(x, y) is the composition of these values remembered
for k − 1.

Now consider a query step. First observe the following.

Proposition 8.1. When the distance between a node x and its ancestor or its
descendant y is 2k, we can calculate prec(x, y,Qy) in time O(|Q|2). When Qy
contains only one state, it can be done in time O(|Q|).

As the set trans(x, y) is stored, it is enough to take all p such that (p, q) ∈
trans(x, y) for some q ∈ Qy.

Let now y be any ancestor of x (the case of a descendant is completely symmetric).
Consider the nodes x = x0 > x1 > · · · > xn = y, where xi+1 is 2k edges above
xi for the greatest number k such that xi+1 ≥ y. In other words we go from x
to y using our pointers: we always use a pointer to the highest ancestor which is
still a descendant of y. Recall that with each node we also remember its level in
the tree, so finding this sequence of nodes is easy. At each step we use smaller
k, so it holds n ≤ K + 1. We take Qn = Qy and we consecutively calculate
Qi = prec(xi, xi+1, Qi+1) for every i between n − 1 and 0, using Proposition 8.1;
this takes time O(|Q|2 log |t|). Due to Proposition 7.2 it holds Q0 = prec(x, y,Qy).

9Some parts of the algorithm have |Q|2 instead of |Q|3 in the complexity. For us it is not important,

as it does not change the overall complexity.

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 21

8.2 Simplifying the snippets

Now we come to a proof of Theorem 7.8. We have a set of O(|t|) vertical snippets
and we want to create an equivalent set of O(|Q|2|t|) trivial snippets. We do that
in two steps. During the processing, every snippet is remembered in its low node.

Step 1. After this step we want to have trivial snippets and single-state snippets
in which the distance between the low and high node is 2k for some k (i.e. there is
a pointer between them).

Snippets of the form (y, y,Q↑, Q↓) are easily converted into at most O(|Q|2)
trivial snippets: (y, y, q↑, q↓) for every q↑ ∈ Q↑, q↓ ∈ Q↓.

Now we handle snippets (y↑, y↓, Q
↑, Q↓) where y↑ is a proper ancestor of y↓. Like

previously we find the nodes y↓ = y0 > y1 > · · · > yn = y↑ where yi+1 is 2k edges
above yi for the greatest number k such that yi+1 ≥ y↑. It holds n ≤ K + 1. We
consecutively calculate the sets Qi↓ = prec(yi, y↓, Q↓) and Q↑i = prec(yi, y↑, Q↑)
observing that

Qi↓ = prec(yi, yi−1, Q
i−1
↓) for 0 < i ≤ n, Q0

↓ = Q↓, and

Q↑i = prec(yi, yi+1, Q
↑
i+1) for 0 ≤ i < n, Q↑n = Q↑.

For each i it is done in time O(|Q|2), as described by Proposition 8.1. Then we
replace the original snippet by snippets (yi+1, yi, q

↑
i+1, q

i
↓) for all q↑i+1 ∈ Q

↑
i+1, qi↓ ∈

Qi↓, 0 ≤ i < n; we get an equivalent set due to Propositions 7.4 and 7.7.
This step is done in time O(|Q|2|t| log |t|).
Step 2. After this final step we should have only trivial snippets.
We want to consequently replace big snippets by smaller snippets. We start from

the biggest. Take any snippet (y↑, y↓, q
↑, q↓) where the distance between y↓ and

y↑ is 2k for some k > 0. Let y be the node exactly in the middle between them
(2k−1 edges above y↓). We replace our snippet by snippets (y↑, y, q↑, q) for all q ∈
prec(y, y↓, q↓) and by snippets (y, y↓, q, q↓) for all q ∈ prec(y, y↑, q↑); Propositions
7.4 and 7.7 cause the equivalence. This snippets are processed again later, when
all snippets of size 2k are already removed. Similarly snippets for k = 0 (where y↑

is the parent of y↓) are replaced by trivial snippets in y↑ and y↓ (Proposition 7.5 is
used instead of 7.4).

It is important that we remember each snippet only once (we remove identical
snippets). Thanks to that for each 2k we have at most O(|Q|2|t|) snippets; the
procedure works in time O(|Q|) for each snippet, so the whole step takes time
O(|Q|3|t| log |t|).

9. LINEAR ALGORITHM FOR THE REGULAR EXTENSION (TAPES CONSTRU-
CTION)

In this section, like in the previous one, we consider the regular extension, and not
the basic fragment of XPath. We describe an algorithm with linear data complexity,
but with exponential combined complexity. We prove the second parts of Theorems
7.1 and 7.8. This section is based on the techniques from [Bojańczyk and Parys
2008], but is different in that it uses deterministic automata instead of monoids.
The tape construction that is used comes from [Bojańczyk 2009].

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · M. Bojańczyk and P. Parys

In Section 9.1, we describe the main idea, which we call the tape construction. An
immediate application of the construction is a fast string-matching algorithm, as
described below. Fix a regular word language L ⊆ Σ∗, recognized by a deterministic
automaton D. For any word a1 · · · an ∈ Σ∗ one can do a preprocessing stage in time
O(|D|n) (linear in the word length), such that later on, any query ai · · · aj ∈ L? can
be answered in time O(|D|) (not depending on n or j − i). Then, in Section 9.2 we
show how the results can be applied in a tree and we prove Theorem 7.1. Finally,
in Section 9.3 we prove Theorem 7.8.

9.1 Tape construction

We use deterministic automata. Such an automaton is denoted by letter D, its set
of states by letter D and its particular states by letter d (we use a non-standard
notation to distinguish them from states q of a nondeterministic automaton A).
We do not use at all data values in this section, so letter d is used only for states,
not for data values. The input alphabet of such an automaton is denoted by A.

Consider a word w = a1 · · · an ∈ A∗. A node in w is any number i = 0, . . . , n,
which is identified with the space between position i and i+ 1. So we think about
a word in a way that the letters are written on the edges of a path connecting n+ 1
nodes. (This definition is meant to be extended to trees with letters on edges.)

Given nodes x ≤ y in such a word, the word from x to y in w consists of the letters
ax+1 · · · ay. In other words, these are the letters that are on the path between x and
y. In particular, the word from x to x is the empty word. By valw(x, d, y) we denote
the state of the automaton D after reading the word from x to y, assuming that it
begins in state d in node x (note that there is exactly one such state valw(x, d, y),
as D is deterministic).

Let K = |D|. For an input word, we will create K tapes, numbered from 1 to
K, on which we will be writing runs of the automaton. More precisely, we create a
two-dimensional array, indexed by a tape number and by a node number. In each
cell of this array we remember two pieces of information. First, each cell stores a
state of D. In each node, every tape stores a different state, so every state appears
in some tape. Second, the cell stores the number j of some tape, possibly j is
undefined. If at node x on the i-th tape a number j is written, we say that the i-th
tape joins the j-th tape at that node and that the i-th tape is reset. If there is no
number, we say that this tape is not reset at that node. We define the contents of
the tapes by an algorithm, which for each node, from the first to the last, does the
following, see Figure 2 for an illustration.

(1) If we are at the first node we write the states on the tapes arbitrarily (but
preserving the rule that on each tape there is a different state).

(2) Otherwise, let d1, . . . , dK be the states written on tapes 1, . . . ,K at the previous
node (they are already calculated). Let a be the letter written on the edge
between the previous and the current node.

(3) To each of these states we apply the transition function of the automaton, using
input letter a. We get some states d′1, . . . , d

′
K (i.e. for each i the automaton

goes from di to d′i when reading a). Some of these states might become equal.
(4) When some state d′i is not equal to any of the earlier states d′1, . . . , d

′
i−1, we

write it on its tape and we remember that this tape is not reset.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 23

(5) For each other i, we take the smallest j < i such that d′i = d′j (in other words:
j such that d′i is already written on the j-th tape). We remember that the i-th
tape joins the j-th tape at that node.

(6) All the other states, which are not listed in d′1, . . . , d
′
K , are written on the reset

tapes (in an arbitrary order).

The contents of the tapes can be calculated in one left-to-right pass through the
word; when it is done carefully, it takes time O(|Q||w|). Additionally at each node
we remember a pointer to the closest node to the right where this tape is reset (or
that there is no such node). This can be calculated in one right-to-left pass.

Fig. 2. The tape construction. In this example, the automaton D has input alphabet {a, b} and
its state d ∈ {0, 1, 2} holds the number of a’s since the last b, modulo 3. The arrows show which

tape joins which tape. Note how in node 4 (also in node 7), both tapes 2 and 3 join tape 1.

Consider a run of D starting in a state d at some node x, and ending in some
position y > x. We find the tape i1 on which this state is written. Then the run
is written on that tape until the tape joins another tape i2. It is important that
i2 < i1, as a tape may only join an earlier tape. Then the run is written on i2, until
it joins tape i3 < i2 and so on. When position y is reached, the run is on some tape
ik, with k < K. The tape number ik can be determined by following, k times, the
pointers to the resets, which are stored in the data structure. (Each time we follow
such a pointer, we test if the reset is still before y.) To find the state reached at
node y, it is enough to read the state on tape ik. Summing up, we can determine
the state in y in time O(K).

9.2 Tapes in a tree

Fix a deterministic automaton D, an alphabet A and a binary tree t with a label
from A on every edge. In this section we use the tape construction to find the value
of runs of the automaton on downward paths in t.

We extend the mapping val to trees in the following way. For two nodes x ≤ y in
the tree t, the word from x to y is obtained by reading the labels on the (shortest)
path from x to y. The mapping val is defined analogously to the word case; we
omit the subscript t since the tree t is fixed.

We do the tape construction on each path from the root to some node. The
contents of the tapes (and places where a tape joins some other tape) depend only
on a prefix of a word. So the tapes can be calculated by doing a single top-down
pass through the tree, we will be using this heavily later on.

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · M. Bojańczyk and P. Parys

We have to modify slightly which pointers are remembered, as keeping pointers
to the next place where the tape is reset may be too costly. Instead we keep the
following information for each 1 ≤ k ≤ K:

A. A tree sk consisting of nodes x at which the k-th tape is reset (a node is a child
in sk of another node if it is its proper descendant in t and at no node between
them the k-th tape is reset). The tree sk is not necessarily binary.

B. For each node x a pointer to the nearest ancestor y at which the k-th tape is
reset.

We say that all tapes are also reset in the root of the whole tree t. All this infor-
mation can be easily completed during a top-down pass, in time O(|D||t|). We will
use the following operation on the trees sk.

Fact 9.1. For an arbitrary (unranked) tree t, after preprocessing in time O(|t|),
we can answer, in time O(1), queries of the form: for two nodes x < y, which child
of x is an ancestor of y?

Proof. This is a consequence of Fact 4.3. We unravel t into a binary tree s using
the first child / next sibling encoding. Additionally we remember the rightmost
child of each node. Then we have to find in s the closest common ancestor of y and
the rightmost child of x.

The key property of the information above is that it allows to compute val in
constant time. Assume we have two nodes x ≤ y and a state d ∈ D and we want
to calculate val(x, d, y). We find which tape in node x contains state d. As in the
word case (Section 9.1), it is enough to find the nearest descendant of x on the
path to y in which the tape joins some other tape; we move in that way until we
reach y. As before there are at most K changes of the current tape. Although now
we do not have a direct pointer to such descendants, they still can be computed in
constant time: we move to the nearest ancestor in which the current tape is reset
and then to its child in an appropriate tree sk. We have to choose the child, which
is an ancestor of y, this can be done in constant time using Fact 9.1 (as y may be
not a node of sk, we first need to move to its nearest ancestor which is in sk). This
proves the following lemma.

Lemma 9.2. For any two nodes x ≤ y and a state d ∈ D the value val(x, d, y)
can be evaluated in time O(|D|).

Now see how Theorem 7.1 follows from this lemma. We take

D = (P (Q)× {∅}) ∪ ({∅} × P (Q)) ⊆ P (Q)× P (Q) and A = P (Q2)× P (Q2),

where Q is the set of states of the automaton A from Theorem 7.1. So an element
of D is a pair of two state sets, one of which is empty. The first is used to simulate
runs of A going down, the second—runs of A going up. We have |D| = O(2|Q|).
We label an edge from any x to its child y by a pair (trans(x, y), trans(y, x)). The
transition in D is an appropriate application of these trans relations to the sets of
states: the transition from (Q1, Q2) reading letter (R1, R2) leads to a state

({q : (p, q) ∈ R1, p ∈ Q1}, {p : (p, q) ∈ R2, q ∈ Q2}).
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 25

Observe that one of these sets is empty, since one of Q1, Q2 was empty.
Now consider a query prec(x, y,Qy) from Theorem 7.1. When the nodes sat-

isfy x ≤ y, for each state q we can easily check, if it is in prec(x, y,Qy): we
calculate (Q1, Q2) = val(x, ({q}, ∅), y) and we check, whether the sets Q1 and Qy
have nonempty intersection (which means that from q at x the automaton A can
reach some state from Qy at y). In the case when y ≤ x the set prec(x, y,Qy)
can be found on the second coordinate of val(y, (∅, Qy), x). The complexity is
O(|D||Q|) = O(2O(|Q|)). Notice that we need not to explicitely construct the au-
tomaton D. Having its state and an input letter we may quickly find its next state
directly from its definition.

9.3 Simplifying the snippets

In this section we use the tapes construction to convert a set of arbitrary snippets
into an equivalent set of trivial snippets, in time linear in |t|. Here we take D, the
labeling of edges and all the information as in the previous subsection. Recall that
the initial set contains O(|t|) snippets. We use the following two steps to simplify
the set of snippets.

Step 1. After this step in the set there will be only snippets (y↑, y↓, Q
↑, Q↓) in

which the tape containing (∅, Q↑) at y↑ is not reset between y↑ and y↓.
Take any original snippet (y↑, y↓, Q

↑, Q↓). Recall that all snippets which we have
are vertical, i.e. y↑ is an ancestor of y↓. We find a tape containing (∅, Q↑) at y↑. As
in the previous subsection, using the additional information we can find a sequence
of nodes

y↑ = x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn = y↓, n ≤ K,

where the current tape of the run (staring from (∅, Q↑) at y↑) changes. Precisely,
between xi and yi the run stays on the same tape, while between yi and xi+1

it changes the tape (xi+1 is a child of yi). Note that the run has ∅ on the first
coordinate at each node. For each 1 ≤ i ≤ n we use Theorem 7.1 to calculate the
sets

Q↑i = prec(xi, y↑, Q↑) and Qi↓ = prec(yi, y↓, Q↓).

It takes time O(2O(|Q|)K) = O(2O(|Q|)), because each of them is calculated in time
O(2O(|Q|)).10

We replace the snippet O(y↑, y↓, Q
↑, Q↓) by the snippets (xi, yi, Q

↑
i , Q

i
↓) for all

1 ≤ i ≤ n. They are equivalent due to Proposition 7.5. By definition the tape
containing (∅, Q↑i) at xi is not reset until yi, so the snippets are of the proper form.

Step 2. After this final step we want to have only trivial snippets.
The key property is that when we have two snippets (y↑1 , y↓, Q

↑
1, Q↓) and (y↑2 , y↓,

Q↑2, Q↓) where (∅, Q↑1) at y↑1 and (∅, Q↑2) at y↑2 ≥ y
↑
1 are on the same tape, then the

second snippet can be removed (assuming that this tape is not reset between y↑1
and y↑2 , which is true for all the snippets we have now). This property follows from

10In fact the sets Q↑i (but not Qi
↓) can be just read from the tapes: on the current tape at node

xi there is (∅, Q↑i).

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · M. Bojańczyk and P. Parys

Proposition 7.6 because prec(y↑2 , y
↑
1 , Q

↑
1) = Q↑2 (as D from (∅, Q↑1) at y↑1 reaches

(∅, Q↑2) at y↑2). Thus for each y↓ we always keep only at most K2|Q| = O(4|Q|)
snippets, at most one for every pair of a state set and a tape number, and we
immediately remove the redundant ones. We consider every y↓ starting from the
lowest nodes and ending in the root. Let y be the parent of y↓. We replace any
snippet (y↑, y↓, Q

↑, Q↓) by two snippets

(y↑, y,Q↑, prec(y, y↓, Q↓)) and (y↓, y↓, prec(y↓, y
↑, Q↑), Q↓) .

They are equivalent due to Proposition 7.5. The second one is almost trivial, but
the state sets are not singletons; it can be replaced by trivial snippets due to
Proposition 7.7. The first one is processed again, when we are in the node y. Note
that it still satisfies the property that the tape containing (∅, Q↑) at y↑ is not reset
until y. The value prec(y↓, y

↑, Q↑) is written at y↓ on the second coordinate of the
tape containing (∅, Q↑) at y↑, so it can be found in time O(|Q|). The other value,
prec(y, y↓, Q↓), is computed by hand in time O(|Q|2), as y is the parent of y↓. This
gives the total complexity O(4|Q||Q|2|t|) = O(2O(|Q|)|t|).

10. POLYNOMIAL COMBINED COMPLEXITY FOR THE BASIC FRAGMENT

Now we switch to the basic fragment. In this section we show Theorems 7.1 and
7.8 in the case when A is a basic automaton (it simulates path expressions from
the basic fragment). This gives an O(|Q|3|t|) algorithm for calculating node tests
from the basic fragment.

10.1 Precomputing automaton runs

First we show a proof of Theorem 7.1, i.e. that after appropriate preprocessing we
can run a basic automaton in time not depending on the length of its input.

Fix a basic automaton A with states Q and a data tree t. A first component of
our data structure are the following two functions. For every node x of t and every
two states p, q we define firstup(x, p, q) as a pointer to the nearest ancestor y of x
such that (p, q) ∈ trans(x, y). It is possible that such an ancestor does not exist,
in which case we remember an empty pointer instead. These pointers are stored
in the node x. Similarly let firstdown(x, p, q) be a pointer to the nearest ancestor
y of x such that (p, q) ∈ trans(y, x). Notice the broken symmetry here: although
firstup describes runs of the automata going up in the tree and firstdown these
going down, both of them contain pointers to ancestors. Intuitively, pointers to
descendants are too costly to store, because there are multiple branches of the tree.
The following lemma shows that these functions can be efficiently calculated.

Lemma 10.1. We can calculate the functions firstdown and firstup in time
O(|Q|3|t|).

Proof. Let y be the parent of x. Then firstup(x, p, q) is equal to x, if (p, q) ∈
trans(x, x), otherwise it is the lowest from nodes firstup(y, p′, q) for all states p′

such that (p, p′) ∈ trans(x, y). We can calculate all the pointers in a single top-
down pass, in every node we quantify over three states p, p′, q, so it takes time
O(|Q|3|t|). Similarly we calculate firstdown.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 27

Before we come to the proof of Theorem 7.1, we give some intuitions behind it.
It will be important that a basic automaton does not have nontrivial cycles (since
the Kleene star is not allowed in path expressions). Every run between distant
nodes has to use a multistep axis, which means that it stays in some state q using
a transition reading some axis, for example there is a transition from q to q reading
from−left. Instead of considering an arbitrary run, we want to (for a run going
upwards) reach the last such state q as quickly as possible (which is described by
the firstup function), then go up staying in this state and finally do only a few
individual steps. Similarly for a run going downwards, we want to reach such a state
as quickly as possible, then we go down staying in this state as long as possible,
and finally do some transitions described by firstdown.

For any two nodes y < x we say that y is a direct ancestor of x if y can be
reached from x using only one of the from−left∗ or from−right∗ axes. We say
that y is the (unique) topmost direct ancestor of x if additionally no node above y
is a direct ancestor of x.

For every node x and its topmost direct ancestor y we remember in x the sets
trans(x, y) and trans(y, x). It is easy to calculate these values in a top-down pass.
This is done in the preprocessing phase. This gives the following possibility in the
query phase.

Proposition 10.2. When a node y is the topmost direct ancestor of a node x,
or vice-versa, we can calculate prec(x, y,Qy) in time O(|Q|2). When Qy contains
only one state, it can be done in time O(|Q|).

We will now show how to calculate prec(x, y,Qy) in the case when y is any direct
ancestor of x. Suppose that y can be reached from x using the from−left∗ axis
(the case of the from−right∗ is completely symmetric). Consider the sequence of
nodes x = x0, x1, . . . , xn = y in which xi+1 is the parent of xi We are not allowed to
find all of them and for example remember them on a list, as the complexity should
be independent of n. When n ≤ |Q| we calculate prec(x, y,Qy) step by step in time
O(|Q|3), observing that prec(xi, y,Qy) is equal to prec(xi, xi+1, prec(xi+1, y,Qy))
for any 0 ≤ i < n (Proposition 7.2), and that prec between a node and its parent
can be easily calculated.

Otherwise first we calculate sets Qi = prec(xi, y,Qy) for n− |Q| ≤ i ≤ n in time
O(|Q|3). We say that a state q has a from−left loop, when there is a transition
from q to q reading the letter from−left (similarly for the other axes). We calculate
a set Q0: a state p is in Q0 if for some n− |Q| ≤ i ≤ n and for some state q ∈ Qi
with a from−left loop there is11 firstup(x, p, q) ≥ xi (which means that the state
q can be reached at some node below xi, while going up from the state p at the
node x); in particular firstup(x, p, q) should be a nonempty pointer.

We will show that Q0 = prec(x, y,Qy).
First observe that Q0 ⊆ prec(x, y,Qy). Indeed, we always have (p, q) ∈ trans(x,

firstup(x, p, q)), from the definition of firstup. When firstup(x, p, q) ≥ xi there
is also (p, q) ∈ trans(x, xi), because the state q has a from−left loop and from
firstup(x, p, q) we can reach xi using the from−left∗ axis.

11Here and below it is enough to compare levels of the nodes, because they are on the same path

from the root.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · M. Bojańczyk and P. Parys

To see that prec(x, y,Qy) ⊆ Q0, take any state q0 from prec(x, y,Qy). This means
that on some string description of the simple path from x to y, the automaton can
be taken from the state q0 to some state qn ∈ Qy. Let q1, . . . , qn−1 be the states
of the run after the nodes x1, . . . , xn−1. Because there are only |Q| states and
because a basic automaton has only trivial cycles, there has to be qr = qr+1 for
some n − |Q| ≤ r < n. In particular the state qr has a from−left loop. Because
the run exists, there has to be qr ∈ Qr and firstup(x, q0, qr) ≥ xr. This means
that q0 ∈ Q0.

In the general case (when y is any ancestor of x) we calculate prec(x, y,Qy) in a
similar way. We define a zig-zag sequence from x to y: it is the (unique) sequence of
nodes x = x0 > x1 > · · · > xn = y such that xi+1 is a direct ancestor of xi and that
n is minimal. Observe that for any 0 ≤ i ≤ n−2 the node xi+1 is the topmost direct
ancestor of the node xi; this is not the case for i = n− 1, as there might be direct
ancestors of xn−1 above y. Like previously, we find only a few topmost of the nodes
xi, now 2|Q|+ 1 of them, namely these for n− 2|Q| ≤ i ≤ n. To allow this, during
the preprocessing we should remember for every node z its bottommost descendant
reachable by the to−left∗ axis and its bottommost descendant reachable by the
to−right∗ axis. Then xi is the closest common ancestor of x and this descendant
of xi+1 (hence it can be calculated in constant time, using Fact 4.3).

For these topmost 2|Q|+ 1 nodes we calculate the sets Qi = prec(xi, y,Qy); first
of them is calculated from the above special case in time O(|Q|3) (as xn is just a
direct ancestor of xn−1), each next of them in time O(|Q|2) using Proposition 10.2
(as then xi+1 is the topmost direct ancestor of xi). Then we calculate the set Q0:
a state p is in Q0 if for some n − 2|Q| ≤ i ≤ n and for some state q ∈ Qi with
both from−left and from−right loops there is firstup(x, p, q) ≥ xi. It holds
Q0 = prec(x, y,Qy) for the same reasons as previously; the difference is that now
we may go from both a left and a right child, but we consider states with both
from−left and from−right loops. Since now we take 2|Q| + 1 nodes, for every
run there have to be three consecutive nodes xi, xi+1, xi+2 with the same state
and hence this state has the two loops.

Although the situation when y is a descendant of x is not completely symmetric,
it is similar. Once again we first solve the case of direct ancestor, and then the
general case. Consider the case, when x is direct ancestor of y, say reachable by the
from−left∗ axis. Take the sequence y = x0, x1, . . . , xn = x in which xi+1 is the
parent of xi. First for n−|Q| ≤ i ≤ n we calculate sets Q̃i: state p is in Q̃i if it has
a to−left loop and for some q ∈ Qy there is transdown(y, p, q) ≥ xi. Then we do
Qi = Q̃i ∪ prec(xi, xi−1, Qi−1) for n− |Q| < i ≤ n, starting from Qn−|Q| = Q̃n−|Q|.
The argument that Qn = prec(x, y,Qy) is very similar to the previous one. The
general case is solved analogously.

10.2 Simplifying the snippets

We now come to the proof of Theorem 7.8 for a basic automaton. Recall that we
have to transform a set of O(|t|) arbitrary vertical snippets into an equivalent set
of O(|Q|2|t|) trivial snippets in time O(|Q|3|t|). First we give two lemmas, which
are used to simplify the snippets.

Lemma 10.3. For any snippet in which the high node is a direct ancestor of
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 29

the low node we can find, in time O(|Q|3), an equivalent set of O(|Q|3) snippets
(x↑, x↓, q

↑, q↓) in which

(a) x↑ = x↓ (trivial snippets), or

(b) q↑ has a from−left loop and x↑ is reachable from x↓ by the from−left∗ axis,
or

(c) q↑ has a from−right loop and x↑ is reachable from x↓ by the from−right∗
axis.

Proof. Let (y↑, y↓, Q
↑, Q↓) be the input snippet. Assume that y↑ is reachable

from y↓ using the from−left∗ axis (the other case is symmetric). Consider the
sequence y↓ = y0, y1, . . . , yn = y↑ where yi+1 is the parent of yi. Let k = max(0, n−
|Q|). For k ≤ i ≤ n we calculate the nodes yi and the sets Q↑i = prec(yi, y↑, Q↑)
and Qi↓ = prec(yi, y↓, Q↓), observing that (Proposition 7.2)

Q↑i = prec(yi, yi+1, Q
↑
i+1) for k ≤ i < n, Q↑n = Q↑, and

Qi↓ = prec(yk, yi−1, Q
i−1
↓) for k < i ≤ n, Qk↓ = prec(yk, y↓, Q↓).

The set Qk↓ is calculated using Theorem 7.1 in time O(|Q|3), each other of O(|Q|)
sets basing on the previous one in time O(|Q|2). Then we add trivial snippets
(yi, yi, q

↑
i , q

i
↓) for all q↑i ∈ Q↑i , q

i
↓ ∈ Qi↓, k ≤ i ≤ n. We also add snippets

(yi, y↓, q
↑
i , q↓) for all states q↑i ∈ Q

↑
i , q↓ ∈ Q↓ such that q↑i has a from−left loop,

k ≤ i ≤ n. We get O(|Q|3) snippets of the allowed form.
All the new snippets are sound, since these snippets obtained by applying Propo-

sitions 7.5 and 7.7. Now we prove that the new set of snippets is complete. When
k = 0 it is clear. Note that for k > 0 the set would be complete (by Propo-
sitions 7.5 and 7.7), if it would also contain snippets (yk, y↓, q

↑
k, q↓) for all states

q↑k ∈ Q
↑
k, q↓ ∈ Q↓ (not only these where q↑k has a from−left loop). Consider one

such snippet. As q↑k ∈ Q
↑
k = prec(yk, y↑, Q↑), there is a run of A from q↑k at yk to

some q↑n ∈ Q↑ at y↑. Let q↑k+1, . . . , q
↑
n−1 be the states of the run after the nodes

yk+1, . . . , yn−1. Because there are only |Q| states, there has to be q↑r = q↑r+1 for
some k ≤ r < n. See that q↑r has a from−left loop and that q↑r ∈ Q↑r , so there is a
new snippet (yr, y↓, q

↑
r , q↓) such that q↑k ∈ prec(yk, yr, {q↑r}). Thus, by Proposition

7.6 the snippet (yk, y↓, q
↑
k, q↓) is not necessary and can be removed.

Lemma 10.4. For any snippet we can find, in time O(|Q|3), an equivalent set of
O(|Q|3) snippets (x↑, x↓, q

↑, q↓) in which

(a), (b), (c) like above in Lemma 10.3, or
(d) x↑ is the topmost direct ancestor of x↓, or

(e) q↑ has both from−left and from−right loops.

Proof. The proof is very similar to the previous one. Now we take the zig-
zag sequence between y↓ and y↑ and k = max(0, n − 2|Q|). The sets Q↑i and
Qi↓ are defined as previously; we calculate Qk↓, Q

n
↓ , Q

↑
n−1 using Theorem 7.1 in

time O(|Q|3), each other using Proposition 10.2 in time O(|Q|2). We add snippets
Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · M. Bojańczyk and P. Parys

(yi+1, yi, q
↑
i+1, q

i
↓) for all q↑i+1 ∈ Q

↑
i+1, qi↓ ∈ Qi↓, k ≤ i ≤ n− 2 (they are of type (d)).

For i = n − 1 we can not do the same, as yn is not the topmost direct ancestor
of yn−1; instead we replace the snippet (yn, yn−1, Q

↑
n, Q

n−1
↓) by the set from the

previous lemma. We also add snippets (yi, y↓, q
↑
i , q↓) for all states q↑i ∈ Q

↑
i , q↓ ∈ Q↓

such that q↑i has both from−left and from−right loops, k ≤ i ≤ n. The new set
is equivalent for the same reasons as in the previous lemma.

First we apply Lemma 10.4 to each original snippet, getting an equivalent set
of O(|Q|3|t|) snippets of types (a)-(e). We want to eliminate snippets of types
(b)-(e), leaving only trivial snippets. The key observation is that for each low
node we have to remember only 3|Q|2 snippets; the other are redundant and can
be removed. Indeed, in each node there are only |Q|2 different trivial snippets;
it is enough to remember each of them once. The same is true for (d) snippets,
as the topmost direct descendant for a low node is unique. When we have two
snippets (y↑1 , y↓, q

↑, q↓) and (y↑2 , y↓, q
↑, q↓) of type (b), (c), or (e), and y↑1 is an

ancestor of y↑2 , then the second snippet can be removed (Proposition 7.6), because
q↑ ∈ prec(y↑2 , y

↑
1 , q
↑). Hence here also for each pair of states and each y↓ we need

at most one snippet.
We consider every y↓ starting from the lowest nodes and ending in the root. Let

y be the parent of y↓. We replace a snippet (y↑, y↓, q
↑, q↓) by snippets (y↑, y, q↑, q)

for every q ∈ prec(y, y↓, {q↓}) (these snippets are processed again, when we are in
the node y) and by trivial snippets (y↓, y↓, q, q↓) for every q ∈ prec(y↓, y

↑, {q↑});
they are equivalent due to Propositions 7.5 and 7.7. Note that prec(y↓, y

↑, {q↑})
can be computed in time O(|Q|): for snippets of type (d) from Proposition 10.2;
for snippets of types (b), (c), or (e) because q is in prec(y↓, y

↑, {q↑}) if and only if
firstup(y↓, q, q

↑) ≥ y↑. The other set prec(y, y↓, {q↓}) is easy as well, as y is the
parent of y↓. Since for each y↓ we have O(|Q|2) snippets, the whole processing takes
time O(|Q|3|t|). The key point is that we remove redundant snippets whenever a
new snippet is created.

11. PATH EXPRESSIONS IN CONSTANT DELAY

In this section, we prove Theorem 1.2. This theorem is about evaluating path ex-
pressions, as opposed to node tests that were considered previously. Recall that we
want to return all pairs satisfying a path expression by a constant delay algorithm:
first a linear-time preprocessing can be done and then each consecutive pair should
be returned in constant time.

As for node tests, we evaluate all nested node tests in α and we mark in t whether
they are satisfied. So we can assume that α is unnested. In particular, evaluating
α does not depend on the data; the problem can be stated also for trees without
data. We compile α to an automaton A using Theorem 5.5; this also changes the
labels in the data tree t.

Recall that we write x ≤ y to denote that x is an ancestor of y. All ancestors and
descendants need not to be proper, unless otherwise stated. We use here also the
postfix order of nodes: for each x the nodes from the left subtree of x in t are before
the nodes from the right subtree of x, and the nodes in both subtrees are before x.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 31

This order is similar to the order of the closing tags in an XML document, but it
is slightly different, since it refer to the binary tree t. It is an important detail that
a node is ordered after its proper descendants. To simplify comparing of nodes, in
each node we remember its number in the postfix order.

Let x be a node and Qx a set of states of A. We are interested in the set
of descendants of x, from which the automaton can reach a state from Qx at x,
starting in an initial state. We define setI(x,Qx) as the set of nodes y ≥ x such
that prec(y, x,Qx) contains some initial state. As we are constructing a constant
delay algorithm, we want to go quickly from one node in setI(x,Qx) to the next
such node. The word ,,next” could potentially refer to any order, but in our case
it will be the postfix order. Hence we define firstI(x,Qx) as the first node in the
postfix order which is in setI(x,Qx). For any y ≥ x we also define nextI(x,Qx, y)
as the next node after y in the postfix order which is in setI(x,Qx). Such a node
may not exist, in which case we say that firstI or nextI returns an empty pointer.
We remark that although at the end nextI will be used only for nodes y from
setI(x,Qx), however inside the proofs it is used also for other nodes y, so it is
defined for any descendant of x.

Observe two easy properties of firstI and nextI , which will be useful during the
calculation of these values.

Proposition 11.1. Let x ≤ z ≤ y be three nodes and Qx a set of states. Assume
that we know nextI(x,Qx, z) and nextI(z, prec(z, x,Qx), y). Then nextI(x,Qx, y)
can be calculated in time O(1).

Proposition 11.2. Let x ≤ y be two nodes and Qx a set of states. Assume that
we know nextI(x, {qx}, y) for every state qx. Then nextI(x,Qx, y) can be calculated
in time O(|Q|). The same holds for firstI .

Indeed, in the first proposition, as all descendants of z are before z in the postfix
order, if nextI(z, prec(z, x,Qx), y) is nonempty, it is the value of nextI(x,Qx, y);
otherwise we should take nextI(x,Qx, z). In the second proposition nextI(x,Qx, y)
is the first among the nodes nextI(x, {qx}, y) for all qx ∈ Qx. Now observe that
the firstI pointers can be easily calculated.

Lemma 11.3. The pointers firstI(x, {qx}) can be calculated for each node x and
each state qx in total time O(|Q|2|t|).

Proof. The calculation of firstI(x, {qx}) can be easily done in a bottom-up
pass, since it is firstI(x1, prec(x1, x, {qx})), where x1 is the left child of x; if this
pointer is empty we should take firstI(x2, prec(x2, x, {qx})) for the right child x2;
if this pointer is also empty and prec(x, x, {qx}) contains some initial state, we
should take x.

Now see that the nextI pointers can be all calculated when y is a child of x.

Lemma 11.4. The pointers nextI(x, {qx}, y) for each pair (x, y) of a parent and
its child and for each state qx can be calculated in time O(|Q|2|t|).

Proof. We have two cases depending on whether y is the left or the right
child of x. If it is the right child, nextI(x, {qx}, y) is either empty or equal to
x (if prec(x, x, {qx}) contains some initial state). Otherwise let z be the right

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · M. Bojańczyk and P. Parys

child of x; we have nextI(x, {qx}, y) = firstI(z, prec(z, x, {qx})) or, if this gives
the empty pointer and prec(x, x, {qx}) contains some initial state, we should take
nextI(x, {qx}, y) = x.

Below, in the three subsections, we will show the following theorem, saying that
it is possible to quickly compute nextI for any arguments.

Theorem 11.5. For a tree t and an automaton A we can, after an appropriate
preprocessing, answer queries of the form: for two nodes x ≤ y and a set of states
Qx compute nextI(x,Qx, y). This can be done in time

—preprocessing: O(|Q|3|t| log |t|), query: O(|Q|3 log |t|), or
—preprocessing: O(2O(|Q|)|t|), query: O(2O(|Q|)) or
—when the automaton A is basic—preprocessing: O(|Q|3|t|), query: O(|Q|3).

Now we show how Theorem 1.2 follows from Theorem 11.5.
Similarly to setI , let setF (x,Qx) be the set of descendants y of x such that

prec(x, y,QF) contains some state fromQx (whereQF is the set of accepting states).
Basing on these sets we define firstF (x,Qx) and nextF (x,Qx, y) for y ≥ x as the
first node or as the next node after y in the postfix order which is in setF (x,Qx).
Note that in Lemma 11.3 and in Theorem 11.5 we can replace firstI and nextI
by firstF and nextF , and they still will be true. This is because setF is equal to
setI with respect to an automaton A′ in which the direction of every transition is
reversed and the sets of initial and accepting states are swapped.

We run the algorithm from Lemma 11.3 and the preprocessing step of Theorem
11.5 (for both A and A′). It allows us to enumerate elements of any setI and setF
(for A) with a constant delay.

Now we show how to find all pairs of nodes (x, y) satisfying a path expression α.
There are several types of such pairs, depending on the relationship between x and
y:

(1) x = y,
(2) x is a proper ancestor of y,
(3) x is a proper descendant of y,
(4) x is neither an ancestor nor a descendant of y and it is before y in the postfix

order,
(5) x is neither an ancestor nor a descendant of y and it is after y in the postfix

order.

Note that types 2 and 3 are symmetric: when one swaps the role of x and y and uses
the subroutine for pairs of type 2 for the reversed automaton A′, he gets exactly
all pairs of type 3. Similarly for 4 and 5. So it is enough to concentrate on types
1, 2, and 4.

First consider the pairs of type 1. This type is easy. In the preprocessing step
we can check for each node x = y if it satisfies α or not. This is the case when
some pair (qI , qF) of an initial and an accepting state belongs to trans(x, x), so the
checking procedure is trivial (recall from Section 5 that the trans(x, x) are already
calculated). We make a list of all such nodes satisfying α, and then return them
one after another, reading from the list.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 33

Pairs of type 2 are also not too difficult. Note that a pair (x, y) satisfies α if
and only if y ∈ setF (x,QI), i.e. when from a initial state in x the automaton
can reach a final state in y. In the preprocessing step we make a list of nodes x
for which setF (x,QI) is nonempty. Then we take consecutive nodes x from the
list and consecutive nodes y from setF (x,QI), using Theorem 11.5 to calculate
nextF (x,QI , y).

Now we come to the most complex type 4. It is convenient to distinguish the
part setleftI (x,Qx) of setI(x,Qx) consisting of only these nodes, which are in the left
subtree of x. Similarly let setrightF (x,Qx) contain only these nodes of setF (x,Qx),
which are in the right subtree of x. Note that we can enumerate their elements with
a small delay between them (a delay of one query to Theorem 11.5). To get elements
of setleftI (x,Qx) we start to enumerate elements of setI(x,Qx), using Theorem 11.5
to calculate nextI(x,Qx, y), but we stop when we are already in the right subtree
of x. Similarly for setrightF (x,Qx): we move between its elements normally using
nextF (x,Qx, y), but we start in the first descendant of the right child xr of x which
is in setF (x,Qx), namely from firstF (xr, {q : (p, q) ∈ trans(x, xr), p ∈ Qx}).

For each node x we also define two sets of states: upleftI (x) and downrightF (x).
The first set contains all the states q which can be reached by the automaton in
x, when it starts in an initial state somewhere in the left subtree of x. Similarly,
downrightF (x) contains all the states q such that from q in x the automaton can
reach an accepting state somewhere in the right subtree of x. These sets can be
easily calculated for each x in one bottom-up pass in time O(|Q|2|t|).

The following lemma follows immediately from the definitions of all our sets.

Lemma 11.6. (1) Let z be any node. Then there exists some node x in the left
subtree of z and some node y in the right subtree of z such that (x, y) satisfies
α if and only if upleftI (z) ∩ downrightF (z) 6= ∅.

(2) Let z satisfy the above. Denote Qz = upleftI (z)∩ downrightF (z) and let y be any
node in the right subtree of z. Then there exists some node x in the left subtree
of z such that (x, y) satisfies α if and only if y ∈ setrightF (z,Qz).

(3) Let y and z satisfy the above and let x be any node in the left subtree of z.
Then (x, y) satisfies α if and only if y ∈ setleftI (z, prec(z, y,QF)).

This lemma gives us a method of returning pairs (x, y) of type 4 satisfying α with
a constant delay. In the preprocessing step we create a list of all nodes z satisfying
(1). Then we take consecutive nodes z from the list. For each of them we take
consecutive y from setrightF (z, upleftI (z) ∩ downrightF (z)) and for each of them we
take consecutive x from setleftI (z, prec(z, y,QF)). Then between consecutive pairs
we make a constant number of queries to Theorems 11.5 and 7.1, so the delay is
small. Note that each pair (x, y) will be returned for exactly one z: for their closest
common ancestor. This finishes the proof of Theorem 1.2; in the three subsections
we show three proofs of Theorem 11.5, giving the tree complexities.

11.1 Linear-logarithmic algorithm

In this subsection we prove the first version of Theorem 11.5.
We need information like in Section 8.1 but slightly enriched: For every node x

of the data tree t and every 0 ≤ k ≤ K we remember a pointer to its ancestor y
Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · M. Bojańczyk and P. Parys

which is 2k edges above x (as previously, K is the greatest number such that 2K

is not greater than the height of the data tree t). Together with it we remember
trans(x, y) as previously, but also nextI(y, {qy}, x) for each state qy.

Now see how to find the pointers nextI(y, {qy}, x). For k = 1 they can be
calculated by Lemma 11.4. Then we inductively calculate the pointers for k > 1.
Let z be the node halfway between x and y. The pointer nextI(y, {qy}, x) is easily
calculated basing on the nextI pointers for pairs (y, z) and (z, x), as described by
Propositions 11.1 and 11.2.

Now come to the query step. We are given two nodes x ≤ y and a set of states Qx.
As in the previous subsections, we consider the nodes y = x0 > x1 > · · · > xn = x
(n ≤ K + 1) where xi+1 is 2k edges above xi for the greatest number k such that
xi+1 ≥ x. First for each i we calculate the sets Qi = prec(xi, x,Qx) observing that

Qi = prec(xi, xi+1, Qi+1) for 0 ≤ i < n, Qn = Qx.

As we know nextI(xi, {q}, xi+1) for each i and q, using Proposition 11.2 we cal-
culate nextI(xi, Qi, xi+1). Then Proposition 11.1 allows us to compose them into
nextI(x,Qx, y).

11.2 Linear algorithm for the regular extension

Now we are going to prepare the data structure from Section 9.2 for queries about
nextI(x,Qx, y). Recall first the important properties of this data structure. We
were considering a deterministic automaton D having the following property: For
any set Qx of states of A and two nodes x ≤ y, D goes from state (∅, Qx) at
x to state (∅, prec(y, x,Qx)) at y. We remark that here we use only the second
coordinate of states of the deterministic automaton D and only tapes with empty
first coordinate, as we are interested only in runs of A going upward in the tree. To
simplify the notation, let Qkx be the set of states written on the second coordinate
of the k-th tape at node x.

All what we need to know about the tapes data structure is the following. Let
x ≤ y be two nodes and (∅, Qx) a state of D. We can find, in time constant in |t|,
a sequence of nodes

x = x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn = y, n ≤ K = 2O(|Q|)

in which the run of D starting from (∅, Qx) at x changes the current tape; between
xi and yi the run uses the same tape and xi+1 is a child of yi. The numbers of
tapes used in each fragment are also known. When such run uses a tape k at node
z, we know that Qkz = prec(z, x,Qx).

The information collected in Section 9.2 will be enriched. For any node y, de-
note its parent as par(y). For each node y (except the root) and for each set of
states Qpar(y) we remember nextI(par(y), Qpar(y), y). This is easily calculated us-
ing Lemma 11.4 and Proposition 11.2. Moreover, for each tape k and each node z
we remember a pointer to its nearest ancestor y such that nextI(par(y), Qkpar(y), y)
is non-empty. This information is collected in a top-down pass for each tape. The
preprocessing takes time O(2O(|Q|)|t|).

Consider first a query of a special kind: calculate nextI(x,Qx, y), where x ≤ y
are such that the tape containing (∅, Qx) at x is not reset between x and y. Let
k be the number of that tape. Note that for any node y′ such that x ≤ y′ ≤ y

Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 35

we have Qky′ = prec(y′, x,Qx). This means that next(x,Qx, y) is equal to one of
nextI(par(y′), Qkpar(y′), y

′) for x < y′ ≤ y; namely to the first of them in the postfix
order. But we know that nextI(par(y′), Qkpar(y′), y

′) is between y′ and par(y′)
in the postfix order. So we need to find the nearest ancestor y′ of y for which
nextI(par(y′), Qkpar(y′), y

′) is not empty, and it gives nextI(x,Qx, y); a pointer to
such y′ is stored at y. It is also possible that the pointer shows y′ which is already
an ancestor of x; in this case nextI(x,Qx, y) is empty.

Consider now a general query: calculate nextI(x,Qx, y), where x ≤ y are ar-
bitrary nodes. Using the data structure, we find the sequence x1, y1, . . . , xn, yn
mentioned at the beginning of this subsection. Let ki be the tape used between
xi and yi. Then from the above special case we know each nextI(xi, Qki

xi
, yi).

We also know each nextI(yi, Qki
yi
, xx+1). Note that Qki

xi
= prec(xi, x,Qx) and

Qki
yi

= prec(yi, x,Qx). Thus, from Proposition 11.1 we can compose all these values
into nextI(x,Qx, y).

11.3 Polynomial combined complexity for the basic fragment

Now we will prove Theorem 11.5 in the case when A is a basic automaton. We
need to show how to quickly answer queries about nextI(x,Qx, y). As previously,
we have to remember some of these values. We use here the notions of direct
ancestor, topmost direct ancestor, zig-zag sequence, and states with a loop defined
in Section 10.1. Let par(x, k) be the node which is reached from x by moving k
times to the parent (a node k edges above x). Similarly, let tda(x, k) be the node
which is reached from x by moving k times to the topmost direct ancestor. We
remember the following information:

A. for each state q, each node x, and each 1 ≤ k ≤ 2|Q| we remember the point-
ers nextI(par(x, k), {q}, x) and nextI(tda(x, k), {q}, x), if the appropriate node
par(x, k) or tda(x, k) exists;

B. for each state q and each node y we remember the nearest ancestor x of y such
that nextI(par(x, |Q|), {q}, x) is non-empty as well as the nearest ancestor x of
y such that nextI(tda(x, 2|Q|), {q}, x) is non-empty.

How to calculate this information? We start from the information in A for par
and k = 1; it is calculated by Lemma 11.4. Then values for bigger k are cal-
culated by composition of smaller values, as described by Propositions 11.1 and
11.2 (namely, to calculate nextI(par(x, k), {q}, x) we need to know prec(par(x, k−
1), par(x, k), {q}), nextI(par(x, k), {q}, par(x, k−1)) and nextI(par(x, k−1), {p}, x)
for each state p). For one x, q, and k the calculation takes time O(|Q|), the total
time consumed is O(|Q|3|t|).

Now we switch to the values for tda. For k = 1 we calculate them moving top-
down in the tree. We either have tda(x, 1) = par(x, 1), or we compose already
calculated values of nextI between the topmost direct ancestor of x and the parent
of x with nextI between the parent of x and x. For k > 1 we compose the values
in the same way as for par. So this part of the preprocessing is also done in time
O(|Q|3|t|).

The information in B can be collected in a top-down pass for each state.
Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · M. Bojańczyk and P. Parys

Now we come to the query step; someone asks for nextI(x,Qx, y) for x ≤ y.
Concentrate first on queries in which x is a direct ancestor of y; assume that x is
reachable from y by the from−left∗ axis (the case of the from−right∗ axis can
be done symmetrically). Consider the sequence y = x0, x1, . . . , xn = x, where xi+1

is the parent of xi (we are not allowed to calculate all these nodes, as there is too
many of them). First see what may happen: Let z be the value of nextI(x,Qx, y)
and let xc be the first of x1, . . . , xn which is an ancestor of z. Consider a run from
an initial state in z to a state from Qx in x. Whenever n − c ≥ |Q|, this run has
to be in a state with a from−left loop in some node xi for c ≤ i ≤ n. Moreover,
this would happen close to xc, for some c ≤ i ≤ c+ |Q|, as well as close to xn, for
some n − |Q| ≤ i ≤ n. It is also possible that n − c < |Q|. We now want to cover
both these cases by some of the precomputed nextI values. Then we will choose
the leftmost of all these values.

The second case, n−c ≤ |Q|, is easy to cover. We find the nodes xi and calculate
Qi = prec(xi, x,Qx) for n−|Q| ≤ i ≤ n in timeO(|Q|3). We take nextI(xi, Qi, xi−1)
as a potential value of nextI(x,Qx, y).

Before we come to the case n − c ≥ |Q| recall one property from Section 10.1:
For any state q and any xi (0 ≤ i ≤ n) we can check whether q ∈ prec(xi, x,Qx) in
time O(|Q|), basing on the already calculated sets Qj for n−|Q| ≤ j ≤ n. We were
doing that in the following way: For each state p with a from−left loop we look at
firstup(xi, q, p), we find the lowest n− |Q| ≤ j ≤ n such that firstup(xi, q, p) ≥ xj
(in time O(1) basing on the level), and we check whether p ∈ Qj (when it is true
for any p, we have q ∈ prec(xi, x,Qx)).

Now we want to cover the case n − c ≥ |Q| for a state q with a from−left
loop. Using the information in B we find the lowest ancestor z of y such that
nextI(par(z, |Q|), {q}, z) is non-empty. This nextI is a potential value for nextI(x,
Qx, y) when par(z, |Q|) is a descendant of x (so par(z, |Q|) = xi for some i) and
q ∈ prec(par(z, |Q|), x,Qx); we check this as described in the previous paragraph.
We also take nextI(par(z, |Q|+k), {q}, par(z, k)) for 1 ≤ k < |Q| when par(z, |Q|+
k) ≥ x and q ∈ prec(par(z, |Q| + k), x,Qx), as potentially they may be earlier in
the postfix order.We do not need to take into account values nextI(par(z, |Q| +
k), {q}, par(z, k)) for k ≥ |Q|, because they are after par(z, |Q|) in the postfix order,
which is after nextI(par(z, |Q|), {q}, z), hence for sure nextI(par(z, |Q|), {q}, z) is
a better candidate. The values taken till now are such that the run reaches q
in some xi for i ≥ |Q|. We also need to consider smaller i: for 1 ≤ i < |Q|
we take nextI(par(y, i), {q}, y) as a potential value of nextI(x,Qx, y) when q ∈
prec(par(y, i), x,Qx). Finally, as it was already mentioned, we take the leftmost
from all the potential values for nextI(x,Qx, y). The whole processing is done in
time O(|Q|3).

The general situation when x is an arbitrary ancestor of y is very similar. We
just consider the zig-zag sequence (as we considered in Section 10.1) instead of the
sequence of parents, and we use the information for tda instead of this for par. We
have to use the above restricted case between the last two nodes in the sequence,
as x is a direct ancestor of xn−1, but not the topmost direct ancestor.
Journal of the ACM, Vol. V, No. N, Month 20YY.

XPath Evaluation in Linear Time · 37

12. CONCLUSION

In this paper, we have provided three kinds of algorithms for evaluating queries of
XPath. Each kind of algorithm can be used to evaluate boolean, unary and binary
queries. Two of the three algorithms run linear time in the size of the document, but
the constants depend on the query in different ways (polynomial or exponential).
One of the three algorithm runs in time n log n in the size of the document, and its
constants are polynomial in the query.

We are currently working on implementing the algorithms, to see how they work
on real examples.

The fragment of XPath studied in this paper is a restricted fragment of XPath 1.0.
It seems to us that our techniques will fail for any significant departure from this
restricted fragment. We give two examples below.

One possible departure is the use of IDREF. This boils down to studying XPath
queries not on trees with data, but on arbitrary graphs. In the graph setting, the
distinction of tree structure and data values becomes redundant, as data values
can be encoded in the edge relation. Our techniques do not work for the graph
extension, because they heavily draw on tree automata.

Another possible departure is the use of XPath 2.0. The syntax of XPath 2.0
subsumes first-order logic, and therefore evaluation of XPath 2.0 would subsume
evaluation of first-order logic formulas on relational structures. The latter is a
widely studied and very interesting topic, but one that seems to require wholly
different techniques than the ones deployed here.

REFERENCES

Bender, M. A. and Farach-Colton, M. 2000. The LCA problem revisited. In Proceedings of
the 4th Latin American Symposium on Theoretical Informatics. Lecture Notes in Computer

Science, vol. 1776. Springer, 88–94.

Benedikt, M. and Koch, C. 2008. XPath leashed. ACM Comput. Surv. 41, 1.

Bojańczyk, M. 2009. Factorization forests. In Developments in Language Theory. 1–17.

Bojańczyk, M. and Parys, P. 2008. XPath evaluation in linear time. In Proceedings of the 27th

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM, New

York, NY, USA, 241–250.

Clark, J. and DeRose, S. 1999. XML Path language (XPath) version 1.0, W3C recommendation.

Tech. rep., W3C.

Gottlob, G., Koch, C., and Pichler, R. 2002. Efficient algorithms for processing XPath
queries. In Proceedings of the 28th international conference on Very Large Data Bases. VLDB

Endowment, 95–106.

Gottlob, G., Koch, C., and Pichler, R. 2003. XPath query evaluation: Improving time and

space eficiency. In Proceedings of the 19th International Conference on Data Engineering.
379–390.

Gottlob, G., Koch, C., and Pichler, R. 2005. Efficient algorithms for processing XPath queries.

ACM Trans. Database Syst. 30, 2, 444–491.

Harel, D. and Tarjan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM

J. Comput. 13, 2, 338–355.

Kärkkäinen, J. and Sanders, P. 2003. Simple linear work suffix array construction. In Proceed-
ings of the 30th International Colloquium on Automata, Languages and Programming. Lecture
Notes in Computer Science, vol. 2719. Springer, 943–955.

Karp, R. M., Miller, R. E., and Rosenberg, A. L. 1972. Rapid identification of repeated

patterns in strings, trees and arrays. In Proceedings of the 4th annual ACM symposium on
Theory of computing. ACM, New York, NY, USA, 125–136.

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · M. Bojańczyk and P. Parys

Neven, F. 2002. Automata theory for XML researchers. SIGMOD Rec. 31, 3, 39–46.

Parys, P. 2009. XPath evaluation in linear time with polynomial combined complexity. In PODS

’09: Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 55–64.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

