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Abstract. Alternating timed automata on infinite words are considered.
The main result is the characterization of acceptance conditions for which
the emptiness problem for the automata is decidable. This result implies
new decidability results for fragments of timed temporal logics. It is also
shown that, unlike for MITL, the characterisation remains the same even
if no punctual constrains are allowed.

Timed automata [6] is a widely used model of real-time systems. It is obtained
from finite automata by adding clocks that can be reset and whose values can
be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. Alternating timed automata have been introduced
in [16] following a sequence of results [1, 2, 20] indicating that a restriction to one
clock can make some problems decidable. The emptiness of one clock alternating
automata is decidable over finite words, but not over infinite words [23, 17].
Undecidability proofs relay on the ability to express “infinitely often” properties.
Our main result shows that once these kind of properties are forbidden the
emptiness problem is decidable.

To say formally what are “infinitely often” properties we look at the theory
of infinite sequences. We borrow from that theory the notion of an index of a
language. It is known that the index hierarchy is infinite with “infinitely often”
properties almost at its bottom. From this point of view, the undecidability result
mentioned above left open the possibility that safety properties and “almost
always” properties can be decidable. This is indeed what we prove here.

Automata theoretic approach to temporal logics [26] is by now a standard
way of understanding these formalisms. For example, we know that the modal
µ-calculus corresponds to all automata, and LTL to very weak alternating au-
tomata, or to counter-free nondeterministic automata [29]. By translating a logic
to automata we can clearly see a combinatorial challenges posed by the formal-
ism. We can also abstract from irrelevant details, such as a choice of operators
for a logic. This approach was very beneficial for the development of logical
formalisms over sequences.

An automata approach has been missing in timed models for an obvious
reason: no standard model of timed automata is closed under boolean operations.
Event-clock automata [8] may be considered as an exception, but the price to
pay is a restriction on the use of clocks. Alternating timed automata seem to
be a good model, although the undecidability result over infinite words shows
that the situation is more difficult than for sequences. Nevertheless, Ouaknine



2

and Worrell [22] have shown decidability of the emptiness problem provided
all states are accepting, and some locality restriction on the transition function
holds. Using this, they have identified decidable fragment of MTL called Safety
MTL.

In this paper we show that our main result allows to get a decidable fragment
of TPTL [?] with one variable, that we call Constrained TPTL. This fragment
contains Safety MTL and allows all eventually formulas. Its syntax has also
some similarities with another recently introduced logic: FlatMTL [12, 13]. We
give some elements of comparison between the logics later in the paper. In brief,
the reason why Constrained TPTL is not strictly more expressive than FlatMTL
is that the later includes MITL [7]. This is a sub-logic of MTL where punctual
constraints are not allowed.

The case of MITL makes it natural to ask what happens to alternating timed
automata when we disallow punctual constraints. This is an interesting question
also because all known undecidability proofs have used punctual constraints in
an essential way. Our second main result (Theorem 3), says that the decidability
frontier does not change even if we only allow to test if the value of a clock is
bigger than 1. Put it differently, it is not only the lack of punctual constraints,
but also very weak syntax of the logic that makes MITL decidable.

Related work The idea of restricting to one clock automata dates back at least
to [15]. Alternating timed automata where studied in a number of papers [17, 23,
5, 4, 3]. The most relevant result here is the decidability of emptiness for the case
when when all states are accepting and some locality condition holds [22]. One of
technical contributions of the present paper is to remove the locality restriction,
and to add a non-accepting layer of states on the top of the accepting one.

For a long time MITL [7] was the most prominent example of a decidable
logic for real-time. In [23] Ouaknine and Worrell remark that MTL over finite
words can be translated to alternating timed automata, and hence it is decidable.
They also show that over infinite words the logic is undecidable (which is a
stronger result than undecidability for the automata model in [17]). They have
proposed a fragment of MTL, called Safety MTL. Decidability of this fragment
was shown in [22] by reducing to the class of ATA mentioned in the previous
paragraph. A fragment of MTL called FlatMTL [12, 13] represents an interesting
but technically different direction of development. We will comment more on this
in Section 3.

We should also discuss the distinction between continues and pointwise se-
mantics. In the later the additional restriction is that formulas are evaluated
only in positions when an action happens. So the meaning of F(x=1)α in the
continues semantics is that in one time unit from now formula α holds, while in
the pointwise semantics we additionally require that there is an action one time
unit from now. Pointwise semantics is less natural if one thinks of encoding prop-
erties of monadic predicates over reals. Yet, it seems sufficient for descriptions of
behaviors of devices, like timed automata, over time [24]. Here we consider the
pointwise semantics simply because emptiness of alternating timed automata in
continues semantics is undecidable even over finite words. At present it seems
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that an approach through compositional methods [14] is more suitable to deal
with continues semantics.

The depth of nesting of positive and negative conditions of type “infinitely
often” is reflected in the concept of the index of an automaton. Wagner [27], as
early as in 1977, established the strictness of the hierarchy of indices for deter-
ministic automata on infinite words. Weak conditions were first considered by
Staiger and Wagner [28]. There are several results testifying their relevance. For
example Mostowski [18] has shown a direct correspondence between the index
of weak conditions and the alternation depth of weak second-order quantifiers.
For recent results on weak conditions see [19] and references therein.

Organization of the paper After a section with basic definitions we state our
main decidability result (Theorem 1) and an accompanying undecidability result
(Theorem 3). We give an outline of the proof of the former theorem. Section 3
introduces Constrained TPTL, gives a translation of the logic into a decidable
class of alternating timed automata, and discusses relations with FlatMTL.

For the reasons of space, proofs are largely omitted. They can be found in
the full version of the paper [25].

1 Preliminaries

A timed word over a finite alphabet Σ is a sequence

w = (a1, t1)(a2, t2) . . .

of pairs from Σ × R+. We require that the sequence {ti}i=1,2,... is strictly in-
creasing and unbounded (non Zeno).

We will consider alternating timed automata (ATA) with one clock [17]. Let
x be this clock and let Φ denote the set of all comparisons of x with constants,
eg. (x < 1 ∧ x ≥ 0).

A one-clock ATA over an alphabet Σ is a tuple

A = 〈Q,Σ, qo, δ, Ω : Q→ N〉

where Q is a finite set of states, and Ω determines the parity acceptance condi-
tion. The transition function of the automaton δ is a finite partial function:

δ : Q×Σ × Φ ·→ B+(Q× {nop, reset}).

where B+(Q×{nop, reset}) is the set of positive boolean formulas over atomic
propositions of the form (q, f) with q ∈ Q and f ∈ {nop, reset}.

Intuitively, automaton being in a state q, reading a letter a and having a clock
valuation satisfying θ can proceed according to the positive boolean formula
δ(q, a, θ). It means that if a formula is a disjunction then it chooses one of the
disjuncts to follow, if it is a conjunction then it makes two copies of itself each
following one conjunct. If a formula is “atomic”, i.e., of the form (q, nop) or
(q, reset) then the automaton changes the state to q, and either does nothing
or sets the value of the clock to 0, respectively. To simplify the definition of
acceptance there is also one more restriction on the transition function:
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(Partition) For every q ∈ Q, a ∈ Σ and v ∈ R+, there is at most one θ
s.t. δ(q, a, θ) is defined, and v satisfies θ.

The acceptance condition of the automaton determines which infinite se-
quences of states (runs of the automaton) are accepting. A sequence q1q2 . . .
satisfies:

– weak parity condition if min{Ω(qi) : i = 1, 2, . . . } is even,
– strong parity condition if lim infi=1,2,...Ω(qi) is even.

Observe that the difference between weak and strong condition is that in the
weak case we consider all occurrences of states and in the strong case only those
that occur infinitely often. In this paper we will mostly use automata with weak
conditions. Whenever we will be considering strong conditions we will say it
explicitly.

An alternating timed automaton A and a timed word w = (a1, t1)(a2, t2) . . .
determine the acceptance game GA,w between two players: Adam and Eve. In-
tuitively, the objective of Eve is to accept w, while the aim of Adam is the
opposite. A play starts at the initial configuration (q0, 0). It consists of infinitely
many phases. The (k+1)-th phase starts in (qk, vk), ends in some configura-
tion (qk+1, vk+1) and proceeds as follows. Let v′ := vk + tk+1 − tk. Let θ be
the unique (by the partition condition) constraint such that v′ satisfies θ and
b = δ(qk, ak+1, θ) is defined; if there is no such θ then Eve is blocked. Now the
outcome of the phase is determined by the formula b. There are three cases:

– b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

– b = b1 ∨ b2: dually, Eve chooses one of subformulas;
– b = (q, f) ∈ Q×{nop, reset}: the phase ends with the result (qk+1, vk+1) :=

(q, f(v′)). A new phase is starting from this configuration.

The winner is Eve if she is not blocked, and the sequence of states appearing in
the path satisfies the acceptance condition of the automaton.

Formally, a partial play is a finite sequence of consecutive game positions of
the form 〈k, q, v〉 or 〈k, q, v, b〉 where k is the phase number, b a boolean formula,
q a location and v a valuation. A strategy of Eve is a mapping that assigns to
each such sequence ending in Eve’s position a next move of Eve. A strategy is
winning if Eve wins whenever she applies this strategy.

Definition 1 (Acceptance). An automaton A accepts w iff Eve has a winning
strategy in the game GA,w. By L(A) we denote the language of all timed words
w accepted by A.

The Mostowski index of an automaton with the, strong or weak, acceptance
condition given by Ω is the pair consisting of the minimal and the maximal value
of Ω: (min(Ω(Q)),max(Ω(Q))). We may assume without a loss of generality that
min(Ω(Q)) ∈ {0, 1}. (Otherwise we can scale down the rank by Ω(q) := Ω(q)−
2.). Automata with strong conditions of index (0, 1) are traditionally called Büchi
automata and their acceptance condition is given by a set of accepting states
Q+ ⊆ Q; in our presentation theses are states with rank 0.



5

2 Decidability for one-clock timed automata

We are interested in the emptiness problem for one clock ATA. As it was men-
tioned in the introduction, the problem is undecidable for automata with strong
Büchi conditions. Here we will show a decidability result for automata with weak
acceptance conditions of index (0, 1). A different presentation of these automata
is that they are strong Büchi automata where there are no transitions from an
accepting state to a non-accepting state. Indeed, once the automaton sees a state
of priority 0 then any infinite run is accepting (but there may be runs that get
blocked). In the following we will write Q+ for accepting states and Q− for the
other states. For automata presented in this way the (strong or weak) Büchi
acceptance condition says simply: a word is accepted, if there is a strategy for
Eve to find an infinite path on which there are only finitely many states from
Q−.

Theorem 1. For one-clock Büchi alternating timed automata with no transi-
tions from states in Q+ to states in Q−: it is decidable whether a given automa-
ton accepts a non Zeno timed word.

Ouaknine and Worrell [21] have proved undecidability of MTL over infinite
timed words. Their construction immediately implies undecidability for weak
automata with (1, 2) condition. So the above decidability result is optimal with
respect to index of the accepting condition.

Theorem 2 (Ouaknine, Worell). It is undecidable whether a given one-clock
Büchi nondeterministic timed automaton A accepts every infinite word, even
when there are no transitions in A from states in Q− to states in Q+.

The construction in op. cit. relies on equality constraints. Indeed, if we do
not allow equality constraints in MTL then we get a fragment called MITL, and
satisfiability problem for MITL over infinite words is decidable [7]. We show that
this phenomenon is very particular to MTL and does not occur in the context
of automata.

Theorem 3. It is undecidable whether a given one-clock Büchi alternating timed
automata A accepts an infinite word, even when there are no transitions in A
from states in Q− to states in Q+, and when A does not test for equality.

In the rest of the section we give an outline of the proof of Theorem 1. Due
to space restrictions it is not possible to present the proof of Theorem 3. The
proof given in the full version of the paper [25] shows undecidability even when
one uses only tests: (x ≥ 1), and its negation.

To fix the notation we take a one clock ATA:

A = 〈Q,Σ, qo, δ, Q+ ⊆ Q〉

We will assume that the transition function satisfies the partition condition.
For simplicity we also assume that every value of δ is a boolean formula in a
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disjunctive normal form. Moreover, we will require that in every disjunct of every
transition of A there is some pair with reset and some pair with nop. Every
automaton can be easily put into this form.

Our first step will be to construct some infinite transition system H(A), so
that the existence of an accepting run of A is equivalent to the existence of some
good path in H(A). In the second step we will use some structural properties of
this transition system to show decidability of the problem.

2.1 Construction of H(A)

This is surely the less interesting part of the proof, unfortunately we need to
spend some time here as H(A) is the object we work with in the second step.

We need to reformulate the definition of acceptance of A in terms of a se-
quence instead of a tree. We consider labeled transition system S(A) whose
states are finite sets of configurations, i.e., finite sets of pairs (q, v), where q ∈ Q
and v ∈ R+. The initial position in S(A) is P0 = {(q0, 0)} and there are transi-

tions of two types P
t
↪→ P ′ and P

a
↪→ P ′. Transition P

t
↪→ P ′ is in S(A) iff P ′

can be obtained from P by changing every configuration (q, v) ∈ P to (q, v+ t).
Transition P

a
↪→ P ′ is in S(A) iff P ′ can be obtained from P by applying a

transition of A to every element of P (the precise definition is given in the full
version).

We will call a sequence P0, P1, . . . of the states of S(A) accepting if the states
of Q− appear only in a finite number of Pi. Due to existence of memoryless
strategies in acceptance games of ATA we get the following lemma:

Lemma 1. A accepts an infinite timed word (a0, t0)(a1, t1) . . . iff there is an

accepting sequence in S(A): P0
t0
↪→ P1

a0
↪→ P2

t1
↪→ P3

a1
↪→ P4 . . .

The transition system H(A) will be some abstraction of the system S(A).
The goal is to abstract real values both from states and transitions. The result
should be not too trivial though because we would still like to tell if a path in
the abstraction corresponds to a non Zeno accepting sequence in S(A).

We start with the standard definition of regions. This is particularly simple
in our case as we only have one clock. Let dmax denote the biggest constant
appearing in δ, i.e., the transition function of the automaton. Let set reg of
regions be a partition of R+ into 2 · (dmax + 1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (dmax − 1, dmax), {dmax}, (dmax,+∞)}

There are three kinds of regions: bounded intervals (denoted regI), one-point
regions (denoted regP ), and one unbounded interval (dmax,+∞). We will use
the notation Ii for the region (i − 1, i). In a similar way, I∞ will stand for
(dmax,+∞). For v ∈ R+, let reg(v) denote its region; and let fract(v) denote
the fractional part of v

Recall that a state P of S(A) is a finite set of pairs (q, v). If v ∈ I∞ then
the precise value of v does not matter from the point of view of the automaton.
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For other values it is important to look at their fractional parts. Among all
v 6∈ I∞ appearing in P take the one with the biggest fractional part. Then, by
making the time pass we can get v to a new region without changing the regions
of valuations with smaller, but positive, fractional parts. Intuitively, this is a
smallest delay that makes a visible change to P . Following this idea, every pair
(q, v) from a state P ⊆ Q × R+ is abstracted into (q, r) where r is the region
of v. These abstractions are ordered with respect to values of fractional parts
of v, putting together the pairs with the same fractional part. So a set of pairs
P ⊆ Q×R+ is abstracted to a sequence from Λ∗I ·Λ∞ where ΛI = P(Q× regI)
and Λ∞ = P(Q× {∞}).

The abstraction of the transition relation of S(A) is a bit more complicated.
We do not want to have time value on transitions, and still want to know that
the time progresses in a non Zeno way. For this we need to distinguish a progress
of time where some pair (q, r) changes a region. We will use the alphabet

Σ = Σ ∪ {(delay, ε)} ∪ ({delay} ×Σ),

and three new kinds of transitions.
A transition on (delay, ε) will represent passage of time with some valuation

changing a region. Consider a state (λ1 . . . λk, λ∞) of H(A). If k = 0 then there
is no (delay, ·) transition from this state. Otherwise let λ′k = {(q, Id+1) : d <
dmax, (q, Id) ∈ λk} and λ′∞ = λ∞ ∪{(q, I∞) : (q, Idmax) ∈ λk}. In H(A) there is
exactly one transition on (delay, ·):

(λ1 . . . λk, λ∞)
(delay,ε)−→ (λ′kλ1 . . . λk−1, λ

′
∞) if λ′k 6= ∅

(λ1 . . . λk, λ∞)
(delay,ε)−→ (λ1 . . . λk−1, λ

′
∞) otherwise

In order to define transitions of H(A) on an action a ∈ Σ, we define an
auxiliary notion of a transition from λ ∈ ΛI ∪ Λ∞. By the partition condition,
for every (q, r) ∈ λ there is at most one constraint θ such that every valuation
in r satisfies this constraint and δ(q, a, θ) is defined. We choose a conjunct from
δ(q, a, θ):

(q1, nop) ∧ · · · ∧ (ql, nop) ∧ (q′1, reset) ∧ · · · ∧ (q′m, reset)

this choice gives two sets: Next(q, r) = {(q1, r), . . . , (ql, r)} and Next0(q, r) =
{(q′1, I1), . . . , (q′m, I1)}. We put

λ
a−→A (λ′, δ′); where

λ′ =
⋃

(q,r)∈λ

Next(q, r) and δ′ =
⋃

(q,r)∈λ

Next0(q, r)

In H(A) transitions on an action a have the form:

(λ1 . . . λk, λ∞) a−→ (δ′λ′1 . . . λ
′
k, λ
′
∞)
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where λi
a−→A (λ′i, δ

′
i) and δ′ =

⋃
δ′i (for i = 1, . . . , k,∞). Observe that there

are as many transitions a−→ from λ as there are choices of different conjuncts
for each pair (q, r) in λ.

Finally, we have the most complicated case of (delay, a) action. This sim-
ulates a passage of time until a region becomes a one-point region, execution
of the action at this moment, and letting some time pass to get into the next
interval region. In H(A) the transitions on an action (delay, a) have the form:

(λ1 . . . λk, λ∞)
(delay,a)−→ (δ′λ′1 . . . λ

′
k−1, λ

′′
∞)

where the elements on the right are obtained by performing the following steps:

– First, we change regions in λk. Every pair (q, Id) ∈ λk becomes (q, {d}). Let
us denote the result by λ1

k.
– For i = 1, . . . , k,∞ we take λ′i, δ

′
i such that: λ1

k
a−→A (λ′k, δ

′
k) and λi

a−→A
(λ′i, δ

′
i) for i 6= k.

– We increase again regions in λ′k: from {d} they become Id+1, or I∞ if d =
dmax.

– We put δ′ =
⋃
δ′i ∪ {(q, Id) : (q, {d}) ∈ λ′k, d < dmax} and λ′′∞ = λ′∞ ∪

{(q, I∞) : (q, {dmax}) ∈ λ′k}.

We write c→ c′, c
(delay,·)−→ c′, c � c′, c

Σ∗

� c′ to denote that we may go from
a configuration c to c′ using one transition, one transition reading a letter of the
form (delay, ·), any number of transitions or any number of transitions reading
only letters from Σ, respectively.

We say that a path is good if it passes through infinitely many transitions
labelled by letters (delay, ·). The whole point of this type of transitions is that
they allow to capture non Zeno behaviours:

Lemma 2. A accepts an infinite non Zeno timed word iff there is a good path in
H(A) starting in the state ({(q0, I1)}, {∅, I∞}) with only finitely many appear-
ances of states from Q−.

2.2 Finding a good path in H(A).

By Lemma 2, our problem reduces to deciding if there is a good path in H(A).
The decision procedure works in two steps. In the first step we compute the set
Ĝ of all configurations from which there exists a good computation. Observe
that if a configuration from Ĝ has only states from Q+ then this configuration
is accepting. So, in the second step it remains to consider configurations that
have states from both Q− and Q+. This is relatively easy as an accepting run
from such a configuration consists of a finite prefix ending in a configuration
without states from Q− and a good run from that configuration. Hence, there
is a good accepting computation from a configuration iff it is possible to reach
from it a configuration from Ĝ that has only Q+ states. Once we know Ĝ, the
later problem can be solved using the standard reachability tree technique.
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Computing accepting configurations. We start with the second step of our pro-
cedure as it is much easier than the first one. We need to decide if from an initial
state one can reach a configuration from Ĝ having only Q+ states. We can as-
sume that we are given Ĝ but we need to discuss a little how it is represented.
It turns out that there are useful well-quasi-orders on configurations that allow
to represent Ĝ in a finitary way.

A well-quasi-order is a relation with a property that for every infinite se-
quence c1, c2, . . . there exist indexes i < j such that the pair (ci, cj) is in the
relation.

The order we need is a relation � over configurations of H(A). We say that
(λ1 . . . λk, λ∞) � (λ′1 . . . λ

′
k′ , λ

′
∞) if λ∞ ⊆ λ′∞ and there exists a strictly increas-

ing function f : {1, . . . , k} → {1, . . . , k′} such that λi ⊆ λ′f(i) for each i. Observe
that here we use the fact that each λi is a set so we can compare them by in-
clusion. This relation is somehow similar to the relation of being a subsequence,
but we do not require that the corresponding letters are equal, only that the one
from the smaller word is included in the one from the greater word. A standard
application of Highman’s lemma proves that � is a well-quasi-order.

The following shows an important interplay between � relation and transi-
tions of H(A).

Lemma 3. Let c1, c′1, c2 be configurations of H(A) such that c′1 � c1. Whenever
c1 � c2, then there exist c′2 � c2 such that c′1 � c′2 and the second computation
has the length not greater than the first one. Similarly, when from c1 there exists
a good computation, then from c′1 such a computation exists.

The proof of the lemma follows from examining the definition of transitions.
Some care is needed to ensure that the matching computation is good.

Corollary 1. The set Ĝ is downwards closed, so it can be described by the finite
set of minimal elements that do not belong to it.

As we have mentioned before, there is a good accepting computation from
a configuration iff it is possible to reach from it a configuration from Ĝ that
has only Q+ states. A standard argument based on well-quasi-orders and ex-
amination of a finite part of the reachability tree shows that this property is
decidable.

Lemma 4. Let X be a downwards closed set in H(A). It is decidable if from a
given configuration one can reach a configuration in X that has only states from
Q+.

Computing Ĝ. In the rest of the section we deal with the main technical problem
of the proof that is computing the set Ĝ of all configurations from which there
exist a good computation. We will actually compute the complement of Ĝ. While
we will use well-orderings in the proof, standard termination arguments do not
work in this case. We need to use in an essential way a very special form of
transitions our systems have.



10

We write X↑ for an upward closure of set X:

X↑= {c : ∃c′∈Xc′ � c}

Observe that by Lemma 3 the complement of Ĝ is upwards closed.
Let set pre∀delay (respectively pre∀Σ∗) contain all configurations, from which

after reading any letter (delay, ·) (any number of letters from Σ), we have to
reach a configuration from X:

pre∀delay(X) ={c : ∀c′(c
(delay,·)−→ c′ ⇒ c′ ∈ X)}

pre∀Σ∗(X) ={c : ∀c′(c
Σ∗

� c′ ⇒ c′ ∈ X)}

We use these pre operations to compute a sequence of sets of configurations:

Z−1 = ∅ Zi = pre∀Σ∗(pre
∀
delay(Zi−1↑)).

It is important that we may effectively represent and compare all the sets
Zi ↑. Because the relation � is a well-quasi-order, any upward closed set X ↑
may be represented by finitely many elements c1, . . . , ck (called generators) such
that X↑= {c1, . . . , ck}↑. Moreover, an easy induction shows that Zi−1↑⊆ Zi↑ for
every i (because both pre∀ operations preserve inclusion). Once again, because
relation � is a well-quasi-order, there has to be i such that Zi−1↑= Zi↑. Let us
write Z∞ for this Zi.

First, we show that Z∞ is indeed the complement of Ĝ.

Lemma 5. There is a good computation from a configuration c iff c 6∈ Z∞↑.

To compute Z∞ it is enough to show how to compute Zi↑ from Zi−1↑. This
is the most difficult part of the proof. Once this is done, we can calculate all the
sets Zi↑, starting with Z−1 = ∅ and ending when Zi−1↑= Zi↑.

The main idea in calculating pre∀Σ∗(pre
∀
delay(X)) is that the length of its

generators may be bounded by some function in the length of generators of X.

Lemma 6. Given an upwards closed set X we can compute a constant D(X)
(which depends also on our fixed automaton A) such that the size of every min-
imal element of pre∀Σ∗(pre

∀
delay(X)) is bounded by D(X)

Once we know the bound on the size of generators, we can try all potential
candidates. The following lemma shows that it is possible.

Lemma 7. For every upper-closed set X, the membership in pre∀Σ∗(pre
∀
delay(X))

is decidable.

These two lemmas allow us to calculate Zi from Zi−1, and this is the last
piece we need to complete the proof the theorem. The proofs of the lemmas are
quite long, and require some additional notions. They can be found in the full
version of the paper [25].
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3 Constrained TPTL

In this section we discuss a fragment of TPTL (timed propositional temporal
logic) that can be translated to automata from our decidable class. We compare
this fragment with other known logics for real time. We will be rather brief in
presentations of different formalisms and refer the reader to recent surveys [10,
24].

TPTL[?] is a timed extension of linear time temporal logic that allows to
explicitly set and compare clock variables. We will consider the logic with only
one clock variable that we denote TPTL1. The syntax of the logic is:

p | α ∧ β | α ∨ β | αUβ | αŨ β | x ∼ c | x.α

where: p ranges over action letters, x is the unique clock variable, and x ∼ c is
a comparison of x with a constant. We do not have negation in the syntax, but
from the semantics it will be clear that the negation is definable.

The logic is evaluated over timed sequences w = (a1, t1)(a2, t2) . . . We define
the satisfiability relation, w, i, v � α saying that a formula α is true at a position
i of a timed word w with a valuation v of the unique clock variable:

w, i, v � p if ai = p
w, i, v � x ∼ c if ti − v ∼ c
w, i, v � x.α if w, i, ti � α
w, i, v � αUβ if ∃j>i (w, j, v � α and ∀k∈(i,j) w, k, v � β)
w, i, v � αŨβ if ∀j>i (w, j, v � β or ∃k∈(i,j) w, k, v � α)
As usual, until operators permit us to introduce sometimes and always op-

erators:
Fα ≡ ttUα Aα ≡ ff Ũα

For the following it will be interesting to note that the two until operators are
inter-definable once we have always and sometimes operators:

αŨβ ≡ Aβ ∨ βUα αUβ ≡ Eβ ∧ βŨα

Observe that TPTL1 subsumes metric temporal logic (MTL). For example:
αU(i,j)β of MTL is equivalent to x.(αU((x > i) ∧ (x < j) ∧ β)). We will not
present MTL here, but rather refer the reader to [11] where it is also shown that
the following TPTL1 formula is not expressible in MTL:

x.(F (b ∧ F (c ∧ x ≤ 2))). (1)

Informally the formula says that there is an event b followed by an event c in
less than 2 units of time.

The satisfiability problem over infinite timed sequences is undecidable for
MTL [21], hence also for TPTL1. Using our decidability result for alternating
timed automata, we can nevertheless find a decidable fragment, that we call
Constrained TPTL. The definition of this fragment will use an auxiliary notion
of positive TPTL1 formulas:

p | x.ϕ | x ∼ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕŨψ | F ((x < c) ∧ ψ) | F ((x ≤ c) ∧ ψ)
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These formulas can be translated into automata where all states are accept-
ing. Observe that the formula (1) belongs to the positive fragment if we add
redundant (x ≤ 2) after b.

The set of formulas of Constrained TPTL is:

p | x.ϕ | x ∼ c | α ∨ β | α ∧ β |αUβ | ϕ ϕ positive.

A translation of Constrained TPTL to automata is similar in a spirit to that for
Safety MTL [22]. Once again we refer the reader to the full version [25].

Theorem 4. It is decidable if there is a non Zeno timed word that is a model
of a given Constrained TPTL formula. The complexity of the problem cannot be
bounded by a primitive recursive function.

Safety MTL [22] can be seen as a MTL fragment of positive TPTL. In-
deed, both formalisms can be translated to automata with only accepting states,
but the automata obtained from MTL formulas have also the locality property
(cf. [22]).

Using equivalences mentioned above, FlatMTL [12] with pointwise non Zeno
semantics can be presented as a set of formulas given by the grammar:

p | α ∨ β | α ∧ β | αUJβ | ϕUIβ| χ J bounded and χ ∈MITL

The original definition admits more constructs, but they are redundant in the
semantics we consider.

Both FlatMTL and Constrained TPTL use two sets of formulas. The MTL
part of the later logic would look like

p | α ∨ β | α ∧ β | αUIβ | ϕ ϕ positive.

From this presentation it can be seen that there are at least two important
differences: Constrained TPTL does not have restrictions on the left hand side
of until, and it uses positive fragment instead of MITL. We comment on these
two aspects below.

Allowing unrestricted until makes the logic more expressive but also more
difficult algorithmically. For example, to get the non primitive recursive bound it
is enough to use the formulas generated by the later grammar without the clause
for positive formulas. This should be contrasted with Expspace-completeness
result for FlatMTL.

The use of positive fragment instead of MITL is also important. The two
formalisms have very different expressive powers. The crucial technical property
of MITL is that a formula of the form αUIβ can change its value at most three
times in every unit interval. This is used in the proof of decidability of FlatMTL,
as the MITL part can be described in a “finitary” way. The crucial property
of the positive fragment is that it can express only safety properties (and all
such properties). We can remark that by reusing the construction of [21] we get
undecidability of the positive fragment extended with a formula expressing that
some action appears infinitely often. Theorem 3 implies that this is true even if
we do not use punctual constraints in the positive fragment. In conclusion, we
cannot add MITL to the positive fragment without loosing decidability.
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