
Lower bound for evaluation of µν fixpoint
Paweł Parys∗

University of Warsaw, Poland

Abstract

We consider a fixpoint expressions µy.νx. f (x,y) over the lattice {0,1}n, where f : {0,1}2n→
{0,1}n is any monotone function. We study only algorithms for calculating these expressions
using f only as a black-box: they may only ask for the value of f for given arguments. We show
that any such algorithm has to do at least about n2 queries to the function f , namely Ω

(
n2

logn

)
queries.

1 Introduction

Fast evaluation of fixpoint expressions is a key problem in the fixpoint theory. We consider a special
form of expressions:

µxd .νxd−1 . . .µx2.νx1. f (x1, . . . ,xd)

(when d is even, and starting from νxd when d is odd). We call such expression µν(d, f). Moreover
we consider these expressions only over the lattice L = {0,1}n with the order defined by a1 . . .an ≤
b1 . . .bn when ai ≤ bi for all i. The function f is an arbitrary monotone function f : Ld→ L. Calculat-
ing the value of µν(d, f) is already a very general problem. The problem of finding winning positions
in a parity game may be reduced to it in polynomial time (where n corresponds to the game graph size
and d to the number of priorities). The problem of solving parity games is polynomial time equivalent
to the non-emptiness problem of automata on infinite trees with the parity acceptance conditions [4],
and to the model checking problem of the modal µ-calculus (modal fixpoint logic) [3, 6].

Although these are very important problems and many people were working on them, no one could
show any polynomial time algorithm. Our goal is the opposite—to prove some lower bound. It may be
very difficult to show any algorithmic lower bound, especially because it is known that the problems
are in NP∩co-NP. In such situation the only possibility is to reformulate the problem slightly, so that
it becomes combinatorial. To achieve that we use a black-box model (or an oracle model) introduced
in [1]. Instead of arbitrary algorithms, which could analyze for example a formula defining f , we
consider only algorithms, that can only ask for values of f for given arguments. Moreover we are not
interested in their exact complexity, only in the number of queries to the function f . In other words
we consider decision trees: each internal node of the tree is labeled by an argument, for which the
function f should be checked, and each its child corresponds to a possible value of f for that argument.
The tree has to determine the value of the fixpoint expression µν(d, f): for each path from the root
to a leaf there is at most one possible value of µν(d, f) for all functions which are consistent with
the answers on that path. We are interested in the height of such trees, which justifies the following
definition.

Definition 1. For any natural number d and finite lattice L we define num(d,L) as the minimal number
of queries, which has to be asked by any algorithm correctly calculating expression µν(d, f) basing
only on queries to the function f : Ld → L.

∗Partly supported by Polish government grant N206 008 32/0810.

1

The most basic method of evaluating fixpoint expression is to use the observation that µx.g(x) =
gn(⊥); so it is enough to evaluate n times g on the previous result, starting from the minimal element
⊥. To get ν instead of µ , one should start from > instead of ⊥. This generalizes to d nested fixpoints
µν(d, f) and requires O(nd) queries to f ; see [5]. For some time no better algorithm was known. Then
an algorithm using only O(nbd/2c+1) queries to f was shown in [8] and [1], which was rather a surprise.
Recently some better algorithms for the modal µ-calculus and parity games were discovered, like [9]
working in time O(nd/3) or [7] working in time nO(

√
n). However these two algorithms use parity

games framework and do not translate to the black-box model. Here we see one of the limitations of
our model: there may exist fast algorithm, which uses a definition of f in some tricky manner, but
is unable to work when it can only evaluate f . The other limitation is that the number of monotone
functions definable by a short formula is only single exponential, while the number of all monotone
functions f : {0,1}nd → {0,1}n is double exponential. When we restrict only to functions definable
by a short formula it is possible that less queries would be needed.1 Beside of that, the following are
very important questions (following [1]): how good may we do using f only as a black-box? Is the
complexity of about nd/2 queries optimal? What is the optimal number of queries? If the answer will
be rather high, we will know that any fast algorithm for parity games and modal µ-calculus has to
use different techniques. If the answer will be rather low, it may also give some fast algorithm. We
write ,,may” because there is no implication in a formal sense: the decision tree with small number of
queries may be very irregular and it may take a lot of time to compute what the next query should be.

In this paper we consider only the case d = 2. We show that Ω

(
n2

logn

)
queries are necessary in

that case (which is almost n2). Our result is the following.

Theorem 2. For any natural n it holds num(2,{0,1}n) = Ω

(
n2

logn

)
.

This result is a first step towards solving the general question, for any d. It shows that in the
black-box model something may be proved. Earlier it was unknown even if for any d there are needed
more than nd queries. Note that num(1,{0,1}n) is n and that in the case when all d fixpoint operators
are µ (instead of alternating µ and ν) it is enough to do n queries. So the result gives an example of a
situation where the alternation of fixpoint quantifiers µ and ν is provably more difficult than just one
type of quantifiers µ or ν . Although it is widely believed that the alternation should be a source of
algorithmic complexity, the author is not aware of any other result showing this phenomenon, except
the result in [2].

The paper is organized as follows. In Section 2 we reduce the problem from the lattice {0,1}n to
some more convenient lattice. In Section 3 we define a family of difficult functions f . In Section 4
we finish the proof of Theorem 2.

Acknowledgment. The author would like to thank Igor Walukiewicz for suggesting this topic and
many useful comments.

2 Changing the lattice

Instead of the lattice {0,1}n it is convenient to use a better one. Take the alphabet Γn consisting of
letters ai for 1≤ i≤ n(n+1)

2 +1 and the alphabet Σn = {0,1}∪Γn. We introduce the following partial
order on it: the letters ai are incomparable; the letter 0 is smaller than all other letters; the letter 1 is

1This is not the case for d = 2; functions used in our lower bound proof are all definable by a boolean formula of size
polynomial in n.

2

bigger than all other letters. We will be considering sequences of n such letters, i.e. the lattice is Σn
n.

The order on the sequences is defined as previously: a1 . . .an ≤ b1 . . .bn when ai ≤ bi for all i.
We formulate a general lemma, which allows to change a lattice in our problem. For any two

lattices L1,L2 we say that h : L1 → L2 is a homomorphism, when it preserves the order, i.e. x ≤ y
implies h(x)≤ h(y).

Lemma 3. Let L1,L2 be two finite lattices and enc : L1→ L2 and dec : L2→ L1 two homomorphisms
such that dec◦ enc = idL1 . Then num(d,L1)≤ num(d,L2).

Proof
In other words we should be able to use any algorithm calculating µν(d, f) in L2 to calculate µν(d, f)
in L1. Let f1 : Ld

1 → L1 be the unknown function in L1. We define f2 : Ld
2 → L2 as f2(x1, . . . ,xd) =

enc(f1(dec(x1), . . . ,dec(xd))). Note that f2 is a monotone function if f1 was monotone, since enc and
dec preserve the order.

Let ⊥1,⊥2,>1,>2 be the minimal and maximal elements in L1 and L2. For any x ∈ L1 we have
⊥2 ≤ enc(x), so dec(⊥2)≤ dec(enc(x)) = x, which means that dec(⊥2) =⊥1. Similarly dec(>2) =
>1.

See that dec(µν(d, f2)) = µν(d, f1). This is true, because these fixpoint expressions may be
replaced by a term containing applications of f and minimal and maximal elements. This is done in
a classic way, we replace the fixpoint operators by a iterated nesting. The minimal required number
of iterations depends on the structure. Here we have only two structures, L1 and L2, so we may
take the bigger of the two minimal numbers. Hence we may use the same term in L1 and L2, the
difference is if we use f1 or f2, ⊥1 or ⊥2, >1 or >2. Then easy induction on the term structure
shows that dec(µν(d, f2)) = µν(d, f1), because dec(⊥2) =⊥1, dec(>2) =>1, dec(f2(x1, . . . ,xd)) =
f1(dec(x1), . . . ,dec(xd)). So to find µν(d, f1) it is enough to find µν(d, f2), which may be found for
any f2 in num(d,L2) queries to f2. To evaluate f2 in our case it is enough to do one query to f1. Hence
µν(d, f1) may be found in num(d,L2) queries (or maybe less queries in some other way). �

For the lattice Σn
n we have the following result, from which Theorem 2 follows:

Lemma 4. For any natural n it holds num(2,Σn
n)≥

n(n+1)
2 .

Proof (Theorem 2)
We will show how Theorem 2 follows from this lemma. Take k such that

(
2k
k

)
≥ n(n+1)

2 + 1. From

the Stirling formula follows that
(

2k
k

)
grows exponentially in k, so we may have k = O(logn). Take

m =
⌊ n

2k

⌋
. From Lemma 4 for m we see that num(2,Σm

m)≥ m(m+1)
2 = Ω

(
n2

logn

)
.

Now it is enough to use Lemma 3 to see that num(2,{0,1}n) ≥ num(2,Σm
m). We need to define

functions enc : Σm
m → {0,1}n and dec : {0,1}n → Σm

m. Each letter from Σm will be encoded in a se-
quence of 2k letters from {0,1} in the following way: 0 is translated to the sequence of 2k zeroes, 1 to
the sequence of 2k ones, any of the letters ai is translated to some sequence of 2k bits, in which exactly
k bits are equal to 1. Because n ≥ m we have

(
2k
k

)
≥ m(m+1)

2 + 1, so there are enough different such
sequences to encode all letters. We use this encoding to define enc(x): an i-th letter of x is encoded in
the i-th fragment of 2k bits and the final n−2km bits are set to zeroes. On the other hand to read an
i-th letter of the value of dec(y), we look at the i-th fragment of 2k bits: when it corresponds to one
of the letters ai, this ai is the result; otherwise the result is 0 or 1 depending on whether there are less
than k ones in the sequence or not. Note that dec is defined on all sequences, not only on results of
enc. It is easy to see that dec(enc(x)) = x for any x ∈ Σm

m and that both functions are homomorphisms
(mainly because encodings of different letters ai are incomparable). �

3

3 Difficult functions

In this section we define a family of functions used in a proof of Lemma 4. A function fz,σ : Σ2n
n → Σn

n
is parametrized by a sequence z∈Γn

n (which will be the result of µy.νx. fz,σ (x,y)) and by a permutation
σ : {1, . . . ,n} → {1, . . . ,n} (which is an order in which the letters of z are uncovered). Note that z is
from Γn

n, not from Σn
n, so it can not contain 0 or 1, just the letters ai. Whenever z and σ are clear from

the context, we simply write f . In the following the i-th element of a sequence x ∈ Σn
n is denoted by

x[i]. A pair z,σ defines a sequence of values y0, . . . ,yn:

yk[i] =
{

z[i] for σ−1(i)≤ k
0 otherwise.

In other words yk is equal to z, but with some letters covered: they are 0 instead of the actual letter
of z. In yk there are k uncovered letters; the permutation σ defines the order, in which the letters are
uncovered. Using this sequence of values we define the function. In some sense the values of the
function are meaningful only for y = yk, we define them first (assuming yn+1 = yn):

f (x,yk)[i] =


0 if ∀ j>ix[j]≤ yk+1[j] and x[i] 6≥ yk+1[i] (case 1)
yk+1[i] if ∀ j>ix[j]≤ yk+1[j] and x[i]≥ yk+1[i] (case 2)
x[i] if ∃ j>ix[j] 6≤ yk+1[j] (case 3).

For any other node y we look for the lowest possible k such that y≤ yk and we put f (x,y) = f (x,yk).
When such k does not exists (y 6≤ z), we put f (x,y)[i] = 1.

Lemma 5. The function f is monotone and µy.νx. f (x,y) = z.

Proof
First see what happens when we increase x: take x′ ≥ x. We want to have f (x′,y)[i] ≥ f (x,y)[i] for
each i. Whenever for x and x′ we are in the same case of the function definition, it is OK. Also when
for x we have an earlier case than for x′ it is OK (in particular when for x we have case 2, it holds
x′[i] ≥ x[i] ≥ yk+1[i]). On the other hand it is impossible, that for x′ we get an earlier case than for x
(it is easy to see looking at the conditions for choosing a case). Also when y 6≤ z, for both x and x′ we
get the same result 1.

Now see what happens, when we increase y: take y′ ≥ y. When for y′ there is y′ 6≤ z, we get a
result 1, which is bigger than anything else. Otherwise the values yk and yk′ chosen for y and y′ satisfy
yk′ ≥ yk, so also yk′+1 ≥ yk+1. The argumentation that in such case f (x,yk′)[i]≥ f (x,yk)[i] is identical
as for the change of x.

To calculate the fixpoint expression, first see that νx. f (x,yk) = yk+1. It follows immediately from
the definition: f (yk+1,yk) = yk+1 and for any x > yk+1 we get f (x,yk) 6= x, because f (x,yk) differs
from x on the last position i where x[i] > yk+1[i], we get there yk+1[i] instead of x[i]. The main fixpoint
satisfies µy.νx. f (x,y) = yn = z, because yk+1 > yk for all k < n and yn+1 = yn. �

4 The proof

Now we will show that at least n(n+1)
2 queries are needed to calculate µy.νx. f (x,y), even if we allow as

f only functions from our family. The problem can be considered as a game between two players, we
call them an algorithm and an oracle. In each round the algorithm player asks a query to the function,
after what the oracle player chooses an answer (which is consistent with the previous answers). The

4

algorithm player wins if after n(n+1)
2 −1 steps each function consistent with the answers has the same

value of µy.νx. f (x,y). Otherwise the oracle player wins. We have to show a winning strategy for the
oracle player.

First see informally what may happen. Consider first a standard algorithm evaluating fixpoint
expressions. It starts from y = y0 = 0 . . .0 and x = 1 . . .1. Then it repeats x := f (x,y) until x stops
changing, in which case x = νx. f (x,y). For our functions it means that in each step the last 1 in x is
replaced by the corresponding letter of y1. The loop ends after n steps with x = y1. Then the algorithm
does y := x, x := 1 . . .1, and repeats the above until y stops changing. For any y = yk the situation is
very similar: in each step the last 1 in x is replaced by the corresponding letter of yk+1 (we may say
that this letter is uncovered).

In fact, by choosing appropriate x the algorithm may decide which letter of yk+1 he wants to
uncover, but always at most one. For the algorithm only the letter on which yk+1 differs from yk is
important, as he already knows all letters of yk. However the difference may be on any position on
which yk has 0 (it depends on σ). The oracle player may choose this position in the most malicious
way: whenever the algorithm player uncovers some letter, the oracle decides that this is not the letter
on which yk and yk+1 differs. So the algorithm has to try all possibilities (all positions on which yk

has 0), which takes n(n+1)
2 steps. He may also ask for some other y. It can give him any profit only if

he accidentally guesses some letters of z. However the oracle may always decide that the guess of the
algorithm is incorrect (that the value of z is different).

Now come to a more formal proof. We show a strategy for the oracle player. During the game
we (the oracle player) keep a variable cur (0 ≤ cur < n), which is equal to 0 at the beginning and
is increased during the game. Intuitively it means how many letters of z are already known to the
algorithm player. By s we denote the number of queries already asked (it increases by 1 after each
query) and by slok the number of queries asked for this value of cur (it increases by 1 after each query
and is reset to 0 when cur changes).

At every moment we keep a set F of functions consistent with all the answers till now (there
may be more consistent functions, but each function in our set has to be consistent). The set will be
described by a set of permutations Π and by sets of allowed values Ai ⊆ Γn, one for each coordinate
1≤ i≤ n. The sets should satisfy the following conditions:

1. for each i≤ cur there is only one value of σ(i) for σ ∈Π;

2. in Π there are permutations σ with at least n− cur− slok different values of σ(cur +1);

3. for each permutation σ ∈ Π when we take any other permutation σ ′ which agrees with σ on
the first cur +1 arguments (σ(i) = σ ′(i) for each 1≤ i≤ cur +1), we have σ ′ ∈Π as well;

4. for each σ ∈Π and i≤ cur there is only one value in Aσ(i) (note that thanks to condition 1, the
value σ(i) does not depend on the choice of σ);

5. for each σ ∈Π and i > cur there are at least n(n+1)
2 +1− s values in the set Aσ(i) (note that the

set {σ(i) : i > cur} does not depend on the choice of σ , as σ(i) for i≤ cur are fixed).

In the set F there are all functions fz,σ for which σ ∈ Π and z[i] ∈ Ai for each i. We see that in
particular at the beginning all functions are in the set F . Note, that at each moment the value of ycur is
fixed, i.e. is the same for all functions in F (because σ(i) and z[σ(i)] are fixed for i≤ cur).

Now we specify how the answers are done for a query x,y. Whenever y ≤ yi for some i < cur,
we answer according to all the functions in our set F . The answer of each function is the same, as it

5

depends only on the value of yi+1 (for the smallest i such that y ≤ yi), which is already the same for
all functions. Such question does not give any new knowledge to the algorithm player.

Whenever y 6≤ ycur, we remove the value y[i] from the set Ai (only if it was there, in particular only
if y[i] ∈ Γn) for each i such that σ−1(i) > cur for any σ ∈ Π (note that once again this condition is
satisfied for exactly the same i for every permutation in Π). All the conditions of F are still satisfied,
as we removed only one value from the sets Ai after one additional query was done. In other words we
remove all functions fz,σ , in which z[σ(i)] = y[σ(i)] for some i > cur. Then for each function from
F we have y 6≤ z (if y ≤ z then y[i] = 0 for each i with σ−1(i) > cur, which means that y ≤ ycur). So
we reply to the query by a sequence of ones, which is the case for all the functions in F . Intuitively
this case talks about a situation when someone tries to guess z (or its part) instead of gently asking for
y = ycur. We prefer to answer that his guess was incorrect and to eliminate all functions with z similar
to the y about which he asked.

Consider now the case when y ≤ ycur but y 6≤ ycur−1. Let ask be the greatest number such that
x[ask] 6≤ ycur[ask] (if there is no such number we take ask = 0). Intuitively the algorithm player asks
whether σ(cur + 1) = ask; we prefer to answer NO, so he will have to try all the possibilities until
he will discover the value of σ(cur + 1). The first case is when in Π there are permutations with
σ(cur + 1) 6= ask. Note that this is true at least n− cur− 1 times for this cur due to condition 2. In
such case we remove from Π all the permutations with σ(cur + 1) = ask and we answer according
to all the functions left in F . We have to argue that for each of them the answer is the same. On
positions i < ask there is always case 3, because x[ask] 6≤ ycur[ask] = ycur+1[ask] (the equality is true,
because σ(cur + 1) 6= ask). On the positions i ≥ ask there is x[j] ≤ ycur[j] ≤ ycur+1[j] for j > i,
so we fall into the first two cases. For i = ask the result depends only on ycur+1[ask] which for all
functions is equal to ycur[ask]. Consider positions i > ask. When x[i] = 0 the answer is 0 in both cases
1 and 2 (we may get case 2 only when ycur+1[i] = 0). When x[i] > 0 it has to be ycur+1[i] = x[i], as
x[i]≤ ycur[i]≤ ycur+1[i] 6= 1, we get case 2 and we answer ycur+1[i] = x[i].

The last case is when all the permutations σ ∈ Π have σ(cur + 1) = ask. Then we choose any
letter from Aask and we remove all other letters from Aask. In other words ycur+1 becomes fixed, so
answers for all the functions left in F are the same. We increase cur (when cur becomes equal to n,
we fail). It is easy to see, that all the conditions on the set F are still satisfied.

As already mentioned, before the last case holds there has to be n−cur−1 earlier queries for this
cur (we increase cur after at least n−cur queries), so before n(n+1)

2 queries there is no danger that cur
becomes equal to n. Moreover we are sure that in F there are functions with two different value of z
(which is the result of the fixpoint expression): it is enough to take any σ from Π and then in Aσ(n)
there are at least two values (z[σ(n)] may be equal to both of them).

References
[1] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved algorithm for the evaluation

of fixpoint expressions. Theor. Comput. Sci., 178(1-2):237–255, 1997.
[2] A. Dawar and S. Kreutzer. Generalising automaticity to modal properties of finite structures. Theor.

Comput. Sci., 379(1-2):266–285, 2007.
[3] E. A. Emerson. Model checking and the mu-calculus. In Descriptive Complexity and Finite Models, pages

185–214, 1996.
[4] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of µ-calculus. In CAV, pages

385–396, 1993.
[5] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-calculus

(extended abstract). In LICS, pages 267–278, 1986.

6

[6] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current
Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

[7] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity
games. SIAM J. Comput., 38(4):1519–1532, 2008.

[8] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved algorithm for the evaluation
of fixpoint expressions. In CAV, pages 338–350, 1994.

[9] S. Schewe. Solving parity games in big steps. In FSTTCS, pages 449–460, 2007.

7

	Introduction
	Changing the lattice
	Difficult functions
	The proof

