
Evaluation of normalized µ-calculus formulas is polynomial

for fixed structure size

Pawe l Parys
University of Warsaw

ul. Banacha 2, 02-097 Warszawa, Poland
parys@mimuw.edu.pl

October 30, 2009

Abstract

We consider µ-calculus formulas in a normal form: after a prefix of fixed-point quantifiers
follows a quantifier-free expression. We prove that the problem of evaluating (model checking)
of such formula in a fixed powerset lattice (expression complexity) is polynomial. Assumptions
about the quantifier-free part of the expression are weakest possible: it can be any monotone
function given by a computational procedure.

1 Introduction

Fast evaluation of µ-calculus expressions is one of the key problems in theoretical computer science.
Although it is a very important problem and many people were working on it, no one could show
any polynomial time algorithm.

Here we consider a much easier problem of polynomial expression complexity, i.e. complexity
for fixed size of the model. Furthermore, we restrict ourselves to expressions in a quantifier-prefix
normal form, namely

µx1.νx2 . . . µxd−1.νxd.F (x1, . . . , xd) (1)

For simplicity of presentation we assume that d is even, but of course the same can be done for odd
d (in which case the expression would end with µ). We want to evaluate such expression in the
powerset model or, equivalently, in the lattice {0, 1}n with the order defined by a1 . . . an ≤ b1 . . . bn
when ai ≤ bi for all i. The function F : {0, 1}nd → {0, 1}n is an arbitrary monotone function and
is given by a procedure which evaluates a value of the function for given arguments in time tF .

A typical complexity, in which one can evaluate such expression, is O(nd · tF); this can be
done by naive iterating [3]. We show that, using a slightly modified version of the naive iterating
algorithm, the complexity can be O

((
n+d

d

)
· tF
)

. For big n it does not improve anything, however
for fixed n the complexity is equal to O(dn · tF), hence is polynomial in d. This is our main result.

Theorem 1. There is an algorithm, which for any fixed model size n calculates the value of
expression (1) in time polynomial in d and tF , namely O(dn · (d+ tF)).

As a side remark recall two results about parallel complexity of the modal µ-calculus model
checking problem. The problem is PTIME-hard not only when considering combined complexity
[8], but already for the expression complexity [2]. This somehow contradicts with the intuition
that for fixed model the problem should become easy.

Let us comment the way how the function F is given. We make the weakest possible assump-
tions: the function can be given by an arbitrary program. In particular our formulation covers
vectorial Boolean formulas, as well as modal formulas in a Kripke structure of size n. Moreover
our framework is more general, since not every monotone function can be described by a modal

1

formula of small size, even when it can be computed quickly by a procedure. Denote that the
algorithm in [5], working in time O(nbd/2c+1 · tF), can also be applied to our setting. On the
other hand the recent algorithms, from [7] working in time O(md/3) and from [4] working in time
mO(

√
m) (where m ≥ n depends on the size of F), use the parity games framework, hence require

that F is given by a Boolean or modal formula of small size.
It is known that for a given structure an arbitrary µ-calculus formula can be converted to a

formula of form (1) in polynomial time, see Section 2.7.4 in [1]. However during this conversion
one also need to change the underlying structure (roughly speaking, its size becomes similar to the
size of the formula). Hence even when the original model has fixed size n, after the normalization
the model can become very big, and our algorithm gives exponential complexity.

Our results are very similar to that in [6]. They also get polynomial expression complexity,
however using completely different techniques. Our result is slightly stronger, since they consider
only expressions in which F is given by a vectorial Boolean formula, not as an arbitrary function.
Moreover their complexity is slightly higher: O(d2n · |F |).

2 The iterating algorithm

Let us first fix some notation. For X ∈ {0, 1}n denote the number of bits in X which are set to
1 by b(X). Moreover the part of the expression starting from µxi or νxi is denoted by Fi, for
example for odd i we have

Fi(X1, . . . , Xi−1) = µxi.νxi+1 . . . µxd−1.νxd.F (X1, . . . , Xi−1, xi, . . . xd).

In particular Fd+1 = F and F1() is the value which we want to calculate. Recall that each Fi is a
monotone function.

Below we present a general version of the iterating algorithm. The algorithm can be described
by a series of recursive procedures, one for each fixed-point operator; the goal of a procedure
Calculatei(X1, . . . , Xi−1) is to calculate Fi(X1, . . . , Xi−1).

Calculatei(X1, . . . , Xi−1):
Xi = Initializei(X1, . . . , Xi−1)
repeat
Xi = Calculatei+1(X1, . . . , Xi)

until Xi stops changing
return Xi

Moreover the most internal procedure Calculated+1(X1, . . . , Xd) simply returns F (X1, . . . , Xd). To
evaluate the whole expression we simply call Calculate1().

Till now we have not specified the Initializei procedures. First assume that they always return
00 . . . 0 for odd i and 11 . . . 1 for even i. Then we simply get the naive iterating algorithm from
[3]. However we would like to make use of already done computations and start a iteration from
values which are closer to the fixed-point. Of course we can not start from an arbitrary value.
The following standard lemma gives conditions under which the computations are correct.

Lemma 2. Assume that the values of Xi returned by Initializei satisfy

Xi ≤ Fi(X1, . . . , Xi−1), and (2)
Xi ≤ Fi+1(X1, . . . , Xi−1, Xi) (3)

for odd i, and

Xi ≥ Fi(X1, . . . , Xi−1), and (2’)
Xi ≥ Fi+1(X1, . . . , Xi−1, Xi). (3’)

for even i. Then the procedure Calculatei(X1, . . . , Xi−1) calculates Fi(X1, . . . , Xi−1). Moreover,
for 1 ≤ i ≤ d, at each step of the repeat-until loop Xi increases and satisfies properties (2) and
(3) for odd i (decreases and satisfies properties (2’) and (3’) for even i).

2

Proof
For i = d + 1 the first part is obviously true. For i ≤ d the proof is by induction on the order in
which the procedures return. As the cases of odd and even i are symmetric, assume that i is odd.
Recall that in this case we calculate a µ fixed-point. First observe that property (2) is preserved
during the iterations:

Fi+1(X1, . . . , Xi) ≤ Fi+1(X1, . . . , Xi−1, Fi(X1, . . . , Xi−1)) = Fi(X1, . . . , Xi−1).

The inequality follows from monotonicity of Fi+1 and (2) before the iteration, while the equality is
true because the value of Fi is a fixed-point of Fi+1. We have also used the induction assumption
to know that Calculatei+1(X1, . . . , Xi) = Fi+1(X1, . . . , Xi). The property (3) is even simpler,

Fi+1(X1, . . . , Xi) ≤ Fi+1(X1, . . . , Xi−1, Fi+1(X1, . . . , Xi)),

it follows from monotonicity of Fi+1 and (3) before the iteration.
Property (3) guaranties that Xi is increased at each iteration. After some number of steps

it has to stabilize. Then Xi = Fi+1(X1, . . . , Xi) is a fixed-point. From (2) we know that Xi is
≤ Fi(X1, . . . , Xi−1). Moreover it can not be strictly smaller than Fi(X1, . . . , Xi−1), because
then we would have a fixed-point smaller than the smallest fixed-point. So Xi stabilizes at
Fi(X1, . . . , Xi−1). �

The second lemma more precisely indicates possible results of Initializei: it says that it may be
a previously calculated value of the expression for smaller/greater argument.

Lemma 3. If Xi = Fi(X ′1, . . . , X
′
i−1) for some X ′1 ≤ X1, . . . , X

′
i−1 ≤ Xi−1 then conditions (2)

and (3) hold. By symmetry, if Xi = Fi(X ′1, . . . , X
′
i−1) for some X ′1 ≥ X1, . . . , X

′
i−1 ≥ Xi−1 then

conditions (2’) and (3’) hold.

Proof
We prove the first part of the lemma (which is useful for odd i). Property (2) simply follows from
monotonicity of Fi. To get (3) we use the fact that the Xi as a value of Fi is a fixed-point of Fi+1,
and the monotonicity of Fi+1:

Xi = Fi+1(X ′1, . . . , X
′
i−1, Xi) ≤ Fi+1(X1, . . . , Xi−1, Xi).

�

Furthermore, observe that conditions (2) and (3) (respectively, (2’) and (3’)) trivially hold for
Xi = 00 . . . 0 (Xi = 11 . . . 1).

3 The algorithm with polynomial expression complexity

To speed up the algorithm we need to somehow remember already calculated values of expressions
and use them later as a starting value, when the same expression for greater/smaller arguments
is going to be calculated. Instead of remembering all the results calculated so far in some tricky
data structure, we do a very simple trick. We simply take

Initializei(X1, . . . , Xi−1) =

 00 . . . 0 for i = 1,
11 . . . 1 for i = 2,
Xi−2 for i ≥ 3.

(4)

First we will argue why this is really correct. Precisely, in the light of the above lemmas, we
need to prove that while initializing Xi by Xi−2 it holds

• Xi−2 = Fi(X ′1, . . . , X
′
i−1) for some X ′1 ≤ X1, . . . , X

′
i−1 ≤ Xi−1 or Xi−2 = 00 . . . 0 for odd i,

and

• Xi−2 = Fi(X ′1, . . . , X
′
i−1) for some X ′1 ≥ X1, . . . , X

′
i−1 ≥ Xi−1 or Xi−2 = 11 . . . 1 for even i.

3

The proof is by induction on the order in which instructions are executed. Take any moment
in which we enter a Calculatei procedure, and assume that the thesis was true before. Moreover
assume that i is odd, the other case is symmetric. There are two cases depending on where the
current value of Xi−2 was set:

1. We are first time in the repeat-until loop in Calculatei−2. Then there are two subcases. First,
it is possible that Xi−2 = 00 . . . 0; then the thesis trivially holds. Otherwise, by induction
assumption we know that Xi−2 = Fi−2(X ′1, . . . , X

′
i−3) for some X ′1 ≤ X1, . . . , X

′
i−3 ≤ Xi−3.

But the value of Fi−2 is a fixed-point of Fi−1, and a value of Fi−1 is a fixed-point of Fi, so

Xi = Xi−2 = Fi−1(X ′1, . . . , X
′
i−3, Xi−2) = Fi(X ′1, . . . , X

′
i−3, Xi−2, Xi−2).

From Lemma 2, condition (2’) we know that Xi−1 ≥ Fi−1(X1, . . . , Xi−2), and by monotonic-
ity of Fi−1

Fi−1(X1, . . . , Xi−3, Xi−2) ≥ Fi−1(X ′1, . . . , X
′
i−3, Xi−2) = Xi−2.

Hence Xi−2 ≤ Xi−1, so really Xi is initialized with a value of Fi for some arguments smaller
than X1, . . . , Xi−1.

2. We are not first time in the repeat-until loop in Calculatei−2. Then Xi−2 was set in the
previous iteration of the loop, and is equal to Fi−1(X1, . . . , Xi−3, X

′
i−2), where X ′i−2 is the

previous value of Xi−2. Moreover, since a value of Fi−1 is a fixed-point of Fi, we have
Xi = Xi−2 = Fi(X1, . . . , Xi−3, X

′
i−2, Xi−2). From Lemma 2 we know that X ′i−2 ≤ Xi−2

(that Xi−2 increases). Moreover, from Lemma 2, condition (2’) we know that Xi−1 ≥
Fi−1(X1, . . . , Xi−2), and by monotonicity of Fi−1

Fi−1(X1, . . . , Xi−3, Xi−2) ≥ Fi−1(X1, . . . , Xi−3, X
′
i−2) = Xi−2.

Hence X ′i−2 ≤ Xi−2 and Xi−2 ≤ Xi−1, so really Xi is initialized with a value of Fi for some
arguments smaller than X1, . . . , Xi−1.

Till now we already know that the algorithm is correct, let now analyze its complexity. A key
idea of this analysis is placed in the following lemma.

Lemma 4. Arguments of each call to Calculated+1 satisfy

X1 ≤ X3 ≤ · · · ≤ Xd−3 ≤ Xd−1 ≤ Xd ≤ Xd−2 ≤ · · · ≤ X4 ≤ X2.

Proof
First observe the inequality Xd−1 ≤ Xd. In fact it follows from the above proof: in both cases we
had there Xi−2 ≤ Xi−1 for odd i. Although it was only for i ≤ d − 1, the same proof is correct
also for i = d+ 1.

All the other inequalities immediately follow from Lemma 2: each Xi is initialized with Xi−2

and then increased for odd i and decreased for even i. �

To determine the complexity it is enough to look at numbers of bits set to 1 in the variables.
We have

0 ≤ b(X1) ≤ b(X3) ≤ · · · ≤ b(Xd−3) ≤ b(Xd−1) ≤ b(Xd) ≤ b(Xd−2) ≤ · · · ≤ b(X4) ≤ b(X2) ≤ n.
(5)

Now look at the sequences

b(X1),−b(X2), b(X3),−b(X4), . . . , b(Xd−1),−b(Xd)

and notice that at each call to Calculated+1 we get a lexicographically greater sequence. Indeed,
when between two consequent calls we exit up to procedure Calculatei, then b(X1), . . . , b(Xi−1)
stay the same, b(Xi) is increased (for odd i) or decreased (for even i), while b(Xi+1), . . . , b(Xd)

4

may become arbitrary. Hence at each call to Calculated+1 we have a different sequence satisfying
(5). There are

(
n+d

d

)
such sequences, so we spend time O

((
n+d

d

)
· tF
)

inside Calculated+1. Notice
that as an effect of calling each Calculatei we will at at least once call Calculated+1, so there are
O
((

n+d
d

)
· d
)

calls to any procedure. In each call we spend time O(n) plus time of executing called
subprocedures (we have O(n) because we need to initialize and return Xi, which is of size n). So
the total complexity is O

((
n+d

d

)
· (nd+ tF)

)
. Under a natural assumption that tF ≥ O(nd), i.e.

that F at least reads all its arguments, the complexity becomes O
((

n+d
d

)
· tF
)

.

4 Concluding remarks

We have showed a polynomial expression complexity for formulas of the normalized form (1).
It is very interesting if the same can be shown for arbitrary formulas, or if the problem is then
equivalent to model checking in an arbitrary model.

References

[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus. Elsevier, 2001.

[2] S. Dziembowski, M. Jurdziski, and D. Niwiński. On the expression complexity of the modal
µ-calculus model checking. Unpublished manuscript.

[3] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In LICS, pages 267–278, 1986.

[4] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.

[5] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved algorithm for
the evaluation of fixpoint expressions. In CAV, pages 338–350, 1994.

[6] D. Niwiński. Computing flat vectorial Boolean fixed points. Unpublished manuscript.

[7] S. Schewe. Solving parity games in big steps. In FSTTCS, pages 449–460, 2007.

[8] S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model checking in the
modal mu-calculus. In LICS, pages 154–163, 1994.

5

