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ABSTRACT
We consider a fragment of XPath where attribute values
can only be tested for equality. We show that for any fixed
unary query in this fragment, the set of nodes that satisfy
the query can be calculated in time linear in the document
size.

1. INTRODUCTION
In this paper, we present an algorithm that, given an

XPath node selecting query ϕ and XML document t, returns
the set of nodes in t that satisfy ϕ. Previously proposed al-
gorithms would either have running time quadratic in |t|,
or have a running time linear in |t|, but use a fragment of
XPath without attribute values. The algorithm proposed in
this paper can deal with attribute values and runs in time
O(2|ϕ| · |t|). In other words, the algorithm has linear time
data complexity, since it is linear time once the query ϕ
is fixed. The algorithm works for queries expressed in a
fragment of XPath that can only check attribute values for
equality.

XPath evaluation algorithms that are built into browsers
are very inefficient, and can have running times that are
exponential in the size of the queried XML document [5].
There have been a number of papers devoted to improv-
ing XPath evaluation, which can be grouped into two main
approaches, see e.g. [6] for a survey.

One idea, as used in e.g. [5], is to use dynamic program-
ming. This allows evaluation algorithms that are polynomial
in both the node test (we use this term for node selecting
queries, although the terms predicate or filter are sometimes
used in the literature) ϕ and the size of the document t.

Another idea is to compile queries into finite-state tree
automata, see [7] for a survey. This approach only works if
the node-test does not refer to attribute values (a fragment
called CoreXPath), and therefore an XML document can be
identified with a finitely labelled tree (the label of a node is
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its tag name). In this setting, an XPath node test can be
compiled into a finite-state automaton; and this automaton
can be evaluated on the tree in linear time. In general, the
automaton may be exponential in the size of the query. (It
is worth noting that using dynamic programming, one can
get evaluate CoreXPath node tests in time linear in both
query and document, see [5].)

This paper can be seen as a generalization of the automata-
theoretic framework to node tests that use attribute values.
We consider a fragment of XPath where only equality over
attribute values can be tested, as in e.g. [1]. In the termi-
nology of [6], this is the fragment of FOXPath where only
= and 6= can be used on attribute values (and not ≤, etc.).
For instance, the query “select nodes whose attribute value
in attr appears nowhere else in the document” uses uses
only equality, unlike the query “select nodes whose attribute
value in attr, as a number, is maximal in the document”.
This restriction is reasonable, since it still allows to model
keys with attribute values. The following is our main result:

Theorem 1.1
Let ϕ be a node test of XPath where attribute values are
only tested for equality, and t an XML document. The set of
nodes of t that satisfy ϕ can be computed in time O(2|ϕ| · |t|).

The XML document t is represented as a text file, eg.

〈a〉〈b attr = ”val1”〉text〈/b〉〈b attr = ”val2”〉〈/b〉〈/a〉 .

The length |t| is the length of the text file.
In our linear time algorithm, we use“factorization forests”,

an important algebraic concept introduced by Simon [8].
Originally introduced in formal language theory to study
tropical semirings and similar constructions, factorization
forests have proved very useful in analyzing regular lan-
guages. In recent work [4, 2, 3], Colcombet has shown that
factorization forests can be calculated by a deterministic
transducer. Here is one corollary, crucial to our approach:

Fix a regular word language L ⊆ Σ∗. There is an
algorithm, which does a linear time precomputa-
tion on an input word a1 . . . an ∈ Σ∗, and can
then answer any query ai · · · aj ∈ L? in constant
time.

The algorithm in this paper builds on this idea, by applying
factorization forests to accelerate evaluation of sub-queries
in XPath.

The paper is structured as follows. In Section 2, we present
preliminary definitions, the data model, and we define the
fragment of XPath considered in this paper. In Section 3, we



present a high level overview of the algorithm. In this section
we also present a naive algorithm to illustrate why it is diffi-
cult to obtain linear time. The algorithm is then detailed in
Sections 4, 5, 6 and 7. In general terms, Sections 4, 5 and 6
use finite automata, leaving the algebra—monoids and fac-
torization forests—to Section 7. In particular, the part of
the algorithm that is exponential in the query size is located
entirely in Section 7, where the query is translated into a
monoid, which incurs an exponential blowup. Finally, in
Section 8, we discuss possible extensions of this work.

2. DATA MODEL AND XPATH
In this section we define the data model, as well as the

fragment of XPath without arithmetic.

2.1 Data model
We represent an XML document as a tree, called a data

tree. The tree is unranked, i.e. a node may have any number
of children, and the children are ordered. Every node is
assigned a tag name, which is taken from a finite alphabet Σ.
Furthermore, a node may have a number of attributes, each
of them with a string value (or possibly several string values,
although duplicates are ignored). In other words, there is
a finite set Γ of attribute names, and for each tree node u
and attribute name a, there is a finite set u.a ⊆ {0, 1}∗ of
{attribute values}. We assume here that attribute values are
strings over {0, 1}, but any other alphabet could be used,
e.g. ASCII characters. Since most of the time we will be
dealing with data trees, we will sometimes write tree instead
of data tree.

A tree without data is one where there are no attribute
names (and therefore also no attribute values). In other
words, this is a finite, unranked, ordered, finitely labeled
tree.

Consider for instance the following XML document:

〈a〉
〈b attr1 = ”000”〉1111〈/b〉
〈b attr1 = ”01” attr2 = ”0101”〉〈/b〉

〈/a〉 .

The data tree representing this document will use tag names
Σ = {a, b} and attribute names Γ = {attr1, attr2}. The
data tree will look like this:

a

b

attr2

0101

attr1

01

attr1

000

b

node

attribute

Note that in our representation, we ignore the text con-
tained directly in the tags (e.g. the string 1111 in the doc-
ument example above). This text could be modeled as an-
other attribute.

Trees will be denoted by letters s, t. Nodes will be denoted
by u, v, w. Edges will be denoted by x, y, z. Attribute values
will be denoted by d. The set of nodes in a data tree t is
written dom(t). The size of a data tree is the number of
nodes plus the sum of lengths of its attribute values:

|t| = |dom(t)|+
X

u∈dom(T )

X
a∈Γ

X
d∈u.a

|d|

The size measure defined above is linear in the size for the
text file representation, since the only difference is in the
special characters like 〈 or ”.

2.2 XPath
In this section we define the fragment of XPath that is

used in this paper. Basically, these are queries that can only
compare attribute values via equality. For instance, testing
the length of a string in an attribute value is not allowed,
neither is parsing the string to extract its first letter, etc.

There are two types of expressions: programs and node
tests. A program is a binary query. In each tree, a program
will select a set of pairs (u, v) of nodes. Intuitively a program
will describe the path from u to v, although the path might
not be the shortest one. A typical program is parent·child,
it selects a pair (u, v) if v is a sibling of u, possibly u = v.
A node test, on the other hand, is a unary query: it selects
a set of nodes. A typical node test is a, it selects nodes that
are labeled by the tag name a. In general, the two types of
expression are mutually recursive, as defined below:

• Every tag name a is a node test, which holds in nodes
with tag a.

• Node tests admit negation, conjunction and disjunc-
tion.

• There are two types of atomic program. Every axis

child parent next− sibling prev− sibling

is an atomic program. Furthermore, a node test ϕ can
be interpreted as an atomic program [ϕ], which holds
in pairs (u, u) such that ϕ holds in u.

• In general, a program is a regular expression over atomic
programs. In other words, programs contain the atomic
programs, and are closed under union, composition
and Kleene star. For instance, the program child∗

selects (u, v) if v is a descendant of u.

• If α, β are programs and a, b are attribute names, then

α.a eq β.b

is a node test. It selects a node u if there exist nodes
v, w with a common attribute value in v.a ∩ w.b and
such that (u, v) is selected by α and (u, w) is selected
by β.

• Similar to the above, a node test

α.a neq β.b

is also defined. Here, the requirement is that there are
two different attribute values d ∈ v.a and d′ ∈ w.b.

Note that we allow the Kleene star in programs, while
usually XPath does not. We do so because our techniques
work even when the Kleene star is present. Also, the Kleene
star allows us to use a smaller set of four axes.

When referring below to XPath, we mean the fragment
above.

3. PAPER OVERVIEW
In this section we overview the structure of the algorithm.

Then, we show how a naive approach fails to give a linear
time algorithm. Finally, we show that without loss of gen-
erality, only binary trees need be considered.



3.1 Proof strategy
In this section we describe the high-level structure of our

linear time algorithm.
Consider a node test ϕ defined in XPath. We want to

present an algorithm that selects the nodes of a tree t sat-
isfying ϕ. We want the algorithm to run in time linear in
|t|; although the constant in the linear time will depend—
exponentially—on the node test ϕ. The algorithm works by
induction on the size of ϕ. The base case, when ϕ just tests
the label, is immediate.

Consider now the induction step: a node test α.a eq β.b
(or similarly, but with neq ). Let ϕ1, . . . , ϕn be the node
tests that appear in the programs α and β. Using the induc-
tion assumption, we run a linear time algorithm for each of
these nodes tests, and label each node in the tree with the
set of node tests from ϕ1, . . . , ϕn that it satisfies. In other
words, we may assume without loss of generality that the
only node tests appearing in atomic programs in the regular
expressions from α and β are tag names.

It remains therefore to show linear time algorithms for
node tests of the following two forms

α.a eq β.b α.a neq β.b

where the only node tests appearing in atomic programs in
the regular expressions from α and β are tag names.

The second type of node tests, with inequality, is easier,
and will be dealt with in Section 4. The rest of the paper is
then devoted to the first type of node tests, where equalities
are used.

First, however, we present a naive algorithm for the equal-
ities, to highlight the difficulties in obtaining linear time.

3.2 Naive algorithm
In this section, we present a naive algorithm—actually,

two—for calculating the set of nodes satisfying

α.a eq β.b

For d an attribute value, let Ad be the set of nodes u, such
that (u, v) is selected by α for some node v with d ∈ v.a. We
will compute simultaneously all the sets Ad. We proceed in
two steps:

• In the first step, we compute the set of pairs (u, v)
selected by α. By using a dynamic algorithm, this can
be done in time linear in the size of α and quadratic
in the number of nodes in the tree.

• In the second step, we process each pair (u, v) com-
puted above, and add it to a set Ad if d ∈ v.a.

In a similar way we calculate the sets Bd, corresponding
to β.b. The nodes that satisfy α.a eq β.b or α.a neq β.b can
be then calculated by using these sets.

Even if we assume all set operations to be done in constant
time, the above procedure is quadratic in the number of
nodes in the tree. A carefully designed program can actually
achieve this quadratic bound.

A different naive algorithm would work as follows. For
each possible attribute value d, it would find the set of nodes
u such that α.a eq β.b holds, with the witnessing data value
being d. With some effort, each pass for d can be done
in time linear in the size of the tree and the sizes of α, β.
However, the number of attribute values may be linear in
the size of the tree, hence also a quadratic complexity.

3.3 Binary data trees
A data tree is called binary if every node has at most

two children, called the left child and the right child (it is
possible that a node has no children, only the left child,
only the right child, or both). Furthermore, whether or not a
node is a left child can be read from its label. More formally,
there is a partition of the tag names Σ = ΣL ∪ΣR such that
left children only use labels from ΣL, and right children only
use labels from ΣR

Proposition 3.1 Without loss of generality, we may as-
sume that the input is given as a binary data tree.

Proof (sketch)
A data tree t can be coded as a binary data tree bin(t), us-
ing the standard first-child/next-sibling encoding. The tree
bin(t) can be computed in linear time based on t. Further-
more, this is an encoding that can be expressed in XPath,
in the following sense: for every XPath node test ϕ, there
is an XPath node test ϕ′ such that the set of nodes selected
by ϕ in t can be computed in linear time based on the nodes
of bin(t) selected by ϕ′. �

One of the advantages of binary trees is that we can reduce
the axes to parent and child. For instance, the next-sibling
axis comes down to going to the parent and then the right
child, if the source node was a left child:

[
_

a∈ΣL

a] · parent · child · [
_

a∈ΣR

a] .

From now on, all trees considered will be binary.

4. INEQUALITIES
In this section we deal with node tests of the form:

α.a neq β.b

The basic idea is as follows. Let (u, v) be a node pair selected
by the program α. Any attribute value d ∈ v.a is called a
representative for α.a in u . Likewise for β.b.

For each node u, we will calculate if there are zero, one,
or at least two representatives for α.a-values in u. If there is
one, we will also remember which one. Likewise for β.b. This
information is sufficient, since a node u satisfies α.a neq β.b
if and only if either: a) there is at least one representative for
α.a, and there are at least two representatives for β.b; or b)
there is at least one representative for β.b, and there are at
least two representatives for α.a; or c) there are exactly one
representative each for α.a and β.b, but these are different.

It remains to show that the information about the repre-
sentatives can be calculated in linear time. We proceed in
two steps. First, in Section 4.1, we show how to efficiently
evaluate word automata on loops in the tree. Then, in Sec-
tion 4.2 we show how the representatives can be calculated.

4.1 Calculating loops
A path in a data tree is a sequence of nodes u1, . . . , un

where each two consecutive nodes are connected via either
the child or parent axis. A string description of a path
u1, . . . , un is a word a1m1a2a2m2a3 · · · an−1mn−1an, where
ai is the tag name of ui and mi is either child or parent

depending on the relationship between ui and ui+1. For ev-
ery edge from ui to ui+1 we have a fragment aimiai+1, so
tag names a2, . . . , an−1 are repeated twice. Thanks to that



we have a desired composition property: a string descrip-
tion of a path u1, . . . , un is a string description of the path
u1, . . . , uk concatenated with a string description of the path
uk, . . . , un (for any 1 ≤ k ≤ n).

Fix a nondeterministic automaton A that reads string de-
scriptions. The focus of this section is to efficiently calculate
runs of this automaton over string descriptions on various
paths in a data tree.

Let Q be the states of A. Let u, v be two nodes in a data
tree t. We write trans(u, v) for the set of state pairs (p, q)
such that for some path from u to v, the string description
of the path can take the automaton A from state p to state
q. This set depends on both t and A, but we hope the two
will always be clear from the context. Note that two objects
are quantified existentially here: the path from u to v, and
the run of the nondeterministic automaton.

Lemma 4.1 Let t be a binary data tree, and let A be a
nondeterministic automaton with states Q. The function

loop : dom(t) → P (Q2) loop(u) = trans(u, u)

can be calculated in time O(|t||Q|).

Note that the above result is not concerned with attributes
in the tree, since the values trans(u, u) only depend on the
tree structure and the tag names.

Proof
This is a fairly standard construction. First, for each node
u we calculate the subset down(u) of state pairs in loop(u)
that correspond to paths that only visit descendants of u.
The value of down for u depends only on the values of down
in the two children of u, and the label of u. Therefore, the
values down(u) can be calculated in a single bottom-up pass
through the tree. Second, we calculate for each node u the
subset up(u) of loop(u) that correspond to paths that never
visit descendants of u. The value of up in u depends only
on the value of up in the parent of u and the value down
in the sibling of u (if such a sibling exists). In particular,
the values up(u) can be calculated in a single top-down pass
through the tree. Once we have down and up, the function
loop(u) can easily be calculated. �

4.2 Calculating representatives
In order to calculate the representatives, we slightly gen-

eralize the problem, so that a dynamic algorithm can be ap-
plied. Let A be a nondeterministic automaton with states
Q. For each pair of states p, q of this automaton, and an
attribute a, a representative for (p, q, a) in a node u is an
attribute value d that can be found in v.a, for some v with
(p, q) ∈ trans(u, v). The node v is called a witness for the
representative (there may be several witnesses).

Finding representatives in this new sense is a generaliza-
tion of the problem described at the beginning of Section 4,
since any program α or β can be simulated by a nondeter-
ministic automaton of the same size.

In order to find the representatives, we use the same type
of two-step (first a bottom-up pass, then a top-down pass)
approach as in the section on finding loops.

5. SKELETONS
We now proceed to find the nodes that satisfy a node test

α.a eq β.b .

This part is much more involved than the one with inequal-
ities, and takes up Sections 5, 6 and 7.

The first thing we need to do is show how a data tree is
stored in memory by the algorithm; this is the subject of this
section. We also show in Section 5.2 how this representation
can be used to efficiently evaluate automata.

5.1 Skeleton representation
In this section, we describe how a tree is stored in memory

by the algorithm.
A data tree is stored by having a record for each node,

called the node record. This record contains the tag name,
as well as pointers to the node records of the: parent, left
child, right child. Some of these may be empty, if the ap-
propriate nodes do not exist. Furthermore the node record
for u contains for each attribute name a the set of attribute
values u.a. To speed things up, this set is organized as a
tree, where the nodes are attribute values and their longest
common prefixes. For instance, if the set of attribute values
is {0, 011, 11, 100}, then the following tree is stored:

0

011 100 11

The record representation of a data tree consists of the node
records for all the nodes of the data tree. The following
simple result is given without proof:

Fact 5.1 The record representation of a data tree t can be
computed in time linear in |t|.

Let u and v be two nodes in a data tree t. The closest
common ancestor of u and v is the (unique) node w that
is an ancestor of both u and v, and has a minimal possible
distance from u and v.

We say a node u has attribute value d if it has attribute
value d under some name, i.e. d ∈ u.a holds for some a ∈ Γ.
Let t be a data tree, and let d ∈ {0, 1}∗ be an attribute value.
The class of d is the set of nodes that are closest common
ancestors of two nodes that have attribute d. Note that
every node with attribute value d is in the class of d, since a
node u is the closest common ancestor of u, u. For instance,
in the picture below, the highlighted nodes describe the class
of d = 11. Note that both the root and its left child are
selected since they are closest common ancestors.

a

a

a

a

a a

a

01

a

01

a

01

a

01

b

11

b

11

a

11

a

11

b

b

In the evaluation algorithm, it will be convenient to reason
about classes. Therefore, for each attribute value, we keep



a copy of the tree where only nodes from the class are kept,
as described below.

Let t be a data tree and let d be an attribute value. The
d-skeleton of t, is a tree obtained by only keeping the nodes
of t from the class of d. The tag names are sets of attribute
names from t, and there are no attribute names (i.e.the d-
skeleton is a tree without data). The tag name of a node u in
the d-skeleton is the set of attribute names a ∈ Γ such that
d belongs to u.a in t. The tree structure in the d-skeleton
is inherited from t. In particular, u is a child of v in the
d-skeleton only if in the tree t, u is a descendant of v, and
no node between u and v belongs to the class of d.

Note that every d-skeleton is binary. This is because the
original tree t was binary, and the class of d includes clos-
est common ancestors. However, it may happen that some
nodes in the d-skeleton have only one child in the d-skeleton,
even though they had two children in t.

The skeleton representation of a data tree t consists of
the record representation of t and all of its d-skeletons, see
Figure 1. Furthermore, for each d-skeleton, each node record
contains a pointer to the corresponding node in t.

Note that the sum of sizes of all skeletons in t is linear in
t, since each leaf in a skeleton corresponds to an attribute
value. The following result shows that the skeleton repre-
sentation can also be calculated in linear time:

Proposition 5.1 The skeleton representation of a data tree
can be calculated in linear time (in the size of the XML text
file representing the document).

Proof
During the computation, we will be using D-skeletons, for
sets D of attribute values. A D-skeleton is defined the
same way as a d-skeleton—the only difference is that we
take nodes which have attribute values in the set D (and all
their closest common ancestors). We only consider a special
form of these sets—sets d+ consisting of attribute values
that have the string d as a prefix, including d. Note that all
the nodes of the original tree are in the ε+-skeleton, because
every attribute value has the empty word as a prefix.

At every step we take a set d+ and partition it into three
sets {d}, d0+ and d1+, some of which may be empty. This
partition can be obtained in a single bottom-up pass through
the nodes in the d+-skeleton. It is convenient here that the
attributes values in the tree t are stored in a tree. Therefore
we only need constant time to process a single node of t and
check whether it contains attribute values in one of the three
sets {d}, d0+ or d1+.

The partition of d+ into three parts takes time linear in
the number of nodes in the d+ skeleton, which is bounded
by twice the number of occurrences of an attribute values
from d+.

We apply this partitioning process to the ε+ skeleton, un-
til we are only left with singleton skeletons {d}. How much
time does this take? An upper bound is (twice) the number
of occurrences of attribute values from d+, over all prefixes
d of attribute values occurring in the data tree. Rearrang-
ing the summing order, it is the same as summing, for each
occurrence of an attribute value d in the tree, the number of
prefixes of d. But this is the same as summing the lengths
of the attribute values (plus one). Therefore, the processing
time is bounded by |t|. �

5.2 Running automata on skeletons
In this section we show how skeletons can be used to ac-

celerate evaluation of a regular expression (or automaton)
on paths in the tree.

In the lemma below, for an attribute value d and a node
u in the d-class, we describe the paths that begin in u and
end in some node v with attribute value d (we also keep
track of the attribute name a with d ∈ v.a). Note that the
requirement on u is weaker than that on v: u only need be
in the d-class.

Lemma 5.1 Let t be a binary data tree, let a be an at-
tribute name, and let A be a nondeterministic automaton
with states Q. The function classa, mapping an attribute
value d and a node u in the d-class to

classa(u, d) =
[

v:d∈v.a

trans(u, v)

can be calculated in time O(|t||Q|).

We first remark on how the function classa is represented.
We will use the skeleton representation here. For each at-
tribute value d, the value classa(u, d) will be stored in the
d-skeleton, inside the node record that corresponds to the
node u.

Before we prove Lemma 5.1, we need to present an inter-
mediate result, Lemma 5.2.

Let d be an attribute value. Let u, v be nodes in a binary
data tree t. We say a node v is a d-child of u if v is a child
of u in the d-skeleton. Since t is binary, every node has at
most two d-children, for every attribute value d.

Let u be a node in any d-skeleton. Let i be either L or
R (standing for left or right child). We write child(u, d, i)
for the set of state pairs (p, q) ∈ trans(u, v), for v the i-th
d-child of u.

Lemma 5.2 Let t be a binary and saturated data tree and
let A be a nondeterministic automaton with states Q. The
function child(u, d, i) can can be calculated in time O(|t||Q|).

Proof
The proof is done by inspecting the proof of Proposition 5.1.
We calculate child(u, d, i) while creating d-skeletons. We
extend the notation of child into d+-skeletons, we write
child(u, d+, i) for trans(u, v), where v is the i-th d+-child of
u. Together with a d+-skeleton we calculate child(u, d+, i)
for both i and for every node u in the d+-skeleton.

At the beginning we need child(u, ε+, i) for every node u.
This is just a set of state pairs (p, q) ∈ trans(u, v), where v
is the i-th child of u. This value is easy to calculate using
the set of loops loop(u), as described in Lemma 4.1—first we
may loop at u, then follow a transition from u to v, finally
we may loop at v.

Later, when when partitioning the set d+ into the sets
{d}, d0+, d1+, we need to calculate the function child for
skeletons for these sets. We should do this in time linear in
the size of the d+-skeleton. The calculation is done during
the bottom-up processing described in Proposition 5.1. An
edge of a new skeleton (for which we would like to calculate
the child function) consist of some edges of the previous
skeleton, and the value of child is obtained by composing
the values of child for these edges. �

The proof of Lemma 5.1, which uses the same techniques
as Lemma 4.1, is in the appendix.
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Figure 1: Skeleton representation of a data tree.



6. THE CORE PROBLEM
In this section, we identify a special case of node tests

α.a eq β.b ,

where already all the difficulty is contained. The special case
is when α only moves up in the tree, and β only moves down
in the tree. More formally, the core problem is a node test
as above, where the only atomic programs that appear in α
are parent and tag names, and the only atomic programs in
β are child and tag names.

u

v

α

w

b

d

a

d

β

The main technical result in this paper is that the core
problem can be solved in linear time:

Theorem 6.1
The set of nodes that satisfy an instance of the core problem
can found in time O(|t|).

It is only in the theorem above, i.e. in solving the core prob-
lem, that we will develop constants exponential in the size
of the programs α, β. The above theorem will be shown
in Section 7. In this section, we show how solution to the
core problem gives a solution to any node test of the form
α.a eq β.b, without the restriction on α, β going in only one
direction:

Proposition 6.1 Assume the core problem can be solved
in time O(|t|). The set of tree nodes that satisfy a node test
of the form α.a eq β.b can calculated in time O(|t|).

The rest of this section is devoted to proving the above
result.

Recall the notion of string description of a path that was
used in Section 4.1. We assume that the programs α and
β are given as nondeterministic word automata that read a
string description of a path. A node pair (u, v) is selected by
a program if there is some path from u to v whose description
is accepted by the automaton. Without loss of generality,
we may assume that the automaton for α and β is the same
(denoted A, with states Q) and only the accepting states
are different, say Fα ⊆ Q for α, and Fβ ⊆ Q for β. We use a
nondeterministic automaton, so Q is linear in the combined
size of the expressions α and β.

In terms of the automaton A, a node u satisfies the node
test α.a ∼ β.b if it satisfies the following property (*): for
some nodes v, w with a common attribute value in both v.a

and w.b, the following hold:

trans(u, v) ∩ {qI} × Fα 6= ∅
trans(u, w) ∩ {qI} × Fβ 6= ∅

We will refer to the nodes v, w as witnesses.
Let p, q be states. Let andep,q be set of nodes u′ such

that for some attribute value d, an ancestor v′ of u′, and a
descendant w′ of u′, the following hold for some states p′, q′:

(p, p′) ∈ trans(u′, v′) {p′} × Fα ∩ classa(v′, d) 6= ∅ (V )

(q, q′) ∈ trans(u′, w′) {q′} × Fβ ∩ classa(w′, d) 6= ∅ (W )

The set deanp,q is defined analogously, except that v is a de-
scendant, and w an ancestor. In both cases, the descendants
and ancestors need not be proper.

For instance, u ∈ andeqI ,qI is a sufficient, but not neces-
sary, condition for property (*). Proposition 6.1 will follow
once we demonstrate the following three lemmas.

Lemma 6.1 For each two states p, q, the set andep,q and
deanp,q can be computed in linear time.

Lemma 6.2 A node u satisfies α.a eq β.b if and only if it
satisfies (**): there are states p, q and a node u′ such that

(qI , p), (qI , q) ∈ trans(u, u′) u′ ∈ andep,q ∪ deanp,q

Lemma 6.3 The set of nodes that satisfy condition (**)
can be computed in time O(|Q||t|).

The proof of the three lemmas is relegated to the ap-
pendix.

7. SOLVING THE CORE PROBLEM
We now come to the last part of Theorem 1.1, where we

tackle the core problem. Recall that the core problem is to
find the nodes that satisfy a node test α.a eq β.b, where the
program α only goes up in the tree, and the program β only
goes down in the tree.

The idea in our solution is to use a factorization theo-
rem for finite monoids. The original result is a theorem
by Simon, which talks about the existence of “factorization
forests”, see [8]. Recently, Colcombet [4, 2] discovered that
the factorizations not only exist, but can be calculated by
a deterministic transducer (more precisely, the transducer
calculates a weaker version of the factorizations). One ap-
plication of this result is a fast string-matching algorithm, as
described below. Fix a regular word language L ⊆ Σ∗, rec-
ognized by a finite monoid M . For any word a1 · · · an ∈ Σ∗

one can do a preprocessing stage in time O(|M |n), such that
later on, any query ai · · · aj ∈ L? can be answered in con-
stant time.

In Section 7.1, we define monoids, which are used in the
factorization results. Then, in Section 7.2, we introduce the
factorizations. In Section 7.3 how the results can applied in
a tree. Finally, in the remaining part of Section 7, we use
these results to solve the core problem.

7.1 Monoids
Instead of automata, one can use monoids to recognize

regular languages; this is the framework in which the Si-
mon theorem is stated. Recall that a monoid is a set M
together with an associative composition operation and an



identity element, denoted 1. We use letters m, n for monoid
elements. For composition, we use multiplicative notation,
so the composition of two elements m, n ∈ M is denoted
m ·n. Associativity means that for any m1, m2, m3 ∈ M , we
have (m1 ·m2) ·m3 = m3 · (m1 ·m2), and therefore one can
write m1 ·m2 ·m3 without ambiguity. The definition of the
identity element is that it satisfies 1 ·m = m ·1 = m, for any
m ∈ M . For instance, Σ∗ is a monoid, with the empty word
being the identity element. A language L ⊆ Σ∗ is recognized
by a monoid M if there is a morphism α : Σ∗ → M such that
membership w ∈ L depends only on the value α(w). In the
above, a morphism is a function that preserves composition
and identity elements.

Monoids and automata are equivalent descriptions for reg-
ular languages, in the following sense: a language is recog-
nized by a finite automaton if and only if it is recognized
by a finite monoid. The left-to-right implication is proved
by associating to each automaton A a monoid M ⊆ P (Q2)
obtained by composing the transition relations in the au-
tomaton. In particular, this monoid is exponential in the
size of the automaton, which is optimal (e.g. the language
“the n-th letter is a” is only recognized by monoids with 2n

elements).

7.2 Forward Ramseyan splits
In this section we describe Simon factorizations and cite a

result which says that they can be computed in linear time
by a deterministic transducer. To be more precise, we do not
use factorizations as in the Simon theorem, only a weaker
variant called forward Ramseyan splits, following [4, 2].

Consider a word w = a1 · · · an. A edge in w is any num-
ber i = 0, . . . , n, which is identified with the space between
position i and i + 1. We will say that i is the source po-
sition of x, and i + 1 is the target position of x. Fix some
K ∈ N. A split of height K on w is a function σ that assigns
to each edge in w a number from 1, . . . , K. These numbers
are used to split the word positions into a nested factoriza-
tion. First, we look at the positions i with σ(i) = K; these
positions split the word into a number of subwords. Then,
these subwords are recursively split by positions with values
σ(i) = K − 1, K − 2, . . . , 1. The figure below shows a word,
a split, and the corresponding nested factorization.

a b aa ba bb b a b

1 1 222 3 3 34 4 4 4

We say two edges x, y are neighbors if σ(x) = σ(y) and all
edges between x, y are mapped by σ to at most σ(x). The
neighborhood relation is an equivalence relation. We say
x, y are visible from each other if all edges between x, y are
mapped by σ to values strictly smaller than both σ(x) and
σ(y). In particular, two consecutive neighbors are visible,
and at most 2K edges are visible from any given edge.

Now assume that we have fixed an alphabet Σ and a finite
monoid M , together with a morphism φ : Σ∗ → M . Given
a word w = a1 · · · an, and edges x < y in this word, the
word from x to y in w consists of the letters ax+1 · · · ay.
In other words, these are the letters that are both sources
and targets of edges between x, y inclusively. In particular,
the word from x to x is the empty word. By valw(x, y) we
denote the value assigned by φ to the word from x to y in w.

If x ≤ y ≤ z then

valw(x, z) = valw(x, y) · valw(y, z) for x ≤ y ≤ z .

We say that a split σ is forward Ramseyan for w under φ if
for every every four pairwise neighboring edges x < y, x′ <
y′, we have:

valw(x, y) = valw(x, y) · valw(x′, y′) .

Note that in the above, there is no restriction on the order
between the edge pair x < y and the edge pair x′ < y′. In
particular, both valw(x, y) and valw(x′, y′) must be idem-
potents, since we could have chosen x = x′ and y = y′.

The difference between forward Ramseyan splits and the
original factorization forests of Simon is that the latter re-
quire a stronger condition:

valw(x, y) = valw(x, y) · valw(x, y) = valw(x′, y′) .

The following result of Colcombet shows that a forward
Ramseyan split can be computed by a deterministic trans-
ducer (in particular, in linear time):

Theorem 7.1 ([2])
Fix a monoid morphism φ : Σ∗ → M . There is a deter-
ministic transducer that outputs, for every word w ∈ Σ∗, a
forward Ramseyan split on w.

In the above, the deterministic transducer is a finite deter-
ministic automaton where each transition additionally out-
puts a number from 1, . . . , K. We assume without loss of
generality that the splits used assign K to the first position
in the word.

7.3 Splits in a tree
Fix a morphism φ : Σ∗ → M and a tree with tag names Σ.

In this section and the next, we will be using forward Ram-
seyan splits to find the value of φ on downward paths in t.

We extend the mapping val to trees in the following way.
For two edges x ≤ y in the tree t, the word from x to y
is obtained by reading the tags on the path from x to y,
excluding the tags in the source of x and the target of y.
Unlike the string description used in earlier sections, we do
not include the relationship child, parent between succes-
sive positions; implicitly we keep going down in the tree.
The mapping val is defined analogously to the word case;
we omit the subscript t since the tree t is fixed.

For an edge x, let σx be the split that is calculated by the
transducer from Theorem 7.1, when reading the word from
the root to x. Take some edge y ≤ x. Since the transducer
is deterministic, the value σx(y) does not depend on the
choice of x, and can without ambiguity be denoted by σ(y).
The values of σ(x) on all edges x can be calculated by doing
a top-down pass through the tree, we will be using these
heavily later on. For instance, when we say that two edges
x ≤ y are neighbors, we mean that they have the same value
k under σ, and all edges in between have values at most k.

In the algorithm, we will do a depth-first search traversal
through the tree, with the current edge denoted by xcur. At
each point, we will also store the following additional infor-
mation, called the snapshot for xcur. The snapshot assigns
the following information to every ancestor edge x of xcur:

A. A pointer to each edge y ≤ xcur visible from x.



B. A pointer to highest ancestor (i.e. closest to the root)
edge y ≤ x that is a neighbor of x, possibly y = x.

Together with each pointer to y, the snapshot stores the
result of val for the corresponding word. Information about
an edge is stored in the node record for the target node of
the edge.

Note that it is important that the snapshot is evaluated
relative to an edge xcur. Otherwise, there would be no con-
stant bound on the number of descendants of x that are
visible from x. As it is, the pointers in A involve at most K
ancestors and at most K descendants of x.

Below we show two key properties of the snapshots. First,
as stated in Lemma 7.1, a snapshot allows constant time
evaluation of val(x, y) for any two edges x ≤ y ≤ xcur.
Second, as stated in Lemma 7.2, snapshots can be updated
in constant time when moving xcur to its parent or child.

Lemma 7.1 Let x ≤ y ≤ xcur. Using the snapshot in xcur,
the value val(x, y) can be evaluated in time 2K.

Proof
In a first step, we consider the special case where x ≤ y are
mutually visible (whether this case holds can be determined
by examining the pointers in part A of the snapshot). In this
case we already have val(x, y) remembered in the snapshot.

In a second step, we consider the special case where x ≤ y
are neighbors (whether this case holds can be determined
by examining the pointer in part B of the snapshot). Let
z ≤ xcur be the closest neighbor of x that is its descendant,
this node is stored in the snapshot under A, together with
val(x, z). If z = y then we are done, otherwise we use the
assumption on σ being forward Ramseyan:

val(x, y) = val(x, z) · val(z, y) = val(x, z) .

To solve the general case, we trace the split, moving from
x in the direction of y. Formally, the value val(x, y) is calcu-
lated by reverse induction on σ(x) + σ(y). If x, y are neigh-
bors or are mutually visible then the procedure above can
be used. Note that this includes the induction base, since if
σ(x) + σ(y) = 2K, then x and y have to be neighbors. Oth-
erwise, assume that σ(x) ≤ σ(y) (the other case is similar).
Let z ≤ y be the closest descendant of x with σ(z) > σ(x).
To read z from the snapshot, we can move to the farthest
ancestor of x being its neighbor, then move to its closest
visible ancestor with σ greater that σ(x), and then move
to its closest visible descendant with σ greater that σ(x).
Moreover, let z′ ≤ z be farthest descendant of x being its
neighbor. We have

val(x, y) = val(x, z′) · val(z′, z) · val(z, y) .

The first and second value is calculated from the above spe-
cial cases (as x and z′ are neighbors and z′ and z are visi-
ble). The third value is obtained by induction assumption
(as σ(z) + σ(y) > σ(x) + σ(y)). �

The following simple lemma is given without proof:

Lemma 7.2 Let y be either a child or the parent of xcur.
The snapshot for y can be computed in constant time based
on the snapshot for xcur.

7.4 Using splits to solve the core problem
In this section we use the splits to solve the core problem

in linear time.
Recall that in the core problem we want to determine the

set of nodes satisfying α.a eq β.b, where α is a program that
only goes up in the tree by using the parent axis, and β is a
program that only goes down in the tree by using the child

axis.
By compiling the programs α and β into first a regular

word language, and then a monoid morphism, we may as-
sume that these two programs are represented by a single
morphism φ : Σ∗ → M in the following manner: whether or
not a node pair (v, w) is selected by α (resp. β) only depends
on the value assigned by φ to the sequence of tag names on
the path from v to w. Note that the monoid M may be
exponential in the size of the expressions in α, β. To have a
common morphism for both programs, a cartesian product
can be used.

Therefore, the core problem will be solved if for any node u,
we can calculate the set of pairs (m, n) ∈ M2 such that
for some nodes v, w with v ≤ u ≤ w, there is a common
attribute value in v.a and w.b, and the path from v to u
(resp. from u to w) is mapped to m (resp. n) by φ. The rest
of this section is devoted to showing how this information
can be calculated in linear time. We will be using splits,
so it will be more convenient to talk about edges, which
motivates the definition of brackets below.

Let x ≤ y be two edges, and let m, n be two monoid
elements. We say (x, y, m, n) is bracket if such there are two
edges x′, y′ with x′ ≤ x ≤ y ≤ y′ such that

• The target nodes of x′, y′ contain a common attribute
value, respectively under attribute names a, b.

• val(x′, x) = m and val(y, y′) = n.

The edges x, y are called the high and low edges of the
bracket, and the monoid elements m, n are called the high
and low monoid elements of the bracket. We say a bracket
(x′, y′, m′, n′) witnesses a bracket (x, y, m, n) if

x′ ≤ x ≤ y ≤ y′ m′ · val(x′, x) = m val(y, y′) · n′ = n .

A visible (resp. neighbor, trivial) bracket is one where the
high and low edges x, y are mutually visible (resp. neigh-
bors, equal). In the algorithms below, a bracket will be rep-
resented as a labeled (by m, n) pointer to the edge x, which
is stored in the node record of the target node of the low
edge y. Slightly ahead of time, we remark that for any given
low edge y, we will store at most constantly many brackets.

The careful reader will notice that we come upon a little
technical issue: the values computed in brackets ignore the
letter in the node that contains the attribute value d under
attribute name b. This is because the edge y′ in the defini-
tion of a bracket has attribute b in its target, while val(y, y′)
does not read the label in the target of y′. A quick fix for
this problem is to consider only instances α.a eq β.b of the
core problem where the issue is moot:

Lemma 7.3 Without loss of generality, we may assume
that the program β ignores the letter in the target node.

Proof
We can modify a tree so that every attribute name includes
information about the tag name. I.e. if u is a node, and a is



its tag name, then each attribute attr name in the node u is
replaced by (a, attr). After this replacement, the program
β need not look at the tag name in the target, since this tag
name can be inferred from the attribute name in the target.
�

As long as our query is of the form in the lemma above,
the core problem is solved once all the trivial brackets are
computed. In Section 7.5 we will give an algorithm that
computes certain brackets that witness all trivial brackets.
Then, in Section 7.6 we show how these witness brackets can
be used to calculate the trivial brackets.

7.5 Computing witness brackets
This section is devoted to showing the following result:

Proposition 7.1 One can compute in linear time a set V of
visible brackets such that every trivial bracket has a witness
in V .

A very special type of bracket is a bracket (x, y, 1, 1) where
the attribute value d appears under attribute name a in the
target node of y, and under attribute name b in the target
node of x. This type of bracket is called a d-atom. The name
is so chosen because the atoms generate all other brackets,
i.e. each bracket is witnessed by some atom.

However, in the algorithm it will be convenient to con-
sider a different type of generator bracket, where the high
and low edges are close to each other in some d-skeleton.
We say that two edges x, y are d-consecutive if both target
nodes are in the d-skeleton, and either x = y or in the d-
skeleton the target node of x is the parent of the target node
of y. A bracket is called a d-axiom if it is witnessed by a
d-atom and the high and low edges are d-consecutive. Note
that not every d-atom is a d-axiom, since the high and low
edges might not be d-consecutive. An axiom is a d-axiom
for some d.

Lemma 7.4 For every attribute value d, the set of d-axiom
brackets can computed in time linear in the size of the d-
skeleton.

Proof
As a preprocessing stage, we decorate each two d-consecutive
edges x, y in the d-skeleton with val(x, y). This can be
done in linear time by using the constant-time procedure
in Lemma 7.1 (we do the decoration simultaneously for all
d-skeletons). Using this decoration, the d-axiom brackets
can be calculated by doing a top-down, and then bottom-up
pass through the d-skeleton. �

We are now ready to present the algorithm announced in
Proposition 7.1. We will process the tree by moving an edge
xcur in depth-first search fashion (during this processing, we
keep track of the snapshot in xcur). At each moment, we
will have computed two sets of brackets: a set V of visible
brackets, and a set N of neighbor brackets. The invariant
will be:

(*) Every trivial bracket witnessed by an already processed
axiom bracket has a witness in V ∪N . Here, an already
processed axiom bracket is an axiom bracket whose low
edge has been a previous value of xcur.

The set N is used to temporarily store information about
the path leading up to the edge xcur. Each neighbor bracket
(x, y, m, n) in N will also satisfy the following two properties:

1. The low edge y is an ancestor of xcur.

2. If z is a neighbor of x, y between these edges, then

m · val(x, z) = m .

After all edges have been processed, the set N is empty, and
therefore the proposition follows thanks to the invariant (*).

In the algorithm, for a given edge y and (m, n), there
will be at most one edge x such that the bracket (x, y, m, n)
belongs to N . The idea is that this edge x is the highest
edge x about which we know that conditions 1,2 are satis-
fied. This allows us to define the following update operation
updateN(x, y, m, n), which is only defined when conditions
1,2 above are satisfied. Let z be such that (z, y, m, n) belongs
to N before the update. If z is either undefined (N contained
no appropriate bracket) or a descendant of x, then the up-
date replaces (z, y, m, n) by (x, y, m, n), otherwise nothing
happens.

We now proceed to describe how the sets V, N of brackets
are modified in the algorithm. There are two possible steps:
when we move xcur down into a new edge, and when we
move xcur up. These are described in the following two
sections.

7.5.1 Entering an edge
Here we describe what the algorithm does when it enters

a new edge xcur, i.e. goes down into a child edge. We will
examine every axiom bracket whose low edge is xcur. For
each such axiom bracket, we do a constant number of mod-
ifications to N, V .

Fix an axiom bracket (x, xcur, m, n) that is examined.
Some trivial brackets between x and xcur may get new wit-
nesses thanks to this axiom bracket, so we need to update
the sets N, V to satisfy the invariant (*).

Using the split, we can find a sequence of edges

x = x1 < x2 < · · · < xk = xcur k ≤ 2K ,

such that every two consecutive edges are either visible or
neighbors. This sequence can be calculated as in the proof
of Lemma 7.1. For each two consecutive edges xi, xi+1, we
use Lemma 7.1 to calculate in constant time the values

mi = m · val(x, xi) ni = val(xi+1, xcur) · n .

For each i, we consider the path from xi to xi+1 separately,
updating N, V to take care of the invariant (*) for trivial
brackets in this path.

If xi and xi+1 are mutually visible, we can simply add
the bracket (xi, xi+1, mi, ni) to V . Otherwise, xi and xi+1

are neighbors, which requires updating brackets in N . Let y
be the closest neighbor of xi with xi < y ≤ xi+1, this edge
is stored in the snapshot. From the definition of a forward
Ramseyan split (multiplied by mi) we know that regardless
of the choice of a neighbor z of y, xi+1 between these edges,
we have

mi · val(xi, y) · val(y, z) = mi · value(xi, y) .

Therefore, y is a good candidate for

N(y, xi+1, mi · val(xi, y), ni+1) ,

so we call the updateN operation for the bracket above.



7.5.2 Leaving an edge
When visiting an edge xcur for the last time (before exiting

from its subtree), we remove all brackets in N that have
low edge xcur, and transfer this information to a constant
number of modifications to N, V .

For every m, n, we test if N contains some bracket of the
form (z, xcur, m, n). If z = xcur, then there is no nontrivial
information, and nothing has to be done. Otherwise, let
y < xcur be the closest neighbor of xcur, as stored in the
snapshot. We add (m · val(z, y), n) to P (y, xcur), and call
updateN(z, y, m, val(y, xcur) · n).

7.6 Computing trivial brackets
In this section, we complete the solution the core problem,

by showing:

Proposition 7.2 The set of trivial brackets can be com-
puted in linear time.

Proof
We calculate the set of trivial brackets in a bottom-up pass.
For each edge x, we calculate the set

{(y0, m, val(x, y1) · n) : (y0, y1, m, n) ∈ V, x ≤ y} .

This set in an edge x can be calculated using the sets in the
two edges below x, and the set of brackets from the set V
(as calculated in Proposition 7.1) that have x as a low edge.
Note that there may be at most K nodes y0 in this set, so
the set has constant size. Using the set above, we can easily
determine the trivial brackets that contain x. �

8. CONCLUDING REMARKS
We have presented an algorithm for evaluating XPath

queries that has linear time data complexity. A price for
the linear time is a multiplicative constant that is exponen-
tial in the query.

A possible solution could be to trade the exponent in
the query size for an extra logarithmic factor in the data
complexity. By using a standard divide and conquer ap-
proach instead of forward Ramseyan splits, one can modify
our algorithm so that it avoids monoids but runs in time
O(|ϕ|2 · |t| · log |t|).

The reason for the exponential blowup is that we use
monoids to represent word languages, so that we can use
the Ramseyan splits. It is conceivable, however, that a simi-
lar construction would work without going through monoids,
thus avoiding the exponential blowup. We leave this as an
open question: is there an evaluation algorithm that is linear
in the document size and polynomial in the query size?

It is also possible that the ideas in this paper can be ex-
tended to larger fragments of XPath, e.g. where attribute
values can be compared with respect to the lexicographic
order on strings. We leave this as future work.
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APPENDIX
Proof (of Lemma 5.1)
We do the calculation separately for every d-skeleton, in
time proportional to its size. First, for every node u of a d-
skeleton we calculate the part classdown

a (u, d) of classa(u, d)
such that the node v is a descendant of u or v = u. The cru-
cial observation is that the set classdown

a (u, d) depends only
on these sets for d-children. Therefore the sets classdown

a (u, d)
can be calculated in a single bottom-up pass through the d-
skeleton. During this calculation we use child(u, d, i) to de-
scribe the transition from u to its d-children and loop(u) to
describe the part of classdown

a (u, d) corresponding to v = u.
Next, we consider the part classup

a (u, d) of classa(u, d)
such that the node v is not a descendant of u nor v = u.
These set for a node u depends only on the set classup

a for a
parent of u and the set classdown

a for a sibling of u. There-
fore these sets can be calculated in a single top-down pass
through the d-skeleton, using the child function.

The expected set classa(u, d) is a sum of classdown
a (u, d)

and classup
a (u, d). �

Proof (of Lemma 6.1)
In this lemma we use the core problem.

Let t be a data tree, with labels from Σ. We define a
new data tree s, which will contain information about runs
(loops, etc.) of the automaton A. The nodes of s are the
same as in the tree t. The tag names are pairs

Σ× P (Q2) .

Each node u is labeled by its original tag name in t, as well as
with the set of loops loop(u) appropriate to the automaton
A in the tree t, as described in Lemma 4.1. The attribute
names in s are triples

Q×Q× {a, b} .

The attribute values are defined by:

d ∈ u.(p, q, σ) ⇔ (p, q) ∈ classσ(u, d)

The left hand side refers to the data tree s, while the right
hand side refers to the tree t. In other words, a node u in the
tree s gets an attribute value d in attribute name (p, q, σ) if
in the tree t, the node u is in d-class, and there is some node
v with d ∈ v.σ such that (p, q) ∈ trans(u, v).

Thanks to Lemmas 4.1 and 5.1, the tree s can be com-
puted in linear time based on the tree t. We claim that each
set andep,q and deanp,q corresponds to an instance of the
core problem on the tree s; and can therefore be computed
in linear time.

The idea is that thanks to the loop information, any loop-
ing program over t can simulated by a non looping one over
s. A more formal description follows. Fix states p, q. There
is a program γp→q that only uses tag names and the child

axis, such that for any two nodes u′, v′ in t—equivalently
in s—such that u′ is an ancestor of v′, the following are
equivalent:

• (p, q) ∈ trans(u′, v′) holds in t

• The pair (u′, v′) is selected in s by γp→q

A dual program γp←q can also be written, where only the
parent axis is used, and where u′ is a descendant of v′.

The following obvious statement shows how the statement
of the lemma follows from a solution to the core problem: a

node belongs to andep,q if and only if it is selected in s by
the following node test:

γp←p′ .(p′, pF , a) eq γq→q′ .(q′, qF , b)

for some states p′, q′ ∈ Q, pF ∈ Fα and qF ∈ Fβ . A dual
statement can be formulated for deanp,q. �

Proof (of Lemma 6.2)
The implication from (**) to (*) follows straight from the
definition of the mapping classσ. We focus on the converse
implication. Take a node u of t that satisfies (*), and let v, w
be the two witnesses as in (*), with d the common attribute.
In particular, there must be two paths

u = v1 · · · vn = v u = w1 · · ·wm = w (1)

and two respective runs p0 · · · pn and q0 · · · qm of the au-
tomaton A on their string descriptions such that pn belongs
to Fα and qm belongs to Fβ .

There are a number of cases to consider, which correspond
to the possible spatial relationships between u, v, w.

Consider first the case when the nodes u, v, w are all pair-
wise incomparable with respect to the descendant relation.
Suppose furthermore, that the closest common ancestor u′

of u, w is a descendant of the closest common ancestor v′ of
v, u (which is the same as the closest common ancestor of
v, w). This situation is depicted in the picture below:
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u

Both paths v1 · · · vn and w1 · · ·wm must pass through the
node u′, let then i, j be such that vi = wj = u′. Let pi, qj

be the corresponding states that appear in the node u′ on
the paths from u to v and from u to w, respectively. By
definition of these states, we have

(qI , pi), (qI , qj) ∈ trans(u, u′) .

Therefore, the statement of the lemma will follow once we
show u′ ∈ andepi,qj . By definition, we must find nodes v′, w′

and states p′, q′ such that clauses (V ) and (W ) hold. We use
the nodes as in the above picture: v′ is the closest common
ancestor of v and u, while w′ = w. The states p′, q′ can be
found by analyzing the paths from u to v and from u to w.

Modulo symmetry, there is only one other case to consider.
We do not do the whole proof, only show the picture, where
we indicate the node u′ from property (**), and the nodes
v′, w′ which witness u′ ∈ andep,q ∪ deanp,q:
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Proof (of Lemma 6.3)
First, we calculate for every state pair p, q the set Ap,q of
nodes u such that there is some descendant u′ of u, and
states p′, q′ with

(p, p′), (q, q′) ∈ trans(u, u′) u′ ∈ andep′,q′ ∪ deanp′,q′ .

These sets are similar to condition (**), except that: the
states p, q are taken as a parameter, instead of fixed on p =
q = qI ; and the node u′ is required to be a descendant, and
not just any node.

The crucial observation is that which sets Ap,q contain
u depends only on the value loop(u) and which sets Ap,q

contain the two children of u. Therefore, the sets Ap,q can be
calculated in a single bottom-up pass, by using the mapping
loop(u) from Lemma 4.1 that tells us what are the possible
loops in the automaton.

Next, we consider sets Bp,q, which are defined like Ap,q

except that the node u′ is required to not be a descendant
of u. Using the sets Ap,q and the loop information, the sets
Bp,q can be calculated in a top-down pass.

The above sets give us all the information we need, since
a node satisfies (**) if and only if it belongs to the union

AqI ,qI ∪BqI ,qI .
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