
AI-METH 2003 – Artificial Intelligence Methods November 5-7, 2003, Gliwice, Poland

System for solving timetabling problems

Wojciech Legierski *
Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

e-mail: wlegierski@ia.polsl.gliwice.pl

Paweł Parys
Faculty of Mathematics, Informatics, and Mechanics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland

e-mail: pp209216@zodiac.mimuw.edu.pl

Abstract

Timetabling construction is a hard computationally problem. But difficulty lies not only in NP-completeness of that problem but also

in complicated interaction between different users. This paper present System of Automated Timetabling (SAT) as a proposition for a
global look at timetabling. It describes four tools for managing timetable. For solving problem Constraint Programming (CP) techniques
was used. CP provides both declarativity and flexibility. It is easy to add new constraint and to model numerous specific constraints that
are often encountered in such problems. Additional local search was incorporated into CP to allow effectively optimising timetable.

Keywords: timetabling, constraint programming, search strategy, user interface

1. Introduction

Timetabling is usual problem of each academic community and
it was very often tried to solve by researcher. Although a lot of
scientific and commercial work was made in this area, in many
educational institutions timetable is still scheduled manually and
often if a computer is used, it is need only for data presentation or
checking constraint validation. Many functions that can be made
automatically by computer are neglected. The reason of this
situation is:

• different problem formulation in different
universities/schools,

• lack of proper programs that can adapt for special
requirements of educational institutions,

• lack of user interfaces for providing interaction between
different users.

This paper presents interaction between different information
technologies, what gives ability to develop functional system for
solving, managing and presenting timetable.

There are a lot of publications describing work on algorithms
and heuristics for timetable problems. There are methods using
tabu search, simulated annealing, genetic algorithms, ant colony
optimisation and constraint programming. Difficulty in comparing
them and finding the best one lies in the first mentioned reason – a
huge number of problems. Work concerning user interface is
almost unseen in research community – some papers only mention
about it. From the other side commercial applications for
timetabling have a rich user interface, but they often do not bother
with automating solving problems and often their data standard is
not general enough. This paper presents System of Automated
Timetabling (SAT) that try to look at timetabling process as whole.
Automated solver is presented briefly. It uses Constraint
Programming techniques with additional local search that performs
much better than standard branch and bound. A special technique
was used for implementing soft constraint called value assessment.
Detailed description of used search method can be found in author
paper [6]. The main contribution of this paper is proposition of
environment for multi-user timetable process.

* The authors research has been supported by the Foundation for Polish
Science

2. Users

Timetable programs should not be treated as spreadsheets with
additional functionality, which is adapted for a one user, who, after
schedule is made, prints it for students. Automated timetabling
should be seen rather as a system, where different user can interact
between each other. The following users take part in timetabling
process.

2.1. Students

Time spending for acquisition of information connected with
timetable is very often neglected. Spolsky in [10] mentions a rule
that is binding in user interface developing: “a seconds are hours”
explaining that if our bad develop interface forces a user to waste a
second for finding some features, it sums to hours for all users. If
university have thousands of students, it can be imagine how much
time could be save when students are able to easy collect and insert
information. First of all students should have available to see in
easy way all kinds of timetable (their own, classroom timetable for
checking if it is free for additional events and conductors timetable
for checking availability of their teachers). They should be not only
tidy presented but also well prepare for printing them.

In some institutions students’ preferences are taken into
account and all of them should be easy inserted by students.

2.2. Conductors

They have always some requirements and preferences that are
connected with time and order of their courses. A lot of notes on
small scraps, collected by timetable manager do not ensure taken
them into account. Possibility of adding additional events (e.g.
consultation with student, courses in other schools) to their
timetable would be willingly welcome.

2.3. Timetable managers

It must not assume that only one person is responsible for
scheduling whole timetable. When a big university is taken into
consideration, timetable managers from each department often use
the common resources and conductors from one department teach
in other departments. Timetable managers should work on the
common database with proper privileges for their resources and

W. Legierski, P. Parys

have a system of exchanging demands. Scheduling, which would
be provided, should be:

• manually with drag’n’drop properties, constraint
checking and proposal of proper timeslots for courses,

• automatic with possibility to define a part of courses that
are schedule and base only on available for user
resources

Automatic timetable should not use only computation power of
timetable manager computer, but it should be made on a server
with good computation performance.

2.4. Administrator

There is need for a person who describes structure of the
timetable, creates users and their privileges. Most often there will
be one of the timetable managers. This person can use the same
program like timetable manager with additional functionality.

3. System of Automated Timetabling SAT

An idea of a system that connect all users assume:
• availability from different platforms for students and

conductors;
• easiness in building interface;
• effectiveness first of all for timetable managers;
• common database.
One tool or only one language is not enough to fulfil all these

requirements. Therefore proposed SAT is developed by adding the
use of several tools:

1. Database:
MySQL as database gathering information not only needed to

solve timetable but also users description and information
connected with structure of timetable,

2. Web application:
PHP, JavaScript and HTML for presenting data on the Web pages
and giving possibility to insert students and conductors
preferences,

3. Timetable Composer:
VC++ for writing program for timetable managers that connects
with database through ODBC

4. Solver:
Mozart/OZ for an engine solving automatically timetable problems

Relation between these parts and their data format is depicted

on Figure1. Each of these parts can by on different computer. Of
course Internet application and database needs continuously
working server and for a better performance should be installed on
the same computer. The idea of the separation solver and the
Timetable Composer lies on requirement that timetable manager
does not requires a high performance computer and a computation
for an automated timetabling can be made remotely on computer of
higher quality (e.g. on the same server where is a database located
and an internet application). One of the requirement of the selected
tools was that the portability should not be depended on server
system. MySQL, PHP and Mozart/OZ can work both on
Unix/Linux and Windows platform. One exception was made with
Timetable Composer, but it can be mainly run on a client computer
and do not need to be adapted to system of existing server.

3.1. Database

Many formal rules or procedures have been proposed for
timetabling descriptions. Some of them are dedicated to specific
problem.

Web application
(PHP and JavaScript)

Dynamic web pages

Solver
(Mozart/Oz)

Timetable Manager
(VC++)

Dedicated file format, STTL
XML file with problem description

XML file with solution

Database

SQL statements

Fig. 1. Diagram of four parts of SAT and their dependencies
and output data format

General timetable problem description has been made recently
by Kingston [5], Reis and Olivier [8] and De Causmaecker et al.
[3]. Kingston introduces an STTL language for specifying and
evaluating timetabling problems. It base on TTL specified in Burke
et al. [2]. The same specification uses Reis and Olivier [8] and they
propose simpler and verbose language for describing timetable
problems. Their requirements were an interchange form between a
computer specialist and a school administrator. De Causmaecker et
al. [3] develop Kingston [5] approach and introduce it into XML
standard and describe as ontology.

The requirements that were mention in these works concerning
standard data format were following:

• ability to express all kinds of timetabling problems;
• ability to express these problems in full detail;
• easiness to translate to and from.
 All these descriptions assume text format. Although it is useful

for creating benchmarks, avoid confusion and allow comparing
heuristics between researches, it has some drawbacks for real-life
multi-user application. Presented system promotes opinion that
relational databases can fulfil all requirements mention above and
adds user management facilitates, data acquisition by the SQL
queries and provides compactness of data. Of course all databases
can be described as text format with SQL statements. Small
additional programs can provide translation between the mentioned
standards and a database.

W. Legierski, P. Parys

3.2. Web application

HTML seems to be an obvious solution for presenting data on
the Internet, but it provides only static pages what is not sufficient
for described system. JavaScript improves user interface and gives
capability to create dynamic pages. As a client-side extensions it
allows an application to place elements on an HTML form and
respond to user events such as mouse clicks, form input, and page
navigation.

Server-side Web-scripting languages provide developers with
the capability to quickly and efficiently build Web applications
with database communication. They became in last eight year a
standard of dynamic pages. PHP as one of the most popular
scripting language in the world was chosen for developing SAT. Its
main advantages are facilities for database communication.

People are used to Web services which provides an arranged
news and information, search engines for sites in whole Internet,
email application etc. Proposed system try to be similar to those
kinds of services in it functionality and generality. Most timetable
application gives a possibility to save schedules for particular
groups, teacher and class as HTML code, but it not assumes an
interaction with its users. Timetabling involves often a lot of users
to create it. Student and conductors should have ability to introduce
their requirements and preferences into a database. It should
manage all these users with passwords and usernames in order to
protect the data against changing it by improper users. On Figure 2.
is depicted an example of the solution of above requirements. On
the left side is a navigation tree with particular resources and in
main area is a table with weekdays and their hours. Each conductor
can mark his/her preferences by proper colour.

Fig. 2. Sample screenshot of Web application

There is normal situation that final schedule is printed. Not

only school administrator makes it, but every student wants his
schedule above his bed. Printing from HTML pages often is not
looking neat and tidy. Special module that creates Latex files and
next generates PDF was implemented. It adapt to changing data in
database.

3.3. Timetable Composer

It is hard to develop a fully functionality in Internet
technologies. Therefore system for automated timetabling use
VC++ for Timetable Composer, program for timetable manager
and administrator. The idea of the program is to simplify manual
scheduling and provides as many information as possible.
Therefore well-known rule drag’n’drop is implemented, layout is

based on tree navigation and different views, for each event
possible timeslots are showed etc. Example screenshot of
Timetable Composer is depicted on Figure 3. Saving data can be
made in two ways. First method saves data locally in dedicated file
format, the second one use ODBC to save data in remote database.
It takes into account privileges of users and do not allow change
data for which user has not rights.

Fig. 3. Timetable Composer

4. Solver

Constraint Programming techniques have been developed since
about 1990 and become one of the branch of Artificial Intelligence.
Because they base on backtracking search, at the beginning they
have been developed in Prolog, where backtracking and
declarativity had been already implemented. In this way Constraint
Logic Programming (CLP) was created as an addition to Logic
Programming (LP). The languages from this area, which are still
popular, are CHIP, Sicstus, Eclips to name a few. Then CP leaves a
Prolog and comes into two branches – one of them is C/C++
libraries (e.g. ILOG) and the second is multiparadigm languages
(e.g. Mozart/OZ). All of these languages have two common
features – constraint propagation and distribution (labelling)
connected with search. Mozart/OZ [7][10] was chosen to develop
SAT because of it unique features that allow to create special
distribution strategy and search method.

4.1. Distribution strategy

The main requirements for a good distribution strategy are:
• reduction of backtracks (decrease the frequency of

constraint violation),
• searching for a good solution right away (fulfil as many

soft constraints as possible).
The first requirement fulfils well-known first-fail strategy,

which choose variable with smallest domain. Decision about
variable to instantiate become harder if timetable problem with
room allocation is considered. Then we need rather finding room
and timeslot for course (two variables together) than instantiating
each variable separately. In that case choosing proper course is
consider and decision is made due several factors. These factors
depend on hardness of course schedule (size of start time domain,
room domain, load of teacher and fails number).

W. Legierski, P. Parys

4.2. Soft constraining

Assessment for values in domain was introduced in solving
timetable by Abdennadher and Marte [1]. They represent a domain
as a list of value-assessment pairs. For example, X :: [3, 4, 5] can
be [(3, 0), (4, 1), (5, 8)]. Next they use Constraint Handling Rules
(CHR) for solving Weighted CSP. The idea of value assessment for
variables related to start times was applied for solving timetable
problem as well as the Weighted CSP framework. The assessment
of the value corresponds to the fulfilment of the soft constraint. 0
means full consistency with all soft constraints. If a value does not
fulfil soft constraints its assessment is increase corresponding to
the weight of the constraint. This framework allows taking into
consideration many soft constraints. The assessing of values was
made only for start time domain of courses. Kind of soft constraint
force the stage of introducing it:

• once at the beginning of the search (e.g. late afternoon
hours are not preferred)

• during the search, if soft constraint depends on already
schedule courses (e.g. whether the value corresponding to
the start time does not make gaps between already
scheduled courses)

Additional very useful techniques are removing from domain
value with high assessment. This idea is similar to Restricted
Candidate List [4], which retain only the good branches in search
and discard the bad ones. The drawback of this technique is
rejecting possible solution, but for large problems that need also
optimisation it is rather rejecting bad solution. Additionally
removing value from domain leads to propagation that accelerates
finding feasible and good solution.

4.3. Constraining during distribution

Introducing constraints during search such that the different
sets of constraints are active in different branches of the search tree
is not usually preferable, because this approach provides weak
constraint propagation. From the other side in some cases global
constraints can be introduced very hard and computational effort of
checking them can be high. This case appears when room
allocation is performed simultaneously with search for start times.
Introducing constraint “one course in a room” is very hard, when
most of rooms have special features different from other rooms and
most of courses have more than one timeslot duration.

It was resolved by introducing this constraint after instantiation
of room and start time of specific course and refers to all not
labelled courses. It considers the corresponding room at
corresponding time as tentatively off-limits for all other courses.
This approach gave much better results than global constraining.

4.4. Improving solution by local search

Improving solution by standard branch and bound (BAB) did
not give good results because distribution is design to find good
solution right away and BAB is systematic method that make a lot
of redundant work. Local search have been proved to obtain very
good results in large combinatorial optimisation problems. White
and Zhang [11] made a successful approach to combine local
search with constraint satisfaction for timetabling problem. They
determined an initial solution using constraint logic programming
and then optimised it using tabu search. Describing approach tries
not to resign from constraint propagation and incorporates local
search into constraint programming. The used technique is similar
to Large Neighbourhood Search (LNS) proposed by Shaw [9].
After finding solution course, that causes the highest cost, is
relaxed with courses depending on it. All other courses have the
same start time. Search is made only on relaxed courses and is

treated as neighbourhood move. If it produces better solution, it is
kept. The tabu list is added not to relax always the same courses.

5. Conclusion

The presented system has been prepared to introduce it in
Silesian Technical University. Solver working on the real
university institute problem (223 courses, 23 students groups, 54
teachers and 42 rooms and 70 timeslots) was tested on a Pentium
III/850 MHz, 256 MB station. The first solution was found after
45s, and 20% improvement of cost function was achieved after
next 20s using the presented idea of the local search, whereas BAB
did not give any improvements.

Scheduling timetable automatically can save time in
comparison with manually timetabling. But experience shows that
much more time can be saved if only managing and acquisition of
data will be improved. Therefore emphasis is put on developing
multi-user system that uses the newest computer science
technologies.

References

 [1] Abdennadher S., Marte M.: University course timetabling
using constraint handling rules, Journal of Applied Artificial
Intelligence, 14(4), 2000, pp. 311–326.

[2] Burke E.K., Pepper P.A. and Kingston J.H.: A Standart
Data Format for Timetabling Instances, Practice and Theory of
Automated Timetabling, Springer-Verlag 1408, 1998, pp.309-321.

[3] De Causmaecker P., Demeester P., Lu Y., Vanden
Berghe G.: Using Web Standards for Timetabling, Proceedings of
the Fourth International Conference on Practice and Theory of
Automated Timetabling, Gent 2002, pp.238-257

[4] Foccaci F., Laburthe F., Lodi A.: Local Search and
Constraint Programming, Handbook on Metaheuristics, F. Glovert
and G. Kochenberger (Eds.) (2003)

[5] Kingston J.H.: Modelling Timetabling Problems with
STTL, Practice and Theory of Automated Timetabling III,
Springer-Verlag 2079, 2001, pp.309-321

[6] Legierski W.: Search Strategy for Constraint-Based
Class-Teacher Timetabling, Practice and Theory of Automated
Timetabling IV, Springer-Verlag 2740, 2003, pp.247-262

[7] Mozart Consortium, The Mozart Programming System.
Documentation and system available via WWW from
http://www.mozart-oz.org, 1999.

[8] Reise L.P., Oliveira E.: A Language for Specifying
Complete Timetabling Problem, Practice and Theory of
Automated Timetabling III, (selected papers from Proceedings of
the Third International Conference on Practice and Theory of
Automated Timetabling, Konstanz 2000), Springer-Verlag, vol.
2079, 2001, pp.322-341

[9] Shaw P.: Using constraint programming and local
search methods to solve vehicle routing problems, Principles and
Practice of Constraint Programming - CP’98, LNCS 1520,
Springer-Verlag, (1998) 417-431

[10] Spolsky J.: User Interface Design for Programmers,
APress, 2001

[11] White G.M., Zhang J.: Generating Complete University
Timetables by Combining Tabu Search and Constraint Logic,
Practice and Theory of Automated Timetabling II, Springer-
Verlag, Lecture Notes in Computer Science, vol. 1408, (1998)
187-198

