
Timetable solver - ttsolve

Used algorithm

Pawe l Parys (pp209216@students.mimuw.edu.pl )

January 24, 2004

1 General idea

In my program there are three basic treatments:

• Constraint propagation. It is some kind of deduction. I try to deter-
mine what assigments of activities are possible or impossible.

• Searching (backtracking). I try to use all possible timeslots and re-
sources.

• Greedy improoving. When I have a solution I move single actvitities
to get better score.

First two actions are done simultanously, after every recurencion step of
backtracking I’m doing constraint propagation, so that the new assumptions
are leading to new conclusions. When a solution is found I use the third
action to improove it a little bit.

2 Whole program

The program repeats a few times single steps, which are almost indepen-
dent and identical (I call them ,,approaches”). In every approach I build
new solution, but basing on the previous one. I always remember the best
achieved solution — when I come to worse solution it is omited. Generally
I have three stages:

1. In first approach I build any possible solution from scratch. I accept
also some incorrect solution (with some unassigned activities), but
with very big score, so that they are unprefered. In that way we
always have a solution.

1



2. Then I allocate anassigned activities (if any). I take one such activities
and activities dependent on it (using the same resources) and I try to
change their possitions, so that the one additional activity can also be
allocated (I leave the other activities as they are). It is repeated until
all activities are allocated or until nothing changes.

3. Then I do the same, but with random activity (and activities depen-
dent on it), so that better timetable can be constructed. This is also
repeated several times.

3 Single approach

3.1 Simplified algorithm

At the begining I will concentrate on arranging the activities, so that there
are no collisions. Choosing resources from groups is only a addiitonal feature
and will be described later.

On the whole every approach works as described in introduction. It is
reccurentional procedure. In every step of reccursion I decide about one
start time of activity. For each activity and for each time I remember if this
activity can start at this time or not. This state I call ,,space”. Sometimes
the start time of activity I call ,,variable”. The space has to change while
going into reccursion. At each step of reccursion I copy the current space
and I operate on the new one. (Other possibility is to remember changes
and undo them when going back.)

I can remove the start times which are forbiden because of time pref-
erences. I do this at the very beginning. The other constraints are solved
using propagators. A propagator is a special object that ensures given re-
lation between two variables. A propagator binds two variables. When the
set of possible values of one of them becomes limited (especcialy when it
becomes only one value), then we can eliminate some values of the second
one. When two activities uses the same resource, then they can not overlap
- I create one propagator for each such pair. There can appear also some
dependences (eg. that a activity should be arranged before other one), they
also need apropiate propagators.

Whenever a set of possible values of variable changes (decreases), then
all propagators concernig this variable should be racalculated. But I don’t
do that immediately, but only when needed. Thanks to this lazy algorhith,
when there are more changes of the same variable, propagars are calculated
only once. When the propagator was calculated after the last change of its
variables, we say that it is ,,stable”. Then all propagators are stable, then
we can not change anything using the propagators, and we say that the
space is in ,,stable” state.

2



The propagation strategy is done as follows: With every variable I re-
member the last time when it was modified and with every variable I re-
member the last time when it was actual. I also have a queue of unstable
propagators and a queue of modified variables. Every unstable propagator
is in the queue or one of its variables is in the queue. When we change a
variable, we update the modified time and if we put it into the queue (if it
is not there). When we need the space to come into the stable state, we
have to recalculate all unstable propagators. Having these two queues we
can easly find unstable propagators. We take all propagators from unstable
propagators queue. When this queue is empty we take a variable from the
second one and we put propagators binding it (but only these realy unsta-
ble) into the first one. Of course during the calculation of propagators, some
other may become unstable, so we repeat the operation until there are no
changed variables in the queue.

The single propagator do only very simple oprations. It uses only the
minimal and maximal values of variables (but affects on the whole set of
possible values). It has significant effect only when the segment of possible
values of one of the variables is already small. A propagator can also remove
itself, when it see that the condision it checks will be always true (for all
values that are still possible). When a set of possible values of a variable
becomes empty, then the branch of searching fails, we have to go back in
the reccursion.

Choosing resources from groups is done as follows: After a start time of a
activity is set to one specified value, we select which resource should be used
by this activity. We have a array which for every resource (not every, only
for these, which appears in groups) and every time slot remembers if it is
used or not. We also have a array which for every group and every timeslots
remembers how many resources are still unused. Using these arrays we
can easly find which resource from group should be used. When trere are
no resources left in group at specified time we can disallow other activities
needing the group using this timeslot. In fact it is more complicated, because
the same resource can appear in other groups or can be used without any
group.

4 Future work

1. It should be good to add some global propagators. They will bind all
activities using specified resource. They will be checking the quantity
of timeslots needed and available. When some activities can be when-
ever and some can be only in short period, then the first ones can not
be at this period.

2. Another seperate heuristic of rearanging activitities: Something sim-
ilar to maximal matching algorhitm. I will try to move the activity

3



to better possition, and if there is collision with another one, then the
second one will be pushed somewhere else and so on. I will remember
all the reached states (using the hashtable), only states quite similar
to the initial one are allowed.

4


