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Diagonal Matrix

Definition
The matrix A = [aj;] € M(n x n;R) is called diagonal if a;j = 0 for
any i # j, i.e.

all 0



Diagonal Matrix

Definition
The matrix A = [aj;] € M(n x n;R) is called diagonal if a;j = 0 for
any i # j, i.e.

all 0
A=
0 ann
Example
The matrices
10 0 1 0 0 0
0 00 0
02 0|,
00 3 0 01 0
00 0 -2

are diagonal.



Diagonal Matrix of Linear Endomorphism

Proposition

Let ¢: V — V be an endomorphism of vector space V and let
A = (vi,...,Vn) be an ordered basis of V. Then M(p)4 = |aj] is
diagonal if and only if v; is an eigenvector of . Moreover, in such
case eigenvector v; Is associated to the eigenvalue aj;, I.e.

<P(Vi) = ajjVj.



Diagonal Matrix of Linear Endomorphism

Proposition

Let ¢: V — V be an endomorphism of vector space V and let
A = (vi,...,Vn) be an ordered basis of V. Then M(p)4 = |aj] is
diagonal if and only if v; is an eigenvector of . Moreover, in such
case eigenvector v; Is associated to the eigenvalue aj;, I.e.

<P(Vi) = ajjVi.
Proof.

(<) Assume each v; is an eigenvector of ¢ associated to eigenvalue
aj. Then

cp(v,-) =qaiVi=0vi + 0w+ ... +0vi1 + jvi + 0vji1 + ... + 0vp,

i.e. in the i-th column of the matrix M(p) 4 there is «; in the i-th
row and 0’s elsewhere.



Diagonal Matrix of Linear Endomorphism

Proposition

Let ¢: V — V be an endomorphism of vector space V and let
A = (vi,...,Vn) be an ordered basis of V. Then M(p)4 = |aj] is
diagonal if and only if v; is an eigenvector of . Moreover, in such
case eigenvector v; Is associated to the eigenvalue aj;, I.e.

p(vi) = ajiv;.

Proof.
(<) Assume each v; is an eigenvector of ¢ associated to eigenvalue
aj. Then

cp(v,-) =qaiVi=0vi + 0w+ ... +0vi1 + jvi + 0vji1 + ... + 0vp,

i.e. in the i-th column of the matrix M(p) 4 there is «; in the i-th
row and 0’s elsewhere.
(=>) similar to the above O



Example
Let ¢: R> —> R? be given by
o((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2). Then

8 10 8—A 10
M(gp)st:[_?) _3],W¢()\)=det[ 3 _3_)\},

The characteristic polynomial is
Wo(A) = (8—=A)(=3—=XA)+30=A2—5\+6=(\—2)(A—3).
There are two eigenvalues Ay = 2, A\p = 3.



Example
Let ¢: R> —> R? be given by
o((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2). Then

o= S 2] w23 2]

The characteristic polynomial is

Wo(A) = (8—=A)(=3—=XA)+30=A2—5\+6=(\—2)(A—3).
There are two eigenvalues A\; = 2, Ao = 3. In order to get
corresponding eigenspaces solve

Vioy: 6 10 x| _| 0 <:>x——§x
@1 -3 _—5 x | |0 1= 3%

ie. Vo) =1{(— 3X2,X2) e R? | xo e R} = lin((=5,3))

[ 5 10][x 0
o[ 3 8)[2 ][] = e

i.e. V(3) = {(—QXQ,XQ) € R2 | X € ]R} = |in((—2, 1))



Example (continued)

Recall, ¢((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2).
The basis A = ((—5,3),(—2,1)) of R? consists of eigenvectors and

M(w)A=[(2) g],

since



Eigenvectors for Different Eigenvalues

Theorem

Let ay,...,ax € R be pairwise distinct eigenvalues of the linear
endomorphism ¢: V — V. Let Aj = V|, be a finite set of
linearly independent eigenvectors of ¢ associated to «; for

i=1,...;k. Then A= Ay u...u Ag is a set of linearly
independent vectors.



Eigenvectors for Different Eigenvalues

Theorem

Let ay,...,ax € R be pairwise distinct eigenvalues of the linear
endomorphism ¢: V — V. Let Aj = V|, be a finite set of
linearly independent eigenvectors of ¢ associated to «; for
i=1,...;k. Then A= Ay u...u Ag is a set of linearly
independent vectors.

Proof.

For simplicity we assume that A; = {v;}, i.e. each set A; contains
one vector. Assume y1vi + Y2V + ... + vk = 0. By applying ¢
to both sides we get a1y1vi + asyave + ... + akyivik = 0.
Repeating this procedure we get a system of linear equations:

yivi + Y22 + ... + YkVk = 0
a1tyivi + axyv2 + ...+ akykvk =0
U- a%yl vi o+ a%’yz v o+ ...+ oziw( vi =0

k—1 k—1 k—1
o Myt + ay Tyeve o+ TRk =0



Vandermonde Determinant

One can check that the Vandermonde determinant

1 1 1 ... 1
o1 e%) a3 o
2 2 2 2
det| ™1 a3z az e O = H (o — o)
: : : : : 1<i<j<k
k=1 k-1 k-1 k—1
| @ Q Qg O

is non-zero and hence the system U can be brought by elementary
row operations to a reduced echelon form

Mvi =0
03%) =0

Yevk =0



Vandermonde Determinant (continued)

Which implies that v1 = v = ... = v« = 0 since all vectors v; are
non-zero.



Vandermonde Determinant (continued)

Which implies that v1 = v = ... = v« = 0 since all vectors v; are

non-zero. In the general case one can argue in a similar way,

replacing ;v; with vfl)vi(l) +...4+ yfm’)vi(m"), where
v Y (mi)
A 72

" € V(q,) are linearly independent for i = 1,... k.



Vandermonde Determinant (continued)

Which implies that v1 = v = ... = v« = 0 since all vectors v; are
non-zero. In the general case one can argue in a similar way,
fl)vi(l) +...+ yfm’)v.(m"), where

replacing y;v; with ~ :
v,-(l), i) e V(o) are linearly independent for i = 1,... k.
Alternatively, assume that vq,..., v, are linearly dependent and the

) Vi
linear combination
v+ oo+ YmVm =0,

where v; # 0 involves the least number of vectors (perhaps after
rearranging them). Then, by applying ¢ to both sides of the
equation

Y11V + ..o + YmQmVm = 0.
By multiplying the first equation by «a, and subtracting it from the
latter

m(or —amvi + ... + Ym—1(¥m—1 — Om)Vm—1 = 0,

we get a linear combination involving m — 1 vectors, which leads to
a contradiction.



Basis Consisting of Eigenvectors

Corollary

Let V be a finite dimensional vector space. Let oy, ...,ax € R be
pairwise distinct eigenvalues of the linear endomorphism
p:V— V. Then
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Corollary
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Basis Consisting of Eigenvectors

Corollary
Let V be a finite dimensional vector space. Let oy, ...,ax € R be
pairwise distinct eigenvalues of the linear endomorphism
p:V— V. Then
i) ifvi,...,vke Vand p(v;) = ajv;, vi#0 fori=1,... k
then the vectors vi,.. ., vy are linearly independent,



Basis Consisting of Eigenvectors

Corollary
Let V be a finite dimensional vector space. Let oy, ...,ax € R be
pairwise distinct eigenvalues of the linear endomorphism
p:V— V. Then
i) ifvi,...,vke Vand p(v;) = ajv;, vi#0 fori=1,... k
then the vectors vi,.. ., vy are linearly independent,
i) dim V(g +dim V(o) + ... +dim V,,) < dimV,



Basis Consisting of Eigenvectors

Corollary
Let V be a finite dimensional vector space. Let oy, ...,ax € R be
pairwise distinct eigenvalues of the linear endomorphism
p:V— V. Then
i) ifvi,...,vke Vand p(v;) = ajv;, vi#0 fori=1,... k
then the vectors vi,.. ., vy are linearly independent,
i) dim V(g +dim V(o) + ... +dim V,,) < dimV,
i) dim V(g +dim V(o) + ... +dim V(,,) =dimV <= there
exist a basis of V' consisting of eigenvectors of p <= the
matrix of ¢ relative to some basis of V is diagonal.



Basis Consisting of Eigenvectors

Corollary
Let V be a finite dimensional vector space. Let oy, ...,ax € R be
pairwise distinct eigenvalues of the linear endomorphism
p:V— V. Then
i) ifvi,...,vke Vand p(v;) = ajv;, vi#0 fori=1,... k
then the vectors vi,.. ., vy are linearly independent,
i) dim V(g +dim V(o) + ... +dim V,,) < dimV,
i) dim V(g +dim V(o) + ... +dim V(,,) =dimV <= there
exist a basis of V' consisting of eigenvectors of p <= the
matrix of ¢ relative to some basis of V is diagonal.

In the part iii) of the corollary the basis of V consists of the union
of bases of V() fori=1,... k.



Example
Let ¢: R® — R3 be given by
o((x1,x2,x3)) = (2x1 — 2% + x3,2x2 + Xx3,4x3). Then
2 -2 1
M@se=1 0 2 1|, wo(\)=(2-N24-N).
0 0 4



Example
Let ¢: R® — R3 be given by
o((x1,x2,x3)) = (2x1 — 2x2 + Xx3,2x2 + Xx3,4x3). Then

2 -2 1
Ms=1]0 2 1|, w()=(2-N3*4-N.
0 0 4

The eigenvalues of ¢ are 2 and 4.



Example
Let ¢: R® — R3 be given by
o((x1,x2,x3)) = (2x1 — 2x2 + Xx3,2x2 + Xx3,4x3). Then

2 -2 1
M(p)st = [ 0 21 ] wy(\) = (2 — A% (4 —)\).
0 0 4

The eigenvalues of ¢ are 2 and 4.

0 -2 1 X1 0
V(2): 0 0 1 x | =10 — x» =x3 =0,
0 0 2 X3 0

V(2) = {(X1,0,0) € R?’ | X1 € ]R} = Iin((l,0,0))



Example
Let ¢: R® — R3 be given by
o((x1,x2,x3)) = (2x1 — 2x2 + Xx3,2x2 + Xx3,4x3). Then

2 -2 1
M(p)st = [ 0 21 ] wy(\) = (2 — A% (4 —)\).
0 0 4

The eigenvalues of ¢ are 2 and 4.

0 -2 1 X1 0
V(2): 0 0 1 x | =10 — x» =x3 =0,
0 0 2 X3 0

V(2) = {(X1,0,0) € R?’ | X1 € ]R} = Iin((l,0,0))

-2 =21 X1 0
Vigy: 0 21 x | =10 < x; =0 and x3 = 2xp,
0 00 X3 0

Viay = {(0,x2,2x2) e R* | xo € R} = lin((0,1,2))



Example (continued)

Vio) = {(x1,0,0) € R®* | x1 € R} = lin((1,0,0))
Vigy = {(0,2,2x) € R* | xo € R} = 1in((0,1,2))

dim Vo) +dim V(4) =1+ 1 <3 =dim R3, therefore there is no
basis of R such that matrix of ¢ relative to it is diagonal.



Diagonalizable Matrix

Corollary

Let V be a finite dimensional vector space and let dim V = n. If
the endomorphism ¢: V. — V has n pairwise distinct eigenvalues
then there exists a basis of V' consisting of eigenvectors.



Diagonalizable Matrix

Corollary

Let V be a finite dimensional vector space and let dim V = n. If
the endomorphism ¢: V. — V has n pairwise distinct eigenvalues
then there exists a basis of V' consisting of eigenvectors.

Definition

Let Ae M(nx n;R). We say the matrix A is diagonalizable if it is
similar to a diagonal matrix, that is there exists an invertible matrix
C € M(n x n;R) such that the matrix C"*AC is diagonal.



Diagonalizable Matrix

Corollary

Let V be a finite dimensional vector space and let dim V = n. If
the endomorphism ¢: V. — V has n pairwise distinct eigenvalues
then there exists a basis of V' consisting of eigenvectors.

Definition

Let Ae M(nx n;R). We say the matrix A is diagonalizable if it is
similar to a diagonal matrix, that is there exists an invertible matrix
C € M(n x n;R) such that the matrix C"*AC is diagonal.

Proposition

Matrix A€ M(n x n;R) is diagonalizable <= there exists a basis
of R" consisting of eigenvectors of the endomorphism

¢: R" — R" given by the condition M(p)s = A.



Diagonalizable Matrix

Corollary

Let V be a finite dimensional vector space and let dim V = n. If
the endomorphism ¢: V. — V has n pairwise distinct eigenvalues
then there exists a basis of V' consisting of eigenvectors.

Definition

Let Ae M(nx n;R). We say the matrix A is diagonalizable if it is
similar to a diagonal matrix, that is there exists an invertible matrix
C € M(n x n;R) such that the matrix C"*AC is diagonal.

Proposition

Matrix A€ M(n x n;R) is diagonalizable <= there exists a basis
of R" consisting of eigenvectors of the endomorphism

¢: R" — R" given by the condition M(p)s = A.

Moreover, if A is such basis and C = M(id)% then the matrix
CLAC is diagonal.



Example

. 8
Matrix A = 3 _3
©((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2) has two eigenvalues 2 and
3. We have computed V() = lin((=5,3)) and V(3) = lin((-2,1)).
Set A= ((—5,3),(—2,1)) and C = M(id)%.

is diagonalizable. Endomorphism



Example

. 8
Matrix A = 3 _3
©((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2) has two eigenvalues 2 and
3. We have computed V() = lin((=5,3)) and V(3) = lin((-2,1)).
Set A= ((—5,3),(—2,1)) and C = M(id)%.

is diagonalizable. Endomorphism

D=5 5| =MoL - MM )ZM(ia)



Example

. 8
Matrix A = 3 _3
©((x1,x2)) = (8x1 + 10x2, —3x1 — 3x2) has two eigenvalues 2 and
3. We have computed V() = lin((=5,3)) and V(3) = lin((-2,1)).
Set A= ((—5,3),(—2,1)) and C = M(id)%.

is diagonalizable. Endomorphism

0 3

[ -5 —2 o [ 12
S I DRt

D [ 2.0 ] — M()u = M(id)2AM ()M (id)%



Example (continued)

2 -2 1
Matrix A= | 0 2 1 | is not diagonalizable. There is no basis
0 0 4

of R® consisting of eigenvalues of the endomorphism
o((x1,x2,x3)) = (2x1 — 2x2 + x3,2x0 + X3,4X3).



Example (continued)

2 -2 1
Matrix A= | 0 2 1 | is not diagonalizable. There is no basis
0 0 4

of R® consisting of eigenvalues of the endomorphism
o((x1,x2,x3)) = (2x1 — 2%2 + X3, 2x2 + x3,4x3). Matrix
B = (1) _é ] is not diagonalizable (over R). It has no (real)

eigenvalues.



Application

Proposition
all 0
Let A = be a diagonal matrix. Then
0 ann
ar 0
Am = for any m € N.



Application

Proposition

all 0
Let A = be a diagonal matrix. Then

0 ann

ar 0
AT — for any m e N.
0 am

Remark

Note that this, in general, does not hold for non—diagonal
1 2

2
. 11
matrices, for example [ ] = [ 01

2
01 ]andl #* 2.



Application (continued)

8 10

LetA:{_3 _3

] . Compute A".



Application (continued)

8 10
Let A= [ 3 _3
A = CDC™ 1. Therefore A" = CD"C1.

S Y s |

—5.2n 4+ 2.3l _g.ontl 4 10.3n
= 3.0n  _ 3n+l 3.9n+1  _ 5.30 =

a[-5 —10] . ..[ 6 10]_
2{3 6| T3 |3 5]~

]. Compute A”. Recall D = C1AC hence



Application (continued)

8 10
Let A= [ 3 _3
A = CDC™ 1. Therefore A" = CD"C1.

| 8 2 ][22 o 1 2]

N 3 1 0 3 -3 -5 |
—5.2" 4+ 2.371 _g5.ontl 4 o19.30 ]
3.0 _ 3n+1 3. 2n+1 _ 5.3N -

a[-5 —10] . ..[ 6 10]_
2{3 6| T3 |3 5]~

S SO i B e R Gl R R R B

= (3-2"=2-3")h + (—2" + 3")A.

]. Compute A”. Recall D = C1AC hence



Application (continued)

AN = (3.27 —2.3")] + (=2" + 3")A.

Note that for n = 2
A2 =5A —6l,

we recover the characteristic polynomial wa(\) = A2 — 5\ + 6.



Application (continued)

AN = (3.27 —2.3")] + (=2" + 3")A.

Note that for n = 2
A2 =5A —6l,

we recover the characteristic polynomial wa(\) = A2 — 5\ + 6.
Since A and [ are linearly independent it follows that

A= (=2"+3"A+(3:2"=2-3") (mod wa(N)),
i.e. the polynomial
AT =[(=2"+3")A+ (3-2"—2-37)],

is divisible by the polynomial wa(\).



Determinant of a Diagonalizable Matrix

Proposition
Let A€ M(n x n;R) be a diagonalizable matrix and let
A1, ..., An € R denote the eigenvalues of A. Then

detA= A1 ...- Apn



Determinant of a Diagonalizable Matrix

Proposition
Let A€ M(n x n;R) be a diagonalizable matrix and let
A1, ..., An € R denote the eigenvalues of A. Then

detA= A1 ...- Apn

Proof.
Let
A O 0
0 X 0
D=
0 O An
Then



Coefficients of Characteristic Polynomial

Remark
In general, for any matrix Ae M(n x n;R)

wa(\) = (=17 [ Y] detAyy | N,
i=0 JAL, )
#J=n—i
where if J = {j17~~-7jn—i} and 1 <Sp<...<jo—i<n

det AJ;J = det Aj1

seeeidn—iiJlyeeeJn—i?

denotes a minor of order (n — i) (so called principal minor).



Coefficients of Characteristic Polynomial

Remark
In general, for any matrix Ae M(n x n;R)

wa(A) = D (=1 | D] detAyy [N,

i=0 Jc{1,...,n}
#J=n—i

where if J = {j17~~-7jn—i} and 1 <Sp<...<jo—i<n
det AJ;J = det Ajlvn:jn—i;jlv-"vjn—i7

denotes a minor of order (n — i) (so called principal minor).

In other words, the coefficient of X is equal to (—1) times the sum
of all prinicipal minors of order (n — ).



Coefficients of Characteristic Polynomial (continued)

Proof.
If A(N) = [ajj(\)] where aji()) are differentiable functions of

variable )\, the Jacobi formula holds

L a0,

4 et an) = Tr(adi(AL) ¢

dA

where %A()\) = [f—/\a;j()\)] and for B = [bjj] the trace of matrix

B € M(n x n;R) is equal to Tr(B) = >,7_; bi.



Coefficients of Characteristic Polynomial (continued)

Proof.
If A(N) = [ajj(\)] where aji()) are differentiable functions of
variable ), the Jacobi formula holds

4 et A(N) = Tr(adj(A(N)) d

Y AN,

where %A()\) = [f—/\a;j()\)] and for B = [bjj] the trace of matrix
B € M(n x n;R) is equal to Tr(B) = >,7_; bi.

If A= [aj] e M(nx n;R) is a square matrix, by the Jacobi formula

%WA(A) = Tr(adj(A= M) (=) == > det(A—Al),.,.



Coefficients of Characteristic Polynomial (continued)
Proof.

Using induction one can show that

ddAI,. wa(A) = (1)t Y det(A— Al



Coefficients of Characteristic Polynomial (continued)
Proof.

Using induction one can show that

di .

T wal) = (-1)'1 D det(A— ),
Jcd{1,.. 7n}

H#J=n—i

The claim follows from the Taylor formula, i.e.

ORI

d’




Coefficients of Characteristic Polynomial (continued)
Proof.

Using induction one can show that

di .

T wal) = (-1)'1 D det(A— ),
JC{17 7n}

H#J=n—i

The claim follows from the Taylor formula, i.e.

I

d’

Remark

The Jacobi formula follows directly form the chain rule for total
derivatives (note that %U det A = (—1)"*/ det A hence
d(det)a = adj(A) ).



Coefficients of Characteristic Polynomial (continued)

The coefficients of characteristic polynomial are also symmetric
functions of eigenvalues (permuting, i.e. changing the order of
factors does not change the coefficients).

A =2)(A = X2) = A% — (A1 + A2)A + Ao,
(A=A (A=A2) (A=A3) = X3 —(A1+ A2+ 23) A2+ (A Ao+ A1 A3+ Ao h3) A —
—A1A2A3,
A=A)A =)A= A3)A=Ag) = M = (A + Ao+ A3 + A)\3+
(A2 + M3+ At + Aods + Aodg + Azhg) A2 —
— (A A2A3 + Ao + A Az g + Aodz ) A + A Aoz,



Elementary Symmetric Polynomials

Definition
The m—th symmetric polynomial in variables x, ..., x,, where
m = 0 (assume ey = 1) is,

em = em(X1,...,Xn) = Z Xiy Xiy =+ v Xy«
I<h<i<..<im<n



Elementary Symmetric Polynomials (continued)

Proposition

The coefficients of the characteristic polynomial wa of matrix
A€ M(n x n;C) are (up to a sign) elementary symmetric
polynomials of the (complex) eigenvalues of A, i.e.

n

wa(A) = Y (=1)"Tej(Ag, .., An) A
j=0

Proof.
Omitted (use induction).

O¢f. I. G. Macdonald Symmetric Functions and Hall Polynomials, Oxford
2015



Partitions

Definition
A partition p of a natural number n € N is any sequence of natural
numbers p1, po, 43 - . . such that

|| = p1 + po + pz + ... =n,
and
M1 = p2 = p3 = .. ..

The numbers py, pi2, 3 . . . are called parts of p. The number of
non—zero parts /(u) of i is called the length of L.

®alternatively cf. R. P. Stanley Enumerative Combinatorics vol. 2,
Cambridge 2001



Partitions

Definition
A partition p of a natural number n € N is any sequence of natural
numbers p1, po, 43 - . . such that

lul=p1 +p2+p3+...=n,

and
M1 = o = p3 = ...

The numbers py, pi2, 3 . . . are called parts of p. The number of
non—zero parts /(u) of i is called the length of L.

Example

(2,2,1,0,0) is a partition of the number 5 of length 3, i.e. |u| =5
and /(i) = 3. It is denoted alternatively as u = (112239, .)).

®alternatively cf. R. P. Stanley Enumerative Combinatorics vol. 2,
Cambridge 2001



Monomial Symmetric Polynomials

Definition

For any partition p = (1K12%23% ) such that || = m and

I(11) < n the m—th monomial symmetric polynomial m,, is given by
the formula

1 o(1 o(2 o(n
M = Mty e %) Y gl e

==

ki'ko!. =2
where S, denotes the n—th symmetric group (i.e. the group of all
permutations of the set {1,...,n}).



Monomial Symmetric Polynomials

Definition

For any partition p = (1K12%23% ) such that || = m and

I(11) < n the m—th monomial symmetric polynomial m,, is given by
the formula

1 o(1 o(2 o(n
M = Mty e %) Y gl e

T kilko! .

o€S,

where S, denotes the n—th symmetric group (i.e. the group of all
permutations of the set {1,...,n}).

Example
Let p = (2,1,0) and n = 3, then

2 2 2, .2 2 2
my (X1, X0, X3) = X{ X2 + X{ X3 + X1X5 + x5X3 + X135 + X2X3.



Monomial Symmetric Polynomials (continued)

Remark

The constant m is chosen to make coefficients of all
monomials in my, equal to 1. For example, let u = (1,1,0) and
n =3, then

my (X1, X2, X3) = X1X2 + X1X3 + X2X3.
For example, let n = (1,1,1) and n = 3, then
my (X1, X2, X3) = X1X2X3.
Analogously for i = (2,0,0) and n = 3

2 2 2
mp(X17X27X3) = X]_ + X2 +X3'



Complete Symmetric Polynomials

Definition
For any m > 0 the m—th complete symmetric polynomial hp, in
variables xi, ..., x, is given by the formula

hm = hm(x1, ..., Xxn) = Z My (X1, ..., Xn).
lul=m

We set hg = 1 and h,, = 0 for any m > n.



Complete Symmetric Polynomials

Definition
For any m > 0 the m—th complete symmetric polynomial hp, in
variables xi, ..., x, is given by the formula

hm = hm(x1,. .., Xn) = Z My (X1, ..., Xn).

lul=m
We set hg = 1 and h,, = 0 for any m > n.

Example
Let n = 3, then

h(x1,x2,x3) = x1 + X2 + X3,

ha(x1,x2,X3) = f1(2,0,0) tH@1,1,0) = ><12 +X22 +X32 + X1X2 +X1X3 +X2X3.

The polynomial h,, is sum of all monomials in variables x1, ..., x,
of degree m.



Power Symmetric Polynomials

Definition
For any m > 1 the m—th power symmetric polynomial p,, in
variables xi, ..., x, is given by the formula

Pm = Pm(X1, .- Xn) = Mamy = X{" + ... +X;".

We set py = n.



Power Symmetric Polynomials

Definition
For any m > 1 the m—th power symmetric polynomial p,, in
variables xi, ..., x, is given by the formula

Pm = Pm(X1, .- Xn) = Mamy = X{" + ... +X;".

We set py = n.

Example
For m=2and n=3

2 2 2
p2(x1,x2,X3) = X + X35 + X3.



Symmetric Polynomials

Definition
Polynomial P(x1,...,xn) € C[x1,...,Xn] is symmetric, if for any
c€ES,
:D(Xa(l)7 N 7X0'(n)) = :D(Xl7 N 7Xn).
Proposition

Any symmetric polynomial in n variables is a polynomial of
hi,...,h, (resp. of p1,...,pn, resp. of er,..., ep).

Proof.
Omitted.



Newton ldentities
Let
E(t) = (14xit)(1+xat)-...-(14+x,t) = L+ ert+ext’+.. . +est" =

n

= Z em(X1,. .., %xn)t",

m=0
be the generating function for the elementary symmetric
polynomials. Similarly, let
1 1 1
- 1—xt 1—xot = 1—x,t

= (M4xt+x2 24+ ) (L +xot+x3t2 4. ) (T xat+ X224 ) =

H(t)

RE

=14+ Mmt+mt’+...= R(X1, + ooy X)) E™.
m=0
X1 X2 Xn
P(t) = + +...+ = +pot+p3t+... =
(t) 1—txq 1—1tx 1—tx, Prp2 Ps
o0

= Z perl(Xla s 7Xn)tm‘
m=0



Newton Identities (continued)
The following (easy to check) equations hold

H(t)E(—t) =1,
Pl = .
P-t) = H

giving raise (by the uniqueness of the Taylor expansion, comparing
the coefficients at t¥) to the following identities, respectively

Z mek =0, for k=1

m=0

k
D hmpi—mi1 = (k+ Dy, for k>0,

m=0

k
Z (_1)k_mempk—m+1 = (k+1)exy1, for k=0

m=0



Newton Identities (continued)

Usually, those identities are written in a slightly different but
equivalent (simple exercise) way

k
Z )" emhm_k =0, for k>1

m=0

k
> Bk—mpm = khi,  for k=1
m=1

k
Z (—1)’"*1ek_mpm = key, fork=>=1
m=1
Moreover, it is possible to express en’s and hy,'s solely in terms of
pm's which lead for example to formulas for the coefficients of the
characteristic polynomial wy in terms of tr(A), tr(A?), ... tr(A")
(see Faddeev—LeVerrier algorithm).



Newton Identities (continued)

Proposition
The following formulas hold

(X1, ...y Xn) = Z L

T k1 P
R
p=(1k12k2 )
em(Xla"'>Xn) = Z (_1)m_l(u);kpﬂlp#2
jhl=m [1;75k!
p=(1k12k2 )
where
Pu = Pp1Ppus

Proof.

Omitted. Observe that the identities do not depend on n (i.e. the

number of variables).

0J



Newton |dentities — Example

h = pay = p1,
hy = py + pa,1) = Paoot..) + Pazeo..) =

o 1 _1(2+ )
T 10.01.2 12 oPtPL = 5P+ P2),

h3 = pay + P,1) + Pa,1,1) = P10203t..) + Paiat.) + Pas..) =

T

! 1 1 11 1,
ST TS TR S T L EF LA I T AL



Newton |dentities — Example

€1 = Pa) = P1,

€2 = —P@2) T P(11) = —P@o2t.) T Pa20.) =
1 1 1

= 10.01.0L. 1P + 125 PLPL = E(Pf - p2),
€3 = P3) — P2,1) T P1,1,1) = P(102031) — P(1121.) t P13, ) =
1 1 1 11 1,
= 311!P3— 111091, 1!P2P1+1373!P1P1P1 = §P3—§P1P2+6P1,



Newton Identities — Example (continued)

Three numbers x, y, z € R satisfy the following system of equations

X + y 4+ z = 2
X2 4+ y2 + 22 = 6,
3+ yd o+ 2 = s

Determine xyz. The problem can be solved using the identity

1 1 1

P 1.3
€3 = 3P3 2P1Pz+6P1,
that is ) ) )
—Z.8—-2.2.64-.28=
Xyz 3 5 +6
8 4
=—-—64+=-=-2
3 3

In fact, x =1,y = 2,z = —1 (up to a permutation).



Schur Polynomials

ial x® = x{"'x52 ... X i i i
For any monomial x = x;" x5 an define the antisymmetric

(or skew—symmetric) function

aa(X1,...,Xn) = Z sgno(o.x%),

o€eS,

where

a _ o1 an ap
o.X = Xo(l)Xa(2) - Xa(n)‘

For example, if & = (1,2,0) and n = 3 then

2 2 2 2 2 2
an (X1, X2,X3) = X1X3 + X5X3 + X1X5 — X[ X2 — X5X3 — X1X3-



Schur Polynomials (continued)

The alternative definition of the determinant implies that

a1 a a3 n
X1t Xt X X1
(071 (0% a3 Qip
Xp© X X X2
a1 a a3 n
an(X1,...,%xy) =det [ X3~ X3° X3 X3
a1 a2 a3 107
_Xn Xn Xn XI‘I "




Schur Polynomials (continued)
From the properties of the determinant it follows that
Aa(Xt,y oy Xis oy Xjy ooy Xn) = —aa(X1, ooy Xjy oo Xis ooy Xn),
(i.e. a, is alternating and hence antisymmetric) and that
a, =0,

if some o; = aj for i # j. It follows that the polynomial a, is
divisible by the polynomial x; — x; in the ring Z[x, ..., x,]. For
example for « = (1,2,0) and n =3

2 2 2 2 2 2
an (X1, X2, X3) = X1X3 + X5X3 + X1X3 — Xj X2 — X5X3 — X|X3 =

= (x1 —x2)(—x1x2 + x1X3 + X2X3 — xg) =

= (X2 — x1)(x3 — x1) (X3 — x2).



Schur Polynomials (continued)
Without the loss of generality one can assume that

a1 > > ... > ap = 0.

This implies that oy > n—1,a5 > n— 2, ... therefore if
d=(n—-1,n—2,n—3,...,2,1,0) then

n=a—= 67
has non—negative components. Moreover
o~ p2 = (o1 —(n—1)) = (a2 — (1= 2)) =y —az ~1>0,

2 —pu3 =(ag—(n—2)) —(az—(n—3)) =ax—az3 —1>0,

that is p is a partition. This can be reversed, that is for any
partition u, the o = i + § gives a non—zero function a,. Observe
that as(xi, ..., xn) is the Vandermonde determinant,



Schur Polynomials (continued)

Definition
For any partition ppand § = (n—1,n—2,...,2,1,0) the Schur
polynomial (in variables xi, ..., x,) is the symmetric polynomial in

Z|xi,...,xn] given by the formula

Au+6

Sy = Su(X1,...,Xn) = 2

Remark

Schur polynomials for ju such that || = m form a Z—basis of the
homogeneous symmetric polynomials of degree m. Schur
polynomials play an important role in combinatorics, algebraic
geometry, representation theory of the symmetric group, general
linear group and the unitary group.



Schur Polynomials (continued)

B -1 —2 -3 7
X{qu(n ) X{Ler(n ) X{L:ﬁ(n ) X{tn+0
-1 —2 -3
Xé“Jr(" ) Xéﬁer(n ) X{¢3+(n ) Xéln"ro
-1 —2 -3
det Xu1+(n ) Xuz+(n ) Xu3+(n ) L +0
3 3 1 3
-1 -2 -3
_X#1+(n ) X,’f2+(n ) X{La-&-(n ) X#n+0
r.n—1 n—2 n—3 0]
n— n— n—
Xy . Xy ) Xy X x%
n— n— n—
det | X3 X3 X3 X3
gt X2 X




Schur Polynomials — Example

6 =(2,1,0)
ss = —(x—x1) (3 —x1) (3 — x2)
R
5(2,0,0) (X1, X2, X3) = ;det 3 3 x| =
D IR
1
= 5*5(—(X2—X1)-

- (x3 = x1) (x3 — x2) (X32 + xox3 + x1x3 + X22 + x1 X0 + X12)) =

= X12 +X22 + X§ + X1X2 + X1X3 + XoX3.



Schur Polynomials — Another Example

§=(2,1,0)
S§ = — (X2 — X1) (X3 — X1) (X3 — X2)
1 X X
S(1,1,0) (X1, X2, X3) = . det | x3 x3 XJ| =
1
. (— (2 —x1) (x3 = x1) (x3 — x2) (x2x3 + x1X3 + X1%2)) =

= X1 X2 + X1X3 + X2X3.



Semistandard Young Tableau

Definition

For any partition i a semistandard Young tableau T of shape p is a
way of placing numbers into the diagram (i1 boxes in the first row,
p2 in the second, etc.)

such that
i) numbers in rows are weakly increasing (from left to right),

i) numbers in columns are strictly increasing (top to down).



Semistandard Young Tableau

Definition

The set SSYT,, is the set of all semistandard Young tableaux and
SSYT,(n) is the set of all semistandard Young tableuax with
entries not greater than n. For any T € SSYT,(n)

#1/5 #2/ #n/s
X = X ceet Xg s

that x; is raised to the number of occurrence of j in T.

cf. B. E. Sagan, The Symmetric Group, Springer 2001



Semistandard Young Tableau

Definition

The set SSYT,, is the set of all semistandard Young tableaux and
SSYT,(n) is the set of all semistandard Young tableuax with
entries not greater than n. For any T € SSYT,(n)

#1/5 #2/ #n/s
X = X ceet Xg s

that x; is raised to the number of occurrence of j in T.

Proposition
Su(xt, ..., Xxn) = Z xT.
TeSSYT,(n)
Proof.
Omitted.!

cf. B. E. Sagan, The Symmetric Group, Springer 2001



Semistandard Young Tableau - Example

SSYEAn)z{

Sy = X12 + X22 + x§ + X1 X2 + X1 X3 + X2X3.

2
3 )

1

1

2

)

{1
SSYT,(n) =

pw=(1,1,0), n=3,

1

2 (|3

Sy = X1X2 + X1X3 + X2X3.



Pieri’'s Formula

Proposition

SuS(m) = D S0

where the sum is over all paritions v obtained from y by adding m
boxes but no two in a single column.

Proof.
Omitted. ]



Pieri's Formula — Example

5(2,1)5(2) = S(a,1) T 533,2) +53,1,1) T 52,2,1)>




Symmetric Matrix — Spectral Theorem

Definition
Matrix A€ M(n x n;R) is called symmetric if AT = A.

Proposition
Let A€ M(n x n;R) be a symmetric matrix. Then A is
diagonalizable.



Symmetric Matrix — Spectral Theorem

Definition

Matrix A€ M(n x n;R) is called symmetric if AT = A.
Proposition

Let A€ M(n x n;R) be a symmetric matrix. Then A is
diagonalizable.

Moreover there exists an orthogonal basis of R” consisting of
eigenvectors of the endomorphism M(p)s = A, i.e. vectors of that
basis are pairwise perpendicular.



Example

Let

Then
wa(A) = —(A+3)[(1 = A) (=2 =) —4] = —(A +3)*(A - 2),

V(3 = lin((~1,2,0),(0,0,1)),
V(o) = lin((2,1,0)),

and the eigenvectors are pairwise perpendicular.



Minimal Polynomial

Definition

Let Ae M(n x n;R). The minimal polynomial 14 of the matrix A
is a non-zero monic polynomial with real coefficients of the least
degree such that pa(A) = 0.

Equivalently, the minimal polynomial of A is the non-zero monic
polynomial of the least degree which image under the map

R[x] 3 P(x) — P(A) € M(n x nm;R),

is the zero matrix (or which divides each P(x) € R[x] with
P(A) = 0).



Minimal Polynomial

Definition

Let Ae M(n x n;R). The minimal polynomial 14 of the matrix A
is a non-zero monic polynomial with real coefficients of the least
degree such that pa(A) = 0.

Equivalently, the minimal polynomial of A is the non-zero monic
polynomial of the least degree which image under the map

R[x] 3 P(x) — P(A) € M(n x nm;R),

is the zero matrix (or which divides each P(x) € R[x] with
P(A) = 0).

By the Cayley—Hamilton Theorem the minimal polynomial of A
divides the characteristic polynomial of A, i.e. pua | wa.



Minimal Polynomial

Remark
The degree of the minimal polynomial pa is equal to the smallest
number m > 1 such that

A™ e lin(A™L AL AD),

and if
AT = OszlAm_l + ...+ Oqu + Oé()AO,

for some o € R, then

,uA(/\) =\"— (am+1/\m71 + ... +a A+ Oéo).



Example

8 10
-3 -3
monic divisors of wy are wa, A — 2, A — 3 and 1. Since A is not a
diagonal matrix then s = wa.

Let A= { ] Then wa(A) = (A —2)(A — 3) and the only



Example

8 10
-3 -3
monic divisors of wy are wa, A — 2, A — 3 and 1. Since A is not a
diagonal matrix then s = wa.

Let A= [ ] Then wa(A) = (A —2)(A — 3) and the only

2 -2 1
Let B=| 0 2 1 |. Thenwg(\) =(2—X)2(4—\). Then
0 0 4

only monic divisors of wg are —wg, (A —2)2, A —2, (A — 2)(\ — 4),
A —4 and 1. It can be checked that ug = —wg.



Example

8 10
-3 -3
monic divisors of wy are wa, A — 2, A — 3 and 1. Since A is not a
diagonal matrix then s = wa.

Let A= [ ] Then wa(A) = (A —2)(A — 3) and the only

2 -2 1
Let B=| 0 2 1 |. Thenwg(\) =(2—X)2(4—\). Then
0 0 4

only monic divisors of wg are —wg, (A —2)2, A —2, (A — 2)(\ — 4),
A —4 and 1. It can be checked that ug = —wpg. Equivalently, the

matrix
4 —8 4
B?=|0 4 6|,
0 0 16

is not a linear combination of matrices B and /5.



Minimal Polynomials of Similar Matrices

Proposition
Let A, B e M(n x n;R) be similar matrices. Then pua = pg.



Minimal Polynomials of Similar Matrices

Proposition
Let A, B e M(n x n;R) be similar matrices. Then pua = pg.

Proof.

If A= C1BC then 0 = pa(A) = Ctua(B)C therefore

ua(B) = 0. By definition pug | pa and analogously pa | . Since
both polynomials are monic pua = ug. O



Minimal Polynomials of Similar Matrices

Proposition
Let A, B e M(n x n;R) be similar matrices. Then pua = pg.
Proof.

If A= C1BC then 0 = pa(A) = Ctua(B)C therefore
ua(B) = 0. By definition pug | pa and analogously pa | . Since

both polynomials are monic pua = ug. O
Remark
Non-similar matrices can have the same minimal polynomials. For
example
100 1 00
A=|(0 2 0], B=|01 0|,
0 0 2 0 0 2

have the same minimal polynomial

ra(A) = pe(A) = (A=1)(A -2)



Criterion for Diagonalizability

Theorem
Let Ae M(n x n;R). Matrix A is diagonalizable if and only if the
minimal polynomial of A factors as follows

pa(A) = (A —ar)( A —a2) ... (A —ayk),

where a; € R and a; # «j, i.e. «; are pairwise distinct numbers.



Criterion for Diagonalizability

Theorem

Let Ae M(n x n;R). Matrix A is diagonalizable if and only if the
minimal polynomial of A factors as follows

pa(A) = (A —ar)( A —a2) ... (A —ayk),
where a; € R and a; # «j, i.e. «; are pairwise distinct numbers.

Example

2 -2

8§ 10
A:[—3 —3]’ B[g 3
pad) = (A=2)(A=3),

pe(d) = (A =2)*(A - 4).

Matrix A is diagonalizable and matrix B is not diagonalizable.



Criterion for Diagonalizability (continued)

Example
The minimal polynomial of matrix

0 -1
S|
is equal to its characteristic polynomial. The minimal polynomial

has pairwise different complex roots so the matrix C diagonalizes
over C but not over R.



Criterion for Diagonalizability (continued)

Corollary

Matrix A€ M(n x n; C) of finite order (i.e., A™ = | for some
m > 1) is diagonalizable (over C).



Criterion for Diagonalizability (continued)

Corollary
Matrix A€ M(n x n; C) of finite order (i.e., A™ = | for some
m > 1) is diagonalizable (over C).

Proof.
The minimal polyomial of A divides the polynomial x™ — 1 which
has only simple roots. O



Criterion for Diagonalizability (continued)

Corollary
Matrix A€ M(n x n; C) of finite order (i.e., A™ = | for some
m > 1) is diagonalizable (over C).

Proof.

The minimal polyomial of A divides the polynomial x™ — 1 which
has only simple roots. O
Warning

This theorem fails in positive characteristic, take say

[(1) H e M(2 x 2:F,).



Criterion for Diagonalizability (continued)

Proof.
(=) Let D = C"YAC, by the previous proposition 14 = pp. Let
ai,...,ak € R be all pairwise distinct eigenvalues of matrix D. For

anyi=1,...,k, Vi € V(a,-)

(D —ajl)vi = (aj —aj)vi for j=1,... k.



Criterion for Diagonalizability (continued)

Proof.
(=) Let D = C"YAC, by the previous proposition 14 = pp. Let
ai,...,ak € R be all pairwise distinct eigenvalues of matrix D. For

anyi=1,...,k, Vi € V(a;)
(D —ajl)vi = (aj —aj)vi for j=1,... k.

It follows that for any i =1,...,k, v; € V(,,) and any
my,...,mg =0

[(D — all)ml e (D — Ozk/)mk]vi = (Oé,‘ — Oél)ml et (Oé,‘ — ak)mkv,-.



Criterion for Diagonalizability (continued)

Proof.
(=) Let D = C"YAC, by the previous proposition 14 = pp. Let
ai,...,ak € R be all pairwise distinct eigenvalues of matrix D. For

anyi=1,...,k, Vi € V(a;)

(D —ajl)vi = (aj —aj)vi for j=1,... k.

It follows that for any i =1,...,k, v; € V(,,) and any
my,...,mg =0
[(D — all)ml .. (D — Ozk/)mk]vi = (Oé,‘ — Oél)ml et (Oé,‘ — ak)mkv,-.

Since for any P(x) € R[x]
P(D)=0 < P(D)vi=0 forany i=1,...,k, vie V,,
it follows that the minimal polynomial pa(A) is equal to

upA) = A —ag) ... - (A —ak).



Criterion for Diagonalizability (continued)

Proof.
(<) Let
Q) = i“‘_(z)i for i=1,... k.
Since
GCD(QL (V). - Qu() = L.
there exist polynomials P, ..., P € R[x] such that

Pr(AN)@Qi(A) + ...+ P(N)Qk(N) = 1. (*)



Criterion for Diagonalizability (continued)

Proof.
(<) Let
Qi(\) = im_();)’ for i=1,...,k
Since
GCD(Q1(N), ..., Qk(N)) =1,
there exist polynomials P, ..., P € R[x] such that
Pl()\)Ql()\)—i-—i-Pk()\)Qk()\) =1. (*)
Since pa | wa, the numbers a1,...,ax € R are eigenvalues of

matrix A.



Criterion for Diagonalizability (continued)

Proof.
(<) Let
A

Qi(\) = ﬁ\LA—(a), for i=1,...,k

Since
GCD(Q1(N), ..., Qk(N)) =1,

there exist polynomials P, ..., P € R[x] such that

P1()\)Ql()\)++Pk()\)Qk()\) =1. (*)
Since pa | wa, the numbers a1,...,ax € R are eigenvalues of
matrix A. The union of bases of the eigenspaces V(,,),..., V(q,) is

a linearly independent set.



Criterion for Diagonalizability (continued)

Proof.
(<) Let
A

Qi(\) = ﬁ\LA—(a), for i=1,...,k

Since
GCD(Q1(N), ..., Qk(N)) =1,

there exist polynomials P, ..., P € R[x] such that

P1()\)Ql()\)++Pk()\)Qk()\) =1. (*)
Since pa | wa, the numbers a1,...,ax € R are eigenvalues of
matrix A. The union of bases of the eigenspaces V(,,),..., V(q,) is

a linearly independent set. It is enough to show that it spans R".



Criterion for Diagonalizability (continued)

Proof.
For any (column) vector ve R" and any i =1,...,k
Q,'(A)V S \/(al.),
because
ker(A - a,-l) = V(a,-)
and

(A—ail)(Qi(A)v = pa(A)v = 0.



Criterion for Diagonalizability (continued)

Proof.
For any (column) vector ve R" and any i =1,...,k
Q,'(A)V S \/(al.),
because
ker(A - a,-l) = V(a,-)
and

(A= ail)(Qi(A)V = pa(A)v = 0.

Let v € R” be any (column) vector. Substituting matrix A to the
equation (??) and multiplying it by vector v on the right

v = Ql(A) (Pl(A)V) + ...+ Qk(A> (Pk(A>V) ,

where

Q,(A) (P,(A)V) € V(Oéi) for = 1, ey k.



Diagonalizability on Invariant Subspace

Definition
Let ¢: V — V be an endomorphism and let W < V be subspace. Then
W is an invariant subspace of ¢ if

(W) c W.



Diagonalizability on Invariant Subspace

Definition
Let ¢: V — V be an endomorphism and let W < V be subspace. Then
W is an invariant subspace of ¢ if

(W) c W.

Proposition
Let W be an invariant subspace of a diagonalizable endomorphism
p: V-V,



Diagonalizability on Invariant Subspace

Definition
Let ¢: V — V be an endomorphism and let W < V be subspace. Then
W is an invariant subspace of ¢ if

(W) c W.

Proposition
Let W be an invariant subspace of a diagonalizable endomorphism
p: V= V. Then p|w: W — W is diagonalizable.



Diagonalizability on Invariant Subspace

Definition
Let ¢: V — V be an endomorphism and let W < V be subspace. Then
W is an invariant subspace of ¢ if

(W) c W.

Proposition
Let W be an invariant subspace of a diagonalizable endomorphism
p: V= V. Then p|w: W — W is diagonalizable.

Proof.
Let 1, be the minimal polynomial of ¢. Then for any w e W

po () (w) =0,

that is the minimal polynomial of ¢|y divides the minimal polynomial of
© hence it has simple roots. O



Simultaneously Diagonalizable Endomorphisms

Proposition
Let p;: V. — V where i € | be a family of diagonalisable endomorphisms.
Then endomorphisms ; commute, i.e., for any i,j € |

PioPY; = Pjopi,

if and only if there exists a basis A of V such that matrices M(y;)% are
diagonal for each i € I, that is endomorphisms p; are simultaneously
diagonalizable.



Simultaneously Diagonalizable Endomorphisms

Proposition
Let p;: V. — V where i € | be a family of diagonalisable endomorphisms.
Then endomorphisms ; commute, i.e., for any i,j € |

PioPY; = Pjopi,

if and only if there exists a basis A of V such that matrices M(y;)% are
diagonal for each i € I, that is endomorphisms p; are simultaneously
diagonalizable.

Proof.
(<) if M(p:)4, M(p;)4 are diagonal then

M(p)AM ()% = M) AM (i) 4.



Simultaneously Diagonalizable Endomorphisms

Proposition
Let p;: V. — V where i € | be a family of diagonalisable endomorphisms.
Then endomorphisms ; commute, i.e., for any i,j € |

PioPY; = Pjopi,

if and only if there exists a basis A of V such that matrices M(y;)% are
diagonal for each i € I, that is endomorphisms p; are simultaneously
diagonalizable.

Proof.
(<) if M(p:)4, M(p;)4 are diagonal then

M(p)AM ()% = M) AM (i) 4.

(=) induction of n = dim V.



Simultaneously Diagonalizable Endomorphisms

Proposition
Let p;: V. — V where i € | be a family of diagonalisable endomorphisms.
Then endomorphisms ; commute, i.e., for any i,j € |

PioPY; = Pjopi,

if and only if there exists a basis A of V such that matrices M(y;)% are
diagonal for each i € I, that is endomorphisms p; are simultaneously
diagonalizable.

Proof.
(<) if M(p:)4, M(p;)4 are diagonal then

M(p)AM ()% = M) AM (i) 4.

(=) induction of n = dim V. If n =1 the statement is obvious.



Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists j € [ such that dim V, () <dim V, where A e R is
an eigenvalue of y; and W =V, (,) is an eigenspace of ; (otherwise
each y; is a uniform scalling).



Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists j € [ such that dim V, () <dim V, where A e R is
an eigenvalue of y; and W =V, (,) is an eigenspace of ; (otherwise
each ¢; is a uniform scalling). Then for any i € / and any v € V, (»)

pi(pi(v)) = i(pi(v)) = pi(Av) = Mpi(v)),

@i(Vig,0) © Vo0



Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists j € [ such that dim V, () <dim V, where A e R is
an eigenvalue of y; and W =V, (,) is an eigenspace of ; (otherwise
each ¢; is a uniform scalling). Then for any i € / and any v € V, (»)

pi(pi(v)) = i(pi(v)) = pi(Av) = Mpi(v)),

@i(Vig,0) © Vo0

The family ;| commute and each gj|w is diagonalisable, therefore by
the inductive assumption the family is simultaneously diagonalisable (by
repeating the argument on each eigenspace of ;). O



Vandermonde Determinant

Proposition
For any a,...,a, € R
1 1
aq a2
2
V(ag,...,ax) =det| ™ a3z
k=1 k-1
Qy Q@



Vandermonde Determinant

Proposition
For any a,...,a, € R
1 1
(6751 (6%)
2
V(ag,...,ax) =det| ™ a3z
k—1 k.fl
Q )
= H (@
1<i<j<k
Proof.

Proof by induction on k. For k =2

V(al,az) = det |: 1

Q1 Q2

:|=012—051.



Vandermonde Determinant (continued)

Proof.

rk—Qrk—1
Fk—1—Q1rk—2

1 1 1 1

a1 (%) a3 N (677 rsf-oqrz

2 2 2 2 o—Cunt
V(ag,...,ax) =det| ™ az Az e O ="
k—1 k—1 k—1 k—1

Qay Qs Q3 BN



Vandermonde Determinant (continued)

Proof.
rk—Quark—1
rk—1—Q1rk—2
1 1 1 1
Og ag Oég Oéé I’3*-Oé1r2
V(a17~--;ak) = det Qg (6%) a3 g rr—on
k—1 k—1 k—1 k—1
o8 Q; Qas Qy
1 1 1 1
0 oy — Qg a3 — Qg Qe — 1
2
— det 0 o5 — 100 o5 — 03 o — 0
1 k—2 k—1 k—2 1 k—2
0 oy " —aay Qz T — Q105 o T —agoyg



Vandermonde Determinant (continued)

Proof.
(by the Laplace formula along the first column)
ap — (X1 a3 — (g A — O
2 2 2
Q5 — Qo Q3 — 103 Qe — O
= det
aé_l — a1a§_2 aé‘_l — a1a§_2 . aﬁ_l — 0410/2_2
Qo — (1 a3 — o — O
y (2 — a1)az (as —ar)az ... (o —ar)ak
= det . . .

2 -2

(a2 —on)as 2 (a3 —a1)os (ax — az)ay

(by dividing the j-th column by the factor (oj+1 — a1))



Vandermonde Determinant (continued)

Proof.
1 1 1
a3 v
(0% Oé2 a2
= [ (ej—a1)det 2 3 k
1<1l<j<k :
k—2 k—2 k—2
as ag oy

(by the inductive assumption)

= n (aj — o) H (o —aj) = V(a, ..., o).

1<l<j<k 2<i<j<k



Polynomial Interpolation

Proposition
Let x1,...,xn+1 € R be pairwise distinct points, i.e. x; # x; for all
1<i<j<n+1. Foranyy,...,yntr1 € R there exists a unique

polynomial P(x) of degree at most n such that

P(x;)=yifori=1,...,n+1.



Polynomial Interpolation

Proposition
Let x1,...,xn+1 € R be pairwise distinct points, i.e. x; # x; for all
1<i<j<n+1. Foranyy,...,yntr1 € R there exists a unique

polynomial P(x) of degree at most n such that

P(x;)=yifori=1,...,n+1.

Proof.
The polynomial P(x) = y is given by the equation
1 1 1 1 ... 1
X X1 X2 X3 ... Xp+1
2 2 2 2 2
X X: X X oo X
det| . 12RO <o
g X
| Y Y1 Y2 Y3 ... Yn+1l |




Polynomial Interpolation (continued)

Remark
Note that the coefficient of y is equal to (—1)" 1V (xy,..., Xps1)
hence it is non—zero.



Polynomial Interpolation (continued)

Remark
Note that the coefficient of y is equal to (—1)" 1V (xy,..., Xps1)
hence it is non—zero.
Remark
Equivalently,

n+1

P(x) = > yiPi(x),

i=1

where y
ey Xim1y Xy Xy e - X
P,'(X) _ (X17 y Xi—1, i+1 I‘I-‘rl),
Vst %ns1)

fori=1,...,n+ 1 are polynomials of degree n such that

P"(Xf):{o i?ﬁj.



Polynomial Interpolation (continued)

Example
The equation of the line passing through points (x1,y1), (x2, y2) is

X — X X — X1

1 Y2 .
X2 — X1 X2 — X1



Polynomial Interpolation (continued)

Example
The equation of the line passing through points (x1, y1), (x2,¥2) is

X — X X — X1

1 Y2 .
X2 — X1 X2 — X1

Example
The equation of the parabola (or a line) passing through points
(x1,01), (X2, ¥2), (x3,y3) is

(s —x)0s —x)be—x)  (6=x)0s—x)(x—x)
x3—x1)06—x)0e—x1) (s —x1)(5—x)(x —x1)

y=n
(

Ty (x —x1)(x = x2) (30 — x1) (x5 — x)(x2 — x) N (x3 —x)(x — x1)

(6 —x) 06 —x)0e —xa) s —x)0e —x1) 06 —x)0e — )
(x —x1)(x — x2)
(s —x1) (3 =)

+¥y3



Polynomial Interpolation (continued)

Remark
The polynomial P(x) is called Lagrange interpolation
polynomial.



Polynomial Interpolation (continued)

Remark
The polynomial P(x) is called Lagrange interpolation
polynomial.
Proposition
If function f € C"1([a, b]) and polynomial P(x) of degree at most
n satisfy

P(xi) = f(x;) fori=1,...,n+1
for pairwise distinct xi,...,xp+1 € [a, b] then for any x € [a, b]
there exists min(x, X1, ..., Xp4+1) < & < max(x, X1, ..., Xn4+1) Such
that

B f(n+1)(§) n+1
FO) = PO) = ot Hl(x — x;).



Example

Let f(x) = cosx. Then there exists a unique polynomial P(x) of
degree at most 11, which attains the same values as the function

f(x) at 12 pairwise distinct points x1,...,xi2 € [0, 7] and
12
If(x) — P(x)] < o1 < 0.002

for any x € [0, 7].



Equation of an Affine Hyperplane

Proposition
Let p1,...,p, € R" be n points, where

pr= (p11,---,P1n)s P2 = (P21,-- -, P2n)s -+ Pn—1 = (Pn1,- - Pnn)-
An equation of an affine hyperplane passing through p1, ..., pn (if
it is unique up to a non—zero constant, i.e., pi,...,pn do not lie on
an affine subspace of dimension n — 2) is given by the equation

X1 X2 . Xn 1
p11 pi2 .-  pin 1
P21 p22 ... pan 1
det ) ] ] . .| =0.
P(n-1)1 P(n-1)2 --- Pm-1)n 1
| Pn1 Pn2 e Pnn 1]




Example

Equation of a line passing through points (a1, by), (a2, ba) € R? is

equal to
x1 x 1
det|a; by 1| =0,
an b2 1

that is, by the Laplace expansion along the first row,
(bl — bz)Xl — (31 — 32)X2 + aiby — axb; = 0.

For example, the line passing through (1,2),(2,5) has equation

xg xo 1
det{1 2 1] =0,
2 5 1

—3x1 +x +1=0.



Hoffman—-Wieland Theorem

Proposition

Let A, B € M(n x n;R) be two symmetric matrices, i.e. A= AT,B = BT.
Let )\1(A) < )\2(A) < ... )\n(A) and )\1(8) < )\2(5) < ... )\,,(B) be all
eigenvalues of A and B. Then

n

DT i(A) = Ni(B)? < |A- B}

i=1

Proof.

Let A= QDsQT and B = PDgPT be spectral decompositions of A and
B, respectively, where Dj, Dg are diagonal matrices with weakly
increasing elements along the main diagonal. Then

n

D1 (Ai(A) = Ai(B))? = Tr ((Da — Dg)?) =

i=1

= Tr(D3) — 2Tr(DaDg) + Tr(D3).



Hoffman—Wielandt Theorem

Proof.

Moreover
|A— Bz =Tr((A— B)?) = Tr (QDaQT — PDgPT)?) =

Tr(D3) — 2 Tr(QDaQTPDgPT) + Tr(D3).

Let U = [u;j] = QTP be an orthogonal matrix. Then the inequality is
equivalent to

Tr(UTDAUDB) < TF(DADB),
or equivalently

n

D AAN(B); < Z Ai(A)Ai(B).

ij=1 i=1



Hoffman-Wielandt Theorem (continued)

Proof.

n n
D AAN(B)UE < Y Ai(A)A(B).
ij=1 i=1
The left—hand side is a linear function in the entries of a
doubly—stochastic matrix, and, it assumes a maximum at a vertex of the
polyhedron of doubly—stochastic matrices, which, by the Birkhoff-von
Neumann, is a matrix of some permutation o € S,,. The theorem follows
by the rearrangement inequality. O



Hoffman-Wielandt Theorem (continued)

Remark
The inequality becomes an equation when it is possible to diagonalize A
and B simultaneously keeping the order of eigenvalues.

Remark
Similar inequality holds for any complex matrices and its eigenvalues.



Rearrangement Inequality

Proposition
For any real numbers

and any permutation o € S,

X1Yn + X2Yn—1 + ...+ Xny1 <

S X1WYo(1) T X2Yo@) T -+ XnYo(n) S

< xiy1 + Xoyo + ...+ XpYn.

Proof.
(sketch, by induction) If x; = x» and y; > y» then

(x1 —x2)(y1 — y2) =0,

X1y1 + XoY2 = X1)o + Xoy1.



Rearrangement Inequality
Proof.

Let o be a permutation maximizing the product and assume there exists
i such that o(i) = j # i and choose the biggest such i. Then there exists
k < i such that o(k) = i. Consider the terms

XiYo(iy = Xi¥j, and  XkYo(k) = XkYi-
Since j < i we have that
Xk = X; and Yi = Vi
If xx = x; or y; = y; then modifying the permutation ¢ such that
o'(i) =i and ¢’(k) = j and o’(m) = o(m) otherwise does not change
the sum. Assume that

Xk >x; and y; > y;.

But then

Z XiYo! (i) = Z Xi¥Yo (i)



Minimax Theorems

Proposition
Let M € M(n x n;C) be any Hermitian matrix with real eigenvalues

M= == A,
and an orthogonal basis of C"
B=(v1,...,vs),

such that
Mvj = Ajv;,

forj=1,...,j. Then
min  R(M,v) < X\ < max  R(M,v)

veV,v#0 veV,v#0
dim V=k dim V=n—k+1

The inequalities are sharp (for the upper bound take for example
V =lin(vk,...,vp) and v = vy).



Minimax Theorems (continued)

Proof.
Let V < C" be a subspace such that dimV = n— k + 1. By the
dimension count there exists w # 0 such that ||w| =1 and

we Vnlin(vy,...,v).
Assume
K
w = Z Q;vj.
j=1
Then
K K
2 2
JJnax o R(M,v) > R(M,w) :,; Ajley|” = /\k; oy = Ak

dim V=n—k+1

ObViOUS'y R(M, Vk) = )\k-



Minimax Theorems (continued)

Proof.
The second inequality follows in a similar manner by considering
(exercise)

weVnlin(ve,...,vp).



Minimax Theorems (continued)

Proof.
The second inequality follows in a similar manner by considering
(exercise)
weVnlin(ve,...,vp).
Remark

The same proof works for a real symmetric matrix A€ M(n x n;R).



Courant=Fischer Theorem

Corollary
Let M € M(n x n;C) be any Hermitian matrix with real eigenvalues

M= ==\
Then

max min R(M,v) =X, = min max R(M,v).
dim V=k veV, v#0 dim V=n—k+1 veV,v#0



