Linear Algebra

Lecture 9 - Diagonalizable Matrices and Application

Oskar Kędzierski

4 December 2023

Diagonal Matrix

Definition

The matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called **diagonal** if $a_{ij} = 0$ for any $i \neq j$, i.e.

$$A = \left[\begin{array}{ccc} a_{11} & & 0 \\ & \ddots & \\ 0 & & a_{nn} \end{array} \right].$$

Diagonal Matrix

Definition

The matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called **diagonal** if $a_{ij} = 0$ for any $i \neq j$, i.e.

$$A = \left[\begin{array}{ccc} a_{11} & & 0 \\ & \ddots & \\ 0 & & a_{nn} \end{array} \right].$$

Example

The matrices

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right], \quad \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{array}\right]$$

are diagonal.

Diagonal Matrix of Linear Endomorphism

Proposition

Let $\varphi \colon V \longrightarrow V$ be an endomorphism of vector space V and let $\mathcal{A} = (v_1, \ldots, v_n)$ be an ordered basis of V. Then $M(\varphi)_{\mathcal{A}} = [a_{ij}]$ is diagonal if and only if v_i is an eigenvector of φ . Moreover, in such case eigenvector v_i is associated to the eigenvalue a_{ii} , i.e.

$$\varphi(\mathbf{v}_i) = \mathbf{a}_{ii} \mathbf{v}_i.$$

Diagonal Matrix of Linear Endomorphism

Proposition

Let $\varphi \colon V \longrightarrow V$ be an endomorphism of vector space V and let $\mathcal{A} = (v_1, \ldots, v_n)$ be an ordered basis of V. Then $M(\varphi)_{\mathcal{A}} = [a_{ij}]$ is diagonal if and only if v_i is an eigenvector of φ . Moreover, in such case eigenvector v_i is associated to the eigenvalue a_{ii} , i.e.

$$\varphi(\mathbf{v}_i) = \mathbf{a}_{ii}\mathbf{v}_i.$$

Proof.

 (\Leftarrow) Assume each v_i is an eigenvector of φ associated to eigenvalue α_i . Then

$$\varphi(v_i) = \alpha_i v_i = 0 v_1 + 0 v_2 + \ldots + 0 v_{i-1} + \alpha_i v_i + 0 v_{i+1} + \ldots + 0 v_n,$$

i.e. in the *i*-th column of the matrix $M(\varphi)_{\mathcal{A}}$ there is α_i in the *i*-th row and 0's elsewhere.

Diagonal Matrix of Linear Endomorphism

Proposition

Let $\varphi \colon V \longrightarrow V$ be an endomorphism of vector space V and let $\mathcal{A} = (v_1, \dots, v_n)$ be an ordered basis of V. Then $M(\varphi)_{\mathcal{A}} = [a_{ij}]$ is diagonal if and only if v_i is an eigenvector of φ . Moreover, in such case eigenvector v_i is associated to the eigenvalue a_{ii} , i.e.

$$\varphi(\mathbf{v}_i) = \mathbf{a}_{ii}\mathbf{v}_i.$$

Proof.

 (\Leftarrow) Assume each v_i is an eigenvector of φ associated to eigenvalue α_i . Then

$$\varphi(v_i) = \alpha_i v_i = 0 v_1 + 0 v_2 + \ldots + 0 v_{i-1} + \alpha_i v_i + 0 v_{i+1} + \ldots + 0 v_n,$$

i.e. in the *i*-th column of the matrix $M(\varphi)_{\mathcal{A}}$ there is α_i in the *i*-th row and 0's elsewhere.

$$(\Rightarrow)$$
 similar to the above

Let
$$\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 be given by $\varphi((x_1, x_2)) = (8x_1 + 10x_2, -3x_1 - 3x_2)$. Then

$$M(\varphi)_{st} = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}, \ w_{\varphi}(\lambda) = \det \begin{bmatrix} 8 - \lambda & 10 \\ -3 & -3 - \lambda \end{bmatrix},$$

The characteristic polynomial is

$$w_{\varphi}(\lambda) = (8 - \lambda)(-3 - \lambda) + 30 = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3).$$

There are two eigenvalues $\lambda_1=2,\lambda_2=3$.

Let $\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be given by $\varphi((x_1,x_2)) = (8x_1 + 10x_2, -3x_1 - 3x_2)$. Then

$$M(\varphi)_{st} = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}, \ w_{\varphi}(\lambda) = \det \begin{bmatrix} 8 - \lambda & 10 \\ -3 & -3 - \lambda \end{bmatrix},$$

The characteristic polynomial is $w_{\varphi}(\lambda) = (8-\lambda)(-3-\lambda) + 30 = \lambda^2 - 5\lambda + 6 = (\lambda-2)(\lambda-3)$. There are two eigenvalues $\lambda_1 = 2, \lambda_2 = 3$. In order to get corresponding eigenspaces solve

$$V_{(2)}$$
: $\begin{bmatrix} 6 & 10 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff x_1 = -\frac{5}{3}x_2,$

i.e.
$$V_{(2)} = \{(-\frac{5}{3}x_2, x_2) \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}\} = \text{lin}((-5, 3))$$

$$V_{(3)}$$
: $\begin{bmatrix} 5 & 10 \\ -3 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff x_1 = -2x_2,$

i.e.
$$V_{(3)}=\{(-2x_2,x_2)\in\mathbb{R}^2\mid x_2\in\mathbb{R}\}=\inf((-2,1))$$

Example (continued)

Recall, $\varphi((x_1,x_2))=(8x_1+10x_2,-3x_1-3x_2)$. The basis $\mathcal{A}=((-5,3),(-2,1))$ of \mathbb{R}^2 consists of eigenvectors and

$$M(\varphi)_{\mathcal{A}} = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right],$$

since

$$\varphi((-5,3)) = 2(-5,3) + 0(-2,1),$$

$$\varphi((-2,1)) = 0(-5,3) + 3(-2,1).$$

Eigenvectors for Different Eigenvalues

Theorem

Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi\colon V\longrightarrow V$. Let $\mathcal{A}_i\subset V_{(\alpha_i)}$ be a finite set of linearly independent eigenvectors of φ associated to α_i for $i=1,\ldots,k$. Then $\mathcal{A}=\mathcal{A}_1\cup\ldots\cup\mathcal{A}_k$ is a set of linearly independent vectors.

Eigenvectors for Different Eigenvalues

Theorem

Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi\colon V\longrightarrow V$. Let $\mathcal{A}_i\subset V_{(\alpha_i)}$ be a finite set of linearly independent eigenvectors of φ associated to α_i for $i=1,\ldots,k$. Then $\mathcal{A}=\mathcal{A}_1\cup\ldots\cup\mathcal{A}_k$ is a set of linearly independent vectors.

Proof.

For simplicity we assume that $\mathcal{A}_i = \{v_i\}$, i.e. each set \mathcal{A}_i contains one vector. Assume $\gamma_1 v_1 + \gamma_2 v_2 + \ldots + \gamma_k v_k = 0$. By applying φ to both sides we get $\alpha_1 \gamma_1 v_1 + \alpha_2 \gamma_2 v_2 + \ldots + \alpha_k \gamma_k v_k = 0$. Repeating this procedure we get a system of linear equations:

Vandermonde Determinant

One can check that the Vandermonde determinant

$$\det \left[\begin{array}{ccccc} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \alpha_3^{k-1} & \dots & \alpha_k^{k-1} \end{array} \right] = \prod_{1 \leqslant i < j \leqslant k} (\alpha_j - \alpha_i)$$

is non-zero and hence the system $\it U$ can be brought by elementary row operations to a reduced echelon form

$$U : \begin{cases} \gamma_1 v_1 & = 0 \\ \gamma_2 v_2 & = 0 \\ \vdots & \vdots \\ \gamma_k v_k & = 0 \end{cases}$$

Vandermonde Determinant (continued)

Which implies that $\gamma_1=\gamma_2=\ldots=\gamma_k=0$ since all vectors v_i are non-zero.

Vandermonde Determinant (continued)

Which implies that $\gamma_1=\gamma_2=\ldots=\gamma_k=0$ since all vectors v_i are non-zero. In the general case one can argue in a similar way, replacing $\gamma_i v_i$ with $\gamma_i^{(1)} v_i^{(1)} + \ldots + \gamma_i^{(m_i)} v_i^{(m_i)}$, where $v_i^{(1)},\ldots,v_i^{(m_i)}\in V_{(\alpha_i)}$ are linearly independent for $i=1,\ldots,k$.

Vandermonde Determinant (continued)

Which implies that $\gamma_1=\gamma_2=\ldots=\gamma_k=0$ since all vectors v_i are non-zero. In the general case one can argue in a similar way, replacing $\gamma_i v_i$ with $\gamma_i^{(1)} v_i^{(1)} + \ldots + \gamma_i^{(m_i)} v_i^{(m_i)}$, where $v_i^{(1)},\ldots,v_i^{(m_i)} \in V_{(\alpha_i)}$ are linearly independent for $i=1,\ldots,k$. Alternatively, assume that v_1,\ldots,v_k are linearly dependent and the linear combination

$$\gamma_1 v_1 + \ldots + \gamma_m v_m = 0,$$

where $\gamma_i \neq 0$ involves the least number of vectors (perhaps after rearranging them). Then, by applying φ to both sides of the equation

$$\gamma_1 \alpha_1 v_1 + \ldots + \gamma_m \alpha_m v_m = 0.$$

By multiplying the first equation by $\alpha_{\it m}$ and subtracting it from the latter

$$\gamma_1(\alpha_1 - \alpha_m)v_1 + \ldots + \gamma_{m-1}(\alpha_{m-1} - \alpha_m)v_{m-1} = 0,$$

we get a linear combination involving m-1 vectors, which leads to a contradiction.

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi\colon V\longrightarrow V$. Then

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi\colon V\longrightarrow V$. Then

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi\colon V\longrightarrow V$. Then

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi \colon V \longrightarrow V$. Then

i) if $v_1, \ldots, v_k \in V$ and $\varphi(v_i) = \alpha_i v_i$, $v_i \neq 0$ for $i = 1, \ldots, k$ then the vectors v_1, \ldots, v_k are linearly independent,

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi \colon V \longrightarrow V$. Then

- i) if $v_1, \ldots, v_k \in V$ and $\varphi(v_i) = \alpha_i v_i$, $v_i \neq 0$ for $i = 1, \ldots, k$ then the vectors v_1, \ldots, v_k are linearly independent,
- ii) $\dim V_{(\alpha_1)} + \dim V_{(\alpha_2)} + \ldots + \dim V_{(\alpha_k)} \leqslant \dim V$,

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi \colon V \longrightarrow V$. Then

- i) if $v_1, \ldots, v_k \in V$ and $\varphi(v_i) = \alpha_i v_i$, $v_i \neq 0$ for $i = 1, \ldots, k$ then the vectors v_1, \ldots, v_k are linearly independent,
- ii) $\dim V_{(\alpha_1)} + \dim V_{(\alpha_2)} + \ldots + \dim V_{(\alpha_k)} \leqslant \dim V$,
- iii) $\dim V_{(\alpha_1)} + \dim V_{(\alpha_2)} + \ldots + \dim V_{(\alpha_k)} = \dim V \iff there$ exist a basis of V consisting of eigenvectors of $\varphi \iff the$ matrix of φ relative to some basis of V is diagonal.

Corollary

Let V be a finite dimensional vector space. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ be pairwise distinct eigenvalues of the linear endomorphism $\varphi \colon V \longrightarrow V$. Then

- i) if $v_1, \ldots, v_k \in V$ and $\varphi(v_i) = \alpha_i v_i$, $v_i \neq 0$ for $i = 1, \ldots, k$ then the vectors v_1, \ldots, v_k are linearly independent,
- ii) $\dim V_{(\alpha_1)} + \dim V_{(\alpha_2)} + \ldots + \dim V_{(\alpha_k)} \leqslant \dim V$,
- iii) $\dim V_{(\alpha_1)} + \dim V_{(\alpha_2)} + \ldots + \dim V_{(\alpha_k)} = \dim V \iff there$ exist a basis of V consisting of eigenvectors of $\varphi \iff the$ matrix of φ relative to some basis of V is diagonal.

In the part iii) of the corollary the basis of V consists of the union of bases of $V_{(\alpha_i)}$ for $i=1,\ldots,k$.

Let
$$\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 be given by
$$\varphi((x_1,x_2,x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3). \text{ Then}$$

$$M(\varphi)_{st} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}, \quad w_{\varphi}(\lambda) = (2-\lambda)^2(4-\lambda).$$

Let
$$\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 be given by $\varphi((x_1, x_2, x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3)$. Then $M(\varphi)_{st} = \left[\begin{array}{ccc} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{array} \right], \quad w_{\varphi}(\lambda) = (2 - \lambda)^2 (4 - \lambda).$

The eigenvalues of φ are 2 and 4.

Let
$$\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 be given by
$$\varphi((x_1,x_2,x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3). \text{ Then}$$

$$M(\varphi)_{st} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}, \quad w_{\varphi}(\lambda) = (2-\lambda)^2(4-\lambda).$$

The eigenvalues of φ are 2 and 4.

$$V_{(2)}$$
: $\begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff x_2 = x_3 = 0,$

$$V_{(2)} = \{(x_1, 0, 0) \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}\} = \text{lin}((1, 0, 0))$$

Let $\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be given by

$$arphi((x_1,x_2,x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3).$$
 Then $M(arphi)_{st} = \left[egin{array}{ccc} 2 & -2 & 1 \ 0 & 2 & 1 \ 0 & 0 & 4 \end{array}
ight], \quad w_{arphi}(\lambda) = (2-\lambda)^2(4-\lambda).$

The eigenvalues of φ are 2 and 4.

$$V_{(2)}$$
: $\begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff x_2 = x_3 = 0,$

$$V_{(2)} = \{(x_1, 0, 0) \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}\} = \text{lin}((1, 0, 0))$$

$$V_{(4)}$$
: $\begin{bmatrix} -2 & -2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff x_1 = 0 \text{ and } x_3 = 2x_2,$

$$V_{(4)} = \{(0, x_2, 2x_2) \in \mathbb{R}^3 \mid x_2 \in \mathbb{R}\} = \mathsf{lin}((0, 1, 2))$$

Example (continued)

$$V_{(2)} = \{(x_1, 0, 0) \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}\} = \text{lin}((1, 0, 0))$$
 $V_{(4)} = \{(0, x_2, 2x_2) \in \mathbb{R}^3 \mid x_2 \in \mathbb{R}\} = \text{lin}((0, 1, 2))$
 $+ \dim V_{(4)} = 1 + 1 < 3 = \dim \mathbb{R}^3$, therefore there is no \mathbb{R}^3 such that matrix of φ relative to it is diagonal.

 $\dim V_{(2)} + \dim V_{(4)} = 1 + 1 < 3 = \dim \mathbb{R}^3$, therefore there is no basis of \mathbb{R}^3 such that matrix of φ relative to it is diagonal.

Corollary

Let V be a finite dimensional vector space and let $\dim V = n$. If the endomorphism $\varphi \colon V \longrightarrow V$ has n pairwise distinct eigenvalues then there exists a basis of V consisting of eigenvectors.

Corollary

Let V be a finite dimensional vector space and let $\dim V = n$. If the endomorphism $\varphi \colon V \longrightarrow V$ has n pairwise distinct eigenvalues then there exists a basis of V consisting of eigenvectors.

Definition

Let $A \in M(n \times n; \mathbb{R})$. We say the matrix A is **diagonalizable** if it is similar to a diagonal matrix, that is there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that the matrix $C^{-1}AC$ is diagonal.

Corollary

Let V be a finite dimensional vector space and let $\dim V = n$. If the endomorphism $\varphi \colon V \longrightarrow V$ has n pairwise distinct eigenvalues then there exists a basis of V consisting of eigenvectors.

Definition

Let $A \in M(n \times n; \mathbb{R})$. We say the matrix A is **diagonalizable** if it is similar to a diagonal matrix, that is there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that the matrix $C^{-1}AC$ is diagonal.

Proposition

Matrix $A \in M(n \times n; \mathbb{R})$ is diagonalizable \iff there exists a basis of \mathbb{R}^n consisting of eigenvectors of the endomorphism $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ given by the condition $M(\varphi)_{\mathsf{st}} = A$.

Corollary

Let V be a finite dimensional vector space and let $\dim V = n$. If the endomorphism $\varphi \colon V \longrightarrow V$ has n pairwise distinct eigenvalues then there exists a basis of V consisting of eigenvectors.

Definition

Let $A \in M(n \times n; \mathbb{R})$. We say the matrix A is **diagonalizable** if it is similar to a diagonal matrix, that is there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that the matrix $C^{-1}AC$ is diagonal.

Proposition

Matrix $A \in M(n \times n; \mathbb{R})$ is diagonalizable \iff there exists a basis of \mathbb{R}^n consisting of eigenvectors of the endomorphism $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ given by the condition $M(\varphi)_{st} = A$. Moreover, if A is such basis and $C = M(id)^{st}_{\mathcal{A}}$ then the matrix $C^{-1}AC$ is diagonal.

Matrix
$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$$
 is diagonalizable. Endomorphism $\varphi((x_1, x_2)) = (8x_1 + 10x_2, -3x_1 - 3x_2)$ has two eigenvalues 2 and 3. We have computed $V_{(2)} = \text{lin}((-5, 3))$ and $V_{(3)} = \text{lin}((-2, 1))$. Set $\mathcal{A} = ((-5, 3), (-2, 1))$ and $C = M(id)^{st}_{\mathcal{A}}$.

Matrix
$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$$
 is diagonalizable. Endomorphism $\varphi((x_1,x_2)) = (8x_1 + 10x_2, -3x_1 - 3x_2)$ has two eigenvalues 2 and 3. We have computed $V_{(2)} = \text{lin}((-5,3))$ and $V_{(3)} = \text{lin}((-2,1))$. Set $\mathcal{A} = ((-5,3),(-2,1))$ and $C = M(id)^{st}_{\mathcal{A}}$.
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = M(\varphi)_{\mathcal{A}} = M(id)^{\mathcal{A}}_{st}M(\varphi)^{st}_{st}M(id)^{st}_{\mathcal{A}}$$

Matrix
$$A=\begin{bmatrix}8&10\\-3&-3\end{bmatrix}$$
 is diagonalizable. Endomorphism $\varphi((x_1,x_2))=(8x_1+10x_2,-3x_1-3x_2)$ has two eigenvalues 2 and 3. We have computed $V_{(2)}=\text{lin}((-5,3))$ and $V_{(3)}=\text{lin}((-2,1))$. Set $\mathcal{A}=((-5,3),(-2,1))$ and $C=M(id)^{st}_{\mathcal{A}}$.
$$D=\begin{bmatrix}2&0\\0&3\end{bmatrix}=M(\varphi)_{\mathcal{A}}=M(id)^{\mathcal{A}}_{st}M(\varphi)^{st}_{st}M(id)^{st}_{\mathcal{A}}$$

$$C=\begin{bmatrix}-5&-2\\3&1\end{bmatrix}, \quad C^{-1}=\begin{bmatrix}1&2\\-3&-5\end{bmatrix}$$

Example (continued)

Matrix
$$A = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 is not diagonalizable. There is no basis of \mathbb{R}^3 consisting of eigenvalues of the endomorphism $\varphi((x_1,x_2,x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3)$.

Example (continued)

Matrix
$$A = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 is not diagonalizable. There is no basis of \mathbb{R}^3 consisting of eigenvalues of the endomorphism $\varphi((x_1,x_2,x_3)) = (2x_1 - 2x_2 + x_3, 2x_2 + x_3, 4x_3)$. Matrix $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is not diagonalizable (over \mathbb{R}). It has no (real) eigenvalues.

Application

Proposition

Proposition
Let
$$A = \begin{bmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & & a_{nn} \end{bmatrix}$$
 be a diagonal matrix. Then

$$A^{m} = \begin{bmatrix} a_{11}^{m} & 0 \\ & \ddots & \\ 0 & a_{nn}^{m} \end{bmatrix} \text{ for any } m \in \mathbb{N}.$$

Application

Proposition

Let
$$A = \begin{bmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{bmatrix}$$
 be a diagonal matrix. Then
$$A^m = \begin{bmatrix} a_{11}^m & 0 \\ & \ddots & \\ 0 & & a_m^m \end{bmatrix}$$
 for any $m \in \mathbb{N}$.

Remark

Note that this, in general, does not hold for non-diagonal matrices, for example $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $1^2 \neq 2$.

Let
$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$$
. Compute A^n .

Let
$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$$
. Compute A^n . Recall $D = C^{-1}AC$ hence $A = CDC^{-1}$. Therefore $A^n = CD^nC^{-1}$.

$$A^{n} = \begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix} =$$

$$= \begin{bmatrix} -5 \cdot 2^{n} & + & 2 \cdot 3^{n+1} & -5 \cdot 2^{n+1} & + & 10 \cdot 3^{n} \\ 3 \cdot 2^{n} & - & 3^{n+1} & 3 \cdot 2^{n+1} & - & 5 \cdot 3^{n} \end{bmatrix} =$$

$$= 2^{n} \begin{bmatrix} -5 & -10 \\ 3 & 6 \end{bmatrix} + 3^{n} \begin{bmatrix} 6 & 10 \\ -3 & -5 \end{bmatrix} =$$

Let
$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$$
. Compute A^n . Recall $D = C^{-1}AC$ hence $A = CDC^{-1}$. Therefore $A^n = CD^nC^{-1}$.

$$A = CDC^{-1}. \text{ Therefore } A^n = CD^nC^{-1}.$$

$$A^n = \begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2^n & 0 \\ 0 & 3^n \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix} =$$

$$= \begin{bmatrix} -5 \cdot 2^n & + & 2 \cdot 3^{n+1} & -5 \cdot 2^{n+1} & + & 10 \cdot 3^n \\ 3 \cdot 2^n & - & 3^{n+1} & 3 \cdot 2^{n+1} & - & 5 \cdot 3^n \end{bmatrix} =$$

$$= 2^n \begin{bmatrix} -5 & -10 \\ 3 & 6 \end{bmatrix} + 3^n \begin{bmatrix} 6 & 10 \\ -3 & -5 \end{bmatrix} =$$

$$= 2^n \left(3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix} \right) + 3^n \left(-2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix} \right) =$$

$$= (3 \cdot 2^n - 2 \cdot 3^n) I_2 + (-2^n + 3^n) A.$$

$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix},$$

$$A^{n} = (3 \cdot 2^{n} - 2 \cdot 3^{n})I + (-2^{n} + 3^{n})A.$$

Note that for n=2

$$A^2 = 5A - 6I,$$

we recover the characteristic polynomial $w_A(\lambda) = \lambda^2 - 5\lambda + 6$.

$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix},$$

$$A^{n} = (3 \cdot 2^{n} - 2 \cdot 3^{n})I + (-2^{n} + 3^{n})A.$$

Note that for n=2

$$A^2 = 5A - 6I,$$

we recover the characteristic polynomial $w_A(\lambda) = \lambda^2 - 5\lambda + 6$. Since A and I are linearly independent it follows that

$$\lambda^n \equiv (-2^n + 3^n)\lambda + (3 \cdot 2^n - 2 \cdot 3^n) \pmod{w_A(\lambda)},$$

i.e. the polynomial

$$\lambda^{n} - [(-2^{n} + 3^{n})\lambda + (3 \cdot 2^{n} - 2 \cdot 3^{n})],$$

is divisible by the polynomial $w_A(\lambda)$.

Determinant of a Diagonalizable Matrix

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a diagonalizable matrix and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ denote the eigenvalues of A. Then

$$\det A = \lambda_1 \cdot \ldots \cdot \lambda_n.$$

Determinant of a Diagonalizable Matrix

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a diagonalizable matrix and let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ denote the eigenvalues of A. Then

$$\det A = \lambda_1 \cdot \ldots \cdot \lambda_n$$
.

Proof.

Let

$$D = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array} \right].$$

Then

$$\det A = w_A(0) = w_D(0) = \lambda_1 \cdot \ldots \cdot \lambda_n.$$

Coefficients of Characteristic Polynomial

Remark

In general, for any matrix $A \in M(n \times n; \mathbb{R})$

$$w_A(\lambda) = \sum_{i=0}^n (-1)^i \left(\sum_{\substack{J \subset \{1,\dots,n\} \\ \#J = n-i}} \det A_{J;J} \right) \lambda^i,$$

where if $J = \{j_1, \dots, j_{n-i}\}$ and $1 \leqslant j_1 < \dots < j_{n-i} \leqslant n$

$$\det A_{J;J} = \det A_{j_1,\ldots,j_{n-i};j_1,\ldots,j_{n-i}},$$

denotes a minor of order (n-i) (so called principal minor).

Coefficients of Characteristic Polynomial

Remark

In general, for any matrix $A \in M(n \times n; \mathbb{R})$

$$w_A(\lambda) = \sum_{i=0}^n (-1)^i \left(\sum_{\substack{J \subset \{1,\dots,n\} \\ \#J = n-i}} \det A_{J;J} \right) \lambda^i,$$

where if $J = \{j_1, \ldots, j_{n-i}\}$ and $1 \leqslant j_1 < \ldots < j_{n-i} \leqslant n$

$$\det A_{J;J} = \det A_{j_1,\ldots,j_{n-i};j_1,\ldots,j_{n-i}},$$

denotes a minor of order (n-i) (so called principal minor).

In other words, the coefficient of λ^i is equal to $(-1)^i$ times the sum of all principal minors of order (n-i).

Proof.

If $A(\lambda) = [a_{ij}(\lambda)]$ where $a_{ij}(\lambda)$ are differentiable functions of variable λ , the **Jacobi formula** holds

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\det A(\lambda) = \mathsf{Tr}(\mathsf{adj}(A(\lambda))\frac{\mathrm{d}}{\mathrm{d}\lambda}A(\lambda)),$$

where $\frac{\mathrm{d}}{\mathrm{d}\lambda}A(\lambda)=\left[\frac{\mathrm{d}}{\mathrm{d}\lambda}a_{ij}(\lambda)\right]$ and for $B=\left[b_{ij}\right]$ the trace of matrix $B\in M(n\times n;\mathbb{R})$ is equal to $\mathrm{Tr}(B)=\sum_{i=1}^n b_{ii}$.

Proof.

If $A(\lambda) = [a_{ij}(\lambda)]$ where $a_{ij}(\lambda)$ are differentiable functions of variable λ , the **Jacobi formula** holds

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\det A(\lambda) = \mathsf{Tr}(\mathsf{adj}(A(\lambda))\frac{\mathrm{d}}{\mathrm{d}\lambda}A(\lambda)),$$

where $\frac{\mathrm{d}}{\mathrm{d}\lambda}A(\lambda)=\left[\frac{\mathrm{d}}{\mathrm{d}\lambda}a_{ij}(\lambda)\right]$ and for $B=\left[b_{ij}\right]$ the trace of matrix $B\in M(n\times n;\mathbb{R})$ is equal to $\mathrm{Tr}(B)=\sum_{i=1}^n b_{ii}$.

If $A=[a_{ij}]\in M(n imes n;\mathbb{R})$ is a square matrix, by the Jacobi formula

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} w_A(\lambda) = \mathsf{Tr}(\mathsf{adj}(A - \lambda I)(-I)) = -\sum_{\substack{J \subset \{1, \dots, n\} \\ \#J = n-1}} \mathsf{det}(A - \lambda I)_{J;J}.$$

Proof.

Using induction one can show that

$$\frac{\mathrm{d}^{i}}{\mathrm{d}\lambda^{i}}w_{A}(\lambda) = (-1)^{i}i! \sum_{\substack{J \subset \{1,\dots,n\} \\ \#J = n-i}} \det(A - \lambda I)_{J;J}.$$

Proof.

Using induction one can show that

$$\frac{\mathrm{d}^i}{\mathrm{d}\lambda^i} w_A(\lambda) = (-1)^i i! \sum_{\substack{J \subset \{1,\dots,n\} \\ \#J=n-i}} \det(A - \lambda I)_{J;J}.$$

The claim follows from the Taylor formula, i.e.

$$w_A(\lambda) = \sum_{i=0}^n \frac{1}{i!} \frac{\mathrm{d}^i}{\mathrm{d}\lambda^i} w_A(0) \lambda^i.$$

Proof.

Using induction one can show that

$$\frac{\mathrm{d}^{i}}{\mathrm{d}\lambda^{i}}w_{A}(\lambda) = (-1)^{i}i! \sum_{\substack{J \subset \{1,\dots,n\}\\ \#J=n-i}} \det(A-\lambda I)_{J;J}.$$

The claim follows from the Taylor formula, i.e.

$$w_A(\lambda) = \sum_{i=0}^n \frac{1}{i!} \frac{\mathrm{d}^i}{\mathrm{d}\lambda^i} w_A(0) \lambda^i.$$

Remark

The Jacobi formula follows directly form the chain rule for total derivatives (note that $\frac{\partial}{\partial a_{ij}} \det A = (-1)^{i+j} \det A_{ij}$ hence $d(\det)_A = \operatorname{adj}(A)$).

The coefficients of characteristic polynomial are also symmetric functions of eigenvalues (permuting, i.e. changing the order of factors does not change the coefficients).

$$(\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2,$$

$$(\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3) = \lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 + (\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)\lambda -$$

$$-\lambda_1\lambda_2\lambda_3,$$

$$(\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)(\lambda - \lambda_4) = \lambda^4 - (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)\lambda^3 +$$

$$+(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_1\lambda_4 + \lambda_2\lambda_3 + \lambda_2\lambda_4 + \lambda_3\lambda_4)\lambda^2 -$$

$$-(\lambda_1\lambda_2\lambda_3 + \lambda_1\lambda_2\lambda_4 + \lambda_1\lambda_3\lambda_4 + \lambda_2\lambda_3\lambda_4)\lambda + \lambda_1\lambda_2\lambda_3\lambda_4.$$

$$\vdots$$

Elementary Symmetric Polynomials

Definition

The m-th symmetric polynomial in variables x_1, \ldots, x_n , where $m \ge 0$ (assume $e_0 = 1$) is,

$$e_m = e_m(x_1, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_m \le n} x_{i_1} x_{i_2} \cdot \dots \cdot x_{i_m}.$$

Elementary Symmetric Polynomials (continued)

Proposition

The coefficients of the characteristic polynomial w_A of matrix $A \in M(n \times n; \mathbb{C})$ are (up to a sign) elementary symmetric polynomials of the (complex) eigenvalues of A, i.e.

$$w_{A}(\lambda) = \sum_{j=0}^{n} (-1)^{n-j} e_{j}(\lambda_{1}, \ldots, \lambda_{n}) \lambda^{n-j}.$$

Proof.

Omitted (use induction).

2015

⁰cf. I. G. Macdonald *Symmetric Functions and Hall Polynomials*, Oxford

Partitions

Definition

A partition μ of a natural number $n\in\mathbb{N}$ is any sequence of natural numbers $\mu_1,\mu_2,\mu_3\dots$ such that

$$|\mu| = \mu_1 + \mu_2 + \mu_3 + \ldots = n,$$

and

$$\mu_1 \geqslant \mu_2 \geqslant \mu_3 \geqslant \ldots$$

The numbers $\mu_1, \mu_2, \mu_3 \dots$ are called **parts** of μ . The number of non-zero parts $I(\mu)$ of μ is called the **length** of μ .

Cambridge 2001

⁰alternatively cf. R. P. Stanley *Enumerative Combinatorics vol. 2*,

Partitions

Definition

A partition μ of a natural number $n\in\mathbb{N}$ is any sequence of natural numbers $\mu_1,\mu_2,\mu_3\dots$ such that

$$|\mu| = \mu_1 + \mu_2 + \mu_3 + \ldots = n,$$

and

$$\mu_1 \geqslant \mu_2 \geqslant \mu_3 \geqslant \dots$$

The numbers $\mu_1, \mu_2, \mu_3 \dots$ are called **parts** of μ . The number of non-zero parts $I(\mu)$ of μ is called the **length** of μ .

Example

(2,2,1,0,0) is a partition of the number 5 of length 3, i.e. $|\mu|=5$ and $I(\mu)=3$. It is denoted alternatively as $\mu=(1^12^23^0\ldots)$.

⁰alternatively cf. R. P. Stanley *Enumerative Combinatorics vol. 2*, Cambridge 2001

Monomial Symmetric Polynomials

Definition

For any partition $\mu=(1^{k_1}2^{k_2}3^{k_3}\dots)$ such that $|\mu|=m$ and $I(\mu)\leqslant n$ the m-th monomial symmetric polynomial m_μ is given by the formula

$$m_{\mu} = m_{\mu}(x_1, \ldots, x_n) = \frac{1}{k_1! k_2! \ldots k_n!} \sum_{\sigma \in S_n} x_1^{\mu(\sigma(1))} x_2^{\mu(\sigma(2))} \cdot \ldots \cdot x_n^{\mu(\sigma(n))},$$

where S_n denotes the n—th symmetric group (i.e. the group of all permutations of the set $\{1, \ldots, n\}$).

Monomial Symmetric Polynomials

Definition

For any partition $\mu=(1^{k_1}2^{k_2}3^{k_3}\dots)$ such that $|\mu|=m$ and $I(\mu)\leqslant n$ the m-th monomial symmetric polynomial m_μ is given by the formula

$$m_{\mu} = m_{\mu}(x_1, \ldots, x_n) = \frac{1}{k_1! k_2! \ldots k_n!} \sum_{\sigma \in S_n} x_1^{\mu(\sigma(1))} x_2^{\mu(\sigma(2))} \cdots x_n^{\mu(\sigma(n))},$$

where S_n denotes the n-th symmetric group (i.e. the group of all permutations of the set $\{1, \ldots, n\}$).

Example

Let $\mu = (2, 1, 0)$ and n = 3, then

$$m_{\mu}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_2^2 x_3 + x_1 x_3^2 + x_2 x_3^2.$$

Monomial Symmetric Polynomials (continued)

Remark

The constant $\frac{1}{k_1!k_2!...k_n!}$ is chosen to make coefficients of all monomials in m_μ equal to 1. For example, let $\mu=(1,1,0)$ and n=3, then

$$m_{\mu}(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3.$$

For example, let $\mu=(1,1,1)$ and n=3, then

$$m_{\mu}(x_1, x_2, x_3) = x_1 x_2 x_3.$$

Analogously for $\mu = (2,0,0)$ and n = 3

$$m_{\mu}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2.$$

Complete Symmetric Polynomials

Definition

For any $m \ge 0$ the m-th complete symmetric polynomial h_m in variables x_1, \ldots, x_n is given by the formula

$$h_m = h_m(x_1, \ldots, x_n) = \sum_{|\mu|=m} m_{\mu}(x_1, \ldots, x_n).$$

We set $h_0 = 1$ and $h_m = 0$ for any m > n.

Complete Symmetric Polynomials

Definition

For any $m \ge 0$ the m-th complete symmetric polynomial h_m in variables x_1, \ldots, x_n is given by the formula

$$h_m = h_m(x_1, \ldots, x_n) = \sum_{|\mu|=m} m_{\mu}(x_1, \ldots, x_n).$$

We set $h_0 = 1$ and $h_m = 0$ for any m > n.

Example

Let n=3, then

$$h_1(x_1,x_2,x_3)=x_1+x_2+x_3,$$

$$h_2(x_1,x_2,x_3) = \mu_{(2,0,0)} + \mu_{(1,1,0)} = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3.$$

The polynomial h_m is sum of all monomials in variables x_1, \ldots, x_n of degree m.

Power Symmetric Polynomials

Definition

For any $m \ge 1$ the m-th power symmetric polynomial p_m in variables x_1, \ldots, x_n is given by the formula

$$p_m = p_m(x_1, \ldots, x_n) = m_{(1^m)} = x_1^m + \ldots + x_n^m.$$

We set $p_0 = n$.

Power Symmetric Polynomials

Definition

For any $m \ge 1$ the m-th power symmetric polynomial p_m in variables x_1, \ldots, x_n is given by the formula

$$p_m = p_m(x_1, \ldots, x_n) = m_{(1^m)} = x_1^m + \ldots + x_n^m.$$

We set $p_0 = n$.

Example

For m=2 and n=3

$$p_2(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2.$$

Symmetric Polynomials

Definition

Polynomial $P(x_1, ..., x_n) \in \mathbb{C}[x_1, ..., x_n]$ is **symmetric**, if for any $\sigma \in S_n$

$$P(x_{\sigma(1)},\ldots,x_{\sigma(n)})=P(x_1,\ldots,x_n).$$

Proposition

Any symmetric polynomial in n variables is a polynomial of h_1, \ldots, h_n (resp. of p_1, \ldots, p_n , resp. of e_1, \ldots, e_n).

Proof.

Omitted.

Newton Identities

Let

$$E(t) = (1+x_1t)(1+x_2t)\cdots(1+x_nt) = 1+e_1t+e_2t^2+\cdots+e_nt^n =$$

$$= \sum_{m=0}^{n} e_m(x_1,\ldots,x_n)t^m,$$

be the generating function for the elementary symmetric polynomials. Similarly, let

$$H(t) = \frac{1}{1 - x_1 t} \cdot \frac{1}{1 - x_2 t} \cdot \dots \cdot \frac{1}{1 - x_n t} =$$

$$= (1 + x_1 t + x_1^2 t^2 + \dots)(1 + x_2 t + x_2^2 t^2 + \dots) \cdot \dots \cdot (1 + x_n t + x_n^2 t^2 + \dots) =$$

$$= 1 + h_1 t + h_2 t^2 + \dots = \sum_{m=0}^{\infty} h_m(x_1, \dots, x_n) t^m.$$

$$P(t) = \frac{x_1}{1 - tx_1} + \frac{x_2}{1 - tx_2} + \dots + \frac{x_n}{1 - tx_n} = p_1 + p_2 t + p_3 t + \dots =$$

$$= \sum_{m=0}^{\infty} p_{m+1}(x_1, \dots, x_n) t^m.$$

Newton Identities (continued)

The following (easy to check) equations hold

$$H(t)E(-t) = 1,$$

$$P(t) = \frac{H'(t)}{H(t)},$$

$$P(-t) = \frac{E'(t)}{E(t)},$$

giving raise (by the uniqueness of the Taylor expansion, comparing the coefficients at t^k) to the following identities, respectively

$$\sum_{m=0}^{k} (-1)^m e_m h_{m-k} = 0, \quad \text{for} \quad k \geqslant 1$$

$$\sum_{m=0}^{k} h_m p_{k-m+1} = (k+1) h_{k+1}, \quad \text{for} \quad k \geqslant 0,$$

$$\sum_{m=0}^{k} (-1)^{k-m} e_m p_{k-m+1} = (k+1) e_{k+1}, \quad \text{for} \quad k \geqslant 0.$$

Newton Identities (continued)

Usually, those identities are written in a slightly different but equivalent (simple exercise) way

$$\sum_{m=0}^{k} (-1)^m e_m h_{m-k} = 0, \quad \text{for } k \geqslant 1$$

$$\sum_{m=1}^{k} h_{k-m} p_m = k h_k, \quad \text{for } k \geqslant 1,$$

$$\sum_{m=1}^{k} (-1)^{m-1} e_{k-m} p_m = k e_k, \quad \text{for } k \geqslant 1.$$

Moreover, it is possible to express e_m 's and h_m 's solely in terms of p_m 's which lead for example to formulas for the coefficients of the characteristic polynomial w_A in terms of $\operatorname{tr}(A), \operatorname{tr}(A^2), \ldots, \operatorname{tr}(A^n)$ (see Faddeev–LeVerrier algorithm).

Newton Identities (continued)

Proposition

The following formulas hold

$$h_m(x_1,\ldots,x_n) = \sum_{\substack{|\mu|=m\\ \mu=(1^{k_1}2^{k_2}\ldots)}} \frac{1}{\prod_j j^{k_j} k_j!} p_{\mu},$$

$$e_m(x_1,\ldots,x_n) = \sum_{\substack{|\mu|=m\\ \mu=(1^{k_1}2^{k_2}\ldots)}} (-1)^{m-I(\mu)} \frac{1}{\prod_j j^{k_j} k_j!} p_{\mu_1} p_{\mu_2} \cdot \ldots,$$

where

$$p_{\mu}=p_{\mu_1}p_{\mu_2}\cdot\ldots$$

Proof.

Omitted. Observe that the identities do not depend on n (i.e. the number of variables).

Newton Identities – Example

$$\begin{split} h_1 &= p_{(1)} = p_1, \\ h_2 &= p_{(2)} + p_{(1,1)} = p_{(1^02^1...)} + p_{(1^22^0...)} = \\ &= \frac{1}{1^0 \cdot 0! \cdot 2^1 \cdot 1!} p_2 + \frac{1}{1^2 \cdot 2!} p_1 p_1 = \frac{1}{2} (p_1^2 + p_2), \\ h_3 &= p_{(3)} + p_{(2,1)} + p_{(1,1,1)} = p_{(1^02^03^1...)} + p_{(1^12^1...)} + p_{(1^3...)} = \\ &= \frac{1}{3^1 1!} p_3 + \frac{1}{1^1 \cdot 1! \cdot 2^1 \cdot 1!} p_2 p_1 + \frac{1}{1^3 3!} p_1 p_1 p_1 = \frac{1}{3} p_3 + \frac{1}{2} p_1 p_2 + \frac{1}{6} p_1^3, \end{split}$$

Newton Identities - Example

$$\begin{split} e_1 &= p_{(1)} = p_1, \\ e_2 &= -p_{(2)} + p_{(1,1)} = -p_{(1^02^1\dots)} + p_{(1^22^0\dots)} = \\ &= \frac{1}{1^0 \cdot 0! \cdot 2^1 \cdot 1!} p_2 + \frac{1}{1^2 \cdot 2!} p_1 p_1 = \frac{1}{2} (p_1^2 - p_2), \\ e_3 &= p_{(3)} - p_{(2,1)} + p_{(1,1,1)} = p_{(1^02^03^1\dots)} - p_{(1^12^1\dots)} + p_{(1^3\dots)} = \\ &= \frac{1}{3^11!} p_3 - \frac{1}{1^1 \cdot 1! \cdot 2^1 \cdot 1!} p_2 p_1 + \frac{1}{1^33!} p_1 p_1 p_1 = \frac{1}{3} p_3 - \frac{1}{2} p_1 p_2 + \frac{1}{6} p_1^3, \\ &\vdots \end{split}$$

Newton Identities – Example (continued)

Three numbers $x, y, z \in \mathbb{R}$ satisfy the following system of equations

$$\begin{cases} x + y + z = 2, \\ x^2 + y^2 + z^2 = 6, \\ x^3 + y^3 + z^3 = 8. \end{cases}$$

Determine xyz. The problem can be solved using the identity

$$e_3 = \frac{1}{3}p_3 - \frac{1}{2}p_1p_2 + \frac{1}{6}p_1^3,$$

that is

$$xyz = \frac{1}{3} \cdot 8 - \frac{1}{2} \cdot 2 \cdot 6 + \frac{1}{6} \cdot 2^3 =$$
$$= \frac{8}{3} - 6 + \frac{4}{3} = -2.$$

In fact, x = 1, y = 2, z = -1 (up to a permutation).

Schur Polynomials

For any monomial $x^{\alpha}=x_1^{\alpha_1}x_2^{\alpha_2}\cdot\ldots\cdot x_n^{\alpha_n}$ define the antisymmetric (or skew–symmetric) function

$$a_{\alpha}(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma(\sigma.x^{\alpha}),$$

where

$$\sigma.x^{\alpha} = x_{\sigma(1)}^{\alpha_1} x_{\sigma(2)}^{\alpha_2} \cdot \dots x_{\sigma(n)}^{\alpha_n}.$$

For example, if $\alpha = (1, 2, 0)$ and n = 3 then

$$a_{\alpha}(x_1, x_2, x_3) = x_1 x_2^2 + x_2^2 x_3 + x_1 x_3^2 - x_1^2 x_2 - x_2^2 x_3 - x_1 x_3^2.$$

The alternative definition of the determinant implies that

$$a_{\alpha}(x_{1},...,x_{n}) = \det \begin{bmatrix} x_{1}^{\alpha_{1}} & x_{1}^{\alpha_{2}} & x_{1}^{\alpha_{3}} & \cdots & x_{1}^{\alpha_{n}} \\ x_{2}^{\alpha_{1}} & x_{2}^{\alpha_{2}} & x_{2}^{\alpha_{3}} & \cdots & x_{2}^{\alpha_{n}} \\ x_{3}^{\alpha_{1}} & x_{3}^{\alpha_{2}} & x_{3}^{\alpha_{3}} & \cdots & x_{3}^{\alpha_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n}^{\alpha_{1}} & x_{n}^{\alpha_{2}} & x_{n}^{\alpha_{3}} & \cdots & x_{n}^{\alpha_{n}} \end{bmatrix}$$

From the properties of the determinant it follows that

$$a_{\alpha}(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)=-a_{\alpha}(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n),$$

(i.e. a_lpha is alternating and hence antisymmetric) and that

$$a_{\alpha}=0$$
,

if some $\alpha_i=\alpha_j$ for $i\neq j$. It follows that the polynomial a_α is divisible by the polynomial x_i-x_j in the ring $\mathbb{Z}[x_1,\ldots,x_n]$. For example for $\alpha=(1,2,0)$ and n=3

$$a_{\alpha}(x_1, x_2, x_3) = x_1 x_2^2 + x_2^2 x_3 + x_1 x_3^2 - x_1^2 x_2 - x_2^2 x_3 - x_1 x_3^2 =$$

$$= (x_1 - x_2)(-x_1 x_2 + x_1 x_3 + x_2 x_3 - x_3^2) =$$

$$= (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

Without the loss of generality one can assume that

$$\alpha_1 > \alpha_2 > \ldots > \alpha_n \geqslant 0.$$

This implies that $\alpha_1\geqslant n-1,\alpha_2\geqslant n-2,\ldots$ therefore if $\delta=(n-1,n-2,n-3,\ldots,2,1,0)$ then

$$\mu = \alpha - \delta$$
,

has non-negative components. Moreover

$$\mu_1 - \mu_2 = (\alpha_1 - (n-1)) - (\alpha_2 - (n-2)) = \alpha_1 - \alpha_2 - 1 \ge 0,$$

$$\mu_2 - \mu_3 = (\alpha_2 - (n-2)) - (\alpha_3 - (n-3)) = \alpha_2 - \alpha_3 - 1 \ge 0,$$

:

that is μ is a partition. This can be reversed, that is for any partition μ , the $\alpha = \mu + \delta$ gives a non–zero function a_{α} . Observe that $a_{\delta}(x_1, \ldots, x_n)$ is the Vandermonde determinant.

Definition

For any partition μ and $\delta=(n-1,n-2,\ldots,2,1,0)$ the Schur polynomial (in variables x_1,\ldots,x_n) is the symmetric polynomial in $\mathbb{Z}[x_1,\ldots,x_n]$ given by the formula

$$s_{\mu}=s_{\mu}(x_1,\ldots,x_n)=\frac{a_{\mu+\delta}}{a_{\delta}}.$$

Remark

Schur polynomials for μ such that $|\mu|=m$ form a $\mathbb{Z}-basis$ of the homogeneous symmetric polynomials of degree m. Schur polynomials play an important role in combinatorics, algebraic geometry, representation theory of the symmetric group, general linear group and the unitary group.

$$s_{\mu} = \frac{\det \begin{bmatrix} x_{1}^{\mu_{1}+(n-1)} & x_{1}^{\mu_{2}+(n-2)} & x_{1}^{\mu_{3}+(n-3)} & \cdots & x_{1}^{\mu_{n}+0} \\ x_{2}^{\mu_{1}+(n-1)} & x_{2}^{\mu_{2}+(n-2)} & x_{1}^{\mu_{3}+(n-3)} & \cdots & x_{2}^{\mu_{n}+0} \\ x_{3}^{\mu_{1}+(n-1)} & x_{3}^{\mu_{2}+(n-2)} & x_{1}^{\mu_{3}+(n-3)} & \cdots & x_{3}^{\mu_{n}+0} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{n}^{\mu_{1}+(n-1)} & x_{n}^{\mu_{2}+(n-2)} & x_{1}^{\mu_{3}+(n-3)} & \cdots & x_{n}^{\mu_{n}+0} \end{bmatrix}}{ \det \begin{bmatrix} x_{1}^{n-1} & x_{1}^{n-2} & x_{1}^{n-3} & \cdots & x_{1}^{0} \\ x_{2}^{n-1} & x_{1}^{n-2} & x_{1}^{n-3} & \cdots & x_{2}^{0} \\ x_{3}^{n-1} & x_{3}^{n-2} & x_{3}^{n-3} & \cdots & x_{n}^{0} \end{bmatrix}}$$

Schur Polynomials – Example

$$\delta = (2, 1, 0)$$

$$s_{\delta} = -(x_{2} - x_{1})(x_{3} - x_{1})(x_{3} - x_{2})$$

$$s_{(2,0,0)}(x_{1}, x_{2}, x_{3}) = \frac{1}{s_{\delta}} \det \begin{bmatrix} x_{1}^{4} & x_{1}^{1} & x_{1}^{0} \\ x_{2}^{4} & x_{2}^{1} & x_{2}^{0} \\ x_{3}^{4} & x_{3}^{1} & x_{3}^{0} \end{bmatrix} =$$

$$= \frac{1}{s_{\delta}} \left(-(x_{2} - x_{1}) \cdot (x_{3} - x_{2})(x_{3}^{2} + x_{2}x_{3} + x_{1}x_{3} + x_{2}^{2} + x_{1}x_{2} + x_{1}^{2}) \right) =$$

$$= x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3}.$$

Schur Polynomials - Another Example

$$\delta = (2, 1, 0)$$

$$s_{\delta} = -(x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

$$s_{(1,1,0)}(x_1, x_2, x_3) = \frac{1}{s_{\delta}} \det \begin{bmatrix} x_1^3 & x_1^2 & x_1^0 \\ x_2^3 & x_2^2 & x_2^0 \\ x_3^3 & x_3^2 & x_3^0 \end{bmatrix} =$$

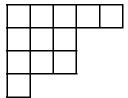
$$= \frac{1}{s_{\delta}} \left(-(x_2 - x_1)(x_3 - x_1)(x_3 - x_2)(x_2 x_3 + x_1 x_3 + x_1 x_2) \right) =$$

$$= x_1 x_2 + x_1 x_3 + x_2 x_3.$$

Semistandard Young Tableau

Definition

For any partition μ a semistandard Young tableau T of shape μ is a way of placing numbers into the diagram (μ_1 boxes in the first row, μ_2 in the second, etc.)



such that

- i) numbers in rows are weakly increasing (from left to right),
- ii) numbers in columns are strictly increasing (top to down).

Semistandard Young Tableau

Definition

The set $SSYT_{\mu}$ is the set of all semistandard Young tableaux and $SSYT_{\mu}(n)$ is the set of all semistandard Young tableuax with entries not greater than n. For any $T \in SSYT_{\mu}(n)$

$$x^{T} = x_1^{\#1's} x_2^{\#2's} \cdot \ldots \cdot x_n^{\#n's},$$

that x_j is raised to the number of occurrence of j in T.

¹cf. B. E. Sagan, The Symmetric Group, Springer 2001 → → ◆ ≥ → ◆ ≥ → ◆ ∞ ◆

Semistandard Young Tableau

Definition

The set $SSYT_{\mu}$ is the set of all semistandard Young tableaux and $SSYT_{\mu}(n)$ is the set of all semistandard Young tableuax with entries not greater than n. For any $T \in SSYT_{\mu}(n)$

$$x^{T} = x_1^{\#1's} x_2^{\#2's} \cdot \ldots \cdot x_n^{\#n's},$$

that x_i is raised to the number of occurrence of j in T.

Proposition

$$s_{\mu}(x_1,\ldots,x_n) = \sum_{T \in SSYT_{\mu}(n)} x^T.$$

Proof.

Omitted ¹

¹cf. B. E. Sagan, *The Symmetric Group*, Springer 2001 → → ◆ ≥ → ◆ ≥ → ◆ ∞ ◆

Semistandard Young Tableau - Example

$$\mu = (2,0,0), \quad n = 3,$$

$$SSYT_{\mu}(n) = \left\{ \boxed{1} \ \boxed{1}, \boxed{2} \ 2, \boxed{3} \ \boxed{3}, \boxed{1} \ 2, \boxed{1} \ \boxed{3}, \boxed{2} \ \boxed{3} \right\},$$

$$s_{\mu} = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3.$$

$$\mu = (1,1,0), \quad n = 3,$$

$$SSYT_{\mu}(n) = \left\{ \begin{array}{|c|c|c} 1 \\ \hline 2 \end{array}, \begin{array}{|c|c|c} 1 \\ \hline 3 \end{array}, \begin{array}{|c|c|c} 2 \\ \hline 3 \end{array} \right\},$$

$$s_{\mu} = x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3}.$$

Pieri's Formula

Proposition

$$s_{\mu}s_{(m)}=\sum_{
u}s_{
u},$$

where the sum is over all paritions ν obtained from μ by adding m boxes but no two in a single column.

Proof.

Omitted.

Pieri's Formula – Example

$$s_{(2,1)}s_{(2)}=s_{(4,1)}+s_{(3,2)}+s_{(3,1,1)}+s_{(2,2,1)},\\$$

Symmetric Matrix – Spectral Theorem

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is called **symmetric** if $A^{T} = A$.

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Then A is diagonalizable.

Symmetric Matrix – Spectral Theorem

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is called **symmetric** if $A^{\mathsf{T}} = A$.

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Then A is diagonalizable.

Moreover there exists an **orthogonal** basis of \mathbb{R}^n consisting of eigenvectors of the endomorphism $M(\varphi)_{st}=A$, i.e. vectors of that basis are pairwise perpendicular.

Let

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}.$$

Then

$$w_{A}(\lambda) = -(\lambda + 3)[(1 - \lambda)(-2 - \lambda) - 4] = -(\lambda + 3)^{2}(\lambda - 2),$$

$$V_{(-3)} = \lim((-1, 2, 0), (0, 0, 1)),$$

$$V_{(2)} = \lim((2, 1, 0)),$$

and the eigenvectors are pairwise perpendicular.

Minimal Polynomial

Definition

Let $A \in M(n \times n; \mathbb{R})$. The minimal polynomial μ_A of the matrix A is a non-zero monic polynomial with real coefficients of the least degree such that $\mu_A(A) = 0$.

Equivalently, the minimal polynomial of \boldsymbol{A} is the non-zero monic polynomial of the least degree which image under the map

$$\mathbb{R}[x] \ni P(x) \mapsto P(A) \in M(n \times n; \mathbb{R}),$$

is the zero matrix (or which divides each $P(x) \in \mathbb{R}[x]$ with P(A) = 0).

Minimal Polynomial

Definition

Let $A \in M(n \times n; \mathbb{R})$. The minimal polynomial μ_A of the matrix A is a non-zero monic polynomial with real coefficients of the least degree such that $\mu_A(A) = 0$.

Equivalently, the minimal polynomial of \boldsymbol{A} is the non-zero monic polynomial of the least degree which image under the map

$$\mathbb{R}[x] \ni P(x) \mapsto P(A) \in M(n \times n; \mathbb{R}),$$

is the zero matrix (or which divides each $P(x) \in \mathbb{R}[x]$ with P(A) = 0).

By the Cayley-Hamilton Theorem the minimal polynomial of A divides the characteristic polynomial of A, i.e. $\mu_A \mid w_A$.

Minimal Polynomial

Remark

The degree of the minimal polynomial μ_A is equal to the smallest number $m \geqslant 1$ such that

$$A^m \in \mathsf{lin}(A^{m-1},\ldots,A^1,A^0),$$

and if

$$A^{m} = \alpha_{m-1}A^{m-1} + \ldots + \alpha_{1}A^{1} + \alpha_{0}A^{0},$$

for some $\alpha_i \in \mathbb{R}$, then

$$\mu_A(\lambda) = \lambda^m - (\alpha_{m+1}\lambda^{m-1} + \ldots + \alpha_1\lambda + \alpha_0).$$

Let $A=\begin{bmatrix}8&10\\-3&-3\end{bmatrix}$. Then $w_A(\lambda)=(\lambda-2)(\lambda-3)$ and the only monic divisors of w_A are $w_A,\lambda-2,\lambda-3$ and 1. Since A is not a diagonal matrix then $\mu_A=w_A$.

Let $A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$. Then $w_A(\lambda) = (\lambda - 2)(\lambda - 3)$ and the only monic divisors of w_A are w_A , $\lambda - 2$, $\lambda - 3$ and 1. Since A is not a diagonal matrix then $\mu_A = w_A$.

Let
$$B = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
. Then $w_B(\lambda) = (2 - \lambda)^2 (4 - \lambda)$. Then only monic divisors of w_B are $-w_B$, $(\lambda - 2)^2$, $\lambda - 2$, $(\lambda - 2)(\lambda - 4)$,

 $\lambda-4$ and 1. It can be checked that $\mu_B=-w_B$.

Let $A=\begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}$. Then $w_A(\lambda)=(\lambda-2)(\lambda-3)$ and the only monic divisors of w_A are $w_A, \lambda-2, \lambda-3$ and 1. Since A is not a diagonal matrix then $\mu_A=w_A$.

Let
$$B = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
. Then $w_B(\lambda) = (2 - \lambda)^2 (4 - \lambda)$. Then only monic divisors of w_B are $-w_B$, $(\lambda - 2)^2$, $\lambda - 2$, $(\lambda - 2)(\lambda - 4)$,

only monic divisors of w_B are $-w_B$, $(\lambda-2)^2$, $\lambda-2$, $(\lambda-2)(\lambda-4)$, $\lambda-4$ and 1. It can be checked that $\mu_B=-w_B$. Equivalently, the matrix

$$B^2 = \left[\begin{array}{cccc} 4 & -8 & 4 \\ 0 & 4 & 6 \\ 0 & 0 & 16 \end{array} \right],$$

is not a linear combination of matrices B and I_3 .

Minimal Polynomials of Similar Matrices

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be similar matrices. Then $\mu_A = \mu_B$.

Minimal Polynomials of Similar Matrices

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be similar matrices. Then $\mu_A = \mu_B$.

Proof.

If $A=C^{-1}BC$ then $0=\mu_A(A)=C^{-1}\mu_A(B)C$ therefore $\mu_A(B)=0$. By definition $\mu_B\mid \mu_A$ and analogously $\mu_A\mid \mu_B$. Since both polynomials are monic $\mu_A=\mu_B$.

Minimal Polynomials of Similar Matrices

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be similar matrices. Then $\mu_A = \mu_B$.

Proof.

If $A=C^{-1}BC$ then $0=\mu_A(A)=C^{-1}\mu_A(B)C$ therefore $\mu_A(B)=0$. By definition $\mu_B\mid \mu_A$ and analogously $\mu_A\mid \mu_B$. Since both polynomials are monic $\mu_A=\mu_B$.

Remark

Non-similar matrices can have the same minimal polynomials. For example

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right], \quad B = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right],$$

have the same minimal polynomial

$$\mu_A(\lambda) = \mu_B(\lambda) = (\lambda - 1)(\lambda - 2)$$

Criterion for Diagonalizability

Theorem

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is diagonalizable if and only if the minimal polynomial of A factors as follows

$$\mu_A(\lambda) = (\lambda - \alpha_1)(\lambda - \alpha_2) \dots (\lambda - \alpha_k),$$

where $\alpha_i \in \mathbb{R}$ and $\alpha_i \neq \alpha_j$, i.e. α_i are pairwise distinct numbers.

Criterion for Diagonalizability

Theorem

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is diagonalizable if and only if the minimal polynomial of A factors as follows

$$\mu_A(\lambda) = (\lambda - \alpha_1)(\lambda - \alpha_2) \dots (\lambda - \alpha_k),$$

where $\alpha_i \in \mathbb{R}$ and $\alpha_i \neq \alpha_j$, i.e. α_i are pairwise distinct numbers.

Example

$$A = \begin{bmatrix} 8 & 10 \\ -3 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
$$\mu_A(\lambda) = (\lambda - 2)(\lambda - 3),$$
$$\mu_B(\lambda) = (\lambda - 2)^2(\lambda - 4).$$

Matrix A is diagonalizable and matrix B is not diagonalizable.

Example

The minimal polynomial of matrix

$$C = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right],$$

is equal to its characteristic polynomial. The minimal polynomial has pairwise different complex roots so the matrix C diagonalizes over $\mathbb C$ but not over $\mathbb R$.

Corollary

Matrix $A \in M(n \times n; \mathbb{C})$ of finite order (i.e., $A^m = I$ for some $m \ge 1$) is diagonalizable (over \mathbb{C}).

Corollary

Matrix $A \in M(n \times n; \mathbb{C})$ of finite order (i.e., $A^m = I$ for some $m \ge 1$) is diagonalizable (over \mathbb{C}).

Proof.

The minimal polyomial of A divides the polynomial x^m-1 which has only simple roots.

Corollary

Matrix $A \in M(n \times n; \mathbb{C})$ of finite order (i.e., $A^m = I$ for some $m \ge 1$) is diagonalizable (over \mathbb{C}).

Proof.

The minimal polyomial of A divides the polynomial x^m-1 which has only simple roots.

Warning

This theorem fails in positive characteristic, take say

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in M(2 \times 2; \mathbb{F}_2).$$

Proof.

 (\Rightarrow) Let $D=C^{-1}AC$, by the previous proposition $\mu_A=\mu_D$. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be all pairwise distinct eigenvalues of matrix D. For any $i=1,\ldots,k,\ v_i\in V_{(\alpha_i)}$

$$(D - \alpha_j I)v_i = (\alpha_i - \alpha_j)v_i$$
 for $j = 1, \dots, k$.

Proof.

 (\Rightarrow) Let $D=C^{-1}AC$, by the previous proposition $\mu_A=\mu_D$. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be all pairwise distinct eigenvalues of matrix D. For any $i=1,\ldots,k,\ v_i\in V_{(\alpha_i)}$

$$(D - \alpha_j I)v_i = (\alpha_i - \alpha_j)v_i$$
 for $j = 1, \dots, k$.

It follows that for any $i=1,\ldots,k,\ v_i\in V_{(\alpha_i)}$ and any $m_1,\ldots,m_k\geqslant 0$

$$[(D-\alpha_1I)^{m_1}\dots(D-\alpha_kI)^{m_k}]v_i=(\alpha_i-\alpha_1)^{m_1}\dots(\alpha_i-\alpha_k)^{m_k}v_i.$$

Proof.

 (\Rightarrow) Let $D=C^{-1}AC$, by the previous proposition $\mu_A=\mu_D$. Let $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ be all pairwise distinct eigenvalues of matrix D. For any $i=1,\ldots,k,\ v_i\in V_{(\alpha_i)}$

$$(D - \alpha_i I)v_i = (\alpha_i - \alpha_i)v_i$$
 for $j = 1, ..., k$.

It follows that for any $i=1,\ldots,k,\ v_i\in V_{(\alpha_i)}$ and any $m_1,\ldots,m_k\geqslant 0$

$$[(D-\alpha_1I)^{m_1}\dots(D-\alpha_kI)^{m_k}]v_i=(\alpha_i-\alpha_1)^{m_1}\dots(\alpha_i-\alpha_k)^{m_k}v_i.$$

Since for any $P(x) \in \mathbb{R}[x]$

$$P(D) = 0 \iff P(D)v_i = 0$$
 for any $i = 1, ..., k, v_i \in V_{(\alpha_i)}$

it follows that the minimal polynomial $\mu_{\mathcal{A}}(\lambda)$ is equal to

$$\mu_D(\lambda) = (\lambda - \alpha_1) \cdot \ldots \cdot (\lambda - \alpha_k), \quad \text{for all } \lambda \in \mathbb{R}$$

Proof.

(⇐) Let

$$Q_i(\lambda) = \frac{\mu_A(\lambda)}{\lambda - \alpha_i}$$
 for $i = 1, \dots, k$.

Since

$$GCD(Q_1(\lambda),\ldots,Q_k(\lambda))=1,$$

there exist polynomials $P_1, \ldots, P_k \in \mathbb{R}[x]$ such that

$$P_1(\lambda)Q_1(\lambda) + \ldots + P_k(\lambda)Q_k(\lambda) = 1.$$
 (*)

Proof.

(**←**) Let

$$Q_i(\lambda) = \frac{\mu_A(\lambda)}{\lambda - \alpha_i}$$
 for $i = 1, \dots, k$.

Since

$$\mathsf{GCD}(Q_1(\lambda),\ldots,Q_k(\lambda))=1,$$

there exist polynomials $P_1, \ldots, P_k \in \mathbb{R}[x]$ such that

$$P_1(\lambda)Q_1(\lambda) + \ldots + P_k(\lambda)Q_k(\lambda) = 1.$$
 (*)

Since $\mu_A \mid w_A$, the numbers $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ are eigenvalues of matrix A.

Proof.

(**⇐**) Let

$$Q_i(\lambda) = \frac{\mu_A(\lambda)}{\lambda - \alpha_i}$$
 for $i = 1, \dots, k$.

Since

$$GCD(Q_1(\lambda),\ldots,Q_k(\lambda))=1,$$

there exist polynomials $P_1, \ldots, P_k \in \mathbb{R}[x]$ such that

$$P_1(\lambda)Q_1(\lambda) + \ldots + P_k(\lambda)Q_k(\lambda) = 1.$$
 (*)

Since $\mu_A \mid w_A$, the numbers $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ are eigenvalues of matrix A. The union of bases of the eigenspaces $V_{(\alpha_1)}, \ldots, V_{(\alpha_k)}$ is a linearly independent set.

Proof.

(**⇐**) Let

$$Q_i(\lambda) = \frac{\mu_A(\lambda)}{\lambda - \alpha_i}$$
 for $i = 1, \dots, k$.

Since

$$GCD(Q_1(\lambda), \ldots, Q_k(\lambda)) = 1,$$

there exist polynomials $P_1, \ldots, P_k \in \mathbb{R}[x]$ such that

$$P_1(\lambda)Q_1(\lambda) + \ldots + P_k(\lambda)Q_k(\lambda) = 1.$$
 (*)

Since $\mu_A \mid w_A$, the numbers $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ are eigenvalues of matrix A. The union of bases of the eigenspaces $V_{(\alpha_1)}, \ldots, V_{(\alpha_k)}$ is a linearly independent set. It is enough to show that it spans \mathbb{R}^n .

Proof.

For any (column) vector $v \in \mathbb{R}^n$ and any $i=1,\ldots,k$

$$Q_i(A)v \in V_{(\alpha_i)},$$

because

$$\ker(A - \alpha_i I) = V_{(\alpha_i)}$$

and

$$(A - \alpha_i I)(Q_i(A))v = \mu_A(A)v = 0.$$

Proof.

For any (column) vector $v \in \mathbb{R}^n$ and any $i = 1, \ldots, k$

$$Q_i(A)v \in V_{(\alpha_i)}$$

because

$$\ker(A - \alpha_i I) = V_{(\alpha_i)}$$

and

$$(A - \alpha_i I)(Q_i(A))v = \mu_A(A)v = 0.$$

Let $v \in \mathbb{R}^n$ be any (column) vector. Substituting matrix A to the equation (??) and multiplying it by vector v on the right

$$v = Q_1(A) (P_1(A)v) + \ldots + Q_k(A) (P_k(A)v),$$

where

$$Q_i(A)(P_i(A)v) \in V_{(\alpha_i)}$$
 for $i = 1, ..., k$.

Definition

Let $\varphi\colon V\to V$ be an endomorphism and let $W\subset V$ be subspace. Then W is an **invariant subspace** of φ if

$$\varphi(W) \subset W$$
.

Definition

Let $\varphi\colon V\to V$ be an endomorphism and let $W\subset V$ be subspace. Then W is an **invariant subspace** of φ if

$$\varphi(W) \subset W$$
.

Proposition

Let W be an invariant subspace of a diagonalizable endomorphism $\varphi \colon V \to V$.

Definition

Let $\varphi\colon V\to V$ be an endomorphism and let $W\subset V$ be subspace. Then W is an **invariant subspace** of φ if

$$\varphi(W) \subset W$$
.

Proposition

Let W be an invariant subspace of a diagonalizable endomorphism $\varphi \colon V \to V$. Then $\varphi|_W \colon W \to W$ is diagonalizable.

Definition

Let $\varphi\colon V\to V$ be an endomorphism and let $W\subset V$ be subspace. Then W is an **invariant subspace** of φ if

$$\varphi(W) \subset W$$
.

Proposition

Let W be an invariant subspace of a diagonalizable endomorphism $\varphi \colon V \to V$. Then $\varphi|_W \colon W \to W$ is diagonalizable.

Proof.

Let μ_{φ} be the minimal polynomial of φ . Then for any $w \in W$

$$\mu_{\varphi}(\varphi)(\mathbf{w}) = \mathbf{0},$$

that is the minimal polynomial of $\varphi|_W$ divides the minimal polynomial of φ hence it has simple roots.

Proposition

Let $\varphi_i \colon V \to V$ where $i \in I$ be a family of diagonalisable endomorphisms. Then endomorphisms φ_i commute, i.e., for any $i, j \in I$

$$\varphi_i\circ\varphi_j=\varphi_j\circ\varphi_i,$$

if and only if there exists a basis A of V such that matrices $M(\varphi_i)_{\mathcal{A}}^A$ are diagonal for each $i \in I$, that is endomorphisms φ_i are simultaneously diagonalizable.

Proposition

Let $\varphi_i \colon V \to V$ where $i \in I$ be a family of diagonalisable endomorphisms. Then endomorphisms φ_i commute, i.e., for any $i, j \in I$

$$\varphi_i\circ\varphi_j=\varphi_j\circ\varphi_i,$$

if and only if there exists a basis A of V such that matrices $M(\varphi_i)_{\mathcal{A}}^A$ are diagonal for each $i \in I$, that is endomorphisms φ_i are simultaneously diagonalizable.

Proof.

 (\Leftarrow) if $M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}$, $M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}$ are diagonal then

$$M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}=M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}.$$

Proposition

Let $\varphi_i \colon V \to V$ where $i \in I$ be a family of diagonalisable endomorphisms. Then endomorphisms φ_i commute, i.e., for any $i, j \in I$

$$\varphi_i \circ \varphi_j = \varphi_j \circ \varphi_i,$$

if and only if there exists a basis A of V such that matrices $M(\varphi_i)_{\mathcal{A}}^A$ are diagonal for each $i \in I$, that is endomorphisms φ_i are simultaneously diagonalizable.

Proof.

 (\Leftarrow) if $M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}$, $M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}$ are diagonal then

$$M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}=M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}.$$

 (\Rightarrow) induction of $n = \dim V$.

Proposition

Let $\varphi_i \colon V \to V$ where $i \in I$ be a family of diagonalisable endomorphisms. Then endomorphisms φ_i commute, i.e., for any $i, j \in I$

$$\varphi_i\circ\varphi_j=\varphi_j\circ\varphi_i,$$

if and only if there exists a basis A of V such that matrices $M(\varphi_i)_{\mathcal{A}}^A$ are diagonal for each $i \in I$, that is endomorphisms φ_i are simultaneously diagonalizable.

Proof.

 (\Leftarrow) if $M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}$, $M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}$ are diagonal then

$$M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}=M(\varphi_j)_{\mathcal{A}}^{\mathcal{A}}M(\varphi_i)_{\mathcal{A}}^{\mathcal{A}}.$$

 (\Rightarrow) induction of $n = \dim V$. If n = 1 the statement is obvious.

Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists $j \in I$ such that $\dim V_{\varphi_j,(\lambda)} < \dim V$, where $\lambda \in \mathbb{R}$ is an eigenvalue of φ_j and $W = V_{\varphi_j,(\lambda)}$ is an eigenspace of φ_j (otherwise each φ_i is a uniform scalling).

Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists $j \in I$ such that $\dim V_{\varphi_j,(\lambda)} < \dim V$, where $\lambda \in \mathbb{R}$ is an eigenvalue of φ_j and $W = V_{\varphi_j,(\lambda)}$ is an eigenspace of φ_j (otherwise each φ_i is a uniform scalling). Then for any $i \in I$ and any $v \in V_{\varphi_j,(\lambda)}$

$$\varphi_j(\varphi_i(\mathbf{v})) = \varphi_i(\varphi_j(\mathbf{v})) = \varphi_i(\lambda \mathbf{v}) = \lambda(\varphi_i(\mathbf{v})),$$

i.e.,

$$\varphi_i(V_{\varphi_j,(\lambda)}) \subset V_{\varphi_j,(\lambda)}.$$

Simultaneously Diagonalizable Endomorphisms (continued)

Proof.

Assume there exists $j \in I$ such that $\dim V_{\varphi_j,(\lambda)} < \dim V$, where $\lambda \in \mathbb{R}$ is an eigenvalue of φ_j and $W = V_{\varphi_j,(\lambda)}$ is an eigenspace of φ_j (otherwise each φ_i is a uniform scalling). Then for any $i \in I$ and any $v \in V_{\varphi_j,(\lambda)}$

$$\varphi_j(\varphi_i(\mathbf{v})) = \varphi_i(\varphi_j(\mathbf{v})) = \varphi_i(\lambda \mathbf{v}) = \lambda(\varphi_i(\mathbf{v})),$$

i.e.,

$$\varphi_i(V_{\varphi_j,(\lambda)}) \subset V_{\varphi_j,(\lambda)}.$$

The family $\varphi_j|_W$ commute and each $\varphi_j|_W$ is diagonalisable, therefore by the inductive assumption the family is simultaneously diagonalisable (by repeating the argument on each eigenspace of φ_i).

Vandermonde Determinant

Proposition

For any $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

$$\begin{split} V(\alpha_1,\dots,\alpha_k) &= \det \left[\begin{array}{cccc} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \alpha_3^{k-1} & \dots & \alpha_k^{k-1} \end{array} \right] &= \\ &= \prod_{1 \leqslant i < j \leqslant k} (\alpha_j - \alpha_i). \end{split}$$

Vandermonde Determinant

Proposition

For any $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

$$\begin{split} V(\alpha_1,\dots,\alpha_k) &= \det \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \alpha_3^{k-1} & \dots & \alpha_k^{k-1} \end{bmatrix} = \\ &= \prod_{1\leqslant i < j \leqslant k} (\alpha_j - \alpha_i). \end{split}$$

Proof.

Proof by induction on k. For k = 2

$$V(\alpha_1, \alpha_2) = \det \begin{bmatrix} 1 & 1 \\ \alpha_1 & \alpha_2 \end{bmatrix} = \alpha_2 - \alpha_1.$$

Proof.

$$V(\alpha_1, \dots, \alpha_k) = \det \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \alpha_3^{k-1} & \dots & \alpha_k^{k-1} \end{bmatrix}^{r_k - \alpha_1 r_{k-1}} \stackrel{r_k - \alpha_1 r_{k-1}}{r_{k-1} - \alpha_1 r_{k-2}}$$

Proof.

$$V(\alpha_1,\dots,\alpha_k) = \det \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \alpha_3^{k-1} & \dots & \alpha_k^{k-1} \end{bmatrix}^{r_k - \alpha_1 r_{k-1}} \overset{r_{k-1} - \alpha_1 r_{k-2}}{r_{k-1} - \alpha_1 r_{k-2}}$$

$$= \det \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & \alpha_2 - \alpha_1 & \alpha_3 - \alpha_1 & \dots & \alpha_k - \alpha_1 \\ 0 & \alpha_2^2 - \alpha_1 \alpha_2 & \alpha_3^2 - \alpha_1 \alpha_3 & \dots & \alpha_k^2 - \alpha_1 \alpha_k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \alpha_2^{k-1} - \alpha_1 \alpha_2^{k-2} & \alpha_3^{k-1} - \alpha_1 \alpha_3^{k-2} & \dots & \alpha_k^{k-1} - \alpha_1 \alpha_k^{k-2} \end{bmatrix} =$$

Proof.

(by the Laplace formula along the first column)

$$=\det\begin{bmatrix} \alpha_2-\alpha_1 & \alpha_3-\alpha_1 & \dots & \alpha_k-\alpha_1\\ \alpha_2^2-\alpha_1\alpha_2 & \alpha_3^2-\alpha_1\alpha_3 & \dots & \alpha_k^2-\alpha_1\alpha_k\\ & \vdots & & & \\ \alpha_2^{k-1}-\alpha_1\alpha_2^{k-2} & \alpha_3^{k-1}-\alpha_1\alpha_3^{k-2} & \dots & \alpha_k^{k-1}-\alpha_1\alpha_k^{k-2} \end{bmatrix}=\\\\ =\det\begin{bmatrix} \alpha_2-\alpha_1 & \alpha_3-\alpha_1 & \dots & \alpha_k-\alpha_1\\ (\alpha_2-\alpha_1)\alpha_2 & (\alpha_3-\alpha_1)\alpha_3 & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k^{k-2} \end{bmatrix}=\\\\ =\det\begin{bmatrix} \alpha_2-\alpha_1 & \alpha_3-\alpha_1 & \dots & \alpha_k-\alpha_1\\ (\alpha_2-\alpha_1)\alpha_2 & (\alpha_3-\alpha_1)\alpha_3 & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k^{k-2} \end{bmatrix}=\\\\ =\det\begin{bmatrix} \alpha_2-\alpha_1 & \alpha_3-\alpha_1 & \dots & \alpha_k-\alpha_1\\ (\alpha_2-\alpha_1)\alpha_2 & (\alpha_3-\alpha_1)\alpha_3 & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k^{k-2} \end{bmatrix}=\\\\ =\det\begin{bmatrix} \alpha_1-\alpha_1 & \alpha_1-\alpha_1\\ (\alpha_2-\alpha_1)\alpha_2 & (\alpha_3-\alpha_1)\alpha_3 & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k^{k-2} \end{bmatrix}=\\\\ =\det\begin{bmatrix} \alpha_1-\alpha_1 & \alpha_1-\alpha_1\\ (\alpha_2-\alpha_1)\alpha_2 & (\alpha_3-\alpha_1)\alpha_3 & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_3-\alpha_1)\alpha_3^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_2-\alpha_1)\alpha_2^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_2-\alpha_1)\alpha_2^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\ (\alpha_2-\alpha_1)\alpha_2^{k-2} & (\alpha_2-\alpha_1)\alpha_2^{k-2} & \dots & (\alpha_k-\alpha_1)\alpha_k\\ & \vdots & & \\$$

(by dividing the j-th column by the factor $(\alpha_{j+1} - \alpha_1)$)

Proof.

$$= \prod_{1\leqslant 1 < j \leqslant k} (\alpha_j - \alpha_1) \det \left[\begin{array}{cccc} 1 & 1 & \dots & 1 \\ \alpha_2 & \alpha_3 & \dots & \alpha_k \\ \alpha_2^2 & \alpha_3^2 & \dots & \alpha_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_2^{k-2} & \alpha_3^{k-2} & \dots & \alpha_k^{k-2} \end{array} \right] =$$

(by the inductive assumption)

$$= \prod_{1 \leq 1 < j \leq k} (\alpha_j - \alpha_1) \prod_{2 \leq i < j \leq k} (\alpha_j - \alpha_i) = V(\alpha_1, \dots, \alpha_k).$$

Polynomial Interpolation

Proposition

Let $x_1, \ldots, x_{n+1} \in \mathbb{R}$ be pairwise distinct points, i.e. $x_i \neq x_j$ for all $1 \leq i < j \leq n+1$. For any $y_1, \ldots, y_{n+1} \in \mathbb{R}$ there exists a unique polynomial P(x) of degree at most n such that

$$P(x_i) = y_i \text{ for } i = 1, ..., n + 1.$$

Polynomial Interpolation

Proposition

Let $x_1, \ldots, x_{n+1} \in \mathbb{R}$ be pairwise distinct points, i.e. $x_i \neq x_j$ for all $1 \leq i < j \leq n+1$. For any $y_1, \ldots, y_{n+1} \in \mathbb{R}$ there exists a unique polynomial P(x) of degree at most n such that

$$P(x_i) = y_i \text{ for } i = 1, ..., n + 1.$$

Proof.

The polynomial P(x) = y is given by the equation

Remark

Note that the coefficient of y is equal to $(-1)^{n+1}V(x_1,\ldots,x_{n+1})$ hence it is non-zero.

Remark

Note that the coefficient of y is equal to $(-1)^{n+1}V(x_1,\ldots,x_{n+1})$ hence it is non-zero.

Remark

Equivalently,

$$P(x) = \sum_{i=1}^{n+1} y_i P_i(x),$$

where

$$P_i(x) = \frac{V(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_{n+1})}{V(x_1, \dots, x_{n+1})},$$

for i = 1, ..., n + 1 are polynomials of degree n such that

$$P_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Example

The equation of the line passing through points $(x_1, y_1), (x_2, y_2)$ is

$$y = y_1 \frac{x_2 - x}{x_2 - x_1} + y_2 \frac{x - x_1}{x_2 - x_1}.$$

Example

The equation of the line passing through points $(x_1, y_1), (x_2, y_2)$ is

$$y = y_1 \frac{x_2 - x}{x_2 - x_1} + y_2 \frac{x - x_1}{x_2 - x_1}.$$

Example

The equation of the parabola (or a line) passing through points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is

$$\begin{split} y &= y_1 \frac{(x_3 - x)(x_3 - x_2)(x_2 - x)}{(x_3 - x_1)(x_3 - x_2)(x_2 - x_1)} + y_2 \frac{(x_3 - x_1)(x_3 - x)(x - x_1)}{(x_3 - x_1)(x_3 - x_2)(x_2 - x_1)} + \\ &+ y_3 \frac{(x - x_1)(x - x_2)(x_2 - x_1)}{(x_3 - x_1)(x_3 - x_2)(x_2 - x_1)} = y_1 \frac{(x_3 - x)(x_2 - x)}{(x_3 - x_1)(x_2 - x_1)} + y_2 \frac{(x_3 - x)(x - x_1)}{(x_3 - x_2)(x_2 - x_1)} + \\ &+ y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}. \end{split}$$

Remark

The polynomial P(x) is called Lagrange interpolation polynomial.

Remark

The polynomial P(x) is called Lagrange interpolation polynomial.

Proposition

If function $f \in \mathcal{C}^{n+1}([a,b])$ and polynomial P(x) of degree at most n satisfy

$$P(x_i) = f(x_i)$$
 for $i = 1, \dots, n+1$

for pairwise distinct $x_1, \ldots, x_{n+1} \in [a, b]$ then for any $x \in [a, b]$ there exists $\min(x, x_1, \ldots, x_{n+1}) < \xi < \max(x, x_1, \ldots, x_{n+1})$ such that

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=1}^{n+1} (x - x_i).$$

Example

Let $f(x) = \cos x$. Then there exists a unique polynomial P(x) of degree at most 11, which attains the same values as the function f(x) at 12 pairwise distinct points $x_1, \ldots, x_{12} \in [0, \pi]$ and

$$|f(x) - P(x)| \le \frac{\pi^{12}}{12!} < 0.002$$

for any $x \in [0, \pi]$.

Equation of an Affine Hyperplane

Proposition

Let $p_1, \ldots, p_n \in \mathbb{R}^n$ be n points, where $p_1 = (p_{11}, \ldots, p_{1n}), p_2 = (p_{21}, \ldots, p_{2n}), \ldots, p_{n-1} = (p_{n1}, \ldots, p_{nn}).$ An equation of an affine hyperplane passing through p_1, \ldots, p_n (if it is unique up to a non-zero constant, i.e., p_1, \ldots, p_n do not lie on an affine subspace of dimension n-2) is given by the equation

$$\det \begin{bmatrix} x_1 & x_2 & \dots & x_n & 1 \\ p_{11} & p_{12} & \dots & p_{1n} & 1 \\ p_{21} & p_{22} & \dots & p_{2n} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ p_{(n-1)1} & p_{(n-1)2} & \dots & p_{(n-1)n} & 1 \\ p_{n1} & p_{n2} & \dots & p_{nn} & 1 \end{bmatrix} = 0.$$

Example

Equation of a line passing through points $(a_1,b_1),(a_2,b_2)\in\mathbb{R}^2$ is equal to

$$\det \begin{bmatrix} x_1 & x_2 & 1 \\ a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \end{bmatrix} = 0,$$

that is, by the Laplace expansion along the first row,

$$(b_1-b_2)x_1-(a_1-a_2)x_2+a_1b_2-a_2b_1=0.$$

For example, the line passing through (1,2),(2,5) has equation

$$\det \begin{bmatrix} x_1 & x_2 & 1 \\ 1 & 2 & 1 \\ 2 & 5 & 1 \end{bmatrix} = 0,$$

i.e.,

$$-3x_1 + x_2 + 1 = 0.$$

Hoffman-Wieland Theorem

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be two symmetric matrices, i.e. $A = A^{\mathsf{T}}, B = B^{\mathsf{T}}$. Let $\lambda_1(A) \leqslant \lambda_2(A) \leqslant \ldots \lambda_n(A)$ and $\lambda_1(B) \leqslant \lambda_2(B) \leqslant \ldots \lambda_n(B)$ be all eigenvalues of A and B. Then

$$\sum_{i=1}^n (\lambda_i(A) - \lambda_i(B))^2 \leqslant \|A - B\|_F^2.$$

Proof.

Let $A = QD_AQ^{\mathsf{T}}$ and $B = PD_BP^{\mathsf{T}}$ be spectral decompositions of A and B, respectively, where D_A, D_B are diagonal matrices with weakly increasing elements along the main diagonal. Then

$$\begin{split} &\sum_{i=1}^{n} \left(\lambda_i(A) - \lambda_i(B)\right)^2 = \mathsf{Tr}\left((D_A - D_B)^2\right) = \\ &= \mathsf{Tr}\left(D_A^2\right) - 2\,\mathsf{Tr}(D_A D_B) + \mathsf{Tr}\left(D_B^2\right). \end{split}$$

Hoffman-Wielandt Theorem

Proof.

Moreover

$$\|A - B\|_F^2 = \operatorname{Tr}((A - B)^2) = \operatorname{Tr}((QD_AQ^{\mathsf{T}} - PD_BP^{\mathsf{T}})^2) =$$

$$\operatorname{Tr}(D_A^2) - 2\operatorname{Tr}(QD_AQ^{\mathsf{T}}PD_BP^{\mathsf{T}}) + \operatorname{Tr}(D_B^2).$$

Let $U = [u_{ij}] = Q^{\mathsf{T}}P$ be an orthogonal matrix. Then the inequality is equivalent to

$$\operatorname{Tr}(U^{\mathsf{T}}D_AUD_B)\leqslant \operatorname{Tr}(D_AD_B),$$

or equivalently

$$\sum_{i,j=1}^n \lambda_i(A)\lambda_j(B)u_{ij}^2 \leqslant \sum_{i=1}^n \lambda_i(A)\lambda_i(B).$$

Hoffman-Wielandt Theorem (continued)

Proof.

$$\sum_{i,j=1}^n \lambda_i(A)\lambda_j(B)u_{ij}^2 \leqslant \sum_{i=1}^n \lambda_i(A)\lambda_i(B).$$

The left-hand side is a linear function in the entries of a doubly-stochastic matrix, and, it assumes a maximum at a vertex of the polyhedron of doubly-stochastic matrices, which, by the Birkhoff-von Neumann, is a matrix of some permutation $\sigma \in S_n$. The theorem follows by the rearrangement inequality.

Hoffman-Wielandt Theorem (continued)

Remark

The inequality becomes an equation when it is possible to diagonalize A and B simultaneously keeping the order of eigenvalues.

Remark

Similar inequality holds for any complex matrices and its eigenvalues.

Rearrangement Inequality

Proposition

For any real numbers

$$x_1 \leqslant x_2 \leqslant \ldots \leqslant x_n,$$

 $v_1 \leqslant v_2 \leqslant \ldots \leqslant v_n,$

and any permutation $\sigma \in S_n$

$$x_1y_n + x_2y_{n-1} + \dots + x_ny_1 \le$$

 $\le x_1y_{\sigma(1)} + x_2y_{\sigma(2)} + \dots + x_ny_{\sigma(n)} \le$
 $\le x_1y_1 + x_2y_2 + \dots + x_ny_n.$

Proof.

(sketch, by induction) If $x_1 \geqslant x_2$ and $y_1 \geqslant y_2$ then

$$(x_1-x_2)(y_1-y_2) \geqslant 0$$
,

$$x_1y_1 + x_2y_2 \geqslant x_1y_2 + x_2y_1$$
.

Rearrangement Inequality

Proof.

Let σ be a permutation maximizing the product and assume there exists i such that $\sigma(i)=j\neq i$ and choose the biggest such i. Then there exists k< i such that $\sigma(k)=i$. Consider the terms

$$x_i y_{\sigma(i)} = x_i y_j$$
, and $x_k y_{\sigma(k)} = x_k y_i$.

Since j < i we have that

$$x_k \geqslant x_i$$
 and $y_j \geqslant y_i$.

If $x_k=x_i$ or $y_j=y_i$ then modifying the permutation σ such that $\sigma'(i)=i$ and $\sigma'(k)=j$ and $\sigma'(m)=\sigma(m)$ otherwise does not change the sum. Assume that

$$x_k > x_i$$
 and $y_i > y_i$.

But then

$$\sum_{i} x_{i} y_{\sigma'(i)} > \sum_{i} x_{i} y_{\sigma(i)}.$$

Minimax Theorems

Proposition

Let $M \in M(n \times n; \mathbb{C})$ be any Hermitian matrix with real eigenvalues

$$\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$$
,

and an orthogonal basis of \mathbb{C}^n

$$\mathcal{B}=(v_1,\ldots,v_n),$$

such that

$$M\mathbf{v}_j = \lambda_j \mathbf{v}_j,$$

for $j = 1, \ldots, j$. Then

$$\min_{\substack{v \in V, v \neq 0 \\ \dim V = k}} R(M,v) \leqslant \lambda_k \leqslant \max_{\substack{v \in V, v \neq 0 \\ \dim V = n-k+1}} R(M,v)$$

The inequalities are sharp (for the upper bound take for example $V = lin(v_k, ..., v_n)$ and $v = v_k$).

Minimax Theorems (continued)

Proof.

Let $V \subset \mathbb{C}^n$ be a subspace such that dim V = n - k + 1. By the dimension count there exists $w \neq 0$ such that $\|w\| = 1$ and

$$w \in V \cap \operatorname{lin}(v_1, \ldots, v_k).$$

Assume

$$w = \sum_{j=1}^k \alpha_j v_j.$$

Then

$$\max_{\substack{v \in V, v \neq 0 \\ \dim V = n-k+1}} R(M, v) \geqslant R(M, w) = \sum_{j=1}^{\kappa} \lambda_j |\alpha_j|^2 \geqslant \lambda_k \sum_{j=1}^{\kappa} |\alpha_j|^2 = \lambda_k.$$

Obviously $R(M, v_k) = \lambda_k$.

Minimax Theorems (continued)

Proof.

The second inequality follows in a similar manner by considering (exercise)

$$w \in V \cap \text{lin}(v_k, \ldots, v_n).$$

Minimax Theorems (continued)

Proof.

The second inequality follows in a similar manner by considering (exercise)

$$w \in V \cap \operatorname{lin}(v_k, \ldots, v_n).$$

Remark

The same proof works for a real symmetric matrix $A \in M(n \times n; \mathbb{R})$.

Courant-Fischer Theorem

Corollary

Let $M \in M(n \times n; \mathbb{C})$ be any Hermitian matrix with real eigenvalues

$$\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$$
.

Then

$$\max_{\dim V=k} \min_{v \in V, v \neq 0} R(M,v) = \lambda_k = \min_{\dim V=n-k+1} \max_{v \in V, v \neq 0} R(M,v).$$