Linear Algebra
 Lecture 8 - Linear Endomorphisms

Oskar Kędzierski

27 November 2023

Endomorphism

Definition

Let V be a vector space and \mathcal{A} its (ordered) basis. A linear transformation $\varphi: V \longrightarrow V$ is called a linear endomorphism. The matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ is called matrix of endomorphism relative to basis \mathcal{A}. It is denoted in short $M(\varphi)_{\mathcal{A}}$.

Example

The identity id : $V \longrightarrow V$ is a linear endomorphism and its matrix relative to any basis \mathcal{A} is the identity matrix

$$
M(\mathrm{id})_{\mathcal{A}}=\left[\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right] \in M(n \times n ; \mathbb{R})
$$

where $n=\operatorname{dim} V$.

Example

Let

$$
\begin{aligned}
& s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \\
& r: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& k: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& p: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
\end{aligned}
$$

be linear endomorphisms of \mathbb{R}^{2} defined as follows: s is a reflection of \mathbb{R}^{2} about the x_{1}-axis, r rotation about the origin of \mathbb{R}^{2} (i.e. $(0,0)$) by $\frac{\pi}{2}$ radians (i.e. 90 degrees) counter-clockwise, k is scaling by -2 in all directions (also called uniform scaling) and p is projection onto the x_{2}-axis.

Example (continued)

For example, if $v=(2,1)$ then
$s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1)$.

Example (continued)

For example, if $v=(2,1)$ then

$$
s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1) .
$$

Example (continued)

For example, if $v=(2,1)$ then
$s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1)$.

Example (continued)

For example, if $v=(2,1)$ then
$s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1)$.

Example (continued)

For example, if $v=(2,1)$ then
$s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1)$.

Example (continued)

For example, if $v=(2,1)$ then
$s(v)=(2,-1), r(v)=(-1,2), k(v)=(-4,-2), p(v)=(0,1)$.

$$
\begin{aligned}
& s\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right) \\
& r\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right) \\
& k\left(x_{1}, x_{2}\right)=\left(-2 x_{1},-2 x_{2}\right) \\
& p\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
& s\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right), r\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right) \\
& k\left(x_{1}, x_{2}\right)=\left(-2 x_{1},-2 x_{2}\right), p\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)
\end{aligned}
$$

Example (continued)

$$
\begin{gathered}
s\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right), r\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right) \\
k\left(x_{1}, x_{2}\right)=\left(-2 x_{1},-2 x_{2}\right), p\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)
\end{gathered}
$$

The matrices of these endomorphisms relative to the standard basis st $=((1,0),(0,1))$ look as follows:

$$
\begin{aligned}
& M(s)_{s t}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], M(r)_{s t}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \\
& M(k)_{s t}=\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right], M(p)_{s t}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Example (continued)

$$
\begin{gathered}
s\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right), r\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right) \\
k\left(x_{1}, x_{2}\right)=\left(-2 x_{1},-2 x_{2}\right), p\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)
\end{gathered}
$$

The matrices of these endomorphisms relative to the standard basis st $=((1,0),(0,1))$ look as follows:

$$
\begin{aligned}
& M(s)_{s t}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], M(r)_{s t}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \\
& M(k)_{s t}=\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right], M(p)_{s t}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Take different basis, for example $\mathcal{A}=((1,2),(1,1))$. The change-of-coordinate matrix is

$$
M(\mathrm{id})_{s t}^{\mathcal{A}}=\left(M(\mathrm{id})_{\mathcal{A}}^{s t}\right)^{-1}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rr}
-1 & 1 \\
2 & -1
\end{array}\right]
$$

Example (continued)

Recall, $\mathcal{A}=((1,2),(1,1))$ and $M(\text { id })_{s t}^{\mathcal{A}}=\left[\begin{array}{rr}-1 & 1 \\ 2 & -1\end{array}\right]$.

Example (continued)

Recall, $\mathcal{A}=((1,2),(1,1))$ and $M(i d)_{s t}^{\mathcal{A}}=\left[\begin{array}{rr}-1 & 1 \\ 2 & -1\end{array}\right]$.

$$
\begin{aligned}
& s(1,2)=(1,-2)=-3(1,2)+4(1,1), \\
& s(1,1)=(1,-1)=-2(1,2)+3(1,1), \\
& r(1,2)=(-2,1)=3(1,2)-5(1,1), \\
& r(1,1)=(-1,1)=2(1,2)-3(1,1), \\
& k(1,2)=(-2,-4)=-2(1,2)+0(1,1), \\
& k(1,1)=(-2,-2)=0(1,2)-2(1,1), \\
& p(1,2)=(0,2)=2(1,2)-2(1,1), \\
& p(1,1)=(0,1)=1(1,2)-1(1,1) .
\end{aligned}
$$

Example (continued)

Recall, $\mathcal{A}=((1,2),(1,1))$ and $M(i d)_{s t}^{\mathcal{A}}=\left[\begin{array}{rr}-1 & 1 \\ 2 & -1\end{array}\right]$.

$$
s(1,2)=(1,-2)=-3(1,2)+4(1,1),
$$

$$
s(1,1)=(1,-1)=-2(1,2)+3(1,1),
$$

$$
r(1,2)=(-2,1)=3(1,2)-5(1,1),
$$

$$
r(1,1)=(-1,1)=2(1,2)-3(1,1),
$$

$$
k(1,2)=(-2,-4)=-2(1,2)+0(1,1),
$$

$$
k(1,1)=(-2,-2)=0(1,2)-2(1,1),
$$

$$
p(1,2)=(0,2)=2(1,2)-2(1,1),
$$

$$
p(1,1)=(0,1)=1(1,2)-1(1,1) .
$$

$$
\begin{aligned}
M(s)_{\mathcal{A}} & =\left[\begin{array}{rr}
-3 & -2 \\
4 & 3
\end{array}\right], M(r)_{\mathcal{A}}=\left[\begin{array}{rr}
3 & 2 \\
-5 & -3
\end{array}\right], \\
M(k)_{\mathcal{A}} & =\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right], M(p)_{\mathcal{A}}=\left[\begin{array}{rr}
2 & 1 \\
-2 & -1
\end{array}\right] .
\end{aligned}
$$

Example (continued)

We see that matrices of simple linear transformations look 'nice' relative to some bases and 'not-that-nice' relative to the others.

Example (continued)

We see that matrices of simple linear transformations look 'nice' relative to some bases and 'not-that-nice' relative to the others. That aim of this lecture is to find a way of computing those 'nice' ones in the general case. Note that determinants and the ranks of corresponding matrices did not change.

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n ; \mathbb{R})$ are called similar if there exists an invertible matrix $C \in M(n \times n ; \mathbb{R})$ such that

$$
A=C^{-1} B C
$$

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n ; \mathbb{R})$ are called similar if there exists an invertible matrix $C \in M(n \times n ; \mathbb{R})$ such that

$$
A=C^{-1} B C
$$

Proposition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. For any two bases \mathcal{A}, \mathcal{B} of V the matrices $M(\varphi)_{\mathcal{A}}$ and $M(\varphi)_{\mathcal{B}}$ are similar.

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n ; \mathbb{R})$ are called similar if there exists an invertible matrix $C \in M(n \times n ; \mathbb{R})$ such that

$$
A=C^{-1} B C
$$

Proposition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. For any two bases \mathcal{A}, \mathcal{B} of V the matrices $M(\varphi)_{\mathcal{A}}$ and $M(\varphi)_{\mathcal{B}}$ are similar.
Proof.

$$
M(\varphi)_{\mathcal{B}}^{\mathcal{B}}=M(\mathrm{id} \circ \varphi \circ \mathrm{id})_{\mathcal{B}}^{\mathcal{B}}=M(\mathrm{id}){ }_{\mathcal{A}}^{\mathcal{B}} M(\varphi)_{\mathcal{A}}^{\mathcal{A}} M(\mathrm{id})_{\mathcal{B}}^{\mathcal{B}}
$$

Therefore

$$
M(\varphi)_{\mathcal{B}}=C^{-1} M(\varphi)_{\mathcal{A}} C
$$

where $C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}$.

Example

Let $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}+x_{2}, 2 x_{1}+3 x_{2}\right)$ be a linear endomorphism $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. Take $\mathcal{A}=s t$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$
M(\varphi)_{\mathcal{A}}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \text { and } C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right] .
$$

Example

Let $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}+x_{2}, 2 x_{1}+3 x_{2}\right)$ be a linear endomorphism $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. Take $\mathcal{A}=s t$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$
M(\varphi)_{\mathcal{A}}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \text { and } C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right]
$$

Use $M(\varphi)_{\mathcal{B}}=C^{-1} M(\varphi)_{\mathcal{A}} C$ and compute $C^{-1}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$.

Example

Let $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}+x_{2}, 2 x_{1}+3 x_{2}\right)$ be a linear endomorphism $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. Take $\mathcal{A}=s t$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$
M(\varphi)_{\mathcal{A}}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \text { and } C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right]
$$

Use $M(\varphi)_{\mathcal{B}}=C^{-1} M(\varphi)_{\mathcal{A}} C$ and compute $C^{-1}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$.
Then

$$
M(\varphi)_{\mathcal{B}}=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] .
$$

Example

Let $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}+x_{2}, 2 x_{1}+3 x_{2}\right)$ be a linear endomorphism $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. Take $\mathcal{A}=s t$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$
M(\varphi)_{\mathcal{A}}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \text { and } C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right] .
$$

Use $M(\varphi)_{\mathcal{B}}=C^{-1} M(\varphi)_{\mathcal{A}} C$ and compute $C^{-1}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$.
Then

$$
M(\varphi)_{\mathcal{B}}=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] .
$$

On the other hand,

$$
\begin{gathered}
\varphi((-2,1))=(-1,-1)=2(-2,1)+3(1,-1) \\
\varphi((1,-1))=(0,-1)=(-2,1)+2(1,-1)
\end{gathered}
$$

Similar Matrices and Endomorphisms

Theorem
Let V be n-dimensional vector space and let $A, B \in M(n \times n ; \mathbb{R})$.
Then
A, B are similar \Longleftrightarrow there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}}=A$ and $M(\varphi)_{\mathcal{B}}=B$.

Similar Matrices and Endomorphisms

Theorem
Let V be n-dimensional vector space and let $A, B \in M(n \times n ; \mathbb{R})$.
Then
A, B are similar \Longleftrightarrow there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}}=A$ and $M(\varphi)_{\mathcal{B}}=B$.

Proof.
(\Leftarrow) was done before.

Similar Matrices and Endomorphisms

Theorem
Let V be n-dimensional vector space and let $A, B \in M(n \times n ; \mathbb{R})$.
Then
A, B are similar \Longleftrightarrow there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}}=A$ and $M(\varphi)_{\mathcal{B}}=B$.

Proof.

(\Leftarrow) was done before.
(\Rightarrow) there exits an invertible matrix $C \in M(n \times n ; \mathbb{R})$ such that $B=C^{-1} A C$. Let \mathcal{A} be any basis of the vector space V and let φ be the unique linear endomorphism given by the condition $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}=A$. If \mathcal{B} is given by the condition $C=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{B}}$ then $B=M(\varphi)_{\mathcal{B}}$.

Eigenvalues and Eigenvectors

Definition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. A constant $\lambda \in \mathbb{R}$ is called eigenvalue of φ if there exists a non-zero vector $v \in V$ such that

$$
\varphi(v)=\lambda v
$$

Such vector v is called an eigenvector of φ associated to the eigenvalue λ.

Eigenvalues and Eigenvectors

Definition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. A constant $\lambda \in \mathbb{R}$ is called eigenvalue of φ if there exists a non-zero vector $v \in V$ such that

$$
\varphi(v)=\lambda v
$$

Such vector v is called an eigenvector of φ associated to the eigenvalue λ.

Remark (geometric interpretation)
A vector $v \in V$ is an eigenvector of φ if and only if $\varphi(\operatorname{lin}(v)) \subset \operatorname{lin}(v)$ and $\operatorname{lin}(v) \neq\{0\}$, i.e. v is a non-zero vector and the line spanned by v is mapped into itself.

Eigenvalues and Eigenvectors (continued)

Let $\varphi: V \longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$
V_{(\lambda)}=\{v \in V \mid \varphi(v)=\lambda v .\}
$$

Proposition
The subset $V_{(\lambda)} \subset V$ is a subspace of V.

Eigenvalues and Eigenvectors (continued)

Let $\varphi: V \longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$
V_{(\lambda)}=\{v \in V \mid \varphi(v)=\lambda v .\}
$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.
Proof.
Let $v, w \in V_{(\lambda)}$. Then
$\varphi(v+w)=\varphi(v)+\varphi(w)=\lambda v+\lambda w=\lambda(v+w)$. Hence
$v+w \in V_{(\lambda)}$. For any $\alpha \in \mathbb{R}$ we have $\varphi(\alpha v)=\alpha \varphi(v)=\lambda(\alpha v)$.
Hence $\alpha v \in V_{(\lambda)}$.

Eigenvalues and Eigenvectors (continued)

Let $\varphi: V \longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$
V_{(\lambda)}=\{v \in V \mid \varphi(v)=\lambda v .\}
$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.
Proof.
Let $v, w \in V_{(\lambda)}$. Then
$\varphi(v+w)=\varphi(v)+\varphi(w)=\lambda v+\lambda w=\lambda(v+w)$. Hence
$v+w \in V_{(\lambda)}$. For any $\alpha \in \mathbb{R}$ we have $\varphi(\alpha v)=\alpha \varphi(v)=\lambda(\alpha v)$.
Hence $\alpha v \in V_{(\lambda)}$.
For any eigenvalue λ of φ the subspace $V_{(\lambda)}$ is called the eigenspace associated to λ.

Eigenvalues and Eigenvectors (continued)

Let $\varphi: V \longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$
V_{(\lambda)}=\{v \in V \mid \varphi(v)=\lambda v .\}
$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.
Proof.
Let $v, w \in V_{(\lambda)}$. Then
$\varphi(v+w)=\varphi(v)+\varphi(w)=\lambda v+\lambda w=\lambda(v+w)$. Hence
$v+w \in V_{(\lambda)}$. For any $\alpha \in \mathbb{R}$ we have $\varphi(\alpha v)=\alpha \varphi(v)=\lambda(\alpha v)$.
Hence $\alpha v \in V_{(\lambda)}$.
For any eigenvalue λ of φ the subspace $V_{(\lambda)}$ is called the eigenspace associated to λ. It is straightforward that $\varphi\left(V_{(\lambda)}\right) \subset V_{(\lambda)}$.

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$.

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^{2} by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself).

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^{2} by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2 , i.e. $V_{(-2)}=\mathbb{R}^{2}$.

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^{2} by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2 , i.e. $V_{(-2)}=\mathbb{R}^{2}$. The projection p onto the x_{2}-axis has two eigenspaces: $V_{(0)}=\operatorname{lin}((1,0))$ and $V_{(1)}=\operatorname{lin}((0,1))$.

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^{2} by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2 , i.e. $V_{(-2)}=\mathbb{R}^{2}$. The projection p onto the x_{2}-axis has two eigenspaces: $V_{(0)}=\operatorname{lin}((1,0))$ and $V_{(1)}=\operatorname{lin}((0,1))$. Note that for s, k and p there exist a basis (the standard one) consisting of eigenvectors. The matrices of those endomorphisms in the standard basis are diagonal.

Example

Let $s: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a reflection of \mathbb{R}^{2} about the x_{1}-axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^{2} by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2 , i.e. $V_{(-2)}=\mathbb{R}^{2}$. The projection p onto the x_{2}-axis has two eigenspaces: $V_{(0)}=\operatorname{lin}((1,0))$ and $V_{(1)}=\operatorname{lin}((0,1))$.
Note that for s, k and p there exist a basis (the standard one) consisting of eigenvectors. The matrices of those endomorphisms in the standard basis are diagonal.

$$
\begin{gathered}
M(s)_{s t}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], M(k)_{s t}=\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right] \\
M(p)_{s t}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Characteristic Polynomial

Definition
Let $A \in M(n \times n ; \mathbb{R})$. The polynomial $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.

Characteristic Polynomial

Definition

Let $A \in M(n \times n ; \mathbb{R})$. The polynomial $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.
The degree of $w_{A}(\lambda)$ is equal to n.

Characteristic Polynomial

Definition

Let $A \in M(n \times n ; \mathbb{R})$. The polynomial $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.
The degree of $w_{A}(\lambda)$ is equal to n.
Example
Let $A=\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]$. Then
$w_{A}(\lambda)=\operatorname{det}\left[\begin{array}{cc}4-\lambda & 2 \\ 3 & 3-\lambda\end{array}\right]=(4-\lambda)(3-\lambda)-6=\lambda^{2}-7 \lambda+6$.

Characteristic Polynomial

Definition

Let $A \in M(n \times n ; \mathbb{R})$. The polynomial $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.
The degree of $w_{A}(\lambda)$ is equal to n.
Example
Let $A=\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]$. Then
$w_{A}(\lambda)=\operatorname{det}\left[\begin{array}{cc}4-\lambda & 2 \\ 3 & 3-\lambda\end{array}\right]=(4-\lambda)(3-\lambda)-6=\lambda^{2}-7 \lambda+6$.

Proposition

Let $A, B \in M(n \times n ; \mathbb{R})$ be similar matrices. Then $w_{A}=w_{B}$.

Characteristic Polynomial

Definition

Let $A \in M(n \times n ; \mathbb{R})$. The polynomial $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.
The degree of $w_{A}(\lambda)$ is equal to n.
Example
Let $A=\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]$. Then
$w_{A}(\lambda)=\operatorname{det}\left[\begin{array}{cc}4-\lambda & 2 \\ 3 & 3-\lambda\end{array}\right]=(4-\lambda)(3-\lambda)-6=\lambda^{2}-7 \lambda+6$.

Proposition

Let $A, B \in M(n \times n ; \mathbb{R})$ be similar matrices. Then $w_{A}=w_{B}$.

Proof.

There exists an invertible matrix C such that $A=C^{-1} B C$. But $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(C^{-1} B C-C^{-1} \lambda I_{n} C\right)=$ $\operatorname{det}\left(C^{-1}\left(B-\lambda I_{n}\right) C\right)=(\operatorname{det} C)^{-1} \operatorname{det}\left(B-\lambda I_{n}\right) \operatorname{det} C=$ $w_{B}(\lambda)$.

Characteristic Polynomial (continued)

Definition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. The characteristic polynomial w_{φ} of φ is the characteristic polynomial of matrix $M(\varphi)_{\mathcal{A}}$ where \mathcal{A} is a basis of V.

Characteristic Polynomial (continued)

Definition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. The characteristic polynomial w_{φ} of φ is the characteristic polynomial of matrix $M(\varphi)_{\mathcal{A}}$ where \mathcal{A} is a basis of V. By the previous proposition the characteristic polynomial of φ does not depend on the basis \mathcal{A}.

Finding Eigenvalues and Eigenvectors

Theorem
Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.

Finding Eigenvalues and Eigenvectors

Theorem
Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.
i) $\alpha \in \mathbb{R}$ is an eigenvalue of $\varphi \Longleftrightarrow \alpha$ is a root the characteristic polynomial of φ,

Finding Eigenvalues and Eigenvectors

Theorem
Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.
i) $\alpha \in \mathbb{R}$ is an eigenvalue of $\varphi \Longleftrightarrow \alpha$ is a root the characteristic polynomial of φ,
ii) let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ and $A=M(\varphi)_{\mathcal{A}}$. The vector $v=x_{1} v_{1}+\ldots+x_{n} v_{n}$ is an eigenvector of φ associated to α if and only if

$$
\left(A-\alpha I_{n}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

Finding Eigenvalues and Eigenvectors (continued)

Proof.

Let $v=x_{1} v_{1}+\ldots+x_{n} v_{n}$. Then $\varphi(v)=\alpha v$ if and only if

$$
A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\alpha\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \Longleftrightarrow\left(A-\alpha I_{n}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

Finding Eigenvalues and Eigenvectors (continued)

Proof.

Let $v=x_{1} v_{1}+\ldots+x_{n} v_{n}$. Then $\varphi(v)=\alpha v$ if and only if

$$
A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\alpha\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \Longleftrightarrow\left(A-\alpha I_{n}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

From the previous lecture we know that there exists a non-zero solution of the latter if and only if $\operatorname{det}\left(A-\alpha I_{n}\right)=0$, i.e. $w_{A}(\alpha)=0$.

Example

Let $\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be an endomorphism of \mathbb{R}^{3} given by $\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right)$. Its matrix in the standard basis is $A=M(\varphi)_{s t}=\left[\begin{array}{rrr}4 & 4 & 0 \\ -1 & 0 & 0 \\ 1 & 3 & 3\end{array}\right]$.

$$
A-\lambda I=\left[\begin{array}{rrr}
4-\lambda & 4 & 0 \\
-1 & -\lambda & 0 \\
1 & 3 & 3-\lambda
\end{array}\right]
$$

Hence $\left.w_{\varphi}(\lambda)=\operatorname{det}(A-\lambda I)=(3-\lambda)((4-\lambda)(-\lambda)+4)\right)=$ $(3-\lambda)\left(\lambda^{2}-4 \lambda+4\right)=(3-\lambda)(2-\lambda)^{2}$.

Example

Let $\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be an endomorphism of \mathbb{R}^{3} given by $\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right)$. Its matrix in the standard basis is $A=M(\varphi)_{s t}=\left[\begin{array}{rrr}4 & 4 & 0 \\ -1 & 0 & 0 \\ 1 & 3 & 3\end{array}\right]$.

$$
A-\lambda I=\left[\begin{array}{rrr}
4-\lambda & 4 & 0 \\
-1 & -\lambda & 0 \\
1 & 3 & 3-\lambda
\end{array}\right]
$$

Hence $\left.w_{\varphi}(\lambda)=\operatorname{det}(A-\lambda I)=(3-\lambda)((4-\lambda)(-\lambda)+4)\right)=$ $(3-\lambda)\left(\lambda^{2}-4 \lambda+4\right)=(3-\lambda)(2-\lambda)^{2}$. There are two eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=3$. To find $V_{(2)}$ we solve a system of linear equations:

$$
V_{(2)}:\left[\begin{array}{rrr}
2 & 4 & 0 \\
-1 & -2 & 0 \\
1 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Example (continued)

$$
\left[\begin{array}{rrr}
2 & 4 & 0 \\
-1 & -2 & 0 \\
1 & 3 & 1
\end{array}\right] \xrightarrow{\substack{r_{1}+2 r_{2} \\
r_{3}+r_{2}}}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{1}-2 r_{2}}\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Example (continued)

$$
\left[\begin{array}{rrr}
2 & 4 & 0 \\
-1 & -2 & 0 \\
1 & 3 & 1
\end{array}\right] \xrightarrow{\substack{r_{1}+2 r_{2} \\
r_{3}+r_{2}}}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{1}-2 r_{2}}\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore $x_{1}=2 x_{3}, x_{2}=-x_{3}, x_{3} \in \mathbb{R}$, i.e.

$$
V_{(2)}=\left\{\left(2 x_{3},-x_{3}, x_{3}\right) \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((2,-1,1))
$$

Example (continued)

$$
\left[\begin{array}{rrr}
2 & 4 & 0 \\
-1 & -2 & 0 \\
1 & 3 & 1
\end{array}\right] \xrightarrow{\substack{r_{1}+2 r_{2} \\
r_{3}+r_{2}}}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{1}-2 r_{2}}\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore $x_{1}=2 x_{3}, x_{2}=-x_{3}, x_{3} \in \mathbb{R}$, i.e.

$$
\begin{gathered}
V_{(2)}=\left\{\left(2 x_{3},-x_{3}, x_{3}\right) \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((2,-1,1)) . \\
\quad V_{(3)}:\left[\begin{array}{rrr}
1 & 4 & 0 \\
-1 & -3 & 0 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
\end{gathered}
$$

Example (continued)

$$
\left[\begin{array}{rrr}
1 & 4 & 0 \\
-1 & -3 & 0 \\
1 & 3 & 0
\end{array}\right] \xrightarrow{\substack{r_{1}+r_{2} \\
r_{3}+r_{2}}}\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{2}+3 r_{1}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Example (continued)

$$
\left[\begin{array}{rrr}
1 & 4 & 0 \\
-1 & -3 & 0 \\
1 & 3 & 0
\end{array}\right] \xrightarrow{\substack{r_{1}+r_{2} \\
r_{3}+r_{2}}}\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{r_{2}+3 r_{1}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore $x_{1}=x_{2}=0, x_{3} \in \mathbb{R}$, i.e.

$$
V_{(3)}=\left\{\left(0,0, x_{3}\right) \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((0,0,1))
$$

Example (continued)

Recall that

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}, x_{3}\right)= & \left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right) \\
& V_{(2)}=\operatorname{lin}((2,-1,1)) \\
& V_{(3)}=\operatorname{lin}((0,0,1))
\end{aligned}
$$

and check those directly

$$
\varphi(2,-1,1)=
$$

Example (continued)

Recall that

$$
\begin{gathered}
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right), \\
\\
V_{(2)}=\operatorname{lin}((2,-1,1)) \\
\\
V_{(3)}=\operatorname{lin}((0,0,1))
\end{gathered}
$$

and check those directly

$$
\varphi(2,-1,1)=(4,-2,2)=2(2,-1,1)
$$

Example (continued)

Recall that

$$
\begin{gathered}
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right), \\
\\
V_{(2)}=\operatorname{lin}((2,-1,1)) \\
\\
V_{(3)}=\operatorname{lin}((0,0,1))
\end{gathered}
$$

and check those directly

$$
\begin{aligned}
& \varphi(2,-1,1)=(4,-2,2)=2(2,-1,1) \\
& \varphi(0,0,1)=
\end{aligned}
$$

Example (continued)

Recall that

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}, x_{3}\right)= & \left(4 x_{1}+4 x_{2},-x_{1}, x_{1}+3 x_{2}+3 x_{3}\right) \\
& V_{(2)}=\operatorname{lin}((2,-1,1)) \\
& V_{(3)}=\operatorname{lin}((0,0,1))
\end{aligned}
$$

and check those directly

$$
\begin{gathered}
\varphi(2,-1,1)=(4,-2,2)=2(2,-1,1), \\
\varphi(0,0,1)=(0,0,3)=3(0,0,1)
\end{gathered}
$$

Remarks

i) if $\varphi: V \longrightarrow V$ and $\operatorname{dim} V$ is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ,

Remarks

i) if $\varphi: V \longrightarrow V$ and $\operatorname{dim} V$ is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ,
ii) $\operatorname{dim} V_{(\alpha)} \leqslant$ multiplicity of the root α in w_{φ}, cf. the last example (2 is a root of multiplicity 2 but $\operatorname{dim} V_{(2)}=1$),

Remarks

i) if $\varphi: V \longrightarrow V$ and $\operatorname{dim} V$ is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ,
ii) $\operatorname{dim} V_{(\alpha)} \leqslant$ multiplicity of the root α in w_{φ}, cf. the last example (2 is a root of multiplicity 2 but $\operatorname{dim} V_{(2)}=1$),
iii) if $A \in M(n \times n ; \mathbb{R})$ then $w_{A}(A)=\left[\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right]$, i.e. matrix A substituted to its characteristic polynomial gives the zero matrix (Cayley-Hamilton theorem).

Example

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right] \text { and } w_{A}(\lambda)=\lambda^{2}-2 \lambda-2 . \text { Then } \\
& \qquad \begin{array}{c}
w_{A}(A)=\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]^{2}-2\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]= \\
=\left[\begin{array}{ll}
4 & 6 \\
2 & 4
\end{array}\right]+\left[\begin{array}{ll}
-2 & -6 \\
-2 & -2
\end{array}\right]+\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right]= \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .}
\end{array} . .
\end{aligned}
$$

Cayley-Hamilton Theorem

Theorem
For any $A \in M(n \times n ; \mathbb{R})$ and $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$

$$
w_{A}(A)=0 .
$$

Cayley-Hamilton Theorem

Theorem
For any $A \in M(n \times n ; \mathbb{R})$ and $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$

$$
w_{A}(A)=0 .
$$

Proof.
Let $B=\operatorname{adj}\left(A-\lambda I_{n}\right)$ be the adjugate matrix of the matrix $A-\lambda I_{n}$.

Cayley-Hamilton Theorem

Theorem
For any $A \in M(n \times n ; \mathbb{R})$ and $w_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$

$$
w_{A}(A)=0 .
$$

Proof.

Let $B=\operatorname{adj}\left(A-\lambda I_{n}\right)$ be the adjugate matrix of the matrix $A-\lambda I_{n}$. The entries of B are polynomials of degree at most $n-1$. By separating monomials of the same degree one can write

$$
B=\lambda^{n-1} B_{n-1}+\lambda^{n-2} B_{n-2}+\ldots+\lambda B_{1}+B_{0},
$$

where $B_{i} \in M(n \times n ; \mathbb{R})$ for $i=0, \ldots, n-1$.

Cayley-Hamilton Theorem (continued)

Proof.

By the matrix inverse formula
$B\left(A-\lambda I_{n}\right)=w_{A}(\lambda) I_{n}=\lambda^{n} a_{n} I_{n}+\lambda^{n-1} a_{n-1} I_{n}+\ldots+\lambda a_{1} I_{n}+a_{0} I_{n}$,
where

$$
w_{A}(\lambda)=\lambda^{n} a_{n}+\lambda^{n-1} a_{n-1}+\ldots+\lambda a_{1}+a_{0},
$$

is the characteristic polynomial of matrix A.

Cayley-Hamilton Theorem (continued)

Proof.

By the matrix inverse formula
$B\left(A-\lambda I_{n}\right)=w_{A}(\lambda) I_{n}=\lambda^{n} a_{n} I_{n}+\lambda^{n-1} a_{n-1} I_{n}+\ldots+\lambda a_{1} I_{n}+a_{0} I_{n}$,
where

$$
w_{A}(\lambda)=\lambda^{n} a_{n}+\lambda^{n-1} a_{n-1}+\ldots+\lambda a_{1}+a_{0},
$$

is the characteristic polynomial of matrix A. Hence

$$
\begin{gathered}
B\left(A-\lambda I_{n}\right)=\lambda^{n-1} B_{n-1} A+\ldots+\lambda^{2} B_{2} A+\lambda B_{1} A+B_{0} A+ \\
-\lambda^{n} B_{n-1}-\lambda^{n-1} B_{n-2}-\ldots-\lambda^{2} B_{1}-\lambda B_{0}= \\
=-\lambda^{n} B_{n-1}+\lambda^{n-1}\left(B_{n-1} A-B_{n-2}\right)+\lambda^{n-2}\left(B_{n-2} A-B_{n-3}\right)+\ldots+ \\
+ \\
\lambda^{2}\left(B_{2} A-B_{1}\right)+\lambda\left(B_{1} A-B_{0}\right)+B_{0} A .
\end{gathered}
$$

Two polynomials with real coefficients are equal if and only if they have the same coefficients, therefore,

Cayley-Hamilton Theorem (continued)

Proof.

$$
\begin{aligned}
&-B_{n-1}=a_{n} I_{n}, \\
& B_{n-1} A-B_{n-2}=a_{n-1} I_{n}, \\
& \vdots \\
& B_{1} A-B_{0}=a_{1} I_{n}, \\
& B_{0} A= a_{0} I_{n} .
\end{aligned}
$$

Multiplying those equations on the right by $A^{n}, A^{n-1}, \ldots, A, A^{0}=I_{n}$ respectively one gets

$$
\begin{aligned}
-B_{n-1} A^{n} & =a_{n} A^{n}, \\
B_{n-1} A^{n}-B_{n-2} A^{n-1} & =a_{n-1} A^{n-1}, \\
& \vdots \\
B_{1} A^{2}-B_{0} A & =a_{1} A, \\
B_{0} A & =a_{0} I_{n} .
\end{aligned}
$$

Cayley-Hamilton Theorem - Proof

Proof.
This sums to

$$
w_{A}(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{1} A+a_{0} I_{n}=0
$$

Remark

There exist other conceptual proofs of the Cayley-Hamilton theorem (using abstract algebra of Schur decomposition).

Schur Decomposition

Proposition

For any matrix $A \in M(n \times n ; \mathbb{C})$ there exists a unitary matrix $U \in M(n \times n ; \mathbb{C})$ (i.e. $U^{*} U=U U^{*}=I$, where $\left.U^{*}=\bar{U}^{\top}\right)$ and an upper triangular matrix $T=\left[t_{i j}\right] \in M(n \times n$; $\mathbb{C})$ (i.e. $t_{i j}=0$ for $i>j$) such that

$$
A=U T U^{*}
$$

The decomposition is not unique and the diagonal entries of matrix T are exactly (complex) eigenvalues of matrix A.

Schur Decomposition

Proposition

For any matrix $A \in M(n \times n ; \mathbb{C})$ there exists a unitary matrix $U \in M(n \times n ; \mathbb{C})$ (i.e. $U^{*} U=U U^{*}=I$, where $\left.U^{*}=\bar{U}^{\top}\right)$ and an upper triangular matrix $T=\left[t_{i j}\right] \in M(n \times n$; $\mathbb{C})$ (i.e. $t_{i j}=0$ for $i>j)$ such that

$$
A=U T U^{*}
$$

The decomposition is not unique and the diagonal entries of matrix T are exactly (complex) eigenvalues of matrix A.

Proof.
Omitted.

Cayley-Hamilton Theorem Alternative Proof via Schur

 DecompositionProof.
Let $U T U^{*}=A$. Then

$$
w_{A}(A)=U w_{A}(T) U^{*} .
$$

Moreover, if

$$
w_{A}(\lambda)=\left(\lambda-\lambda_{1}\right) \cdot \ldots \cdot\left(\lambda-\lambda_{n}\right),
$$

then

$$
w_{A}(T)=\left(T-\lambda_{1} I\right) \cdot \ldots \cdot\left(T-\lambda_{n} I\right)=0
$$

that is, the first k columns of the product

$$
\left(T-\lambda_{1} I\right) \cdot \ldots \cdot\left(T-\lambda_{k} I\right),
$$

are zero.

Characteristic Polynomials of $A B$ and $B A$

Proposition

Let $A \in M(m \times n ; \mathbb{R})$ and let $B \in M(n \times m ; \mathbb{R})$ where $m \geqslant n$. Then $A B \in M(m \times m ; \mathbb{R}), B A \in M(n \times n ; \mathbb{R})$ and

$$
w_{A B}(\lambda)=\lambda^{m-n} w_{B A}(\lambda),
$$

that is eigenvalues of $A B$ and $B A$ (up to $m-n$ zeroes) are the same. Moreover, the dimensions of eigenspaces corresponding to non-zero eigenvalues are the same.

Characteristic Polynomials of $A B$ and $B A$

Proposition

Let $A \in M(m \times n ; \mathbb{R})$ and let $B \in M(n \times m ; \mathbb{R})$ where $m \geqslant n$. Then $A B \in M(m \times m ; \mathbb{R}), B A \in M(n \times n ; \mathbb{R})$ and

$$
w_{A B}(\lambda)=\lambda^{m-n} w_{B A}(\lambda),
$$

that is eigenvalues of $A B$ and $B A$ (up to $m-n$ zeroes) are the same. Moreover, the dimensions of eigenspaces corresponding to non-zero eigenvalues are the same.

Proof.
Let

$$
M=\left[\begin{array}{c|c}
A B & 0 \\
\hline B & 0
\end{array}\right], \quad N=\left[\begin{array}{c|c}
0 & 0 \\
\hline B & B A
\end{array}\right], \quad C=\left[\begin{array}{c|c}
I_{m} & A \\
\hline 0 & I_{n}
\end{array}\right],
$$

be $(m+n) \times(m+n)$ matrices.

Characteristic Polynomials of $A B$ and $B A$

Proof.
Then

$$
C^{-1}=\left[\begin{array}{c|c}
I_{m} & -A \\
\hline 0 & I_{n}
\end{array}\right], \quad C^{-1} M C=N
$$

i.e. the matrices are similar hence they have the same eigenvalues.

This holds as

$$
\begin{gathered}
M C=C N \\
{\left[\begin{array}{c|c}
A B & 0 \\
\hline B & 0
\end{array}\right]\left[\begin{array}{c|c}
I_{m} & A \\
\hline 0 & I_{n}
\end{array}\right]=\left[\begin{array}{c|c}
I_{m} & A \\
\hline 0 & I_{n}
\end{array}\right]\left[\begin{array}{c|c}
0 & 0 \\
\hline B & B A
\end{array}\right]=\left[\begin{array}{c|c}
A B & A B A \\
\hline B & B A
\end{array}\right] .}
\end{gathered}
$$

Characteristic Polynomials of $A B$ and $B A$

Proof.

Alternatively, for $\lambda \neq 0$ the following linear transfomations are inverse to each other hence invertible

$$
\begin{aligned}
& \operatorname{ker}(A B-\lambda I) \ni v \mapsto \frac{1}{\lambda} B v \in \operatorname{ker}(B A-\lambda I), \\
& \operatorname{ker}(B A-\lambda I) \ni v \mapsto \frac{1}{\lambda} A v \in \operatorname{ker}(A B-\lambda I) .
\end{aligned}
$$

In particular $\operatorname{ker}(A B-\lambda I) \neq\{0\}$ if and only if $\operatorname{ker}(B A-\lambda I) \neq\{0\}$.

Nilpotent Matrix

Definition
Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is nilpotent if there exists $k \geqslant 1$ such that

$$
A^{k}=0 .
$$

Nilpotent Matrix

Definition
Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is nilpotent if there exists $k \geqslant 1$ such that

$$
A^{k}=0 .
$$

Proposition

If matrix $A \in M(n \times n ; \mathbb{R})$ is nilpotent and $\lambda \in \mathbb{R}$ is an eigenvalue of A then $\lambda=0$, i.e. all eigenvalues are equal to 0 .

Nilpotent Matrix

Definition

Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is nilpotent if there exists $k \geqslant 1$ such that

$$
A^{k}=0
$$

Proposition

If matrix $A \in M(n \times n ; \mathbb{R})$ is nilpotent and $\lambda \in \mathbb{R}$ is an eigenvalue of A then $\lambda=0$, i.e. all eigenvalues are equal to 0 .

Proof.
Let $k \geqslant 1$ be any number such that $A^{k}=0$. Let $v \in \mathbb{R}^{n}$ be an eigenvector of A for the eigenvalue $\lambda \in \mathbb{R}$. Then

$$
\left(A^{k}\right) v=\lambda^{k} v=0 \Longrightarrow \lambda=0
$$

since $v \neq 0$.

Nilpotent Matrix (continued)

Corollary
Matrix $A \in M(n \times n ; \mathbb{R})$ is nilpotent if and only if its all eigenvalues over complex numbers are equal to 0 (i.e. the characteristic polynomial $\left.w_{A}(\lambda)=(-1)^{n} \lambda^{n}\right)$.

Companion Matrix

Proposition
For any $a_{0}, \ldots, a_{n-1} \in \mathbb{R}$ where $n \geqslant 2$ if

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
0 & 0 & 1 & \cdots & 0 & -a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

then

$$
w_{A}(\lambda)=(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right)
$$

Companion Matrix

Proposition
For any $a_{0}, \ldots, a_{n-1} \in \mathbb{R}$ where $n \geqslant 2$ if

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
0 & 0 & 1 & \cdots & 0 & -a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

then

$$
w_{A}(\lambda)=(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right) .
$$

Proof.
Induction on n. If $n=2$ then

$$
\left[\begin{array}{rl}
-\lambda & -a_{0} \\
1 & -a_{1}-\lambda
\end{array}\right]=\lambda^{2}+a_{1} \lambda+a_{0} .
$$

Companion Matrix (continued)

Proof.
For $n \geqslant 3$, by the Laplace formula for the first column and the inductive assumption

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccccl}
-\lambda & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & -\lambda & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & -\lambda & \cdots & 0 & -a_{2} \\
0 & 0 & 1 & \cdots & 0 & -a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}-\lambda
\end{array}\right]= \\
&=-\lambda(-1)^{n-1}\left(\lambda^{n-1}+\ldots+a_{2} \lambda+a_{1}\right)- \\
&-\operatorname{det}\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & -\lambda & \cdots & 0 & -a_{2} \\
0 & 1 & \cdots & 0 & -a_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}-\lambda
\end{array}\right]= \\
&=(-1)^{n}\left(\lambda^{n}+\ldots+a_{2} \lambda^{2}+a_{1} \lambda\right)-(-1)^{n}\left(-a_{0}\right) .
\end{aligned}
$$

Companion Matrix (continued)

Corollary

Up to a sign, each monic polynomial of degree n is a characteristic polynomial of some matrix $A \in M(n \times n ; \mathbb{R})$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is primitive if $A \geqslant 0$ and there exists k such that $A^{k}>0$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is primitive if $A \geqslant 0$ and there exists k such that $A^{k}>0$. Matrix A is irreducible if $A \geqslant 0$ and for each $1 \leqslant i, j \leqslant n$ there exists k such that $\left(A^{k}\right)_{i j}>0$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n ; \mathbb{R})$. Matrix A is primitive if $A \geqslant 0$ and there exists k such that $A^{k}>0$. Matrix A is irreducible if $A \geqslant 0$ and for each $1 \leqslant i, j \leqslant n$ there exists k such that $\left(A^{k}\right)_{i j}>0$.

Remark

If matrix A is primitive then it is irreducible. If matrix A is irreducible then matrix $A+I$ is primitive because $A^{m} \geqslant 0$ and

$$
(A+I)^{k}=I+\binom{k}{1} A+\binom{k}{2} A^{2}+\binom{k}{3} A^{3}+\ldots+\binom{k}{k} A^{k},
$$

for $k=\max \left\{k_{i j}\right\}$.

Perron-Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist $\lambda_{\text {max }} \in \mathbb{R}, \lambda_{\text {max }}>0$ a positive eigenvalue of A such that
i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$
|\lambda| \leqslant \lambda_{\max },
$$

Perron-Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
$\lambda_{\text {max }} \in \mathbb{R}, \lambda_{\text {max }}>0$ a positive eigenvalue of A such that
i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$
|\lambda| \leqslant \lambda_{\max },
$$

ii) $V_{\left(\lambda_{\max }\right)}=\operatorname{lin}(v)$ where $v \in \mathbb{R}^{n}$ and $v>0$ (i.e., all entries of v are positive),

Perron-Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
$\lambda_{\text {max }} \in \mathbb{R}, \lambda_{\text {max }}>0$ a positive eigenvalue of A such that
i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$
|\lambda| \leqslant \lambda_{\max },
$$

ii) $V_{\left(\lambda_{\max }\right)}=\operatorname{lin}(v)$ where $v \in \mathbb{R}^{n}$ and $v>0$ (i.e., all entries of v are positive),
iii) $\lambda_{\text {max }}$ is a simple root of $w_{A}(\lambda)$ (i.e $w_{A}(\lambda)$ is not divisible by $\left.\left(\lambda-\lambda_{\max }\right)^{2}\right)$,

Perron-Frobenius Theorem

Theorem

Let A be an irreducible matrix. Then there exist
$\lambda_{\text {max }} \in \mathbb{R}, \lambda_{\text {max }}>0$ a positive eigenvalue of A such that
i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$
|\lambda| \leqslant \lambda_{\max },
$$

ii) $V_{\left(\lambda_{\max }\right)}=\operatorname{lin}(v)$ where $v \in \mathbb{R}^{n}$ and $v>0$ (i.e., all entries of v are positive),
iii) $\lambda_{\text {max }}$ is a simple root of $w_{A}(\lambda)$ (i.e $w_{A}(\lambda)$ is not divisible by $\left.\left(\lambda-\lambda_{\max }\right)^{2}\right)$,
iv) if $w \in \mathbb{R}^{n}, w>0$ and w is an eigenvalue of A then $w \in V_{\left(\lambda_{\max }\right)}$.

Perron-Frobenius Theorem (continued)

Remark
If A is a primitive matrix then moreover

$$
|\lambda|<\lambda_{\max }
$$

for any eigenvalue $\lambda \in \mathbb{C}$ of A.

Perron-Frobenius Theorem Proof

Let $k \in \mathbb{N}$ be a number such that

$$
B=(I+A)^{k}>0 .
$$

Obviously

$$
\text { if } v \leqslant w, v \neq w \text { then } B v<B w .
$$

Let

$$
Q=\left\{v \in \mathbb{R}^{n} \mid v \geqslant 0, v \neq 0\right\}, \quad C=Q \cap\left\{v \in \mathbb{R}^{n} \mid\|v\|=1\right\} .
$$

For any $v \geqslant 0$ such that $v \neq 0$ let

$$
L(v)=\max \{\lambda \in \mathbb{R} \mid \lambda v \leqslant A v\}=\min _{\substack{1 \leqslant i \leq n \\ v_{i} \neq 0}} \frac{(A v)_{i}}{v_{i}}
$$

It is clear that $L(\mu v)=L(v)$ for $\mu>0$, in particular
$L\left(\frac{v}{\|v\|}\right)=L(v)$ for $v \geqslant 0, v \neq 0$.

Perron-Frobenius Theorem Proof (continued)

For any $v \geqslant 0$ such that $v \neq 0$

$$
\text { if } \mu v \leqslant A v \text { then } \mu B v \leqslant B A v=A B v,
$$

which implies that (maximum over a larger set)

$$
L(v) \leqslant L(B v)
$$

Moreover, if $A v \neq L(v) v$ then, by the definition,

$$
L(v) v \leqslant A v, \quad A v \neq L(v) v, \quad \text { hence } \quad B(L(v) v)<B(A v) .
$$

This is equivalent to

$$
L(v) B v<A B v \text {, i.e., } L(v)<L(B v)
$$

(i-th components of $L(v) A$ and $A v$ are equal for some i).

Perron-Frobenius Theorem Proof (continued)

By abuse of notation, let

$$
B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

denote the linear function given by the matrix B. Since the set C is compact then $B(C) \subset \mathbb{R}_{>0}^{n}$ is compact too and $v \geqslant 0, v \neq 0$ implies that $B v>B 0=0$. By the Weierstrass extreme value theorem, the function L (which is continuous as minimum of continuous functions and all components are non-zero) obtains its maximum on the set $B(C)$. Let

$$
\begin{gathered}
\lambda_{\max }=\max _{v \in B(C)} L(v) \\
v=\underset{v \in B(C)}{\arg \max } L(v)
\end{gathered}
$$

By the above $v>0$ and

$$
A v=L(v) v=\lambda_{\max } v
$$

Perron-Frobenius Theorem Proof (continued)

Since $L(v) \leqslant L(B v)$

$$
\lambda_{\max }=\max _{v \in B(C)} L(v)=\max _{v \in C} L(v)
$$

Perron-Frobenius Theorem Proof (continued)

Since $L(v) \leqslant L(B v)$

$$
\lambda_{\max }=\max _{v \in B(C)} L(v)=\max _{v \in C} L(v)
$$

Beacuse

$$
\begin{gathered}
A v=\lambda_{\max } v \\
A \geqslant 0, v>0 \Longrightarrow A v>0
\end{gathered}
$$

it follows that

$$
\lambda_{\max }>0
$$

Perron-Frobenius Theorem Proof (continued)

Let $w \in \mathbb{C}^{n}, \lambda \in \mathbb{C}$ be such that

$$
\lambda w=A w,
$$

i.e., for $i=1, \ldots, n$

$$
\begin{gathered}
\lambda w_{i}=\sum_{i=1}^{n} a_{i j} w_{j}, \\
|\lambda|\left|w_{i}\right| \leqslant \sum_{i=1}^{n} a_{i j}\left|w_{j}\right|,
\end{gathered}
$$

since $a_{i j} \geqslant 0$. This is equivalent to

$$
|\lambda||w| \leqslant A|w|,
$$

where

$$
|w|=\left(\left|w_{1}\right|, \ldots,\left|w_{n}\right|\right) \in \mathbb{R}^{n} .
$$

Perron-Frobenius Theorem Proof (continued)

Let $w \in \mathbb{C}^{n}, \lambda \in \mathbb{C}$ be such that

$$
\lambda w=A w,
$$

i.e., for $i=1, \ldots, n$

$$
\begin{gathered}
\lambda w_{i}=\sum_{i=1}^{n} a_{i j} w_{j}, \\
|\lambda|\left|w_{i}\right| \leqslant \sum_{i=1}^{n} a_{i j}\left|w_{j}\right|,
\end{gathered}
$$

since $a_{i j} \geqslant 0$. This is equivalent to

$$
|\lambda||w| \leqslant A|w|,
$$

where

$$
|w|=\left(\left|w_{1}\right|, \ldots,\left|w_{n}\right|\right) \in \mathbb{R}^{n} .
$$

By definition

$$
|\lambda| \leqslant L(|w|) \leqslant \lambda_{\max },
$$

i.e. $\lambda_{\max }$ is a real eigenvalue with maximal modulus and positive eigenvector.

Perron-Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the simple eigenvalue $\lambda_{\text {max }}$ and all other positive eigenvectors are multiples or vector v.

Perron-Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the simple eigenvalue $\lambda_{\text {max }}$ and all other positive eigenvectors are multiples or vector v.

As A^{\top} is irreducible too there exists left eigenvalue $\mu_{\text {max }}>0$ and a positive eigenvector $w>0$ such that $w^{\top} A=\mu_{\text {max }} w$. Then

$$
\mu_{\max } w^{\top} v=\left(w^{\top} A\right) v=w^{\top}(A v)=\lambda_{\max } w^{\top} v
$$

hence $\mu_{\text {max }}=\lambda_{\text {max }}$ as $w^{\top} v>0$.

Perron-Frobenius Theorem Proof (continued)

Suppose that there exist $\eta \in \mathbb{R}$ and $u \geqslant 0, u \neq 0$ such that $A u=\eta u$. Then

$$
\eta w^{\top} u=\left(w^{\top} A\right) u=w^{\top}(A u)=\lambda_{\max } w^{\top} u
$$

hence $\eta=\lambda_{\text {max }}$ as $w^{\top} u>0$. If $v^{\prime} \in \mathbb{R}$ is another eigenvector corresponding to $\lambda_{\max }$ linearly independent with v then there exist $\alpha, \beta \in \mathbb{R}$ such that vector $v^{\prime \prime}=\alpha v+\beta v^{\prime}$ has some component equal to 0 and $v^{\prime} \geqslant 0, v^{\prime} \neq 0$. Then

$$
0<B v^{\prime}=(I+A)^{k} v^{\prime}=\left(1+\lambda_{\max }\right)^{k} v^{\prime}
$$

which leads to a contradiction.
Therefore, in the Jordan decomposition of matrix A there exists a unique Jordan block corresponding to the eigenvalue $\lambda_{\text {max }}$.

Perron-Frobenius Theorem Proof (continued)

Without loss of generality one may replace A by $\frac{A}{\lambda_{\max }}$ and assume that $\lambda_{\text {max }}=1$. Recall that

$$
\|A\|_{\infty}=\max \left\{\left\|r_{1}\right\|_{1}, \ldots,\left\|r_{n}\right\|\right\}
$$

where r_{1}, \ldots, r_{n} denote the rows of matrix A. Therefore (recall $A \geqslant 0, v>0)$

$$
\begin{gathered}
\|v\|_{\infty}=\left\|A^{m} v\right\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left\langle r_{i}^{(m)}, v_{i}\right\rangle \geqslant \max _{1 \leqslant i \leqslant n}\left\|r_{i}^{(m)}\right\|_{1} \min _{1 \leqslant i \leqslant n} v_{i}= \\
=\left\|A^{m}\right\|_{\infty} \min _{1 \leqslant i \leqslant n} v_{i}
\end{gathered}
$$

where $r_{i}^{(m)}$ denote the rows of A^{m}. Therefore for any m

$$
\left\|A^{m}\right\| \leqslant \frac{\|v\|_{\infty}}{\min _{1 \leqslant i \leqslant n} v_{i}}
$$

Perron-Frobenius Theorem Proof (continued)

Let J be the Jordan matrix of A and let

$$
J=C^{-1} A C
$$

then

$$
\left\|J^{m}\right\|_{\infty} \leqslant\left\|C^{-1}\right\|_{\infty}\left\|A^{m}\right\|_{\infty}\|C\|_{\infty}
$$

If the size of the Jordan block J_{1} corresponding to $\lambda_{\max }=1$ is bigger or equal than 2 then

$$
J_{1}^{m}=\left[\begin{array}{ccc}
1 & m & \ldots \\
0 & 1 & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

which gives a contradiction as then

$$
\left\|J^{m}\right\|_{\infty} \geqslant 1+m \longrightarrow \infty
$$

when $m \longrightarrow \infty$.

Perron-Frobenius Theorem Proof (continued)

Finally, assume that A is primitive. Take λ an eigenvalue of A such that $|\lambda|=\lambda_{\max }$. From the first part of the proof it follows that

$$
|\lambda|=L(|w|)=\lambda_{\max } .
$$

The inequality

$$
|\lambda|\left|w_{i}\right| \leqslant \sum_{i=1}^{n} a_{i j}\left|w_{j}\right|
$$

becomes equality only if all arguments of w_{j} for non-zero $a_{i j}$ are the same. Applying the same argument to A^{k}, and dividing w by a unit complex number we get a real, non-negative, non-zero eigenvector corresponding to the eigenvalue $\lambda_{\max }$. Hence $\lambda=\lambda_{\max }$.

Application - Discrete Markov Chains

Let

$$
Q=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

be the transition matrix of some Markov chain (see Lecture 5). The eigenvalues of Q are $\frac{1}{6}, 1$ hence $\lambda_{\text {max }}=1$ (the vector $(1, \ldots, 1)$ is an eigenvector of any transition matrix). Moreover

$$
\begin{gathered}
V_{(1)}=\operatorname{lin}((1,1)), \\
V_{\left(\frac{1}{6}\right)}=\operatorname{lin}((3,-2)) . \\
Q^{n}=\left[\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{6^{n}}
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right]^{-1} .
\end{gathered}
$$

Application - Discrete Markov Chains (continued)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} Q^{n} & =\lim _{n \rightarrow \infty}\left[\begin{array}{ll}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{6^{n}}
\end{array}\right]\left[\begin{array}{rr}
\frac{2}{5} & \frac{3}{5} \\
\frac{1}{5} & -\frac{1}{5}
\end{array}\right]= \\
& =\left[\begin{array}{ll}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
\frac{1}{5} & -\frac{1}{5}
\end{array}\right]= \\
& =\left[\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
\end{aligned}
$$

Therefore for any initial conditions $\mathrm{t}=\left(t_{1}, t_{2}\right) \in \mathbb{R}_{\geqslant 0}^{2}, t_{1}+t_{2}=1$

$$
\lim _{n \rightarrow \infty} \mathrm{t}^{\top} Q^{n}=\left(\frac{2}{5}, \frac{3}{5}\right)
$$

High Powers of a Primitive Matrix

Corollary

Let $A \in M(n \times n ; \mathbb{R})$ be a primitive matrix (i.e. $A>0)$. Let $v \in \mathbb{R}^{n}, v>0$ be the (right) eigenvector of A for the eigenvalue $\lambda_{\text {max }}$ and let $w \in \mathbb{R}^{n}, w>0$ be the (left) eigenvector of A for the eigenvalue $\lambda_{\text {max }}$ such that $w^{\top} v=1$. Then

$$
\lim _{n \rightarrow \infty}\left(\frac{Q}{\lambda_{\max }}\right)^{n}=v w^{\top}
$$

High Powers of a Primitive Matrix (continued)
Example
For $Q=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3}\end{array}\right]$ we have $\lambda_{\max }=1$ and $v=(1,1), w=\frac{1}{5}(2,3)$,
i.e.

$$
\frac{1}{5}\left[\begin{array}{ll}
2 & 3
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
2 & 3
\end{array}\right], \quad\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

therefore

$$
\lim _{n \rightarrow \infty} Q^{n}=v w^{\top}=\frac{1}{5}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

Graph of a Non-Negative Matrix

Definition
Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The directed graph given by A is a graph $G_{A}=G=(V, E)$, where

$$
V=\{1,2, \ldots, n\},
$$

and for any $i, j \in V$,

$$
(i, j) \in E \text { if and only if } a_{i j}>0
$$

Graph of a Non-Negative Matrix

Definition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The directed graph given by A is a graph $G_{A}=G=(V, E)$, where

$$
V=\{1,2, \ldots, n\},
$$

and for any $i, j \in V$,

$$
(i, j) \in E \text { if and only if } a_{i j}>0
$$

Remark

Note that self-loops are allowed. The matrix G_{A} is closely related to the adjacency matrix of graph G.

Graph of a Non-Negative Matrix

Definition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The directed graph given by A is a graph $G_{A}=G=(V, E)$, where

$$
V=\{1,2, \ldots, n\},
$$

and for any $i, j \in V$,

$$
(i, j) \in E \text { if and only if } a_{i j}>0
$$

Remark

Note that self-loops are allowed. The matrix G_{A} is closely related to the adjacency matrix of graph G.

Definition
A directed graph $G=(V, E)$ is strongly connected if for each $i, j \in V$ there exists a path joining i with j.

Graph of a Non-Negative Matrix (continued)

Proposition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent
i) the matrix A is irreducible,
ii) the graph G_{A} is strongly connected.

Graph of a Non-Negative Matrix (continued)

Proposition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent
i) the matrix A is irreducible,
ii) the graph G_{A} is strongly connected.

Proof.

Follows directly from definitions.

Graph of a Non-Negative Matrix (continued)

Proposition
Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent
i) the matrix A is primitive,
ii) the graph G_{A} is strongly connected and contains two cycles of relatively prime lengths.

Graph of a Non-Negative Matrix (continued)

Proposition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent
i) the matrix A is primitive,
ii) the graph G_{A} is strongly connected and contains two cycles of relatively prime lengths.

Proof.

$i) \Rightarrow i i)$ let k be a number such that $A^{k}>0$. Then $A^{k+1}>0$ so there are cycles of lengths k and $k+1$,

Graph of a Non-Negative Matrix (continued)

Proposition

Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent
i) the matrix A is primitive,
ii) the graph G_{A} is strongly connected and contains two cycles of relatively prime lengths.

Proof.

$i) \Rightarrow i i)$ let k be a number such that $A^{k}>0$. Then $A^{k+1}>0$ so there are cycles of lengths k and $k+1$,
$i i) \Rightarrow i)$ see S. Sternberg Dynamical Systems, Section 9.2, the problem reduces to a statement from arithmetic: if $\operatorname{GCD}(a, b)=1$ then there exists a $N \in \mathbb{N}$ such that

$$
(\mathbb{N} a+\mathbb{N} b) \cap[N,+\infty)=\{N, N+1, N+2, \ldots\}
$$

Example - Irreducible Not Primitive Matrix

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right], \ldots \\
A^{5}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=I_{5}, A^{6}=A .
\end{gathered}
$$

Example - Irreducible Not Primitive Matrix

In particular, if

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right],
$$

then

$$
w_{A}(\lambda)=\lambda^{5}-1,
$$

hence $\lambda_{\max }=1$, any other eigenvalue λ of matrix A is a $5-$ th root of unity and

$$
|\lambda| \leqslant \lambda_{\max },
$$

moreover $\lambda_{\max }$ has algebraic multiplicity 1 and $A v=v$, where

$$
v=(1,1,1,1,1)>0 .
$$

Incidentally, A is a particular case of a 5×5 circulant matrix with $c_{n-1}=1, n=5$ and all other $c_{i}^{\prime} s$ equal to 0 .

Example - Primitive Matrix

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right], \ldots \\
A^{17}=\left[\begin{array}{lllll}
4 & 1 & 2 & 4 & 6 \\
3 & 1 & 1 & 1 & 3 \\
3 & 3 & 4 & 1 & 1 \\
1 & 3 & 6 & 4 & 1 \\
1 & 1 & 4 & 6 & 4
\end{array}\right] .
\end{gathered}
$$

Example - Another Primitive Matrix

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right], \ldots \\
A^{14}=\left[\begin{array}{lllll}
4 & 3 & 1 & 6 & 2 \\
1 & 1 & 2 & 1 & 3 \\
3 & 1 & 1 & 3 & 1 \\
1 & 3 & 1 & 4 & 3 \\
3 & 1 & 3 & 2 & 4
\end{array}\right] .
\end{gathered}
$$

Example - And Another Primitive Matrix

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right], \ldots \\
A^{8}=\left[\begin{array}{llllll}
5 & 4 & 3 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 & 1 \\
4 & 3 & 2 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

Example - And Another Primitive Matrix (continued)

 If$$
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right],
$$

it can be checked that $w_{A}(\lambda)=\lambda^{5}-\lambda^{4}-1=\left(\lambda^{2}-\lambda+1\right)\left(\lambda^{3}-\lambda-1\right)$, with $\lambda_{\max } \approx 1.3247$, and $v \approx(0.6765,0.2197,0.2910,0.3855,0.5107)$. Other eigenvalues have magnitudes smaller than $\lambda_{\max }$

