Linear Algebra Lecture 8 - Linear Endomorphisms

Oskar Kędzierski

27 November 2023

Endomorphism

Definition

Let V be a vector space and $\mathcal A$ its (ordered) basis. A linear transformation $\varphi:V\longrightarrow V$ is called a **linear endomorphism**. The matrix $M(\varphi)^{\mathcal A}_{\mathcal A}$ is called matrix of endomorphism relative to basis $\mathcal A$. It is denoted in short $M(\varphi)_{\mathcal A}$.

Example

The identity $id:V\longrightarrow V$ is a linear endomorphism and its matrix relative to any basis $\mathcal A$ is the identity matrix

$$M(\mathsf{id})_{\mathcal{A}} = \left[\begin{array}{ccc} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{array} \right] \in M(n \times n; \mathbb{R}),$$

where $n = \dim V$.

Let

$$s: \mathbb{R}^2 \longrightarrow \mathbb{R}^2,$$
 $r: \mathbb{R}^2 \longrightarrow \mathbb{R}^2,$
 $k: \mathbb{R}^2 \longrightarrow \mathbb{R}^2,$
 $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2.$

be linear endomorphisms of \mathbb{R}^2 defined as follows: s is a reflection of \mathbb{R}^2 about the x_1 -axis, r rotation about the origin of \mathbb{R}^2 (i.e. (0,0)) by $\frac{\pi}{2}$ radians (i.e. 90 degrees) counter-clockwise, k is scaling by -2 in all directions (also called uniform scaling) and p is projection onto the x_2 -axis.

For example, if v = (2, 1) then s(v) = (2, -1), r(v) = (-1, 2), k(v) = (-4, -2), p(v) = (0, 1).

$$s(x_1, x_2) = (x_1, -x_2), r(x_1, x_2) = (-x_2, x_1),$$

 $k(x_1, x_2) = (-2x_1, -2x_2), p(x_1, x_2) = (0, x_2).$

$$s(x_1, x_2) = (x_1, -x_2), \ r(x_1, x_2) = (-x_2, x_1),$$

 $k(x_1, x_2) = (-2x_1, -2x_2), \ p(x_1, x_2) = (0, x_2).$

The matrices of these endomorphisms relative to the standard basis st = ((1,0),(0,1)) look as follows:

$$M(s)_{st} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ M(r)_{st} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$M(k)_{st} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, \ M(p)_{st} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$s(x_1, x_2) = (x_1, -x_2), \ r(x_1, x_2) = (-x_2, x_1),$$

 $k(x_1, x_2) = (-2x_1, -2x_2), \ p(x_1, x_2) = (0, x_2).$

The matrices of these endomorphisms relative to the standard basis st = ((1,0),(0,1)) look as follows:

$$M(s)_{st} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, M(r)_{st} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$M(k)_{st} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, M(p)_{st} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Take different basis, for example $\mathcal{A}=((1,2),(1,1)).$ The change-of-coordinate matrix is

$$M(\mathsf{id})_{\mathsf{st}}^{\mathcal{A}} = (M(\mathsf{id})_{\mathcal{A}}^{\mathsf{st}})^{-1} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array} \right].$$

Recall,
$$\mathcal{A}=((1,2),(1,1))$$
 and $M(\mathrm{id})_{st}^{\mathcal{A}}=\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$.

Recall,
$$\mathcal{A} = ((1,2),(1,1))$$
 and $M(\mathrm{id})_{st}^{\mathcal{A}} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$.
$$s(1,2) = (1,-2) = -3(1,2) + 4(1,1),$$

$$s(1,1) = (1,-1) = -2(1,2) + 3(1,1),$$

$$r(1,2) = (-2,1) = 3(1,2) - 5(1,1),$$

$$r(1,1) = (-1,1) = 2(1,2) - 3(1,1),$$

$$k(1,2) = (-2,-4) = -2(1,2) + 0(1,1),$$

$$k(1,1) = (-2,-2) = 0(1,2) - 2(1,1),$$

$$p(1,2) = (0,2) = 2(1,2) - 2(1,1),$$

$$p(1,1) = (0,1) = 1(1,2) - 1(1,1).$$

Recall,
$$\mathcal{A}=((1,2),(1,1))$$
 and $M(\mathrm{id})_{st}^{\mathcal{A}}=\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$.

$$s(1,2) = (1,-2) = -3(1,2) + 4(1,1),$$

$$s(1,1) = (1,-1) = -2(1,2) + 3(1,1),$$

$$r(1,2) = (-2,1) = 3(1,2) - 5(1,1),$$

$$r(1,1) = (-1,1) = 2(1,2) - 3(1,1),$$

$$k(1,2) = (-2,-4) = -2(1,2) + 0(1,1),$$

$$k(1,1) = (-2,-2) = 0(1,2) - 2(1,1),$$

$$p(1,2) = (0,2) = 2(1,2) - 2(1,1),$$

$$p(1,1) = (0,1) = 1(1,2) - 1(1,1).$$

$$M(s)_{\mathcal{A}} = \begin{bmatrix} -3 & -2 \\ 4 & 3 \end{bmatrix}, M(r)_{\mathcal{A}} = \begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix},$$

$$M(k)_{\mathcal{A}} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, M(p)_{\mathcal{A}} = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}.$$

We see that matrices of simple linear transformations look 'nice' relative to some bases and 'not-that-nice' relative to the others.

We see that matrices of simple linear transformations look 'nice' relative to some bases and 'not-that-nice' relative to the others. That aim of this lecture is to find a way of computing those 'nice' ones in the general case. Note that determinants and the ranks of corresponding matrices did not change.

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n; \mathbb{R})$ are called **similar** if there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that

$$A=C^{-1}BC.$$

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n; \mathbb{R})$ are called **similar** if there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that

$$A = C^{-1}BC.$$

Proposition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. For any two bases \mathcal{A}, \mathcal{B} of V the matrices $M(\varphi)_{\mathcal{A}}$ and $M(\varphi)_{\mathcal{B}}$ are similar.

Matrix Similarity

Definition

Two matrices $A, B \in M(n \times n; \mathbb{R})$ are called **similar** if there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that

$$A = C^{-1}BC$$
.

Proposition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. For any two bases \mathcal{A}, \mathcal{B} of V the matrices $M(\varphi)_{\mathcal{A}}$ and $M(\varphi)_{\mathcal{B}}$ are similar.

Proof.

$$M(\varphi)_{\mathcal{B}}^{\mathcal{B}} = M(\mathsf{id} \circ \varphi \circ \mathsf{id})_{\mathcal{B}}^{\mathcal{B}} = M(\mathsf{id})_{\mathcal{A}}^{\mathcal{B}} M(\varphi)_{\mathcal{A}}^{\mathcal{A}} M(\mathsf{id})_{\mathcal{B}}^{\mathcal{A}}.$$

Therefore

$$M(\varphi)_{\mathcal{B}} = C^{-1}M(\varphi)_{\mathcal{A}}C$$

where $C = M(id)^{\mathcal{A}}_{\mathcal{B}}$.

Let $\varphi((x_1,x_2))=(x_1+x_2,2x_1+3x_2)$ be a linear endomorphism $\varphi:\mathbb{R}^2\longrightarrow\mathbb{R}^2$. Take $\mathcal{A}=st$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$M(\varphi)_{\mathcal{A}} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \text{ and } C = M(\mathsf{id})_{\mathcal{B}}^{\mathcal{A}} = \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right].$$

Let $\varphi((x_1,x_2))=(x_1+x_2,2x_1+3x_2)$ be a linear endomorphism $\varphi:\mathbb{R}^2\longrightarrow\mathbb{R}^2$. Take $\mathcal{A}=st$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$M(\varphi)_{\mathcal{A}} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \text{ and } C = M(\mathsf{id})_{\mathcal{B}}^{\mathcal{A}} = \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right].$$

Use
$$M(\varphi)_{\mathcal{B}} = C^{-1}M(\varphi)_{\mathcal{A}}C$$
 and compute $C^{-1} = \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$.

Let $\varphi((x_1,x_2))=(x_1+x_2,2x_1+3x_2)$ be a linear endomorphism $\varphi:\mathbb{R}^2\longrightarrow\mathbb{R}^2$. Take $\mathcal{A}=st$ and $\mathcal{B}=((-2,1),(1,-1)$. Then

$$M(\varphi)_{\mathcal{A}} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \text{ and } C = M(\mathsf{id})_{\mathcal{B}}^{\mathcal{A}} = \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right].$$

Use $M(\varphi)_{\mathcal{B}}=C^{-1}M(\varphi)_{\mathcal{A}}C$ and compute $C^{-1}=\begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$. Then

$$M(\varphi)_{\mathcal{B}} = \left[\begin{array}{cc} -1 & -1 \\ -1 & -2 \end{array} \right] \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right] = \left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array} \right].$$

Let $\varphi((x_1, x_2)) = (x_1 + x_2, 2x_1 + 3x_2)$ be a linear endomorphism $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. Take $\mathcal{A} = st$ and $\mathcal{B} = ((-2, 1), (1, -1))$. Then

$$M(\varphi)_{\mathcal{A}} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \text{ and } C = M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}} = \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right].$$

Use $M(\varphi)_{\mathcal{B}} = C^{-1}M(\varphi)_{\mathcal{A}}C$ and compute $C^{-1} = \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$. Then

$$M(\varphi)_{\mathcal{B}} = \left[\begin{array}{cc} -1 & -1 \\ -1 & -2 \end{array} \right] \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right] \left[\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array} \right] = \left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array} \right].$$

On the other hand,

$$\varphi((-2,1)) = (-1,-1) = 2(-2,1) + 3(1,-1),$$

$$\varphi((1,-1)) = (0,-1) = (-2,1) + 2(1,-1).$$

Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let $A, B \in M(n \times n; \mathbb{R})$. Then

A, B are similar \iff there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}} = A$ and $M(\varphi)_{\mathcal{B}} = B$.

Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let $A, B \in M(n \times n; \mathbb{R})$. Then

A, B are similar \iff there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}} = A$ and $M(\varphi)_{\mathcal{B}} = B$.

Proof.

 (\Leftarrow) was done before.

Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let $A, B \in M(n \times n; \mathbb{R})$. Then

A, B are similar \iff there exists an endomorphism $\varphi: V \longrightarrow V$ and bases \mathcal{A}, \mathcal{B} of V such that $M(\varphi)_{\mathcal{A}} = A$ and $M(\varphi)_{\mathcal{B}} = B$.

Proof.

 (\Leftarrow) was done before.

 (\Rightarrow) there exits an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that $B = C^{-1}AC$. Let \mathcal{A} be any basis of the vector space V and let φ be the unique linear endomorphism given by the condition $M(\varphi)_{\mathcal{A}}^{\mathcal{A}} = A$. If \mathcal{B} is given by the condition $C = M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}$ then $B = M(\varphi)_{\mathcal{B}}$.

Eigenvalues and Eigenvectors

Definition

Let $\varphi:V\longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. A constant $\lambda\in\mathbb{R}$ is called **eigenvalue** of φ if there exists a non-zero vector $v\in V$ such that

$$\varphi(\mathbf{v}) = \lambda \mathbf{v}.$$

Such vector v is called an **eigenvector** of φ associated to the eigenvalue λ .

Eigenvalues and Eigenvectors

Definition

Let $\varphi:V\longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. A constant $\lambda\in\mathbb{R}$ is called **eigenvalue** of φ if there exists a non-zero vector $v\in V$ such that

$$\varphi(\mathbf{v}) = \lambda \mathbf{v}.$$

Such vector v is called an **eigenvector** of φ associated to the eigenvalue λ .

Remark (geometric interpretation)

A vector $v \in V$ is an eigenvector of φ if and only if $\varphi(\operatorname{lin}(v)) \subset \operatorname{lin}(v)$ and $\operatorname{lin}(v) \neq \{0\}$, i.e. v is a non-zero vector and the line spanned by v is mapped into itself.

Let $\varphi:V\longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$V_{(\lambda)} = \{ v \in V \mid \varphi(v) = \lambda v. \}$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.

Let $\varphi:V\longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$V_{(\lambda)} = \{ v \in V \mid \varphi(v) = \lambda v. \}$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.

Proof.

Let $v, w \in V_{(\lambda)}$. Then $\varphi(v+w) = \varphi(v) + \varphi(w) = \lambda v + \lambda w = \lambda(v+w)$. Hence $v+w \in V_{(\lambda)}$. For any $\alpha \in \mathbb{R}$ we have $\varphi(\alpha v) = \alpha \varphi(v) = \lambda(\alpha v)$. Hence $\alpha v \in V_{(\lambda)}$.

Let $\varphi:V\longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$V_{(\lambda)} = \{ v \in V \mid \varphi(v) = \lambda v. \}$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.

Proof.

Let $v,w\in V_{(\lambda)}$. Then $\varphi(v+w)=\varphi(v)+\varphi(w)=\lambda v+\lambda w=\lambda(v+w).$ Hence $v+w\in V_{(\lambda)}.$ For any $\alpha\in\mathbb{R}$ we have $\varphi(\alpha v)=\alpha\varphi(v)=\lambda(\alpha v).$ Hence $\alpha v\in V_{(\lambda)}.$

For any eigenvalue λ of φ the subspace $V_{(\lambda)}$ is called **the** eigenspace associated to λ .

Let $\varphi:V\longrightarrow V$ be a linear endomorphism. For any eigenvalue λ of φ let $V_{(\lambda)}$ denote the set of all eigenvectors associated to λ together with the zero vector, i.e.

$$V_{(\lambda)} = \{ v \in V \mid \varphi(v) = \lambda v. \}$$

Proposition

The subset $V_{(\lambda)} \subset V$ is a subspace of V.

Proof.

Let $v,w\in V_{(\lambda)}$. Then $\varphi(v+w)=\varphi(v)+\varphi(w)=\lambda v+\lambda w=\lambda(v+w).$ Hence $v+w\in V_{(\lambda)}.$ For any $\alpha\in\mathbb{R}$ we have $\varphi(\alpha v)=\alpha\varphi(v)=\lambda(\alpha v).$ Hence $\alpha v\in V_{(\lambda)}.$

For any eigenvalue λ of φ the subspace $V_{(\lambda)}$ is called the eigenspace associated to λ . It is straightforward that $\varphi(V_{(\lambda)}) \subset V_{(\lambda)}$.

Let $s: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)} = \text{lin}((1,0))$ and $V_{(-1)} = \text{lin}((0,1))$.

Let $s: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)} = \text{lin}((1,0))$ and $V_{(-1)} = \text{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself).

Let $s:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2, i.e. $V_{(-2)}=\mathbb{R}^2$.

Let $s:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2, i.e. $V_{(-2)}=\mathbb{R}^2$. The projection p onto the x_2 -axis has two eigenspaces: $V_{(0)}=\operatorname{lin}((1,0))$ and $V_{(1)}=\operatorname{lin}((0,1))$.

Let $s:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)}=\operatorname{lin}((1,0))$ and $V_{(-1)}=\operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2 in all directions any non-zero vector is eigenvector associated to -2, i.e. $V_{(-2)}=\mathbb{R}^2$. The projection p onto the x_2 -axis has two eigenspaces: $V_{(0)}=\operatorname{lin}((1,0))$ and $V_{(1)}=\operatorname{lin}((0,1))$. Note that for s,k and p there exist a basis (the standard one) consisting of eigenvectors. The matrices of those endomorphisms in the standard basis are diagonal.

Let $s: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a reflection of \mathbb{R}^2 about the x_1 -axis. Then $V_{(1)} = \operatorname{lin}((1,0))$ and $V_{(-1)} = \operatorname{lin}((0,1))$. The rotation r about the origin of \mathbb{R}^2 by $\frac{\pi}{2}$ radians counter-clockwise has no eigenvalues (no line is mapped into itself). In the case of uniform scaling k by -2in all directions any non-zero vector is eigenvector associated to -2, i.e. $V_{(-2)} = \mathbb{R}^2$. The projection p onto the x_2 -axis has two eigenspaces: $V_{(0)} = lin((1,0))$ and $V_{(1)} = lin((0,1))$. Note that for s, k and p there exist a basis (the standard one) consisting of eigenvectors. The matrices of those endomorphisms in the standard basis are diagonal.

$$M(s)_{st} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, M(k)_{st} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix},$$
$$M(p)_{st} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Definition

Let $A \in M(n \times n; \mathbb{R})$. The polynomial $w_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

Definition

Let $A \in M(n \times n; \mathbb{R})$. The polynomial $w_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

The degree of $w_A(\lambda)$ is equal to n.

Definition

Let $A \in M(n \times n; \mathbb{R})$. The polynomial $w_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

The degree of $w_A(\lambda)$ is equal to n.

Let
$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
. Then

$$w_A(\lambda) = \det \begin{bmatrix} 4-\lambda & 2 \\ 3 & 3-\lambda \end{bmatrix} = (4-\lambda)(3-\lambda)-6 = \lambda^2-7\lambda+6.$$

Definition

Let $A \in M(n \times n; \mathbb{R})$. The polynomial $w_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

The degree of $w_A(\lambda)$ is equal to n.

Let
$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
. Then

$$w_A(\lambda) = \det \begin{bmatrix} 4-\lambda & 2 \\ 3 & 3-\lambda \end{bmatrix} = (4-\lambda)(3-\lambda)-6 = \lambda^2-7\lambda+6.$$

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be similar matrices. Then $w_A = w_B$.

Definition

Let $A \in M(n \times n; \mathbb{R})$. The polynomial $w_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic polynomial of A.

The degree of $w_A(\lambda)$ is equal to n.

Example

Let
$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
 Then

$$w_{\mathcal{A}}(\lambda) = \det \begin{bmatrix} 4-\lambda & 2\\ 3 & 3-\lambda \end{bmatrix} = (4-\lambda)(3-\lambda)-6 = \lambda^2-7\lambda+6.$$

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be similar matrices. Then $w_A = w_B$.

Proof.

There exists an invertible matrix C such that $A = C^{-1}BC$. But $w_A(\lambda) = \det(A - \lambda I_n) = \det(C^{-1}BC - C^{-1}\lambda I_nC) =$ $\det(C^{-1}(B-\lambda I_n)C) = (\det C)^{-1}\det(B-\lambda I_n)\det C =$ $w_B(\lambda)$.

Characteristic Polynomial (continued)

Definition

Let $\varphi:V\longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. The characteristic polynomial w_{φ} of φ is the characteristic polynomial of matrix $M(\varphi)_{\mathcal{A}}$ where \mathcal{A} is a basis of V.

Characteristic Polynomial (continued)

Definition

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V. The characteristic polynomial w_{φ} of φ is the characteristic polynomial of matrix $M(\varphi)_{\mathcal{A}}$ where \mathcal{A} is a basis of V.

By the previous proposition the characteristic polynomial of φ does not depend on the basis $\mathcal A.$

Finding Eigenvalues and Eigenvectors

Theorem

Let $\varphi:V\longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.

Finding Eigenvalues and Eigenvectors

Theorem

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.

i) $\alpha \in \mathbb{R}$ is an eigenvalue of $\varphi \iff \alpha$ is a root the characteristic polynomial of φ ,

Finding Eigenvalues and Eigenvectors

Theorem

Let $\varphi: V \longrightarrow V$ be a linear endomorphism of a finite dimensional vector space V.

- i) $\alpha \in \mathbb{R}$ is an eigenvalue of $\varphi \iff \alpha$ is a root the characteristic polynomial of φ ,
- ii) let $\mathcal{A}=(v_1,\ldots,v_n)$ and $A=M(\varphi)_{\mathcal{A}}$. The vector $v=x_1v_1+\ldots+x_nv_n$ is an eigenvector of φ associated to α if and only if

$$(A - \alpha I_n) \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] = \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right].$$

Finding Eigenvalues and Eigenvectors (continued)

Proof.

Let $v = x_1v_1 + \ldots + x_nv_n$. Then $\varphi(v) = \alpha v$ if and only if

$$A\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \iff (A - \alpha I_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Finding Eigenvalues and Eigenvectors (continued)

Proof.

Let $v = x_1v_1 + \ldots + x_nv_n$. Then $\varphi(v) = \alpha v$ if and only if

$$A\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \iff (A - \alpha I_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

From the previous lecture we know that there exists a non-zero solution of the latter if and only if $\det(A - \alpha I_n) = 0$, i.e. $w_A(\alpha) = 0$.

Let $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be an endomorphism of \mathbb{R}^3 given by $\varphi(x_1,x_2,x_3) = (4x_1+4x_2,-x_1,x_1+3x_2+3x_3)$. Its matrix in the standard basis is $A=M(\varphi)_{st}=\begin{bmatrix} 4&4&0\\-1&0&0\\1&3&3 \end{bmatrix}$.

$$A - \lambda I = \begin{bmatrix} 4 - \lambda & 4 & 0 \\ -1 & -\lambda & 0 \\ 1 & 3 & 3 - \lambda \end{bmatrix}.$$

Hence
$$w_{\varphi}(\lambda) = \det(A - \lambda I) = (3 - \lambda)((4 - \lambda)(-\lambda) + 4)) = (3 - \lambda)(\lambda^2 - 4\lambda + 4) = (3 - \lambda)(2 - \lambda)^2.$$

Let $\varphi:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ be an endomorphism of \mathbb{R}^3 given by $\varphi(x_1,x_2,x_3)=(4x_1+4x_2,-x_1,x_1+3x_2+3x_3).$ Its matrix in the standard basis is $A=M(\varphi)_{st}=\begin{bmatrix} 4&4&0\\-1&0&0\\1&3&3 \end{bmatrix}.$

$$A - \lambda I = \left[\begin{array}{cccc} 4 - \lambda & 4 & 0 \\ -1 & -\lambda & 0 \\ 1 & 3 & 3 - \lambda \end{array} \right].$$

Hence $w_{\varphi}(\lambda) = \det(A - \lambda I) = (3 - \lambda)((4 - \lambda)(-\lambda) + 4)) = (3 - \lambda)(\lambda^2 - 4\lambda + 4) = (3 - \lambda)(2 - \lambda)^2$. There are two eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 3$. To find $V_{(2)}$ we solve a system of linear equations:

$$V_{(2)}: \left[\begin{array}{ccc} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 1 & 3 & 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right].$$

$$\begin{bmatrix} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 1 & 3 & 1 \end{bmatrix} \xrightarrow{r_1 + 2r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 1 & 3 & 1 \end{bmatrix} \xrightarrow{r_1+2r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1-2r_2} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Therefore $x_1=2x_3,\ x_2=-x_3,\ x_3\in\mathbb{R}$, i.e.

$$V_{(2)} = \{(2x_3, -x_3, x_3) \mid x_3 \in \mathbb{R}\} = \text{lin}((2, -1, 1)).$$

$$\begin{bmatrix} 2 & 4 & 0 \\ -1 & -2 & 0 \\ 1 & 3 & 1 \end{bmatrix} \xrightarrow{r_1 + 2r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Therefore $x_1=2x_3,\ x_2=-x_3,\ x_3\in\mathbb{R}$, i.e.

$$V_{(2)} = \{(2x_3, -x_3, x_3) \mid x_3 \in \mathbb{R}\} = \text{lin}((2, -1, 1)).$$

$$V_{(3)}: \left[\begin{array}{rrr} 1 & 4 & 0 \\ -1 & -3 & 0 \\ 1 & 3 & 0 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right].$$

$$\begin{bmatrix} 1 & 4 & 0 \\ -1 & -3 & 0 \\ 1 & 3 & 0 \end{bmatrix} \xrightarrow{r_1 + r_2} \begin{bmatrix} 0 & 1 & 0 \\ -1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 + 3r_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 4 & 0 \\ -1 & -3 & 0 \\ 1 & 3 & 0 \end{bmatrix} \xrightarrow{r_1 + r_2} \begin{bmatrix} 0 & 1 & 0 \\ -1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 + 3r_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Therefore $x_1 = x_2 = 0$, $x_3 \in \mathbb{R}$, i.e.

$$V_{(3)} = \{(0,0,x_3) \mid x_3 \in \mathbb{R}\} = \text{lin}((0,0,1)).$$

Recall that

$$\varphi(x_1, x_2, x_3) = (4x_1 + 4x_2, -x_1, x_1 + 3x_2 + 3x_3),$$

$$V_{(2)} = lin((2, -1, 1)),$$

$$V_{(3)} = lin((0, 0, 1)),$$

$$\varphi(2,-1,1) =$$

Recall that

$$\varphi(x_1, x_2, x_3) = (4x_1 + 4x_2, -x_1, x_1 + 3x_2 + 3x_3),$$

$$V_{(2)} = lin((2, -1, 1)),$$

$$V_{(3)} = lin((0, 0, 1)),$$

$$\varphi(2,-1,1) = (4,-2,2) = 2(2,-1,1),$$

Recall that

$$\varphi(x_1, x_2, x_3) = (4x_1 + 4x_2, -x_1, x_1 + 3x_2 + 3x_3),$$

$$V_{(2)} = lin((2, -1, 1)),$$

$$V_{(3)} = lin((0, 0, 1)),$$

$$\varphi(2,-1,1) = (4,-2,2) = 2(2,-1,1),$$

$$\varphi(0,0,1) =$$

Recall that

$$\varphi(x_1, x_2, x_3) = (4x_1 + 4x_2, -x_1, x_1 + 3x_2 + 3x_3),$$

$$V_{(2)} = lin((2, -1, 1)),$$

$$V_{(3)} = lin((0, 0, 1)),$$

$$\varphi(2,-1,1) = (4,-2,2) = 2(2,-1,1),$$

$$\varphi(0,0,1) = (0,0,3) = 3(0,0,1).$$

Remarks

i) if $\varphi: V \longrightarrow V$ and dim V is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ ,

Remarks

- i) if $\varphi:V\longrightarrow V$ and dim V is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ ,
- ii) dim $V_{(\alpha)} \leq$ multiplicity of the root α in w_{φ} , cf. the last example (2 is a root of multiplicity 2 but dim $V_{(2)} = 1$),

Remarks

- i) if $\varphi:V\longrightarrow V$ and dim V is odd then the degree of w_{φ} is odd therefore it has at least one real root so there exists an eigenvector of φ ,
- ii) dim $V_{(\alpha)} \leqslant$ multiplicity of the root α in w_{φ} , cf. the last example (2 is a root of multiplicity 2 but dim $V_{(2)}=1$),

iii) if
$$A \in M(n \times n; \mathbb{R})$$
 then $w_A(A) = \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix}$, i.e. matrix

A substituted to its characteristic polynomial gives the zero matrix (Cayley-Hamilton theorem).

Let
$$A = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$$
 and $w_A(\lambda) = \lambda^2 - 2\lambda - 2$. Then
$$w_A(A) = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}^2 - 2 \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & -6 \\ -2 & -2 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Cayley-Hamilton Theorem

Theorem For any
$$A \in M(n \times n; \mathbb{R})$$
 and $w_A(\lambda) = \det(A - \lambda I_n)$ $w_A(A) = 0$.

Cayley-Hamilton Theorem

Theorem

For any
$$A\in M(n\times n;\mathbb{R})$$
 and $w_A(\lambda)=\det(A-\lambda I_n)$
$$w_A(A)=0.$$

Proof.

Let $B = \operatorname{adj}(A - \lambda I_n)$ be the adjugate matrix of the matrix $A - \lambda I_n$.

Cayley-Hamilton Theorem

Theorem

For any
$$A \in M(n \times n; \mathbb{R})$$
 and $w_A(\lambda) = \det(A - \lambda I_n)$
$$w_A(A) = 0.$$

Proof.

Let $B=\operatorname{adj}(A-\lambda I_n)$ be the adjugate matrix of the matrix $A-\lambda I_n$. The entries of B are polynomials of degree at most n-1. By separating monomials of the same degree one can write

$$B = \lambda^{n-1} B_{n-1} + \lambda^{n-2} B_{n-2} + \ldots + \lambda B_1 + B_0,$$

where $B_i \in M(n \times n; \mathbb{R})$ for $i = 0, \dots, n-1$.

Cayley-Hamilton Theorem (continued)

Proof.

By the matrix inverse formula

$$B(A - \lambda I_n) = w_A(\lambda)I_n = \lambda^n a_n I_n + \lambda^{n-1} a_{n-1} I_n + \ldots + \lambda a_1 I_n + a_0 I_n,$$

where

$$w_{\mathcal{A}}(\lambda) = \lambda^{n} a_{n} + \lambda^{n-1} a_{n-1} + \ldots + \lambda a_{1} + a_{0},$$

is the characteristic polynomial of matrix A.

Cayley-Hamilton Theorem (continued)

Proof.

By the matrix inverse formula

$$B(A - \lambda I_n) = w_A(\lambda)I_n = \lambda^n a_n I_n + \lambda^{n-1} a_{n-1} I_n + \ldots + \lambda a_1 I_n + a_0 I_n,$$

where

$$w_{\mathcal{A}}(\lambda) = \lambda^{n} a_{n} + \lambda^{n-1} a_{n-1} + \ldots + \lambda a_{1} + a_{0},$$

is the characteristic polynomial of matrix $oldsymbol{A}$. Hence

$$B(A - \lambda I_n) = \lambda^{n-1} B_{n-1} A + \dots + \lambda^2 B_2 A + \lambda B_1 A + B_0 A +$$

$$- \lambda^n B_{n-1} - \lambda^{n-1} B_{n-2} - \dots - \lambda^2 B_1 - \lambda B_0 =$$

$$= -\lambda^n B_{n-1} + \lambda^{n-1} (B_{n-1} A - B_{n-2}) + \lambda^{n-2} (B_{n-2} A - B_{n-3}) + \dots +$$

$$+ \lambda^2 (B_2 A - B_1) + \lambda (B_1 A - B_0) + B_0 A.$$

Two polynomials with real coefficients are equal if and only if they have the same coefficients, therefore,

Cayley–Hamilton Theorem (continued) Proof.

$$-B_{n-1} = a_n I_n,$$

$$B_{n-1}A - B_{n-2} = a_{n-1}I_n,$$

$$\vdots$$

$$B_1A - B_0 = a_1I_n,$$

$$B_0A = a_0I_n.$$

Multiplying those equations on the right by $A^n, A^{n-1}, \ldots, A, A^0 = I_n$ respectively one gets

$$-B_{n-1}A^{n} = a_{n}A^{n},$$

$$B_{n-1}A^{n} - B_{n-2}A^{n-1} = a_{n-1}A^{n-1},$$

$$\vdots$$

$$B_{1}A^{2} - B_{0}A = a_{1}A.$$

Cayley-Hamilton Theorem - Proof

Proof.

This sums to

$$w_A(A) = a_n A^n + a_{n-1} A^{n-1} + \ldots + a_1 A + a_0 I_n = 0.$$

Remark

There exist other conceptual proofs of the Cayley-Hamilton theorem (using abstract algebra of Schur decomposition).

Schur Decomposition

Proposition

For any matrix $A \in M(n \times n; \mathbb{C})$ there exists a unitary matrix $U \in M(n \times n; \mathbb{C})$ (i.e. $U^*U = UU^* = I$, where $U^* = \overline{U}^T$) and an upper triangular matrix $T = [t_{ij}] \in M(n \times n; \mathbb{C})$ (i.e. $t_{ij} = 0$ for i > j) such that

$$A = UTU^*$$
.

The decomposition is not unique and the diagonal entries of matrix T are exactly (complex) eigenvalues of matrix A.

Schur Decomposition

Proposition

For any matrix $A \in M(n \times n; \mathbb{C})$ there exists a unitary matrix $U \in M(n \times n; \mathbb{C})$ (i.e. $U^*U = UU^* = I$, where $U^* = \overline{U}^T$) and an upper triangular matrix $T = [t_{ij}] \in M(n \times n; \mathbb{C})$ (i.e. $t_{ij} = 0$ for i > j) such that

$$A = UTU^*$$
.

The decomposition is not unique and the diagonal entries of matrix T are exactly (complex) eigenvalues of matrix A.

Proof.

Omitted.

Cayley-Hamilton Theorem Alternative Proof via Schur Decomposition

Proof.

Let $UTU^* = A$. Then

$$w_A(A) = Uw_A(T)U^*.$$

Moreover, if

$$w_{\mathcal{A}}(\lambda) = (\lambda - \lambda_1) \cdot \ldots \cdot (\lambda - \lambda_n),$$

then

$$w_A(T) = (T - \lambda_1 I) \cdot \ldots \cdot (T - \lambda_n I) = 0,$$

that is, the first k columns of the product

$$(T - \lambda_1 I) \cdot \ldots \cdot (T - \lambda_k I),$$

are zero.

Proposition

Let $A \in M(m \times n; \mathbb{R})$ and let $B \in M(n \times m; \mathbb{R})$ where $m \geqslant n$. Then $AB \in M(m \times m; \mathbb{R})$, $BA \in M(n \times n; \mathbb{R})$ and

$$w_{AB}(\lambda) = \lambda^{m-n} w_{BA}(\lambda),$$

that is eigenvalues of AB and BA (up to m-n zeroes) are the same. Moreover, the dimensions of eigenspaces corresponding to non-zero eigenvalues are the same.

Proposition

Let $A \in M(m \times n; \mathbb{R})$ and let $B \in M(n \times m; \mathbb{R})$ where $m \geqslant n$. Then $AB \in M(m \times m; \mathbb{R})$, $BA \in M(n \times n; \mathbb{R})$ and

$$w_{AB}(\lambda) = \lambda^{m-n} w_{BA}(\lambda),$$

that is eigenvalues of AB and BA (up to m-n zeroes) are the same. Moreover, the dimensions of eigenspaces corresponding to non-zero eigenvalues are the same.

Proof.

Let

$$M = \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix}, \quad C = \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix},$$

be $(m+n) \times (m+n)$ matrices.

Proof.

Then

$$C^{-1} = \begin{bmatrix} I_m & -A \\ \hline 0 & I_n \end{bmatrix}, \quad C^{-1}MC = N,$$

i.e. the matrices are similar hence they have the same eigenvalues.

This holds as

$$MC = CN$$
,

$$\begin{bmatrix}
AB & 0 \\
B & 0
\end{bmatrix}
\begin{bmatrix}
I_m & A \\
0 & I_n
\end{bmatrix} = \begin{bmatrix}
I_m & A \\
0 & I_n
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
B & BA
\end{bmatrix} = \begin{bmatrix}
AB & ABA \\
B & BA
\end{bmatrix}.$$

Proof.

Alternatively, for $\lambda \neq 0$ the following linear transformations are inverse to each other hence invertible

$$\ker(AB - \lambda I) \ni v \mapsto \frac{1}{\lambda}Bv \in \ker(BA - \lambda I),$$

$$\ker(BA - \lambda I) \ni v \mapsto \frac{1}{\lambda} Av \in \ker(AB - \lambda I).$$

In particular $\ker(AB - \lambda I) \neq \{0\}$ if and only if $\ker(BA - \lambda I) \neq \{0\}$.

Nilpotent Matrix

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is nilpotent if there exists $k \geqslant 1$ such that

$$A^k = 0$$
.

Nilpotent Matrix

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is nilpotent if there exists $k \ge 1$ such that

$$A^k = 0$$
.

Proposition

If matrix $A \in M(n \times n; \mathbb{R})$ is nilpotent and $\lambda \in \mathbb{R}$ is an eigenvalue of A then $\lambda = 0$, i.e. all eigenvalues are equal to 0.

Nilpotent Matrix

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is nilpotent if there exists $k \ge 1$ such that

$$A^k = 0.$$

Proposition

If matrix $A \in M(n \times n; \mathbb{R})$ is nilpotent and $\lambda \in \mathbb{R}$ is an eigenvalue of A then $\lambda = 0$, i.e. all eigenvalues are equal to 0.

Proof.

Let $k\geqslant 1$ be any number such that $A^k=0$. Let $v\in\mathbb{R}^n$ be an eigenvector of A for the eigenvalue $\lambda\in\mathbb{R}$. Then

$$(A^k)v = \lambda^k v = 0 \Longrightarrow \lambda = 0,$$

since $v \neq 0$.

Nilpotent Matrix (continued)

Corollary

Matrix $A \in M(n \times n; \mathbb{R})$ is nilpotent if and only if its all eigenvalues over complex numbers are equal to 0 (i.e. the characteristic polynomial $w_A(\lambda) = (-1)^n \lambda^n$).

Companion Matrix

Proposition

For any $a_0, \ldots, a_{n-1} \in \mathbb{R}$ where $n \ge 2$ if

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & 1 & \cdots & 0 & -a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix},$$

then

$$w_A(\lambda) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0).$$

Companion Matrix

Proposition

For any $a_0, \ldots, a_{n-1} \in \mathbb{R}$ where $n \ge 2$ if

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & 1 & \cdots & 0 & -a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix},$$

then

$$w_A(\lambda) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0).$$

Proof.

Induction on n. If n = 2 then

$$\begin{bmatrix} -\lambda & -a_0 \\ 1 & -a_1 - \lambda \end{bmatrix} = \lambda^2 + a_1 \lambda + a_0.$$

Companion Matrix (continued)

Proof.

For $n \ge 3$, by the Laplace formula for the first column and the inductive assumption

$$\det \begin{bmatrix} -\lambda & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & -\lambda & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & -\lambda & \cdots & 0 & -a_2 \\ 0 & 0 & 1 & \cdots & 0 & -a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} - \lambda \end{bmatrix} = \\ = -\lambda(-1)^{n-1}(\lambda^{n-1} + \dots + a_2\lambda + a_1) - \\ -\det \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & -\lambda & \cdots & 0 & -a_2 \\ 0 & 1 & \cdots & 0 & -a_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} - \lambda \end{bmatrix} = \\ = (-1)^n(\lambda^n + \dots + a_2\lambda^2 + a_1\lambda) - (-1)^n(-a_0) + a_0\lambda^2 + a_1\lambda^2 + a_$$

Companion Matrix (continued)

Corollary

Up to a sign, each monic polynomial of degree n is a characteristic polynomial of some matrix $A \in M(n \times n; \mathbb{R})$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is **primitive** if $A \ge 0$ and there exists k such that $A^k > 0$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is **primitive** if $A \ge 0$ and there exists k such that $A^k > 0$. Matrix A is **irreducible** if $A \ge 0$ and for each $1 \le i, j \le n$ there exists k such that $(A^k)_{ij} > 0$.

Primitive and Irreducible Matrices

Definition

Let $A \in M(n \times n; \mathbb{R})$. Matrix A is **primitive** if $A \ge 0$ and there exists k such that $A^k > 0$. Matrix A is **irreducible** if $A \ge 0$ and for each $1 \le i, j \le n$ there exists k such that $(A^k)_{ij} > 0$.

Remark

If matrix A is primitive then it is irreducible. If matrix A is irreducible then matrix A+I is primitive because $A^m\geqslant 0$ and

$$(A+I)^k = I + \binom{k}{1}A + \binom{k}{2}A^2 + \binom{k}{3}A^3 + \ldots + \binom{k}{k}A^k,$$

for $k = \max\{k_{ij}\}.$

Theorem

Let A be an irreducible matrix. Then there exist $\lambda_{max} \in \mathbb{R}, \lambda_{max} > 0$ a positive eigenvalue of A such that

i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$|\lambda| \leqslant \lambda_{\max},$$

Theorem

Let A be an irreducible matrix. Then there exist $\lambda_{max} \in \mathbb{R}, \lambda_{max} > 0$ a positive eigenvalue of A such that

i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$|\lambda| \leqslant \lambda_{max},$$

ii) $V_{(\lambda_{max})} = lin(v)$ where $v \in \mathbb{R}^n$ and v > 0 (i.e., all entries of v are positive),

Theorem

Let A be an irreducible matrix. Then there exist $\lambda_{max} \in \mathbb{R}, \lambda_{max} > 0$ a positive eigenvalue of A such that

i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$|\lambda| \leqslant \lambda_{max},$$

- ii) $V_{(\lambda_{max})} = lin(v)$ where $v \in \mathbb{R}^n$ and v > 0 (i.e., all entries of v are positive),
- iii) λ_{max} is a simple root of $w_A(\lambda)$ (i.e $w_A(\lambda)$ is not divisible by $(\lambda \lambda_{max})^2$),

Theorem

Let A be an irreducible matrix. Then there exist $\lambda_{max} \in \mathbb{R}, \lambda_{max} > 0$ a positive eigenvalue of A such that

i) for any other eigenvalue $\lambda \in \mathbb{C}$ of matrix A

$$|\lambda| \leqslant \lambda_{max},$$

- ii) $V_{(\lambda_{max})} = lin(v)$ where $v \in \mathbb{R}^n$ and v > 0 (i.e., all entries of v are positive),
- iii) λ_{max} is a simple root of $w_A(\lambda)$ (i.e $w_A(\lambda)$ is not divisible by $(\lambda \lambda_{max})^2$),
- iv) if $w \in \mathbb{R}^n, \ w>0$ and w is an eigenvalue of A then $w \in V_{(\lambda_{max})}.$

Remark

If A is a primitive matrix then moreover

$$|\lambda| < \lambda_{max}$$

for any eigenvalue $\lambda \in \mathbb{C}$ of A.

Perron-Frobenius Theorem Proof

Let $k \in \mathbb{N}$ be a number such that

$$B = (I + A)^k > 0.$$

Obviously

if
$$v \leq w, v \neq w$$
 then $Bv < Bw$.

Let

$$Q = \{ v \in \mathbb{R}^n \mid v \geqslant 0, \ v \neq 0 \}, \quad C = Q \cap \{ v \in \mathbb{R}^n \mid ||v|| = 1 \}.$$

For any $v \ge 0$ such that $v \ne 0$ let

$$L(v) = \max\{\lambda \in \mathbb{R} \mid \lambda v \leqslant Av\} = \min_{\substack{1 \leqslant i \leqslant n \\ v_i \neq 0}} \frac{(Av)_i}{v_i}.$$

It is clear that $L(\mu v) = L(v)$ for $\mu > 0$, in particular $L\left(\frac{v}{\|v\|}\right) = L(v)$ for $v \geqslant 0, v \neq 0$.

For any $v \ge 0$ such that $v \ne 0$

if
$$\mu v \leqslant Av$$
 then $\mu Bv \leqslant BAv = ABv$,

which implies that (maximum over a larger set)

$$L(v) \leq L(Bv)$$
.

Moreover, if $Av \neq L(v)v$ then, by the definition,

$$L(v)v \leqslant Av$$
, $Av \neq L(v)v$, hence $B(L(v)v) < B(Av)$.

This is equivalent to

$$L(v)Bv < ABv$$
, i.e., $L(v) < L(Bv)$,

(i-th components of L(v)A and Av are equal for some i).

By abuse of notation, let

$$B: \mathbb{R}^n \to \mathbb{R}^n$$
,

denote the linear function given by the matrix B. Since the set C is compact then $B(C) \subset \mathbb{R}^n_{>0}$ is compact too and $v \geqslant 0, v \neq 0$ implies that Bv > B0 = 0. By the Weierstrass extreme value theorem, the function L (which is continuous as minimum of continuous functions and all components are non-zero) obtains its maximum on the set B(C). Let

$$\lambda_{\mathit{max}} = \max_{v \in B(C)} L(v),$$

$$v = \underset{v \in B(C)}{\operatorname{arg max}} L(v).$$

By the above v > 0 and

$$Av = L(v)v = \lambda_{max}v.$$

Since
$$L(v) \leqslant L(Bv)$$

$$\lambda_{\max} = \max_{v \in B(C)} L(v) = \max_{v \in C} L(v).$$

Since
$$L(v) \leq L(Bv)$$

$$\lambda_{\max} = \max_{v \in B(C)} L(v) = \max_{v \in C} L(v).$$

Beacuse

$$Av = \lambda_{max}v,$$

$$A \geqslant 0, v > 0 \Longrightarrow Av > 0,$$

it follows that

$$\lambda_{max} > 0$$
.

Let $w \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ be such that

$$\lambda w = Aw$$
,

i.e., for $i = 1, \ldots, n$

$$\lambda w_i = \sum_{i=1}^n a_{ij} w_j,$$

$$|\lambda||w_i| \leqslant \sum_{j=1}^n a_{ij}|w_j|,$$

since $a_{ij} \ge 0$. This is equivalent to

$$|\lambda||w| \leqslant A|w|$$
,

where

$$|w|=(|w_1|,\ldots,|w_n|)\in\mathbb{R}^n.$$

Let $w \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ be such that

$$\lambda w = Aw$$
,

i.e., for $i = 1, \ldots, n$

$$\lambda w_i = \sum_{i=1}^n a_{ij} w_j,$$

$$|\lambda||w_i| \leqslant \sum_{i=1}^n a_{ij}|w_j|,$$

since $a_{ii} \ge 0$. This is equivalent to

$$|\lambda||w| \leqslant A|w|,$$

where

$$|w|=(|w_1|,\ldots,|w_n|)\in\mathbb{R}^n.$$

By definition

$$|\lambda| \leq L(|w|) \leq \lambda_{max}$$

i.e. λ_{max} is a real eigenvalue with maximal modulus and positive eigenvector.

It is now enough to prove that v is a unique eigenvector for the simple eigenvalue λ_{max} and all other positive eigenvectors are multiples or vector v.

It is now enough to prove that v is a unique eigenvector for the simple eigenvalue λ_{max} and all other positive eigenvectors are multiples or vector v.

As A^{T} is irreducible too there exists left eigenvalue $\mu_{max}>0$ and a positive eigenvector w>0 such that $w^{\mathsf{T}}A=\mu_{max}w$. Then

$$\mu_{\max} w^{\mathsf{T}} v = (w^{\mathsf{T}} A) v = w^{\mathsf{T}} (A v) = \lambda_{\max} w^{\mathsf{T}} v,$$

hence $\mu_{max} = \lambda_{max}$ as $w^{\mathsf{T}} v > 0$.

Suppose that there exist $\eta \in \mathbb{R}$ and $u \geqslant 0, u \neq 0$ such that $Au = \eta u$. Then

$$\eta w^{\mathsf{T}} u = (w^{\mathsf{T}} A) u = w^{\mathsf{T}} (A u) = \lambda_{\max} w^{\mathsf{T}} u,$$

hence $\eta=\lambda_{max}$ as $w^{\mathsf{T}}u>0$. If $v'\in\mathbb{R}$ is another eigenvector corresponding to λ_{max} linearly independent with v then there exist $\alpha,\beta\in\mathbb{R}$ such that vector $v''=\alpha v+\beta v'$ has some component equal to 0 and $v'\geqslant 0,v'\neq 0$. Then

$$0 < Bv' = (I + A)^k v' = (1 + \lambda_{max})^k v',$$

which leads to a contradiction.

Therefore, in the Jordan decomposition of matrix A there exists a unique Jordan block corresponding to the eigenvalue λ_{max} .

Without loss of generality one may replace A by $\frac{A}{\lambda_{max}}$ and assume that $\lambda_{max}=1$. Recall that

$$\|A\|_{\infty} = \max\{\|r_1\|_1, \dots, \|r_n\|\},$$

where r_1, \ldots, r_n denote the rows of matrix A. Therefore (recall $A \ge 0, v > 0$)

$$\|v\|_{\infty} = \|A^{m}v\|_{\infty} = \max_{1 \leq i \leq n} \langle r_{i}^{(m)}, v_{i} \rangle \geqslant \max_{1 \leq i \leq n} \|r_{i}^{(m)}\| \min_{1 \leq i \leq n} v_{i} =$$
$$= \|A^{m}\|_{\infty} \min_{1 \leq i \leq n} v_{i},$$

where $r_i^{(m)}$ denote the rows of A^m . Therefore for any m

$$||A^m|| \leqslant \frac{||v||_{\infty}}{\min_{1 \leq i \leq n} v_i}.$$

Let J be the Jordan matrix of A and let

$$J = C^{-1}AC,$$

then

$$||J^{m}||_{\infty} \leq ||C^{-1}||_{\infty} ||A^{m}||_{\infty} ||C||_{\infty}.$$

If the size of the Jordan block J_1 corresponding to $\lambda_{max}=1$ is bigger or equal than 2 then

$$J_1^m = \begin{bmatrix} 1 & m & \dots \\ 0 & 1 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix},$$

which gives a contradiction as then

$$||J^m||_{\infty} \geqslant 1 + m \longrightarrow \infty$$
,

when $m \longrightarrow \infty$.

Perron-Frobenius Theorem Proof (continued)

Finally, assume that A is primitive. Take λ an eigenvalue of A such that $|\lambda| = \lambda_{max}$. From the first part of the proof it follows that

$$|\lambda| = L(|w|) = \lambda_{max}.$$

The inequality

$$|\lambda||w_i| \leqslant \sum_{j=1}^n a_{ij}|w_j|,$$

becomes equality only if all arguments of w_j for non-zero a_{ij} are the same. Applying the same argument to A^k , and dividing w by a unit complex number we get a real, non-negative, non-zero eigenvector corresponding to the eigenvalue λ_{max} . Hence $\lambda = \lambda_{max}$.

Application - Discrete Markov Chains

Let

$$Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

be the transition matrix of some Markov chain (see Lecture 5). The eigenvalues of Q are $\frac{1}{6}$, 1 hence $\lambda_{max}=1$ (the vector $(1,\ldots,1)$ is an eigenvector of any transition matrix). Moreover

$$V_{(1)} = lin((1, 1)),$$

 $V_{(\frac{1}{6})} = lin((3, -2)).$

$$Q^{n} = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{6n} \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}^{-1}.$$

Application - Discrete Markov Chains (continued)

$$\lim_{n \to \infty} Q^n = \lim_{n \to \infty} \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{6^n} \end{bmatrix} \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{1}{5} \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{1}{5} \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{2}{5} & \frac{3}{5} \end{bmatrix}.$$

Therefore for any initial conditions $\mathbf{t}=(t_1,t_2)\in\mathbb{R}^2_{\geq 0},\ t_1+t_2=1$

$$\lim_{n\to\infty}\mathsf{t}^\mathsf{T} Q^n = \left(\frac{2}{5},\frac{3}{5}\right).$$

High Powers of a Primitive Matrix

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be a primitive matrix (i.e. A > 0). Let $v \in \mathbb{R}^n, v > 0$ be the (right) eigenvector of A for the eigenvalue λ_{max} and let $w \in \mathbb{R}^n, w > 0$ be the (left) eigenvector of A for the eigenvalue λ_{max} such that $w^{\mathsf{T}}v = 1$. Then

$$\lim_{n\to\infty} \left(\frac{Q}{\lambda_{max}}\right)^n = vw^{\mathsf{T}}.$$

High Powers of a Primitive Matrix (continued)

Example

For
$$Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
 we have $\lambda_{max} = 1$ and $v = (1,1), \ w = \frac{1}{5}(2,3),$

i.e.

$$\frac{1}{5} \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{vmatrix} = \frac{1}{5} \begin{bmatrix} 2 & 3 \end{bmatrix}, \quad \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{vmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

therefore

$$\lim_{n\to\infty} Q^n = vw^{\mathsf{T}} = \frac{1}{5} \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}\\ \frac{2}{5} & \frac{3}{5} \end{bmatrix}.$$

Graph of a Non-Negative Matrix

Definition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \ge 0$. The directed graph given by A is a graph $G_A = G = (V, E)$, where

$$V=\{1,2,\ldots,n\},$$

and for any $i, j \in V$,

 $(i,j) \in E$ if and only if $a_{ij} > 0$.

Graph of a Non-Negative Matrix

Definition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \ge 0$. The directed graph given by A is a graph $G_A = G = (V, E)$, where

$$V=\{1,2,\ldots,n\},$$

and for any $i, j \in V$,

 $(i,j) \in E$ if and only if $a_{ij} > 0$.

Remark

Note that self-loops are allowed. The matrix G_A is closely related to the adjacency matrix of graph G.

Graph of a Non-Negative Matrix

Definition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \ge 0$. The directed graph given by A is a graph $G_A = G = (V, E)$, where

$$V=\{1,2,\ldots,n\},$$

and for any $i, j \in V$,

$$(i,j) \in E$$
 if and only if $a_{ij} > 0$.

Remark

Note that self-loops are allowed. The matrix G_A is closely related to the adjacency matrix of graph G.

Definition

A directed graph G = (V, E) is **strongly connected** if for each $i, j \in V$ there exists a path joining i with j.

Proposition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent

- i) the matrix A is irreducible,
- ii) the graph G_A is strongly connected.

Proposition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent

- i) the matrix A is irreducible,
- ii) the graph G_A is strongly connected.

Proof.

Follows directly from definitions.

Proposition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent

- i) the matrix A is primitive,
- ii) the graph G_A is strongly connected and contains two cycles of relatively prime lengths.

Proposition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent

- i) the matrix A is primitive,
- ii) the graph G_A is strongly connected and contains two cycles of relatively prime lengths.

Proof.

 $i) \Rightarrow ii)$ let k be a number such that $A^k > 0$. Then $A^{k+1} > 0$ so there are cycles of lengths k and k+1,

Proposition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix such that $A \geqslant 0$. The following conditions are equivalent

- i) the matrix A is primitive,
- ii) the graph G_A is strongly connected and contains two cycles of relatively prime lengths.

Proof.

- $i) \Rightarrow ii)$ let k be a number such that $A^k > 0$. Then $A^{k+1} > 0$ so there are cycles of lengths k and k+1,
- $(ii) \Rightarrow i)$ see S. Sternberg *Dynamical Systems*, Section 9.2, the problem reduces to a statement from arithmetic: if GCD(a, b) = 1 then there exists a $N \in \mathbb{N}$ such that

$$(\mathbb{N}a + \mathbb{N}b) \cap [N, +\infty) = \{N, N+1, N+2, \ldots\}.$$

Example - Irreducible Not Primitive Matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \dots$$

$$A^{5} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = I_{5}, A^{6} = A.$$

Example – Irreducible Not Primitive Matrix

In particular, if

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

then

$$w_A(\lambda)=\lambda^5-1,$$

hence $\lambda_{\it max}=1$, any other eigenvalue λ of matrix A is a 5-th root of unity and

$$|\lambda| \leqslant \lambda_{max}$$

moreover λ_{max} has algebraic multiplicity 1 and Av = v, where

$$v = (1, 1, 1, 1, 1) > 0.$$

Incidentally, A is a particular case of a 5×5 circulant matrix with $c_{n-1} = 1$, n = 5 and all other c_i 's equal to 0.

Example - Primitive Matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}, \dots$$

$$A^{17} = \begin{bmatrix} 4 & 1 & 2 & 4 & 6 \\ 3 & 1 & 1 & 1 & 3 \\ 3 & 3 & 4 & 1 & 1 \\ 1 & 3 & 6 & 4 & 1 \\ 1 & 1 & 4 & 6 & 4 \end{bmatrix}.$$

Example - Another Primitive Matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}, \dots$$

$$A^{14} = \begin{bmatrix} 4 & 3 & 1 & 6 & 2 \\ 1 & 1 & 2 & 1 & 3 \\ 3 & 1 & 1 & 3 & 1 \\ 1 & 3 & 1 & 4 & 3 \\ 3 & 1 & 3 & 2 & 4 \end{bmatrix}.$$

Example – And Another Primitive Matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \dots$$

$$A^8 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \end{bmatrix}.$$

Example - And Another Primitive Matrix (continued)

lf

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

it can be checked that $w_A(\lambda)=\lambda^5-\lambda^4-1=(\lambda^2-\lambda+1)(\lambda^3-\lambda-1),$ with $\lambda_{max}\approx 1.3247,$ and $v\approx (0.6765,0.2197,0.2910,0.3855,0.5107).$ Other eigenvalues have magnitudes smaller than λ_{max}

