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Endomorphism

Definition
Let V be a vector space and A its (ordered) basis. A linear
transformation ϕ : V ÝÑ V is called a linear endomorphism.
The matrix MpϕqAA is called matrix of endomorphism relative to
basis A. It is denoted in short MpϕqA.

Example
The identity id : V ÝÑ V is a linear endomorphism and its matrix
relative to any basis A is the identity matrix

MpidqA “

»

—

–

1 0
. . .

0 1

fi

ffi

fl
P Mpn ˆ n;Rq,

where n “ dimV .



Example

Let
s : R2 ÝÑ R

2,

r : R2 ÝÑ R
2,

k : R2 ÝÑ R
2,

p : R2 ÝÑ R
2.

be linear endomorphisms of R2 defined as follows: s is a reflection
of R2 about the x1-axis, r rotation about the origin of R2 (i.e.
p0, 0q) by π

2 radians (i.e. 90 degrees) counter-clockwise, k is scaling
by ´2 in all directions (also called uniform scaling) and p is
projection onto the x2-axis.



Example (continued)
For example, if v “ p2, 1q then
spvq “ p2,´1q, rpvq “ p´1, 2q, kpvq “ p´4,´2q, ppvq “ p0, 1q.
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For example, if v “ p2, 1q then
spvq “ p2,´1q, rpvq “ p´1, 2q, kpvq “ p´4,´2q, ppvq “ p0, 1q.

0 1 2 3´1´2´3
0

´1

´2

´3

1

2

3

x1

x2 spx1, x2q “ px1,´x2q

rpx1, x2q “ p´x2, x1q



Example (continued)
For example, if v “ p2, 1q then
spvq “ p2,´1q, rpvq “ p´1, 2q, kpvq “ p´4,´2q, ppvq “ p0, 1q.

0 1 2 3´1´2´3
0

´1

´2

´3

1

2

3

x1

x2 spx1, x2q “ px1,´x2q

rpx1, x2q “ p´x2, x1q

kpx1, x2q “ p´2x1,´2x2q



Example (continued)
For example, if v “ p2, 1q then
spvq “ p2,´1q, rpvq “ p´1, 2q, kpvq “ p´4,´2q, ppvq “ p0, 1q.

0 1 2 3´1´2´3
0

´1

´2

´3

1

2

3

x1

x2 spx1, x2q “ px1,´x2q

rpx1, x2q “ p´x2, x1q

kpx1, x2q “ p´2x1,´2x2q

ppx1, x2q “ p0, x2q



Example (continued)

spx1, x2q “ px1,´x2q, rpx1, x2q “ p´x2, x1q,

kpx1, x2q “ p´2x1,´2x2q, ppx1, x2q “ p0, x2q.



Example (continued)

spx1, x2q “ px1,´x2q, rpx1, x2q “ p´x2, x1q,

kpx1, x2q “ p´2x1,´2x2q, ppx1, x2q “ p0, x2q.

The matrices of these endomorphisms relative to the standard basis
st “ pp1, 0q, p0, 1qq look as follows:

Mpsqst “

„

1 0
0 ´1



, Mprqst “

„

0 ´1
1 0



,

Mpkqst “

„

´2 0
0 ´2



, Mppqst “

„

0 0
0 1



.



Example (continued)

spx1, x2q “ px1,´x2q, rpx1, x2q “ p´x2, x1q,

kpx1, x2q “ p´2x1,´2x2q, ppx1, x2q “ p0, x2q.

The matrices of these endomorphisms relative to the standard basis
st “ pp1, 0q, p0, 1qq look as follows:

Mpsqst “

„

1 0
0 ´1



, Mprqst “

„

0 ´1
1 0



,

Mpkqst “

„

´2 0
0 ´2



, Mppqst “

„

0 0
0 1



.

Take different basis, for example A “ pp1, 2q, p1, 1qq. The
change-of-coordinate matrix is

MpidqAst “ pMpidqstAq´1 “

„

1 1
2 1

´1

“

„

´1 1
2 ´1



.



Example (continued)
Recall, A “ pp1, 2q, p1, 1qq and MpidqAst “

„

´1 1
2 ´1


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Example (continued)
Recall, A “ pp1, 2q, p1, 1qq and MpidqAst “

„

´1 1
2 ´1



.

sp1, 2q “ p1,´2q “´3p1, 2q ` 4p1, 1q,

sp1, 1q “ p1,´1q “´2p1, 2q ` 3p1, 1q,

rp1, 2q “ p´2, 1q “ 3p1, 2q ´ 5p1, 1q,

rp1, 1q “ p´1, 1q “ 2p1, 2q ´ 3p1, 1q,

kp1, 2q “ p´2,´4q“´2p1, 2q ` 0p1, 1q,

kp1, 1q “ p´2,´2q“ 0p1, 2q ´ 2p1, 1q,

pp1, 2q “ p0, 2q “ 2p1, 2q ´ 2p1, 1q,

pp1, 1q “ p0, 1q “ 1p1, 2q ´ 1p1, 1q.



Example (continued)
Recall, A “ pp1, 2q, p1, 1qq and MpidqAst “

„

´1 1
2 ´1



.

sp1, 2q “ p1,´2q “´3p1, 2q ` 4p1, 1q,

sp1, 1q “ p1,´1q “´2p1, 2q ` 3p1, 1q,

rp1, 2q “ p´2, 1q “ 3p1, 2q ´ 5p1, 1q,

rp1, 1q “ p´1, 1q “ 2p1, 2q ´ 3p1, 1q,

kp1, 2q “ p´2,´4q“´2p1, 2q ` 0p1, 1q,

kp1, 1q “ p´2,´2q“ 0p1, 2q ´ 2p1, 1q,

pp1, 2q “ p0, 2q “ 2p1, 2q ´ 2p1, 1q,

pp1, 1q “ p0, 1q “ 1p1, 2q ´ 1p1, 1q.

MpsqA “

„

´3 ´2
4 3



, MprqA “

„

3 2
´5 ´3



,

MpkqA “

„

´2 0
0 ´2



, MppqA “

„

2 1
´2 ´1



.



Example (continued)

We see that matrices of simple linear transformations look ‘nice’
relative to some bases and ‘not-that-nice’ relative to the others.



Example (continued)

We see that matrices of simple linear transformations look ‘nice’
relative to some bases and ‘not-that-nice’ relative to the others.
That aim of this lecture is to find a way of computing those ‘nice’
ones in the general case. Note that determinants and the ranks of
corresponding matrices did not change.
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an invertible matrix C P Mpn ˆ n;Rq such that

A “ C´1BC .
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Matrix Similarity
Definition
Two matrices A,B P Mpn ˆ n;Rq are called similar if there exists
an invertible matrix C P Mpn ˆ n;Rq such that

A “ C´1BC .

Proposition
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V . For any two bases A,B of V the matrices MpϕqA
and MpϕqB are similar.

Proof.

MpϕqBB “ Mpid ˝ϕ ˝ idqBB “ MpidqBAMpϕqAAMpidqAB .

Therefore
MpϕqB “ C´1MpϕqAC ,

where C “ MpidqAB .



Example
Let ϕppx1, x2qq “ px1 ` x2, 2x1 ` 3x2q be a linear endomorphism
ϕ : R2 ÝÑ R

2. Take A “ st and B “ pp´2, 1q, p1,´1q. Then

MpϕqA “

„

1 1
2 3
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and C “ MpidqAB “

„

´2 1
1 ´1



.
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.
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Example
Let ϕppx1, x2qq “ px1 ` x2, 2x1 ` 3x2q be a linear endomorphism
ϕ : R2 ÝÑ R

2. Take A “ st and B “ pp´2, 1q, p1,´1q. Then

MpϕqA “

„

1 1
2 3



and C “ MpidqAB “

„

´2 1
1 ´1



.

Use MpϕqB “ C´1MpϕqAC and compute C´1 “

„

´1 ´1
´1 ´2



.

Then

MpϕqB “

„

´1 ´1
´1 ´2

 „

1 1
2 3

 „

´2 1
1 ´1



“

„

2 1
3 2


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Example
Let ϕppx1, x2qq “ px1 ` x2, 2x1 ` 3x2q be a linear endomorphism
ϕ : R2 ÝÑ R

2. Take A “ st and B “ pp´2, 1q, p1,´1q. Then

MpϕqA “

„

1 1
2 3



and C “ MpidqAB “

„

´2 1
1 ´1



.

Use MpϕqB “ C´1MpϕqAC and compute C´1 “

„

´1 ´1
´1 ´2



.

Then

MpϕqB “

„

´1 ´1
´1 ´2

 „

1 1
2 3

 „

´2 1
1 ´1



“

„

2 1
3 2



.

On the other hand,

ϕpp´2, 1qq “ p´1,´1q “ 2p´2, 1q ` 3p1,´1q,

ϕpp1,´1qq “ p0,´1q “ p´2, 1q ` 2p1,´1q.
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Similar Matrices and Endomorphisms

Theorem
Let V be n-dimensional vector space and let A,B P Mpn ˆ n;Rq.
Then

A,B are similar ðñ there exists an endomorphism ϕ : V ÝÑ V

and bases A,B of V such that MpϕqA “ A and MpϕqB “ B .

Proof.
pðq was done before.
pñq there exits an invertible matrix C P Mpn ˆ n;Rq such that
B “ C´1AC . Let A be any basis of the vector space V and let ϕ
be the unique linear endomorphism given by the condition
MpϕqAA “ A. If B is given by the condition C “ MpidqAB then
B “ MpϕqB.



Eigenvalues and Eigenvectors

Definition
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V . A constant λ P R is called eigenvalue of ϕ if
there exists a non-zero vector v P V such that

ϕpvq “ λv .

Such vector v is called an eigenvector of ϕ associated to the
eigenvalue λ.



Eigenvalues and Eigenvectors

Definition
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V . A constant λ P R is called eigenvalue of ϕ if
there exists a non-zero vector v P V such that

ϕpvq “ λv .

Such vector v is called an eigenvector of ϕ associated to the
eigenvalue λ.

Remark (geometric interpretation)
A vector v P V is an eigenvector of ϕ if and only if
ϕplinpvqq Ă linpvq and linpvq ‰ t0u, i.e. v is a non-zero vector and
the line spanned by v is mapped into itself.



Eigenvalues and Eigenvectors (continued)
Let ϕ : V ÝÑ V be a linear endomorphism. For any eigenvalue λ

of ϕ let Vpλq denote the set of all eigenvectors associated to λ

together with the zero vector, i.e.

Vpλq “ tv P V | ϕpvq “ λv .u

Proposition
The subset Vpλq Ă V is a subspace of V .
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eigenspace associated to λ.



Eigenvalues and Eigenvectors (continued)
Let ϕ : V ÝÑ V be a linear endomorphism. For any eigenvalue λ

of ϕ let Vpλq denote the set of all eigenvectors associated to λ

together with the zero vector, i.e.

Vpλq “ tv P V | ϕpvq “ λv .u

Proposition
The subset Vpλq Ă V is a subspace of V .

Proof.
Let v ,w P Vpλq. Then
ϕpv ` wq “ ϕpvq ` ϕpwq “ λv ` λw “ λpv ` wq. Hence
v ` w P Vpλq. For any α P R we have ϕpαvq “ αϕpvq “ λpαvq.
Hence αv P Vpλq.

For any eigenvalue λ of ϕ the subspace Vpλq is called the
eigenspace associated to λ. It is straightforward that
ϕpVpλqq Ă Vpλq.
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Vp1q “ linpp1, 0qq and Vp´1q “ linpp0, 1qq.
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Example

Let s : R2 ÝÑ R
2 be a reflection of R2 about the x1-axis. Then

Vp1q “ linpp1, 0qq and Vp´1q “ linpp0, 1qq. The rotation r about the
origin of R2 by π

2 radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by ´2
in all directions any non-zero vector is eigenvector associated to
´2, i.e. Vp´2q “ R

2.The projection p onto the x2-axis has two
eigenspaces: Vp0q “ linpp1, 0qq and Vp1q “ linpp0, 1qq.
Note that for s, k and p there exist a basis (the standard one)
consisting of eigenvectors. The matrices of those endomorphisms in
the standard basis are diagonal.

Mpsqst “

„

1 0
0 ´1



, Mpkqst “

„

´2 0
0 ´2



,

Mppqst “

„

0 0
0 1



.
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Characteristic Polynomial
Definition
Let A P Mpn ˆ n;Rq. The polynomial wApλq “ detpA ´ λInq is
called the characteristic polynomial of A.
The degree of wApλq is equal to n.

Example

Let A “

„

4 2
3 3



. Then

wApλq “ det

„

4 ´ λ 2
3 3 ´ λ



“ p4´λqp3´λq ´6 “ λ2 ´7λ`6.

Proposition
Let A,B P Mpn ˆ n;Rq be similar matrices. Then wA “ wB .

Proof.
There exists an invertible matrix C such that A “ C´1BC . But
wApλq “ detpA ´ λInq “ det

`

C´1BC ´ C´1λInC
˘

“
det

`

C´1pB ´ λInqC
˘

“ pdetC q´1 detpB ´ λInq detC “
wBpλq.



Characteristic Polynomial (continued)

Definition
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V . The characteristic polynomial wϕ of ϕ is the
characteristic polynomial of matrix MpϕqA where A is a basis of V .



Characteristic Polynomial (continued)

Definition
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V . The characteristic polynomial wϕ of ϕ is the
characteristic polynomial of matrix MpϕqA where A is a basis of V .

By the previous proposition the characteristic polynomial of ϕ does
not depend on the basis A.
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vector space V .
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Finding Eigenvalues and Eigenvectors

Theorem
Let ϕ : V ÝÑ V be a linear endomorphism of a finite dimensional
vector space V .

i) α P R is an eigenvalue of ϕ ðñ α is a root the characteristic
polynomial of ϕ,

ii) let A “ pv1, . . . , vnq and A “ MpϕqA. The vector
v “ x1v1 ` . . . ` xnvn is an eigenvector of ϕ associated to α if
and only if

pA ´ αInq

»

—

–

x1
...
xn

fi

ffi

fl
“

»

—

–

0
...
0

fi

ffi

fl
.



Finding Eigenvalues and Eigenvectors (continued)

Proof.
Let v “ x1v1 ` . . . ` xnvn. Then ϕpvq “ αv if and only if

A

»

—

–

x1
...
xn

fi

ffi

fl
“ α

»

—

–

x1
...
xn

fi

ffi

fl
ðñ pA ´ αInq

»

—

–

x1
...
xn

fi

ffi

fl
“

»

—

–

0
...
0

fi

ffi

fl
.



Finding Eigenvalues and Eigenvectors (continued)

Proof.
Let v “ x1v1 ` . . . ` xnvn. Then ϕpvq “ αv if and only if

A

»

—

–

x1
...
xn

fi

ffi

fl
“ α

»

—

–

x1
...
xn

fi

ffi

fl
ðñ pA ´ αInq

»

—

–

x1
...
xn

fi

ffi

fl
“

»

—

–

0
...
0

fi

ffi

fl
.

From the previous lecture we know that there exists a non-zero
solution of the latter if and only if detpA ´ αInq “ 0, i.e.
wApαq “ 0.



Example
Let ϕ : R3 ÝÑ R

3 be an endomorphism of R3 given by
ϕpx1, x2, x3q “ p4x1 ` 4x2,´x1, x1 ` 3x2 ` 3x3q. Its matrix in the

standard basis is A “ Mpϕqst “

»

–

4 4 0
´1 0 0
1 3 3

fi

fl.

A ´ λI “

»

–

4 ´ λ 4 0
´1 ´λ 0
1 3 3 ´ λ

fi

fl .

Hence wϕpλq “ detpA ´ λI q “ p3 ´ λqpp4 ´ λqp´λq ` 4qq “
p3 ´ λqpλ2 ´ 4λ ` 4q “ p3 ´ λqp2 ´ λq2.



Example
Let ϕ : R3 ÝÑ R

3 be an endomorphism of R3 given by
ϕpx1, x2, x3q “ p4x1 ` 4x2,´x1, x1 ` 3x2 ` 3x3q. Its matrix in the

standard basis is A “ Mpϕqst “

»

–

4 4 0
´1 0 0
1 3 3

fi

fl.

A ´ λI “

»

–

4 ´ λ 4 0
´1 ´λ 0
1 3 3 ´ λ

fi

fl .

Hence wϕpλq “ detpA ´ λI q “ p3 ´ λqpp4 ´ λqp´λq ` 4qq “
p3 ´ λqpλ2 ´ 4λ ` 4q “ p3 ´ λqp2 ´ λq2. There are two eigenvalues
λ1 “ 2 and λ2 “ 3. To find Vp2q we solve a system of linear
equations:

Vp2q :

»

–

2 4 0
´1 ´2 0
1 3 1

fi

fl

»

–

x1
x2
x3

fi

fl “

»

–

0
0
0

fi

fl .



Example (continued)

»

–

2 4 0
´1 ´2 0
1 3 1

fi

fl

r1`2r2
r3`r2ÝÑ

»

–

1 2 0
0 1 1
0 0 0

fi

fl

r1´2r2ÝÑ

»

–

1 0 ´2
0 1 1
0 0 0

fi

fl .



Example (continued)

»

–

2 4 0
´1 ´2 0
1 3 1

fi

fl

r1`2r2
r3`r2ÝÑ

»

–

1 2 0
0 1 1
0 0 0

fi

fl

r1´2r2ÝÑ

»

–

1 0 ´2
0 1 1
0 0 0

fi

fl .

Therefore x1 “ 2x3, x2 “ ´x3, x3 P R, i.e.

Vp2q “ tp2x3,´x3, x3q | x3 P Ru “ linpp2,´1, 1qq.



Example (continued)

»

–

2 4 0
´1 ´2 0
1 3 1

fi

fl

r1`2r2
r3`r2ÝÑ

»

–

1 2 0
0 1 1
0 0 0

fi

fl

r1´2r2ÝÑ

»

–

1 0 ´2
0 1 1
0 0 0

fi

fl .

Therefore x1 “ 2x3, x2 “ ´x3, x3 P R, i.e.

Vp2q “ tp2x3,´x3, x3q | x3 P Ru “ linpp2,´1, 1qq.

Vp3q :

»

–

1 4 0
´1 ´3 0
1 3 0

fi

fl

»

–

x1
x2
x3

fi

fl “

»

–

0
0
0

fi

fl .



Example (continued)

»

–

1 4 0
´1 ´3 0
1 3 0

fi

fl

r1`r2
r3`r2ÝÑ

»

–

0 1 0
´1 ´3 0
0 0 0

fi

fl

r2`3r1ÝÑ

»

–

1 0 0
0 1 0
0 0 0

fi

fl .



Example (continued)

»

–

1 4 0
´1 ´3 0
1 3 0

fi

fl

r1`r2
r3`r2ÝÑ

»

–

0 1 0
´1 ´3 0
0 0 0

fi

fl

r2`3r1ÝÑ

»

–

1 0 0
0 1 0
0 0 0

fi

fl .

Therefore x1 “ x2 “ 0, x3 P R, i.e.

Vp3q “ tp0, 0, x3q | x3 P Ru “ linpp0, 0, 1qq.



Example (continued)

Recall that

ϕpx1, x2, x3q “ p4x1 ` 4x2,´x1, x1 ` 3x2 ` 3x3q,

Vp2q “ linpp2,´1, 1qq,

Vp3q “ linpp0, 0, 1qq,

and check those directly

ϕp2,´1, 1q “
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Recall that

ϕpx1, x2, x3q “ p4x1 ` 4x2,´x1, x1 ` 3x2 ` 3x3q,

Vp2q “ linpp2,´1, 1qq,

Vp3q “ linpp0, 0, 1qq,

and check those directly

ϕp2,´1, 1q “ p4,´2, 2q “ 2p2,´1, 1q,

ϕp0, 0, 1q “



Example (continued)

Recall that

ϕpx1, x2, x3q “ p4x1 ` 4x2,´x1, x1 ` 3x2 ` 3x3q,

Vp2q “ linpp2,´1, 1qq,

Vp3q “ linpp0, 0, 1qq,

and check those directly

ϕp2,´1, 1q “ p4,´2, 2q “ 2p2,´1, 1q,

ϕp0, 0, 1q “ p0, 0, 3q “ 3p0, 0, 1q.



Remarks

i) if ϕ : V ÝÑ V and dimV is odd then the degree of wϕ is odd
therefore it has at least one real root so there exists an
eigenvector of ϕ,
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ii) dimVpαq ď multiplicity of the root α in wϕ, cf. the last
example (2 is a root of multiplicity 2 but dimVp2q “ 1),



Remarks

i) if ϕ : V ÝÑ V and dimV is odd then the degree of wϕ is odd
therefore it has at least one real root so there exists an
eigenvector of ϕ,

ii) dimVpαq ď multiplicity of the root α in wϕ, cf. the last
example (2 is a root of multiplicity 2 but dimVp2q “ 1),

iii) if A P Mpn ˆ n;Rq then wApAq “

»

—

–

0 . . . 0
...

. . .
...

0 . . . 0

fi

ffi

fl
, i.e. matrix

A substituted to its characteristic polynomial gives the zero
matrix (Cayley-Hamilton theorem).



Example

Let A “

„

1 3
1 1



and wApλq “ λ2 ´ 2λ ´ 2. Then

wApAq “

„

1 3
1 1

2

´ 2
„

1 3
1 1



´ 2
„

1 0
0 1



“

“

„

4 6
2 4



`

„

´2 ´6
´2 ´2



`

„

´2 0
0 ´2



“

„

0 0
0 0



.
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Cayley–Hamilton Theorem

Theorem
For any A P Mpn ˆ n;Rq and wApλq “ detpA ´ λInq

wApAq “ 0.

Proof.
Let B “ adjpA ´ λInq be the adjugate matrix of the matrix A ´ λIn.
The entries of B are polynomials of degree at most n ´ 1. By
separating monomials of the same degree one can write

B “ λn´1Bn´1 ` λn´2Bn´2 ` . . . ` λB1 ` B0,

where Bi P Mpn ˆ n;Rq for i “ 0, . . . , n ´ 1.



Cayley–Hamilton Theorem (continued)

Proof.
By the matrix inverse formula

BpA ´ λInq “ wApλqIn “ λnanIn ` λn´1an´1In ` . . . ` λa1In ` a0In,

where
wApλq “ λnan ` λn´1an´1 ` . . . ` λa1 ` a0,

is the characteristic polynomial of matrix A.



Cayley–Hamilton Theorem (continued)

Proof.
By the matrix inverse formula

BpA ´ λInq “ wApλqIn “ λnanIn ` λn´1an´1In ` . . . ` λa1In ` a0In,

where
wApλq “ λnan ` λn´1an´1 ` . . . ` λa1 ` a0,

is the characteristic polynomial of matrix A. Hence

BpA ´ λInq “ λn´1Bn´1A ` . . . ` λ2B2A ` λB1A ` B0A`

´ λnBn´1 ´ λn´1Bn´2 ´ . . . ´ λ2B1 ´ λB0 “

“ ´λnBn´1 `λn´1pBn´1A´Bn´2q `λn´2pBn´2A´Bn´3q ` . . .`

`λ2pB2A ´ B1q ` λpB1A ´ B0q ` B0A.

Two polynomials with real coefficients are equal if and only if they
have the same coefficients, therefore,



Cayley–Hamilton Theorem (continued)
Proof.

´Bn´1 “ anIn,

Bn´1A ´ Bn´2 “ an´1In,

...

B1A ´ B0 “ a1In,

B0A “ a0In.

Multiplying those equations on the right by An,An´1, . . . ,A,A0 “ In
respectively one gets

´Bn´1A
n “ anA

n,

Bn´1A
n ´ Bn´2A

n´1 “ an´1A
n´1,

...

B1A
2 ´ B0A “ a1A,

B0A “ a0In.



Cayley–Hamilton Theorem – Proof

Proof.
This sums to

wApAq “ anA
n ` an´1A

n´1 ` . . . ` a1A ` a0In “ 0.

Remark
There exist other conceptual proofs of the Cayley-Hamilton
theorem (using abstract algebra of Schur decomposition).



Schur Decomposition

Proposition
For any matrix A P Mpn ˆ n;Cq there exists a unitary matrix
U P Mpn ˆ n;Cq (i.e. U˚U “ UU˚ “ I , where U˚ “ U

⊺

) and an
upper triangular matrix T “ rtij s P Mpn ˆ n;Cq (i.e. tij “ 0 for
i ą j) such that

A “ UTU˚.

The decomposition is not unique and the diagonal entries of matrix
T are exactly (complex) eigenvalues of matrix A.



Schur Decomposition

Proposition
For any matrix A P Mpn ˆ n;Cq there exists a unitary matrix
U P Mpn ˆ n;Cq (i.e. U˚U “ UU˚ “ I , where U˚ “ U

⊺

) and an
upper triangular matrix T “ rtij s P Mpn ˆ n;Cq (i.e. tij “ 0 for
i ą j) such that

A “ UTU˚.

The decomposition is not unique and the diagonal entries of matrix
T are exactly (complex) eigenvalues of matrix A.

Proof.
Omitted.



Cayley–Hamilton Theorem Alternative Proof via Schur
Decomposition

Proof.
Let UTU˚ “ A. Then

wApAq “ UwApT qU˚.

Moreover, if
wApλq “ pλ ´ λ1q ¨ . . . ¨ pλ ´ λnq,

then
wApT q “ pT ´ λ1I q ¨ . . . ¨ pT ´ λnI q “ 0,

that is, the first k columns of the product

pT ´ λ1I q ¨ . . . ¨ pT ´ λk I q,

are zero.



Characteristic Polynomials of AB and BA

Proposition
Let A P Mpm ˆ n;Rq and let B P Mpn ˆm;Rq where m ě n. Then
AB P Mpm ˆ m;Rq, BA P Mpn ˆ n;Rq and

wABpλq “ λm´nwBApλq,

that is eigenvalues of AB and BA (up to m ´ n zeroes) are the
same. Moreover, the dimensions of eigenspaces corresponding to
non–zero eigenvalues are the same.



Characteristic Polynomials of AB and BA

Proposition
Let A P Mpm ˆ n;Rq and let B P Mpn ˆm;Rq where m ě n. Then
AB P Mpm ˆ m;Rq, BA P Mpn ˆ n;Rq and

wABpλq “ λm´nwBApλq,

that is eigenvalues of AB and BA (up to m ´ n zeroes) are the
same. Moreover, the dimensions of eigenspaces corresponding to
non–zero eigenvalues are the same.

Proof.
Let

M “

„

AB 0
B 0



, N “

„

0 0
B BA



, C “

„

Im A

0 In



,

be pm ` nq ˆ pm ` nq matrices.



Characteristic Polynomials of AB and BA

Proof.
Then

C´1 “

„

Im ´A

0 In



, C´1MC “ N,

i.e. the matrices are similar hence they have the same eigenvalues.
This holds as

MC “ CN,
„

AB 0
B 0

 „

Im A

0 In



“

„

Im A

0 In

 „

0 0
B BA



“

„

AB ABA

B BA



.



Characteristic Polynomials of AB and BA

Proof.
Alternatively, for λ ‰ 0 the following linear transfomations are
inverse to each other hence invertible

kerpAB ´ λI q Q v ÞÑ
1
λ
Bv P kerpBA ´ λI q,

kerpBA ´ λI q Q v ÞÑ
1
λ
Av P kerpAB ´ λI q.

In particular kerpAB ´ λI q ‰ t0u if and only if
kerpBA ´ λI q ‰ t0u.



Nilpotent Matrix

Definition
Let A P Mpn ˆ n;Rq. Matrix A is nilpotent if there exists k ě 1
such that

Ak “ 0.



Nilpotent Matrix

Definition
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A then λ “ 0, i.e. all eigenvalues are equal to 0.



Nilpotent Matrix

Definition
Let A P Mpn ˆ n;Rq. Matrix A is nilpotent if there exists k ě 1
such that

Ak “ 0.

Proposition
If matrix A P Mpn ˆ n;Rq is nilpotent and λ P R is an eigenvalue of
A then λ “ 0, i.e. all eigenvalues are equal to 0.

Proof.
Let k ě 1 be any number such that Ak “ 0. Let v P R

n be an
eigenvector of A for the eigenvalue λ P R. Then

pAkqv “ λkv “ 0 ùñ λ “ 0,

since v ‰ 0.



Nilpotent Matrix (continued)

Corollary
Matrix A P Mpn ˆ n;Rq is nilpotent if and only if its all eigenvalues
over complex numbers are equal to 0 (i.e. the characteristic
polynomial wApλq “ p´1qnλn).



Companion Matrix
Proposition
For any a0, . . . , an´1 P R where n ě 2 if

A “

»

—

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 ´a0
1 0 0 ¨ ¨ ¨ 0 ´a1
0 1 0 ¨ ¨ ¨ 0 ´a2
0 0 1 ¨ ¨ ¨ 0 ´a3
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 1 ´an´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

then
wApλq “ p´1qnpλn ` an´1λ

n´1 ` . . . ` a1λ ` a0q.



Companion Matrix
Proposition
For any a0, . . . , an´1 P R where n ě 2 if

A “

»

—

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 ´a0
1 0 0 ¨ ¨ ¨ 0 ´a1
0 1 0 ¨ ¨ ¨ 0 ´a2
0 0 1 ¨ ¨ ¨ 0 ´a3
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 1 ´an´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

then
wApλq “ p´1qnpλn ` an´1λ

n´1 ` . . . ` a1λ ` a0q.

Proof.
Induction on n. If n “ 2 then

„

´λ ´a0
1 ´a1 ´ λ



“ λ2 ` a1λ ` a0.



Companion Matrix (continued)
Proof.
For n ě 3, by the Laplace formula for the first column and the inductive
assumption

det

»

—

—

—

—

—

—

—

–

´λ 0 0 ¨ ¨ ¨ 0 ´a0
1 ´λ 0 ¨ ¨ ¨ 0 ´a1
0 1 ´λ ¨ ¨ ¨ 0 ´a2
0 0 1 ¨ ¨ ¨ 0 ´a3
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 1 ´an´1 ´ λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

“ ´λp´1qn´1pλn´1 ` . . . ` a2λ ` a1q´

´ det

»

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 ´a0
1 ´λ ¨ ¨ ¨ 0 ´a2
0 1 ¨ ¨ ¨ 0 ´a3
...

...
. . .

...
...

0 0 ¨ ¨ ¨ 1 ´an´1 ´ λ

fi

ffi

ffi

ffi

ffi

ffi

fl

“

“ p´1qnpλn ` . . . ` a2λ
2 ` a1λq ´ p´1qnp´a0q.



Companion Matrix (continued)

Corollary
Up to a sign, each monic polynomial of degree n is a characteristic
polynomial of some matrix A P Mpn ˆ n;Rq.
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Let A P Mpn ˆ n;Rq. Matrix A is primitive if A ě 0 and there
exists k such that Ak ą 0.
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exists k such that Ak ą 0. Matrix A is irreducible if A ě 0 and for
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Primitive and Irreducible Matrices

Definition
Let A P Mpn ˆ n;Rq. Matrix A is primitive if A ě 0 and there
exists k such that Ak ą 0. Matrix A is irreducible if A ě 0 and for
each 1 ď i , j ď n there exists k such that pAkqij ą 0.

Remark
If matrix A is primitive then it is irreducible. If matrix A is
irreducible then matrix A ` I is primitive because Am ě 0 and

pA ` I qk “ I `

ˆ

k

1

˙

A `

ˆ

k

2

˙

A2 `

ˆ

k

3

˙

A3 ` . . . `

ˆ

k

k

˙

Ak ,

for k “ maxtkiju.



Perron–Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
λmax P R, λmax ą 0 a positive eigenvalue of A such that

i) for any other eigenvalue λ P C of matrix A

|λ| ď λmax ,
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ii) Vpλmax q “ linpvq where v P R
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Perron–Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
λmax P R, λmax ą 0 a positive eigenvalue of A such that

i) for any other eigenvalue λ P C of matrix A

|λ| ď λmax ,

ii) Vpλmax q “ linpvq where v P R
n and v ą 0 (i.e., all entries of v

are positive),

iii) λmax is a simple root of wApλq (i.e wApλq is not divisible by
pλ ´ λmaxq2),

iv) if w P R
n, w ą 0 and w is an eigenvalue of A then

w P Vpλmax q.



Perron–Frobenius Theorem (continued)

Remark
If A is a primitive matrix then moreover

|λ| ă λmax ,

for any eigenvalue λ P C of A.



Perron–Frobenius Theorem Proof
Let k P N be a number such that

B “ pI ` Aqk ą 0.

Obviously
if v ď w , v ‰ w then Bv ă Bw .

Let

Q “ tv P R
n | v ě 0, v ‰ 0u, C “ Q X tv P R

n | ‖v‖ “ 1u.

For any v ě 0 such that v ‰ 0 let

Lpvq “ maxtλ P R | λv ď Avu “ min
1ďiďn
vi‰0

pAvqi
vi

.

It is clear that Lpµvq “ Lpvq for µ ą 0, in particular

L
´

v
‖v‖

¯

“ Lpvq for v ě 0, v ‰ 0.



Perron–Frobenius Theorem Proof (continued)

For any v ě 0 such that v ‰ 0

if µv ď Av then µBv ď BAv “ ABv ,

which implies that (maximum over a larger set)

Lpvq ď LpBvq.

Moreover, if Av ‰ Lpvqv then, by the definition,

Lpvqv ď Av , Av ‰ Lpvqv , hence BpLpvqvq ă BpAvq.

This is equivalent to

LpvqBv ă ABv , i.e., Lpvq ă LpBvq,

(i -th components of LpvqA and Av are equal for some i).



Perron–Frobenius Theorem Proof (continued)
By abuse of notation, let

B : Rn Ñ R
n,

denote the linear function given by the matrix B . Since the set C is
compact then BpC q Ă R

n
ą0 is compact too and v ě 0, v ‰ 0

implies that Bv ą B0 “ 0. By the Weierstrass extreme value
theorem, the function L (which is continuous as minimum of
continuous functions and all components are non–zero) obtains its
maximum on the set BpC q. Let

λmax “ max
vPBpCq

Lpvq,

v “ argmax
vPBpCq

Lpvq.

By the above v ą 0 and

Av “ Lpvqv “ λmaxv .



Perron–Frobenius Theorem Proof (continued)

Since Lpvq ď LpBvq

λmax “ max
vPBpCq

Lpvq “ max
vPC

Lpvq.



Perron–Frobenius Theorem Proof (continued)

Since Lpvq ď LpBvq

λmax “ max
vPBpCq

Lpvq “ max
vPC

Lpvq.

Beacuse
Av “ λmaxv ,

A ě 0, v ą 0 ùñ Av ą 0,

it follows that
λmax ą 0.



Perron–Frobenius Theorem Proof (continued)
Let w P Cn, λ P C be such that

λw “ Aw ,

i.e., for i “ 1, . . . , n

λwi “
n

ÿ

i“1

aijwj ,

|λ||wi | ď
n

ÿ

i“1

aij |wj |,

since aij ě 0. This is equivalent to

|λ||w | ď A|w |,

where
|w | “ p|w1|, . . . , |wn|q P R

n.



Perron–Frobenius Theorem Proof (continued)
Let w P Cn, λ P C be such that

λw “ Aw ,

i.e., for i “ 1, . . . , n

λwi “
n

ÿ

i“1

aijwj ,

|λ||wi | ď
n

ÿ

i“1

aij |wj |,

since aij ě 0. This is equivalent to

|λ||w | ď A|w |,

where
|w | “ p|w1|, . . . , |wn|q P R

n.

By definition
|λ| ď Lp|w |q ď λmax ,

i.e. λmax is a real eigenvalue with maximal modulus and positive
eigenvector.



Perron–Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the
simple eigenvalue λmax and all other positive eigenvectors are
multiples or vector v .



Perron–Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the
simple eigenvalue λmax and all other positive eigenvectors are
multiples or vector v .

As A⊺ is irreducible too there exists left eigenvalue µmax ą 0 and a
positive eigenvector w ą 0 such that w⊺A “ µmaxw . Then

µmaxw
⊺v “ pw⊺Aqv “ w⊺pAvq “ λmaxw

⊺v ,

hence µmax “ λmax as w⊺v ą 0.



Perron–Frobenius Theorem Proof (continued)

Suppose that there exist η P R and u ě 0, u ‰ 0 such that
Au “ ηu. Then

ηw⊺u “ pw⊺Aqu “ w⊺pAuq “ λmaxw
⊺u,

hence η “ λmax as w⊺u ą 0. If v 1 P R is another eigenvector
corresponding to λmax linearly independent with v then there exist
α, β P R such that vector v2 “ αv ` βv 1 has some component
equal to 0 and v 1 ě 0, v 1 ‰ 0. Then

0 ă Bv 1 “ pI ` Aqkv 1 “ p1 ` λmaxqkv 1,

which leads to a contradiction.
Therefore, in the Jordan decomposition of matrix A there exists a
unique Jordan block corresponding to the eigenvalue λmax .



Perron–Frobenius Theorem Proof (continued)

Without loss of generality one may replace A by A
λmax

and assume
that λmax “ 1. Recall that

‖A‖8 “ maxt‖r1‖1, . . . , ‖rn‖u,

where r1, . . . , rn denote the rows of matrix A. Therefore (recall
A ě 0, v ą 0)

‖v‖8 “ ‖Amv‖8 “ max
1ďiďn

xr
pmq
i , viy ě max

1ďiďn

∥

∥

∥

r
pmq
i

∥

∥

∥

1
min
1ďiďn

vi “

“ ‖Am‖8 min
1ďiďn

vi ,

where r
pmq
i denote the rows of Am. Therefore for any m

‖Am‖ ď
‖v‖8

min1ďiďn vi
.



Perron–Frobenius Theorem Proof (continued)
Let J be the Jordan matrix of A and let

J “ C´1AC ,

then
‖Jm‖8 ď

∥

∥C´1∥
∥

8
‖Am‖8‖C‖8.

If the size of the Jordan block J1 corresponding to λmax “ 1 is
bigger or equal than 2 then

Jm1 “

»

—

–

1 m . . .

0 1 . . .
...

...
. . .

fi

ffi

fl
,

which gives a contradiction as then

‖Jm‖8 ě 1 ` m ÝÑ 8,

when m ÝÑ 8.



Perron–Frobenius Theorem Proof (continued)

Finally, assume that A is primitive. Take λ an eigenvalue of A such
that |λ| “ λmax . From the first part of the proof it follows that

|λ| “ Lp|w |q “ λmax .

The inequality

|λ||wi | ď
n

ÿ

i“1

aij |wj |,

becomes equality only if all arguments of wj for non–zero aij are the
same. Applying the same argument to Ak , and dividing w by a unit
complex number we get a real, non–negative, non–zero eigenvector
corresponding to the eigenvalue λmax . Hence λ “ λmax .



Application – Discrete Markov Chains
Let

Q “

»

—

—

–

1
2

1
2

1
3

2
3

fi

ffi

ffi

fl

be the transition matrix of some Markov chain (see Lecture 5). The
eigenvalues of Q are 1

6 , 1 hence λmax “ 1 (the vector p1, . . . , 1q is
an eigenvector of any transition matrix). Moreover

Vp1q “ linpp1, 1qq,

Vp 16 q “ linpp3,´2qq.

Qn “

»

—

—

–

1 3

1 ´2

fi

ffi

ffi

fl

»

—

—

–

1 0

0
1
6n

fi

ffi

ffi

fl

»

—

—

–

1 3

1 ´2

fi

ffi

ffi

fl

´1

.



Application – Discrete Markov Chains (continued)

lim
nÑ8

Qn “ lim
nÑ8

»

—

—

–

1 3

1 ´2

fi

ffi

ffi

fl

»

—

—

–

1 0

0
1
6n

fi

ffi

ffi

fl

»

—

—

–

2
5

3
5

1
5

´
1
5

fi

ffi

ffi

fl

“

“

»

—

—

–

1 3

1 ´2

fi

ffi

ffi

fl

»

—

—

–

1 0

0 0

fi

ffi

ffi

fl

»

—

—

–

2
5

3
5

1
5

´
1
5

fi

ffi

ffi

fl

“

“

»

—

—

–

1 3

1 ´2

fi

ffi

ffi

fl

»

—

—

–

2
5

3
5

0 0

fi

ffi

ffi

fl

“

»

—

—

–

2
5

3
5

2
5

3
5

fi

ffi

ffi

fl

.

Therefore for any initial conditions t “ pt1, t2q P R
2
ě0, t1 ` t2 “ 1

lim
nÑ8

t⊺Qn “

ˆ

2
5
,
3
5

˙

.



High Powers of a Primitive Matrix

Corollary
Let A P Mpn ˆ n;Rq be a primitive matrix (i.e. A ą 0). Let
v P R

n, v ą 0 be the (right) eigenvector of A for the eigenvalue
λmax and let w P R

n,w ą 0 be the (left) eigenvector of A for the
eigenvalue λmax such that w⊺v “ 1. Then

lim
nÑ8

ˆ

Q

λmax

˙n

“ vw⊺.



High Powers of a Primitive Matrix (continued)
Example

For Q “

»

—

—

–

1
2

1
2

1
3

2
3

fi

ffi

ffi

fl

we have λmax “ 1 and v “ p1, 1q, w “ 1
5 p2, 3q,

i.e.

1
5

“

2 3
‰

»

—

—

–

1
2

1
2

1
3

2
3

fi

ffi

ffi

fl

“
1
5

“

2 3
‰

,

»

—

—

–

1
2

1
2

1
3

2
3

fi

ffi

ffi

fl

„

1
1



“

„

1
1



therefore

lim
nÑ8

Qn “ vw⊺ “
1
5

„

1
1



“

2 3
‰

“

»

—

—

–

2
5

3
5

2
5

3
5

fi

ffi

ffi

fl

.



Graph of a Non–Negative Matrix

Definition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
directed graph given by A is a graph GA “ G “ pV ,E q, where

V “ t1, 2, . . . , nu,

and for any i , j P V ,

pi , jq P E if and only if aij ą 0.



Graph of a Non–Negative Matrix

Definition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
directed graph given by A is a graph GA “ G “ pV ,E q, where

V “ t1, 2, . . . , nu,

and for any i , j P V ,

pi , jq P E if and only if aij ą 0.

Remark
Note that self–loops are allowed. The matrix GA is closely related
to the adjacency matrix of graph G .



Graph of a Non–Negative Matrix

Definition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
directed graph given by A is a graph GA “ G “ pV ,E q, where

V “ t1, 2, . . . , nu,

and for any i , j P V ,

pi , jq P E if and only if aij ą 0.

Remark
Note that self–loops are allowed. The matrix GA is closely related
to the adjacency matrix of graph G .

Definition
A directed graph G “ pV ,E q is strongly connected if for each
i , j P V there exists a path joining i with j .



Graph of a Non–Negative Matrix (continued)

Proposition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
following conditions are equivalent

i) the matrix A is irreducible,

ii) the graph GA is strongly connected.



Graph of a Non–Negative Matrix (continued)

Proposition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
following conditions are equivalent

i) the matrix A is irreducible,

ii) the graph GA is strongly connected.

Proof.
Follows directly from definitions.



Graph of a Non–Negative Matrix (continued)

Proposition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
following conditions are equivalent

i) the matrix A is primitive,

ii) the graph GA is strongly connected and contains two cycles of
relatively prime lengths.



Graph of a Non–Negative Matrix (continued)

Proposition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
following conditions are equivalent

i) the matrix A is primitive,

ii) the graph GA is strongly connected and contains two cycles of
relatively prime lengths.

Proof.
iq ñ iiq let k be a number such that Ak ą 0. Then Ak`1 ą 0 so
there are cycles of lengths k and k ` 1,



Graph of a Non–Negative Matrix (continued)

Proposition
Let A “ raij s P Mpn ˆ n;Rq be a matrix such that A ě 0. The
following conditions are equivalent

i) the matrix A is primitive,

ii) the graph GA is strongly connected and contains two cycles of
relatively prime lengths.

Proof.
iq ñ iiq let k be a number such that Ak ą 0. Then Ak`1 ą 0 so
there are cycles of lengths k and k ` 1,
iiq ñ iq see S. Sternberg Dynamical Systems, Section 9.2, the
problem reduces to a statement from arithmetic: if GCDpa, bq “ 1
then there exists a N P N such that

pNa ` Nbq X rN,`8q “ tN,N ` 1,N ` 2, . . .u.



Example – Irreducible Not Primitive Matrix

1

2

3 4

5

A “

»

—

—

—

—

–

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, A2 “

»

—

—

—

—

–

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, . . .

A5 “

»

—

—

—

—

–

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

“ I5,A
6 “ A.



Example – Irreducible Not Primitive Matrix

In particular, if

A “

»

—

—

—

—

–

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

then
wApλq “ λ5 ´ 1,

hence λmax “ 1, any other eigenvalue λ of matrix A is a 5´th root of
unity and

|λ| ď λmax ,

moreover λmax has algebraic multiplicity 1 and Av “ v , where

v “ p1, 1, 1, 1, 1q ą 0.

Incidentally, A is a particular case of a 5 ˆ 5 circulant matrix with
cn´1 “ 1, n “ 5 and all other c 1

i s equal to 0.



Example – Primitive Matrix

1

2

3 4

5

A “

»

—

—

—

—

–

0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, A2 “

»

—

—

—

—

–

0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 1 0 0

fi

ffi

ffi

ffi

ffi

fl

, . . .

A17 “

»

—

—

—

—

–

4 1 2 4 6
3 1 1 1 3
3 3 4 1 1
1 3 6 4 1
1 1 4 6 4

fi

ffi

ffi

ffi

ffi

fl

.



Example – Another Primitive Matrix

1

2

3 4

5

A “

»

—

—

—

—

–

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, A2 “

»

—

—

—

—

–

0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 1 0

fi

ffi

ffi

ffi

ffi

fl

, . . .

A14 “

»

—

—

—

—

–

4 3 1 6 2
1 1 2 1 3
3 1 1 3 1
1 3 1 4 3
3 1 3 2 4

fi

ffi

ffi

ffi

ffi

fl

.



Example – And Another Primitive Matrix

1

2

3 4

5

A “

»

—

—

—

—

–

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, A2 “

»

—

—

—

—

–

1 1 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
1 1 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, . . .

A8 “

»

—

—

—

—

–

5 4 3 2 1
1 1 1 1 1
2 1 1 1 1
3 2 1 1 1
4 3 2 1 1

fi

ffi

ffi

ffi

ffi

fl

.



Example – And Another Primitive Matrix (continued)
If

A “

»

—

—

—

—

–

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

it can be checked that wApλq “ λ5 ´ λ4 ´ 1 “ pλ2 ´ λ ` 1qpλ3 ´ λ ´ 1q,
with λmax « 1.3247, and v « p0.6765, 0.2197, 0.2910, 0.3855, 0.5107q.
Other eigenvalues have magnitudes smaller than λmax
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