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Endomorphism

Definition

Let V' be a vector space and A its (ordered) basis. A linear
transformation ¢ : V — V is called a linear endomorphism.
The matrix M(p) is called matrix of endomorphism relative to
basis A. It is denoted in short M(p) 4.

Example
The identity id : V — V is a linear endomorphism and its matrix
relative to any basis A is the identity matrix

1 0
M(id)4 = € M(n x nm;R),

where n = dim V.



Example

Let

s:R? — R?,

r:R?> — R?,

k:R?> — R?,

p:R? — R?.
be linear endomorphisms of R? defined as follows: s is a reflection
of R? about the x;-axis, r rotation about the origin of R? (i.e.
(0,0)) by 5 radians (i.e. 90 degrees) counter-clockwise, k is scaling

by —2 in all directions (also called uniform scaling) and p is
projection onto the x»-axis.



Example (continued

For example, if v = (2,1) then

s(v) = (2,-1), r(v) =

(-1

12), k(v)



Example (continued
For example, if v = (2,1) then

s(v) = (2,-1), r(v) = (=1,2), k(v) =

X1

, p(v)



Example (continued
For example, if v = (2,1) then

s(v) = (2,-1), r(v) = (=1,2), k(v) =

X1

» P(v) =

S(Xl.‘ X2)

(x1, —x2)



Example (continued
For example, if v

S(v) = (2.-1), r(v) =

(2,1) then

(-1

=(—4.-2), p(v) =

s(x1,x0) = (x1, —x2)

r(xi, x2) = (—x2,x1)

X1




Example (continued
For example, if v = (2,1) then

S(v) = (2. —1), F(v) = (~1.2), k(v) = (4. 2), p(v) =

s(x1,x0) = (x1, —x2)

o r(X13X2) = (_X27X1)
2, _ 5 n
k(Xl,Xg) = (—2X1, —2X2)
1 Lo

X1




Example (continued
For example, if v = (2,1) then

S(v) = (2.1, r(v) = (-1

,2), k(v) = (—4.-2), p(v) =

s(x1,x0) = (x1,—x2)
r(xi,x2) = (—x, x1)
k(Xl,Xg) = 4—2)(1. —2X2'

“ p(xi,x) =




Example (continued)

s(x1,x2) = (x1, —Xx2), r(xi,x2) = (—x2,x1),

k(x1,x2) = (—2x1, —2x2), p(x1,x2) = (0,x2).



Example (continued)

s(x1,x2) = (x1, —Xx2), r(xi,x2) = (—x2,x1),
k(x1,x2) = (—2x1, —2x2), p(x1,x2) = (0,x2).

The matrices of these endomorphisms relative to the standard basis
st = ((1,0),(0,1)) look as follows:



Example (continued)

s(x1,x2) = (x1, —Xx2), r(xi,x2) = (—x2,x1),
k(x1,x2) = (—2x1, —2x2), p(x1,x2) = (0,x2).

The matrices of these endomorphisms relative to the standard basis
st = ((1,0),(0,1)) look as follows:

mew=| g 3| moa=] 7 7.

-2 0 0 0
M(k)st = |: 0 _2 :|7 M(p)st = |: 0 1 :|’
Take different basis, for example A = ((1,2), (1,1)). The
change-of-coordinate matrix is

MGt = M) " - | ) 1]1=[‘§ G



Example (continued)

Recall, A = ((1,2),(1,1)) and M(id)4 = [ B

N =

=



Example (continued)
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Example (continued)
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Example (continued)

We see that matrices of simple linear transformations look ‘nice’
relative to some bases and ‘not-that-nice’ relative to the others.



Example (continued)

We see that matrices of simple linear transformations look ‘nice’
relative to some bases and ‘not-that-nice’ relative to the others.
That aim of this lecture is to find a way of computing those ‘nice’
ones in the general case. Note that determinants and the ranks of
corresponding matrices did not change.



Matrix Similarity

Definition
Two matrices A, B € M(n x n;R) are called similar if there exists
an invertible matrix C € M(n x n;R) such that

A=C1BC.



Matrix Similarity

Definition
Two matrices A, B € M(n x n;R) are called similar if there exists
an invertible matrix C € M(n x n;R) such that

A=C1BC.

Proposition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. For any two bases A, B of V the matrices M(¢) 4
and M(p)p are similar.



Matrix Similarity

Definition
Two matrices A, B € M(n x n;R) are called similar if there exists
an invertible matrix C € M(n x n;R) such that

A=C1BC.

Proposition

Let ¢ : V —> V be a linear endomorphism of a finite dimensional
vector space V. For any two bases A, B of V' the matrices M(y) 4
and M(p)p are similar.

Proof.

M() = M(id o 0 id)§ = M(id)SM()AM(id)2.

Therefore
M(p)s = C " M(p) 4C,

where C = M(id)A. O



Example

Let o((x1,X2)) = (x1 + x2,2x1 4+ 3x2) be a linear endomorphism
¢ :R? — R2. Take A = st and B = ((—2,1),(1,—1). Then

M= 5 5 | mdc=miad=| T ]



Example

Let o((x1,X2)) = (x1 + x2,2x1 4+ 3x2) be a linear endomorphism
¢ :R? — R2. Take A = st and B = ((—2,1),(1,—1). Then
11 a2 1
I\/I(go)A—[2 3] and C—I\/I(ld)B—[ 1 1 ]

Use M(¢)g = C"1M(¢)4C and compute C~1 = [ :i :; ]



Example

Let o((x1,X2)) = (x1 + x2,2x1 4+ 3x2) be a linear endomorphism
¢ :R? — R2. Take A = st and B = ((—2,1),(1,—1). Then
11 a2 1
I\/I(go)A—[2 3] and C—I\/I(ld)B—[ 1 1 ]

Use M(¢)g = C"1M(¢)4C and compute C~1 = [ :i :; ]
Then



Example
Let o((x1,X2)) = (x1 + x2,2x1 4+ 3x2) be a linear endomorphism

¢ :R? — R2. Take A = st and B = ((—2,1),(1,—1). Then
(11 a [ =21
I\/I(go)A—[2 3]andC—l\/I(ld)B—[ ) _1].

Use M(¢)g = C"1M(¢)4C and compute C~1 = [ :i :; ]
Then

1 —17[1 17[ =2 1 2 1
M(SO)B:{—l —2“2 3“ 1—1}:[3 2}'
On the other hand,

p((=2,1)) = (=1,-1) = 2(=2,1) +3(1, -1),

©((1,-1)) = (0,-1) = (—2,1) + 2(1,-1).



Similar Matrices and Endomorphisms

Theorem
Let V be n-dimensional vector space and let A, B € M(n x n;R).
Then

A, B are similar < there exists an endomorphism ¢ : V — V
and bases A, B of V such that M() 4 = A and M(yp)p = B.



Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let A, B € M(n x n;R).
Then

A, B are similar < there exists an endomorphism ¢ : V — V
and bases A, B of V such that M() 4 = A and M(yp)p = B.

Proof.

(<) was done before.



Similar Matrices and Endomorphisms

Theorem

Let V be n-dimensional vector space and let A, B € M(n x n;R).
Then

A, B are similar < there exists an endomorphism ¢ : V — V
and bases A, B of V such that M() 4 = A and M(yp)p = B.

Proof.

(<) was done before.

(=) there exits an invertible matrix C € M(n x n;R) such that

B = C7'AC. Let A be any basis of the vector space V and let ¢
be the unique linear endomorphism given by the condition

M(p)% = A. If B is given by the condition C = M(id)7 then

B = M(p)s- O



Eigenvalues and Eigenvectors

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. A constant \ € R is called eigenvalue of ¢ if
there exists a non-zero vector v € V such that

o(v) = Av.

Such vector v is called an eigenvector of ¢ associated to the
eigenvalue \.



Eigenvalues and Eigenvectors

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. A constant \ € R is called eigenvalue of ¢ if
there exists a non-zero vector v € V such that

o(v) = Av.

Such vector v is called an eigenvector of ¢ associated to the
eigenvalue \.

Remark (geometric interpretation)

A vector v € V is an eigenvector of o if and only if

o(lin(v)) < lin(v) and lin(v) # {0}, i.e. v is a non-zero vector and
the line spanned by v is mapped into itself.



Eigenvalues and Eigenvectors (continued)

Let ¢ : V —> V be a linear endomorphism. For any eigenvalue A
of o let V(y) denote the set of all eigenvectors associated to A
together with the zero vector, i.e.

Viy ={veV|plv)=2Av}

Proposition
The subset V() < V is a subspace of V.



Eigenvalues and Eigenvectors (continued)

Let ¢ : V —> V be a linear endomorphism. For any eigenvalue A
of o let V(y) denote the set of all eigenvectors associated to A
together with the zero vector, i.e.

Viy ={veV|plv)=2Av}

Proposition
The subset V() < V is a subspace of V.

Proof.

Let v,w € V(y). Then

o(v+w)=p(v)+p(w) =Av+ Aw = A(v + w). Hence

v+ w € V(). For any a € R we have p(av) = ap(v) = A(av).
Hence av € V(y).



Eigenvalues and Eigenvectors (continued)

Let ¢ : V —> V be a linear endomorphism. For any eigenvalue A
of o let V(y) denote the set of all eigenvectors associated to A
together with the zero vector, i.e.

Viy ={veV|plv)=2Av}

Proposition
The subset V() < V is a subspace of V.

Proof.

Let v,w € V(y). Then

o(v+w)=p(v)+p(w) =Av+ Aw = A(v + w). Hence

v+ w € V(). For any a € R we have p(av) = ap(v) = A(av).
Hence av € V(y). O
For any eigenvalue A of ¢ the subspace V() is called the
eigenspace associated to \.



Eigenvalues and Eigenvectors (continued)

Let ¢ : V —> V be a linear endomorphism. For any eigenvalue A
of o let V(y) denote the set of all eigenvectors associated to A
together with the zero vector, i.e.

Viy ={veV|plv)=2Av}

Proposition
The subset V() < V is a subspace of V.

Proof.

Let v,w € V(y). Then

o(v+w)=p(v)+p(w) =Av+ Aw = A(v + w). Hence

v+ w € V(). For any a € R we have p(av) = ap(v) = A(av).
Hence av € V(y). O
For any eigenvalue A of ¢ the subspace V() is called the
eigenspace associated to A. It is straightforward that

o(Viny) © V-



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
V(l) = I|n((1,0)) and V(,l) = I|n((0, 1))



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
Vi1y = lin((1,0)) and V(_;y = 1in((0,1)). The rotation r about the
origin of R? by % radians counter-clockwise has no eigenvalues (no
line is mapped into itself).



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
Vi1y = lin((1,0)) and V(_;y = 1in((0,1)). The rotation r about the
origin of R? by % radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by —2
in all directions any non-zero vector is eigenvector associated to
—2,ie. V() =R



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
Vi1y = lin((1,0)) and V(_;y = 1in((0,1)). The rotation r about the
origin of R? by % radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by —2
in all directions any non-zero vector is eigenvector associated to
—2,ie Vi = R2.The projection p onto the x»-axis has two
eigenspaces: V(g) = lin((1,0)) and V(1) = lin((0,1)).



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
Vi1y = lin((1,0)) and V(_;y = 1in((0,1)). The rotation r about the
origin of R? by % radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by —2
in all directions any non-zero vector is eigenvector associated to
—2,ie Vi = R2.The projection p onto the x»-axis has two
eigenspaces: V(g) = lin((1,0)) and V(1) = lin((0,1)).

Note that for s, k and p there exist a basis (the standard one)
consisting of eigenvectors. The matrices of those endomorphisms in
the standard basis are diagonal.



Example

Let s : R2 —> R2 be a reflection of R? about the xq-axis. Then
Vi1y = lin((1,0)) and V(_;y = 1in((0,1)). The rotation r about the
origin of R? by % radians counter-clockwise has no eigenvalues (no
line is mapped into itself). In the case of uniform scaling k by —2
in all directions any non-zero vector is eigenvector associated to
—2,ie Vi = R2.The projection p onto the x»-axis has two
eigenspaces: V(g) = lin((1,0)) and V(1) = lin((0,1)).

Note that for s, k and p there exist a basis (the standard one)
consisting of eigenvectors. The matrices of those endomorphisms in
the standard basis are diagonal.

M= o )| omwa=| 5 5.
M(p)st:[g (1)]



Characteristic Polynomial

Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.



Characteristic Polynomial
Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.
The degree of wa(\) is equal to n.



Characteristic Polynomial
Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.
The degree of wa(\) is equal to n.

Example
4 2
LetA—[3 3].Then
WA()\):det[4;)\ 33)\]=(4—)\)(3—)\)—6=)\2—7)\+6.



Characteristic Polynomial
Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.
The degree of wa(\) is equal to n.

Example

LetA:[4 2

3 3 ] Then

wa()) zdet[ 4;A 3EA ] =(4-X)(3=X)—6=XA2—T7T\+6.

Proposition
Let A, B e M(n x n;R) be similar matrices. Then wa = wg.



Characteristic Polynomial
Definition
Let Ae M(n x n;R). The polynomial wa(\) = det(A — Al,) is
called the characteristic polynomial of A.
The degree of wa(\) is equal to n.

Example
4 2
Let A= [ 3 3 ] Then
wad) =det| 4T 2 | S (4—0)B-N)—6=)2—TA+6.
3 3—-A
Proposition
Let A, B e M(n x n;R) be similar matrices. Then wa = wg.
Proof.

There exists an invertible matrix C such that A = C"1BC. But
wa(A) = det(A— A, = det(C‘lBC - C‘l)\l,,C) =

det(C1(B = Al,)C) = (det C) " det(B — Al,) det C =

WB(/\). ]



Characteristic Polynomial (continued)

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. The characteristic polynomial w,, of ¢ is the
characteristic polynomial of matrix M(y) 4 where A is a basis of V.



Characteristic Polynomial (continued)

Definition

Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V. The characteristic polynomial w,, of ¢ is the
characteristic polynomial of matrix M(y) 4 where A is a basis of V.

By the previous proposition the characteristic polynomial of ¢ does
not depend on the basis A.



Finding Eigenvalues and Eigenvectors

Theorem
Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V.



Finding Eigenvalues and Eigenvectors

Theorem
Let ¢ : V — V be a linear endomorphism of a finite dimensional
vector space V.

i) € R is an eigenvalue of p <= « is a root the characteristic
polynomial of ¢,



Finding Eigenvalues and Eigenvectors

Theorem
Let ¢ : V —> V be a linear endomorphism of a finite dimensional
vector space V.

i) € R is an eigenvalue of p <= « is a root the characteristic
polynomial of ¢,
i) let A= (vi,...,vn) and A= M(p)a. The vector

v =x1vi + ...+ XpVv, is an eigenvector of @ associated to o if
and only if



Finding Eigenvalues and Eigenvectors (continued)

Proof.
Let v =x3vi + ...+ xavp. Then ¢o(v) = av if and only if
X1 X1 X1 0
Al ¢+ | =af : = (A—al,)| | =

Xn Xn Xn 0



Finding Eigenvalues and Eigenvectors (continued)

Proof.
Let v =x3vi + ...+ xavp. Then ¢o(v) = av if and only if
X1 X1 X1 0
Al : =af : — (A—al,) | : =
Xn Xn Xn 0

From the previous lecture we know that there exists a non-zero
solution of the latter if and only if det(A — al,) =0, i.e.
wa(a) = 0.



Example

Let ¢ : R® — R3 be an endomorphism of R? given by
o(x1,x2,x3) = (4x1 + 4xp, —x1, X1 + 3x2 + 3x3). Its matrix in the

4 4 0
standard basisis A= M(¢)se = | —1 0 0
1 3 3

Hence w,(\) = det(A—Al) = (3—=X)((4 =) (=)) +4)) =
B=ANN\—4x+4)=(3-N)(2-)N)>



Example
Let ¢ : R® — R3 be an endomorphism of R? given by
o(x1,x2,x3) = (4x1 + 4xp, —x1, X1 + 3x2 + 3x3). Its matrix in the

4 4 0
standard basisis A= M(¢)ee = | —1 0 0 |.
1 3 3

4-X\ 4 0
A\ = 1 - 0
1 3 3-2)\

Hence w,(\) = det(A—Al) = (3—=X)((4 =) (=)) +4)) =
(3=XN) (A2 —4X+4) = (3= ))(2— N2 There are two eigenvalues
A1 =2and A2 = 3. To find V[, we solve a system of linear

equations:
2 4 0 X1 0
V(2) . -1 -2 0 X2 = 0
1 31 X3 0



Example (continued)

|
== N
|
w N B

= O O

rn+2m
r3+rz
23

O O

o R N

o = O

n —2!‘2
—>

O O

o = O



Example (continued)

2 4 0 ni2m[1 20 1 0 -2
1 20| =201 1|01 1
1 31 000 00 0
Therefore x; = 2x3, x» = —x3, x3 € R, i.e.

V(2) = {(2X3, —X3,X3) | X3 € R} = Im((2, -1, 1))



Example (continued)

2 4 0 rn+2m 1 2 0 1 0

1 2 0 |2 lo 11|01

1 3 1 0 0 O 0 0
Therefore x; = 2x3, x» = —x3, x3 € R, i.e.

V(2) = {(2X3, —X3,X3) | X3 € R} = Im((2, -1, 1))

1 4 0 X1 0
V(3) -1 -3 0 X2 = 0
1 30 X3 0

[y



Example (continued)
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Example (continued)

w w s

1 0 rn+nr
1 — 0 I’3+I’2 .
1 0

Therefore x; = x» =0, x3 €R, i.e.

o = O

1
-3
0

o O O

1
rzﬁi’l 0
0

V(3) = {(0,0,X3) | X3 € ]R} = Iin((0,0, 1))

o = O

o O O

] |



Example (continued)

Recall that
O(x1,x2,x3) = (4x1 + 4x2, —x1,x1 + 3x2 + 3x3),
V(2) = |in((2, —1, 1)),
V(3) = ||n((0,0, 1)))

and check those directly

90(27 _17 1) =



Example (continued)

Recall that
p(x1,x2,x3) = (4x1 + dxa, —x1, x1 + 3x2 + 3x3),
V(2) = ||n((27 -1, 1))7
V(3) = ||n((0,0, 1)))
and check those directly

S0(2’ -1, 1) = (47 _272) = 2(27 -1, 1)7



Example (continued)

Recall that
p(x1,x2,x3) = (4x1 + dxa, —x1, x1 + 3x2 + 3x3),

V(2) = |in((2, —1, 1)),
V(3) = Im((0,0, 1)),

and check those directly

0(2,-1,1) = (4,-2,2) = 2(2, —1,1),

©(0,0,1) =



Example (continued)

Recall that
p(x1,x2,x3) = (4x1 + dxa, —x1, x1 + 3x2 + 3x3),

V(2) = |in((2, —1, 1)),
V(3) = Im((0,0, 1)),

and check those directly

0(2,-1,1) = (4,-2,2) = 2(2, —1,1),

©(0,0,1) = (0,0,3) = 3(0,0,1).



Remarks

i) if p: V— V and dim V is odd then the degree of w, is odd
therefore it has at least one real root so there exists an
eigenvector of ¢,



Remarks

i) if p: V— V and dim V is odd then the degree of w, is odd
therefore it has at least one real root so there exists an
eigenvector of ¢,

i) dim V() < multiplicity of the root v in w,, cf. the last
example (2 is a root of multiplicity 2 but dim V3, = 1),



Remarks

i) if p: V— V and dim V is odd then the degree of w, is odd
therefore it has at least one real root so there exists an
eigenvector of ¢,

i) dim V() < multiplicity of the root v in w,, cf. the last
example (2 is a root of multiplicity 2 but dim V3, = 1),
0 ... 0
i) if Ae M(n x m;R) then wa(A) = | @ .. 1 [, i.e matrix
0 ... 0

A substituted to its characteristic polynomial gives the zero
matrix (Cayley-Hamilton theorem).



Example

i’ ] and wa(A\) = A2 —2X — 2. Then

K

Let A

=12 [ 2] o[ 8-

0_
0 -2 |

-2

Il

467, [-2 -6
2 4 —2 -2

o

o

o

o



Cayley—Hamilton Theorem

Theorem
For any Ae M(n x n;R) and wa()\) = det(A — Alp)

WA(A) = 0.



Cayley—Hamilton Theorem

Theorem
For any Ae M(n x n;R) and wa()\) = det(A — Alp)

WA(A) = 0.

Proof.
Let B = adj(A — Al,) be the adjugate matrix of the matrix A — Al,.



Cayley—Hamilton Theorem

Theorem
For any Ae M(n x n;R) and wa()\) = det(A — Alp)

WA(A) = 0.

Proof.
Let B = adj(A — Al,) be the adjugate matrix of the matrix A — Al,.

The entries of B are polynomials of degree at most n — 1. By
separating monomials of the same degree one can write

B=X"1B,1+\"2B, o+...+\B; + By,

where Bi € M(n x m;R) for i =0,...,n—1.



Cayley—Hamilton Theorem (continued)
Proof.

By the matrix inverse formula
B(A— M) = wa(M\)lp = Naply + AN ap 1l + ...+ Xarl, + agln,

where
wa(A) = Na, + AN la, 1 4.+ Nay + ap,

is the characteristic polynomial of matrix A.



Cayley—Hamilton Theorem (continued)
Proof.

By the matrix inverse formula
B(A— M) = wa(M\)lp = Naply + AN ap 1l + ...+ Xarl, + agln,

where
wa(A) = Na, + AN la, 1 4.+ Nay + ap,

is the characteristic polynomial of matrix A. Hence
B(A—A,) = A"1B, 1A+ ... + X2BA + ABLA + BoA+
— N Byt = A"IB,p— ... = XN°B; — ABy =
= —A"B, 1+ A" (B, 1A= B, 2) + A" 3(By 2A— By 3) ...+
+A2(BA — By) + A(B1A — By) + BoA.

Two polynomials with real coefficients are equal if and only if they
have the same coefficients, therefore,



Cayley—Hamilton Theorem (continued)
Proof.

_anl = an/na
anlA - Bn72 = anfllna

BlA — Bo = all,,,
B()A = aol,,.

Multiplying those equations on the right by A", A"~ . A A® = |,
respectively one gets
— B, A" = a,A",
anlAn - an2An71 = anflAnila

B1A? — ByA = a1 A,
BoA = aol,,.



Cayley—Hamilton Theorem — Proof

Proof.

This sums to

wa(A) = a,A" + an 1 A"+ .+ a1A+ agl, = 0.

Remark
There exist other conceptual proofs of the Cayley-Hamilton
theorem (using abstract algebra of Schur decomposition).



Schur Decomposition

Proposition
For any matrix A€ M(n x n; C) there exists a unitary matrix
Ue M(n x n;C) (i.e. U*U = UU* = I, where U* = U") and an
upper triangular matrix T = [tjj] € M(n x n;C) (i.e. tj =0 for
i > j) such that

A=UTU".

The decomposition is not unique and the diagonal entries of matrix
T are exactly (complex) eigenvalues of matrix A.



Schur Decomposition

Proposition
For any matrix A€ M(n x n; C) there exists a unitary matrix
Ue M(n x n;C) (i.e. U*U = UU* = I, where U* = U") and an
upper triangular matrix T = [tjj] € M(n x n;C) (i.e. tj =0 for
i > j) such that

A=UTU".

The decomposition is not unique and the diagonal entries of matrix
T are exactly (complex) eigenvalues of matrix A.

Proof.
Omitted. O



Cayley—Hamilton Theorem Alternative Proof via Schur
Decomposition

Proof.
Let UTU* = A. Then
WA(A) = UWA(T)U*

Moreover, if
wa(A) = (A=A1) ... (A= A\p),

then
wa(T)=(T =X l)-...- (T =Xsl) =0,

that is, the first k columns of the product
(T =Xl) ..« (T = Xl

are zZero.



Characteristic Polynomials of AB and BA

Proposition
Let Ae M(m x n;R) and let B € M(n x m;R) where m > n. Then
AB e M(m x m;R), BAe M(n x n;R) and

wag(A) = A" "wpa(N),

that is eigenvalues of AB and BA (up to m — n zeroes) are the
same. Moreover, the dimensions of eigenspaces corresponding to
non—zero eigenvalues are the same.



Characteristic Polynomials of AB and BA

Proposition
Let Ae M(m x n;R) and let B € M(n x m;R) where m > n. Then
AB e M(m x m;R), BAe M(n x n;R) and

wag(A) = A" "wpa(N),

that is eigenvalues of AB and BA (up to m — n zeroes) are the
same. Moreover, the dimensions of eigenspaces corresponding to
non—zero eigenvalues are the same.

Proof.
Let

AB |0 0] 0
M:[B o]’ N:[B BA}’ ¢

Il
| ——
o3
>
| —

be (m + n) x (m + n) matrices.



Characteristic Polynomials of AB and BA

Proof.
Then
Im | —A
-1 _ | Im -1 _
C —[0 I ], C"MC =N,
i.e. the matrices are similar hence they have the same eigenvalues.

This holds as
MC = CN,

ete] [ - e [eten] - e




Characteristic Polynomials of AB and BA

Proof.
Alternatively, for A # 0 the following linear transfomations are
inverse to each other hence invertible

1
ker(AB —Al) 3 v i—> XBV € ker(BA — A1),

ker(BA—Al) 5 v > %Av € ker(AB — \I).

In particular ker(AB — Al) # {0} if and only if
ker(BA — AI) # {0}.



Nilpotent Matrix

Definition
Let Ae M(n x n;R). Matrix A is nilpotent if there exists k > 1
such that

AK = 0.



Nilpotent Matrix

Definition
Let Ae M(n x n;R). Matrix A is nilpotent if there exists k > 1
such that

AK = 0.

Proposition
If matrix A € M(n x n;R) is nilpotent and X € R is an eigenvalue of
A then A =0, i.e. all eigenvalues are equal to 0.



Nilpotent Matrix

Definition
Let Ae M(n x n;R). Matrix A is nilpotent if there exists k > 1
such that

AK = 0.

Proposition
If matrix A € M(n x n;R) is nilpotent and X € R is an eigenvalue of
A then A =0, i.e. all eigenvalues are equal to 0.

Proof.
Let k > 1 be any number such that AX = 0. Let v € R" be an
eigenvector of A for the eigenvalue A € R. Then

(AW =X v =0=A=0,

since v # 0. O



Nilpotent Matrix (continued)

Corollary

Matrix A€ M(n x n;R) is nilpotent if and only if its all eigenvalues
over complex numbers are equal to 0 (i.e. the characteristic
polynomial wa(X\) = (=1)"A\").



Companion Matrix

Proposition
For any ag,...,an—1 € R where n > 2 if
[0 0 0 0 —ag |
1 0O 0 —a
0 1 0 0 —a
A=10 0 1 0 —a3 |-
00 0 - 1 —a,4]
then

wa(A) = (=1)"(\" + a2, 1 A"+ .o+ a )+ a).



Companion Matrix

Proposition
For any ag,...,an—1 € R where n > 2 if
[0 0 0 0 —ag |
1 0O 0 —a
0 1 0 0 —a
A=10 0 1 0 —a3 |-
00 0 - 1 —a,4]
then

wa(A) = (=1)"(\" + a2, 1 A"+ .o+ a )+ a).

Proof.

Induction on n. If n = 2 then

A —a 2
|: 1 —a — A :|—/\ + a1 A + ag.



Companion Matrix (continued)

Proof.
For n = 3, by the Laplace formula for the first column and the inductive
assumption
[-X» 0 0 0 —ap i
1 =X 0 0 —al
0 1 =X 0 —a
detl o o0 1 0 —as =
[ 0 0 0 -+ 1 —a,01—A]
= _/\(_l)n—l()\n—l + ...+ a+ 31)—
0 0 --- 0 —a
1 =X -+ 0 —a
_det|0 1 -+ 0 —a3 _
0 0 -~ 1 —a,1—2A

= (=1)"(\" + ...+ 372 + a\) — (—1)"(=a0).



Companion Matrix (continued)

Corollary

Up to a sign, each monic polynomial of degree n is a characteristic
polynomial of some matrix A€ M(n x n;R).



Primitive and Irreducible Matrices

Definition
Let Ae M(n x n;R). Matrix A is primitive if A > 0 and there
exists k such that Ak > 0.



Primitive and Irreducible Matrices

Definition
Let Ae M(n x n;R). Matrix A is primitive if A > 0 and there
exists k such that AKX > 0. Matrix A is irreducible if A > 0 and for

each 1 < /,j < n there exists k such that (A¥); > 0.



Primitive and Irreducible Matrices

Definition

Let Ae M(n x n;R). Matrix A is primitive if A > 0 and there
exists k such that AKX > 0. Matrix A is irreducible if A > 0 and for
each 1 < /,j < n there exists k such that (A¥); > 0.

Remark
If matrix A is primitive then it is irreducible. If matrix A is
irreducible then matrix A + | is primitive because A™ > 0 and

(A+ Dk =1+ (11<>A+ (12(>A2 + <§)A3 ot <:)Ak,

for k = max{ki}.



Perron—Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
Amax € R, Amax > 0 a positive eigenvalue of A such that

i) for any other eigenvalue \ € C of matrix A

Al < Amax
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Theorem
Let A be an irreducible matrix. Then there exist
Amax € R, Amax > 0 a positive eigenvalue of A such that

i) for any other eigenvalue \ € C of matrix A
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1) Viama) = lin(v) where veR" and v >0 (i.e., all entries of v
are positive),



Perron—Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
Amax € R, Amax > 0 a positive eigenvalue of A such that

i) for any other eigenvalue \ € C of matrix A
Al < Amax

1) Viama) = lin(v) where veR" and v >0 (i.e., all entries of v
are positive),

iii) Amax Is a simple root of wa(\) (i.e wa(\) is not divisible by
()‘ - /\maX)z)r



Perron—Frobenius Theorem

Theorem
Let A be an irreducible matrix. Then there exist
Amax € R, Amax > 0 a positive eigenvalue of A such that

i) for any other eigenvalue \ € C of matrix A
Al < Amax

1) Viama) = lin(v) where veR" and v >0 (i.e., all entries of v
are positive),

iii) Amax Is a simple root of wa(\) (i.e wa(\) is not divisible by
()‘ - /\maX)z)r

iv) ifweR" w >0 and w is an eigenvalue of A then
w e V(Xmax)'



Perron—Frobenius Theorem (continued)

Remark
If A is a primitive matrix then moreover

IAl < Amax,

for any eigenvalue A € C of A.



Perron—Frobenius Theorem Proof

Let kK € N be a number such that
B=(+Ak>o0.

Obviously
if v<w,v # w then Bv < Bw.

Let
RQ={veR"|v=20, v#0}, C=Qn{veR"||v| =1}

For any v > 0 such that v # 0 let

A .
L(v) = max{A e R [ Av < Av} = min (Av);.
<sisn Vi
vi#0

It is clear that L(uv) = L(v) for u > 0, in particular
L(W) L(v) for v = 0,v # 0.



Perron—Frobenius Theorem Proof (continued)

For any v > 0 such that v # 0

if uv < Av then uBv < BAv = ABv,
which implies that (maximum over a larger set)

L(v) < L(Bv).
Moreover, if Av # L(v)v then, by the definition,
L(v)v < Av, Av # L(v)v, hence B(L(v)v) < B(Av).

This is equivalent to

L(v)Bv < ABv, i.e., L(v) < L(Bv),

(i-th components of L(v)A and Av are equal for some /).



Perron—Frobenius Theorem Proof (continued)
By abuse of notation, let

B: R" - R",

denote the linear function given by the matrix B. Since the set C is
compact then B(C) < RZ, is compact too and v > 0,v # 0
implies that Bv > B0 = 0. By the Weierstrass extreme value
theorem, the function L (which is continuous as minimum of
continuous functions and all components are non—zero) obtains its
maximum on the set B(C). Let

)\m X = L )
? vgnBa()é) (V)

v =argmax L(v).
veB(C)

By the above v > 0 and

Av = L(v)v = A\paxv.



Perron—Frobenius Theorem Proof (continued)

Since L(v) < L(Bv)

Amax = L(v) = L(v).
me = I T = )



Perron—Frobenius Theorem Proof (continued)

Since L(v) < L(Bv)

Amax = L(v) = L(v).
T ) )

Beacuse
Av = ApaxV,
A=20,v>0= Av >0,

it follows that
Amax > 0.



Perron—Frobenius Theorem Proof (continued)
Let w € C", A € C be such that

Aw = Aw,
ie,fori=1,...,n
n
)\W,' = Z aj;wi,
i=1

n

INwil <) aylwl,

i=1

since a; > 0. This is equivalent to
Alfw] < Afw],

where
lw| = ([wil,...,|wal) € R".



Perron—Frobenius Theorem Proof (continued)
Let w € C", A € C be such that

Aw = Aw,
ie,fori=1,...,n
n
)\W,' = Za,'jo,
i=1

n

INwil <) aylwl,

i=1
since a; > 0. This is equivalent to
[Allw] < Alwl,
where
wl = (lwl, ..., |wa|) € R".
By definition
|)‘| < L(|W|) < Amax;

i.6. Amax is a real eigenvalue with maximal modulus and positive
eigenvector.



Perron—Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the
simple eigenvalue \n.x and all other positive eigenvectors are
multiples or vector v.



Perron—Frobenius Theorem Proof (continued)

It is now enough to prove that v is a unique eigenvector for the
simple eigenvalue \n.x and all other positive eigenvectors are
multiples or vector v.

As AT is irreducible too there exists left eigenvalue pimax > 0 and a
positive eigenvector w > 0 such that wTA = fimaw. Then

UmaxWTv = (WTA)v = wT(Av) = ApaxwTv,

hence ftmax = Amax as wTv > 0.



Perron—Frobenius Theorem Proof (continued)

Suppose that there exist n € R and u > 0, u # 0 such that
Au = nu. Then

nwlu = (WTA)u = wT(Au) = ApaxwTu,

hence 7 = Apmax as wTu > 0. If v/ € R is another eigenvector
corresponding to Apmax linearly independent with v then there exist
a, 3 € R such that vector v/ = av + v’ has some component
equal to 0 and v/ > 0,v' # 0. Then

0< BV = (I + A = (14 Amax)V/,

which leads to a contradiction.
Therefore, in the Jordan decomposition of matrix A there exists a
unique Jordan block corresponding to the eigenvalue Ap,.x.



Perron—Frobenius Theorem Proof (continued)

Without loss of generality one may replace A by ﬁ and assume
that A\ax = 1. Recall that

[All oo = max{[[rally, ..., Irall},
where ri, ..., r, denote the rows of matrix A. Therefore (recall
A>=0,v>0)
_ _ (m) (m) : _
Il = A" = oo 7 ) > oo [, ymi v =

=||A™ min v;
A7 min v
where r,.(m) denote the rows of A™. Therefore for any m

MiNi1<i<n Vi



Perron—Frobenius Theorem Proof (continued)
Let J be the Jordan matrix of A and let

J=CAC,

then
19l < | C7H| Al oI Cll oo

If the size of the Jordan block J; corresponding to Apax = 1 is
bigger or equal than 2 then

m

— 1

1
Jm = |0

which gives a contradiction as then

[/l = 1+ m — o0,

when m — 0.



Perron—Frobenius Theorem Proof (continued)

Finally, assume that A is primitive. Take A an eigenvalue of A such
that |A| = Apmax. From the first part of the proof it follows that

Al = L(Iw]) = Amax-

The inequality

n
IMwil <7 aylwl,
i=1
becomes equality only if all arguments of w; for non—zero aj;; are the
same. Applying the same argument to AX, and dividing w by a unit
complex number we get a real, non—negative, non—zero eigenvector
corresponding to the eigenvalue Apax. Hence A = Apax.



Application — Discrete Markov Chains
Let

Wk N~
WIN N =

be the transition matrix of some Markov chain (see Lecture 5). The
eigenvalues of Q are %, 1 hence Amax = 1 (the vector (1,...,1) is
an eigenvector of any transition matrix). Moreover

V(l) = Iin((l, 1)),

V1) = lin((3, ~2)).

1
6



Application — Discrete Markov Chains (continued)

2 3
1 3 1 0 = =
lim Q" = lim 5 5| _
n—00 n—0o0 1 1 1
1 2|0 =||= ==
6" 5 5
i 111 2
1 3 10 = E
1 1
1 —2||o of]|= -=
B 1L 5 5
o3l (2 3 23
- 5 5[_|5 5.
2
1 -2 0 0 — §
B 1L 5 b

Therefore for any initial conditions t = (t1, ) € Réo, ti+t=1

2 3
lim tTQ" =
nl—>moo Q <5 5)



High Powers of a Primitive Matrix

Corollary

Let Ae M(n x n;R) be a primitive matrix (i.e. A>0). Let
veR" v >0 be the (right) eigenvector of A for the eigenvalue
Amax and let w € R", w > 0 be the (left) eigenvector of A for the
eigenvalue A\max such that wTv = 1. Then




High Powers of a Primitive Matrix (continued)

Example
11
For Q@ = % 3 we have/\maleandVZ(l,l),W=%(2,3),
_ 3 3
i.e.
1 1 1 1
1 5 5 1 5 511 1
ZT2 3112 2| =212 3 2 2 _
5[ ]1 2 5[ I 1 2| (1 1
3 3 3 3
therefore

T_
&3

QD

S

Il

<

S

A

Il
Ol =
—
=
—
m—

N

w

.

Il

Gl o N
Tllw o1l W



Graph of a Non—Negative Matrix
Definition
Let A = [a;] € M(n x n;R) be a matrix such that A > 0. The
directed graph given by A is a graph G4 = G = (V, E), where
V ={1,2,...,n},
and forany i,je V,

(i,j) € E if and only if a;; > 0.



Graph of a Non—Negative Matrix
Definition
Let A = [a;] € M(n x n;R) be a matrix such that A > 0. The
directed graph given by A is a graph G4 = G = (V, E), where
V ={1,2,...,n},
and forany i,je V,
(i,j) € E if and only if a;; > 0.
Remark

Note that self-loops are allowed. The matrix Gy is closely related
to the adjacency matrix of graph G.



Graph of a Non—Negative Matrix

Definition
Let A = [a;] € M(n x n;R) be a matrix such that A > 0. The
directed graph given by A is a graph G4 = G = (V, E), where

V ={1,2,...,n},
and forany i,je V,

(i,j) € E if and only if a;; > 0.

Remark
Note that self-loops are allowed. The matrix Gy is closely related
to the adjacency matrix of graph G.

Definition
A directed graph G = (V, E) is strongly connected if for each
i,j € V there exists a path joining i/ with j.



Graph of a Non—Negative Matrix (continued)

Proposition
Let A= [ajj] € M(n x n;R) be a matrix such that A > 0. The
following conditions are equivalent

i) the matrix A is irreducible,

i) the graph Gp is strongly connected.



Graph of a Non—Negative Matrix (continued)

Proposition
Let A= [ajj] € M(n x n;R) be a matrix such that A > 0. The
following conditions are equivalent

i) the matrix A is irreducible,

i) the graph Gp is strongly connected.

Proof.

Follows directly from definitions.



Graph of a Non—Negative Matrix (continued)

Proposition
Let A = [aj]] € M(n x n;R) be a matrix such that A > 0. The
following conditions are equivalent

i) the matrix A is primitive,
i) the graph Gp is strongly connected and contains two cycles of
relatively prime lengths.



Graph of a Non—Negative Matrix (continued)

Proposition
Let A = [aj]] € M(n x n;R) be a matrix such that A > 0. The
following conditions are equivalent
i) the matrix A is primitive,
i) the graph Gp is strongly connected and contains two cycles of
relatively prime lengths.

Proof.
i) = ii) let k be a number such that A¥ > 0. Then Ak*1 > 0 so

there are cycles of lengths k and k + 1,



Graph of a Non—Negative Matrix (continued)

Proposition
Let A = [aj]] € M(n x n;R) be a matrix such that A > 0. The
following conditions are equivalent
i) the matrix A is primitive,
i) the graph Gp is strongly connected and contains two cycles of
relatively prime lengths.

Proof.

i) = ii) let k be a number such that A¥ > 0. Then Ak*1 > 0 so
there are cycles of lengths k and k + 1,

i) = i) see S. Sternberg Dynamical Systems, Section 9.2, the
problem reduces to a statement from arithmetic: if GCD(a, b) =1
then there exists a N € N such that

(Na+Nb)n[N,+0) ={N,N+1,N+2,...}.



Example — Irreducible Not Primitive Matrix

A——

OO +H OO

o - O OO

- O O OO

OO OO -

O OO O

e — |

I

o

<
- 1
coo—o
co-Hoo
o ooo
— oo oo
coo o
e — |

I

<

s, A5 = A.

|

1
0

10 0 00
01 00O
0 01 0O
0 0
0 0

A® =
0
0



Example — Irreducible Not Primitive Matrix

In particular, if

01 0 0O
0 01 0O
A=10 0 0 1 0],
0 00 01
1 00 0O
then
WA()\)=/\5—17

hence Amax = 1, any other eigenvalue \ of matrix A is a 5—th root of
unity and
Al < Amax,

moreover \n.x has algebraic multiplicity 1 and Av = v, where
v=(1,1,1,1,1) > 0.

Incidentally, A is a particular case of a 5 x 5 circulant matrix with
cr—1 = 1, n =5 and all other ¢/s equal to 0.



Example — Primitive Matrix

N
L]

|

OO +H OO

— — O OO

- O OO -

OO OO -

O OO O

B

01100
0 01 0O
0 00 1O
0 00 01
1.0 0 00

:

].

4 1 2 4 6

— <

— < O

<+ o <

oo



Example — Another Primitive Matrix

[,

— O - OO

O — O O -

- O O OO

OO OO -

O OO O

-

01010
0 01 0O
0 00 1O
0 00 01
1.0 0 00

:

].

NN AN
O — M < N
— N~ M
M == M-
< N M
I

Il

<

—

<<



Example — And Another Primitive Matrix

110 00
0 01 0O
0 00 1O

OO +H OO

o - O OO

- O O OO

1
0
0
0
1

—
—\ O O
_— N H —H —
I Mo~ -~ N
(o]
<
<t A4 = N
- o — N ™S
I
Il
o)
<

0 00 01
1.0 0 00

:



Example — And Another Primitive Matrix (continued)
If

11000
00100
A=]0 0 0 1 0],
0000 1
10000

it can be checked that wa(A\) = A\> — A% —1= (A2 = A+ 1)(A3 =\ —1),
With Amax ~ 1.3247, and v ~ (0.6765,0.2197, 0.2910, 0.3855, 0.5107).
Other eigenvalues have magnitudes smaller than A,ax




