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Determinant and Linear Dependence

Recall that elementary operations on vectors preserve the property

of being linearly independent.

Proposition

Let A P Mpn ˆ n;Rq. The following conditions are equivalent:

i) detA ‰ 0,

ii) rows of matrix A form a linearly independent set,

iii) columns of matrix A form a linearly independent set.

Recall that n linearly independent vectors in Rn form a basis.
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Example

Example

Take matrix A and use elementary row operations to get an

upper-triangular matrix:

A “

»

–

1 ´1 1

2 0 3

1 1 2

fi

fl

r2´2r1
r3´r1
ÝÑ

»

–

1 ´1 1

0 2 1

0 2 1

fi

fl

r3´r2
ÝÑ

»

–

1 ´1 1

0 2 1

0 0 0

fi

fl “ B

Then detA “ detB “ 0. The rows are linearly dependent

p1,´1, 1q ´ p2, 0, 3q ` p1, 1, 2q “ p0, 0, 0q.

The columns are linearly dependent

´3p1, 2, 1q ´ p´1, 0, 1q ` 2p1, 3, 2q “ p0, 0, 0q.
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Identity Matrix

De�nition
The identity matrix In P Mpn ˆ n;Rq is de�ned by

In “

»

—

–

1 0
. . .

0 1

fi

ffi

fl

.

That is, it has 11s on the diagonal and 0's elsewhere.

Note that for any A P Mpn ˆ n;Rq the following holds

InA “ AIn “ A,

that is In is a neutral element with respect to matrix multiplication.

This follows also from the fact that MpidRnqAA “ In for any basis A
of Rn.
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Invertible Matrix

De�nition
A matrix A P Mpn ˆ n;Rq is called invertible if there exists matrix

B P Mpn ˆ n;Rq such that AB “ In. Such matrix B is unique and

it satis�es the equality BA “ In. The matrix B is called the inverse

of A and is denoted A´1, that is

AA´1 “ A´1A “ In.
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Examples

Example

If A “

„

2 5

1 3

ȷ

then A´1 “

„

3 ´5

´1 2

ȷ

.

Example

If A “

»

–

1 0 0

0 2 0

0 0 5

fi

fl then A´1 “

»

–

1 0 0

0 1

2
0

0 0 1

5

fi

fl .



Examples

Example

If A “

„

2 5

1 3

ȷ

then A´1 “

„

3 ´5

´1 2

ȷ

.

Example

If A “

»

–

1 0 0

0 2 0

0 0 5

fi

fl then A´1 “

»

–

1 0 0

0 1

2
0

0 0 1

5

fi

fl .



Proposition

Let A “ pv1, . . . , vnq and B “ pw1, . . . ,wnq be ordered bases of

vector space V . Let M be the change-of-coordinate matrix from

the basis A to the basis B, that is M “ MpidqBA. Let N be the

change-of-coordinate matrix from the basis B to the basis A, that

is N “ MpidqAB . Then N “ M´1.

Proof.
It is enough to use the formula relating composition of linear

transformations with matrix multiplication and the uniqueness of

the inverse.

MN “ MpidqBAMpidqAB “ MpidqBB “ In.

Example

Let V “ R2, A “ pp2, 1q, p5, 3qq,B “ st “ pp1, 0q, p0, 1qq. Then

M “ MpidqstA “

„

2 5

1 3

ȷ

and N “ MpidqAst “

„

3 ´5

´1 2

ȷ

.
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Example (continued)

Let V “ R2, A “ pp2, 1q, p5, 3qq,B “ st “ pp1, 0q, p0, 1qq. Then

M “ MpidqstA “

„

2 5

1 3

ȷ

and N “ MpidqAst “

„

3 ´5

´1 2

ȷ

.

For example, take vector v “ p3, 1q. It's coordinates relative to the

standard basis are 3, 1 that is p3, 1q “ 3p1, 0q ` 1p0, 1q. To compute

coordinates of v relative to the basis A we use the

change-of-coordinate matrix N “ MpidqAst .

„

3 ´5

´1 2

ȷ „

3

1

ȷ

“

„

4

´1

ȷ

.

The coordinates of v relative to the basis A are 4,´1 that is

p3, 1q “ 4p2, 1q ´ 1p5, 3q.
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Determinants and Invertible Matrices

Theorem
Let A P Mpn ˆ n;Rq. Let φ : Rn ÝÑ Rn be a linear transformation

and let A,B be bases of Rn such that MpφqBA “ A. The following

conditions are equivalent:

i) the matrix A is invertible,

ii) detA ‰ 0,

iii) rows of A form a linearly independent set,

iv) columns of A form a linearly independent set,

v) for any K “

»

—

–

k1
...

kn

fi

ffi

fl

if AK “

»

—

–

0
...

0

fi

ffi

fl

then K “

»

—

–

0
...

0

fi

ffi

fl

,

vi) the linear transformation φ is injective,

vii) the linear transformation φ is surjective,

viii) the linear transformation φ is bijective (invertible).



Computing the Inverse

For any A “ raij s,B “ rbij s P Mpn ˆ n;Rq denote by rA|Bs the

matrix
»

—

–

a11 . . . a1n b11 . . . b1n
...

. . .
...

...
. . .

...

an1 . . . ann bn1 . . . bnn

fi

ffi

fl

P Mpn ˆ 2n;Rq.

Theorem
Matrix A is invertible if and only if matrix rA|Ins can be transformed

by elementary row operations to the matrix rIn|Bs. Then B “ A´1.

Proof.
Use multiplication by elementary matrices (cf. Lecture 5).
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Example

Let A “

»

–

2 0 1

1 0 1

0 1 1

fi

fl . Then

»

–

2 0 1 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

fi

fl

r1´r2
ÝÑ

»

–

1 0 0 1 ´1 0

1 0 1 0 1 0

0 1 1 0 0 1

fi

fl

r2´r1
ÝÑ

»

–

1 0 0 1 ´1 0

0 0 1 ´1 2 0

0 1 1 0 0 1

fi

fl

r3´r2
ÝÑ

»

–

1 0 0 1 ´1 0

0 0 1 ´1 2 0

0 1 0 1 ´2 1

fi

fl

r2Ør3
ÝÑ

»

–

1 0 0 1 ´1 0

0 1 0 1 ´2 1

0 0 1 ´1 2 0

fi

fl .

Therefore

A´1 “

»

–

1 ´1 0

1 ´2 1

´1 2 0

fi

fl .



Minors

De�nition
Let A “ raij s P Mpm ˆ n;Rq be a matrix. Minor (determinant)
of matrix A of order k , where 1 ď k ď mintm, nu, is the

determinant of any k�by�k submatrix of A. In particular, for any

1 ď i1 ă i2 ă . . . ă ik ď m,

1 ď j1 ă j2 ă . . . ă jk ď n,

and

Ai1,...,ik ;j1,...,jk “

»

—

—

—

–

ai1j1 ai1j2 ¨ ¨ ¨ ai1jk
ai2j1 ai2j2 ¨ ¨ ¨ ai2jk
...

...
. . .

...

aik j1 aik j2 ¨ ¨ ¨ aik jk

fi

ffi

ffi

ffi

fl

,

the number detAi1,...,ik ;j1,...,jk is a minor of A of order k .



Rank of Matrix

Recall

De�nition
Let A P Mpm ˆ n;Rq. The rank of A is the dimension of the space

linpr1, . . . , rmq where r1, . . . , rm P Rn are rows of A. The rank of A
is denoted rpAq.

Example

A “

»

–

1 2 1 1

3 7 3 4

1 3 1 2

fi

fl

r2´3r1
r3´r1
ÝÑ

»

–

1 2 1 1

0 1 0 1

0 1 0 1

fi

fl

r3´r2
ÝÑ

»

–

1 2 1 1

0 1 0 1

0 0 0 0

fi

fl .

The last matrix is in an echelon form with two non-zero rows

therefore rpAq “ dim linpp1, 2, 1, 1q, p3, 7, 3, 4q, p1, 3, 1, 2qq “

“ dim linpp1, 2, 1, 1q, p0, 1, 0, 1qq “ 2.
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Rank of Matrix

Remark
In the previous example

A “

»

–

1 2 1 1

3 7 3 4

1 3 1 2

fi

fl

elementary row
operations

ÝÝÝÝÝÝÝÝÝÑ

»

–

1 2 1 1

0 1 0 1

0 0 0 0

fi

fl “ A1,

and

colsppAq “ linpp1, 3, 1q, p1, 4, 2qq,

colsppA1q “ linpp1, 0, 0q, p0, 1, 0qq.

It follows that

colsppAq ‰ colsppA1q.

However

dim colsppAq “ dim colsppA1q,

which is also equal to the dimension of rowsppAq “ rowsppA1q.

This is a general phenomenon.
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Rank of Matrix

Theorem
For any matrix A P Mpm ˆ n;Rq the following numbers are equal:

i) dim linpr1, . . . , rmq where r1, . . . , rm are rows of A,

ii) dim linpc1, . . . , cnq where c1, . . . , cn are columns of A,

iii) the highest order of a non�zero minor of matrix A.



Proof

Matrix A can be put into a reduced echelon form by elementary row

operations, and then, by elementary operations on columns, it can

be put into the form
»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 . . . 0 0 . . . 0

0 1 0 . . . 0 0 . . . 0

0 0 1 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...

0 0 0 . . . 1 0 . . . 0

0 0 0 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...

0 0 0 . . . 0 0 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Elementary row and column operations do not change those three

numbers. Therefore the rank of A is equal to the number of pivots

in an echelon form.
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in an echelon form.



Example

Example

Let A “

»

–

1 2 1 1

3 7 3 4

1 3 1 2

fi

fl . It can be checked that

det

»

–

2 1 1

7 3 4

3 1 2

fi

fl “ det

»

–

1 1 1

3 3 4

1 1 2

fi

fl “ det

»

–

1 2 1

3 7 4

1 3 2

fi

fl “

“ det

»

–

1 2 1

3 7 3

1 3 1

fi

fl “ 0.

On the other hand

detA1,2;1,2 “ det

„

1 2

3 7

ȷ

“ 1 ‰ 0,

hence rpAq “ 2.



Kronecker-Capelli Theorem

Consider a system of linear equations and two associated matrices

U :

$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` . . . ` a1nxn “ b1
a21x1 ` a22x2 ` . . . ` a2nxn “ b2
...

...
. . .

...
...

am1x1 ` am2x2 ` . . . ` amnxn “ bm

A “

»

—

—

—

–

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

fi

ffi

ffi

ffi

fl

, B “

»

—

—

—

–

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm

fi

ffi

ffi

ffi

fl



Kronecker-Capelli Theorem (continued)

Theorem (Kronecker-Capelli)

i) the system U has a solution if and only if rpAq “ rpBq,

ii) if the system U has a solution then exactly n ´ rpAq variables

are free variables,

iii) if ps1, . . . , snq P Rn is any solution of U and W is the subspace

of all solutions of a homogeneous system of linear equations

given by the matrix A then solutions of U are of the form

ps1, . . . , snq ` W “ tps1, . . . , snq ` w | w P W u.

Proof.
Adding one column to a matrix can only increase its rank by at most 1. If

rpBq “ rpAq ` 1 then in the echelon form of B there is a pivot in the

column of constant terms. The pivots correspond to dependent variables

and the number of pivots is equal to the rank of the matrix. The

di�erence of any two solutions of U is a solution of the homogeneous

system of linear equations associated to the matrix A.
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Kronecker-Capelli Theorem (continued)

Remark
Alternatively,

system U
has a solution

ðñ

»

—

–

b1
...
bn

fi

ffi

fl

P colsppAq ðñ rpAq “ rpBq.

Fix s “ ps1, . . . , snq P Rn a solution of the system U and let
r “ pr1, . . . , rnq P Rn be any solution of the system U. Then

r ´ s P W

because
$

’

’

’

&

’

’

’

%

a11pr1 ´ s1q ` a12pr2 ´ s2q ` . . . ` a1nprn ´ snq “ 0
a21pr1 ´ s1q ` a22pr2 ´ s2q ` . . . ` a2nprn ´ snq “ 0

...
...

. . .
...

...
am1pr1 ´ s1q ` am2pr2 ´ s2q ` . . . ` amnprn ´ snq “ 0
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Matrix Inverse Formula

Let A P Mpn ˆ n;Rq. The adjugate matrix of the matrix A is

given by

(note the transposition!)

adjpAq “

»

—

—

—

–

p´1q1`1 detA11 p´1q1`2 detA12 ¨ ¨ ¨ p´1q1`n detA1n

p´1q2`1 detA21 p´1q2`2 detA22 ¨ ¨ ¨ p´1q2`n detA2n
...

...
. . .

...

p´1qn`1 detAn1 p´1qn`2 detAn2 ¨ ¨ ¨ p´1qn`n detAnn

fi

ffi

ffi

ffi

fl

⊺

.

Theorem
Let A P Mpn ˆ n;Rq be an invertible matrix. Then

A´1 “
1

detA
adjpAq.

Proof.
The equality A 1

detA adjpAq “ In can be checked directly using the

Laplace expansion.
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Example

Let A “

„

a b
c d

ȷ

. Then

adjpAq “

„

p´1q1`1 detA11 p´1q1`2 detA12

p´1q2`1 detA21 p´1q2`2 detA22

ȷ⊺

“

„

d ´c
´b a

ȷ⊺

“

“

„

d ´b
´c a

ȷ

.

Hence

A´1 “
1

ad ´ bc

„

d ´b
´c a

ȷ

.

For example

„

2 5

1 3

ȷ´1

“

„

3 ´5

´1 2

ȷ

.
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Matrix Inverse Formula (continued)

Remark
For any matrices A,B P Mpn ˆ n;Rq such that detA, detB ‰ 0

and k ě 0

adjpInq “ In,

det adjpAq “ pdetAqn´1,

padjpAqq
´1

“ adjpA´1q “
1

detA
A,

adjpABq “ adjpBq adjpAq,

adjpAkq “ padjpAqq
k ,

adjpadjpAqq “ pdetAqn´2A.



Cramer's Rule
Let U be a system of linear equations with n unknowns and n
equations:

U :

$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` . . . ` a1nxn “ b1
a21x1 ` a22x2 ` . . . ` a2nxn “ b2
...

...
. . .

...
...

an1x1 ` an2x2 ` . . . ` annxn “ bn

Let A “

»

—

–

a11 ¨ ¨ ¨ a1n
...

. . .
...

an1 ¨ ¨ ¨ ann

fi

ffi

fl

be the associated matrix of

coe�cients and let B “

»

—

–

b1
...

bn

fi

ffi

fl

be the matrix of constant terms.

The system U can be written as A

»

—

–

x1
...

xn

fi

ffi

fl

“

»

—

–

b1
...

bn

fi

ffi

fl

.
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.



Cramer's Rule (continued)

Therefore, if detA ‰ 0 the system U has exactly one solution given

by

»

—

–

x1
...

xn

fi

ffi

fl

“ A´1

»

—

–

b1
...

bn

fi

ffi

fl

.

Theorem (Cramer's Rule)

If detA ‰ 0 then the unique solution of the system U is given by

xi “
detAi
detA for i “ 1, . . . , n, where Ai is the matrix A with i-th

column replaced by B .

Proof.
Use the Laplace expansion and the inverse matrix formula.
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Cramer's Rule (continued)

Proof.
Alternatively, let Api Ñ vq denote matrix A with the i-th column

replaced by vector v . It is easy to see that

det I pi Ñ xq “ xi ,

and that the equation Ax “ b is equivalent to

A pI pi Ñ xqq “ Api Ñ bq “ Ai .

Taking determinants of both sides gives

pdetAqxi “ detAi .



Example

Let

U :

"

2x1 ` 3x2 “ ´1

3x1 ` 4x2 “ ´3

Then

A “

„

2 3

3 4

ȷ

, A1 “

„

´1 3

´3 4

ȷ

, A2 “

„

2 ´1

3 ´3

ȷ

.

Therefore, x1 “ detA1

detA “ 5

´1
“ ´5, x2 “ detA2

detA “ ´3

´1
“ 3.
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Matrix Algebra

Remarks

i) if A,B P Mpn ˆ n;Rq and detA ‰ 0, detB ‰ 0 then the matrix AB
is invertible and pABq´1 “ B´1A´1,

ii) pABq⊺ “ B⊺A⊺,

iii) if A P Mpn ˆ n;Rq and detA ‰ 0 then the matrix A⊺ is invertible
and pA⊺q´1 “ pA´1q⊺,

iv) for n ą 0 de�ne
An “ A ¨ ¨ ¨A pn ´ timesq,

if detA ‰ 0 for n ă 0 de�ne

An “ pA´1q´n

and A0 “ I .
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Matrix Algebra (continued)

Remarks

iv) The following

AnAm “ An`m,

pAnqm “ Anm,

hold for any integers m, n,

v) note that unless AB “ BA, in general,
pABqn “ pABqpABq ¨ ¨ ¨ pABq ‰ AnBn.
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pABqn “ pABqpABq ¨ ¨ ¨ pABq ‰ AnBn.



Matrix Inverse Formula

Proposition

For any square matrix A P Mpn ˆ n;Rq the following formula holds

n
ÿ

j“1

p´1qi`jajk detAji “

"

detA k “ i
0 k ‰ i

Proof.
Follows by the use of Laplace formula along columns of A and the

fact that

det

¨

˚

˚

˝

c1, . . . ,

k

nl

ck , . . . ,

i

nl

ck , . . . , cn

˛

‹

‹

‚

“ 0,

where c1, . . . , cn denote columns of matrix A.
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Matrix Inverse Formula (continued)
Theorem
Let A P Mpn ˆ n;Rq be an invertible matrix. Then

A´1 “
1

detA
adjpAq.

Proof.
Recall that

adjpAq “

»

—

—

—

–

p´1q1`1 detA11 p´1q2`1 detA21 ¨ ¨ ¨ p´1qn`1 detAn1

p´1q1`2 detA12 p´1q2`2 detA22 ¨ ¨ ¨ p´1qn`1 detAn2

...
...

. . .
...

p´1q1`n detA1n p´1q2`n detA2n ¨ ¨ ¨ p´1qn`n detAnn

fi

ffi

ffi

ffi

fl

.

Then
A adjpAq “ adjpAqA “ B “ rbik s “ pdetAqIn,

by the previous formula because

bik “

n
ÿ

j“1

p´1qi`jajk detAji “

"

detA k “ i
0 k ‰ i
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Cramer's Rule � Proof

Theorem (Cramer's Rule)

If detA ‰ 0 then the unique solution of the system AX “ B is

given by xi “
detAi
detA for i “ 1, . . . , n, where Ai is the matrix A with

i-th column replaced by B .

Proof.
Since detA ‰ 0 matrix A is invertible therefore

X “

»

—

–

x1
...

xn

fi

ffi

fl

“ A´1

»

—

–

b1
...

bn

fi

ffi

fl

.

By the inverse matrix formula
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X “

»

—

–

x1
...

xn

fi

ffi

fl

“ A´1

»

—

–

b1
...

bn

fi

ffi

fl

.

By the inverse matrix formula



Cramer's Rule � Proof

Proof.

X “

1

detA

»

—

—

—

–

p´1q1`1 detA11 p´1q2`1 detA21 ¨ ¨ ¨ p´1qn`1 detAn1

p´1q1`2 detA12 p´1q2`2 detA22 ¨ ¨ ¨ p´1qn`1 detAn2

...
...

. . .
...

p´1q1`n detA1n p´1q2`n detA2n ¨ ¨ ¨ p´1qn`n detAnn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

b1
b2
...
bn

fi

ffi

ffi

ffi

fl

.

By the Laplace formula along the i-th column

xi “

det

¨

˚

˚

˚

˝

c1, . . . ,

i

nl

B , . . . , cn

˛

‹

‹

‹

‚

detA
,

for i “ 1, . . . , n, where c1, . . . , cn are columns of matrix A.



Adjugate of a Symmetric Matrix
Proposition
Let A P Mpn ˆ n;Rq be a symmetric matrix of rank at most n ´ 1 such
that

A1 “ 0,

where 1 “ p1, 1, . . . , 1q P Rn. Then there exists c P R such that

adjpAq “ c11⊺,

(i.e. all expressions p´1qi`j detAij (i.e. cofactors) are equal).

Proof.
Let A “ Q diagpλ1, . . . , λnqQ⊺, where Q is an orthogonal matrix (i.e.
Q⊺Q “ I ). Since

adjpAq “ adjpQ⊺q adjpdiagpλ1, . . . , λnqq adjpQq “ Q adjpdiagpλ1, . . . , λnqqQ⊺,

adjpAq “ 0 if rkpAq ď n ´ 2 and adjpAq is a rank 1 symmetric matrix if
rkpAq “ n ´ 1. In the latter case, since A adjpAq “ 0, and the kernel of A
is 1´dimensional, the columns of adjpAq must be equal to a multiple of
1. By symmetry all multiples must be equal, hence adjpAq “ c11⊺.
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Adjugate of a Symmetric Matrix (continued)

Remark
If B P Mpn ˆ n;Rq is a symmetric matrix of rank 1, then there exist
c P R and v P Rn, such that

∥v∥ “ 1,

B “ cvv⊺.



Incidence and Adjacency Matrices
De�nition
Let G “ pV ,E q be a �nite, undirected graph, where
V “ tv1, . . . , vnu,E “ te1, . . . , emu. Then
BG “ B “ rbij s P Mpn ˆ m;Rq is the incidence matrix of graph G if

bij “ 1 if and only if vi P ej ,

and bij “ 0 otherwise. Analogously, the matrix
AG “ A “ raij s P Mpn ˆ n;Rq is the adjacency matrix of graph G if

aij “ 1 if and only if tvi , vju P E ,

and aij “ 0 otherwise.

Proposition
For any �nite, undirected graph G

A⊺ “ A,

A ` D “ BB⊺,

where D P Mpn ˆ n;Rq is the degree matrix.
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Incidence and Adjacency Matrices (continued)
1

2 3

4

e1 e2

e4 e5

e3

A “

»

—

—

–

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

fi

ffi

ffi

fl

, B “

»

—

—

–

1 1 0 0 0

1 0 1 1 0

0 1 1 0 1

0 0 0 1 1

fi

ffi

ffi

fl

(rows of B correspond to vertices, columns of B to edges)

A ` D “ BB⊺ “

»

—

—

–

2 1 1 0

1 3 1 1

1 1 3 1

0 1 1 2

fi

ffi

ffi

fl



Kirchho�'s Theorem

Theorem
Let G be �nite, connected, simple, undirected graph with n
vertices. Let Q be the Laplacian matrix of G , i.e.

Q “ D ´ A,

where D is the degree matrix of the graph G and A is the adjacency

matrix of G .

Then the number of spanning trees of G is equal to

any principal minor of order n ´ 1 (or to any cofactor) of matrix Q.
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Incidence and Adjacency Matrices (continued)

Proof.
(sketch) Let B 1 be a modi�ed incidence matrix B , where in each

column the topmost 1 is exchanged to ´1. Then (exercise)

Q “ D ´ A “ B 1B 1⊺.

Since Q1 “ 0, all cofactors of Q are equal. Choose

p´1q1`1 detQ11 “ detQ11. By the generalized Cauchy�Binet

formula

detQ11 “ detAS ,T “
ÿ

P“tk1,...,kn´1u

1ďk1ă...ăkn´1ďm

detB 1
S ,P detB 1⊺

P,T “

“
ÿ

P“tk1,...,kn´1u

1ďk1ă...ăkn´1ďm

detB 12
S,P ,

where m is the number of edges and S “ T “ t2, . . . , nu.



Incidence and Adjacency Matrices (continued)

Proof.
It can be checked (by induction, exercise) that a subgraph of G
spanned by n ´ 1 edges contained in the set P “ tk1, . . . , kn´1u is

a spanning tree if and only if∣∣detB 1
S ,P

∣∣ “ 1.



Example
1

2 3

4

D “

»

—

—

–

2 0 0 0

0 3 0 0

0 0 3 0

0 0 0 2

fi

ffi

ffi

fl

, A “

»

—

—

–

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

fi

ffi

ffi

fl

,

Q “

»

—

—

–

2 ´1 ´1 0

´1 3 ´1 ´1

´1 ´1 3 ´1

0 ´1 ´1 2

fi

ffi

ffi

fl

, adjpQq “

»

—

—

–

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

fi

ffi

ffi

fl

.



Example � 8 Spanning Trees
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Cayley's formula

Theorem
The number of spanning trees of a complete n-graph is equal to

nn´2.

Corollary

det

»

—

—

—

—

—

–

n ´ 1 ´1 ´1 ¨ ¨ ¨ ´1

´1 n ´ 1 ´1 ¨ ¨ ¨ ´1

´1 ´1 n ´ 1 ¨ ¨ ¨ ´1
...

. . .
...

´1 ´1 ´1 ¨ ¨ ¨ n ´ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooooooooooooomooooooooooooooooooooooon

n´1

“ nn´2.

det

»

–

3 ´1 ´1

´1 3 ´1

´1 ´1 3

fi

fl “ 42 “ 16.

0for proof, see for example J. Harris, J. L. Hirst, M. Mossingho�

Combinatorics and Graph Theory, Springer
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Totally Unimodular Matrices

De�nition
Matrix A P Mpm ˆ n;Rq is totally unimodular if any minor of A is

equal to ´1, 0, 1.

Example

Matrix

A “

»

—

—

–

1 0 0

1 1 0

0 1 1

0 0 1

fi

ffi

ffi

fl

,

is totally unimodular.
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ffi
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fl
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Totally Unimodular Matrices (continued)

Proposition

If matrix A P Mpm ˆ n;Rq is totally unimodular then matrices

´A,A⊺,
“

A I
‰

,
“

A A
‰

,
“

A ´A
‰

,

are totatlly unimodular.

Proof.
First two are obvious. For

“

A I
‰

if the submatrix contains a

column of I use Laplace's formula. In the two last cases, if a square

submatrix contains columns i and n ` i then determinant is 0.

Otherwise, it is equal to ˘1 to determinant of a square submatrix

of A.



Bipartite Graphs

De�nition
A simple undirected graph G “ pV ,E q is a bipartite graph if there

exists a partition of the vertex set V into to non�empty, disjoint

parts V1,V2, i.e.

V “ V1 \ V2,

where V1,V2 ‰ H and any edge e P E join a vertex from V1 with a

vertex from V2 (so no edge joins two vertices from V1 or two

vertices from V2).

Example

1

2

3

4

V1 “ t1, 3u, V2 “ t2, 4u.



Incidence Matrix of a Bipartite Graph is Totally Unimodular

Proposition

Let G “ pV ,E q be a bipartite graph. Let BG P Mp|V | ˆ |E |,Zq be

the incidence matrix of the graph G . Then BG is a totally

unimodular matrix.

Proof.
Let K P Mpn ˆ n;Rq be a square submatrix of B . Induction on n.
If n “ 1 then detK P t0, 1u as entries of B are equal either to 0 or

to 1. Assume n ą 1 and all minors of order n ´ 1 are equal to

´1, 0, 1. Any column of K contains at most two ones. If K has a

zero column, then detK “ 0. If K has a column which contains

exactly one 1 then by the Laplace formula it is equal to ˘1 times a

minor of B of order n ´ 1.



Incidence Matrix of a Bipartite Graph is Totally Unimodular
(continued)

Proof.
If none of the above holds every column of A contains exactly two

11s. This means that sum of rows of K corresponding to vertices in

V1 is equal to the sum of rows of K corresponding to vertices in

V2, i.e. detK “ 0 (rows of K are linearly dependent).



Incidence Matrix of a Bipartite Graph is Totally Unimodular
(continued)

Obviously, not every totally unimodular matrix is an incidence matrix of
some bipartite graph (it can contain ´11s). However,

Proposition
Let M be a unimodular incidence matrix of a graph G . Then G is
bipartite.

Proof.
If G is not bipartite then it contains an odd cycle. Let N be a
p2k ` 1q ˆ p2k ` 1q submatrix of M corresponding to that cycle. Then
(up to a permutation of rows and columns)

M “

»

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 1
1 1 0 ¨ ¨ ¨ 0
0 1 1 ¨ ¨ ¨ 0
...

...
. . .

. . .
...

0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

and detM “ 1 ` p´1q1`p2k`1q “ 2 (Laplace's formula for the �rst
row).



Incidence Matrix of a Bipartite Graph is Totally Unimodular
(continued)

Remark
Adjacency matrix of a tree is totally unimodular (exercise). There

are several characterizations of unimodular matrices (see Camion's

Theorem and Ghouila-Houri's Theorem).



Lattice Points

Proposition

Let v1, . . . , vn P Zn be linearly independent over Z. Let

P “ tλ1v1 ` . . . ` λnvn P Rn | 0 ď λi ă 1 for i “ 1, . . . , nu.

Then

|P X Zn| “ |detpv1, . . . , vnq|.

∣∣∣∣det „

1 2

3 1

ȷ∣∣∣∣ “ 5 points
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Lattice Points (continued)

Proof.
(sketch) Let A P Mpn ˆ n;Zq be a matrix with columns equal to

v1, . . . , vn. The proof follows from the Smith normal form, i.e.

there exists matrices P,Q P Mpn ˆ n;Zq with detP, detQ “ ˘1,

such that

PAQ “ diagpa1, . . . , anq.

Matrix of determinant ˘1, with integral coe�cients induces a

bijection on the lattice points and in the hyperrectangle spanned by

vectors pa1, 0, . . . , 0q, p0, a2, 0, . . . , 0q, . . . , p0, . . . , 0, anq P Zn there

are |a1| ¨ . . . |an| “ detpv1, . . . , vnq lattice points., i.e.

|Zn X tλ1a1ε1 ` . . . ` λnanεn P Rn | 0 ď λi ă 1 for i “ 1, . . . , nu| “

“ |a1| ¨ . . . |an|.



Lattice Points

Theorem
Let P “ convpp1, . . . , pkq Ă Rn be a convex n´dimensional lattice

polyhedron, i.e. pi P Zn Ă Rn for i “ 1, . . . , k . Then

i) there exists a degree n Erhart polynomial of P

LPpmq “ cnm
n ` cn´1m

n´1 ` . . . ` c1m ` c0,

such that

|mP X Zn| “ LPpmq,

(i.e. polynomial P counts the number of lattice points in the

dilated polyhedron mP),



Lattice Points

Theorem

ii) there exists a rational function ErhPpxq of the form

ErhPpxq “
h˚
nx

n ` h˚
n´1

xn´1 ` h˚
1
x ` h˚

0

p1 ´ xqn`1
,

which Taylor�Maclaurin series at x0 “ 0 is equal to the Erhart
series, i.e.

ErhPpxq “ LPp0q ` LPp1qx ` LPp2qx2 ` . . . ,

that is
Erh

pmq

P p0q

m!
“ LPpmq,



Lattice Points

Theorem

iii)

LPpmq “ h˚
n

ˆ

m

n

˙

`h˚
n´1

ˆ

m ` 1

n

˙

`. . .`h˚
1

ˆ

m ` n ´ 1

n

˙

`h˚
0

ˆ

m ` n

n

˙

,

where
`

m
n

˘

“ 0 if m ă n,

iv) for m ě 1
LPp´mq “ p´1qnLP˝ pmq,

counts the lattice points in the interior of polyhedron P,

v) cn “ voln P, c0 “ h˚
0

“ 1.

Proof.
Omitted.

0See M. Beck, S.Robins Computing the Continuous Discretely, Springer.



Lattice Points

Theorem

iii)

LPpmq “ h˚
n

ˆ

m

n

˙

`h˚
n´1

ˆ

m ` 1

n

˙

`. . .`h˚
1

ˆ

m ` n ´ 1

n

˙

`h˚
0

ˆ

m ` n

n

˙

,

where
`

m
n

˘

“ 0 if m ă n,

iv) for m ě 1
LPp´mq “ p´1qnLP˝ pmq,

counts the lattice points in the interior of polyhedron P,

v) cn “ voln P, c0 “ h˚
0

“ 1.

Proof.
Omitted.

0See M. Beck, S.Robins Computing the Continuous Discretely, Springer.



Example

LPpmq “ c2m
2 ` c1m ` c0,

LPp1q “ c2 ` c1 ` c0 “ 1 ` 4 ` 2 ` 2 “ 9,

(the lattice points are counted in columns).



Example

LPpmq “ c2m
2 ` c1m ` c0,

LP˝p´1q “ c2 ´ c1 ` c0 “ 3 ` 2 “ 5.

(the lattice points are counted in columns).



Example

That is (note c0 “ 1)

"

c2 ` c1 “ 8

c2 ´ c1 “ 4

which gives
"

c1 “ 2

c2 “ 6
,

i.e.,

LPpmq “ 6m2 ` 2m ` 1.

Moreover,

vol2 P “ A “ I `
B

2
´ 1 “ 6,

where I “ 5, B “ 4, from the Pick's formula.



Example

LPpmq “ 6m2 ` 2m ` 1,

LPp2q “ 6 ¨ 22 ` 2 ¨ 2 ` 1 “ 29 “

“ 1 ` 4 ` 7 ` 6 ` 5 ` 3 ` 3.



Example

LPpmq “ 6m2 ` 2m ` 1,

LPp´2q “ 6 ¨ p´2q2 ` 2 ¨ p´2q ` 1 “ 21 “

“ 3 ` 6 ` 5 ` 4 ` 3 “ 29 ´ 8.



Example

LPpmq “ 6m2 ` 2m ` 1,

LPp3q “ 6 ¨ 32 ` 2 ¨ 3 ` 1 “ 61 “

“ 1 ` 4 ` 7 ` 11 ` 9 ` 8 ` 7 ` 6 ` 4 ` 4.



Example

LPpmq “ 6m2 ` 2m ` 1,

LPp´3q “ 6 ¨ p´3q2 ` 2 ¨ p´3q ` 1 “ 49 “

“ 3 ` 6 ` 9 ` 9 ` 7 ` 6 ` 5 ` 4 “ 61 ´ 12.



Example
From

LPpmq “ h˚
n

ˆ

m

n

˙

` h˚
n´1

ˆ

m ` 1

n

˙

` . . . ` h˚
0

ˆ

m ` n

n

˙

,

for n “ 2,m “ 1, 2 we have

h˚
2

ˆ

1

2

˙

` h˚
1

ˆ

2

2

˙

` h˚
0

ˆ

3

2

˙

“ L ` Pp1q “ 9,

h˚
2

ˆ

2

2

˙

` h˚
1

ˆ

3

2

˙

` h˚
0

ˆ

4

2

˙

“ L ` Pp2q “ 29,

that is
"

h˚
2

` 3h˚
1

“ 23

h˚
1

“ 6
.

Therefore h˚
2

“ 5, h˚
2

“ 6, that is

ErhPpxq “
5x2 ` 6x ` 1

p1 ´ xq3
.



Example

It can be checked that the Erhart series of P is equal to

ErhPpxq “
5x2 ` 6x ` 1

p1 ´ xq3
“

“ LPp0q ` LPp1qx ` LPp2qx2 ` LPp3qx3 ` . . . “

“ 1 ` 9z ` 29x2 ` 61x3 ` 105x4 ` 161x5 ` 229x6 ` 309x7 ` . . .


