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Determinant and Linear Dependence

Recall that elementary operations on vectors preserve the property
of being linearly independent.
Proposition
Let Ae M(n x n;R). The following conditions are equivalent:
i) det A # 0,
i) rows of matrix A form a linearly independent set,

iil) columns of matrix A form a linearly independent set.

Recall that n linearly independent vectors in R” form a basis.



Example

Example

Take matrix A and use elementary row operations to get an
upper-triangular matrix:

]. _1 1 I‘2—2I‘1 _1 1 -
A=|2 o0 3 | =% 2 1 | =2
1 1 2 2 1

O O =
O O =
O N =

O ==



Example

Example
Take matrix A and use elementary row operations to get an
upper-triangular matrix:

1 =1 1 |non[1 -1 1 1 -1
A=|2 03| =0 21|20 2
1 12 0 21 0 0

Then det A = det B = 0.

O ==



Example

Example

Take matrix A and use elementary row operations to get an
upper-triangular matrix:

r2—2r1

1 -1 1 1 -1 1 1 -1 1
A=|2 03|10 21|20 21|=8B
1 1 2 0 21 0 00

Then det A = det B = 0. The rows are linearly dependent

(1,—1,1) — (2,0,3) + (1,1,2) = (0,0,0).



Example

Example

Take matrix A and use elementary row operations to get an
upper-triangular matrix:

1 -1 1 |(mpr-—2n| 1 -1 1 1 -1 1
A=|2 03| |0 21 |%%|0 21|=8
1 1 2 0 2 1 0 0 0
Then det A = det B = 0. The rows are linearly dependent

(1,-1,1) — (2,0,3) + (1,1,2) = (0,0,0).
The columns are linearly dependent

—3(1,2,1) — (~1,0,1) + 2(1,3,2) = (0,0,0).
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ldentity Matrix

Definition
The identity matrix /I, € M(n x n;R) is defined by

That is, it has 1’s on the diagonal and 0’s elsewhere.
Note that for any A€ M(n x n;R) the following holds

A= Al, = A,

that is /, is a neutral element with respect to matrix multiplication.
This follows also from the fact that M(idg»)?4 = I, for any basis A
of R".



Invertible Matrix

Definition
A matrix A€ M(n x n;R) is called invertible if there exists matrix
B e M(n x n;R) such that AB = I,. Such matrix B is unique and

it satisfies the equality BA = I,,. The matrix B is called the inverse
of A and is denoted A™!, that is



Invertible Matrix

Definition
A matrix A€ M(n x n;R) is called invertible if there exists matrix
B e M(n x n;R) such that AB = I,. Such matrix B is unique and

it satisfies the equality BA = I,,. The matrix B is called the inverse
of A and is denoted A™!, that is

AATL = A71A =,
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Proposition

Let A= (v1,...,vn) and B = (wi,...,w,) be ordered bases of
vector space V. Let M be the change-of-coordinate matrix from
the basis A to the basis B, that is M = M(id)5. Let N be the
change-of-coordinate matrix from the basis BB to the basis A, that
is N = M(id)5. Then N = M~L.
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is N = M(id)5. Then N = M~L.

Proof.

It is enough to use the formula relating composition of linear
transformations with matrix multiplication and the uniqueness of
the inverse.

MN = M(id)5M(id)g = M(id)E = I,.

O
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Let A= (v1,...,vn) and B = (wi,...,w,) be ordered bases of
vector space V. Let M be the change-of-coordinate matrix from
the basis A to the basis B, that is M = M(id)5. Let N be the
change-of-coordinate matrix from the basis BB to the basis A, that
is N = M(id)5. Then N = M~L.

Proof.

It is enough to use the formula relating composition of linear
transformations with matrix multiplication and the uniqueness of
the inverse.

MN = M(id)5M(id)g = M(id)E = I,.

O
Example

Let V=R? A=((2,1),(5,3)),8=st=((1,0),(0,1)). Then

M = M(id)% = [f g ] and N = M(id)4 = [ 1 _2 ]



Example (continued)

Let V=R? A=((2,1),(5,3)),B8=st=((1,0),(0,1)). Then
M = I\/I|d5t:[i ]andN M(id)2 [_f _g]



Example (continued)

Let V=R? A=((2,1),(5,3)),B8=st=((1,0),(0,1)). Then
. 2 5 . 3 =5
M = M(id)st = [ 1 3 ] and N = M(id)4 = [ 1 ]
For example, take vector v = (3,1). It's coordinates relative to the
standard basis are 3,1 that is (3,1) = 3(1,0) + 1(0,1).



Example (continued)

Let V=R? A=((2,1),(5,3)),B8=st=((1,0),(0,1)). Then

M = M(id)st = [f g]and N = M(id)2d = [ _f Z]

For example, take vector v = (3,1). It's coordinates relative to the
standard basis are 3,1 that is (3,1) = 3(1,0) + 1(0,1). To compute
coordinates of v relative to the basis A we use the
change-of-coordinate matrix N = M(id)Z.

A



Example (continued)

Let V=R? A=((2,1),(5,3)),B8=st=((1,0),(0,1)). Then

M = M(id)st = [f g]and N = M(id)2d = [ _f Z]

For example, take vector v = (3,1). It's coordinates relative to the
standard basis are 3,1 that is (3,1) = 3(1,0) + 1(0,1). To compute
coordinates of v relative to the basis A we use the
change-of-coordinate matrix N = M(id)Z.

3 51[3] [ 4
-1 2 1| | -1
The coordinates of v relative to the basis A are 4, —1 that is

(3,1) = 4(2,1) — 1(5,3).



Determinants and Invertible Matrices

Theorem

Let Ae M(n x n;R). Let ¢ : R" — R" be a linear transformation
and let A, B be bases of R" such that M(¢)5 = A. The following
conditions are equivalent:

i) the matrix A is invertible,
det A # 0,

)
iit) rows of A form a linearly independent set,
)

iv) columns of A form a linearly independent set,
ki 0 0

v) for any K = : ifAK=| @ | then K=1| © |,
kn 0 0

vi) the linear transformation ¢ is injective,
vii) the linear transformation o is surjective,

viii) the linear transformation ¢ is bijective (invertible).



Computing the Inverse

For any A = [aj], B = [bjj] € M(n x n;R) denote by [A|B] the
matrix

ail1 ... din b11 bln
€ M(n x 2m; R).

dnl ... dnpn bnl bnn
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Theorem
Matrix A is invertible if and only if matrix [A|l,] can be transformed
by elementary row operations to the matrix [I,|B]. Then B = A~



Computing the Inverse

For any A = [aj], B = [bjj] € M(n x n;R) denote by [A|B] the
matrix
dail1 ... din b11 bln
€ M(n x 2m; R).

dnl ... dnpn bnl bnn

Theorem
Matrix A is invertible if and only if matrix [A|l,] can be transformed
by elementary row operations to the matrix [I,|B]. Then B = A~

Proof.

Use multiplication by elementary matrices (cf. Lecture 5). O
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Minors

Definition

Let A = [a;]] € M(m x n;R) be a matrix. Minor (determinant)
of matrix A of order k, where 1 < k < min{m, n}, is the
determinant of any k—by—k submatrix of A. In particular, for any

1<hi<hb<...<ig<m,

1< jg<jp<...<jk<n,

and
Ajy Aijp T iy
A _ Aizjy  Qizjp " iy
11550k J1 50k . . . ?
Ajr Qi T Dk

the number det A; . i,.ji.....j. is @ minor of A of order k.



Rank of Matrix

Recall

Definition

Let Ae M(m x n;R). The rank of A is the dimension of the space
lin(r,...,rm) where r, ..., rm, € R" are rows of A. The rank of A

is denoted r(A).



Rank of Matrix

Recall

Definition

Let Ae M(m x n;R). The rank of A is the dimension of the space
lin(r,...,rm) where r, ..., rm, € R" are rows of A. The rank of A

is denoted r(A).

The last matrix is in an echelon form with two non-zero rows
therefore r(A) = dimlin((1,2,1,1),(3,7,3,4),(1,3,1,2)) =
=dimlin((1,2,1,1),(0,1,0,1)) = 2.



Rank of Matrix

Remark
In the previous example

elementary row

1211 , 1 2
A: 3 7 3 4 operatlons O 1
1312 0 0

It follows that
colsp(A) # colsp(A’).



Rank of Matrix

Remark
In the previous example

elementary row

1211 , 1 2
A: 3 7 3 4 operatlons O 1
1312 0 0

It follows that
colsp(A) # colsp(A’).

However
dim colsp(A) = dim colsp(A’),

which is also equal to the dimension of rowsp(A) = rowsp(A’).
This is a general phenomenon.



Rank of Matrix

Theorem

For any matrix A€ M(m x n;R) the following numbers are equal:
i) dimlin(r,...,rm) where r, ..., ry are rows of A,
i) dimlin(cy,...,cn) where c1,...,c, are columns of A,

iii) the highest order of a non—zero minor of matrix A.



Proof

Matrix A can be put into a reduced echelon form by elementary row
operations, and then, by elementary operations on columns, it can
be put into the form

10 0 00 0]
10 00 0
001 00 0
000 10 0
000 0 0
000 ... 00 0]



Proof

Matrix A can be put into a reduced echelon form by elementary row
operations, and then, by elementary operations on columns, it can
be put into the form

100 00 0]
10 00 0
00 1 00 0
000 10 0
000 0 0
000 ...00 ... 0]

Elementary row and column operations do not change those three
numbers. Therefore the rank of A is equal to the number of pivots
in an echelon form.



Example

Example
1 211
Llet A= 3 7 3 4
1 312
2 11 [ 1 1
det| 7 3 4 | =det| 3 3
31 2 | 11
[ 1 2
=det| 3 7
| 1 3

On the other hand

det A172;172 = det [

hence r(A) = 2.

1 2
37

. It can be checked that

= det

=W =

| =10

w ~N N

N B =



Kronecker-Capelli Theorem

Consider a system of linear equations and two associated matrices

ailxy + apxe + ... +  ainXn by
aixi + awxy + ... + amxp = b
U ) )
amiXx1 + amexe + + amnXn = bny
ail a2 ... an ar a2 ... ain | b
a axn ... axn a1 ax ... an| b
A= ] ] ] , B =
dml dm2 --- Aamn dml dm2 --- @mn bm



Kronecker-Capelli Theorem (continued)

Theorem (Kronecker-Capelli)

i) the system U has a solution if and only if r(A) = r(B),

ii) if the system U has a solution then exactly n — r(A) variables
are free variables,

i) if (si,...,s,) € R" is any solution of U and W is the subspace
of all solutions of a homogeneous system of linear equations
given by the matrix A then solutions of U are of the form
(sty...ysn)+ W ={(s1,...,50) + w | we W}



Kronecker-Capelli Theorem (continued)

Theorem (Kronecker-Capelli)
i) the system U has a solution if and only if r(A) = r(B),

ii) if the system U has a solution then exactly n — r(A) variables
are free variables,

i) if (si,...,s,) € R" is any solution of U and W is the subspace
of all solutions of a homogeneous system of linear equations
given by the matrix A then solutions of U are of the form
(sty...ysn)+ W ={(s1,...,50) + w | we W}

Proof.

Adding one column to a matrix can only increase its rank by at most 1. If
r(B) = r(A) + 1 then in the echelon form of B there is a pivot in the
column of constant terms. The pivots correspond to dependent variables
and the number of pivots is equal to the rank of the matrix. The
difference of any two solutions of U is a solution of the homogeneous
system of linear equations associated to the matrix A. L]



Kronecker-Capelli Theorem (continued)

Remark
Alternatively,

by

hae s somtion <= | 1 | € colsp(A) == r(4) = r(B).
b



Kronecker-Capelli Theorem (continued)

Remark
Alternatively,

by

hae s somtion <= | 1 | € colsp(A) == r(4) = r(B).
b

Fix s = (s1,...,s,) € R" a solution of the system U and let

r=(r,...,rm)€R" be any solution of the system U. Then
r—seW

because

+  a1n(rn—sn)
+ aZn(rn - Sn)

aii(n—s1) + anln—s)

+
321(I’1 — 51) + 322(r2 — 52) +

aml(rl — 51) + amg(l’z — 52) + ... 4+ am,,(r,, — S,,)
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Matrix Inverse Formula

Let Ae M(n x n;R). The adjugate matrix of the matrix A is
given by (note the transposition!)

(—1)1+1 det A1 (—1)1+2 detAyp - (—1)1+" det Ay,
(—1)*1det Ay (—1)*"2detAyy -+ (—1)*""det Ay
adj(A) = : _ _ _

(1) ldet Ay (—1)""2detAp oo (=1)"t"det A,



Matrix Inverse Formula

Let Ae M(n x n;R). The adjugate matrix of the matrix A is
given by (note the transposition!)

(—1)*1det Ay (—1)'*2det A - (—1)1F"det Ay, |7
4i(A) (—1)%*1det Ay;  (—=1)?*2det Ay -+ (=1)*""det Az,
adj(A) = . _ _ _
(1) ldet Ay (—1)""2detAp oo (=1)"t"det A,
Theorem

Let Ae M(n x n;R) be an invertible matrix. Then

_ 1 .



Matrix Inverse Formula

Let Ae M(n x n;R). The adjugate matrix of the matrix A is
given by (note the transposition!)

(—1)*1det Ay (—1)'*2det A - (—1)1F"det Ay, |7
4i(A) (—1)%*1det Ay;  (—=1)?*2det Ay -+ (=1)*""det Az,
adj(A) = . _ _
(1) ldet Ay (—1)""2detAp oo (=1)"t"det A,
Theorem

Let Ae M(n x n;R) be an invertible matrix. Then

_ 1 .

Proof.
The equality Aﬁ adj(A) = I, can be checked directly using the
Laplace expansion.



Example

LetAz[i b]Then

d



Example

LetAz{
c

sai() - |

a b

d ]Then

(—1)1+1 det A1
(—1)%*1 det Ay

|

(—1)1+2 det A1p
(—1)%*2 det Ay,

d —b
—cC a |’



Example

LetA:{
c

adj(A) = {

Hence

a b
d]Then

(_1)1+1 det A11
(_1)2+1 det A21

(_1)1+2 det A12
(_1)2+2 det A22

d —b
—C a .




Example

LetAz[a b]Then
c d

. -1 1+1 detAll
adJ(A) = |: 5_1;2-1-1 detA21

Hence

(_1)1+2 det A12
(_1)2+2 det A22

d —b
—C a .

For example 2.5 _1_
p 1 3 -



Matrix Inverse Formula (continued)

Remark
For any matrices A, B € M(n x n;R) such that det A,det B # 0
and k=0

adj(ln) = In,

detadj(A) = (det A)" 1,

(adi(A) 7! = adi(A ) = A
adi(AB) = adj(B) adi(A),
adi(A*) = (adj(A))".

adj(adj(A)) = (det A)"2A.



Cramer’s Rule

Let U be a system of linear equations with n unknowns and n
equations:

alxy + ampxe + ... 4+ aipxn = b
H1xX1 + amxo + ... + amxp = b

an1X1 + amXo + ... + ampXnp = b,7



Cramer’s Rule

Let U be a system of linear equations with n unknowns and n

equations:
ajlxy + aixe + ... 4+  ainpXp by
a1x1 + amxo + ... 4+ amx, = b
amx1 + amxe + ... + amXp = by
a1t adln
Let A = Do be the associated matrix of
apl - dpn
by
coefficients and let B = : be the matrix of constant terms.

bn



Cramer’s Rule

Let U be a system of linear equations with n unknowns and n

equations:
aixy + apxe + ... 4+ aipxn = b
aixy + axxa + ... + amx, = b
anx1 + amxx + ... + amxp = b,
a1t adln
Let A = Do be the associated matrix of
anl " @nn
by
coefficients and let B = : be the matrix of constant terms.
bn
X1 by

The system U can be writtenas A | : =

Xn bn



Cramer’s Rule (continued)

Therefore, if det A # 0 the system U has exactly one solution given
X1 b1
by | 1 | =AT]

Xn b,



Cramer’s Rule (continued)

Therefore, if det A # 0 the system U has exactly one solution given
X1 b

by | 1 | =AT]
Xn b,

Theorem (Cramer’s Rule)

If det A # 0 then the unique solution of the system U is given by

X; = ‘i‘itt’:" fori =1,...,n, where A; is the matrix A with i-th

column replaced by B.




Cramer’s Rule (continued)

Therefore, if det A # 0 the system U has exactly one solution given
X1 b

by | 1 | =AM
Xn bn

Theorem (Cramer’s Rule)

If det A # 0 then the unique solution of the system U is given by

xj = 94 for i = 1,...,n, where A; is the matrix A with i-th
det A

column replaced by B.

Proof.

Use the Laplace expansion and the inverse matrix formula. O



Cramer’s Rule (continued)

Proof.
Alternatively, let A(i — v) denote matrix A with the i-th column
replaced by vector v. It is easy to see that

det /(i — x) = xj,
and that the equation Ax = b is equivalent to
A(l(i = x)) =A(i = b) = A,.
Taking determinants of both sides gives

(det A)x; = det A;.



Example

Let

{

2X1
3X1

_l’_
+

3X2
4X2

— -1



Example

Let
_{2X1 + 3x =-1

"13x1 + 4x = -3
Then



Example

Let

Then

|

Therefore, xq

2 3
3 4

_ detA;
detA

:|7A1

4+ 3x =-1
+ 4x, = -3
-1 3

-3 4 ] A

=5, Xp = ddeettAA?
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Remarks

i) if A,Be M(nx n;R) and det A # 0,det B # 0 then the matrix AB
is invertible and (AB)™* = B~1A™1,
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Matrix Algebra

Remarks

i) if A,Be M(nx n;R) and det A # 0,det B # 0 then the matrix AB
is invertible and (AB)™* = B~1A™1,

i) (AB)T = BTAT,

iii) if Ae M(n x n;R) and det A 0 then the matrix AT is invertible
and (AT)"! = (A7),



Matrix Algebra

Remarks

i) if A,Be M(nx n;R) and det A # 0,det B # 0 then the matrix AB
is invertible and (AB)™* = B~1A™1,

i) (AB)T = BTAT,

iii) if Ae M(n x n;R) and det A 0 then the matrix AT is invertible
and (AT)"! = (A7),

iv) for n > 0 define
A"=A---A (n— times),

if det A # 0 for n < 0 define
An — (Afl)fn

and A% = /.



Matrix Algebra (continued)

Remarks

iv) The following

AnAm — An+m,
(An)m _ Anm7

hold for any integers m, n,



Matrix Algebra (continued)

Remarks
iv) The following
AnAm — An+m,
(An)m — /4”!777
hold for any integers m, n,

v) note that unless AB = BA, in general,
(AB)" = (AB)(AB)---(AB) # A"B".



Matrix Inverse Formula

Proposition
For any square matrix A€ M(n x n;R) the following formula holds

i+, L
Z(—l) Jajdet Aj = 0 ki

u {detA k=i
j=1



Matrix Inverse Formula

Proposition
For any square matrix A€ M(n x n;R) the following formula holds

i+, L
Z(—l) Jajdet Aj = 0 ki

u {detA k=i
j=1

Proof.

Follows by the use of Laplace formula along columns of A and the
fact that

k i

<\ <\
det| c1y...y Chyevvs ChyvosCn | =0,

where c1, ..., ¢, denote columns of matrix A.



Matrix Inverse Formula (continued)

Theorem
Let Ae M(n x n;R) be an invertible matrix. Then

1
A7t = — adj(A).
der A2
Proof.
Recall that
(1)t ldet A;p  (—1)>Tldet Ay
(1) 2det Ay (—1)>T2det A
adj(A) = . )

(—1)1*7det Ay, (—1)2"det Ay,

(—1)™1 det An
(*1)"+1 det A,»

(—1)™" det A,



Matrix Inverse Formula (continued)

Theorem
Let Ae M(n x n;R) be an invertible matrix. Then

1 .
i adj(A).

-1

Proof.
Recall that
(=17 det Ay (=1 det Ay oo (—1)"det Ay
d(A) (*1)1+2 det Ao (*1)2+2 det Ay - (*1)"+1 det A,»
adj(A) = ) . . )
(=)' det Ay, (—1)2*"det A, -+ (=1)"""det A,
Then

Aadj(A) = adj(A)A = B = [by] = (det A)l,,

by the previous formula because

n .
i+ detA k=
biy = E (—1)"aj det Aj; = { 0 k# :

j=1



Cramer’s Rule — Proof

Theorem (Cramer’s Rule)

If det A # O then the unique solution of the system AX = B is

given by x; = ‘j;tti" fori=1,...,n, where A; is the matrix A with

i-th column replaced by B.




Cramer’s Rule — Proof

Theorem (Cramer’s Rule)
If det A # O then the unique solution of the system AX = B is

given by x; = ‘j;tti" fori=1,...,n, where A; is the matrix A with
i-th column replaced by B.
Proof.
Since det A # 0 matrix A is invertible therefore
X1 b
X = = At



Cramer’s Rule — Proof

Theorem (Cramer’s Rule)
If det A # O then the unique solution of the system AX = B is

given by x; = ‘j;tti" fori=1,...,n, where A; is the matrix A with
i-th column replaced by B.
Proof.
Since det A # 0 matrix A is invertible therefore
X1 b
X = AT
Xp bn

By the inverse matrix formula



Cramer’s Rule — Proof

Proof.
X =
(=1)'*'det Ay (—1)>*'detAy --- (—1)"t'det Ay by
1 (—=1)1*2det Ajp  (—1)?T2detAxy -+ (—=1)"Tldet A, by
det A : : . : :
(—1)**"det Ay, (—1)*"det Ay, -+ (—1)""det A,y by

By the Laplace formula along the i-th column
<\

det| ¢1,...,B,...,cq

X = det A ’

for i=1,...,n, where ¢y, ..., c, are columns of matrix A. O



Adjugate of a Symmetric Matrix

Proposition

Let A€ M(n x n;R) be a symmetric matrix of rank at most n — 1 such
that
Al =0,

where 1 = (1,1,...,1) € R". Then there exists c € R such that
adj(A) = c117,

(i.e. all expressions (—1)"*/ det A;; (i.e. cofactors) are equal).



Adjugate of a Symmetric Matrix

Proposition
Let A€ M(n x n;R) be a symmetric matrix of rank at most n — 1 such

that
Al =0,

where 1 = (1,1,...,1) € R". Then there exists c € R such that
adj(A) = c117,

(i.e. all expressions (—1)"*/ det A;; (i.e. cofactors) are equal).

Proof.
Let A = Qdiag(A1,...,A,)QT, where Q is an orthogonal matrix (i.e.
QTQ =1). Since

adj(A) = adj(QT) adj(diag(A1, ..., An)) adj(@) = Q adj(diag(A1, ..., \n))QT,

adj(A) =0 if rk(A) < n—2 and adj(A) is a rank 1 symmetric matrix if
rk(A) = n— 1. In the latter case, since Aadj(A) =0, and the kernel of A
is 1—dimensional, the columns of adj(A) must be equal to a multiple of

1. By symmetry all multiples must be equal, hence adj(A) = c11T.
=



Adjugate of a Symmetric Matrix (continued)

Remark
If Be M(n x n;R) is a symmetric matrix of rank 1, then there exist
ceR and v e R", such that

Ivll =1,

B = cwT.



Incidence and Adjacency Matrices
Definition
Let G = (V, E) be a finite, undirected graph, where
V={wvi,...,vy},E={e1,...,en}. Then
Bg = B = [bjj] € M(n x m;R) is the incidence matrix of graph G if
bjj = 1 if and only if v; € ¢;,

and bj; = 0 otherwise. Analogously, the matrix
Ac = A =[aj] € M(n x n;R) is the adjacency matrix of graph G if

aj = 1if and only if {v;, v;} € E,

and aj; = 0 otherwise.



Incidence and Adjacency Matrices

Definition

Let G = (V, E) be a finite, undirected graph, where
V={wvi,...,vy},E={e1,...,en}. Then

Bg = B = [bjj] € M(n x m;R) is the incidence matrix of graph G if

bjj = 1 if and only if v; € ¢;,

and bj; = 0 otherwise. Analogously, the matrix
Ac = A =[aj] € M(n x n;R) is the adjacency matrix of graph G if

aj = 1if and only if {v;, v;} € E,

and aj; = 0 otherwise.

Proposition
For any finite, undirected graph G

AT = A,

A+ D = BBT,

where D € M(n x n;R) is the degree matrix.



Incidence and Adjacency Matrices (continued)

€ €
€3
®
0110 11000
1011 10110
Aliro1l BTlo1 101
0110 0 0011
(rows of B correspond to vertices, columns of B to edges)
2110
1 311
= T =
A+D=BB L1 s
011 2



Kirchhoff's Theorem

Theorem

Let G be finite, connected, simple, undirected graph with n
vertices. Let Q be the Laplacian matrix of G, i.e.

Q=D-A,

where D is the degree matrix of the graph G and A is the adjacency
matrix of G.



Kirchhoff's Theorem

Theorem
Let G be finite, connected, simple, undirected graph with n
vertices. Let Q be the Laplacian matrix of G, i.e.

Q=D-A,

where D is the degree matrix of the graph G and A is the adjacency
matrix of G. Then the number of spanning trees of G is equal to
any principal minor of order n — 1 (or to any cofactor) of matrix Q.



Incidence and Adjacency Matrices (continued)

Proof.
(sketch) Let B’ be a modified incidence matrix B, where in each
column the topmost 1 is exchanged to —1. Then (exercise)

Q=D—-A=BBT.

Since Q1 = 0, all cofactors of @ are equal. Choose
(—1)1+1 det Q11 = det Q11. By the generalized Cauchy-Binet

formula

det Qi1 = det As 7 = > det Bs pdet B 7 =

P={ki,...kn_1}
1I<ki<..<kp_1<m

= > det BZp,

P:{klw--,knfl}
1<ki<..<kp—1<m

where m is the number of edges and S =T = {2,... n}.



Incidence and Adjacency Matrices (continued)

Proof.
It can be checked (by induction, exercise) that a subgraph of G

spanned by n — 1 edges contained in the set P = {ky,..., kn—1} is
a spanning tree if and only if



Example

v

O - - O

N - O

— O —

-1 -1

3 -1
-1 3
-1 -1

2
-1
-1

0

|
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<> <>
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Cayley's formula

Theorem

The number of spanning trees of a complete n-graph is equal to
n"2,

Ofor proof, see for example J. Harris, J. L. Hirst, M.-Mossinghoff



Cayley's formula

Theorem
The number of spanning trees of a complete n-graph is equal to
n"2,
Corollary

[n—1 -1 -1 - —1]

-1 n-1 -1 - -1
det -1 -1 n-1 .- —1| =p2
| -1 -1 -1 n—1]
ntl

Ofor proof, see for example J. Harris, J. L. Hirst, M.-Mossinghoff



Cayley's formula

Theorem
The number of spanning trees of a complete n-graph is equal to
n"2,
Corollary
[n—1 -1 -1 - —1]
-1 n-1 -1 - -1
det -1 -1 n-1 .- —1| =p2
| -1 -1 -1 n—1]
ntl
3 -1 -1
det| -1 3 —1|=4%=16.
-1 -1 3

Ofor proof, see for example J. Harris, J. L. Hirst, M.-Mossinghoff



Totally Unimodular Matrices

Definition
Matrix A€ M(m x n;R) is totally unimodular if any minor of A is
equal to —1,0,1.



Totally Unimodular Matrices

Definition
Matrix A€ M(m x n;R) is totally unimodular if any minor of A is
equal to —1,0,1.

Example
Matrix

O O = =
O = = O
= 2 OO

is totally unimodular.



Totally Unimodular Matrices (continued)

Proposition
If matrix A€ M(m x n;R) is totally unimodular then matrices

AA AT LA[AT[A]-A].
are totatlly unimodular.

Proof.

First two are obvious. For [ A |/ ] if the submatrix contains a
column of | use Laplace’s formula. In the two last cases, if a square
submatrix contains columns i and n + i then determinant is 0.

Otherwise, it is equal to +1 to determinant of a square submatrix
of A. O]



Bipartite Graphs
Definition
A simple undirected graph G = (V, E) is a bipartite graph if there
exists a partition of the vertex set V into to non—empty, disjoint
parts Vi, V>, i.e.
V=Vub,

where V;, Vb # (7 and any edge e € E join a vertex from V; with a
vertex from V5 (so no edge joins two vertices from Vj or two
vertices from V53).

Example

®

Vi = {1,3}, Vs ={2,4).



Incidence Matrix of a Bipartite Graph is Totally Unimodular

Proposition

Let G = (V,E) be a bipartite graph. Let Bg € M(|V| x |E|,Z) be
the incidence matrix of the graph G. Then Bg is a totally
unimodular matrix.

Proof.

Let K € M(n x n;R) be a square submatrix of B. Induction on n.
If n =1 then det K € {0, 1} as entries of B are equal either to 0 or
to 1. Assume n > 1 and all minors of order n — 1 are equal to
—1,0,1. Any column of K contains at most two ones. If K has a
zero column, then det K = 0. If K has a column which contains
exactly one 1 then by the Laplace formula it is equal to +1 times a
minor of B of order n — 1.



Incidence Matrix of a Bipartite Graph is Totally Unimodular
(continued)

Proof.

If none of the above holds every column of A contains exactly two
1’s. This means that sum of rows of K corresponding to vertices in
V1 is equal to the sum of rows of K corresponding to vertices in
Vs, i.e. det K = 0 (rows of K are linearly dependent). O



Incidence Matrix of a Bipartite Graph is Totally Unimodular

(continued)
Obviously, not every totally unimodular matrix is an incidence matrix of
some bipartite graph (it can contain —1’s). However,
Proposition
Let M be a unimodular incidence matrix of a graph G. Then G is
bipartite.

Proof.

If G is not bipartite then it contains an odd cycle. Let N be a

(2k + 1) x (2k + 1) submatrix of M corresponding to that cycle. Then
(up to a permutation of rows and columns)

10 0 1
11 0 0
vol0 1 1 0
00 0 - 1

and det M = 1 + (—1)**+(%+1) — 2 (Laplace’s formula for the first
row) F]



Incidence Matrix of a Bipartite Graph is Totally Unimodular
(continued)

Remark

Adjacency matrix of a tree is totally unimodular (exercise). There
are several characterizations of unimodular matrices (see Camion’s
Theorem and Ghouila-Houri's Theorem).



Lattice Points

Proposition
Let vq,...,v, € Z" be linearly independent over 7. Let

P={vi+...4 v eR"|0< A <1fori=1,...,n}.

Then
|PNZ"| = |det(vy,...,vy)l|



Lattice Points

Proposition
Let vq,...,v, € Z" be linearly independent over 7. Let

P={vi+...4 v eR"|0< A <1fori=1,...,n}.

Then
|PNZ"| = |det(vy,...,vy)l|

1 2 .
det [3 1” = b points




Lattice Points (continued)

Proof.
(sketch) Let A€ M(n x n;Z) be a matrix with columns equal to
Vi,..., Vs The proof follows from the Smith normal form, i.e.
there exists matrices P, Q € M(n x n;Z) with det P,det Q = +1,
such that

PAQ = diag(a1,...,an)-

Matrix of determinant +1, with integral coefficients induces a
bijection on the lattice points and in the hyperrectangle spanned by
vectors (a1,0,...,0),(0,a2,0,...,0),...,(0,...,0,a,) € Z" there
are |ay| - ... |an| = det(vq,...,v,) lattice points., i.e.

|Z" n{A1a1e1 4+ ... F Apanen e R |O< N\ <1lfori=1,...,n} =

= |a1| |a,,|



Lattice Points

Theorem
Let P = conv(py,...,px) < R" be a convex n—dimensional lattice
polyhedron, i.e. p; e Z" c R" fori =1,...,k. Then

i) there exists a degree n Erhart polynomial of P

1

Lp(m) = com" + cpo1m" + ...+ am+ c,

such that
ImP nZ"| = Lp(m),

(i.e. polynomial P counts the number of lattice points in the
dilated polyhedron mP),



Lattice Points

Theorem
i) there exists a rational function Erhp(x) of the form
REx™ + R x"L + hEx + Y

Erhp(x) = T :

which Taylor—Maclaurin series at xo = 0 is equal to the Erhart
series, I.e.

Erhp(x) = Lp(0) + Lp(1)x + Lp(2)x*> + ...,

that is
Erh™ (0)

m Lp(m),



Lattice Points

Theorem
i)
" m+1 wf(m+n—1 m+n
+hh_4 +...+h] +h§ ,
n n n
where ( 0ifm<n,
iv) for m=

Lp(—m) = (~1)"Lpe (m),
counts the lattice points in the interior of polyhedron P,

v) ¢, =vol,P,co = hi = 1.

%See M. Beck, S.Robins Computing the Continuous Discretely, Springer.



Lattice Points

Theorem
i)
" m+1 wf(m+n—1 m+n
+hh_4 +...+h] +h§ ,
n n n
where ( 0ifm<n,
iv) for m=

Lp(—m) = (~1)"Lpe (m),
counts the lattice points in the interior of polyhedron P,

v) ¢, =vol,P,co = hi = 1.

Proof.
Omitted. O

%See M. Beck, S.Robins Computing the Continuous Discretely, Springer.



Example

Lp(m) = C2m2+C1m-‘rC0,
Lp(l)=c+ca+c=1+4+2+2=09,

(the lattice points are counted in columns).



Example

Lp(m) = CQIT)2 + cam + ¢,
Lpo(—l) =co—-cq+q=3+2=5.

(the lattice points are counted in columns).



Example

That is (note ¢g = 1)

{C2+C1=8

G — g = 4
which gives
G = 2
C = 6’
ie.,
Lp(m) = 6m?® +2m + 1.
Moreover,

B
voI2P:A:/+§—1:6,

where | =5, B = 4, from the Pick's formula.



Example

Lp(m) = 6m? +2m + 1,
Lp(2) =6-22+2.24+1=29 =
=14+4+74+6+5+3+3.



Example

Lp(m) = 6m? +2m + 1,
Lp(—2)=6-(—2)?+2-(-2)+1=21=
=34+6+5+4+3=29-8.



Example

Lp(m) = 6m? +2m + 1,
Lp(3)=6-32+2-3+1=061=
=1+44+74+114+948+7+6+4+4



Example

Lp(m) = 6m? +2m + 1,
Lp(=3)=6-(~3)>+2-(-3)+1=49 =
=34+6+9+9+7+6+5+4=061—12.



Example
From

+1 +
Lp(m)_h:<r:> + :1('”” )+...+h;’;<mn ”>,

forn=2,m=1,2 we have

h; (;) + hi @) + hg @) =L+ P(1) =9,
h3 (2) + hi (;) + hg (g) =L+ P(2) =29,

hs + 3hF = 23
W= 6

Therefore h; =5, hj =6, that is

that is

5x2 +6x + 1
Eth(X) = W



Example

It can be checked that the Erhart series of P is equal to

5x% +6x + 1
Eth(X) = W =

= Lp(0) + Lp(L)x + Lp(2)x® + Lp(3)x* + ... =
=149z +29x% + 61x3 + 105x* + 161x° + 229x% + 309x" + ...



