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Notation

Definition
A matrix A€ M(n x n;R) is called a square matrix. For any square
matrix A let Aj € M((n—1) x (n—1);R) denote the submatrix of

A formed by deleting the i-th row and j-th column of A.
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Determinant

Definition
A determinant is a function det : M(n x n; R) — R satisfying the
conditions:
i) if A=[a] then detA = a,
dil1 ... din
i) if A= oo and n > 1 then
anl ... dnn

detA = Z(—1)1+ja1j det Alj.
j=1
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Examples

: : a a
In particular, if A = 912 1 then
a1 ax

141 142
det A= (—1)"""anaxn + (—1) " apax = ar1axn — azan

Forexample,det[1 }=1-4—3~2=—2.



Examples (continued)

ai1 d12 a3
In particular, if A= | a»;1 ax» ap3 | then

a31 432 4a33

det A= (—1)1*tay det{ 922 42 ] +
d32 4as3

a a a a
(—1)1+2312 det 21 23 + (—1)1+3313 det 21 2| =
asr ass a31  ds2

a11322333 +3124a23331 +a13821332 — 313322331 —3d11d23332 —a12321333-



Examples (continued)

ai1 d12 a3
In particular, if A= | a»;1 ax» ap3 | then

a31 432 4a33

det A= (—1)1*tay det{ 922 42 ] +
d32 4as3

a a a a
(—1)1+2312 det 21 23 + (—1)1+3313 det 21 2| =
asr ass a31  ds2

a11322333 +3124a23331 +a13821332 — 313322331 —3d11d23332 —a12321333-

=1-3-2+2-1-2=10.

N W O
N O DN

1
For example, det | 1
0



Rule of Sarrus

a11322333 + 312323331 + 313321332 —A13a22331 — 11323332 — 312421333



Rule of Sarrus

a11322333 + 312323331 + 313321332 —A13a22331 — 11323332 — 312421333

Note this DOES NOT work for n-by-n matrices for
n=4.



Properties of Determinants

Let A,B,C e M(n x m;R)
Theorem
i) Let 1 < k < n. If matrices A, B, C have all rows the same
(resp. columns) except the k-th row (resp.column) and k-th

row of C is the sum of k-th rows (resp. columns) of matrices
A and B then det C = det A + det B,



Properties of Determinants

Let A,B,C e M(nx mR)

Theorem

i) Let 1 < k < n. If matrices A, B, C have all rows the same
(resp. columns) except the k-th row (resp.column) and k-th
row of C is the sum of k-th rows (resp. columns) of matrices
A and B then det C = det A + det B,

i) If matrix B is equal to the matrix A with two rows (resp.
columns) interchanged then det B = — det A,



Properties of Determinants

Let A,B,C e M(nx mR)

Theorem

i) Let 1 < k < n. If matrices A, B, C have all rows the same
(resp. columns) except the k-th row (resp.column) and k-th
row of C is the sum of k-th rows (resp. columns) of matrices
A and B then det C = det A + det B,

i) If matrix B is equal to the matrix A with two rows (resp.
columns) interchanged then det B = — det A,

iit) If matrix B is equal to the matrix A with some row (res. some
column) multiplied by a constant c € R then det B = cdet A.



Properties of Determinants

Let A,B,C e M(nx mR)

Theorem

i) Let 1 < k < n. If matrices A, B, C have all rows the same
(resp. columns) except the k-th row (resp.column) and k-th
row of C is the sum of k-th rows (resp. columns) of matrices
A and B then det C = det A + det B,

i) If matrix B is equal to the matrix A with two rows (resp.
columns) interchanged then det B = — det A,

iit) If matrix B is equal to the matrix A with some row (res. some
column) multiplied by a constant c € R then det B = cdet A.

Proof.

Use induction on the matrix size. O
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Transposition
Definition
Let A = [aj;] € M(m x n;R). The matrix B = [bjj] € M(n x m; R)

where bjj = ajj is called the transpose of matrix A. We write
B =AT.
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Transposition
Definition
Let A = [aj;] € M(m x n;R). The matrix B = [bjj] € M(n x m; R)

where bjj = ajj is called the transpose of matrix A. We write
B =AT.

Example
1 3
ac[120] w2
0 5

Theorem

Let Ae M(n x n;R). Then det A = det AT.



Transposition
Definition
Let A = [aj;] € M(m x n;R). The matrix B = [bjj] € M(n x m; R)

where bjj = ajj is called the transpose of matrix A. We write
B =AT.

Example
1 3
ac[120] w2
0 5

Theorem

Let Ae M(n x n;R). Then det A = det AT.

Example

2 17 2 3 2 1
det[3 4] =det{1 4]=det{3 4].



Laplace expansion

Theorem
a1l ... din

Let A = oo and let n > 1. Then forany 1 <i<n

dnl -.. dnpn
(fixed i-th row and fixed j-th column, respectively)

det A= > (—1)"ajdet Aj = > (—1)""ajdet Aj.
j=1 i=1



Laplace expansion

Theorem
a1l ... din

Let A = oo and let n > 1. Then forany 1 <i<n

dnl -.. dnpn
(fixed i-th row and fixed j-th column, respectively)

det A= > (—1)"ajdet Aj = > (—1)""ajdet Aj.
j=1 i=1



Determinants and Matrix Multiplication

Theorem (Special case of Cauchy-Binet formula)
Let A,B e M(nx n;R). Then det AB = det Adet B.



Determinants and Matrix Multiplication

Theorem (Special case of Cauchy-Binet formula)
Let A,B e M(nx n;R). Then det AB = det Adet B.

Example

2 1 2 -1 10
det{3 2]det{_3 2]—det{0 1]—1.
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Corollaries

Corollary

i) if matrix A has a zero row or a zero column then det A = 0,
i) if matrix A has two equal rows (resp. columns) then det A =0,

iii) an elementary operation of switching two rows (resp. columns)
of matrix A changes the sign of the determinant of A,

iv) an elementary operation of adding a row (resp. a column) of
matrix A to other row (resp. column) does not change the
determinant of A,

v) an elementary operation of multiplying a row (resp. a column)
of matrix A by a constant ¢ € R multiplies the determinant by
constant c,

vi) if rows (resp. columns) of matrix A form are linearly
dependent then det A = 0.
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Proofs

i) use Laplace expansion formula along the zero row (resp.
column),

i) use induction on the size of the matrix,

iii) as above,

iv) use Laplace expansion formula along the row (resp. column)
which is the sum,

v) use Laplace expansion formula along the row (resp. column)
multiplied by c € R,

vi) a row (resp. a column) is a linear combination of the other,
use elementary row (resp. column) operations to get a zero
row (resp. a zero column). Then use i).



Computing Determinants

Definition
A matrix A = [aj]] € M(n x n;R) is called upper-triangular if
aj=0forl<j<i<n.



Computing Determinants

Definition
A matrix A = [aj]] € M(n x n;R) is called upper-triangular if
aj=0forl<j<i<n.

Example
1 01 -1 7
030 2 3
Matrix | 0 0 5 0 —2 | is upper-triangular.
000 2 1
000 O
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det A= aj1axn - ann-



Computing Determinants

Definition
A matrix A = [aj]] € M(n x n;R) is called upper-triangular if
aj=0forl<j<i<n.

Example
1 01 -1 7
0 30 2 3
Matrix | 0 0 5 0 —2 | is upper-triangular.
0 00 2 1
0 00 0 0
Proposition

If matrix A = [ajj] € M(n x n;R) is upper-triangular then
det A= aj1axn - ann-

Proof.
Use induction and the Laplace expansion formula along the first
column of A.



Computing Determinants (continued)

Note that a square matrix in an echelon form is upper-triangular.
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Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any A€ M(n x n;R) rows (resp. columns) of A are linearly
dependent if and only if det A = 0.
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Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any A€ M(n x n;R) rows (resp. columns) of A are linearly
dependent if and only if det A = 0.

Proof.
(<) matrix A can be transformed by elementary row operations to
an echelon form with a zero row. O

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as
many zeroes as possible in a row or a column and use the Laplace
expansion.



Computing Determinants (continued)

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any A€ M(n x n;R) rows (resp. columns) of A are linearly
dependent if and only if det A = 0.

Proof.
(<) matrix A can be transformed by elementary row operations to
an echelon form with a zero row. O

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as
many zeroes as possible in a row or a column and use the Laplace
expansion.
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Computing Determinants (continued)

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any A€ M(n x n;R) rows (resp. columns) of A are linearly
dependent if and only if det A = 0.

Proof.
(<) matrix A can be transformed by elementary row operations to
an echelon form with a zero row. O

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as
many zeroes as possible in a row or a column and use the Laplace
expansion.

or

Put matrix in an upper-triangular form using elementary operations
and take product of the diagonal entries.
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Block Matrices

Theorem
Let M = { '3 ? ] where A, C are square matrices and 0 is a zero
matrix. Then det M = det Adet C.
Example
Let
1 21 -1 3
3 0 2 10 22 1 21 s 5
det| 4 5 0 7 9 | =det| 3 0 2 det[lQ]z
000 2 5 4 5 0
0 0 O 1 2

(2:2-4+41-3.5-1-2.5)(2-2—1-5) = —21.



Area (2—dimensional volume)

_________________
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Area (2—dimensional volume)

_________________

(b1, b2) /!

(a1,a2) )/

The area of a parallelogram spanned by vectors (a1, az), (b1, bo) is
al b1 }

equal to the absolute value of det {
a b
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Volume (3—dimensional volume)
1

(b1, b2, b3)
(1,0, 63)

(a1, a2, a3)
l

The volume of a parallelepiped spanned by vectors
(a1, az, as), (b1, ba, b3), (c1, 2, c3) is equal to the absolute value of

aa bt a
(&)

det| ap by
a b3 «



Volume — Motivation

Let I, =[0,1] x [0,1] x ... x [0,1] = [0,1]" = R" be an n—dimensional
unit hypercube. The result relating volume to the determinant can be
understood by checking how the elementary matrices change the
n—dimensional volume of / (they multiply the volume by the absolute
value of the determinant of the elementary matrix), i.e.

vol, D1 o(ln) = vol,[0,a] x [0,1] x --- x [0,1] = avol, I,

vol, L1 2(I) = vol, conv((0,0), (1,0),(2,1),(1,1)) x [0,1] x ---x [0,1] =
= vol, I,
vol, T; j(1,) = voly I.

The same happens for small hypercubes and volume approximately is a
sum volumes of small hypercubes (this is not a formal proof — just a
loose explanation!).



Area of a 2—dimensional Simplex
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Area of a 2—dimensional Simplex

(b1, b2) AN

The area of a 2—dimensional simplex with vertices at 0, (a1, a2), (b1, b»)

. ay b
is equal to the absolute value of % det [ roi ] .
: dan b2



Volume of a 3—dimensional Simplex




Volume of a 3—dimensional Simplex

The volume of a 3—dimensional simplex with vertices in

0, (a1, a2, a3), (b1, b, b3), (c1, 2, c3) is equal to the absolute value of
ai bl 1

% det a b o
as b3 C3



Volume of a Simplex
Definition
A simplex with vertices in 0, vy, ..., v, € R" is equal to the set

s(va, ..., vp) =conv(0,vy,...,v,) =

{Zn: ivi € R”|Zn:)\~— ; '—O,...,n}—
=1 i=0
n n
—{Z ivie R Z i—l,...,n}.
i=1 iz



Volume of a Simplex
Definition
A simplex with vertices in 0, vy, ..., v, € R" is equal to the set

s(va, ..., vp) =conv(0,vy,...,v,) =

{Zn: ivi € R”|Zn:)\~— ; '—O,...,n}—
=1 i=0
n n
—{Z ivie R Z i—l,...,n}.
i=1 iz

Proposition

1
vol,s(va,...,vp) = m|det(v1, ce V)l



Volume of a Simplex (continued)

Proof.
Let V,, = vola(e1,...,&n). Obviously Vi =1,V = . Assume
Vi1 = ﬁ By the Cavalieri's principle or Fubini's theorem

1

0

1

nl’

l—x,=t| 1 "
(h—=1D!n

1
V, = JO (1—x,)"" 1V, 1dx, = ‘_dxn _dr

By the mathematical induction V, = & for any n > 1. Let ¢: R” — R”
be the linear diffeomorphism given by the conditions

wlei) = vi,

fori=1,...,n.



Volume of a Simplex (continued)

Proof.

Then (p preserves linear combinations)
o(s(ery..yen)) =s(vi, ..., vy),

det Dp = det(vy, ..., vp),

where Dy = M(¢)3k is the determinant of the Jacobi matrix (the
derivative) of . Let X = s(ey,...,e,). By the change—of—coordinates
formula

vol,,s(vl,...,vn):J dx;...dx, =

©(X)

= f |det Dp| dxy ... dx, = Vp|det(vy, ..., v,)| =
X

1
= m|det(v1,...,vn)|.



Determinant of Block Matrix
Proposition

If M e M(n x n;R) is a block matrix and

A| B
v- e
where A and D are square matrices then
det Adet(D — CA™!B) if detA#0
det M =

det Ddet(A— BD™1C) if detD #0
det Adet D if B=0orC=0



Determinant of Block Matrix
Proposition
If M e M(n x n;R) is a block matrix and

A| B
1)
where A and D are square matrices then

detAdet(D — CA"1B) if  detA %0
det M = < det Ddet(A— BD™'C) if detD #0

det Adet D if B=0orC=0
Proof.
At Jo|[A]lBT] [1]| A'B
—CA 1 | / cC|D | |0 | D— CA™1B
|| -BD* [ A|B] [A-BD'C|oO
0] DT Clo |~ | bt I
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Sylvester's Determinant Theorem /Weinstein—Aronszajn
Identity

Corollary
Let Ae M(m x n;R), B e M(n x m;R) be two matrices. Then

det(AB + ) = det(BA + I,).



Sylvester's Determinant Theorem /Weinstein—Aronszajn
Identity

Corollary
Let Ae M(m x n;R), B e M(n x m;R) be two matrices. Then

det(AB + ) = det(BA + I,).

Proof.
Let

I, | —B
N EAELE

Since det/, = det/,, = 1 # 0 from both formulas for the
determinant of a block matrix one gets

det M = det I, det(Im — Al 1 (=B)) = det(AB + Iny),

det M = det I, det(l, — (—B)I,* A) = det(BA + I,).



Determinant as a Function of Matrix Rows
For matrix A = [aj;] let
rn = (a11,a12,---,31n), -, = (an1, an2,
be the rows of A. Set

det(r,...,r,) = det A.

ceeyann),



Determinant as a Function of Matrix Rows
For matrix A = [aj;] let
rn = (a11,812,---,31n)s--->rm = (An1,an2, - -+ ann)s
be the rows of A. Set

det(r,...,r,) = det A.

Proposition

det(r17"'7ri—1707ri+lu---7rn):0 fori=1,,,,7n,



Determinant as a Function of Matrix Rows
For matrix A = [aj;] let
rn = (a11,812,---,31n)s--->rm = (An1,an2, - -+ ann)s
be the rows of A. Set

det(r,...,r,) = det A.

Proposition
det(r,...,ri-1,0,ri41,...,r) =0fori=1,...,n.

Proof.
For i =1 it follows from the definition, for i > 1 it follows by
induction (the (i — 1)-th row in matrices Ay; is zero).



Determinant as a Function of Matrix Rows (continued)

Definition
Let V, W be a vector spaces. Function p: V x ... x V —> Wis
|y —

n—times
called

i) multilinear if forany i =1,...,n and
Vi,.e.., Vi1, Vit1,---, Vs € V the function

O(VL, oy Viely Vigdy vy V)t V> W

is linear,



Determinant as a Function of Matrix Rows (continued)

Definition
Let V, W be a vector spaces. Function p: V x ... x V —> Wis
—
n—times
called

i) multilinear if forany i =1,...,n and
Vi,.e.., Vi1, Vit1,---, Vs € V the function

O(VL, oy Viely Vigdy vy V)t V> W

is linear,
i) antisymmetric (or skew-symmetric) if forany 1 <i<j<n
and vi,...,v, eV

O(V1, oy Vig oy Voo, Vi) = —@(VIy ooy Vs ooy Vi ooy V),



Determinant as a Function of Matrix Rows (continued)

Definition
iii) alternating if

QD(VI""’Vi""vviv"'vvn):0’

forany vi,...,v, e V.



Determinant as a Function of Matrix Rows (continued)

Proposition
Over the real numbers a multilinear function f is antisymmetric if
and only if it is alternating.

Proof.

Assume ¢ is alternating. Then

=o(Vi, oy Vi, Voo V) (Vi o Ve Vi, V)

+o(Viy ooy Vi s Vig ooy V) F (VL oo Vo Ve, V).



Determinant as a Function of Matrix Rows (continued)

Proof.

Assume ( is antisymmetric. Then
O(Viy oy Vigeo oy Vigoo oy V) = —(Vi, ooy Viy oo Vi ooy V),
(after replacing first v; with the second v;), therefore

20(Vay ooy Vigeo oy Vigeo oy V) = 0.



Determinant as a Function of Matrix Rows (continued)

Proposition
Fori=1,...,nand any c e R,n,...,ri,rl,...,meR"
i) det(ry, ..., fi—1, Qi fig1y ..oy tn) =

adet(r, ... -1,y Figls--srn)s



Determinant as a Function of Matrix Rows (continued)

Proposition
Fori=1,...,nand any c e R,n,...,ri,rl,...,meR"
i) det(ry, ..., fi—1, Qi fig1y ..oy tn) =
adet(r, ... -1,y Figls--srn)s
i) det(ri, ..., ri—1,fi+r rig1, ..., ) =
det(rl,...,r,-_1,r,-,r,-+1,...,rn)+
det(r,... . fi—1,r iz, srn)-



Determinant as a Function of Matrix Rows (continued)

Proposition
Fori=1,...,nand any c e R,n,...,ri,rl,...,meR"
i) det(ry, ..., fi—1, Qi fig1y ..oy tn) =
adet(r, ... -1,y Figls--srn)s
i) det(ri, ..., ri—1,fi+r rig1, ..., ) =
det(rl,...,r,-_1,r,-,r,-+1,...,rn)+
det(r,... . fi—1,r iz, srn)-

that is, determinant is a multilinear functions of matrix rows.



Determinant as a Function of Matrix Rows (continued)

Proposition
Fori=1,...,nand any c e R,n,...,ri,rl,...,meR"
i) det(ry, ..., fi—1, Qi fig1y ..oy tn) =
adet(r, ... -1,y Figls--srn)s
i) det(ri, ..., ri—1,fi+r rig1, ..., ) =
det(rl,...,r,-_1,r,-,r,-+1,...,r,,)+
det(r,... . fi—1,r iz, srn)-

that is, determinant is a multilinear functions of matrix rows.

Proof.

For i = 1 it follows from the definition, for i > 1 it follows by
induction (in matrices Ay the (i — 1)-th rows is multiplied by a or
is a sum of rows r; and r/ with j-th coordinate removed). O



Determinant as a Function of Matrix Rows (continued)

Proposition
Foranyl<i<j<nandn,...,rmeR"
det(ri, ..., fi—1, iy fig1s -y l—1,Fis 41y - -y 1) = 0,

that is, determinant is alternating (hence antisymmetric) multilinear
map.

Proof.

For n=2 and i = 1, = 2 the claim follows from the definition.



Determinant as a Function of Matrix Rows (continued)

Proposition
Foranyl<i<j<nandn,...,rmeR"
det(rl,...,r,-_l,r;,r,-+1,...,rj_l,r;,rj+1,...,r,,) =0,

that is, determinant is alternating (hence antisymmetric) multilinear
map.

Proof.

For n=2 and i = 1, = 2 the claim follows from the definition.
For n >3 and i,j # 1 the claim follows by induction (in matrices
A1) two rows are the same).



Determinant as a Function of Matrix Rows (continued)

Proposition
Foranyl<i<j<nandn,...,rmeR"
det(rl,...,r,-_l,r;,r,-+1,...,rj_l,r;,rj+1,...,r,,) =0,

that is, determinant is alternating (hence antisymmetric) multilinear
map.

Proof.

For n=2 and i = 1, = 2 the claim follows from the definition.
For n >3 and i,j # 1 the claim follows by induction (in matrices
Ai1j two rows are the same). It is enough to prove the case
n=3,i=1,j>1. Let ri(p) e R 1, ri(pq) e R"~? denote
respectively, i-th row with p-th coordinate removed and i-th row
with p-th and g-th coordinates removed.



Determinant as a Function of Matrix Rows (continued)

Proof.
Then
det(ri,....r—1,M,0j+1,---10n) =,
= Z (=) ¥ ay, d6t<r2(k), e rj(f)p rl(k)’ ’]'(-t)17 o r,(,k)) _

(by definition)

= Z YA+R+0=2) 5, det(rl(k), rz(k), ey r.(k)l, r.(k)l,...,r,(,k))

(by the inductive assumption and antisymmetry)



Determinant as a Function of Matrix Rows (continued)

Proof.

- <_1>/al,det(rgk'>,...,r;fq,r;fg,...,rgm)) o,

I=k+1

since the term ayjaix det<r2(kI), cel rj(fll), rj(fl), e r,(,kl)) appears in

the sum exactly twice but with different signs. O



Determinant as a Function of Matrix Rows (continued)

Corollary

Adding a row multiplied by a constant to another of a matrix does
not change its determinant.



Determinant as a Function of Matrix Rows (continued)

Corollary

Adding a row multiplied by a constant to another of a matrix does
not change its determinant.

Proof.

det(rn + ar,r, ..., r) =det(r, r, ..., m)+

+adet(r, r, ..., m) =det(r, rn,...,m).



Determinant as a Function of Matrix Rows (continued)

Corollary

The Laplace formula for rows holds.

Proof.

det(ry, ..., Fiy... ty) =

= (—1)i_1 det(r,-, Myeooy izl Figlye -y r,,) =

n
= (-1t Z(—l)lﬂa,-j det<r1("), cee r,.(i)l, r}fl, r,g")).
j=1

= (—1)i+jaUdet<rU),... r Y r,g)).

n
i1 My
i=1

J



Determinant of Matrix Product

Proposition
If A is one of the elementary matrices D ., Lj, Tjj or matrix A is in
the reduced echelon form then

det AB = det Adet B.

Proof.

Multiplying matrix B on the left by matrix D; , corresponds to an
elementary operation of multiplying i-th row of matrix B by the
constant o € R, multiplying matrix B on the left by matrix Dj;
corresponds an elementary operation of adding j-th row of matrix
B to the i-th one, multiplying matrix B on the left by matrix Tj
corresponds an elementary operation of swapping i-th and j-th row
of matrix B. Determinant is an antisymmetric multilinear maps,
therefore



Determinant of Matrix Product (continued)

Proof.

detD; = a, detl;j=1  detT;=—1,
det D;B = a.det B, det LijB = 1-det B, det TijB _ (—1)-det B.



Determinant of Matrix Product (continued)

Proof.
detD; = a, detl;j=1  detT;=—1,

det D;B = avdet B, det L;;B = 1-det B, det T;jB = (—1)-det B.

If Aif in the reduced echelon form the either A has a zero row or
A = |. Then, respectively

det A =0, detA=1,

det AB =0 - det B, det AB =1-detB,

since matrix AB has a zero row too.



Determinant of Matrix Product (continued)

Corollary
For any matrices A, B € M(n x n;R)

det AB = det Adet B.



Determinant of Matrix Product (continued)

Corollary
For any matrices A, B € M(n x n;R)

det AB = det Adet B.
Proof.
Matrix A can be brought by elementary row operations to the

reduced echelon form. Therefore there exist elementary matrices
Ei, ..., Ex and matrix S in the reduced echelon form such that

A=EE .. ES.
Therefore

det AB = (det E; det E; - - - det E det S) det B = det Adet B.



Determinant of a Transposed Matrix

Proposition
For any matrix A€ M(n x n;R)

det AT = det A.

Proof.

Matrix A can be brought by elementary row operations to the
reduced echelon form. Therefore there exist elementary matrices
Ei,..., Ex and matrix S in the reduced echelon form such that

A=EE,...ES.



Determinant of a Transposed Matrix (continued)

Proof.

Matrix S has either a zero row or S = [. Then, respectively det ST =0
(since matrix ST has a zero column, therefore its reduced echelon form
has a zero row) or det ST = det/ = 1. Moreover

det D,Ta =detD; o, =, det L,-TJ- =detl; =1, det T,-JT =det T = —1,
therefore

det AT = det STdet E] det E] | ---det £ = det A.

Corollary
The Laplace formula for columns hold. Determinant is antisymmetric
mulitilinear map of its columns.



Inverse of an Elementary Matrix

Proposition
It can be directly checked that

Di oDj a1 =D;q1Djg =1,
L2l = Lyj) = (21 = L)L = 1,
TyTy =1,

i.e., elementary matrices have left- and right-hand side inverse
matrices which are equal to each other.



Inverse of an Elementary Matrix (continued)

Remark _
J
100 0 0 07
ilo 1.0 -1 0 0
001 00 0
L;'=2l—L;j=10 0 0 10 0|=Dj-1L;iDj 1,
000 01 0
L0 000 0 0 1
and

(21 — Ljj)A = matrix A, with j — th row subtracted from the i — th,

A(l—-2Lj;) = matrix A, with i—th column subtracted from the j—thone,

in particular, the inverse of matrix Ljj is a product of elementary
matrices.



Inverse Matrix

Corollary

Let Ae M(n x n;R) be any matrix. Then det A =0 if and only if
the reduced echelon form of A has a zero row and det A # 0 if and
only if the reduced echelon form of A is equal to | (the unit matrix).



Inverse Matrix

Corollary

Let Ae M(n x n;R) be any matrix. Then det A =0 if and only if
the reduced echelon form of A has a zero row and det A # 0 if and
only if the reduced echelon form of A is equal to | (the unit matrix).

Corollary

IfAB = A'B = | then A = A, i.e the left—hand side inverse, if it
exists, Is unique.



Inverse Matrix

Corollary

Let Ae M(n x n;R) be any matrix. Then det A =0 if and only if
the reduced echelon form of A has a zero row and det A # 0 if and
only if the reduced echelon form of A is equal to | (the unit matrix).

Corollary

IfAB = A'B = | then A = A, i.e the left—hand side inverse, if it
exists, is unique. Analogously, the right—hand side inverse is unique.



Inverse Matrix

Corollary

Let Ae M(n x n;R) be any matrix. Then det A =0 if and only if
the reduced echelon form of A has a zero row and det A # 0 if and
only if the reduced echelon form of A is equal to | (the unit matrix).

Corollary

If AB = A'B =1 then A= A, i.e the left—hand side inverse, if it
exists, is unique. Analogously, the right—hand side inverse is unique.

Proof.
If AB=/thendetB # 0so B=EEy---Eil, where Ey, ..., E
are elementary matrices, which have inverses.



Inverse Matrix

Corollary

Let Ae M(n x n;R) be any matrix. Then det A =0 if and only if
the reduced echelon form of A has a zero row and det A # 0 if and
only if the reduced echelon form of A is equal to | (the unit matrix).

Corollary

If AB = A'B =1 then A= A, i.e the left—hand side inverse, if it
exists, is unique. Analogously, the right—hand side inverse is unique.

Proof.

If AB=/thendetB # 0so B=EEy---Eil, where Ey, ..., E
are elementary matrices, which have inverses. Multiplying
respectively by Ek_l, ce El_1 the equation on the right AB = A'B
we get A=A’ O



Inverse Matrix (continued)

Corollary
If AB = | then BA = | (i.e. the right-hand side inverse of A is also
its left-hand side inverse).

Proof.
If AB=/thendetB # 0so B=EEy---Eil, where Eq, ..., E
are elementary matrices, which have inverses. Therefore

101 -1
A:Ek Ek—l"'El )

and
BA=E - EEEN =1



Inverse Matrix (continued)

Corollary
Matrix A is invertible if and only if det A # 0. Moreover

elt. row

[A] 1] PR 1] AT

Proof.

If AB = /| then det Adet B = 1, therefore det A £ 0. If det A # 0
then A= E1E,--- Exl, where Eq, ..., E, are elementary matrices.
Then

11 1
B=E "E_, - E I,
and AB = |.



Gram Determinant

Definition
For any vectors vq,...,vx € R" let Ae M(n x k;R) be a matrix
with columns equal to vi,...,v,. The Gram determinant is
V]_ . Vl V]_ . V2 PR V]_ . Vk
V2 . V]. V2 . V2 .. V2 . Vk
G(vl,...,vk) = det . . . . = det ATA.

Vk.vl Vk.v2 ... Vk.vk



k-dimensional Volume of k-dimensional Parallelotope

Theorem
The k—dimensional volume of a parallelotope spanned by vectors
Vi,...,vk € R" is equal to /G (vq,..., vk).



k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k—dimensional volume of a parallelotope spanned by vectors
Vi,...,vk € R" is equal to /G (vq,..., vk).

Proof.

The proof follows by induction on k. For k =1

VG(v1) =/det| vi-wv | =]nl].



k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k—dimensional volume of a parallelotope spanned by vectors
Vi,...,vk € R" is equal to /G (vq,..., vk).

Proof.

The proof follows by induction on k. For k =1

VG(v1) =/det| vi-wv | =]nl].

If k> 2let V(vi,...,vk) denote the k-dimensional volume of a
parallelotope spanned by v, ..., vk. Assume that

V(Vl, ey Vk) = V(Vl, ey Vk_l)h,

where h is the distance of the vector v, from the subspace
V =lin(v1,...,vk—1) (k-dimensional volume is equal to the
(k — 1)-dimensional volume of the base times the height).



k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k—dimensional volume of a parallelotope spanned by vectors
Vi,...,vk € R" is equal to /G (vq,..., vk).

Proof.

The proof follows by induction on k. For k =1

VG(v1) =/det| vi-wv | =]nl].

If k> 2let V(vi,...,vk) denote the k-dimensional volume of a
parallelotope spanned by v, ..., vk. Assume that

V(Vl, ey Vk) = V(Vl, ey Vk_l)h,

where h is the distance of the vector v, from the subspace

V =lin(v1,...,vk—1) (k-dimensional volume is equal to the
(k — 1)-dimensional volume of the base times the height). Let
w = Zf-:ll ajvi be such a vector in V that h = ||vx — w|].



k-dimensional Volume of k-dimensional Parallelotope
(continued)

Proof.
That is

k—1

(k —w) Ly &= Za,-vj-v,-zvj-vk for j=1,....k—1.
i=1

Moreover

W= (ve—w)- (v —w) = (vik —w) - v —
k—1
Z (vk - vj) +h = v v



k-dimensional Volume of k-dimensional Parallelotope
(continued)

Proof.
The system of k linear equations with variables a1, ..., ax_1 and h?
(v -v1)aq + (vi - w)az + ... + (vi-vk_1)aker + O0R? = Vi - Vi
(Vz . v1)a1 + (Vz . VQ)O(Q + ...+ (Vz . Vk—l)ak—l + 0/72 = Vo - Vg
(kal . V1)Ot1 + (kal . V2)042 + ...+ (kal - Vk,l)ak,1 + 0W = (kal . Vk)
(Vk . V1)OL1 + (Vk . v2)a2 + ... + (Vk . Vk—l)ak—l + R = Vi Vi



k-dimensional Volume of k-dimensional Parallelotope
(continued)

Proof.
The system of k linear equations with variables a1, ..., ax_1 and h?
(v -v1)aq + (vi - w)az + ... + (vi-vk_1)aker + O0R? = Vi - Vi
(Vz . V1)Oz1 + (Vz . VQ)O(Q + ...+ (Vz . Vk—l)ak—l + 0/72 = Vo - Vg
(kal . V1)Ot1 + (kal . V2)042 + ...+ (kal - Vk,l)ak,1 + 0W = (kal . Vk)
(Vk . V1)OL1 + (Vk . V2)O¢2 + ... + (Vk . vk,l)ak,l + R = Vi Vi

can be solved by Cramer’s rule, i.e.

G(vl,...,vk)

h? = :
G(Vl,. ey Vk—l)




k-dimensional Volume of k-dimensional Parallelotope
(continued)

Proposition
Let vq,...,v, € R" be any vectors. Let Ae M(n x n;R) be a
matrix which columns are equal to vi,...,v,. Then

V(vi,...,vp) = |det A,

where V(vi,...,vy,) is the n-dimensional volume of a parallelotope
spanned by vy, ..., v,.



k-dimensional Volume of k-dimensional Parallelotope
(continued)

Proposition
Let vq,...,v, € R" be any vectors. Let Ae M(n x n;R) be a
matrix which columns are equal to vi,...,v,. Then

V(vi,...,vp) = |det A,
where V(vi,...,vy,) is the n-dimensional volume of a parallelotope
spanned by vy, ..., v,.
Proof.

V(vi,...,vp) = Vdet ATA = y/(det A)2 = | det A|.



Cauchy—Binet Formula

Theorem (Cauchy-Binet)

Let Ae M(m x n;R), B € M(n x m;R) be matrices such that
m < n. For any subset S  {1,...,n} of m elements let

Am.s € M(m x m;R) denote the square submatrix of matrix A
consisting of columns indexed by S. Let Bs ,, € M(m x m;R)

denote the square submatrix of matrix B consisting of rows indexed
by S. Then

det AB= > detAnsdetBs .

Sc{1,...,n}
#S=m



Cauchy—Binet Formula

Theorem (Cauchy-Binet)

Let Ae M(m x n;R), B € M(n x m;R) be matrices such that
m < n. For any subset S  {1,...,n} of m elements let

Am.s € M(m x m;R) denote the square submatrix of matrix A
consisting of columns indexed by S. Let Bs ,, € M(m x m;R)

denote the square submatrix of matrix B consisting of rows indexed
by S. Then

det AB= > detAnsdetBs .

Sc{1,...,n}
#S=m

If m > n then det(AB) =0



Cauchy-Binet Formula (continued)

Proof.

If A= { Ig g ] then the claim holds because

det AB = det Am,{l,...,m} B{l,...,m},m'



Cauchy-Binet Formula (continued)

Proof.

If A= { Ig g ] then the claim holds because

det AB = det Am,{l,...,m} B{l,...,m},m'

In particular, if m > n then k < n < m therefore the matrix
AB e M(m x m;R) has a zero row hence det AB = 0 (columns of
AB are linear combinations of n vectors in R™).



Cauchy-Binet Formula (continued)

Proof.

If the claim holds for some matrices A, B then it holds for matrices
EA, BF where E, F € M(m x m;R) are any elementary matrices because

det(EA),, s = det Edet Ay s, det(BF)s ,, = det Bs mdetF,
and
det(EA)(BF) = det Edet ABdet F =

=detE | ] detA,sdetBs,, |detF =



Cauchy-Binet Formula (continued)
Proof.

If the claim holds for some matrices A, B then it holds for matrices
AE, E~'B when

i) E = Dj, because if i € S then

det(AD; ) o = adet Aps, det(D,j;B)S — o~ !det B,

m
) ,m

and if i ¢ S then

det(AD; ) 5 = et Ans, det(D1B) = detBsp,

m
) ,m

det(AD;o)(D; tB) =det AB= >’ det Ap sdetBs =

Sc{1,...,n}
#S=m

_ Z det(AD;jq),, s det (Dl_o} B) S
Scllon)

,m



Cauchy-Binet Formula (continued)

Proof.
ii) E = Ljj because for any S < {1,...,n}

det(AL;) = det Ap s, det<Lng> — det Bs. .

S.m

The claim holds for matrices AL;; and Lng by the similar
formula as above.



Cauchy-Binet Formula (continued)

Proof.

Forany S < {1,...,n} and 1 < i,j < n define the map

f-{1,....,n} > {1,...,n} by f(i) =j,f(j) =1i,f(k) =k, k # i,j and let
Sij = f(S).

iii) E = Tj because
det (ATj),, s = es det Ap,s,, det (T;B) = esdetBs,

where g5 € {—1,1} (for example es = 1if i,j ¢ S and s = —1 if
i,j € S). Therefore

det(AT;)(T;'B) =det AB =)' (esdetAns)(esdetBs ) =

Sc{1,...,n}
#S=m

= Y, det(ATy),, sdet(T;B) .
’ S,m
Sc{L,...,n}
#S=m



Cauchy-Binet Formula (continued)

Proof.

By elementary row operation (i.e. by multiplying by elementary
matrices on the left) matrix A can be put into the reduced echelon
form and then the reduced echelon form of A can be put by
elementary column operations (i.e. by multiplying the reduced
echelon form by elementary matrices on the right) into the form

Ik | 0

0 .
Therefore the Cauchy—Binet formula holds for any matrices
Ae M(mx n;R),Be M(nx m;R).



Cauchy-Binet Formula (continued)

Corollary
For any Ae M(n x m;R)

0 m>n
det(ATA) = (det A)* m=n
2.5c{1,...,ny (det As,m)2 m<n

#S=m



Cauchy-Binet Formula (continued)

Corollary
For any Ae M(n x m;R)

0 m>n
det(ATA) = (det A)? m=n
2.5c{1,...,ny (det As,m)2 m<n

#S=m

Corollary (Generalized Pythagorean Theorem)

The square of m-dimensional volume of a parallelotope spanned by
m vectors in R" is equal to the sum of squares of the
m-dimensional volumes of its projections on all m-dimensional
coordinate subspaces for any m < n.



Generalized Cauchy—Binet Formula

Let As 1 denote the submatrix of matrix Ae M(m x n;R)
consisting of rows S < {1,..., m} and columns T < {1,...,n}.



Generalized Cauchy—Binet Formula

Let As 1 denote the submatrix of matrix Ae M(m x n;R)
consisting of rows S < {1,..., m} and columns T < {1,...,n}.

Proposition
For any matrices A€ M(m x n;R), B € M(n x k;R), any
g <max{m,n,k} and any S = {ir,...,ig}, T ={j1,.-.,Jq}

det(AB)s = Y.  detAsqdetBg 7.
Q={k1,....kq}

1<k1<...<kq<n



Generalized Cauchy—Binet Formula

Let As 1 denote the submatrix of matrix Ae M(m x n;R)
consisting of rows S < {1,..., m} and columns T < {1,...,n}.

Proposition
For any matrices A€ M(m x n;R), B € M(n x k;R), any
g <max{m,n,k} and any S = {ir,...,ig}, T ={j1,.-.,Jq}

det(AB)s = Y.  detAsqdetBg 7.
Q={k1,....kq}

1<k1<...<kq<n

Proof.
(sketch)

N A= N\"AN\"B,
and the entries of A7 A (resp. /\? B) are all order g minors of the
matrix A (resp. the matrix B). O



Sylvester's Theorem

Proposition
Let Ae M(n x n;R) be a square matrix. Let1 < p < q < n and
1<s<t<n. Then

det Adet Apq s = det {d‘“ Aps  det Af”] :

det Ags det Ayt

where Apq.ij € M((n —2) x (n— 2); R) denotes matrix A with rows
p and g and columns s and t removed.

Proof.

It is enough to prove the theorem for p=s=n—1landg=t=n
(exercise). The proof is taken from G. A. Baker, P. Graves—Morris,
Padé Approximants, Cambridge University Press.



Sylvester's Theorem

Proof.

Let A = [aj] € M(n x n;R) and let Ry,—1, Ry, Co—1, C, denote the
corresponding rows and columns of matrix A but without the last
two entries. Let B = A(,, Dn,(n—1)n € M((n —2) x (n—2);R) be
the remaining matrix, i.e.

B Cn—l Cn
A= | Ro-1]am-1(n-1) | 3n-1)n
R n(n—1) dnn
Let

B Ch1 Cn 0
c— | Pt |31 | 3n-1)n | O
Rn n(n—1) dnn Rn
0 0 0 B




Sylvester’'s Theorem

Proof.

det C = det Adet Ayq; "

B Cn—l Cn 0
_ n—1 | (n—1)(n—1) | (n—1)n 0
det Rn an(n—l) ann Rn
B Cn—l Cn B
B Cn—l Cn 0
_ et | Rt 310 | 3nin | O
0 an(n—1) dnn R,
0 Cn—l Cn B

(sum in the second column)




Sylvester's Theorem

Proof.

B Cn—l Cn 0
. Rn_1 a(n—l)(n—l) a(n—l)" 0
= det 0 0 ann R,
0 0 ¢ | B

B 0 Cn 0

tdet | Bl O | 3n-nn | O

0 dn(n—1) dnn Rn

0 Cn—l Cn B




Sylvester's Theorem

Proof.

[ B G AL
- det[ Ro-1 | a(n-1)(n-1) ]det{ C.| B

B | G n(p-1) [ Rn | _
_det[ Ro-1 [ an-1)n }dEt[ Cra | } -

B
= det A(n—l)(n—l) det A,, — det A(n—l)n det An(n—l)'

Exchanging two appropriate rows and columns does not change
signs in the above equation.



Permutation Matrix

Definition
For any permutation o € S, let P, = [p;j] € M(n x n;R) be its
permutation matrix given by

0 i#o()
PU—{ 1 i=o0())



Permutation Matrix

Definition
For any permutation o € S, let P, = [p;j] € M(n x n;R) be its
permutation matrix given by

0 i#o()
PU—{ 1 i=o0())

Proposition
For any permutations o,7 € S,
i) Pq=1,



Permutation Matrix

Definition
For any permutation o € S, let P, = [p;j] € M(n x n;R) be its
permutation matrix given by

0 i#o()
PU—{ 1 i=o0())

Proposition

For any permutations o,7 € S,
i) Pq=1,
i) Pyr = PsPy,



Permutation Matrix

Definition
For any permutation o € S, let P, = [p;j] € M(n x n;R) be its
permutation matrix given by

0 i#o(j)
Pi = { 1 i=o())
Proposition
For any permutations o,7 € S,
i) Pq=1,
i) Pyr = PsPy,

i)y P>l =P = PJ,



Permutation Matrix

Definition
For any permutation o € S, let P, = [p;j] € M(n x n;R) be its
permutation matrix given by

0 i#o()
PU—{ 1 i=o0())

Proposition

For any permutations o,7 € S,
i) Pg=1,
)M—P&,

|||) =P, =P],
iv) sg ( ) = det P,.



Permutation Matrix (continued)

Example
Let o0 = (1,2,3) € S3. Then P3 =P s = |

= O O

O O

o = O



Permutation Matrix (continued)

Example
Let o0 = (1,2,3) € S3. Then P3 =P s = |

Py =

o = O

01 010
00|, Pa=|001
10 100

Moreover det P, = 1, since o is an even permutation.



Permutation Matrix (continued)

Example
Let o0 = (1,2,3) € S3. Then P3 =P s = |

Py =

o = O

01 010
0 0f, P,x=(001
10 1 00
Moreover det P, = 1, since o is an even permutation.

Remark
Some sources define P} as the permutation matrix of o.



Permutation Matrix (continued)

Proposition
For any permutation o € S, and matrix A€ M(n x m; R) with rows
f,...,rn and matrix B e M(m x n;R) with columns ci,. .., c,

v) PyA has rows r,—1(1),.. ., fo-1(n),



Permutation Matrix (continued)

Proposition
For any permutation o € S, and matrix A€ M(n x m; R) with rows
f,...,rn and matrix B e M(m x n;R) with columns ci,. .., c,

v) PyA has rows r,—1(1),.. ., fo-1(n),

vi) BP; has columns c,(1y, - - -, Co(n)-



Permutation Matrix (continued)

Proposition
For any permutation o € S, and matrix A€ M(n x m; R) with rows
f,...,rn and matrix B e M(m x n;R) with columns ci,. .., c,

v) PyA has rows r,—1(1),.. ., fo-1(n),

vi) BP; has columns c,(1y, - - -, Co(n)-



Permutation Matrix (continued)

Proposition
For any permutation o € S, and matrix A€ M(n x m; R) with rows
f,...,rn and matrix B e M(m x n;R) with columns ¢, ...
V) P(,A has rows I’U—1(1), ey I’U—l(n),
vi) BP; has columns c,(1y, - - -, Co(n)-
Example
0 01 il a2 a3 a1 axn
1 00 ax ax ax ail ar
i 10 a1 asy a3 a1 ax
al a2 a3 0 01 ax a3
ax ax axs 100 axp a3
| a1 a3 as3 0 10 ax as

dss3
ai3
ans

ail
ani
asi




Triangular and Unitriangular Matrices

Definition
Let k = min{m, n}. Matrix A€ M(m x n;R) is an upper
triangular matrix if

aj=0fork>i>j>1



Triangular and Unitriangular Matrices

Definition
Let k = min{m, n}. Matrix A€ M(m x n;R) is an upper
triangular matrix if

aj=0fork>i>j>1

Matrix A is an upper unitriangular matrix if it is upper triangular
and a;; =1fori=1,... k.



Triangular and Unitriangular Matrices

Definition
Let k = min{m, n}. Matrix A€ M(m x n;R) is an upper
triangular matrix if

aj=0fork>i>j>1

Matrix A is an upper unitriangular matrix if it is upper triangular
and a;; =1fori=1,... k.

Matrix A€ M(m x n;R) is a lower triangular matrix if

aj=0for1<i<j<k



Triangular and Unitriangular Matrices

Definition
Let k = min{m, n}. Matrix A€ M(m x n;R) is an upper
triangular matrix if

aj=0fork>i>j>1

Matrix A is an upper unitriangular matrix if it is upper triangular
and a;; =1fori=1,... k.

Matrix A€ M(m x n;R) is a lower triangular matrix if
aj=0forl<i<j<k

Matrix A€ M(m x n;R) is a lower unitriangular matrix if it is
lower triangular and a;; = 1fori=1,..., k.



General Linear Group

Definition
The (real) general linear group GL(n, R) is the group of all (real)
invertible n-by-n matrices, i.e.,

GL(n,R) = {Ae M(n x n;R) | det A  0}.



Weyl Subgroup and Borel Subgroup

Definition
The Weyl subgroup W = W, is the subgroup of the general linear
group GL(n,R) consisting of all permutation matrices, i.e.,

W, = {P, € GL(n,R) | o € S,}.

The standard Borel subgroup B = B,, is the subgroup of the
general linear group GL(n,R) consisting of all invertible upper
triangular matrices, i.e.,

B, ={A€ GL(n,R) | Ais upper triangular}.

Borel subgroup of GL(n,R) is any subgroup conjugated with the
standard Borel subgroup, i.e. is of the form hBh~! for some matrix
he GL(n,R).



Transvections

Definition
For any « € R and i # j where 1 < /,j < n a transvection is a
matrix Xjj(«) € M(n x n;R) given by the condition
XU(CM) =/, + O(E;j,
where Ej; = [ejj] € M(n x n;R) and

o — 1 k=iand /=
k=10 otherwise

%l am following J. L. Alperin, R. B. Bell Groups and Representations,
Springer 1995



Transvections (continued)

Proposition
Let o, 8 € R and let i, j, k be any pairwise distinct numbers. Then
i) det Xjj(a) = 1 hence Xjj(a) € GL(n,R),

ii) if o # 0 then
Xjla)e B & i</,

[XU(OZ),X,/((IB)] = X,-k(aﬂ), where [A, B] = AB — BA,

=
N
X
AN
L
Ry
Sp
Il
P
Y
S
)
h
L
3
<
)
m



Transvections (continued)

Proposition
Let o, 8 € R and let i, j, k be any pairwise distinct numbers. Then
i) det Xjj(a) = 1 hence Xjj(a) € GL(n,R),

ii) if o # 0 then
Xjla)e B & i</,

[Xu(a)v)gk(/@)] = Xik(aﬁ)' where [Av B] = AB - BA,
vi) PoXij(a)Ps = Xyiyo(j) (@) for any Py e W.

Proof.

Exercise. O



Transvections (continued)

Proposition
Let « € R and let i # j. Assume A€ M(n x n;R) has rows
Mn,...,r, and columns cy,...,c,. Then

i) Xjj(o)A is equal to matrix A whose i-th row is equal to

i) AXjj(c) is equal to matrix A whose j-column row is equal to
¢ + ag;.



Transvections (continued)

Proposition
Let « € R and let i # j. Assume A€ M(n x n;R) has rows
Mn,...,r, and columns cy,...,c,. Then

i) Xjj(o)A is equal to matrix A whose i-th row is equal to
i) AXjj(c) is equal to matrix A whose j-column row is equal to
¢ + ag;.

Proof.

Exercise.



Bruhat Decomposition of GL(n, R)

The following result is a simple particular case of a more general
result valid for any algebraic group G. This particular case is closely
related to the reduced echelon form.

Proposition

For any matrix A € GL(n,R) there exists a matrix P, € W,, and
matrices b, b’ € B such that

A= bP,b.



Bruhat Decomposition of GL(n, R) (continued)

Proof.

There exist pairwise different numbers ky,..., k, € {1,...,n} and a
matrix b € B such that for any j = 1,..., n the only non—zero entry
in the j-th column of matrix bA, excluding rows kq,...,kj_1 is in

the kj-th row (for j = 1 this condition is empty).

Let ki be the biggest number such that ay; # 0 (there exists such
ki as matrix A is invertible). Multiplying A by a product of
transvections X, () with i < k;, equal to b; € B one can make
the entry (ki,1) the only non—zero entry in the 1st column of b A.



Bruhat Decomposition of GL(n, R) (continued)

Proof.

Analogously, let k» be the biggest number, different from k; such
that ay,» # 0 (there exists such kp as matrix A is invertible).
Multiplying by A by a product of transvections X, (c) with i < ky,
equal to by € B, one can make the entry (kp,2) the only non—zero
entry in the 2nd row of byb1 A, excluding row k;. And so on, finally
let b= (b, bab1) € B. Let o(j) = kj for j=1,...,n.
Multiplying bA on the right by the appropriate product of
transvections with Xjx. () where i < k; one can get

A= bP,b.



Bruhat Decomposition

Theorem

GL(n;R) = BWB,

that is, the general linear group is a disjoint union of n! the double
cosets.



Bruhat Decomposition

Theorem

GL(n;R) = BWB,

that is, the general linear group is a disjoint union of n! the double
cosets.

Proof.

It is enough to prove that the cosets are disjoint. Assume that
by P,by = by P, b},

then
bP, = P.b,

for some b;, b, b, b" € B.



Bruhat Decomposition (continued)

Proof.

Let k be the smallest number such that o(k) # 7(k). Then the
largest index of a non—zero entry of the k-th column of bPo is
(0(k), k). The only (possibly) non—zero entries in P.b’ in the k-th
column are (o(1), k), (6(2),k),...,(c(k —1),k),(7(k), k). Since
o(k) # o(j) for j=1,...,k —1 this leads to a contradiction.



Root Subgroups and Matrix Exponential

Definition
For any i # j the root subgroup Xj; = GL(n;R) is given by

Xij = {Xijj(a) e GL(m;R) | @ € R}.

Definition
For any matrix A€ M(n x n;R) there is well defined matrix
exp(A) € GL(n,R) given by

A2 A3 A"
exp(A) = | + A+ Sp+ S0+ ZF'
n=0 '



Root Subgroups and Matrix Exponential (continued)

Remark
Observe that for any i # |

exp(tE,-,j) = X,'j(t),
which gives the group homomorphism

exp: (R, +) 3 t — exp(tE;j) € Xjj = GL(n,R).



Complete Flag

Definition
A complete flag in R" is a sequence of subspaces V; ¢ R" such
that dimV; =i for i =0,...,n and
{0}2 V()C V1C V2C...C Vn_1C Vn:R”.
The standard complete flag is given by the condition

Vi =lin(ey, ..., &),

i.e., the i—th subspace is spanned by the first i vectors of the
standard basis of R”".



(Complete) Flag Variety

Definition
Flag variety F = F(1,2,...,n) is the set of all complete flags in R".

Proposition

The general linear group GL(n; R) acts transitively on the flag
variety with the stabilizer (at the standard complete flag) equal to
the standard Borel subgroup B.

Corollary
The (complete) flag variety is a homogenous variety, i.e.,

F =GL(mR)/B = | | BwB/B.
weW



Schubert/Bruhat Cell

Definition
For any o € S, the set

C. = BwB/B,

where w = P, is called Schubert/Bruhat cell.
The closure X,, of C,, is called Schubert variety, i.e.

X, = Cy.

Definition

For any permutation o € S, a pair (/,j) such that o(i/) > o(j) and
1 <i<j<niscalled an inversion. The number of all inversions
of permutation o is called the length od ¢ and is denoted /(o).



Schubert/Bruhat Cell (continued)

Proposition
Each Schubert/Bruhat C,, cell is isomorphic to R'(W). The
dimension of F is the maximal number of inversions that is

) o)

dimF(1,2,...,n):<2 5

The cohomology classes [ X,,] form a basis of the (integral)
cohomology of the complete flag variety.

%see V Lakshmibai, J. Brown Flag Varieties, Springer 2018.



Bruhat Order

Definition
The transitive closure of the relation

o = t7 for some transposition t
OST & ,
(o) < I(T)
induces a (ranked) partial order on all permutations in S,,.

Proposition
The Schubert/Bruhat cells form a CW complex and

fvcfw S v w,

where C, denotes the closure of cell C, and v, w are identified with
corresponding permutations.



Bruhat Order — Example

For n = 3 identifty the permutation o € S3 with the sequence

o(l)o(2)o(3).
321
231 312
(1,3) (1,3)
213 132



Antisymmetric Matrices

Definition
Matrix A€ M(n x n;R) is antisymmetric if

AT = —A.

Proposition
If Ae M((2k +1) x (2k + 1); R) is antisymmetric then det A = 0.

Proof.

Exercise. O



Pfaffian

Proposition

Let A = [xjj] € M(2k x 2k;R) an antisymmetric matrix with entries
equal to degree one monomials x;;. Then there exists' a unique (up
to a sign) polynomial P € Z|x;;] (i.e. with integral coefficients)

such that
det A = [P(x;)]?.

!S. Lang, Algebra, Springer



Pfaffian (continued)

Definition
For any antisymmetric matrix A = [a;;] € M(2k x 2k;R) the
Pfaffian of matrix A is a scalar determined by the above
polynomial with a sign chosen such that
D)
[Pf(A)]? = det A,

JO .. 0
0J o
00 ... J

0 1
WhereJ—[_1 0].

i)



Pfaffian (continued)

Remark
For any antisymmetric matrix AT = —A and
A = [ajj] € M(2k x 2k;R) then Pf(A) is a scalar such that if

w = Z ajji€i N\ gj,
1<i<j<n

then



Pfaffian (continued)

Proposition

For any antisymmetric matrix AT = —A and
A = |ajj] € M(2k x 2k;R) and any matrix B € M(2k x 2x;R)

Pf(BTAB) = det B Pf(A).
Proof.
Since det(BTAB) = det B2[Pf(A)]? it is obvious that
Pf(BTAB) = + det B Pf(A),

where the sign does not depend on matrix B (consider matrices
with entries in a polynomial ring). Substituting B = l gives the
result.



Pfaffian - Equivalence of Definitions

Remark
For any real skew-symmetric matrix A there exists an orhogonal
matrix Q such that

aiJ 0 ... O

0 32./ 0
QTAQ = | . .

0 0 a;;J

Moreover, by replacing Q with TQ where T is the transposition
matrix (say of rows 1 and 2), one can assume that det Q = 1.
Therefore

Pf(A) = a;...ax,

which shows that the two definitions are equivalent.



Pfaffian (continued)

Proposition
Let A = [aj] € M(k x k;R) be any matrix. Then

k(k—1)

PR([ar6]) = (-1) = detA.

Proof.

Again, it is clear that Pf ([ _; §]) = £ det A. Take A= /. Then
for

W=E€1NEkt1 +E2ANEkyo+ ...+ Ek A E2,
we have

Wk

F =ELNEk+1I NE2QNEL42 N oo NEK N E2f =

= (—1)1+2+"'+(k_1)51 N oo N E2k..



Pfaffians — Examples

([ )
—X12 0

0 x12 x13 X4

—X12 0  x3 x4
Pf 0 = X12X34 — X13X24 + X23X14-
—X13 —X23 X34

—x14 —Xx24 —x33 0
ad 0 .. 0

0 azJ 0
Pf . L. = ajap - ag.




Laplace-type Formula for Pfaffians

Proposition
Let A = [ajj] € M(2k x 2k;R) be an antisymmetric matrix. Then

2k

PF(A) = > (1Y a1 Pf(Ajq)).
j=2

Proof.
By the Sylverster's Theorem

det Adet Ayj 1 = det [det A det Alj]

det Ajl det Ajj

0 det Ay 0 det Ay
= = J| — N2
= det [det (—AL) 0 ] = det [(_1)2k1 det Alj 0 ] = det(Alj) .



Laplace-type Formula for Pfaffians

Proof.
It turns out that
Pf(A) Pf(Alj’lj) = — detAlj.

To see this consider the form (and the corresponding matrix)
W=€E1ANE tEaNEZF ...+ E 2AE1FTE1AEj+2+ ...,
for even j and

W=€E1NE teE2NEZIF ... TE_1ANE+1TE+2ANE+3+ ...,

J ... 0
Ay =1
0 .. J

hence Pf(A4j 1) = 1. In “’k—,k in both cases on have to exchange ¢; with
€2,...,¢j—1 hence Pf(A) = (=1)/1.

for odd j. In both cases



Laplace-type Formula for Pfaffians

Proof.
Finally, the matrix Ay; has a unique —1 in the first column and the
(j — 1)—th row, by the Laplace formula for the first column

J ... 0
det Ayj = (—1)U" D+ (—1) det l ] = (-1
0 ... J

By the Laplace formula in the first row for matrix A
n .
detA = Z(—1)1+J31j det Alj,

n

Z 811 Pf Pf(Al’i’lj).

Note that det A;; = 0 and to divide by Pf(A) one should switch to
matrices with entries in a polynomial ring.

O



Example

Let
0 x12  x13 Xxus
A | T2 0  x3 xp4
—X13  —X23 0 Xx3a
—x14 —Xxp4 —x3¢ O
Then
0 X3 0 X
A = A =
12,12 Cxaa 0] 13,13 —xos 0|’
0 X23
A14,14={ .
—X23 0

Pf(A) = (—1)2X12X34 + (—1)3X13X24 + (—1)4X14X23 =

= X12X34 — X13X24 + X14X23.



Exercise

[ 0 xi2  x13 X4 X5 X6 |
—X12 0 X3 X X5 X6
A | s s 0  x3a X35 X36
—X14 —Xp4a —X34 0 x5 xs6
—X15 —X25 —X35 —X45 0 xs6
| —x16 —X26 —X36 —Xa6 —Xs6 O

Pf(A) = x12X34X56 — X13X24X56 + X14X23X56 — X12X35X46 -+ X13X25X46 —
—X15X23X46 1+ X12X36Xa5 — X13X26X45 + X16X23Xa5 — X14X25X36 1

+X15X24X36 + X14X26X35 — X16X24X35 — X15X26X34 + X16X25X34.



