Linear Algebra Lecture 6 - Determinants

Oskar Kędzierski

13 November 2023

Notation

Definition

A matrix $A \in M(n \times n; \mathbb{R})$ is called a square matrix. For any square matrix A let $A_{ij} \in M((n-1) \times (n-1); \mathbb{R})$ denote the submatrix of A formed by deleting the i-th row and j-th column of A.

Notation

Definition

A matrix $A \in M(n \times n; \mathbb{R})$ is called a square matrix. For any square matrix A let $A_{ij} \in M((n-1) \times (n-1); \mathbb{R})$ denote the submatrix of A formed by deleting the i-th row and j-th column of A.

Example

$$A = \left[\begin{array}{ccc} -1 & 5 & 0 \\ 4 & -2 & 3 \\ 2 & -1 & 0 \end{array} \right], \quad A_{23} = \left[\begin{array}{ccc} -1 & 5 \\ 2 & -1 \end{array} \right].$$

Determinant

Definition

A determinant is a function det : $M(n \times n; \mathbb{R}) \longrightarrow \mathbb{R}$ satisfying the conditions:

Determinant

Definition

A determinant is a function det : $M(n \times n; \mathbb{R}) \longrightarrow \mathbb{R}$ satisfying the conditions:

i) if A = [a] then $\det A = a$,

Determinant

Definition

A determinant is a function det : $M(n \times n; \mathbb{R}) \longrightarrow \mathbb{R}$ satisfying the conditions:

i) if
$$A = [a]$$
 then $\det A = a$,

ii) if
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 and $n > 1$ then

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}.$$

In particular, if
$$A=\left[\begin{array}{cc} a_{11}&a_{12}\\ a_{21}&a_{22}\end{array}\right]$$
 then
$$\det A=(-1)^{1+1}a_{11}a_{22}+(-1)^{1+2}a_{12}a_{21}=a_{11}a_{22}-a_{12}a_{21}$$

In particular, if
$$A=\left[\begin{array}{cc} a_{11}&a_{12}\\ a_{21}&a_{22}\end{array}\right]$$
 then
$$\det A=(-1)^{1+1}a_{11}a_{22}+(-1)^{1+2}a_{12}a_{21}=a_{11}a_{22}-a_{12}a_{21}$$

For example,
$$\det \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = 1 \cdot 4 - 3 \cdot 2 = -2$$
.

Examples (continued)

In particular, if
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 then
$$\det A = (-1)^{1+1} a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} + (-1)^{1+2} a_{12} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{bmatrix} + (-1)^{1+3} a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}.$$

Examples (continued)

In particular, if
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 then
$$\det A = (-1)^{1+1} a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} + (-1)^{1+2} a_{12} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{bmatrix} + (-1)^{1+3} a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}.$$

For example, det
$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix} = 1 \cdot 3 \cdot 2 + 2 \cdot 1 \cdot 2 = 10.$$

Rule of Sarrus

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Rule of Sarrus

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Note this DOES NOT work for *n*-by-*n* matrices for $n \ge 4$.

Let $A, B, C \in M(n \times n; \mathbb{R})$

Theorem

i) Let $1 \le k \le n$. If matrices A, B, C have all rows the same (resp. columns) except the k-th row (resp.column) and k-th row of C is the sum of k-th rows (resp. columns) of matrices A and B then $\det C = \det A + \det B$,

Let $A, B, C \in M(n \times n; \mathbb{R})$

Theorem

- i) Let $1 \le k \le n$. If matrices A, B, C have all rows the same (resp. columns) except the k-th row (resp.column) and k-th row of C is the sum of k-th rows (resp. columns) of matrices A and B then $\det C = \det A + \det B$,
- ii) If matrix B is equal to the matrix A with two rows (resp. columns) interchanged then $\det B = -\det A$,

Let $A, B, C \in M(n \times n; \mathbb{R})$

Theorem

- i) Let $1 \le k \le n$. If matrices A, B, C have all rows the same (resp. columns) except the k-th row (resp.column) and k-th row of C is the sum of k-th rows (resp. columns) of matrices A and B then $\det C = \det A + \det B$,
- ii) If matrix B is equal to the matrix A with two rows (resp. columns) interchanged then $\det B = -\det A$,
- iii) If matrix B is equal to the matrix A with some row (res. some column) multiplied by a constant $c \in \mathbb{R}$ then $\det B = c \det A$.

Let $A, B, C \in M(n \times n; \mathbb{R})$

Theorem

- i) Let $1 \le k \le n$. If matrices A, B, C have all rows the same (resp. columns) except the k-th row (resp. column) and k-th row of C is the sum of k-th rows (resp. columns) of matrices A and B then $\det C = \det A + \det B$,
- ii) If matrix B is equal to the matrix A with two rows (resp. columns) interchanged then $\det B = -\det A$,
- iii) If matrix B is equal to the matrix A with some row (res. some column) multiplied by a constant $c \in \mathbb{R}$ then $\det B = c \det A$.

Proof.

Use induction on the matrix size.

i)

$$\det \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & 0 & 2 \\ 2 & -5 & 3 \\ 0 & 2 & 2 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & 2 \\ 3 & -2 & 3 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\det \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & 0 & 2 \\ 2 & -5 & 3 \\ 0 & 2 & 2 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & 2 \\ 3 & -2 & 3 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\det \begin{bmatrix} 1 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 2 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\det \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{array} \right] + \det \left[\begin{array}{ccc} 1 & 0 & 2 \\ 2 & -5 & 3 \\ 0 & 2 & 2 \end{array} \right] = \det \left[\begin{array}{ccc} 1 & 0 & 2 \\ 3 & -2 & 3 \\ 0 & 2 & 2 \end{array} \right]$$

$$\det \begin{bmatrix} 1 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 2 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\det \begin{bmatrix} 1 & 0 & 2 \\ 3 & 9 & 0 \\ 0 & 2 & 2 \end{bmatrix} = 3 \det \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

Definition

Let $A = [a_{ij}] \in M(m \times n; \mathbb{R})$. The matrix $B = [b_{ij}] \in M(n \times m; \mathbb{R})$ where $b_{ij} = a_{ji}$ is called **the transpose** of matrix A. We write $B = A^T$.

Definition

Let $A = [a_{ij}] \in M(m \times n; \mathbb{R})$. The matrix $B = [b_{ij}] \in M(n \times m; \mathbb{R})$ where $b_{ij} = a_{ji}$ is called **the transpose** of matrix A. We write $B = A^T$.

Example

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 5 \end{bmatrix}, \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 0 & 5 \end{bmatrix}.$$

Definition

Let $A = [a_{ij}] \in M(m \times n; \mathbb{R})$. The matrix $B = [b_{ij}] \in M(n \times m; \mathbb{R})$ where $b_{ij} = a_{ji}$ is called **the transpose** of matrix A. We write $B = A^T$.

Example

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 5 \end{bmatrix}, \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 0 & 5 \end{bmatrix}.$$

Theorem

Let $A \in M(n \times n; \mathbb{R})$. Then $\det A = \det A^{\mathsf{T}}$.

Definition

Let $A = [a_{ij}] \in M(m \times n; \mathbb{R})$. The matrix $B = [b_{ij}] \in M(n \times m; \mathbb{R})$ where $b_{ij} = a_{ji}$ is called **the transpose** of matrix A. We write $B = A^T$.

Example

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 5 \end{bmatrix}, \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 0 & 5 \end{bmatrix}.$$

Theorem

Let $A \in M(n \times n; \mathbb{R})$. Then $\det A = \det A^{\mathsf{T}}$.

Example

$$\det \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}^{\mathsf{T}} = \det \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} = \det \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}.$$

Laplace expansion

Theorem

Let
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 and let $n > 1$. Then for any $1 \leqslant i \leqslant n$ (fixed i-th row and fixed j-th column, respectively)

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}.$$

Laplace expansion

Let
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 and let $n > 1$. Then for any $1 \leqslant i \leqslant n$

(fixed i-th row and fixed j-th column, respectively)

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}.$$

$$\det \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 9 & 2 & 0 \\ 3 & 8 & 4 & 3 \\ 2 & 6 & 5 & 0 \end{bmatrix} = (-1)^{3+4} 3 \det \begin{bmatrix} 0 & 2 & 0 \\ 1 & 9 & 2 \\ 2 & 6 & 5 \end{bmatrix} =$$

$$= -3(-1)^{1+2} 2 \det \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = 6.$$

Determinants and Matrix Multiplication

Theorem (Special case of Cauchy-Binet formula) Let $A, B \in M(n \times n; \mathbb{R})$. Then det $AB = \det A \det B$.

Determinants and Matrix Multiplication

Theorem (Special case of Cauchy-Binet formula)

Let $A, B \in M(n \times n; \mathbb{R})$. Then $\det AB = \det A \det B$.

Example

$$\det\left[\begin{array}{cc}2&1\\3&2\end{array}\right]\det\left[\begin{array}{cc}2&-1\\-3&2\end{array}\right]=\det\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=1.$$

Corollary

i) if matrix A has a zero row or a zero column then $\det A = 0$,

- i) if matrix A has a zero row or a zero column then $\det A = 0$,
- ii) if matrix A has two equal rows (resp. columns) then $\det A = 0$,

- i) if matrix A has a zero row or a zero column then $\det A = 0$,
- ii) if matrix A has two equal rows (resp. columns) then $\det A = 0$,
- iii) an elementary operation of switching two rows (resp. columns) of matrix A changes the sign of the determinant of A,

- i) if matrix A has a zero row or a zero column then $\det A = 0$,
- ii) if matrix A has two equal rows (resp. columns) then $\det A = 0$,
- iii) an elementary operation of switching two rows (resp. columns) of matrix A changes the sign of the determinant of A,
- iv) an elementary operation of adding a row (resp. a column) of matrix A to other row (resp. column) does not change the determinant of A,

- i) if matrix A has a zero row or a zero column then $\det A = 0$,
- ii) if matrix A has two equal rows (resp. columns) then $\det A = 0$,
- iii) an elementary operation of switching two rows (resp. columns) of matrix A changes the sign of the determinant of A,
- iv) an elementary operation of adding a row (resp. a column) of matrix A to other row (resp. column) does not change the determinant of A,
- v) an elementary operation of multiplying a row (resp. a column) of matrix A by a constant $c \in \mathbb{R}$ multiplies the determinant by constant c,

- i) if matrix A has a zero row or a zero column then $\det A = 0$,
- ii) if matrix A has two equal rows (resp. columns) then $\det A = 0$,
- iii) an elementary operation of switching two rows (resp. columns) of matrix A changes the sign of the determinant of A,
- iv) an elementary operation of adding a row (resp. a column) of matrix A to other row (resp. column) does not change the determinant of A,
- v) an elementary operation of multiplying a row (resp. a column) of matrix A by a constant $c \in \mathbb{R}$ multiplies the determinant by constant c,
- vi) if rows (resp. columns) of matrix A form are linearly dependent then $\det A = 0$.

Proofs

i) use Laplace expansion formula along the zero row (resp. column),

Proofs

- i) use Laplace expansion formula along the zero row (resp. column),
- ii) use induction on the size of the matrix,

Proofs

- i) use Laplace expansion formula along the zero row (resp. column),
- ii) use induction on the size of the matrix,
- iii) as above,

Proofs

- i) use Laplace expansion formula along the zero row (resp. column),
- ii) use induction on the size of the matrix,
- iii) as above,
- iv) use Laplace expansion formula along the row (resp. column) which is the sum,

Proofs

- i) use Laplace expansion formula along the zero row (resp. column),
- ii) use induction on the size of the matrix,
- iii) as above,
- iv) use Laplace expansion formula along the row (resp. column) which is the sum,
- v) use Laplace expansion formula along the row (resp. column) multiplied by $c \in \mathbb{R}$,

Proofs

- i) use Laplace expansion formula along the zero row (resp. column),
- ii) use induction on the size of the matrix,
- iii) as above,
- iv) use Laplace expansion formula along the row (resp. column) which is the sum,
- v) use Laplace expansion formula along the row (resp. column) multiplied by $c \in \mathbb{R}$,
- vi) a row (resp. a column) is a linear combination of the other, use elementary row (resp. column) operations to get a zero row (resp. a zero column). Then use i).

Definition

A matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called upper-triangular if $a_{ij} = 0$ for $1 \le j < i \le n$.

Definition

A matrix $A = [a_{ii}] \in M(n \times n; \mathbb{R})$ is called upper-triangular if $a_{ii} = 0$ for $1 \le j < i \le n$.

Example

$$\mathsf{Matrix} \left[\begin{array}{ccccc} 1 & 0 & 1 & -1 & 7 \\ 0 & 3 & 0 & 2 & 3 \\ 0 & 0 & 5 & 0 & -2 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ is upper-triangular}.$$

Definition

A matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called upper-triangular if $a_{ij} = 0$ for $1 \le j < i \le n$.

Example

$$\mathsf{Matrix} \left[\begin{array}{ccccc} 1 & 0 & 1 & -1 & 7 \\ 0 & 3 & 0 & 2 & 3 \\ 0 & 0 & 5 & 0 & -2 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ is upper-triangular}.$$

Proposition

If matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is upper-triangular then $\det A = a_{11}a_{22}\cdots a_{nn}$.

Definition

A matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called upper-triangular if $a_{ij} = 0$ for $1 \le j < i \le n$.

Example

$$\mathsf{Matrix} \left[\begin{array}{cccccc} 1 & 0 & 1 & -1 & 7 \\ 0 & 3 & 0 & 2 & 3 \\ 0 & 0 & 5 & 0 & -2 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ is upper-triangular.}$$

Proposition

If matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is upper-triangular then $\det A = a_{11}a_{22}\cdots a_{nn}$.

Proof.

Use induction and the Laplace expansion formula along the first column of A.

Note that a square matrix in an echelon form is upper-triangular.

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Proof.

 (\Leftarrow) matrix A can be transformed by elementary row operations to an echelon form with a zero row.

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Proof.

 (\Leftarrow) matrix A can be transformed by elementary row operations to an echelon form with a zero row.

How to compute determinant of matrix?

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Proof.

 (\Leftarrow) matrix A can be transformed by elementary row operations to an echelon form with a zero row.

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as many zeroes as possible in a row or a column and use the Laplace expansion.

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Proof.

 (\Leftarrow) matrix A can be transformed by elementary row operations to an echelon form with a zero row.

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as many zeroes as possible in a row or a column and use the Laplace expansion.

or

Note that a square matrix in an echelon form is upper-triangular.

Corollary

For any $A \in M(n \times n; \mathbb{R})$ rows (resp. columns) of A are linearly dependent if and only if $\det A = 0$.

Proof.

 (\Leftarrow) matrix A can be transformed by elementary row operations to an echelon form with a zero row.

How to compute determinant of matrix?

Use elementary operations on rows and columns in order to get as many zeroes as possible in a row or a column and use the Laplace expansion.

or

Put matrix in an upper-triangular form using elementary operations and take product of the diagonal entries.

Example

$$\det\begin{bmatrix} 1 & 2 & 2 & 6 \\ 1 & 2 & 2 & 5 \\ 1 & 1 & 2 & 8 \\ 2 & 5 & 6 & 2 \end{bmatrix} r_{1} = r_{2} \det\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 2 & 2 & 5 \\ 1 & 1 & 2 & 8 \\ 2 & 5 & 6 & 2 \end{bmatrix} =$$

$$(-1)^{1+4} \det\begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 5 & 6 \end{bmatrix} = -2 \det\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 5 & 3 \end{bmatrix} c_{3} = r_{1}$$

$$-2 \det\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & 5 & 1 \end{bmatrix} = -2(-1)^{3+3} \det\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = 2.$$

Block Matrices

Theorem

Let $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ where A, C are square matrices and 0 is a zero matrix. Then $\det M = \det A \det C$.

Example

Area (2—dimensional volume)

Area (2—dimensional volume)

The area of a parallelogram spanned by vectors $(a_1,a_2),(b_1,b_2)$ is equal to the absolute value of $\det \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$.

Volume (3—dimensional volume)

Volume (3—dimensional volume)

The volume of a parallelepiped spanned by vectors $(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)$ is equal to the absolute value of $\det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$.

Volume - Motivation

Let $I_n = [0,1] \times [0,1] \times \ldots \times [0,1] = [0,1]^n \subset \mathbb{R}^n$ be an n-dimensional unit hypercube. The result relating volume to the determinant can be understood by checking how the elementary matrices change the n-dimensional volume of I (they multiply the volume by the absolute value of the determinant of the elementary matrix), i.e.

$$\begin{aligned} \operatorname{vol}_n D_{1,\alpha}(I_n) &= \operatorname{vol}_n[0,\alpha] \times [0,1] \times \dots \times [0,1] = \alpha \operatorname{vol}_n I_n, \\ \operatorname{vol}_n L_{1,2}(I_n) &= \operatorname{vol}_n \operatorname{conv}((0,0),(1,0),(2,1),(1,1)) \times [0,1] \times \dots \times [0,1] = \\ &= \operatorname{vol}_n I_n, \\ \operatorname{vol}_n T_{i,j}(I_n) &= \operatorname{vol}_n I_n. \end{aligned}$$

The same happens for small hypercubes and volume approximately is a sum volumes of small hypercubes (this is not a formal proof – just a loose explanation!).

Area of a 2-dimensional Simplex

Area of a 2-dimensional Simplex

The area of a 2-dimensional simplex with vertices at $0, (a_1, a_2), (b_1, b_2)$ is equal to the absolute value of $\frac{1}{2!} \det \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$.

Volume of a 3-dimensional Simplex

Volume of a 3—dimensional Simplex

The volume of a 3-dimensional simplex with vertices in $0, (a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)$ is equal to the absolute value of $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}.$

Volume of a Simplex

Definition

A **simplex** with vertices in $0, v_1, \dots, v_n \in \mathbb{R}^n$ is equal to the set

$$s(v_1, \dots, v_n) = \operatorname{conv}(0, v_1, \dots, v_n) =$$

$$= \left\{ \sum_{i=1}^n \lambda_i v_i \in \mathbb{R}^n \mid \sum_{i=0}^n \lambda_i = 1, \lambda_i \geqslant 0 \ i = 0, \dots, n \right\} =$$

$$= \left\{ \sum_{i=1}^n \lambda_i v_i \in \mathbb{R}^n \mid \sum_{i=1}^n \lambda_i \leqslant 1, \lambda_i \geqslant 0 \ i = 1, \dots, n \right\}.$$

Volume of a Simplex

Definition

A **simplex** with vertices in $0, v_1, \dots, v_n \in \mathbb{R}^n$ is equal to the set

$$s(v_1, \dots, v_n) = \operatorname{conv}(0, v_1, \dots, v_n) =$$

$$= \left\{ \sum_{i=1}^n \lambda_i v_i \in \mathbb{R}^n \mid \sum_{i=0}^n \lambda_i = 1, \lambda_i \geqslant 0 \ i = 0, \dots, n \right\} =$$

$$= \left\{ \sum_{i=1}^n \lambda_i v_i \in \mathbb{R}^n \mid \sum_{i=1}^n \lambda_i \leqslant 1, \lambda_i \geqslant 0 \ i = 1, \dots, n \right\}.$$

Proposition

$$\operatorname{vol}_n s(v_1, \dots, v_n) = \frac{1}{n!} |\det(v_1, \dots, v_n)|.$$

Volume of a Simplex (continued)

Proof.

Let $V_n=\mathrm{vol}_n(\varepsilon_1,\ldots,\varepsilon_n)$. Obviously $V_1=1,V_2=\frac{1}{2!}$. Assume $V_{n-1}=\frac{1}{(n-1)!}$. By the Cavalieri's principle or Fubini's theorem

$$V_n = \int_0^1 (1 - x_n)^{n-1} V_{n-1} \, \mathrm{d} x_n = \left| \frac{1 - x_n = t}{-\mathrm{d} x_n = \mathrm{d} t} \right| = \frac{1}{(n-1)!} \frac{t^n}{n} \, \bigg|_0^1 = \frac{1}{n!}.$$

By the mathematical induction $V_n = \frac{1}{n!}$ for any $n \ge 1$. Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be the linear diffeomorphism given by the conditions

$$\varphi(\varepsilon_i) = \mathbf{v}_i,$$

for i = 1, ..., n.

Volume of a Simplex (continued)

Proof.

Then $(\varphi \text{ preserves linear combinations})$

$$\varphi(s(\varepsilon_1,\ldots,\varepsilon_n)) = s(v_1,\ldots,v_n),$$

$$\det D\varphi = \det(v_1,\ldots,v_n),$$

where $D\varphi=M(\varphi)_{st}^{st}$ is the determinant of the Jacobi matrix (the derivative) of φ . Let $X=s(\varepsilon_1,\ldots,\varepsilon_n)$. By the change-of-coordinates formula

$$\operatorname{vol}_{n} s(v_{1}, \dots, v_{n}) = \int_{\varphi(X)} dx_{1} \dots dx_{n} =$$

$$= \int_{X} |\det D\varphi| dx_{1} \dots dx_{n} = V_{n} |\det(v_{1}, \dots, v_{n})| =$$

$$= \frac{1}{n!} |\det(v_{1}, \dots, v_{n})|.$$

Determinant of Block Matrix

Proposition

If $M \in M(n \times n; \mathbb{R})$ is a block matrix and

$$M = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix},$$

where A and D are square matrices then

$$\det M = \begin{cases} \det A \det \left(D - CA^{-1}B\right) & \text{if} & \det A \neq 0 \\ \det D \det \left(A - BD^{-1}C\right) & \text{if} & \det D \neq 0 \\ \det A \det D & \text{if} & B = 0 \text{ or } C = 0 \end{cases}$$

Determinant of Block Matrix

Proposition

If $M \in M(n \times n; \mathbb{R})$ is a block matrix and

$$M = \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right],$$

where A and D are square matrices then

$$\det M = \begin{cases} \det A \det \left(D - CA^{-1}B\right) & \text{if} & \det A \neq 0 \\ \det D \det \left(A - BD^{-1}C\right) & \text{if} & \det D \neq 0 \\ \det A \det D & \text{if} & B = 0 \text{ or } C = 0 \end{cases}$$

Proof.

$$\begin{bmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & A^{-1}B \\ 0 & D - CA^{-1}B \end{bmatrix}$$
$$\begin{bmatrix} I & -BD^{-1} \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & 0 \\ D^{-1}C & I \end{bmatrix}$$

Example

$$M = \begin{bmatrix} 1 & 2 & 2 & 6 \\ 1 & 2 & 2 & 5 \\ \hline 1 & 1 & 2 & 8 \\ 2 & 5 & 6 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 & 8 \\ 6 & 2 \end{bmatrix}, \quad D^{-1} = -\frac{1}{44} \begin{bmatrix} 2 & -8 \\ -6 & 2 \end{bmatrix},$$

$$\det M = \det D \det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 2 & 5 \end{bmatrix} (-1) \frac{1}{44} \begin{bmatrix} 2 & -8 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix} \right) =$$

$$= 44 \cdot \det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} - \frac{1}{44} \begin{bmatrix} 40 & 52 \\ 28 & 56 \end{bmatrix} \right) = 44 \det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -\frac{10}{11} & -\frac{13}{11} \\ 19 & 14 \end{bmatrix} \right) =$$

$$= 44 \cdot \det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} - \frac{1}{44} \begin{bmatrix} 40 & 52 \\ 38 & 56 \end{bmatrix} \right) = 44 \det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -\frac{10}{11} & -\frac{13}{11} \\ -\frac{19}{22} & -\frac{14}{11} \end{bmatrix} \right) =$$

$$= 44 \begin{bmatrix} \frac{1}{11} & \frac{9}{11} \\ \frac{3}{2} & \frac{8}{2} \end{bmatrix} = 44 \cdot \frac{16 - 27}{22 \cdot 11} = -2.$$

Sylvester's Determinant Theorem/Weinstein-Aronszajn Identity

Corollary

Let
$$A\in M(m\times n;\mathbb{R}),\ B\in M(n\times m;\mathbb{R})$$
 be two matrices. Then
$$\det(AB+I_m)=\det(BA+I_n).$$

Sylvester's Determinant Theorem/Weinstein-Aronszajn Identity

Corollary

Let $A \in M(m \times n; \mathbb{R}), B \in M(n \times m; \mathbb{R})$ be two matrices. Then

$$\det(AB + I_m) = \det(BA + I_n).$$

Proof.

Let

$$M = \left[\begin{array}{c|c} I_n & -B \\ \hline A & I_m \end{array} \right].$$

Since det $I_n = \det I_m = 1 \neq 0$ from both formulas for the determinant of a block matrix one gets

$$\det M = \det I_n \det (I_m - AI_n^{-1}(-B)) = \det(AB + I_m),$$

$$\det M = \det I_m \det (I_n - (-B)I_m^{-1}A) = \det (BA + I_n).$$

Determinant as a Function of Matrix Rows

For matrix $A = [a_{ij}]$ let

$$r_1 = (a_{11}, a_{12}, \ldots, a_{1n}), \ldots, r_n = (a_{n1}, a_{n2}, \ldots, a_{nn}),$$

be the rows of A. Set

$$\det(r_1,\ldots,r_n)=\det A.$$

Determinant as a Function of Matrix Rows

For matrix $A = [a_{ij}]$ let

$$r_1 = (a_{11}, a_{12}, \ldots, a_{1n}), \ldots, r_n = (a_{n1}, a_{n2}, \ldots, a_{nn}),$$

be the rows of A. Set

$$\det(r_1,\ldots,r_n)=\det A.$$

Proposition

$$\det(r_1, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_n) = 0$$
 for $i = 1, \ldots, n$.

Determinant as a Function of Matrix Rows

For matrix $A = [a_{ij}]$ let

$$r_1 = (a_{11}, a_{12}, \ldots, a_{1n}), \ldots, r_n = (a_{n1}, a_{n2}, \ldots, a_{nn}),$$

be the rows of A. Set

$$\det(r_1,\ldots,r_n)=\det A.$$

Proposition

$$\det(r_1, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_n) = 0$$
 for $i = 1, \ldots, n$.

Proof.

For i = 1 it follows from the definition, for i > 1 it follows by induction (the (i - 1)-th row in matrices A_{1i} is zero).

Definition

Let V,W be a vector spaces. Function $\varphi\colon\underbrace{V\times\ldots\times V}_{n-\text{times}}\to W$ is

called

i) multilinear if for any i = 1, ..., n and $v_1, ..., v_{i-1}, v_{i+1}, ..., v_n \in V$ the function

$$\varphi(v_1,\ldots,v_{i-1},\cdot,v_{i+1},\ldots,v_n)\colon\thinspace V\to W$$

is linear,

Definition

Let V,W be a vector spaces. Function $\varphi\colon \underbrace{V\times\ldots\times V}_{n-\text{times}}\to W$ is

called

i) multilinear if for any i = 1, ..., n and $v_1, ..., v_{i-1}, v_{i+1}, ..., v_n \in V$ the function

$$\varphi(v_1,\ldots,v_{i-1},\cdot,v_{i+1},\ldots,v_n)\colon V\to W$$

is linear,

ii) antisymmetric (or skew-symmetric) if for any $1 \le i < j \le n$ and $v_1, \ldots, v_n \in V$

$$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n)=-\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n),$$

Definition

iii) alternating if

$$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n)=0,$$

for any $v_1, \ldots, v_n \in V$.

Proposition

Over the real numbers a multilinear function f is antisymmetric if and only if it is alternating.

Proof.

Assume φ is alternating. Then

$$0 = \varphi(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_n) =$$

$$= \varphi(v_1, \dots, v_i, \dots, v_j, \dots, v_n) + \varphi(v_1, \dots, v_j, \dots, v_i, \dots, v_n) +$$

$$+ \varphi(v_1, \dots, v_i, \dots, v_i, \dots, v_n) + \varphi(v_1, \dots, v_j, \dots, v_j, \dots, v_n).$$

Proof.

Assume φ is antisymmetric. Then

$$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n)=-\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_n),$$

(after replacing first v_i with the second v_i), therefore

$$2\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)=0.$$

Proposition

For i = 1, ..., n and any $\alpha \in \mathbb{R}, r_1, ..., r_i, r'_i, ..., r_n \in \mathbb{R}^n$

i) $\det(r_1,\ldots,r_{i-1},\alpha r_i,r_{i+1},\ldots,r_n) = \alpha \det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_n),$

Proposition

For i = 1, ..., n and any $\alpha \in \mathbb{R}, r_1, ..., r_i, r'_i, ..., r_n \in \mathbb{R}^n$

- i) $\det(r_1,\ldots,r_{i-1},\alpha r_i,r_{i+1},\ldots,r_n) = \alpha \det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_n),$
- ii) $\det(r_1, \ldots, r_{i-1}, r_i + r'_i, r_{i+1}, \ldots, r_n) = \det(r_1, \ldots, r_{i-1}, r_i, r_{i+1}, \ldots, r_n) + \det(r_1, \ldots, r_{i-1}, r'_i, r_{i+1}, \ldots, r_n).$

Proposition

For $i=1,\ldots,n$ and any $\alpha\in\mathbb{R}, r_1,\ldots,r_i,r_i',\ldots,r_n\in\mathbb{R}^n$

- i) $\det(r_1,\ldots,r_{i-1},\alpha r_i,r_{i+1},\ldots,r_n) = \alpha \det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_n),$
- ii) $\det(r_1, \dots, r_{i-1}, r_i + r'_i, r_{i+1}, \dots, r_n) = \det(r_1, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_n) + \det(r_1, \dots, r_{i-1}, r'_i, r_{i+1}, \dots, r_n).$

that is, determinant is a multilinear functions of matrix rows.

Proposition

For i = 1, ..., n and any $\alpha \in \mathbb{R}, r_1, ..., r_i, r'_i, ..., r_n \in \mathbb{R}^n$

- i) $\det(r_1,\ldots,r_{i-1},\alpha r_i,r_{i+1},\ldots,r_n) = \alpha \det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_n),$
- ii) $\det(r_1, \dots, r_{i-1}, r_i + r'_i, r_{i+1}, \dots, r_n) = \det(r_1, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_n) + \det(r_1, \dots, r_{i-1}, r'_i, r_{i+1}, \dots, r_n).$

that is, determinant is a multilinear functions of matrix rows.

Proof.

For i=1 it follows from the definition, for i>1 it follows by induction (in matrices A_{1j} the (i-1)-th rows is multiplied by α or is a sum of rows r_i and r_i' with j-th coordinate removed).

Proposition

For any $1 \leq i < j \leq n$ and $r_1, \ldots, r_n \in \mathbb{R}^n$

$$\det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_{j-1},r_i,r_{j+1},\ldots,r_n)=0,$$

that is, determinant is alternating (hence antisymmetric) multilinear map.

Proof.

For n=2 and i=1, j=2 the claim follows from the definition.

Proposition

For any $1 \leq i < j \leq n$ and $r_1, \ldots, r_n \in \mathbb{R}^n$

$$\det(r_1, \ldots, r_{i-1}, r_i, r_{i+1}, \ldots, r_{j-1}, r_i, r_{j+1}, \ldots, r_n) = 0,$$

that is, determinant is alternating (hence antisymmetric) multilinear map.

Proof.

For n=2 and i=1, j=2 the claim follows from the definition. For $n\geqslant 3$ and $i,j\ne 1$ the claim follows by induction (in matrices A_{1j} two rows are the same).

Proposition

For any $1 \leqslant i < j \leqslant n$ and $r_1, \ldots, r_n \in \mathbb{R}^n$

$$\det(r_1,\ldots,r_{i-1},r_i,r_{i+1},\ldots,r_{j-1},r_i,r_{j+1},\ldots,r_n)=0,$$

that is, determinant is alternating (hence antisymmetric) multilinear map.

Proof.

For n=2 and i=1, j=2 the claim follows from the definition. For $n\geqslant 3$ and $i,j\ne 1$ the claim follows by induction (in matrices A_{1j} two rows are the same). It is enough to prove the case $n\geqslant 3, i=1, j>1$. Let $r_i^{(p)}\in\mathbb{R}^{n-1}, r_i^{(pq)}\in\mathbb{R}^{n-2}$ denote respectively, i-th row with p-th coordinate removed and i-th row with p-th and q-th coordinates removed.

Proof.

Then

$$\det(r_1, \dots, r_{j-1}, r_1, r_{j+1}, \dots, r_n) =,$$

$$= \sum_{k=0}^{n} (-1)^{1+k} a_{1k} \det(r_2^{(k)}, \dots, r_{j-1}^{(k)}, r_1^{(k)}, r_{j+1}^{(k)}, \dots, r_n^{(k)}) =$$

(by definition)

$$=\sum_{k=1}^{n}(-1)^{(1+k)+(j-2)}a_{1k}\det\left(r_{1}^{(k)},r_{2}^{(k)},\ldots,r_{j-1}^{(k)},r_{j+1}^{(k)},\ldots,r_{n}^{(k)}\right)=$$

(by the inductive assumption and antisymmetry)

Proof.

$$= \sum_{k=1}^{n} (-1)^{k+j-1} a_{1k} \left(\sum_{l=1}^{k-1} (-1)^{1+l} a_{1l} \det \left(r_2^{(kl)}, \dots, r_{j-1}^{(kl)}, r_{j+1}^{(kl)}, \dots, r_n^{(kl)} \right) + \right.$$

$$\left. + \sum_{l=k+1}^{n} (-1)^l a_{1l} \det \left(r_2^{(kl)}, \dots, r_{j-1}^{(kl)}, r_{j+1}^{(kl)}, \dots, r_n^{(kl)} \right) \right) = 0,$$

since the term $a_{1l}a_{1k} \det \left(r_2^{(kl)}, \dots, r_{j-1}^{(kl)}, r_{j+1}^{(kl)}, \dots, r_n^{(kl)}\right)$ appears in the sum exactly twice but with different signs.

Corollary

Adding a row multiplied by a constant to another of a matrix does not change its determinant.

Corollary

Adding a row multiplied by a constant to another of a matrix does not change its determinant.

Proof.

$$\det(r_1 + \alpha r_2, r_2, \dots, r_n) = \det(r_1, r_2, \dots, r_n) + \alpha \det(r_2, r_2, \dots, r_n) = \det(r_1, r_2, \dots, r_n).$$

Corollary

The Laplace formula for rows holds.

Proof.

$$\det(r_1, \dots, r_i, \dots, r_n) =$$

$$= (-1)^{i-1} \det(r_i, r_1, \dots, r_{i-1}, r_{i+1}, \dots, r_n) =$$

$$= (-1)^{i-1} \sum_{j=1}^{n} (-1)^{1+j} a_{ij} \det\left(r_1^{(j)}, \dots, r_{i-1}^{(j)}, r_{i+1}^{(j)}, r_n^{(j)}\right).$$

$$= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det\left(r_1^{(j)}, \dots, r_{i-1}^{(j)}, r_{i+1}^{(j)}, r_n^{(j)}\right).$$

Determinant of Matrix Product

Proposition

If A is one of the elementary matrices $D_{i,\alpha}, L_{ij}, T_{ij}$ or matrix A is in the reduced echelon form then

 $\det AB = \det A \det B$.

Proof.

Multiplying matrix B on the left by matrix $D_{i,\alpha}$ corresponds to an elementary operation of multiplying i-th row of matrix B by the constant $\alpha \in \mathbb{R}$, multiplying matrix B on the left by matrix D_{ij} corresponds an elementary operation of adding j-th row of matrix B to the i-th one, multiplying matrix B on the left by matrix T_{ij} corresponds an elementary operation of swapping i-th and j-th row of matrix B. Determinant is an antisymmetric multilinear maps, therefore

Proof.

$$\det D_i = \alpha, \qquad \det L_{ij} = 1, \qquad \det T_{ij} = -1,$$

$$\det D_i B = \alpha \det B, \qquad \det L_{ii} B = 1 \cdot \det B, \qquad \det T_{ij} B = (-1) \cdot \det B.$$

Proof.

$$\det D_i = \alpha, \qquad \det L_{ij} = 1, \qquad \det T_{ij} = -1,$$

$$\det D_i B = \alpha \det B, \qquad \det L_{ij} B = 1 \cdot \det B, \qquad \det T_{ij} B = (-1) \cdot \det B.$$
 If A if in the reduced echelon form the either A has a zero row or

A = I. Then, respectively

$$\det A = 0, \qquad \det A = 1,$$

$$\det AB = 0 \cdot \det B, \qquad \det AB = 1 \cdot \det B,$$

since matrix AB has a zero row too.

Corollary

For any matrices $A, B \in M(n \times n; \mathbb{R})$

 $\det AB = \det A \det B$.

Corollary

For any matrices $A, B \in M(n \times n; \mathbb{R})$

 $\det AB = \det A \det B$.

Proof.

Matrix A can be brought by elementary row operations to the reduced echelon form. Therefore there exist elementary matrices E_1, \ldots, E_k and matrix S in the reduced echelon form such that

$$A=E_1E_2\ldots E_kS.$$

Therefore

 $\det AB = (\det E_1 \det E_2 \cdots \det E_k \det S) \det B = \det A \det B.$

Determinant of a Transposed Matrix

Proposition

For any matrix $A \in M(n \times n; \mathbb{R})$

$$\det A^{\mathsf{T}} = \det A$$
.

Proof.

Matrix A can be brought by elementary row operations to the reduced echelon form. Therefore there exist elementary matrices E_1, \ldots, E_k and matrix S in the reduced echelon form such that

$$A=E_1E_2\ldots E_kS.$$

Determinant of a Transposed Matrix (continued)

Proof.

Matrix S has either a zero row or S=I. Then, respectively $\det S^{\mathsf{T}}=0$ (since matrix S^{T} has a zero column, therefore its reduced echelon form has a zero row) or $\det S^{\mathsf{T}}=\det I=1$. Moreover

$$\det D_{i,\alpha}^\intercal = \det D_{i,\alpha} = \alpha, \quad \det L_{ij}^\intercal = \det L_{ji} = 1, \quad \det T_{ij}^\intercal = \det T_{ij} = -1,$$

therefore

$$\det A^{\mathsf{T}} = \det S^{\mathsf{T}} \det E_k^{\mathsf{T}} \det E_{k-1}^{\mathsf{T}} \cdots \det E_1^{\mathsf{T}} = \det A.$$

Corollary

The Laplace formula for columns hold. Determinant is antisymmetric mulitilinear map of its columns.

Inverse of an Elementary Matrix

Proposition

It can be directly checked that

$$D_{i,\alpha}D_{i,\alpha^{-1}} = D_{i,\alpha^{-1}}D_{i,\alpha} = I,$$

 $L_{ij}(2I - L_{ij}) = (2I - L_{ij})L_{ij} = I,$
 $T_{ij}T_{ij} = I,$

i.e., elementary matrices have left- and right-hand side inverse matrices which are equal to each other.

Inverse of an Elementary Matrix (continued)

Remark

$$L_{ij}^{-1} = 2I - L_{ij} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} = D_{j,-1}L_{ij}D_{j,-1},$$

and

 $(2I - L_{ij})A = matrix \ A$, with j - th row subtracted from the i - th, $A(I - 2L_{ij}) = matrix \ A$, with i - th column subtracted from the j - th one, in particular, the inverse of matrix L_{ij} is a product of elementary matrices.

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be any matrix. Then $\det A = 0$ if and only if the reduced echelon form of A has a zero row and $\det A \neq 0$ if and only if the reduced echelon form of A is equal to I (the unit matrix).

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be any matrix. Then $\det A = 0$ if and only if the reduced echelon form of A has a zero row and $\det A \neq 0$ if and only if the reduced echelon form of A is equal to I (the unit matrix).

Corollary

If AB = A'B = I then A = A', i.e the left-hand side inverse, if it exists, is unique.

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be any matrix. Then $\det A = 0$ if and only if the reduced echelon form of A has a zero row and $\det A \neq 0$ if and only if the reduced echelon form of A is equal to I (the unit matrix).

Corollary

If AB = A'B = I then A = A', i.e the left-hand side inverse, if it exists, is unique. Analogously, the right-hand side inverse is unique.

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be any matrix. Then $\det A = 0$ if and only if the reduced echelon form of A has a zero row and $\det A \neq 0$ if and only if the reduced echelon form of A is equal to I (the unit matrix).

Corollary

If AB = A'B = I then A = A', i.e the left-hand side inverse, if it exists, is unique. Analogously, the right-hand side inverse is unique.

Proof.

If AB = I then $\det B \neq 0$ so $B = E_1 E_2 \cdots E_k I$, where E_1, \dots, E_k are elementary matrices, which have inverses.

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be any matrix. Then $\det A = 0$ if and only if the reduced echelon form of A has a zero row and $\det A \neq 0$ if and only if the reduced echelon form of A is equal to I (the unit matrix).

Corollary

If AB = A'B = I then A = A', i.e the left-hand side inverse, if it exists, is unique. Analogously, the right-hand side inverse is unique.

Proof.

If AB=I then $\det B\neq 0$ so $B=E_1E_2\cdots E_kI$, where E_1,\ldots,E_k are elementary matrices, which have inverses. Multiplying respectively by E_k^{-1},\ldots,E_1^{-1} the equation on the right AB=A'B we get A=A'.

Inverse Matrix (continued)

Corollary

If AB = I then BA = I (i.e. the right-hand side inverse of A is also its left-hand side inverse).

Proof.

If AB = I then $\det B \neq 0$ so $B = E_1 E_2 \cdots E_k I$, where E_1, \dots, E_k are elementary matrices, which have inverses. Therefore

$$A = E_k^{-1} E_{k-1}^{-1} \cdots E_1^{-1},$$

and

$$BA = E_1 \cdots E_k E_k^{-1} \cdots E_1^{-1} = I.$$

Inverse Matrix (continued)

Corollary

Matrix A is invertible if and only if det $A \neq 0$. Moreover

$$[A \mid I] \stackrel{\text{elt. row}}{\longrightarrow} [I \mid A^{-1}].$$

Proof.

If AB = I then $\det A \det B = 1$, therefore $\det A \neq 0$. If $\det A \neq 0$ then $A = E_1 E_2 \cdots E_k I$, where E_1, \ldots, E_k are elementary matrices. Then

$$B = E_k^{-1} E_{k-1}^{-1} \cdots E_1^{-1} I,$$

and AB = I.

Gram Determinant

Definition

For any vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ let $A \in M(n \times k; \mathbb{R})$ be a matrix with columns equal to v_1, \ldots, v_k . The **Gram determinant** is

$$G(v_1,\ldots,v_k) = \det \begin{bmatrix} v_1 \cdot v_1 & v_1 \cdot v_2 & \cdots & v_1 \cdot v_k \\ v_2 \cdot v_1 & v_2 \cdot v_2 & \cdots & v_2 \cdot v_k \\ \vdots & \vdots & \ddots & \vdots \\ v_k \cdot v_1 & v_k \cdot v_2 & \cdots & v_k \cdot v_k \end{bmatrix} = \det A^{\mathsf{T}} A.$$

k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k-dimensional volume of a parallelotope spanned by vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is equal to $\sqrt{G(v_1, \ldots, v_k)}$.

k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k-dimensional volume of a parallelotope spanned by vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is equal to $\sqrt{G(v_1, \ldots, v_k)}$.

Proof.

The proof follows by induction on k. For k=1

$$\sqrt{G(v_1)} = \sqrt{\det \left[v_1 \cdot v_1 \right]} = ||v_1||.$$

k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k-dimensional volume of a parallelotope spanned by vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is equal to $\sqrt{G(v_1, \ldots, v_k)}$.

Proof.

The proof follows by induction on k. For k = 1

$$\sqrt{G(v_1)} = \sqrt{\det \left[v_1 \cdot v_1 \right]} = ||v_1||.$$

If $k \ge 2$ let $V(v_1, \ldots, v_k)$ denote the k-dimensional volume of a parallelotope spanned by v_1, \ldots, v_k . Assume that

$$V(v_1,\ldots,v_k)=V(v_1,\ldots,v_{k-1})h,$$

where h is the distance of the vector v_k from the subspace $V = \text{lin}(v_1, \dots, v_{k-1})$ (k-dimensional volume is equal to the (k-1)-dimensional volume of the base times the height).

k-dimensional Volume of k-dimensional Parallelotope

Theorem

The k-dimensional volume of a parallelotope spanned by vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is equal to $\sqrt{G(v_1, \ldots, v_k)}$.

Proof.

The proof follows by induction on k. For k = 1

$$\sqrt{G(v_1)} = \sqrt{\det \left[v_1 \cdot v_1 \right]} = ||v_1||.$$

If $k \ge 2$ let $V(v_1, \ldots, v_k)$ denote the k-dimensional volume of a parallelotope spanned by v_1, \ldots, v_k . Assume that

$$V(v_1,\ldots,v_k)=V(v_1,\ldots,v_{k-1})h,$$

where h is the distance of the vector v_k from the subspace $V = \text{lin}(v_1, \dots, v_{k-1})$ (k-dimensional volume is equal to the (k-1)-dimensional volume of the base times the height). Let $w = \sum_{i=1}^{k-1} \alpha_i v_i$ be such a vector in V that $h = ||v_k - w||$.

Proof.

That is

$$(v_k - w) \perp v_j \iff \sum_{i=1}^{k-1} \alpha_i v_j \cdot v_i = v_j \cdot v_k \quad \text{for} \quad j = 1, \dots, k-1.$$

Moreover

$$h^{2} = (v_{k} - w) \cdot (v_{k} - w) = (v_{k} - w) \cdot v_{k} \iff$$
$$\iff \sum_{i=1}^{k-1} \alpha_{i}(v_{k} \cdot v_{i}) + h^{2} = v_{k} \cdot v_{k}.$$

Proof.

The system of k linear equations with variables $\alpha_1, \ldots, \alpha_{k-1}$ and h^2

Proof.

The system of k linear equations with variables $\alpha_1, \ldots, \alpha_{k-1}$ and h^2

can be solved by Cramer's rule, i.e.

$$h^2 = \frac{G(v_1,\ldots,v_k)}{G(v_1,\ldots,v_{k-1})}.$$

Proposition

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be any vectors. Let $A \in M(n \times n; \mathbb{R})$ be a matrix which columns are equal to v_1, \ldots, v_n . Then

$$V(v_1,\ldots,v_n)=|\det A|,$$

where $V(v_1, \ldots, v_n)$ is the n-dimensional volume of a parallelotope spanned by v_1, \ldots, v_n .

Proposition

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be any vectors. Let $A \in M(n \times n; \mathbb{R})$ be a matrix which columns are equal to v_1, \ldots, v_n . Then

$$V(v_1,\ldots,v_n)=|\det A|,$$

where $V(v_1, \ldots, v_n)$ is the n-dimensional volume of a parallelotope spanned by v_1, \ldots, v_n .

Proof.

$$V(v_1,\ldots,v_n)=\sqrt{\det A^{\mathsf{T}}A}=\sqrt{(\det A)^2}=|\det A|.$$

Cauchy-Binet Formula

Theorem (Cauchy-Binet)

Let $A \in M(m \times n; \mathbb{R})$, $B \in M(n \times m; \mathbb{R})$ be matrices such that $m \le n$. For any subset $S \subset \{1, \ldots, n\}$ of m elements let $A_{m,S} \in M(m \times m; \mathbb{R})$ denote the square submatrix of matrix A consisting of columns indexed by S. Let $B_{S,m} \in M(m \times m; \mathbb{R})$ denote the square submatrix of matrix B consisting of rows indexed by S. Then

$$\det AB = \sum_{\substack{S \subset \{1,\dots,n\} \\ \#S = m}} \det A_{m,S} \det B_{S,m}.$$

Cauchy-Binet Formula

Theorem (Cauchy-Binet)

Let $A \in M(m \times n; \mathbb{R})$, $B \in M(n \times m; \mathbb{R})$ be matrices such that $m \le n$. For any subset $S \subset \{1, \ldots, n\}$ of m elements let $A_{m,S} \in M(m \times m; \mathbb{R})$ denote the square submatrix of matrix A consisting of columns indexed by S. Let $B_{S,m} \in M(m \times m; \mathbb{R})$ denote the square submatrix of matrix B consisting of rows indexed by S. Then

$$\det AB = \sum_{\substack{S \subset \{1,\dots,n\}\\ \#S = m}} \det A_{m,S} \det B_{S,m}.$$

If m > n then det(AB) = 0

Proof.

If
$$A = \begin{bmatrix} I_k & 0 \\ \hline 0 & 0 \end{bmatrix}$$
 then the claim holds because
$$\det AB = \det A_{m,\{1,\dots,m\}}B_{\{1,\dots,m\},m}.$$

Proof.

If
$$A = \begin{bmatrix} I_k & 0 \\ \hline 0 & 0 \end{bmatrix}$$
 then the claim holds because

$$\det AB = \det A_{m,\{1,...,m\}} B_{\{1,...,m\},m}.$$

In particular, if m > n then $k \le n < m$ therefore the matrix $AB \in M(m \times m; \mathbb{R})$ has a zero row hence $\det AB = 0$ (columns of AB are linear combinations of n vectors in \mathbb{R}^m).

Proof.

If the claim holds for some matrices A, B then it holds for matrices EA, BF where $E, F \in M(m \times m; \mathbb{R})$ are any elementary matrices because

$$\det(EA)_{m,S} = \det E \det A_{m,S}, \quad \det(BF)_{S,m} = \det B_{S,m} \det F,$$
and
$$\det(EA)(BF) = \det E \det AB \det F =$$

$$= \det E \left(\sum_{\substack{S \subset \{1,\dots,n\} \\ \#S = m}} \det A_{m,S} \det B_{S,m} \right) \det F =$$

$$= \sum_{\substack{S \subset \{1,\dots,n\} \\ \#S = m}} \det(EA)_{m,S} \det(BF)_{S,m}.$$

Proof.

If the claim holds for some matrices A,B then it holds for matrices $AE,E^{-1}B$ when

i) $E = D_{i,\alpha}$ because if $i \in S$ then

$$\det(AD_{i,\alpha})_{\textit{m},\textit{S}} = \alpha \det A_{\textit{m},\textit{S}}, \quad \det \left(D_{i,\alpha}^{-1}B\right)_{\textit{S},\textit{m}} = \alpha^{-1} \det B_{\textit{S},\textit{m}},$$

and if $i \notin S$ then

$$\det(AD_{i,\alpha})_{m,S} = \det A_{m,S}, \quad \det\left(D_{i,\alpha}^{-1}B\right)_{S,m} = \det B_{S,m},$$

$$\det(AD_{i,\alpha})(D_{i,\alpha}^{-1}B) = \det AB = \sum_{\substack{S \subset \{1,\dots,n\}\\ \#S = m}} \det A_{m,S} \det B_{S,m} =$$

$$= \sum_{\substack{S \subset \{1,\dots,n\}\\ |I|S = m}} \det(AD_{i,\alpha})_{m,S} \det\left(D_{i,\alpha}^{-1}B\right)_{S,m}.$$

Proof.

ii)
$$E=L_{ij}$$
 because for any $S\subset\{1,\ldots,n\}$
$$\det(AL_{ij})=\det A_{m,S},\quad \det\Bigl(L_{ij}^{-1}B\Bigr)_{S,m}=\det B_{S,m}.$$

The claim holds for matrices AL_{ij} and $L_{ij}^{-1}B$ by the similar formula as above.

Proof.

For any $S \subset \{1,\ldots,n\}$ and $1 \leqslant i,j \leqslant n$ define the map $f: \{1,\ldots,n\} \to \{1,\ldots,n\}$ by $f(i)=j,f(j)=i,f(k)=k,k\neq i,j$ and let $S_{ij}=f(S)$.

iii) $E = T_{ij}$ because

$$\det \left(AT_{ij}\right)_{m,S} = \varepsilon_S \det A_{m,S_{ij}}, \quad \det \left(T_{ij}^{-1}B\right)_{m,S} = \varepsilon_S \det B_{S_{ij},m},$$

where $\varepsilon_S \in \{-1,1\}$ (for example $\varepsilon_S = 1$ if $i,j \notin S$ and $\varepsilon_S = -1$ if $i,j \in S$). Therefore

$$\det(AT_{ij})(T_{ij}^{-1}B) = \det AB = \sum_{\substack{S \subset \{1,\dots,n\}\\ \#S = m}} (\varepsilon_S \det A_{m,S}) (\varepsilon_S \det B_{S,m}) =$$

$$= \sum_{\substack{S \subset \{1,\ldots,n\}\\ \#S-m}} \det(AT_{ij})_{m,S} \det(T_{ij}^{-1}B)_{S,m}.$$

Proof.

By elementary row operation (i.e. by multiplying by elementary matrices on the left) matrix A can be put into the reduced echelon form and then the reduced echelon form of A can be put by elementary column operations (i.e. by multiplying the reduced echelon form by elementary matrices on the right) into the form

$$\left[\begin{array}{c|c}I_k & 0\\\hline 0 & 0\end{array}\right].$$

Therefore the Cauchy–Binet formula holds for any matrices $A \in M(m \times n; \mathbb{R}), B \in M(n \times m; \mathbb{R}).$

Corollary

For any $A \in M(n \times m; \mathbb{R})$

$$\det(A^{\mathsf{T}}A) = \begin{cases} 0 & m > n \\ (\det A)^2 & m = n \\ \sum_{\substack{\mathcal{S} \subset \{1, \dots, n\} \\ \#\mathcal{S} = m}} (\det A_{\mathcal{S}, m})^2 & m < n \end{cases}$$

Corollary

For any $A \in M(n \times m; \mathbb{R})$

$$\det(A^{\mathsf{T}}A) = \begin{cases} 0 & m > n \\ (\det A)^2 & m = n \\ \sum_{\substack{S \subset \{1,\dots,n\} \\ \#S = m}} (\det A_{S,m})^2 & m < n \end{cases}$$

Corollary (Generalized Pythagorean Theorem)

The square of m-dimensional volume of a parallelotope spanned by m vectors in \mathbb{R}^n is equal to the sum of squares of the m-dimensional volumes of its projections on all m-dimensional coordinate subspaces for any $m \leq n$.

Generalized Cauchy-Binet Formula

Let $A_{S,T}$ denote the submatrix of matrix $A \in M(m \times n; \mathbb{R})$ consisting of rows $S \subset \{1, \dots, m\}$ and columns $T \subset \{1, \dots, n\}$.

Generalized Cauchy-Binet Formula

Let $A_{S,T}$ denote the submatrix of matrix $A \in M(m \times n; \mathbb{R})$ consisting of rows $S \subset \{1, \ldots, m\}$ and columns $T \subset \{1, \ldots, n\}$.

Proposition

For any matrices
$$A \in M(m \times n; \mathbb{R}), B \in M(n \times k; \mathbb{R})$$
, any $q \leq \max\{m, n, k\}$ and any $S = \{i_1, \ldots, i_q\}, T = \{j_1, \ldots, j_q\}$

$$\det(AB)_{S,T} = \sum_{\substack{Q = \{k_1, \dots, k_q\}\\1 \leqslant k_1 < \dots < k_q \leqslant n}} \det A_{S,Q} \det B_{Q,T}.$$

Generalized Cauchy-Binet Formula

Let $A_{S,T}$ denote the submatrix of matrix $A \in M(m \times n; \mathbb{R})$ consisting of rows $S \subset \{1, \ldots, m\}$ and columns $T \subset \{1, \ldots, n\}$.

Proposition

For any matrices $A \in M(m \times n; \mathbb{R}), B \in M(n \times k; \mathbb{R})$, any $q \leq \max\{m, n, k\}$ and any $S = \{i_1, \dots, i_q\}, T = \{j_1, \dots, j_q\}$

$$\det(AB)_{S,T} = \sum_{\substack{Q = \{k_1, \dots, k_q\}\\1 \leqslant k_1 < \dots < k_q \leqslant n}} \det A_{S,Q} \det B_{Q,T}.$$

Proof. (sketch)

$$\bigwedge^{q} AB = \bigwedge^{q} A \bigwedge^{q} B,$$

and the entries of $\bigwedge^q A$ (resp. $\bigwedge^q B$) are all order q minors of the matrix A (resp. the matrix B).

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a square matrix. Let $1 \le p < q \le n$ and $1 \le s < t \le n$. Then

$$\det A \det A_{pq,st} = \det \begin{bmatrix} \det A_{ps} & \det A_{pt} \\ \det A_{qs} & \det A_{qt} \end{bmatrix},$$

where $A_{pq,ij} \in M((n-2) \times (n-2); \mathbb{R})$ denotes matrix A with rows p and q and columns s and t removed.

Proof.

It is enough to prove the theorem for p=s=n-1 and q=t=n (exercise). The proof is taken from G. A. Baker, P. Graves–Morris, Padé Approximants, Cambridge University Press.

Proof.

Let $A=[a_{ij}]\in M(n\times n;\mathbb{R})$ and let R_{n-1},R_n,C_{n-1},C_n denote the corresponding rows and columns of matrix A but without the last two entries. Let $B=A_{(n-1)n,(n-1)n}\in M((n-2)\times (n-2);\mathbb{R})$ be the remaining matrix, i.e.

$$A = \begin{bmatrix} B & C_{n-1} & C_n \\ \hline R_{n-1} & a_{(n-1)(n-1)} & a_{(n-1)n} \\ \hline R_n & a_{n(n-1)} & a_{nn} \end{bmatrix}.$$

Let

$$C = \begin{bmatrix} B & C_{n-1} & C_n & 0\\ \hline R_{n-1} & a_{(n-1)(n-1)} & a_{(n-1)n} & 0\\ \hline R_n & a_{n(n-1)} & a_{nn} & R_n\\ \hline 0 & 0 & 0 & B \end{bmatrix}.$$

Proof.

$$\det C = \det A \det A_{pq,ij} \xrightarrow{r_4 + r_1}$$

$$= \det \begin{bmatrix} B & C_{n-1} & C_n & 0 \\ \hline R_{n-1} & a_{(n-1)(n-1)} & a_{(n-1)n} & 0 \\ \hline R_n & a_{n(n-1)} & a_{nn} & R_n \\ \hline B & C_{n-1} & C_n & B \end{bmatrix} c_1 = c_4$$

$$= \det \begin{bmatrix} B & C_{n-1} & C_n & 0 \\ \hline R_{n-1} & a_{(n-1)(n-1)} & a_{(n-1)n} & 0 \\ \hline 0 & a_{n(n-1)} & a_{nn} & R_n \\ \hline 0 & C_{n-1} & C_n & B \end{bmatrix} =$$

(sum in the second column)

Proof.

$$= \det \begin{bmatrix} \frac{B}{R_{n-1}} & C_{n-1} & C_{n} & 0\\ \hline R_{n-1} & a_{(n-1)(n-1)} & a_{(n-1)n} & 0\\ \hline 0 & 0 & a_{nn} & R_{n}\\ \hline 0 & 0 & C_{n} & B \end{bmatrix} - \\ + \det \begin{bmatrix} \frac{B}{R_{n-1}} & 0 & C_{n} & 0\\ \hline R_{n-1} & 0 & a_{(n-1)n} & 0\\ \hline 0 & a_{n(n-1)} & a_{nn} & R_{n}\\ \hline 0 & C_{n-1} & C_{n} & B \end{bmatrix} =$$

Proof.

$$= \det \begin{bmatrix} B & C_{n-1} \\ \hline R_{n-1} & a_{(n-1)(n-1)} \end{bmatrix} \det \begin{bmatrix} a_{nn} & R_n \\ \hline C_n & B \end{bmatrix} -$$

$$- \det \begin{bmatrix} B & C_n \\ \hline R_{n-1} & a_{(n-1)n} \end{bmatrix} \det \begin{bmatrix} a_{n(n-1)} & R_n \\ \hline C_{n-1} & B \end{bmatrix} =$$

$$= \det A_{(n-1)(n-1)} \det A_{nn} - \det A_{(n-1)n} \det A_{n(n-1)}.$$

Exchanging two appropriate rows and columns does not change signs in the above equation.

Definition

For any permutation $\sigma \in S_n$ let $P_{\sigma} = [p_{ij}] \in M(n \times n; \mathbb{R})$ be its **permutation matrix** given by

$$p_{ij} = \begin{cases} 0 & i \neq \sigma(j) \\ 1 & i = \sigma(j) \end{cases}$$

Definition

For any permutation $\sigma \in S_n$ let $P_{\sigma} = [p_{ij}] \in M(n \times n; \mathbb{R})$ be its **permutation matrix** given by

$$p_{ij} = \begin{cases} 0 & i \neq \sigma(j) \\ 1 & i = \sigma(j) \end{cases}$$

Proposition

i)
$$P_{id} = I$$
,

Definition

For any permutation $\sigma \in S_n$ let $P_{\sigma} = [p_{ij}] \in M(n \times n; \mathbb{R})$ be its **permutation matrix** given by

$$p_{ij} = \begin{cases} 0 & i \neq \sigma(j) \\ 1 & i = \sigma(j) \end{cases}$$

Proposition

- i) $P_{id} = I$,
- ii) $P_{\sigma\tau} = P_{\sigma}P_{\tau}$,

Definition

For any permutation $\sigma \in S_n$ let $P_{\sigma} = [p_{ij}] \in M(n \times n; \mathbb{R})$ be its **permutation matrix** given by

$$p_{ij} = \begin{cases} 0 & i \neq \sigma(j) \\ 1 & i = \sigma(j) \end{cases}$$

Proposition

- i) $P_{id} = I$,
- ii) $P_{\sigma\tau} = P_{\sigma}P_{\tau}$,
- iii) $P_{\sigma}^{-1} = P_{\sigma^{-1}} = P_{\sigma}^{\mathsf{T}}$,

Definition

For any permutation $\sigma \in S_n$ let $P_{\sigma} = [p_{ij}] \in M(n \times n; \mathbb{R})$ be its **permutation matrix** given by

$$p_{ij} = \begin{cases} 0 & i \neq \sigma(j) \\ 1 & i = \sigma(j) \end{cases}$$

Proposition

- i) $P_{id} = I$,
- ii) $P_{\sigma\tau} = P_{\sigma}P_{\tau}$,
- iii) $P_{\sigma}^{-1} = P_{\sigma^{-1}} = P_{\sigma}^{\mathsf{T}}$,
- iv) $sgn(\sigma) = det P_{\sigma}$.

Example

Let
$$\sigma=(1,2,3)\in\mathcal{S}_3$$
. Then $P^3_\sigma=P_{\sigma^3}=I$

$$P_{\sigma} = \left[egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight], \quad P_{\sigma^{-1}} = \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}
ight].$$

Example

Let
$$\sigma=(1,2,3)\in\mathcal{S}_3$$
. Then $P^3_\sigma=P_{\sigma^3}=I$

$$P_{\sigma} = \left[egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight], \quad P_{\sigma^{-1}} = \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}
ight].$$

Moreover det $P_{\sigma}=1$, since σ is an even permutation.

Example

Let
$$\sigma=(1,2,3)\in\mathcal{S}_3$$
. Then $P^3_\sigma=P_{\sigma^3}=I$

$$P_{\sigma} = \left[egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight], \quad P_{\sigma^{-1}} = \left[egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}
ight].$$

Moreover $\det P_{\sigma}=1$, since σ is an even permutation.

Remark

Some sources define P_{σ}^{T} as the permutation matrix of σ .

Proposition

For any permutation $\sigma \in S_n$ and matrix $A \in M(n \times m; \mathbb{R})$ with rows r_1, \ldots, r_n and matrix $B \in M(m \times n; \mathbb{R})$ with columns c_1, \ldots, c_n v) $P_{\sigma}A$ has rows $r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}$,

Permutation Matrix (continued)

Proposition

For any permutation $\sigma \in S_n$ and matrix $A \in M(n \times m; \mathbb{R})$ with rows r_1, \ldots, r_n and matrix $B \in M(m \times n; \mathbb{R})$ with columns c_1, \ldots, c_n

- v) $P_{\sigma}A$ has rows $r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}$,
- vi) BP_{σ} has columns $c_{\sigma(1)}, \ldots, c_{\sigma(n)}$.

Permutation Matrix (continued)

Proposition

For any permutation $\sigma \in S_n$ and matrix $A \in M(n \times m; \mathbb{R})$ with rows r_1, \ldots, r_n and matrix $B \in M(m \times n; \mathbb{R})$ with columns c_1, \ldots, c_n

- v) $P_{\sigma}A$ has rows $r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}$,
- vi) BP_{σ} has columns $c_{\sigma(1)}, \ldots, c_{\sigma(n)}$.

Permutation Matrix (continued)

Proposition

For any permutation $\sigma \in S_n$ and matrix $A \in M(n \times m; \mathbb{R})$ with rows r_1, \ldots, r_n and matrix $B \in M(m \times n; \mathbb{R})$ with columns c_1, \ldots, c_n

- v) $P_{\sigma}A$ has rows $r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}$,
- vi) BP_{σ} has columns $c_{\sigma(1)}, \ldots, c_{\sigma(n)}$.

Example

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{12} & a_{13} & a_{11} \\ a_{12} & a_{13} & a_{11} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} a_{12} & a_{13} & a_{11} \\ a_{22} & a_{23} & a_{21} \\ a_{32} & a_{33} & a_{31} \end{bmatrix}$$

Definition

Let $k = \min\{m, n\}$. Matrix $A \in M(m \times n; \mathbb{R})$ is an upper triangular matrix if

$$a_{ij} = 0$$
 for $k \geqslant i > j \geqslant 1$.

Definition

Let $k = \min\{m, n\}$. Matrix $A \in M(m \times n; \mathbb{R})$ is an upper triangular matrix if

$$a_{ij} = 0$$
 for $k \geqslant i > j \geqslant 1$.

Matrix A is an **upper unitriangular matrix** if it is upper triangular and $a_{ii} = 1$ for i = 1, ..., k.

Definition

Let $k = \min\{m, n\}$. Matrix $A \in M(m \times n; \mathbb{R})$ is an upper triangular matrix if

$$a_{ij} = 0$$
 for $k \geqslant i > j \geqslant 1$.

Matrix A is an **upper unitriangular matrix** if it is upper triangular and $a_{ii} = 1$ for i = 1, ..., k.

Matrix $A \in M(m \times n; \mathbb{R})$ is a **lower triangular matrix** if

$$a_{ij} = 0$$
 for $1 \leqslant i < j \leqslant k$.

Definition

Let $k = \min\{m, n\}$. Matrix $A \in M(m \times n; \mathbb{R})$ is an **upper** triangular matrix if

$$a_{ij} = 0$$
 for $k \geqslant i > j \geqslant 1$.

Matrix A is an **upper unitriangular matrix** if it is upper triangular and $a_{ii} = 1$ for i = 1, ..., k.

Matrix $A \in M(m \times n; \mathbb{R})$ is a **lower triangular matrix** if

$$a_{ij} = 0$$
 for $1 \leqslant i < j \leqslant k$.

Matrix $A \in M(m \times n; \mathbb{R})$ is a **lower unitriangular matrix** if it is lower triangular and $a_{ii} = 1$ for i = 1, ..., k.

General Linear Group

Definition

The (real) general linear group $GL(n,\mathbb{R})$ is the group of all (real) invertible n-by-n matrices, i.e.,

$$\mathsf{GL}(n,\mathbb{R}) = \{ A \in M(n \times n; \mathbb{R}) \mid \det A \neq 0 \}.$$

Weyl Subgroup and Borel Subgroup

Definition

The Weyl subgroup $W = W_n$ is the subgroup of the general linear group $GL(n,\mathbb{R})$ consisting of all permutation matrices, i.e.,

$$W_n = \{ P_{\sigma} \in GL(n, \mathbb{R}) \mid \sigma \in S_n \}.$$

The standard Borel subgroup $B = B_n$ is the subgroup of the general linear group $GL(n,\mathbb{R})$ consisting of all invertible upper triangular matrices, i.e.,

$$B_n = \{A \in GL(n, \mathbb{R}) \mid A \text{ is upper triangular}\}.$$

Borel subgroup of $GL(n,\mathbb{R})$ is any subgroup conjugated with the standard Borel subgroup, i.e. is of the form hBh^{-1} for some matrix $h \in GL(n,\mathbb{R})$.

Transvections

Definition

For any $\alpha \in \mathbb{R}$ and $i \neq j$ where $1 \leq i, j \leq n$ a **transvection** is a matrix $X_{ij}(\alpha) \in M(n \times n; \mathbb{R})$ given by the condition

$$X_{ij}(\alpha) = I_n + \alpha E_{ij},$$

where $E_{ij} = ig[e_{ij}ig] \in M(n imes n; \mathbb{R})$ and

$$e_{kl} = \begin{cases} 1 & k = i \text{ and } l = j \\ 0 & \text{otherwise} \end{cases}$$

Springer 1995

⁰I am following J. L. Alperin, R. B. Bell *Groups and Representations*,

Proposition

Let $\alpha, \beta \in \mathbb{R}$ and let i, j, k be any pairwise distinct numbers. Then

- i) $\det X_{ij}(\alpha) = 1$ hence $X_{ij}(\alpha) \in GL(n,\mathbb{R})$,
- ii) if $\alpha \neq 0$ then

$$X_{ij}(\alpha) \in B \iff i < j,$$

- iii) $X_{ij}(\alpha)X_{ij}(\beta) = X_{ij}(\alpha + \beta)$,
- iv) $X_{ij}(\alpha)^{-1} = X_{ij}(-\alpha)$,
- v) $[X_{ij}(\alpha), X_{jk}(\beta)] = X_{ik}(\alpha\beta)$, where [A, B] = AB BA,
- $\text{vi}) \ P_{\sigma}X_{ij}(\alpha)P_{\sigma}^{\intercal}=X_{\sigma(i)\sigma(j)}(\alpha) \ \text{for any } P_{\sigma}\in W.$

Proposition

Let $\alpha, \beta \in \mathbb{R}$ and let i, j, k be any pairwise distinct numbers. Then

- i) $\det X_{ij}(\alpha) = 1$ hence $X_{ij}(\alpha) \in GL(n,\mathbb{R})$,
- ii) if $\alpha \neq 0$ then

$$X_{ij}(\alpha) \in B \iff i < j,$$

- iii) $X_{ij}(\alpha)X_{ij}(\beta) = X_{ij}(\alpha + \beta)$,
- iv) $X_{ij}(\alpha)^{-1} = X_{ij}(-\alpha)$,
- v) $[X_{ij}(\alpha), X_{jk}(\beta)] = X_{ik}(\alpha\beta)$, where [A, B] = AB BA,
- vi) $P_{\sigma}X_{ij}(\alpha)P_{\sigma}^{\mathsf{T}}=X_{\sigma(i)\sigma(j)}(\alpha)$ for any $P_{\sigma}\in W$.

Proof.

Exercise.

Proposition

Let $\alpha \in \mathbb{R}$ and let $i \neq j$. Assume $A \in M(n \times n; \mathbb{R})$ has rows r_1, \ldots, r_n and columns c_1, \ldots, c_n . Then

- i) $X_{ij}(\alpha)A$ is equal to matrix A whose i-th row is equal to $r_i + \alpha r_j$,
- ii) $AX_{ij}(\alpha)$ is equal to matrix A whose j-column row is equal to $c_j + \alpha c_i$.

Proposition

Let $\alpha \in \mathbb{R}$ and let $i \neq j$. Assume $A \in M(n \times n; \mathbb{R})$ has rows r_1, \ldots, r_n and columns c_1, \ldots, c_n . Then

- i) $X_{ij}(\alpha)A$ is equal to matrix A whose i-th row is equal to $r_i + \alpha r_j$,
- ii) $AX_{ij}(\alpha)$ is equal to matrix A whose j-column row is equal to $c_j + \alpha c_i$.

Proof.

Exercise.

Bruhat Decomposition of $\mathsf{GL}(n,\mathbb{R})$

The following result is a simple particular case of a more general result valid for any algebraic group G. This particular case is closely related to the reduced echelon form.

Proposition

For any matrix $A \in GL(n,\mathbb{R})$ there exists a matrix $P_{\sigma} \in W_n$ and matrices $b,b' \in B$ such that

$$A = bP_{\sigma}b'$$
.

Bruhat Decomposition of $GL(n, \mathbb{R})$ (continued)

Proof.

There exist pairwise different numbers $k_1,\ldots,k_n\in\{1,\ldots,n\}$ and a matrix $b\in B$ such that for any $j=1,\ldots,n$ the only non–zero entry in the j-th column of matrix bA, excluding rows k_1,\ldots,k_{j-1} is in the k_j -th row (for j=1 this condition is empty). Let k_1 be the biggest number such that $a_{k_11}\neq 0$ (there exists such k_1 as matrix A is invertible). Multiplying A by a product of transvections $X_{ik_1}(\alpha)$ with $i< k_1$, equal to $b_1\in B$ one can make the entry $(k_1,1)$ the only non–zero entry in the 1st column of b_1A .

Bruhat Decomposition of $GL(n, \mathbb{R})$ (continued)

Proof.

Analogously, let k_2 be the biggest number, different from k_1 such that $a_{k_12} \neq 0$ (there exists such k_2 as matrix A is invertible). Multiplying b_1A by a product of transvections $X_{ik_2}(\alpha)$ with $i < k_2$, equal to $b_2 \in B$, one can make the entry $(k_2,2)$ the only non-zero entry in the 2nd row of b_2b_1A , excluding row k_1 . And so on, finally let $b = (b_n \cdots b_2b_1)^{-1} \in B$. Let $\sigma(j) = k_j$ for $j = 1, \ldots, n$. Multiplying bA on the right by the appropriate product of transvections with $X_{ik_j}(\alpha)$ where $i < k_j$ one can get

$$A = bP_{\sigma}b'$$
.

Bruhat Decomposition

Theorem

$$GL(n; \mathbb{R}) = BWB$$
,

that is, the general linear group is a disjoint union of n! the double cosets.

Bruhat Decomposition

Theorem

$$GL(n; \mathbb{R}) = BWB$$
,

that is, the general linear group is a disjoint union of n! the double cosets.

Proof.

It is enough to prove that the cosets are disjoint. Assume that

$$b_1 P_{\sigma} b_1' = b_2 P_{\tau} b_2',$$

then

$$bP_{\sigma}=P_{\tau}b',$$

for some $b_i, b'_i, b, b' \in B$.

Bruhat Decomposition (continued)

Proof.

Let k be the smallest number such that $\sigma(k) \neq \tau(k)$. Then the largest index of a non–zero entry of the k-th column of $bP\sigma$ is $(\sigma(k),k)$. The only (possibly) non–zero entries in $P_{\tau}b'$ in the k-th column are $(\sigma(1),k),(\sigma(2),k),\ldots,(\sigma(k-1),k),(\tau(k),k)$. Since $\sigma(k) \neq \sigma(j)$ for $j=1,\ldots,k-1$ this leads to a contradiction.

Root Subgroups and Matrix Exponential

Definition

For any $i \neq j$ the root subgroup $X_{ij} \subset \mathsf{GL}(n;\mathbb{R})$ is given by

$$X_{ij} = \{X_{ij}(\alpha) \in \mathsf{GL}(n; \mathbb{R}) \mid \alpha \in \mathbb{R}\}.$$

Definition

For any matrix $A \in M(n \times n; \mathbb{R})$ there is well defined matrix $exp(A) \in GL(n, \mathbb{R})$ given by

$$exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

Root Subgroups and Matrix Exponential (continued)

Remark

Observe that for any $i \neq j$

$$exp(tE_{i,j}) = X_{ij}(t),$$

which gives the group homomorphism

$$\exp: (\mathbb{R}, +) \ni t \mapsto exp(tE_{i,j}) \in X_{ij} \subset GL(n, \mathbb{R}).$$

Complete Flag

Definition

A complete flag in \mathbb{R}^n is a sequence of subspaces $V_i \subset \mathbb{R}^n$ such that dim $V_i = i$ for $i = 0, \ldots, n$ and

$$\{0\} = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_{n-1} \subset V_n = \mathbb{R}^n.$$

The standard complete flag is given by the condition

$$V_i = \operatorname{lin}(\varepsilon_1, \ldots, \varepsilon_i),$$

i.e., the i-th subspace is spanned by the first i vectors of the standard basis of \mathbb{R}^n .

(Complete) Flag Variety

Definition

Flag variety F = F(1, 2, ..., n) is the set of all complete flags in \mathbb{R}^n .

Proposition

The general linear group $GL(n; \mathbb{R})$ acts transitively on the flag variety with the stabilizer (at the standard complete flag) equal to the standard Borel subgroup B.

Corollary

The (complete) flag variety is a homogenous variety, i.e.,

$$F = GL(n; \mathbb{R})/B = \bigsqcup_{w \in W} BwB/B.$$

Schubert/Bruhat Cell

Definition

For any $\sigma \in S_n$ the set

$$C_w = BwB/B$$
,

where $w=P_{\sigma}$ is called Schubert/Bruhat cell. The closure X_w of C_w is called Schubert variety, i.e.

$$X_w = \overline{C}_w$$
.

Definition

For any permutation $\sigma \in S_n$ a pair (i,j) such that $\sigma(i) > \sigma(j)$ and $1 \le i < j \le n$ is called an inversion. The number of all inversions of permutation σ is called the length od σ and is denoted $I(\sigma)$.

Schubert/Bruhat Cell (continued)

Proposition

Each Schubert/Bruhat C_w cell is isomorphic to $\mathbb{R}^{l(w)}$. The dimension of F is the maximal number of inversions that is

$$\dim F(1,2,\ldots,n) = \binom{n}{2} = \frac{n(n-1)}{2}.$$

The cohomology classes $[X_w]$ form a basis of the (integral) cohomology of the complete flag variety.

Bruhat Order

Definition

The transitive closure of the relation

$$\sigma \leqslant \tau \iff \begin{cases} \sigma = t\tau \text{ for some transposition } t \\ I(\sigma) < I(\tau) \end{cases},$$

induces a (ranked) partial order on all permutations in S_n .

Proposition

The Schubert/Bruhat cells form a CW complex and

$$\overline{C}_v \subset \overline{C}_w \Leftrightarrow v \leqslant w,$$

where \overline{C}_v denotes the closure of cell C_v and v, w are identified with corresponding permutations.

Bruhat Order – Example

For n=3 identify the permutation $\sigma \in S_3$ with the sequence $\sigma(1)\sigma(2)\sigma(3)$.

Antisymmetric Matrices

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is antisymmetric if

$$A^{\mathsf{T}} = -A$$
.

Proposition

If $A \in M((2k+1) \times (2k+1); \mathbb{R})$ is antisymmetric then $\det A = 0$.

Proof.

Exercise.

Pfaffian

Proposition

Let $A = [x_{ij}] \in M(2k \times 2k; \mathbb{R})$ an antisymmetric matrix with entries equal to degree one monomials x_{ij} . Then there exists¹ a unique (up to a sign) polynomial $P \in \mathbb{Z}[x_{ij}]$ (i.e. with integral coefficients) such that

$$\det A = [P(x_{ij})]^2.$$

Definition

For any antisymmetric matrix $A = [a_{ij}] \in M(2k \times 2k; \mathbb{R})$ the **Pfaffian** of matrix A is a scalar determined by the above polynomial with a sign chosen such that

i)
$$[\mathsf{Pf}(A)]^2 = \det A,$$
 ii)
$$\mathsf{Pf}\left(\begin{bmatrix} \begin{smallmatrix} J&0&\cdots&0\\0&J&&&0\\\vdots&\ddots&\vdots\\0&0&\cdots&J \end{smallmatrix}\right]\right) = 1,$$
 where $J = \begin{bmatrix} 0&1\\-1&0 \end{bmatrix}.$

Remark

For any antisymmetric matrix $A^T = -A$ and $A = [a_{ij}] \in M(2k \times 2k; \mathbb{R})$ then Pf(A) is a scalar such that if

$$\omega = \sum_{1 \leqslant i < j \leqslant n} a_{ij} \varepsilon_i \wedge \varepsilon_j,$$

then

$$\frac{\omega^k}{k!} = \mathsf{Pf}(A)\varepsilon_1 \wedge \ldots \wedge \varepsilon_{2k}.$$

Proposition

For any antisymmetric matrix
$$A^{T} = -A$$
 and $A = [a_{ij}] \in M(2k \times 2k; \mathbb{R})$ and any matrix $B \in M(2k \times 2x; \mathbb{R})$

$$Pf(B^{T}AB) = \det B Pf(A).$$

Proof.

Since $det(B^{T}AB) = det B^{2}[Pf(A)]^{2}$ it is obvious that

$$Pf(B^{T}AB) = \pm \det B Pf(A),$$

where the sign does not depend on matrix B (consider matrices with entries in a polynomial ring). Substituting $B = I_{2k}$ gives the result.

Pfaffian - Equivalence of Definitions

Remark

For any real skew–symmetric matrix A there exists an orhogonal matrix Q such that

$$Q^{\mathsf{T}}AQ = \begin{bmatrix} a_1 J & 0 & \dots & 0 \\ 0 & a_2 J & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & a_k J \end{bmatrix}.$$

Moreover, by replacing Q with TQ where T is the transposition matrix (say of rows 1 and 2), one can assume that $\det Q = 1$. Therefore

$$Pf(A) = a_1 \dots a_k,$$

which shows that the two definitions are equivalent.

Proposition

Let $A = [a_{ij}] \in M(k \times k; \mathbb{R})$ be any matrix. Then

$$\mathsf{Pf}\left(\left[\begin{smallmatrix}0&A\\-A^{\mathsf{T}}&0\end{smallmatrix}\right]\right) = (-1)^{\frac{k(k-1)}{2}}\det A.$$

Proof.

Again, it is clear that Pf $\left(\begin{bmatrix}0&A\\-A^{\mathsf{T}}&0\end{bmatrix}\right)=\pm\det A$. Take A=I. Then for

$$\omega = \varepsilon_1 \wedge \varepsilon_{k+1} + \varepsilon_2 \wedge \varepsilon_{k+2} + \ldots + \varepsilon_k \wedge \varepsilon_{2k},$$

we have

$$\frac{\omega^k}{k!} = \varepsilon_1 \wedge \varepsilon_{k+1} \wedge \varepsilon_2 \wedge \varepsilon_{k+2} \wedge \dots \wedge \varepsilon_k \wedge \varepsilon_{2k} =$$
$$= (-1)^{1+2+\dots+(k-1)} \varepsilon_1 \wedge \dots \wedge \varepsilon_{2k}.$$

Pfaffians – Examples

$$\mathsf{Pf}\left(\begin{bmatrix}0 & x_{12} \\ -x_{12} & 0\end{bmatrix}\right) = x_{12},$$

$$\mathsf{Pf}\left(\begin{bmatrix}0 & x_{12} & x_{13} & x_{14} \\ -x_{12} & 0 & x_{23} & x_{24} \\ -x_{13} & -x_{23} & 0 & x_{34} \\ -x_{14} & -x_{24} & -x_{34} & 0\end{bmatrix}\right) = x_{12}x_{34} - x_{13}x_{24} + x_{23}x_{14}.$$

$$\mathsf{Pf}\left(\begin{bmatrix}a_{1}J & 0 & \cdots & 0 \\ 0 & a_{2}J & & 0 \\ \vdots & & \ddots & \vdots \end{bmatrix}\right) = a_{1}a_{2}\cdots a_{k}.$$

Laplace-type Formula for Pfaffians

Proposition

Let $A = [a_{ij}] \in M(2k \times 2k; \mathbb{R})$ be an antisymmetric matrix. Then

$$\mathsf{Pf}(A) = \sum_{j=2}^{2k} (-1)^j \mathsf{a}_{1j} \, \mathsf{Pf}(A_{1j,1j}).$$

Proof.

By the Sylverster's Theorem

$$\det A \det A_{1j,1j} = \det \begin{bmatrix} \det A_{11} & \det A_{1j} \\ \det A_{j1} & \det A_{jj} \end{bmatrix} =$$

$$=\det\begin{bmatrix}0&\det A_{1j}\\\det\left(-A_{1j}^{\mathsf{T}}\right)&0\end{bmatrix}=\det\begin{bmatrix}0&\det A_{1j}\\\left(-1\right)^{2k-1}\det A_{1j}&0\end{bmatrix}=\det(A_{1j})^2.$$

Laplace-type Formula for Pfaffians

Proof.

It turns out that

$$\mathsf{Pf}(A)\,\mathsf{Pf}(A_{1j,1j}) = -\det A_{1j}.$$

To see this consider the form (and the corresponding matrix)

$$\omega = \varepsilon_1 \wedge \varepsilon_j + \varepsilon_2 \wedge \varepsilon_3 + \ldots + \varepsilon_{j-2} \wedge \varepsilon_{j-1} + \varepsilon_{j+1} \wedge \varepsilon_{j+2} + \ldots,$$

for even j and

$$\omega = \varepsilon_1 \wedge \varepsilon_j + \varepsilon_2 \wedge \varepsilon_3 + \ldots + \varepsilon_{j-1} \wedge \varepsilon_{j+1} + \varepsilon_{j+2} \wedge \varepsilon_{j+3} + \ldots,$$

for odd j. In both cases

$$A_{1j,1j} = \begin{bmatrix} J & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J \end{bmatrix},$$

hence $\mathsf{Pf}(A_{1j,1j}) = 1$. In $\frac{\omega^k}{k!}$ in both cases on have to exchange ε_j with $\varepsilon_2, \dots, \varepsilon_{j-1}$ hence $\mathsf{Pf}(A) = (-1)^{j-1}$.

Laplace-type Formula for Pfaffians

Proof.

Finally, the matrix A_{1j} has a unique -1 in the first column and the (j-1)-th row, by the Laplace formula for the first column

$$\det A_{1j} = (-1)^{(j-1)+1}(-1) \det \begin{bmatrix} J & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J \end{bmatrix} = (-1)^{j-1}.$$

By the Laplace formula in the first row for matrix A

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j},$$

$$[\mathsf{Pf}(A)]^2 = \sum_{j=2}^n (-1)^j a_{1j} \, \mathsf{Pf}(A) \, \mathsf{Pf}(A_{1j,1j}).$$

Note that $\det A_{11} = 0$ and to divide by Pf(A) one should switch to matrices with entries in a polynomial ring.

Example

Let

$$A = \begin{bmatrix} 0 & x_{12} & x_{13} & x_{14} \\ -x_{12} & 0 & x_{23} & x_{24} \\ -x_{13} & -x_{23} & 0 & x_{34} \\ -x_{14} & -x_{24} & -x_{34} & 0 \end{bmatrix}.$$

Then

$$A_{12,12} = \begin{bmatrix} 0 & x_{34} \\ -x_{34} & 0 \end{bmatrix}, \quad A_{13,13} = \begin{bmatrix} 0 & x_{24} \\ -x_{24} & 0 \end{bmatrix},$$

$$A_{14,14} = \begin{bmatrix} 0 & x_{23} \\ -x_{23} & 0 \end{bmatrix}.$$

$$Pf(A) = (-1)^2 x_{12} x_{34} + (-1)^3 x_{13} x_{24} + (-1)^4 x_{14} x_{23} = x_{12} x_{34} - x_{13} x_{24} + x_{14} x_{23}.$$

Exercise

$$A = \begin{bmatrix} 0 & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ -x_{12} & 0 & x_{23} & x_{24} & x_{25} & x_{26} \\ -x_{13} & -x_{23} & 0 & x_{34} & x_{35} & x_{36} \\ -x_{14} & -x_{24} & -x_{34} & 0 & x_{45} & x_{46} \\ -x_{15} & -x_{25} & -x_{35} & -x_{45} & 0 & x_{56} \\ -x_{16} & -x_{26} & -x_{36} & -x_{46} & -x_{56} & 0 \end{bmatrix}.$$

$$Pf(A) = x_{12}x_{34}x_{56} - x_{13}x_{24}x_{56} + x_{14}x_{23}x_{56} - x_{12}x_{35}x_{46} + x_{13}x_{25}x_{46} - x_{15}x_{23}x_{46} + x_{12}x_{36}x_{45} - x_{13}x_{26}x_{45} + x_{16}x_{23}x_{45} - x_{14}x_{25}x_{36} + x_{15}x_{24}x_{36} + x_{14}x_{26}x_{35} - x_{16}x_{24}x_{35} - x_{15}x_{26}x_{34} + x_{16}x_{25}x_{34}.$$