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Sum and Scalar Multiplication

Proposition

Let V, W be vector spaces. Let p,1) : V —> W be linear
transformations and let a € R. The transformation

o+ V— W, defined by (¢ +1)(v) = p(v) +9(v) forve V,
and the transformation ap defined by (ap)(v) = ap(v) are linear.
The transformation ¢ + v is called the sum of ¢ and ¢ and ap is
called the product of the transformation ¢ with scalar «.



Sum and Scalar Multiplication

Proposition

Let V, W be vector spaces. Let p,1) : V —> W be linear
transformations and let a € R. The transformation

o+ V— W, defined by (¢ +1)(v) = p(v) +9(v) forve V,
and the transformation ap defined by (ap)(v) = ap(v) are linear.
The transformation ¢ + v is called the sum of ¢ and ¢ and ap is
called the product of the transformation ¢ with scalar «.

Example

Let ¢, v : R3 — R? be given by

(p((Xl,XQ,X3)) = (X1 + 2xp — X3, X1 + 2x0 + X3) and

UY((x1,x2,x3)) = (—x1 + X2 + x3,3x1 — 2x2 + x3). Then

(o +¥)((x1,x2,x3)) = (3x2,4x1 + 2x3) and

(2p)((x1, %2, x3)) = (2x1 + 4xp — 2x3,2x71 + 4xp + 2x3) (for a = 2).



Composition

Proposition
Let U,V , W be vectors spaces and let p: U — V, ¢ : V — W
be linear transformations. The transformation

Ypop: U— W,

given by
(o @)(v) =v(p(v)))

for v e U, is linear. It is called the composition of ¢ with .



Example

Let p : R} — R? and ¢ : R2 — R? be linear transformations
given by o((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and
¥((y1,¥2)) = (y1 — y2, 51 + 2y2)). Then

(1/1 ¢} 90)((X1,X2,X3)) = ¢((X1 — X2 + 2X3, —X1 + 3X2 - X3)) =
(Ca—x2+2x3) —(—x1+3x2—x3), (1 —x2+2x3) +2(—x1+3x2—x3)) =
(2x1 — 4x2 + 3x3, —x1 + 5x2).



Operations on Matrices

Definition

Let A,Be M(m x n;R),a € R, A= [aj], B = [bj]. The sum of
matrices A and B is the matrix A + B = [a;; + bjj]. The product
of matrix A by scalar « is the matrix aA = [aajj].



Operations on Matrices

Definition

Let A,Be M(m x n;R),a € R, A= [aj], B = [bj]. The sum of
matrices A and B is the matrix A + B = [a;; + bjj]. The product
of matrix A by scalar « is the matrix aA = [aajj].

Example
Let & = 2 and let A, Be M(2 x 3;R) be given by

1 2 -1 -1 3 2
A_[Ol O}’B_[ 101]

05 1 2 4 -2
A+B‘[1 1 1]’““‘[0 2 0}'



Matrix Multiplication

Definition

Let Ae M(m x n;R) and let Be M(n x I;R). The matrix
product of A by B is the matrix AB = [¢;;] € M(m x I;R) where
Cij = 2’51:1 a,-sbsj = a,-lblj + a,'zbgj + ...+ a,-,,b,,j fori=1,...,m
and j=1,...,/.



Matrix Multiplication

Definition
Let Ae M(m x n;R) and let Be M(n x I;R). The matrix
product of A by B is the matrix AB = [¢;;] € M(m x I;R) where

Cij = Zgzl a,-sbsj = a;lblj + a/2b2j + ...+ a,-,,b,,j for i = 1, co.,m

and j=1,...,/.

In particular, if R; = [ ai aipp ... apn ] € M(1 x n;R) is the
blj

. . boj . )

i—th row of matrix A and C; = _ € M(n x 1;R) is the j—th
by

column of matrix B then R;C; = [ ajpbyj + ...+ ainbp; ] is a
1 x 1 matrix which can be identified with a real number.



Matrix Multiplication (continued)

Using this identification we can write

Ry Cl Ry C2 .. Ry C/

R C1 R, C2 . R C/
AB = ) . ) .

RnG RanG ... RnC



Matrix Multiplication (continued)

Using this identification we can write

AB =
For example
a1 a2
a1 ax
am1 am?2
[1 o
= b1

and so on.

Ry Cl Ry C2 Ry C/
R> C1 R C2 R> C/
RnCi RnG R, C
ain [ 1 an
a2, 0 a1
. = . = the first column of A
dmn _0 am1
[ b1 bio bk
bo1 by boy
0] , , _ -
| bnl bn2 bnk
b1 blk] = the first row of B




Example

Let Ae M(3 x 2;R) and B e M(2 x 2;R) be given by

1 2
A= 2 31|, B= { 1 _é }
-1 1
Then
R RRG RiG 3 -3
AB = R [ G G ] = RCG RG = 5 —4
R3 R3Cy R3C3 0 -3

The first column of AB is the sum of columns of A and the second
one is the first column of A minus twice the second column of A.



Warning

The matrix multiplication is, in general, not commutative. For

example
10 01| |01
00 00| |00O

oolloel=los]

but
10 0
00 0



Operations on Linear Transformations and Matrices

Theorem (Addition)

Let V, W be vector spaces and let @, : V —> W be linear
transformations. Let A, B be bases of V and W respectively. Then
M(p + )5 = M()5 + M¥)5.

Theorem (Composition and multiplication)

Let U,V , W be vectors spaces and let p: U — V, ¢ : V — W
be linear transformations. Let A, B,C be the bases of U,V and
W, respectively. Then M(¢p o 0)§ = M(y)EM(0)5.



Example (continued)

Let ¢ : R3 — R? and 1 : R? — R? be linear transformations
given by o((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and

Y((y1,y2)) = (y1 — y2, y1 + 2y2)). Recall that
(¥ 0 p)((x1, X2, x3)) = (2x1 — 4x2 + 3x3, —x1 + 5x2).



Example (continued)

Let ¢ : R3 — R? and 1 : R? — R? be linear transformations
given by o((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and

Y((y1,¥2)) = (y1 — 2,51 +2y2)). Recall that
(¥ o p)((x1,Xx2,x3)) = (2x1 — 4x2 + 3x3, —x1 + 5x2). We will
compute this again, using matrix multiplication.



Example (continued)

Let ¢ : R3 — R? and 1 : R? — R? be linear transformations
given by o((x1,x2,x3)) = (x1 — x2 + 2x3, —x1 + 3x2 — x3) and
¥((y1,¥2)) = (y1 — y2, 51 + 2y2)). Recall that

(1 o ©)((x1,Xx2,x3)) = (2x1 — 4x2 + 3x3, —x1 + 5x2). We will
compute this again, using matrix multiplication. Let A be the
standard basis in R3 and let B = C be the standard basis in R?.
Then

Mo -mwimei= | || 5 -

[ 2 -4 3
-1 50

This agrees with the formula of ¢ o .



Applications

Proposition
Let V, W be vector spaces and let p : V — W be a linear
transformation. Let A = (vi,...,v,) be an ordered basis of V and
let B = (wi,...,wn) be an ordered basis of W. For any vector
veV let ay,...,a, be the coordinates of v relative to the basis
A and let B1,...,Bm be the coordinates of p(v) relative to the
basis B, that isv = ayvq + ... + apv, and
o(v) = Biwr + ... + BmWm. Then
a1 b1
| =

Qp /Bm



Example

Let 1) : R2 — R? be a linear transformations given by

1/)((X1,X2)) = (X1 — X2, X1 + 2X2). Let st = ((1,0), (0, ].)) be the
standard basis in R? and let

A=((1,2),(0,1)), B=((1,0), (1, —1)) be other two bases of R.



Example

Let 1) : R2 — R? be a linear transformations given by

1/)((X1,X2)) = (X1 — X2, X1 + 2X2). Let st = ((1,0), (0, ].)) be the
standard basis in R? and let

A=((1,2),(0,1)), B=((1,0), (1, —1)) be other two bases of R.
We check immediately that

¥(1,2) = (—1,5) = 4(1,0) — 5(1,-1),
¥(0,1) = (—-1,2) = 1(1,0) — 2(1, -1).
Therefore

wog-|1 | mes-| 3 S



Example

Let 1) : R2 — R? be a linear transformations given by

1/)((X1,X2)) = (X1 — X2, X1 + 2X2). Let st = ((170), (0, 1)) be the
standard basis in R? and let

A=((1,2),(0,1)), B=((1,0), (1, —1)) be other two bases of R.
We check immediately that

¥(1,2) = (—1,5) = 4(1,0) — 5(1,-1),
¥(0,1) = (—-1,2) = 1(1,0) — 2(1, -1).
Therefore

wog-|1 | mes-| 3 S

Pick, say, v = (1,1). Since v = 1(1,2) — 1(0, 1), the coordinates of
v relative to A are 1, —1. Since ¢(v) = (0,3) = 3(1,0) —3(1, 1),
the coordinates of ¥)(v) relative to B are 3, —3.



Example (continued)

M)z - |

1 2



Example (continued)

wg=| ] | mei=| 5 5

the coordinates of v = (1,1) relative to the basis A are 1, —1

the coordinates of ¢(v) = (0, 3) relative to the basis B are 3, -3



Example (continued)

s« | 1 —1 B _ 4 1
the coordinates of v = (1,1) relative to the basis A are 1, —1

the coordinates of ¢(v) = (0, 3) relative to the basis B are 3, -3

wo| =11 ][] 5



Applications (continued)

Let V be a vector space. The function idy : V — V given by
idy(v) = v for any v € V is a linear transformation called the
identity.



Applications (continued)

Let V be a vector space. The function idy : V — V given by
idy(v) = v for any v € V is a linear transformation called the

identity.

Corollary

Let A= (v1,...,v,) and B = (w1, ..., w,) be two ordered bases
of V. Forany ve V let ai,...,a, be the coordinates of v relative
to the basis A and let 31, ..., 3, be the coordinates of v relative

to the basis B. Then
a1 B1
a%) B2
MR =] .

Qp ﬁn



Applications (continued)

Let V be a vector space. The function idy : V — V given by
idy(v) = v for any v € V is a linear transformation called the

identity.

Corollary

Let A= (v1,...,v,) and B = (w1, ..., w,) be two ordered bases
of V. Forany ve V let ai,...,a, be the coordinates of v relative
to the basis A and let 31, ..., 3, be the coordinates of v relative

to the basis B. Then

aq B1
M(id \/)ﬁ 04:2 = IB:Z
Qn Bn

The matrix M(idy)% is called a change-of-coordinates matrix.



Applications (continued)

Proposition

Let V, W be vector spaces and let p : V — W be a linear
transformation. Let A, A" be (ordered) bases of V' and let B,5' be
(ordered) bases of W. Then

/

M) = M(idw)§ M(p)EM(idy).

Proof.

This follows directly from the fact that idy op oidy = ¢ and the
formula relating composition of linear transformations with matrix
multiplication. O



Example (continued)

Let ¢ : R2 —> R? be a linear transformation given by the formula
1/}((X1,X2)) = (Xl — X2,X1 + 2X2). Let st = ((1,0), (O, 1)) be the
standard basis of R? and let A = ((1,2),(0,1)),

B = ((1,0),(1,—1)) be other two bases of R2.



Example (continued)

Let ¢ : R2 —> R? be a linear transformation given by the formula
1/}((X1,X2)) = (Xl — X2,X1 + 2X2). Let st = ((1,0), (O, 1)) be the
standard basis of R? and let A = ((1,2),(0,1)),

B = ((1,0),(1,—1)) be other two bases of R2.We have already

checked that

wog=|1 | mes-] 2 3]



Example (continued)

Let ¢ : R2 —> R? be a linear transformation given by the formula
1/}((X1,X2)) = (Xl — X2,X1 + 2X2). Let st = ((1,0), (O, 1)) be the
standard basis of R? and let A = ((1,2),(0,1)),

B = ((1,0),(1,—1)) be other two bases of R2.We have already

checked that
1 -1 4 1
st _ B _
M(w)st_|:1 2:|7 M(w)A_|:_5 _2:|
Let check this again using the previous Proposition. It says that

M(9)5 = M(idg2) M (4) 5 M(idg2) %



Example (continued)

Let ¢ : R2 —> R? be a linear transformation given by the formula
1/}((X1,X2)) = (Xl — X2,X1 + 2X2). Let st = ((1,0), (O, 1)) be the
standard basis of R? and let A = ((1,2),(0,1)),

B = ((1,0),(1,—1)) be other two bases of R2.We have already
checked that

wog=|1 | mes-] 2 3]

Let check this again using the previous Proposition. It says that
M(4)5 = M(idg2 ) M (1) 3 M (idg2) %

We need to compute M(idg2)5 and M(idg-)SE.



Example (continued)

We need to compute M(idg2)5 and M(idg:)SE. Recall that
A= ((L 2)7 (07 1))7 B = ((170)7 (1’ _1))



Example (continued)

We need to compute M(idg2)5 and M(idg:)SE. Recall that
A= ((1a2)7 (07 1))7 B = ((Lo)v (1’ _1)) Since

id((1,2)) = 1(1,0) +2(0, 1),
id(0,1) = 0(1,0) + 1(0,1),

we have M(idg2)% = { ; (1) ] .



Example (continued)

We need to compute M(idg2)5 and M(idg:)SE. Recall that
A= ((1a2)7 (07 1))7 B = ((LO)v (1’ _1)) Since

id((1,2)) = 1(1,0) +2(0, 1),
id(0,1) = 0(1,0) + 1(0,1),

3
I
>
o
<
I
=
o
=
N
SN—
=
|
1

0 ] . Since

N
—_

id((1,0)) = 1(1,0) + 0(1, -1),
id((0,1)) = 1(1,0) — 1(1, -1),



Example (continued)

We need to compute M(idg2)5 and M(idg:)SE. Recall that
A= ((1a2)7 (07 1))7 B = ((LO)v (1’ _1)) Since

id((1,2)) = 1(1,0) +2(0, 1),

id(0,1) = 0(1,0) + 1(0, 1),

10

we have M(idg2)% = { s 1

] . Since

id((1,0))
id((0,1)) = 1(1,0) — 1(1, -1),

we have M(idg2)5 = { é _1 } . Using

M()8 = M(idg2)5M () SEM(idg2)S; one can check that

[ = -lo ]l 2]l

1(1,0) +0(1, -1),



Elementary Matrices

Fix @« € R, n > 0 and define the following matrices
D,'7oé = [dk/], L,‘j = [Ek/], T,'j = [tk/] S I\/l(n X n; R) as follows



Elementary Matrices

Fix @« € R, n > 0 and define the following matrices
D,'7oé = [dk/], L,‘j = [Ek/], T,'j = [tk/] S I\/l(n X n; R) as follows

i) di =1 for k # i, dij = a, dyy = 0 elsewhere,



Elementary Matrices

Fix @« € R, n > 0 and define the following matrices
D,'7oé = [dk/], L,‘j = [Ek/], T,'j = [tk/] S I\/l(n X n; R) as follows

i) di =1 for k # i, dij = a, dyy = 0 elsewhere,
i) b =1 for k=1,....n, £ =1, £y =0 elsewhere,



Elementary Matrices

Fix @« € R, n > 0 and define the following matrices
D,'7oé = [dk/], L,‘j = [Ek/], T,'j = [tk/] S I\/l(n X n; R) as follows

i) di =1 for k # i, dij = a, dyy = 0 elsewhere,
i) b =1 for k=1,....n, £ =1, £y =0 elsewhere,
iii) tie =1 for k ¢ {i,j}, tij = tji = 1, ti = 0 elsewhere.



Elementary Matrices (continued)

0 0 0 O
01
10

1
0 0 0 01
00 0 00O

1
0
0 0 O

o oo oo~

o~ o
o oo — o o
oo~ -0 0O
o Jo o000
— O o o oo

Di,a =

0

0 0 0O

1

0 0 0

0 0 0 O

1

0

0 o0

1 0

0 0 0 O

1]

i



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then
i) DjoA = matrix A with the i-th row multiplied by «,



Elementary Matrices (continued)
Proposition
Let Ae M(n x m;R). Then
i) DjoA = matrix A with the i-th row multiplied by «,
ii) LjA = matrix A with the j-th row added to the i-th row,



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition
Let Ae M(n x m;R). Then



Elementary Matrices (continued)
Proposition
Let Ae M(n x m;R). Then
i) DjoA = matrix A with the i-th row multiplied by «,
ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.
Proposition
Let Ae M(n x m;R). Then
i) AD; o = matrix A with the i-th column multiplied by c,



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition
Let Ae M(n x m;R). Then
i) AD; o = matrix A with the i-th column multiplied by c,
ii) ALj = matrix A with the i-th column added to the j-th one,



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition
Let Ae M(n x m;R). Then

i) AD; o = matrix A with the i-th column multiplied by c,

ii) ALj = matrix A with the i-th column added to the j-th one,
i) ATjj = matrix A with the i-th and j-th columns swapped,



Elementary Matrices (continued)

Proposition
Let Ae M(n x m;R). Then

i) DjoA = matrix A with the i-th row multiplied by «,

ii) LjA = matrix A with the j-th row added to the i-th row,
iii) T;A = matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition
Let Ae M(n x m;R). Then

i) AD; o = matrix A with the i-th column multiplied by c,

ii) ALj = matrix A with the i-th column added to the j-th one,
i) ATjj = matrix A with the i-th and j-th columns swapped,

that is, elementary column operations correspond to multiplication
by elementary matrices from the right.



Matrix Multiplication is Associative

Proposition

For any matrices
Ae M(mx n;R),Be M(nx I;R),Ce M(l x k;R)

(AB)C = A(BC).



Matrix Multiplication is Associative

Proposition

For any matrices
Ae M(mx n;R),Be M(nx I;R),Ce M(l x k;R)

(AB)C = A(BC).

Proof.
Let AB = [f;j] € M(m x I;R), BC = [gjj] € M(n x k;R). Then



Matrix Multiplication is Associative

Proposition

For any matrices
Ae M(mx n;R),Be M(nx I;R),Ce M(l x k;R)

(AB)C = A(BC).

Proof.
Let AB = [f;j] € M(m x I;R), BC = [gjj] € M(n x k;R). Then

n
fir = Z ajsbsr,
s=1

/
8sj = Z bsrcrj-
r=1



Matrix Multiplication is Associative (continued)

Proof.
The entry in the i-th row and the j-th column of the matrix
(AB)C is equal to

! / n ! n
2 fircrj = Z 2 aisbsr Crj = Z Z aisbsrcrj-
r=1 r=1 \s=1

r=1s=1

The entry in the i-th row and the j-th column of the matrix A(BC)

is equal to
n n /
2 djs8sj = Z djs 2 bsrclj = 2 Z alsbsrCrJ =
s=1 s=1 r=1 s=1r=

n

i
= 2, 2, disbsrcy.
r=1s=1



Coordinate Vector

Definition

Let V be a vector space and let A = (vq,...,v,) be its ordered
basis. For any v € V by [v] , we denote the coordinate vector of
v relative to A, i.e. a n—by—1 matrix with coordinates of v relative
to A. In particular, if v =a3vi + aovo + ... + ap,Vv, then



Coordinate Vector
Definition
Let V be a vector space and let A = (vq,...,v,) be its ordered
basis. For any v € V by [v] , we denote the coordinate vector of
v relative to A, i.e. a n—by—1 matrix with coordinates of v relative
to A. In particular, if v =a3vi + aovo + ... + ap,Vv, then

Example
If A=((1,1),(1,2)), v =(1,3) then

= [3] e =[]



Image by the Matrix of Linear Transformation

Proposition

Let V, W be vector spaces and let ¢ : V — W be a linear
transformation. Let A = (v1,...,v,) be an ordered basis of V and
let B = (wi,...,wn) be an ordered basis of W. For any vector
veV let as,...,a, be the coordinates of v relative to the basis
A and let B1,...,Bm be the coordinates of p(v) relative to the
basis B, that isv = ovyvi + ... + a,v, and

o(v) = fiws + ... + BmWm. Then

a1 B1
L B I
Qp 5m

or equivalently



Image by the Matrix of Linear Transformation — Proof

aq a1 d12 ... din a1
B (&%} a1 &2 ... ax Q2
M(‘P)A : = . : . : . =

| Qp am1 am?2 e Amn ] Qp

ai ai2 ain

as ax an

= Q1 . + o . +...+ o,
| 9m1 am2 | 9dmn




Image by the Matrix of Linear Transformation — Proof

aq a1 d12 ... din a1
B (&%} a1 &2 ... ax Q2
M(‘P)A : = . : . : . =

| Qp am1 am?2 cee Amn ] Qp

ai ai2 ain

as ax an

= Q1 . + o . +...+ o,
| 9m1 am2 | 9dmn

On the other hand

algo(vl) = al(allwl + awor + ...+ amlw,,,),

OQQD(VQ) = Oz2(312W1 + apwy + ...+ amgwm),

OZnSO(Vn) = Oén(alnwl + apwo + ...+ amnWm)7
and

o(v) = plarvi + aava + ... + apvy) = are(vi) + aap(va) +. .. + ape(vy).



Matrix of the Sum of Linear Transformations

Proposition

Let V, W be vector spaces and let ¢, : V — W be linear
transformations. Let A, B be bases of V and W respectively and
o € R any scalar. Then M(¢ + ¥)5 = M(p)% + M(y)5 and
M(ap)i = aM(p)5.

Proof.

Let A= (v1,...,vy) and B = (wy,...,ws) be the ordered bases
of V and W, respectively. If

QD(V,-) = w1 + aiwo + ... + amiWm,
@ZJ(V,-) = b1,'W1 + b2,'W2 + ...+ bm,'Wm,

then

(e +9)(vi) = o(vi) + ¥(v;) = (a1 + bii)wy + (a2i + boi)wa + . ..
R (am,- + bm,')Wm,
(ap)(vi) = ap(vi) = (aar)wr + (aaj)wa + . .. + (ami) Wi.



Matrix of the Composition of Linear Transformations

Proposition

Let U, V, W be vectors spaces and let p: U — V, ¢V — W
be linear transformations. Let A, B,C be the bases of U,V and
W, respectively. Then M(¢p o 0)§ = M(¥)EM(0)5.



Matrix of the Composition of Linear Transformations

Proposition

Let U, V, W be vectors spaces and let p: U — V, ¢V — W
be linear transformations. Let A, B,C be the bases of U,V and
W, respectively. Then M(¢p o 0)§ = M(¥)EM(0)5.

Proof.
By the Proposition on the image by matrix of a linear
transformation

M(@)a[v] 4 = [e(V)] g
M()5[e(V)] 5 = [ (6], = [ e ©)(V)].

that is, by associativity of matrix product

[0 )(V)], = MW)G (M(9)E[v]4) = (M)EM(L)R) [V] -



Matrix of the Composition of Linear Transformations
(continued)

Proof.
Therefore, for any v e V

Mo p)5[v] 4 = [(p o )W), = (MW)EM()Z) [v] -

Substituting v = v; for i = 1, ..., n we see that matrices
M) 0 )G, M(¥))5M(p)5 have the same columns, in particular

My o 9)% = M(¥)5M()5-



Block Matrix

Definition

Matrix A€ M(m x n;R) is a block matrix if

Al A - Aigqg
Ao | A | | Azg
o R
Apl ‘ Ap2 ‘ ‘ qu
where A; j € M(m; x nj; R) and
m=my+m+...+ mp,

n=n-+n+...



Example



Multiplication of Block Matrices

Proposition
If Ae M(m x n;R), Be M(n x I;R) are block matrices, where

m=m+...+mp, n=n+...+nqg, I=h+...4+1,

A=[Aj],  B=I[Bjl

fori=1,....,p, j=1,...,9, k=1,...,r,then C=AB is a
block matrix such that C = [Cy]|, where

q
Cik = 2 AijBik,
=

that is
Cik = AinBix + ApBox + ... + Aiquk-



Multiplication of Block Matrices

Proposition
If Ae M(m x n;R), Be M(n x I;R) are block matrices, where

m=m+...+mp, n=n+...+nqg, I=h+...4+1,

A=[Aj],  B=I[Bjl

fori=1,....,p, j=1,...,9, k=1,...,r,then C=AB is a
block matrix such that C = [Cy]|, where

q
Cik = 2 AijBik,
=

that is
Cik = AinBix + ApBox + ... + Aiquk-

Proof.

Exercise.



Multiplication of Block Matrices (continued)

Remark

The claim follows by the mathematical induction of max(p, q). The cases
p=1qg=2, p=2qg=1andp = q=2 may be checked directly. Then,
by separating a single block it is possible to prove the inductive step, i.e.,

Au | A - Ay Bii | B --- By
Ay | A Azg Bo1 | Bx By,

AB = ) } . ) . . =
Apl Ap2 T qu Bql Bq2 T qu

_ A | A1 Bii | B2
Ao ‘ Ao B'sq ‘ B'y5 |

_ | AuiBii+A2B%, | AL1B'12+A12B2
A12B'11+A22B 1 | A21Bp+ A22B




Multiplication of Block Matrices (continued)
Let Ejj = [ew] € M(m x n;R) be a matrix such that

1 i=kandj=/
e = . .
0 otherwise

Let 0;; be the Kronecker delta, i.e.,
1 iz
by = { =)
0 i#j.

ew = 0idji,

Then, equivalently

and (matrices E, E’ and E” may have different sizes)
E;E = SjKE].
In particular, for any matrix A = [a;j] € M(m x m; R)

n,m

A= Z a,JE,J

ij=1
and the matrix multiplication can be seen as a special case of the block
matrix multiplication.
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Markov chains — Application

Let S = {1,..., N} be the state space.

Definition

A (discrete—time, discrete-state, time—homogenous) Markov
chain) is a sequence of random variables Xp, X1, X2, ..., Xp, ...
with values in the set S such that for all i,iy,...,in—1,/ € S and all
neN

P(Xny1=Jj| Xn =i, Xn—i = in-1,... X1 =i1,X0 = ip) =

= P(Xn—i-l =J | Xn = i),

and it does not depend on n (i.e. the current state depends only
on the previous state and this dependence is constant in time).



Markov chains — Application

Let S = {1,..., N} be the state space.

Definition

A (discrete—time, discrete-state, time—homogenous) Markov
chain) is a sequence of random variables Xp, X1, X2, ..., Xp, ...
with values in the set S such that for all i,iy,...,in—1,/ € S and all
neN

P(Xny1=Jj| Xn =i, Xn—i = in-1,... X1 =i1,X0 = ip) =

= P(Xn—i-l =J | Xn = i),

and it does not depend on n (i.e. the current state depends only
on the previous state and this dependence is constant in time).

Remark
The number P(Xp+1 = j | X, = i) is called the transition
probability form the state i to the state j.



Markov chains — Application (continued)

Definition
The matrix Q = [gjj| € M(N x N;R) where
qij = P(Xn+1 =j | Xn = i)7

is called the transition matrix.



Markov chains — Application (continued)

Definition
The matrix Q = [gjj| € M(N x N;R) where

qij = P(Xn+1 =j | Xn = i)7
is called the transition matrix.

Example
For N =2

P(Xps1=1|Xp=1) PXps1 =2|Xp=1)
Q:

P(Xps1=1|Xp=2) PXps1=2]|Xp=2)



Markov chains — Example

Each year a consumer of product A switches to product B with
probability one—half. On the other hand, with probability
two—thirds a consumer of product B continues buying it and with
probability one—third starts buying product A. If S = {1,2} and 1
stands for product A and 2 for product B then

P(Xps1=1|Xp=1) PXps1=2|Xp=1)

Wik N
WIN N~

PXps1=1]Xn=2) P(Xpp1=2|Xp=2)



Markov chains — Example (continued)
g12 :%
qi11 = % g2 = %

1
qe1 = 3

1 stands for product A and 2 stands for product B

1 1

qi1 qi12 = =

Q= _ 2 2
1 2

ae1 Qg22 3 3



Markov chains — Example (continued)

What is the probability that a consumer of product A switches to
product B after two years?



Markov chains — Example (continued)

What is the probability that a consumer of product A switches to
product B after two years?

P(Xo=2|Xo=1) =

ZP(X2=2|X1=1)P(X1=1|X0=1)+
P =2 X =2)P(X =2 Xo=1) =
11 2 1_1 2 7

"2 2732737612
(so a consumer switches either in the second or in the first year).



Markov chains (continued)
Definition
The n-step (conditional) probability of a Markov chain is
P(Xnto =] | X =1) = q”,
and the n-step condition matrix is

QM = ,5.”)] € M(N x N;R).



Markov chains (continued)
Definition
The n-step (conditional) probability of a Markov chain is
P(Xnto =] | X =1) = q”,
and the n-step condition matrix is

QM = ,5.”)] € M(N x N;R).

Proposition

QM =Q"=Q-Q---Q.
[ —

n-times



Markov chains (continued)

Proof.
It is enough to check the case n = 2. By the law of total probability

q,g?) = P(Xnp2 =j | Xn=1i) =

N
= P(Xnt2 =Jj | Xnt1 =5)P(Xpnr1=5| Xy = 1) =
s=1

N

N
= Z qsiqis = 2 Qisqsj-
s=1

s=1



Example (continued)

11
fQ=1|2 2| then
12
3 3
P(X,.0=1|X,=1
0@ (Xns2 | )

P(Xns2 =1] X, =2)

Wl N
WIN N =
Wl N -

WIN N =

P(Xpso =2 | Xp = 1)

P(Xnsa =2 Xy =2)

7 11
18 18



Initial Conditions and Marginal Distribution

Definition
The initial conditions is the (discrete) probability mass function
of the variable Xp, i.e the vector

t=(t1,t2,...,t/\/)=

= (P(Xo=1),P(Xo =2),...,P(Xo = N)) e RV,

and the marginal distributions are the probability mass functions
of variables X1, Xp, ...

ti=(P(X;=1),P(Xi =2),...,P(X; = N)) e R",



Initial Conditions and Marginal Distribution

Definition
The initial conditions is the (discrete) probability mass function
of the variable Xp, i.e the vector

t=(t1,t2,...,t/\/)=

= (P(Xo=1),P(Xo =2),...,P(Xo = N)) e RV,

and the marginal distributions are the probability mass functions
of variables X1, Xp, ...

ti=(P(X;=1),P(Xi =2),...,P(X; = N)) e R",
fori=1,2,....

Remark
The marginal distributions depend on the initial conditions.



Initial Conditions and Marginal Distribution (continued)

Proposition
If Q is the transition matrix of a Markov chain then for k > 1

t] = tTQk.



Initial Conditions and Marginal Distribution (continued)

Proposition
If Q is the transition matrix of a Markov chain then for k > 1

t] = tTQk.
Proof.
By the law of total probability
N
PX=i)=> P(Xc=i|Xo=s)P(Xo=5) =
s=1

N

2 5qs: -

= the i-th entry of tTQ.



Example

A consumer buys product A with probability % product B with

11
probability # and the transition matrix is equal to Q = 2 2
i 12
3 3
so
14
t= = 9
(53)
and

|1 41 2 |1 41112 12| _
th= |1 Q% = 4 —
S E i F |

18 18
(7L 109
- \180° 180/ °



Example (continued)

Hence, after 2 years, a consumer buys product A with probability

% and product B with probability %8'



Stable State/Distribution

So, what happens after infinitely many years?



Stable State/Distribution

So, what happens after infinitely many years? Will the probability
of buying product B be equal to one?



Stable State/Distribution

So, what happens after infinitely many years? Will the probability
of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with
probability % and product B with probability % (and the result does
not depend on the initial conditions).



Stable State/Distribution

So, what happens after infinitely many years? Will the probability
of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with
probability % and product B with probability % (and the result does
not depend on the initial conditions).

In particular the vector (%, %) is a left eigenvector of matrix Q, or
equivalently, an eigenvector of QT, i.e.,

—
(6,118}
1w
—
—
[6311)8]
cllw
P



Hamming Codes

(7,4) Hamming code is a 2 error-detecting, 1 error-correcting
linear code.



Hamming Codes

(7,4) Hamming code is a 2 error-detecting, 1 error-correcting
linear code.

0000 — 0000000
0001 — 1101001
0010 — 0101010
0011 — 1000011
0100 — 1001100
0101 — 0100101
0110 — 1100110
0111 — 0001111

1000 — 1110000
1001 — 0011001
1010 — 1011010
1011 — 0110011
1100 — 0111100
1101 — 1010101
1110 — 0010110
1111 — 1111111

bob1b2bs — pobop1p2bibabs.



Hamming Codes (continued)

bob1bob3 — pobop1p2b1 by bs,

where
po = bo + by + bs,

p1 = by + by + bs,
p2=bo+b1+b3,

where addition is modulo 2, i.e 1 +1 = 0.



Hamming Codes (continued)

Encoding (and decoding) can be realised by matrix multiplication.

1101 po’]
1010|., bo
1000b0 p1
0111b1:p2
0100b2 by
0010]|L™ by
0 0 0 1] | bs |




Paths in Directed Graphs

Definition
A (simple, finite) directed graph G is a pair G = (V, E) where

V={w,...,v},

is the set of vertices and E < V' x V is the set of edges (self-loops
are allowed).



Paths in Directed Graphs

Definition
A (simple, finite) directed graph G is a pair G = (V, E) where

V={w,...,v},
is the set of vertices and E < V' x V is the set of edges (self-loops
are allowed).
Definition

A path from v e V to w € V of length / is a sequence of edges

(Vlb? Vi1)7 (Vf17 Vf2)7 R (Vf/_1) Vi/),

such that
Vip, =V, Vi = W,
(ka’ Vik+1) € E,

fork=0,...,/—1.



Adjacency Matrix

Definition
For a fixed simple, finite, directed graph G the adjacency matrix
A = Ag of G is the matrix A = [a;] € M(n x n;R) such that

aj = 1 if and only if (v;, vj) € E,

and a;; = 0 otherwise.






Example



Example

@

For example (vi, v2), (v2, v3), (v3, va4) is a path from v; to v4 of
length 3.



Number of Paths

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G,
then (Al); for any | > 1 is the number of paths of length | from v;
to v;.



Number of Paths

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G,
then (Al); for any | > 1 is the number of paths of length | from v;
to v;.

Proof.
By induction. L]



Example (continued)

N



Example (continued)
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Dual Spaces

Definition
Let V be a vector space. The space dual to V is a vector space

V*={p: V> R|pis linear} = Homg(V,R),

with the vector space structure given by
i) (o +¥)(v) = p(v) +(v),
i) (ap)v = ap(v),

for p,p e V¥ and any ve V, ae V.



Dual Basis

Proposition
For any vector space V' and any basis A = (aa, ..., «p) of vector
space V, there exists the dual basis A* = (af,...,a}) of the

vector space V* such that

0 fori+#j
®(0 O\
o7 (@) { 1 fori=j
Proof.
There exists dual basis to the standard basis, i.e. st* given by
el ((x1y. ..y %)) = x1,
ex((x1,...,%n)) = x2,

en((X1y. -y Xn)) = Xn.



Dual Basis (continued)

Proof.
Let ¢: V — V be the linear transformation such that
o(ai) = &;.
Then
af =¢ef oa.
Assume o = (ayj, aj, ..., an;) and let A = [a;] € M(n x n;R),
then

M)z =A1, M(ef)=[0 - 0 1 0 --- 0]



Dual Basis (continued)

Proof.
Let A1 = [b;]. Then

M(zi)g = M(af)gM(e)g =

= [bi1 bz bz -+ bin]

That is
907 = b,‘lé‘f + b,'26>2x< +...+ b,'néﬁ.



Example

Let a; = (1,2),a2 = (1,3) be a basis of R?. Then

R 1 [ 3
SIS

OZT = 3€T - 537

Therefore

as = —2e] + &3,

or, in more concrete terms,

OKT((X17X2)) = 3Xl — X2,

a5 ((x1,x2)) = —2x1 + xo.

-1

1

|



Dual of a linear transformation

Definition
For any linear transformation ¢: V — W, there exist the dual
linear transformation

o W* - Vv

given by the formula



Dual of a linear transformation

Definition
For any linear transformation ¢: V — W, there exist the dual
linear transformation

o W* - Vv

given by the formula

e*(F)(v) = (fop)(v).

Proposition
If A= (Oé]_,...,Ckn),B = (617"'75m) then

M(p*)i = [M()5]".



Dual of a linear transformation (continued)

Proof.
Let /\/I(<p)f§l = [aj].

©*(B7)(aj) = (Biop)(ay) =

m

=B (2 asjﬂj> = aj,
s=1

that the entry in the i—th column and in the j—th row of

.

M(¢*)5« is equal to aj.



Dual subspaces

Definition
Let W < V be any subset of vector space V. Let
W*={feV*|f|w=0}.

If W c V is a subspace the W* called the dual subspace of W.



Dual subspaces

Definition

Let W < V be any subset of vector space V. Let
W*={feV*|f|w=0}.

If W c V is a subspace the W* called the dual subspace of W.

Proposition

Let o: V — W be a linear transformation. Then
) kerp* = (im)*,
i) ime* = (kerp)*.



Dual subspaces

Definition
Let W < V be any subset of vector space V. Let

W*={feV*|f|w=0}.
If W c V is a subspace the W* called the dual subspace of W.

Proposition

Let o: V — W be a linear transformation. Then
) kerp* = (im)*,
i) ime* = (kerp)*.

Proof.

Omitted. Needs isomorphism Theorem.



Bilinear Forms and Bilinear Transformations

Definition
Let V, W, U be vector spaces. A function

B:VxW-—>U

is called a bilinear transformation if
i) Blv+ Vv ,w)=B(v,w)+ B(V,w) for any v,v' € V,we W,



Bilinear Forms and Bilinear Transformations

Definition
Let V, W, U be vector spaces. A function

B:VxW-—>U

is called a bilinear transformation if
i) Blv+ Vv ,w)=B(v,w)+ B(V,w) for any v,v' € V,we W,
i) B(v,w+w') = B(v,w)+ B(v,w') forany ve V,w,w e W,
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Definition
Let V, W, U be vector spaces. A function
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Bilinear Forms and Bilinear Transformations

Definition
Let V, W, U be vector spaces. A function

B:VxW-—>U

is called a bilinear transformation if
i) Blv+ Vv ,w)=B(v,w)+ B(V,w) for any v,v' € V,we W,
) B(v,w+w') = B(v,w) + B(v,w') forany ve V,w,w' e W,
i) B(av,w) =aB(v,w) forany ve V,we W,a eR,
iv) B(v,pw) = BB(v,w) forany ve V,we W,5eR.

v
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Bilinear Forms and Bilinear Transformations

Definition
Let V, W, U be vector spaces. A function

B:VxW-—>U

is called a bilinear transformation if
i) Blv+ Vv ,w)=B(v,w)+ B(V,w) for any v,v' € V,we W,
) B(v,w+w') = B(v,w) + B(v,w') forany ve V,w,w' e W,
i) B(av,w) =aB(v,w) forany ve V,we W,a eR,
iv) B(v,pw) = BB(v,w) forany ve V,we W,5eR.

v

Bilinear transformation B is called a form if moreover U = R.



Equivalence Relation

Definition
An equivalence relation R on the set X is a relation (i.e. a
subset) R © X x X such that

i) Viex (x,x) € R (R is reflexive),
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An equivalence relation R on the set X is a relation (i.e. a
subset) R © X x X such that

i) Viex (x,x) € R (R is reflexive),
i) VeexVyex (x,y) € R= (y,x) € R (R is symmetric),



Equivalence Relation

Definition
An equivalence relation R on the set X is a relation (i.e. a
subset) R © X x X such that

i) Viex (x,x) € R (R is reflexive),
i) VeexVyex (x,y) € R= (y,x) € R (R is symmetric),

i) ViexVyexVeex (x,y)ERA(y,z) ER=(x,z) e R(Ris
transitive).



Partitions and Equivalence Classes

Equivalence relation R on set X induces a partition of X, given by
its equivalence classes (in fact, there is a bijection between all
partitions of X and all equivalence relations on X).

Definition

For any x € X the set

[X]g ={y € X| (x,y) € R}

is called an equivalence class of element x € X. When no
confusion is possible we write [x] .



Quotient Vector Space

Definition
Let W < V be a subspace of vector space V. The relation
R < V x V, given by the condition

(v, eER & v—V e W,
is an equivalence relation on V/, compatible with the structure of
the vector space, i.e. the equivalence classes satisfy conditions
) M+ ] = [y + v,

i) afv] = [av],

for any v,v/ € V and a € R.



Tensor Product

Definition

For any vector spaces V, W let U be a (infinite dimensional)
vector space with basis (uy w)vev,wew and let Uy U be its
subspace spanned by vectors

Uyyv' w—Uyw— Uy w,y Uy wiw —Uyw— Uy w, Uoy,w —QUy w, Uv,Bw_ﬁUv,Wa

where v e V,w e V, a, 5 € R. By definition, the tensor product
of vector spaces V and W is equal to the quotient space

VW = U/U.



Tensor Product (continued)

Definition
By definition
v w = [uyw].
Then, for any v,v' e V,w,w' € W,a,8€R
) (v+VY@w=vew+Vv Qw,
vew+w)=veaw+vew,
i) (av)®@w = a(v®w),
V) v & (Bw) = Blv @ w).

Moreover, there exists bilinear transformation

T VxWa(v,w)»vwe VR W.



Tensor Product (continued)

Proposition
For any vector spaces V', W and for any bilinear transformation

B:VxW-—U,
there exists a unique linear transformation
peg: VW — U,
such that for anyve V,we W
B(v,w) = op(v @ W),

ie.
V><WB
g
@V ..7° \>U

%4



Tensor Product (continued)

Proof.
Let : lin({uyw | ve V, we W}) — U be a linear
transformation given by

?(uy,w) = B(v, w).
Since B is bilinear, the transformation @ sends vectors
Uytv' . w—Uyw—Uy w, Uy wiw' —Uyw— Uy w, Uav,w —QUy w, uv,BW_/Buv,Wa

to zero (in U). Since vectors [uy | span V ® W, @ descends to a
linear transformation

e: VOWsvw =[u,w]|— B(v,w)e U.



Tensor Product (continued)

Proposition
If A= (aa,...ap) is a basis of V and B = (1, ...[m) is a basis
of W, then

A®B = (o ® Bj)i=1,...,nj=1,....m>

is a basis of V.® W. It follows

dimV ® W = (dim V)(dim W) = nm.



Tensor Product (continued)

Proof.
Consider a bilinear form B: V x W — R, i.e.
V x W
= 2
Veow >R

If v =37, via; and w = 37, w;f3; are bases of V and W, respectively,
then

n m

B(v,w) = Z Z viw;B(a, Bj),

i=1j=1
i.e. Bis uniquely determined by the values B(«;, 8;). On the other hand
if a; € R are some numbers, there exists a unique bilinear form B such
that B(a, ;) = ajj, given by the formula

n m

B(v,w) = Z Z viw;ajj.

i=1j=1



Tensor Product (continued)

Proof.
By the properties of tensor product, any linear form ¢ induces a
bilinear form 7 o .

yV X V%j
vew .F ~R
By the universal property, the linear transformation
(VoW) sp—porm,
is an isomorphism. Therefore

dimV @ W =dim(V® W)* =dim Vdim W.



Vector Space of Linear Transformations

Proposition
For any vector spaces V', W there exists a linear isomorphism of
vector spaces

V*Wsasf@w— (Vave f(v)we V) e Hom(V, W),

where Hom(V, W) denotes the vector space of all linear
transformations from V to W.



Vector Space of Linear Transformations

Proposition
For any vector spaces V', W there exists a linear isomorphism of
vector spaces

V*Wsasf@w— (Vave f(v)we V) e Hom(V, W),

where Hom(V, W) denotes the vector space of all linear
transformations from V to W.

Proof.

The transformation sends basis to basis.



Vector Space of Linear Transformations (continued)

Proposition
For any vector spaces V', W and for any A = (a1, ...,a,) a basis
of Vand B= (f1,--+,Bm) a basis of W, if

M(p)5 = [a5] € M(m x m;R),

then, under the above isomorphism

p=> Yajaf@beVRW.

i=1j=1



Vector Space of Linear Transformations (continued)

Proposition

For any vector spaces V', W and for any A = (a1, ...,a,) a basis
of Vand B= (f1,--+,Bm) a basis of W, if

M(p)5 = [a5] € M(m x m;R),

then, under the above isomorphism

p=> Yajaf@beVRW.

i=1j=1

Proof.

Exercise. O



Examples
If p: R3 — R is given by the formula
gO((Xl,Xg,X3)) = x1 + 2xp — 7x3,

then
@ = el + 25 — Te3.



Examples

If p: R3 — R is given by the formula
gO((Xl,Xg,X3)) =Xx1 + 2xp — 7X3,

then
@ = el + 25 — Te3.

If @: R3 — R?, where €1, e, €3 is the standard basis of R3 and
(1, (> is the standard basis of R?, is given by the formula

(,0((X1,X2,X3)) = (X1 4+ 2x0 — 7x3,5x1 — 8X2) =

Xl(]., 5)+X2(2, —8) +X3(—7, 0) = X1(C1 +5C2)+X2(2C1—8C2)+X3(—7C1),

then
1 2 -7
O

Pp=e1®0 +25R( —T7e5 ®( + 5] ® — 823 ® (a.



Trace

Definition
Let p: V> V, ie, pe V*® V be a linear endomorphism. The
trace of ¢ is equal to Tr(p), where

Tr: V*®V3a®p— af) eR,

is the unique linear transformation corresponding to the bilinear
transformation

V*x V3(a,B) — a(f) eR.



Trace
Definition
Let p: V> V, ie, pe V*® V be a linear endomorphism. The
trace of ¢ is equal to Tr(p), where
Tr: V*®V3a®p— af) eR,

is the unique linear transformation corresponding to the bilinear
transformation

V*x V3(a,B) — a(f) eR.

Proposition
For any basis A = (a1, ...,an) of V, if M()4 = [aj], then

Tr(«p) = Z ajj.
i=1



Trace (continued)

Proof.
By the definition

p= > 3ol @aj,
ij=1
and
" it =,
Tr(aj @ay) = {0 it i,



Trace of a Matrix

Definition
Let A = [aj] € M(n x n;R) be a matrix. The trace of matrix A is
equal to

TF(A) = i ajj.
i=1



Trace of a Matrix

Definition
Let A = [aj] € M(n x n;R) be a matrix. The trace of matrix A is
equal to
TF(A) = Z dji.
i=1
Corollary

For any linear endomorphism ¢: V — V and any basis A of vector
space V

Tr(p) = Tr(M(0)2).

that is for any invertible matrix C € M(n x n;R)
Tr(A) = Tr(CAC),

i.e., the trace admits the same value on similar matrices.



Trace of a Matrix (continued)

Proposition

For any matrices A, B, C € M(n x n;R) and scalars a,, B € R
i) Tr(A) = Tr(AT),
) Tr(aA+ BB) = aTr(A) + 5 Tr(B),

i) Tr(AB) = Tr(BA),
) Tr(ABC) = Tr(BCA) = Tr(CAB).

iv

Proof.

Points i) and ii) are obvious and iv) follows from iii).



Trace of a Matrix (continued)

Proof.
iii) let C = [c;] = AB and C' = [c;] = BA. Then

n
=ZCH—ZZau i
i-1

i=1j=

:ch(i_ZEbUaﬂ:

i=1j=

—ZZaﬂ ij =

i=1j=



Non—canonical Isomorphism

Remark
If V is a finite dimensional vector space then the vector spaces V
and V'* are isomorphic, however there is no canonical isomorphism.

Example
For example, let V = R? and let F,G: V — V* be linear
transformations given by the conditions

F(a1) = F(e1 +2ep) = +2e5 #af =

o % *
=3e] —¢&5.



Non—canonical Isomorphism

Remark
If V is infinite dimensional then V is not isomorphic to V* (the
reason is purely set—theoretical). For example

(REOR®...)* = (R xR x...).



The Bidual Space

Definition
For any vector space V, the bidual space is equal to



The Bidual Space
Definition
For any vector space V, the bidual space is equal to

Proposition
If V is finite dimensional, there exists a canonical isomorphism of V and
V** (which does not depend on the particular choice of a basis)

F:Vave (V¥afe- f(v)eR)e (V¥)* = V¥,



The Bidual Space
Definition
For any vector space V, the bidual space is equal to

Proposition
If V is finite dimensional, there exists a canonical isomorphism of V and
V** (which does not depend on the particular choice of a basis)

F:Vave (V¥afe- f(v)eR)e (V¥)* = V¥,

Proof.

vekerF < f(v)=0forall fe V* v =0,

since any non—zero vector can be completed to basis, and then
v¥(v) =1. O



Frobenius Norm

Proposition

The bilinear (real, Frobenius) form
(ot M(m x nR) x M(m x n;R) 3 (A, B) — Tr(ATB) € R,
is
i) symmetric, i.e.,
<A7 B> = <Ba A>7
ii) positive definite, i.e.,

(A,A) >0,

if A#0,



Frobenius Norm (continued)
Proposition
iii) non—degenerate, i.e., the linear transformation
(A,): M(m x n;R) 3 B— (A, B) e R,

is non—zero if and only if A # 0,

iv) invariant under the left and the right multiplication by an
orthogonal matrix, i.e., if Q € M(m x m;R) satisfies

QTR = QQT = I, then
(QA, @B) = (A, B),
and if P € M(n x n;R) satisfies PTP = PPT = |,, then

(AP, BP) = (A, B).



Frobenius Norm (continued)

Proof.
i) Tr(ATB) = Tr((ATB)T) = Tr(BTA),
i) if A=[aj] # 0, then
Tr(ATA) = 371 37y aiaji = 27 g 35 > 0,
i) follows from ii) (substitute B = A),
iv) Tr((QA)TQB) = Tr(ATQTQ@B) = Tr(ATB) and

Tr((AP)TBP) = Tr(PTATBP) = Tr(ATB) since PT = P71,

O



Frobenius Norm (continued)

Definition
For any matrix A€ M(m x n;R) the Frobenius norm of A is
equal to

1Al = V(A A) = V/Tr(ATA).



Frobenius Norm (continued)

Proposition
i) |Alg=0 < A=0,
i) |laAllg = |a|||Allg for any scalar o € R,
i) |A+ Bl|g < ||Allg + ||B||g, for any matrices
A, Be M(nx m;R)
V) [[AllE = IATI g,
v) [|AB||g < ||Allgl|Bl|g, for any matrix Ae M(m x n;R) and
any matrix B€ M(n x k;R),
vi) [|QAP| r = ||A|l for any matrix Ae M(n x m;R), any
orthogonal matrix Q € M(m x m;R) and any orthogonal
matrix P € M(n x n;R)




Frobenius Norm (continued)

Proof.
i) the Frobenius form is positive definite,
ii) obvious,

iii) by the Cauchy-Schwarz inequality for the Frobenius form
(A.B)| < Al Bl then 2
A+ BllF = IAlF +2¢A, B) + [|Bl[F < ([[All + [|BlF)

iv) obvious,



Frobenius Norm (continued)

Proof.

) from the Cauchy-Schwarz inequality for the standard scalar
product in R”, if AB = [cpq]

m  k
IABI[E = >} D) chg =

p=1g=1

m n 2 m n n
55 (Sawte) <531 (54 (55)
p=1g=1 \r=1 1g=1 \r=1 r'=1

@1 (21 )) (M <b>> = A28

) follows from the properties of the Frobenius form



Frobenius Norm (continued)

Remark

|AB||g = ||Allgl|Bll g holds if and only if i—th row of A is linearly
dependent with i—th column of B for any i (equality in standard
Cauchy-Schwarz inequality).

|A+ Bl||g = ||Allg + ||B||g holds if and only if (A, B) = ||A||||B
ie. A= AB or B= \A for some \ > 0 (as in the standard
Minkowski inequality).

1



Frobenius Norm (continued)

Remark

|AB||g = ||Allgl|Bll g holds if and only if i—th row of A is linearly
dependent with i—th column of B for any i (equality in standard
Cauchy-Schwarz inequality).

|A+ Bl||g = ||Allg + ||B||g holds if and only if (A, B) = ||A||||B
ie. A= AB or B= \A for some \ > 0 (as in the standard
Minkowski inequality).

1

By the SVD decomposition if 01(A),...,o,(A) € R denote the
singular values of A (i.e., square roots of the non—zero eigenvalues
of the matrix ATA) then

JAllF = A/02(A) + ... + 02(A).



Frobenius Norm (continued)

JAllF = A/o2(A) + ...+ 02(A),
1All, = o1(4),

therefore for any matrix A€ M(m x n; C)

1Al < IAllp < A/min{m, n}[[A]l,.

Note that any two norms in a finite—dimensional space are
equivalent (i.e. they induce the same topology and convergence in
one norm is equivalent to the convergence in the other).



Matrix Multiplication as a Sum of Rank 1 Matrices

Remark

In some contexts (large sparse matrices) it is useful to interpret the
matrix product in the following way. Let A€ M{(m x n;R) and let
B e M(n x I;R). The matrix product of A by B is equal to the
sum rank 1 matrices

aij
n asj
AB = Z CiRi = . [ bil bi2 bln ]
s=1 :
ani

Proof.
The (i,j) entry of CsRs is equal to ajsbs;. O



