Linear Algebra Lecture 5 - Operations on Linear Transformations

Oskar Kędzierski

4 November 2024

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Sum and Scalar Multiplication

Proposition

Let V, W be vector spaces. Let $\varphi, \psi : V \longrightarrow W$ be linear transformations and let $\alpha \in \mathbb{R}$. The transformation $\varphi + \psi : V \longrightarrow W$, defined by $(\varphi + \psi)(\mathbf{v}) = \varphi(\mathbf{v}) + \psi(\mathbf{v})$ for $\mathbf{v} \in V$, and the transformation $\alpha\varphi$ defined by $(\alpha\varphi)(\mathbf{v}) = \alpha\varphi(\mathbf{v})$ are linear. The transformation $\varphi + \psi$ is called the **sum** of φ and ψ and $\alpha\varphi$ is called the **product** of the transformation φ with scalar α .

Sum and Scalar Multiplication

Proposition

Let V, W be vector spaces. Let $\varphi, \psi : V \longrightarrow W$ be linear transformations and let $\alpha \in \mathbb{R}$. The transformation $\varphi + \psi : V \longrightarrow W$, defined by $(\varphi + \psi)(v) = \varphi(v) + \psi(v)$ for $v \in V$, and the transformation $\alpha \varphi$ defined by $(\alpha \varphi)(v) = \alpha \varphi(v)$ are linear. The transformation $\varphi + \psi$ is called the **sum** of φ and ψ and $\alpha \varphi$ is called the **product** of the transformation φ with scalar α .

Example

Let
$$\varphi, \psi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 be given by
 $\varphi((x_1, x_2, x_3)) = (x_1 + 2x_2 - x_3, x_1 + 2x_2 + x_3)$ and
 $\psi((x_1, x_2, x_3)) = (-x_1 + x_2 + x_3, 3x_1 - 2x_2 + x_3)$. Then
 $(\varphi + \psi)((x_1, x_2, x_3)) = (3x_2, 4x_1 + 2x_3)$ and
 $(2\varphi)((x_1, x_2, x_3)) = (2x_1 + 4x_2 - 2x_3, 2x_1 + 4x_2 + 2x_3)$ (for $\alpha = 2$).

Composition

Proposition

Let U, V, W be vectors spaces and let $\varphi : U \longrightarrow V, \psi : V \longrightarrow W$ be linear transformations. The transformation

$$\psi \circ \varphi \colon U \longrightarrow W,$$

given by

$$(\psi \circ \varphi)(\mathbf{v}) = \psi(\varphi(\mathbf{v})))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for $v \in U$, is linear. It is called the **composition** of ψ with φ .

Let $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be linear transformations given by $\varphi((x_1, x_2, x_3)) = (x_1 - x_2 + 2x_3, -x_1 + 3x_2 - x_3)$ and $\psi((y_1, y_2)) = (y_1 - y_2, y_1 + 2y_2))$. Then $(\psi \circ \varphi)((x_1, x_2, x_3)) = \psi((x_1 - x_2 + 2x_3, -x_1 + 3x_2 - x_3)) =$ $((x_1 - x_2 + 2x_3) - (-x_1 + 3x_2 - x_3), (x_1 - x_2 + 2x_3) + 2(-x_1 + 3x_2 - x_3)) =$ $(2x_1 - 4x_2 + 3x_3, -x_1 + 5x_2).$

Operations on Matrices

Definition

Let $A, B \in M(m \times n; \mathbb{R}), \alpha \in \mathbb{R}, A = [a_{ij}], B = [b_{ij}]$. The sum of matrices A and B is the matrix $A + B = [a_{ij} + b_{ij}]$. The product of matrix A by scalar α is the matrix $\alpha A = [\alpha a_{ij}]$.

Operations on Matrices

Definition

Let $A, B \in M(m \times n; \mathbb{R}), \alpha \in \mathbb{R}, A = [a_{ij}], B = [b_{ij}]$. The sum of matrices A and B is the matrix $A + B = [a_{ij} + b_{ij}]$. The **product** of matrix A by scalar α is the matrix $\alpha A = [\alpha a_{ij}]$.

Example

Let $\alpha = 2$ and let $A, B \in M(2 \times 3; \mathbb{R})$ be given by

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 1 & 0 \end{array} \right], \ B = \left[\begin{array}{rrr} -1 & 3 & 2 \\ 1 & 0 & 1 \end{array} \right].$$

Then

$$A + B = \left[\begin{array}{ccc} 0 & 5 & 1 \\ 1 & 1 & 1 \end{array} \right], \ \alpha A = \left[\begin{array}{ccc} 2 & 4 & -2 \\ 0 & 2 & 0 \end{array} \right].$$

Matrix Multiplication

Definition

Let $A \in M(m \times n; \mathbb{R})$ and let $B \in M(n \times l; \mathbb{R})$. The **matrix product** of A by B is the matrix $AB = [c_{ij}] \in M(m \times l; \mathbb{R})$ where $c_{ij} = \sum_{s=1}^{n} a_{is}b_{sj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, l$.

Matrix Multiplication

Definition

Let $A \in M(m \times n; \mathbb{R})$ and let $B \in M(n \times l; \mathbb{R})$. The **matrix product** of A by B is the matrix $AB = [c_{ij}] \in M(m \times l; \mathbb{R})$ where $c_{ij} = \sum_{s=1}^{n} a_{is}b_{sj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, l$.

In particular, if $R_i = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \in M(1 \times n; \mathbb{R})$ is the *i*-th row of matrix A and $C_j = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} \in M(n \times 1; \mathbb{R})$ is the *j*-th column of matrix B then $R_iC_j = \begin{bmatrix} a_{i1}b_{1j} + \dots + a_{in}b_{nj} \end{bmatrix}$ is a 1×1 matrix which can be identified with a real number.

Matrix Multiplication (continued)

Using this identification we can write

$$AB = \begin{bmatrix} R_1C_1 & R_1C_2 & \dots & R_1C_l \\ R_2C_1 & R_2C_2 & \dots & R_2C_l \\ \vdots & \vdots & \ddots & \vdots \\ R_mC_1 & R_mC_2 & \dots & R_mC_l \end{bmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Matrix Multiplication (continued)

Using this identification we can write

$$AB = \begin{bmatrix} R_1C_1 & R_1C_2 & \dots & R_1C_l \\ R_2C_1 & R_2C_2 & \dots & R_2C_l \\ \vdots & \vdots & \ddots & \vdots \\ R_mC_1 & R_mC_2 & \dots & R_mC_l \end{bmatrix}.$$

For example

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} = \text{the first column of } A$$
$$\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1k} \\ b_{21} & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nk} \end{bmatrix} = \\ = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1k} \end{bmatrix} = \text{the first row of } B$$
So on.

and so on.

Let $A \in M(3 \times 2; \mathbb{R})$ and $B \in M(2 \times 2; \mathbb{R})$ be given by

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

Then

$$AB = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} R_1C_1 & R_1C_2 \\ R_2C_1 & R_2C_2 \\ R_3C_1 & R_3C_3 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 5 & -4 \\ 0 & -3 \end{bmatrix}.$$

The first column of AB is the sum of columns of A and the second one is the first column of A minus twice the second column of A.

Warning

The matrix multiplication is, in general, not commutative. For example

$$\left[\begin{array}{cc}1&0\\0&0\end{array}\right]\left[\begin{array}{cc}0&1\\0&0\end{array}\right]=\left[\begin{array}{cc}0&1\\0&0\end{array}\right]$$

but

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Operations on Linear Transformations and Matrices

Theorem (Addition)

Let V, W be vector spaces and let $\varphi, \psi : V \longrightarrow W$ be linear transformations. Let \mathcal{A}, \mathcal{B} be bases of V and W respectively. Then $M(\varphi + \psi)^{\mathcal{B}}_{\mathcal{A}} = M(\varphi)^{\mathcal{B}}_{\mathcal{A}} + M(\psi)^{\mathcal{B}}_{\mathcal{A}}.$

Theorem (Composition and multiplication)

Let U, V, W be vectors spaces and let $\varphi : U \longrightarrow V, \ \psi : V \longrightarrow W$ be linear transformations. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be the bases of U, V and W, respectively. Then $M(\psi \circ \varphi)^{\mathcal{C}}_{\mathcal{A}} = M(\psi)^{\mathcal{C}}_{\mathcal{B}}M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$.

(日)<

Let $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be linear transformations given by $\varphi((x_1, x_2, x_3)) = (x_1 - x_2 + 2x_3, -x_1 + 3x_2 - x_3)$ and $\psi((y_1, y_2)) = (y_1 - y_2, y_1 + 2y_2))$. Recall that $(\psi \circ \varphi)((x_1, x_2, x_3)) = (2x_1 - 4x_2 + 3x_3, -x_1 + 5x_2)$.

Let $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be linear transformations given by $\varphi((x_1, x_2, x_3)) = (x_1 - x_2 + 2x_3, -x_1 + 3x_2 - x_3)$ and $\psi((y_1, y_2)) = (y_1 - y_2, y_1 + 2y_2))$. Recall that $(\psi \circ \varphi)((x_1, x_2, x_3)) = (2x_1 - 4x_2 + 3x_3, -x_1 + 5x_2)$. We will compute this again, using matrix multiplication.

Let $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be linear transformations given by $\varphi((x_1, x_2, x_3)) = (x_1 - x_2 + 2x_3, -x_1 + 3x_2 - x_3)$ and $\psi((y_1, y_2)) = (y_1 - y_2, y_1 + 2y_2))$. Recall that $(\psi \circ \varphi)((x_1, x_2, x_3)) = (2x_1 - 4x_2 + 3x_3, -x_1 + 5x_2)$. We will compute this again, using matrix multiplication. Let \mathcal{A} be the standard basis in \mathbb{R}^3 and let $\mathcal{B} = \mathcal{C}$ be the standard basis in \mathbb{R}^2 . Then

$$M(\psi \circ \varphi)_{\mathcal{A}}^{\mathcal{C}} = M(\psi)_{\mathcal{B}}^{\mathcal{C}} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -4 & 3 \\ -1 & 5 & 0 \end{bmatrix}.$$

This agrees with the formula of $\psi \circ \varphi$.

Applications

Proposition

Let V, W be vector spaces and let $\varphi : V \longrightarrow W$ be a linear transformation. Let $\mathcal{A} = (v_1, \ldots, v_n)$ be an ordered basis of V and let $\mathcal{B} = (w_1, \ldots, w_m)$ be an ordered basis of W. For any vector $v \in V$ let $\alpha_1, \ldots, \alpha_n$ be the coordinates of v relative to the basis \mathcal{A} and let β_1, \ldots, β_m be the coordinates of $\varphi(v)$ relative to the basis \mathcal{B} , that is $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ and $\varphi(v) = \beta_1 w_1 + \ldots + \beta_m w_m$. Then

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}$$

Let $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformations given by $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis in \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1)), \mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 .

Let $\psi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformations given by $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis in \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1)), \ \mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 . We check immediately that

$$\psi(1,2) = (-1,5) = 4(1,0) - 5(1,-1),$$

 $\psi(0,1) = (-1,2) = 1(1,0) - 2(1,-1).$

Therefore

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}.$$

Let $\psi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformations given by $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis in \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1)), \ \mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 . We check immediately that

$$\psi(1,2) = (-1,5) = 4(1,0) - 5(1,-1),$$

 $\psi(0,1) = (-1,2) = 1(1,0) - 2(1,-1).$

Therefore

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}.$$

Pick, say, v = (1,1). Since v = 1(1,2) - 1(0,1), the coordinates of v relative to \mathcal{A} are 1, -1. Since $\psi(v) = (0,3) = 3(1,0) - 3(1,-1)$, the coordinates of $\psi(v)$ relative to \mathcal{B} are 3, -3.

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}.$$

the coordinates of ${m v}=(1,1)$ relative to the basis ${\cal A}$ are 1,-1

the coordinates of $\psi(\mathbf{v})=(0,3)$ relative to the basis $\mathcal B$ are 3, -3

▲□▶▲□▶▲□▶▲□▶ ■ のへで

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}.$$

the coordinates of u=(1,1) relative to the basis ${\cal A}$ are 1,-1

the coordinates of $\psi(\mathbf{v})=(\mathbf{0},\mathbf{3})$ relative to the basis $\mathcal B$ are $\mathbf{3},-\mathbf{3}$

$$M(\psi)_{st}^{st} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1 & -1\\1 & 2 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 0\\3 \end{bmatrix}$$
$$M(\psi)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 4 & 1\\-5 & -2 \end{bmatrix} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 3\\-3 \end{bmatrix}.$$

・ロト・西ト・ヨト・ヨト しゅうくろ

Let V be a vector space. The function $id_V : V \longrightarrow V$ given by $id_V(v) = v$ for any $v \in V$ is a linear transformation called **the** identity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let V be a vector space. The function $id_V : V \longrightarrow V$ given by $id_V(v) = v$ for any $v \in V$ is a linear transformation called **the** identity.

Corollary

Let $\mathcal{A} = (v_1, \ldots, v_n)$ and $\mathcal{B} = (w_1, \ldots, w_n)$ be two ordered bases of V. For any $v \in V$ let $\alpha_1, \ldots, \alpha_n$ be the coordinates of v relative to the basis \mathcal{A} and let β_1, \ldots, β_n be the coordinates of v relative to the basis \mathcal{B} . Then

$$M(\mathrm{id}_V)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$$

Let V be a vector space. The function $id_V : V \longrightarrow V$ given by $id_V(v) = v$ for any $v \in V$ is a linear transformation called **the** identity.

Corollary

Let $\mathcal{A} = (v_1, \ldots, v_n)$ and $\mathcal{B} = (w_1, \ldots, w_n)$ be two ordered bases of V. For any $v \in V$ let $\alpha_1, \ldots, \alpha_n$ be the coordinates of v relative to the basis \mathcal{A} and let β_1, \ldots, β_n be the coordinates of v relative to the basis \mathcal{B} . Then

$$M(\mathrm{id}_V)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1\\ \beta_2\\ \vdots\\ \beta_n \end{bmatrix}$$

The matrix $M(\operatorname{id}_V)_{\mathcal{A}}^{\mathcal{B}}$ is called a **change-of-coordinates matrix**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition

Let V, W be vector spaces and let $\varphi : V \longrightarrow W$ be a linear transformation. Let $\mathcal{A}, \mathcal{A}'$ be (ordered) bases of V and let $\mathcal{B}, \mathcal{B}'$ be (ordered) bases of W. Then

$$M(\varphi)_{\mathcal{A}'}^{\mathcal{B}'} = M(\mathrm{id}_W)_{\mathcal{B}}^{\mathcal{B}'} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} M(\mathrm{id}_V)_{\mathcal{A}'}^{\mathcal{A}}.$$

Proof.

This follows directly from the fact that $id_W \circ \varphi \circ id_V = \varphi$ and the formula relating composition of linear transformations with matrix multiplication.

Let $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation given by the formula $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis of \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1))$, $\mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation given by the formula $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis of \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1))$, $\mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 . We have already checked that

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation given by the formula $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis of \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1))$, $\mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 . We have already checked that

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}$$

Let check this again using the previous Proposition. It says that

$$M(\psi)_{\mathcal{A}}^{\mathcal{B}} = M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}} M(\psi)_{st}^{st} M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$$

Let $\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation given by the formula $\psi((x_1, x_2)) = (x_1 - x_2, x_1 + 2x_2)$. Let st = ((1, 0), (0, 1)) be the standard basis of \mathbb{R}^2 and let $\mathcal{A} = ((1, 2), (0, 1))$, $\mathcal{B} = ((1, 0), (1, -1))$ be other two bases of \mathbb{R}^2 . We have already checked that

$$M(\psi)_{st}^{st} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}, \ M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 4 & 1 \\ -5 & -2 \end{bmatrix}$$

Let check this again using the previous Proposition. It says that

$$M(\psi)_{\mathcal{A}}^{\mathcal{B}} = M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}} M(\psi)_{st}^{st} M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We need to compute $M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}}$ and $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$.

We need to compute $M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}}$ and $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$. Recall that $\mathcal{A} = ((1,2), (0,1)), \ \mathcal{B} = ((1,0), (1,-1)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We need to compute $M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}}$ and $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$. Recall that $\mathcal{A} = ((1, 2), (0, 1)), \ \mathcal{B} = ((1, 0), (1, -1)).$ Since $\mathrm{id}((1, 2)) = 1(1, 0) + 2(0, 1),$ $\mathrm{id}(0, 1) = 0(1, 0) + 1(0, 1),$ we have $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st} = \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix}.$

We need to compute $M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}}$ and $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$. Recall that $\mathcal{A} = ((1,2), (0,1)), \mathcal{B} = ((1,0), (1,-1)).$ Since id((1,2)) = 1(1,0) + 2(0,1),id(0,1) = 0(1,0) + 1(0,1),we have $M(\operatorname{id}_{\mathbb{R}^2})^{st}_{\mathcal{A}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. Since id((1,0)) = 1(1,0) + 0(1,-1),id((0,1)) = 1(1,0) - 1(1,-1),we have $M(\operatorname{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

A D N A 目 N A E N A E N A B N A C N

We need to compute $M(\mathrm{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}}$ and $M(\mathrm{id}_{\mathbb{R}^2})_{\mathcal{A}}^{st}$. Recall that $\mathcal{A} = ((1,2), (0,1)), \mathcal{B} = ((1,0), (1,-1)).$ Since id((1,2)) = 1(1,0) + 2(0,1),id(0,1) = 0(1,0) + 1(0,1),we have $M(\operatorname{id}_{\mathbb{R}^2})^{st}_{\mathcal{A}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. Since id((1,0)) = 1(1,0) + 0(1,-1),id((0,1)) = 1(1,0) - 1(1,-1).we have $M(\operatorname{id}_{\mathbb{R}^2})_{st}^{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$. Using $M(\psi)^{\mathcal{B}}_{\mathcal{A}} = M(\mathrm{id}_{\mathbb{R}^2})^{\mathcal{B}}_{st}M(\psi)^{st}_{st}M(\mathrm{id}_{\mathbb{R}^2})^{st}_{\mathcal{A}}$ one can check that $\begin{vmatrix} 4 & 1 \\ -5 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix}$ ・ロト・日本・日本・日本・日本・日本・日本
Fix $\alpha \in \mathbb{R}$, n > 0 and define the following matrices $D_{i,\alpha} = [d_{kl}], L_{ij} = [\ell_{kl}], T_{ij} = [t_{kl}] \in M(n \times n; \mathbb{R})$ as follows

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Fix $\alpha \in \mathbb{R}$, n > 0 and define the following matrices $D_{i,\alpha} = [d_{kl}], L_{ij} = [\ell_{kl}], T_{ij} = [t_{kl}] \in M(n \times n; \mathbb{R})$ as follows i) $d_{kk} = 1$ for $k \neq i$, $d_{ii} = \alpha$, $d_{kl} = 0$ elsewhere,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix
$$\alpha \in \mathbb{R}$$
, $n > 0$ and define the following matrices
 $D_{i,\alpha} = [d_{kl}], L_{ij} = [\ell_{kl}], T_{ij} = [t_{kl}] \in M(n \times n; \mathbb{R})$ as follows
i) $d_{kk} = 1$ for $k \neq i$, $d_{ii} = \alpha$, $d_{kl} = 0$ elsewhere,
ii) $\ell_{kk} = 1$ for $k = 1, ..., n$, $\ell_{ij} = 1$, $\ell_{kl} = 0$ elsewhere,

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Fix
$$\alpha \in \mathbb{R}$$
, $n > 0$ and define the following matrices
 $D_{i,\alpha} = [d_{kl}], L_{ij} = [\ell_{kl}], T_{ij} = [t_{kl}] \in M(n \times n; \mathbb{R})$ as follows
i) $d_{kk} = 1$ for $k \neq i$, $d_{ii} = \alpha$, $d_{kl} = 0$ elsewhere,
ii) $\ell_{kk} = 1$ for $k = 1, \dots, n$, $\ell_{ij} = 1$, $\ell_{kl} = 0$ elsewhere,
iii) $t_{kk} = 1$ for $k \notin \{i, j\}, t_{ij} = t_{ji} = 1, t_{kl} = 0$ elsewhere.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$D_{i,\alpha} = \begin{bmatrix} i & & j & & \\ 0 & \alpha & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}, \qquad L_{ij} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}, \qquad I_{ij} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \end{bmatrix}$$

Proposition Let $A \in M(n \times m; \mathbb{R})$. Then i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $AD_{i,\alpha} = matrix A$ with the i-th column multiplied by α ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $AD_{i,\alpha} = matrix A$ with the i-th column multiplied by α ,

ii) $AL_{ij} = matrix A$ with the *i*-th column added to the *j*-th one,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $AD_{i,\alpha} = matrix A$ with the *i*-th column multiplied by α ,

ii) $AL_{ij} = matrix A$ with the *i*-th column added to the *j*-th one,

iii) $AT_{ij} = matrix A$ with the *i*-th and *j*-th columns swapped,

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $D_{i,\alpha}A = matrix A$ with the *i*-th row multiplied by α ,

ii) $L_{ij}A = matrix A$ with the *j*-th row added to the *i*-th row,

iii) $T_{ij}A = matrix A$ with the *i*-th and *j*-th rows swapped,

that is, elementary row operations correspond to multiplication by elementary matrices from the left.

Proposition

Let $A \in M(n \times m; \mathbb{R})$. Then

i) $AD_{i,\alpha} = matrix A$ with the *i*-th column multiplied by α ,

ii) $AL_{ij} = matrix A$ with the *i*-th column added to the *j*-th one,

iii) $AT_{ij} = matrix A$ with the *i*-th and *j*-th columns swapped,

that is, elementary column operations correspond to multiplication by elementary matrices from the right.

Matrix Multiplication is Associative

Proposition

For any matrices $A \in M(m \times n; \mathbb{R}), B \in M(n \times I; \mathbb{R}), C \in M(I \times k; \mathbb{R})$

(AB)C = A(BC).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matrix Multiplication is Associative

Proposition

For any matrices $A \in M(m \times n; \mathbb{R}), B \in M(n \times I; \mathbb{R}), C \in M(I \times k; \mathbb{R})$

$$(AB)C = A(BC).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof. Let $AB = [f_{ij}] \in M(m \times I; \mathbb{R}), BC = [g_{ij}] \in M(n \times k; \mathbb{R}).$ Then

Matrix Multiplication is Associative

Proposition

For any matrices $A \in M(m \times n; \mathbb{R}), B \in M(n \times I; \mathbb{R}), C \in M(I \times k; \mathbb{R})$

$$(AB)C = A(BC).$$

Proof. Let $AB = [f_{ij}] \in M(m \times I; \mathbb{R}), BC = [g_{ij}] \in M(n \times k; \mathbb{R}).$ Then

$$f_{ir} = \sum_{s=1}^{n} a_{is} b_{sr},$$

$$g_{sj} = \sum_{r=1}^{l} b_{sr} c_{rj}.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Matrix Multiplication is Associative (continued)

Proof.

The entry in the *i*-th row and the *j*-th column of the matrix (AB)C is equal to

$$\sum_{r=1}^{l} f_{ir} c_{rj} = \sum_{r=1}^{l} \left(\sum_{s=1}^{n} a_{is} b_{sr} \right) c_{rj} = \sum_{r=1}^{l} \sum_{s=1}^{n} a_{is} b_{sr} c_{rj}.$$

The entry in the *i*-th row and the *j*-th column of the matrix A(BC) is equal to

$$\sum_{s=1}^{n} a_{is} g_{sj} = \sum_{s=1}^{n} a_{is} \left(\sum_{r=1}^{l} b_{sr} c_{rj} \right) = \sum_{s=1}^{n} \sum_{r=1}^{l} a_{is} b_{sr} c_{rj} =$$
$$= \sum_{r=1}^{l} \sum_{s=1}^{n} a_{is} b_{sr} c_{rj}.$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Coordinate Vector

Definition

Let V be a vector space and let $\mathcal{A} = (v_1, \ldots, v_n)$ be its ordered basis. For any $v \in V$ by $[v]_{\mathcal{A}}$ we denote the **coordinate vector** of v relative to \mathcal{A} , i.e. a *n*-by-1 matrix with coordinates of v relative to \mathcal{A} . In particular, if $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$ then

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Coordinate Vector

Definition

Let V be a vector space and let $\mathcal{A} = (v_1, \ldots, v_n)$ be its ordered basis. For any $v \in V$ by $[v]_{\mathcal{A}}$ we denote the **coordinate vector** of v relative to \mathcal{A} , i.e. a *n*-by-1 matrix with coordinates of v relative to \mathcal{A} . In particular, if $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$ then

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Example

If $\mathcal{A} = ((1,1),(1,2)), \ v = (1,3)$ then

$$\begin{bmatrix} v \end{bmatrix}_{st} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} v \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

Image by the Matrix of Linear Transformation

Proposition

Let V, W be vector spaces and let $\varphi : V \longrightarrow W$ be a linear transformation. Let $\mathcal{A} = (v_1, \ldots, v_n)$ be an ordered basis of V and let $\mathcal{B} = (w_1, \ldots, w_m)$ be an ordered basis of W. For any vector $v \in V$ let $\alpha_1, \ldots, \alpha_n$ be the coordinates of v relative to the basis \mathcal{A} and let β_1, \ldots, β_m be the coordinates of $\varphi(v)$ relative to the basis \mathcal{B} , that is $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ and $\varphi(v) = \beta_1 w_1 + \ldots + \beta_m w_m$. Then

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}$$

or equivalently

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \big[v \big]_{\mathcal{A}} = \big[\varphi(v) \big]_{\mathcal{B}}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Image by the Matrix of Linear Transformation – Proof

$$\mathcal{M}(\varphi)^{\mathcal{B}}_{\mathcal{A}} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \\ = \alpha_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + \alpha_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Image by the Matrix of Linear Transformation – Proof

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \alpha_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + \alpha_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

On the other hand

$$\alpha_1 \varphi(\mathbf{v}_1) = \alpha_1 (\mathbf{a}_{11} \mathbf{w}_1 + \mathbf{a}_{21} \mathbf{w}_2 + \ldots + \mathbf{a}_{m1} \mathbf{w}_m),$$

$$\alpha_2 \varphi(\mathbf{v}_2) = \alpha_2 (\mathbf{a}_{12} \mathbf{w}_1 + \mathbf{a}_{22} \mathbf{w}_2 + \ldots + \mathbf{a}_{m2} \mathbf{w}_m),$$

$$\vdots$$

$$\alpha_n \varphi(\mathbf{v}_n) = \alpha_n (\mathbf{a}_{1n} \mathbf{w}_1 + \mathbf{a}_{2n} \mathbf{w}_2 + \ldots + \mathbf{a}_{mn} \mathbf{w}_m),$$

and

Matrix of the Sum of Linear Transformations

Proposition

Let V, W be vector spaces and let $\varphi, \psi : V \longrightarrow W$ be linear transformations. Let \mathcal{A}, \mathcal{B} be bases of V and W respectively and $\alpha \in \mathbb{R}$ any scalar. Then $M(\varphi + \psi)^{\mathcal{B}}_{\mathcal{A}} = M(\varphi)^{\mathcal{B}}_{\mathcal{A}} + M(\psi)^{\mathcal{B}}_{\mathcal{A}}$ and $M(\alpha \varphi)^{\mathcal{B}}_{\mathcal{A}} = \alpha M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$.

Proof.

Let $\mathcal{A} = (v_1, \dots, v_n)$ and $\mathcal{B} = (w_1, \dots, w_m)$ be the ordered bases of V and W, respectively. If

$$\varphi(\mathbf{v}_i) = \mathbf{a}_{1i}\mathbf{w}_1 + \mathbf{a}_{2i}\mathbf{w}_2 + \ldots + \mathbf{a}_{mi}\mathbf{w}_m,$$

$$\psi(\mathbf{v}_i) = \mathbf{b}_{1i}\mathbf{w}_1 + \mathbf{b}_{2i}\mathbf{w}_2 + \ldots + \mathbf{b}_{mi}\mathbf{w}_m,$$

then

$$(\varphi + \psi)(\mathbf{v}_i) = \varphi(\mathbf{v}_i) + \psi(\mathbf{v}_i) = (\mathbf{a}_{1i} + \mathbf{b}_{1i})\mathbf{w}_1 + (\mathbf{a}_{2i} + \mathbf{b}_{2i})\mathbf{w}_2 + \dots$$
$$\dots + (\mathbf{a}_{mi} + \mathbf{b}_{mi})\mathbf{w}_m,$$
$$(\alpha\varphi)(\mathbf{v}_i) = \alpha\varphi(\mathbf{v}_i) = (\alpha\mathbf{a}_{1i})\mathbf{w}_1 + (\alpha\mathbf{a}_{2i})\mathbf{w}_2 + \dots + (\alpha\mathbf{a}_{mi})\mathbf{w}_m.$$

Matrix of the Composition of Linear Transformations

Proposition

Let U, V, W be vectors spaces and let $\varphi : U \longrightarrow V, \ \psi : V \longrightarrow W$ be linear transformations. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be the bases of U, V and W, respectively. Then $M(\psi \circ \varphi)^{\mathcal{C}}_{\mathcal{A}} = M(\psi)^{\mathcal{C}}_{\mathcal{B}}M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Matrix of the Composition of Linear Transformations

Proposition

Let U, V, W be vectors spaces and let $\varphi : U \longrightarrow V, \ \psi : V \longrightarrow W$ be linear transformations. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be the bases of U, V and W, respectively. Then $M(\psi \circ \varphi)^{\mathcal{C}}_{\mathcal{A}} = M(\psi)^{\mathcal{C}}_{\mathcal{B}}M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$.

Proof.

By the Proposition on the image by matrix of a linear transformation

$$\begin{split} & M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \big[\mathbf{v} \big]_{\mathcal{A}} = \big[\varphi(\mathbf{v}) \big]_{\mathcal{B}}, \\ & M(\psi)_{\mathcal{B}}^{\mathcal{C}} \big[\varphi(\mathbf{v}) \big]_{\mathcal{B}} = \big[\psi(\varphi(\mathbf{v})) \big]_{\mathcal{C}} = \big[(\psi \circ \varphi)(\mathbf{v}) \big]_{\mathcal{C}}, \end{split}$$

that is, by associativity of matrix product

$$\left[(\psi \circ \varphi)(\mathbf{v}) \right]_{\mathcal{C}} = M(\psi)_{\mathcal{B}}^{\mathcal{C}} \left(M(\varphi)_{\mathcal{A}}^{\mathcal{B}} [\mathbf{v}]_{\mathcal{A}} \right) = \left(M(\psi)_{\mathcal{B}}^{\mathcal{C}} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \right) \left[\mathbf{v} \right]_{\mathcal{A}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Matrix of the Composition of Linear Transformations (continued)

Proof.

Therefore, for any $v \in V$

$$\boldsymbol{M}(\boldsymbol{\psi} \circ \boldsymbol{\varphi})_{\mathcal{A}}^{\mathcal{C}} [\boldsymbol{v}]_{\mathcal{A}} = \left[(\boldsymbol{\varphi} \circ \boldsymbol{\psi})(\boldsymbol{v}) \right]_{\mathcal{C}} = \left(\boldsymbol{M}(\boldsymbol{\psi})_{\mathcal{B}}^{\mathcal{C}} \boldsymbol{M}(\boldsymbol{\varphi})_{\mathcal{A}}^{\mathcal{B}} \right) \left[\boldsymbol{v} \right]_{\mathcal{A}}.$$

Substituting $v = v_i$ for i = 1, ..., n we see that matrices $M(\psi \circ \varphi)^{\mathcal{C}}_{\mathcal{A}}, M(\psi)^{\mathcal{C}}_{\mathcal{B}}M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ have the same columns, in particular

$$M(\psi \circ \varphi)_{\mathcal{A}}^{\mathcal{C}} = M(\psi)_{\mathcal{B}}^{\mathcal{C}} M(\varphi)_{\mathcal{A}}^{\mathcal{B}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Block Matrix

Definition Matrix $A \in M(m \times n; \mathbb{R})$ is a block matrix if

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1q} \\ \hline A_{21} & A_{22} & & A_{2q} \\ \hline \vdots & & \ddots & \vdots \\ \hline A_{p1} & A_{p2} & \cdots & A_{pq} \end{bmatrix},$$

where $A_{i,j} \in M(m_i \times n_j; \mathbb{R})$ and

$$m = m_1 + m_2 + \ldots + m_p,$$

 $n = n_1 + n_2 + \ldots + n_q.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

$$A = \begin{bmatrix} 1 & 2 & 2 & 6 \\ 1 & 2 & 2 & 5 \\ 1 & 1 & 2 & 8 \\ \hline 2 & 5 & 6 & 2 \end{bmatrix}.$$

Multiplication of Block Matrices

Proposition If $A \in M(m \times n; \mathbb{R})$, $B \in M(n \times l; \mathbb{R})$ are block matrices, where $m = m_1 + \ldots + m_p$, $n = n_1 + \ldots + n_q$, $l = l_1 + \ldots + l_r$, $A = [A_{ij}]$, $B = [B_{jk}]$, for $i = 1, \ldots, p$, $j = 1, \ldots, q$, $k = 1, \ldots, r$, then C = AB is a block matrix such that $C = [C_{ik}]$, where

$$C_{ik} = \sum_{j=1}^{q} A_{ij} B_{jk},$$

that is

$$C_{ik} = A_{i1}B_{1k} + A_{i2}B_{2k} + \ldots + A_{iq}B_{qk}$$

・ロト・西ト・モン・モー シック

Multiplication of Block Matrices

Proposition If $A \in M(m \times n; \mathbb{R})$, $B \in M(n \times l; \mathbb{R})$ are block matrices, where $m = m_1 + \ldots + m_p$, $n = n_1 + \ldots + n_q$, $l = l_1 + \ldots + l_r$, $A = [A_{ij}]$, $B = [B_{jk}]$, for $i = 1, \ldots, p$, $j = 1, \ldots, q$, $k = 1, \ldots, r$, then C = AB is a block matrix such that $C = [C_{ik}]$, where

$$C_{ik} = \sum_{j=1}^q A_{ij} B_{jk},$$

that is

$$C_{ik} = A_{i1}B_{1k} + A_{i2}B_{2k} + \ldots + A_{iq}B_{qk}$$

Proof. Exercise.

Multiplication of Block Matrices (continued)

Remark

The claim follows by the mathematical induction of max(p,q). The cases p = 1, q = 2, p = 2, q = 1 and p = q = 2 may be checked directly. Then, by separating a single block it is possible to prove the inductive step, i.e.,

$$AB = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1q} \\ \hline A_{21} & A_{22} & & A_{2q} \\ \hline \vdots & & \ddots & \vdots \\ \hline A_{p1} & A_{p2} & \cdots & A_{pq} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ \hline B_{21} & B_{22} & & B_{2r} \\ \hline \vdots & & \ddots & \vdots \\ \hline B_{q1} & B_{q2} & \cdots & B_{qr} \end{bmatrix} = \\ = \begin{bmatrix} A_{1,1} & A'_{1,2} \\ \hline A'_{2,1} & A'_{2,2} \end{bmatrix} \begin{bmatrix} B_{1,1} & B'_{1,2} \\ \hline B'_{2,1} & B'_{2,2} \end{bmatrix} = \\ = \begin{bmatrix} A_{1,1}B_{1,1} + A'_{1,2}B'_{2,1} & A_{1,1}B'_{1,2} + A'_{1,2}B'_{2,2} \\ \hline A'_{1,2}B'_{1,1} + A'_{2,2}B'_{2,1} & A'_{2,1}B'_{2,2} + A'_{2,2}B'_{2,2} \end{bmatrix} = C.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Multiplication of Block Matrices (continued) Let $E_{ii} = [e_{kl}] \in M(m \times n; \mathbb{R})$ be a matrix such that

$$e_{kl} = egin{cases} 1 & i = k ext{ and } j = l \ 0 & ext{otherwise} \end{cases}$$

Let δ_{ij} be the **Kronecker delta**, i.e.,

$$\delta_{ij} = \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$$

Then, equivalently

$$e_{kl} = \delta_{ik} \delta_{jl}$$

and (matrices E, E' and E'' may have different sizes)

$$E_{ij}E'_{kl}=\delta jkE''_{il}.$$

In particular, for any matrix $A = [a_i j] \in M(m \times n; \mathbb{R})$

$$A=\sum_{i,j=1}^{n,m}a_{ij}E_{ij},$$

and the matrix multiplication can be seen as a special case of the block matrix multiplication.

Example

$$A = \begin{bmatrix} 1 & 2 & 2 & 6 \\ 1 & 1 & 2 & 8 \\ \hline 1 & 1 & 2 & 8 \\ \hline 2 & 5 & 6 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}.$$
$$AB = \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 6 \\ 2 & 2 & 5 \\ 1 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 6 \\ 2 & 2 & 5 \\ 1 & 2 & 8 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ 6 \\ 5 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 8 & 12 \\ 7 & 11 \\ 10 & 13 \\ -2 + 17 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 14 \\ 7 & 7 & 13 \\ 6 & 10 & 15 \\ 19 & 8 & 23 \end{bmatrix}.$$

Markov chains - Application

Let
$$S = \{1, \ldots, N\}$$
 be the state space.

Definition

A (discrete-time, discrete-state, time-homogenous) **Markov chain**) is a sequence of random variables $X_0, X_1, X_2, \ldots, X_n, \ldots$ with values in the set *S* such that for all $i, i_0, \ldots, i_{n-1}, j \in S$ and all $n \in \mathbb{N}$

$$P(X_{n+1} = j \mid X_n = i, X_{n-i} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0) =$$
$$= P(X_{n+1} = j \mid X_n = i),$$

and it does not depend on n (i.e. the current state depends only on the previous state and this dependence is constant in time).

Markov chains – Application

Let
$$S = \{1, \ldots, N\}$$
 be the state space.

Definition

A (discrete-time, discrete-state, time-homogenous) **Markov chain**) is a sequence of random variables $X_0, X_1, X_2, \ldots, X_n, \ldots$ with values in the set *S* such that for all $i, i_0, \ldots, i_{n-1}, j \in S$ and all $n \in \mathbb{N}$

$$P(X_{n+1} = j \mid X_n = i, X_{n-i} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0) =$$
$$= P(X_{n+1} = j \mid X_n = i),$$

and it does not depend on n (i.e. the current state depends only on the previous state and this dependence is constant in time).

Remark

The number $P(X_{n+1} = j | X_n = i)$ is called the transition probability form the state *i* to the state *j*.
Markov chains – Application (continued)

Definition The matrix $Q = [q_{ij}] \in M(N \times N; \mathbb{R})$ where

$$q_{ij}=P(X_{n+1}=j\mid X_n=i),$$

is called the transition matrix.

Markov chains – Application (continued)

Definition The matrix $Q = [q_{ij}] \in M(N \times N; \mathbb{R})$ where

$$q_{ij} = P(X_{n+1} = j \mid X_n = i),$$

is called the transition matrix.

Example For N = 2 $Q = \begin{bmatrix} P(X_{n+1} = 1 \mid X_n = 1) & P(X_{n+1} = 2 \mid X_n = 1) \\ P(X_{n+1} = 1 \mid X_n = 2) & P(X_{n+1} = 2 \mid X_n = 2) \end{bmatrix}.$

Markov chains – Example

Each year a consumer of product A switches to product B with probability one-half. On the other hand, with probability two-thirds a consumer of product B continues buying it and with probability one-third starts buying product A. If $S = \{1, 2\}$ and 1 stands for product A and 2 for product B then

$$Q = \begin{bmatrix} P(X_{n+1} = 1 \mid X_n = 1) & P(X_{n+1} = 2 \mid X_n = 1) \\ P(X_{n+1} = 1 \mid X_n = 2) & P(X_{n+1} = 2 \mid X_n = 2) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Markov chains – Example (continued)

1 stands for product A and 2 stands for product B

$$Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

•

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Markov chains – Example (continued)

What is the probability that a consumer of product A switches to product B after two years?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Markov chains – Example (continued)

What is the probability that a consumer of product A switches to product B after two years?

$$P(X_2 = 2 \mid X_0 = 1) =$$

$$= P(X_2 = 2 \mid X_1 = 1)P(X_1 = 1 \mid X_0 = 1) +$$

$$+ P(X_2 = 2 \mid X_1 = 2)P(X_1 = 2 \mid X_0 = 1) =$$

$$= \frac{1}{2} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{4} + \frac{2}{6} = \frac{7}{12}.$$

(so a consumer switches either in the second or in the first year).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Markov chains (continued)

Definition

The *n*-step (conditional) probability of a Markov chain is

$$P(X_{n+2} = j | X_n = i) = q_{ij}^{(n)},$$

and the *n*-step condition matrix is

$$Q^{(n)} = [q_{ij}^{(n)}] \in M(N \times N; \mathbb{R}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Markov chains (continued)

Definition

The *n*-step (conditional) probability of a Markov chain is

$$P(X_{n+2} = j | X_n = i) = q_{ij}^{(n)},$$

and the *n*-step condition matrix is

$$Q^{(n)} = [q_{ij}^{(n)}] \in M(N \times N; \mathbb{R}).$$

Proposition

$$Q^{(n)} = Q^n = \underbrace{Q \cdot Q \cdots Q}_{n-times}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Markov chains (continued)

Proof.

It is enough to check the case n = 2. By the law of total probability

$$q_{ij}^{(2)} = P(X_{n+2} = j \mid X_n = i) =$$

$$= \sum_{s=1}^{N} P(X_{n+2} = j \mid X_{n+1} = s) P(X_{n+1} = s \mid X_n = i) =$$

$$=\sum_{s=1}^N q_{sj}q_{is}=\sum_{s=1}^N q_{is}q_{sj}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example (continued)

If
$$Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
, then

$$Q^{(2)} = \begin{bmatrix} P(X_{n+2} = 1 \mid X_n = 1) & P(X_{n+2} = 2 \mid X_n = 1) \\ P(X_{n+2} = 1 \mid X_n = 2) & P(X_{n+2} = 2 \mid X_n = 2) \end{bmatrix} = Q^2 =$$

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{5}{12} & \frac{7}{12} \\ \frac{7}{12} & \frac{11}{12} \\ \frac{7}{18} & \frac{11}{18} \end{bmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Initial Conditions and Marginal Distribution

Definition

The **initial conditions** is the (discrete) probability mass function of the variable X_0 , i.e the vector

$$\mathbf{t} = (t_1, t_2, \ldots, t_N) =$$

$$= (P(X_0 = 1), P(X_0 = 2), \dots, P(X_0 = N)) \in \mathbb{R}^N,$$

and the **marginal distributions** are the probability mass functions of variables X_1, X_2, \ldots

$$\mathbf{t}_i = (P(X_i = 1), P(X_i = 2), \dots, P(X_i = N)) \in \mathbb{R}^N,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for i = 1, 2, ...

Initial Conditions and Marginal Distribution

Definition

The **initial conditions** is the (discrete) probability mass function of the variable X_0 , i.e the vector

$$\mathbf{t} = (t_1, t_2, \ldots, t_N) =$$

$$= (P(X_0 = 1), P(X_0 = 2), \dots, P(X_0 = N)) \in \mathbb{R}^N,$$

and the **marginal distributions** are the probability mass functions of variables X_1, X_2, \ldots

$$\mathbf{t}_i = (P(X_i = 1), P(X_i = 2), \dots, P(X_i = N)) \in \mathbb{R}^N,$$

for i = 1, 2, ...

Remark

The marginal distributions depend on the initial conditions.

Initial Conditions and Marginal Distribution (continued)

Proposition

If Q is the transition matrix of a Markov chain then for $k \ge 1$

 $\mathbf{t}_k^{\mathsf{T}} = \mathbf{t}^{\mathsf{T}} Q^k.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Initial Conditions and Marginal Distribution (continued)

Proposition

If Q is the transition matrix of a Markov chain then for $k \ge 1$

 $\mathbf{t}_k^{\mathsf{T}} = \mathbf{t}^{\mathsf{T}} Q^k.$

Proof.

By the law of total probability

$$P(X_k = i) = \sum_{s=1}^{N} P(X_k = i \mid X_0 = s) P(X_0 = s) =$$
$$= \sum_{s=1}^{N} t_s q_{si}^{(k)} =$$
$$= \text{the } i\text{-th entry of } \mathbf{t}^{\mathsf{T}} Q^k.$$

A consumer buys product A with probability $\frac{1}{5}$, product B with probability $\frac{4}{5}$ and the transition matrix is equal to $Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{2} \end{bmatrix}$, SO $\mathbf{t} = \left(\frac{1}{5}, \frac{4}{5}\right),\,$ and $\mathbf{t}_{2} = \begin{bmatrix} \frac{1}{5} & \frac{4}{5} \end{bmatrix} Q^{2} = \begin{bmatrix} \frac{1}{5} & \frac{4}{5} \end{bmatrix} \begin{vmatrix} \frac{5}{12} & \frac{7}{12} \\ \frac{7}{10} & \frac{11}{10} \end{vmatrix} =$ $=\left(\frac{71}{180},\frac{109}{180}\right).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Example (continued)

Hence, after 2 years, a consumer buys product A with probability $\frac{71}{180}$ and product B with probability $\frac{109}{180}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, what happens after infinitely many years?

So, what happens after infinitely many years? Will the probability of buying product B be equal to one?

So, what happens after infinitely many years? Will the probability of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with probability $\frac{2}{5}$ and product B with probability $\frac{3}{5}$ (and the result does not depend on the initial conditions).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, what happens after infinitely many years? Will the probability of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with probability $\frac{2}{5}$ and product B with probability $\frac{3}{5}$ (and the result does not depend on the initial conditions).

In particular the vector $(\frac{2}{5}, \frac{3}{5})$ is a left eigenvector of matrix Q, or equivalently, an eigenvector of Q^{T} , i.e.,

$$\begin{bmatrix} \frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{3}{5} \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hamming Codes

(7,4) Hamming code is a 2 error-detecting, 1 error-correcting linear code.

Hamming Codes

(7,4) Hamming code is a 2 error-detecting, 1 error-correcting linear code.

 $\begin{array}{cccc} 0000 & \longrightarrow & 0000000 \\ 0001 & \longrightarrow & 1101001 \\ 0010 & \longrightarrow & 0101010 \\ 0011 & \longrightarrow & 1000011 \\ 0100 & \longrightarrow & 1001100 \\ 0101 & \longrightarrow & 0100101 \\ 0110 & \longrightarrow & 1100110 \\ 0111 & \longrightarrow & 0001111 \end{array}$

- $1000 \longrightarrow 1110000$
- $1001 \longrightarrow 0011001$
- $1010 \longrightarrow 1011010$
- $1011 \longrightarrow 0110011$
- $1100 \longrightarrow 0111100$
- $1101 \longrightarrow 1010101$
- 1110 ---- 0010110
- $1111 \longrightarrow 1111111$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $b_0 b_1 b_2 b_3 \rightarrow p_0 b_0 p_1 p_2 b_1 b_2 b_3.$

Hamming Codes (continued)

$$b_0 b_1 b_2 b_3 \rightarrow p_0 b_0 p_1 p_2 b_1 b_2 b_3,$$

where

$$p_0 = b_0 + b_1 + b_3,$$

 $p_1 = b_0 + b_2 + b_3,$
 $p_2 = b_0 + b_1 + b_3,$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

where addition is modulo 2, i.e 1 + 1 = 0.

Hamming Codes (continued)

Encoding (and decoding) can be realised by matrix multiplication.

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} p_0 \\ b_0 \\ p_1 \\ p_2 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Paths in Directed Graphs

Definition

A (simple, finite) directed graph G is a pair G = (V, E) where

$$V = \{v_1,\ldots,v_n\},\$$

is the set of vertices and $E \subset V \times V$ is the set of edges (self-loops are allowed).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Paths in Directed Graphs

Definition

A (simple, finite) directed graph G is a pair G = (V, E) where

$$V = \{v_1,\ldots,v_n\},\$$

is the set of vertices and $E \subset V \times V$ is the set of edges (self-loops are allowed).

Definition

A **path** from $v \in V$ to $w \in V$ of **length** / is a sequence of edges

$$(v_{i_0}, v_{i_1}), (v_{i_1}, v_{i_2}), \dots, (v_{i_{l-1}}, v_{i_l}),$$

such that

$$\mathbf{v}_{i_0} = \mathbf{v}, \quad \mathbf{v}_{i_l} = \mathbf{w},$$
$$(\mathbf{v}_{i_k}, \mathbf{v}_{i_{k+1}}) \in \mathbf{E},$$

for k = 0, ..., l - 1.

Definition

For a fixed simple, finite, directed graph G the **adjacency matrix** $A = A_G$ of G is the matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ such that

$$a_{ij} = 1$$
 if and only if $(v_i, v_j) \in E$,

and $a_{ij} = 0$ otherwise.

For example $(v_1, v_2), (v_2, v_3), (v_3, v_4)$ is a path from v_1 to v_4 of length 3.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G, then $(A^l)_{ij}$ for any $l \ge 1$ is the number of paths of length l from v_i to v_j .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G, then $(A^l)_{ij}$ for any $l \ge 1$ is the number of paths of length l from v_i to v_j .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof.

By induction.

Example (continued)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example (continued)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで

| ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ★ □ ● ● ○ ○ ○ ○
Dual Spaces

Definition

Let V be a vector space. The space dual to V is a vector space

$$V^* = \{ \varphi \colon V \to \mathbb{R} \mid \varphi \text{ is linear} \} = \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

with the vector space structure given by

i)
$$(\varphi + \psi)(\mathbf{v}) = \varphi(\mathbf{v}) + \psi(\mathbf{v}),$$

ii) $(\alpha \varphi)\mathbf{v} = \alpha \varphi(\mathbf{v}),$

for $\varphi, \psi \in V^*$ and any $v \in V, \ \alpha \in V$.

Dual Basis

Proposition

For any vector space V and any basis $\mathcal{A} = (\alpha_1, \ldots, \alpha_n)$ of vector space V, there exists the dual basis $\mathcal{A}^* = (\alpha_1^*, \ldots, \alpha_n^*)$ of the vector space V^{*} such that

$$\alpha_i^*(\alpha_j) = \begin{cases} 0 & \text{for } i \neq j \\ 1 & \text{for } i = j \end{cases}.$$

Proof.

There exists dual basis to the standard basis, i.e. st* given by

$$\varepsilon_1^*((x_1, \dots, x_n)) = x_1,$$

$$\varepsilon_2^*((x_1, \dots, x_n)) = x_2,$$

$$\vdots$$

$$\varepsilon_n^*((x_1, \dots, x_n)) = x_n.$$

Dual Basis (continued)

Proof. Let $\varphi \colon V \to V$ be the linear transformation such that

$$\varphi(\alpha_i) = \varepsilon_i.$$

Then

t

$$\alpha_i^* = \varepsilon_i^* \circ \alpha.$$

Assume $\alpha_i = (a_{1j}, a_{2j}, \dots, a_{nj})$ and let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$, then

$$M(\varphi)_{st}^{st} = A^{-1}, \quad M(\varepsilon_i^*) = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dual Basis (continued)

Proof. Let $A^{-1} = [b_{ij}]$. Then $M(\varepsilon_i)_{st}^{st} = M(\alpha_i^*)_{st}^{st} M(\varphi)_{st}^{st} =$ $= \begin{bmatrix} b_{i1} & b_{i2} & b_{i3} & \cdots & b_{in} \end{bmatrix}$ That is

$$\varphi_i^* = b_{i1}\varepsilon_1^* + b_{i2}\varepsilon_2^* + \ldots + b_{in}\varepsilon_n^*.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

Let
$$\alpha_1 = (1, 2), \alpha_2 = (1, 3)$$
 be a basis of \mathbb{R}^2 . Then

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, \quad B = A^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}.$$

Therefore

$$\alpha_1^* = 3\varepsilon_1^* - \varepsilon_2^*,$$

$$\alpha_2^* = -2\varepsilon_1^* + \varepsilon_2^*,$$

or, in more concrete terms,

$$\alpha_1^*((x_1, x_2)) = 3x_1 - x_2,$$

$$\alpha_2^*((x_1, x_2)) = -2x_1 + x_2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dual of a linear transformation

Definition

For any linear transformation $\varphi \colon V \to W$, there exist the dual linear transformation

$$\varphi^*\colon W^*\to V^*,$$

given by the formula

$$\varphi^*(f)(\mathbf{v}) = (f \circ \varphi)(\mathbf{v}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dual of a linear transformation

Definition

For any linear transformation $\varphi \colon V \to W$, there exist the dual linear transformation

$$\varphi^*\colon W^*\to V^*,$$

given by the formula

$$\varphi^*(f)(\mathbf{v}) = (f \circ \varphi)(\mathbf{v}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proposition If $\mathcal{A} = (\alpha_1, \dots, \alpha_n), \mathcal{B} = (\beta_1, \dots, \beta_m)$ then $M(\varphi^*)_{\mathcal{B}^*}^{\mathcal{A}^*} = [M(\varphi)_{\mathcal{A}}^{\mathcal{B}}]^{\mathsf{T}}.$ Dual of a linear transformation (continued)

Proof.
Let
$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = [a_{ij}].$$
$$\varphi^*(\beta_i^*)(\alpha_j) = (\beta_i \circ \varphi)(\alpha_j) =$$
$$= \beta_i \left(\sum_{s=1}^m a_{sj}\beta_j\right) = a_{ij},$$

that the entry in the *i*-th column and in the *j*-th row of $M(\varphi^*)^{\mathcal{A}^*}_{\mathcal{B}^*}$ is equal to a_{ij} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Dual subspaces

Definition Let $W \subset V$ be any subset of vector space V. Let

$$W^* = \{ f \in V^* \mid f \mid_W = 0 \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If $W \subset V$ is a subspace the W^* called **the dual** subspace of W.

Dual subspaces

Definition Let $W \subset V$ be any subset of vector space V. Let

$$W^* = \{ f \in V^* \mid f \mid_W = 0 \}.$$

If $W \subset V$ is a subspace the W^* called **the dual** subspace of W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let $\varphi \colon V \to W$ be a linear transformation. Then

i) ker $\varphi^* = (\operatorname{im} \varphi)^*$, ii) im $\varphi^* = (\ker \varphi)^*$.

Dual subspaces

Definition Let $W \subset V$ be any subset of vector space V. Let

$$W^* = \{ f \in V^* \mid f \mid_W = 0 \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $W \subset V$ is a subspace the W^* called **the dual** subspace of W.

Proposition

Let $\varphi \colon V \to W$ be a linear transformation. Then

i) ker
$$\varphi^* = (\operatorname{im} \varphi)^*$$
,

ii) im
$$\varphi^* = (\ker \varphi)^*$$
.

Proof.

Omitted. Needs isomorphism Theorem.

Definition Let V, W, U be vector spaces. A function

$$B: V \times W \to U$$

is called a bilinear transformation if

i) B(v + v', w) = B(v, w) + B(v', w) for any $v, v' \in V, w \in W$,

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition Let V, W, U be vector spaces. A function

$$B\colon V\times W\to U$$

is called a bilinear transformation if

i) B(v + v', w) = B(v, w) + B(v', w) for any $v, v' \in V, w \in W$, ii) B(v, w + w') = B(v, w) + B(v, w') for any $v \in V, w, w' \in W$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition Let V, W, U be vector spaces. A function

$$B\colon V\times W\to U$$

is called a bilinear transformation if

i) B(v + v', w) = B(v, w) + B(v', w) for any $v, v' \in V, w \in W$, ii) B(v, w + w') = B(v, w) + B(v, w') for any $v \in V, w, w' \in W$, iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v \in V, w \in W, \alpha \in \mathbb{R}$,

Definition Let V, W, U be vector spaces. A function

$$B\colon V\times W\to U$$

is called a bilinear transformation if

i) B(v + v', w) = B(v, w) + B(v', w) for any $v, v' \in V, w \in W$, ii) B(v, w + w') = B(v, w) + B(v, w') for any $v \in V, w, w' \in W$, iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v \in V, w \in W, \alpha \in \mathbb{R}$, iv) $B(v, \beta w) = \beta B(v, w)$ for any $v \in V, w \in W, \beta \in \mathbb{R}$.

Definition Let V, W, U be vector spaces. A function

$$B\colon V\times W\to U$$

is called a bilinear transformation if

i) B(v + v', w) = B(v, w) + B(v', w) for any $v, v' \in V, w \in W$, ii) B(v, w + w') = B(v, w) + B(v, w') for any $v \in V, w, w' \in W$, iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v \in V, w \in W, \alpha \in \mathbb{R}$, iv) $B(v, \beta w) = \beta B(v, w)$ for any $v \in V, w \in W, \beta \in \mathbb{R}$.

Definition Let V, W, U be vector spaces. A function

$$B\colon V\times W\to U$$

is called a bilinear transformation if

i)
$$B(v + v', w) = B(v, w) + B(v', w)$$
 for any $v, v' \in V, w \in W$,
ii) $B(v, w + w') = B(v, w) + B(v, w')$ for any $v \in V, w, w' \in W$,
iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v \in V, w \in W, \alpha \in \mathbb{R}$,
iv) $B(v, \beta w) = \beta B(v, w)$ for any $v \in V, w \in W, \beta \in \mathbb{R}$.

Bilinear transformation *B* is called **a form** if moreover $U = \mathbb{R}$.

Equivalence Relation

Definition

An equivalence relation R on the set X is a relation (i.e. a subset) $R \subset X \times X$ such that

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

i) $\forall_{x \in X} (x, x) \in R$ (*R* is reflexive),

Equivalence Relation

Definition

An equivalence relation R on the set X is a relation (i.e. a subset) $R \subset X \times X$ such that

i)
$$\forall_{x \in X} (x, x) \in R$$
 (*R* is reflexive),

ii) $\forall_{x \in X} \forall_{y \in X} (x, y) \in R \Rightarrow (y, x) \in R$ (*R* is symmetric),

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Equivalence Relation

Definition

An equivalence relation R on the set X is a relation (i.e. a subset) $R \subset X \times X$ such that

i)
$$\forall_{x \in X} (x, x) \in R$$
 (*R* is reflexive),

- ii) $\forall_{x \in X} \forall_{y \in X} (x, y) \in R \Rightarrow (y, x) \in R$ (*R* is symmetric),
- $\begin{array}{l} \mbox{iii} \end{pmatrix} \ \forall_{x \in X} \forall_{y \in X} \forall_{z \in X} \ (x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R \ (R \ \mbox{is transitive}). \end{array}$

Partitions and Equivalence Classes

Equivalence relation R on set X induces a partition of X, given by its equivalence classes (in fact, there is a bijection between all partitions of X and all equivalence relations on X).

Definition

For any $x \in X$ the set

$$[x]_R = \{y \in X \mid (x, y) \in R\}$$

is called **an equivalence class** of element $x \in X$. When no confusion is possible we write [x].

Quotient Vector Space

Definition

Let $W \subset V$ be a subspace of vector space V. The relation $R \subset V \times V$, given by the condition

$$(v, v') \in R \iff v - v' \in W,$$

is an equivalence relation on V, compatible with the structure of the vector space, i.e. the equivalence classes satisfy conditions

i)
$$[v] + [v'] = [v + v'],$$

ii) $\alpha[v] = [\alpha v],$
for any $v, v' \in V$ and $\alpha \in \mathbb{R}.$

Tensor Product

Definition

For any vector spaces V, W let U be a (infinite dimensional) vector space with basis $(u_{v,w})_{v \in V, w \in W}$ and let $U_0 \subset U$ be its subspace spanned by vectors

$$u_{\mathbf{v}+\mathbf{v}',\mathbf{w}}-u_{\mathbf{v},\mathbf{w}}-u_{\mathbf{v}',\mathbf{w}}, u_{\mathbf{v},\mathbf{w}+\mathbf{w}'}-u_{\mathbf{v},\mathbf{w}}-u_{\mathbf{v},\mathbf{w}'}, u_{\alpha\mathbf{v},\mathbf{w}}-\alpha u_{\mathbf{v},\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\mathbf{w}}, u_{\alpha\mathbf{v},\mathbf{w}}-\alpha u_{\mathbf{v},\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\mathbf{w}}, u_{\mathbf{v},\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\beta\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\beta\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\beta\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}$$

where $v \in V$, $w \in V$, $\alpha, \beta \in \mathbb{R}$. By definition, the tensor product of vector spaces V and W is equal to the quotient space

$$V\otimes W=U/U_0.$$

Definition By definition

$$v \otimes w = [u_{v,w}].$$

Then, for any $v, v' \in V, w, w' \in W, \alpha, \beta \in \mathbb{R}$

i)
$$(\mathbf{v} + \mathbf{v}') \otimes \mathbf{w} = \mathbf{v} \otimes \mathbf{w} + \mathbf{v}' \otimes \mathbf{w}$$
,
ii) $\mathbf{v} \otimes (\mathbf{w} + \mathbf{w}') = \mathbf{v} \otimes \mathbf{w} + \mathbf{v} \otimes \mathbf{w}'$,
....)

iii)
$$(\alpha \mathbf{v}) \otimes \mathbf{w} = \alpha(\mathbf{v} \otimes \mathbf{w}),$$

iv)
$$\mathbf{v} \otimes (\beta \mathbf{w}) = \beta(\mathbf{v} \otimes \mathbf{w}).$$

Moreover, there exists bilinear transformation

$$\pi\colon V\times W\ni (v,w)\mapsto v\otimes w\in V\otimes W.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Proposition

For any vector spaces V, W and for any bilinear transformation

 $B\colon V\times W\to U,$

there exists a unique linear transformation

$$\varphi_B\colon V\otimes W\to U,$$

such that for any $v \in V, w \in W$

$$B(\mathbf{v},\mathbf{w})=\varphi_B(\mathbf{v}\otimes\mathbf{w}),$$

i.e.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof. Let $\overline{\varphi}$: $lin(\{u_{v,w} \mid v \in V, w \in W\}) \rightarrow U$ be a linear transformation given by

$$\overline{\varphi}(u_{\mathbf{v},\mathbf{w}})=B(\mathbf{v},\mathbf{w}).$$

Since *B* is bilinear, the transformation $\overline{\varphi}$ sends vectors

$$u_{\mathbf{v}+\mathbf{v}',\mathbf{w}}-u_{\mathbf{v},\mathbf{w}}-u_{\mathbf{v}',\mathbf{w}}, u_{\mathbf{v},\mathbf{w}+\mathbf{w}'}-u_{\mathbf{v},\mathbf{w}}-u_{\mathbf{v},\mathbf{w}'}, u_{\alpha\mathbf{v},\mathbf{w}}-\alpha u_{\mathbf{v},\mathbf{w}}, u_{\mathbf{v},\beta\mathbf{w}}-\beta u_{\mathbf{v},\mathbf{w}},$$

to zero (in U). Since vectors $[u_{v,w}]$ span $V \otimes W$, $\overline{\varphi}$ descends to a linear transformation

$$\varphi \colon V \otimes W \ni v \otimes w = [u_{v,w}] \mapsto B(v,w) \in U.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

If $\mathcal{A} = (\alpha_1, \dots \alpha_n)$ is a basis of V and $\mathcal{B} = (\beta_1, \dots \beta_m)$ is a basis of W, then

$$\mathcal{A}\otimes\mathcal{B}=(\alpha_i\otimes\beta_j)_{i=1,\ldots,n,j=1,\ldots,m},$$

is a basis of $V \otimes W$. It follows

$$\dim V \otimes W = (\dim V)(\dim W) = nm.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof.

Consider a bilinear form $B: V \times W \rightarrow \mathbb{R}$, i.e.

If $v = \sum_{i=1}^{n} v_i \alpha_i$ and $w = \sum_{j=1}^{m} w_j \beta_j$ are bases of V and W, respectively, then

$$B(\mathbf{v}, \mathbf{w}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{v}_{i} \mathbf{w}_{j} B(\alpha_{i}, \beta_{j}),$$

i.e. *B* is uniquely determined by the values $B(\alpha_i, \beta_j)$. On the other hand if $a_{ij} \in \mathbb{R}$ are some numbers, there exists a unique bilinear form *B* such that $B(\alpha_i, \beta_j) = a_{ij}$, given by the formula

$$B(\mathbf{v},\mathbf{w}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{v}_i \mathbf{w}_j \mathbf{a}_{ij}.$$

Proof.

By the properties of tensor product, any linear form φ induces a bilinear form $\pi \circ \varphi$.

By the universal property, the linear transformation

$$(V\otimes W)^*\ni\varphi\mapsto\varphi\circ\pi,$$

is an isomorphism. Therefore

 $\dim V \otimes W = \dim (V \otimes W)^* = \dim V \dim W.$

Vector Space of Linear Transformations

Proposition

For any vector spaces V, W there exists a linear isomorphism of vector spaces

$$V^* \otimes W \ni f \otimes w \mapsto (V \ni v \mapsto f(v)w \in V) \in \operatorname{Hom}(V, W),$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where Hom(V, W) denotes the vector space of all linear transformations from V to W.

Vector Space of Linear Transformations

Proposition

For any vector spaces V, W there exists a linear isomorphism of vector spaces

$$V^* \otimes W \ni f \otimes w \mapsto (V \ni v \mapsto f(v)w \in V) \in \operatorname{Hom}(V, W),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where Hom(V, W) denotes the vector space of all linear transformations from V to W.

Proof.

The transformation sends basis to basis.

Vector Space of Linear Transformations (continued)

Proposition

For any vector spaces V, W and for any $\mathcal{A} = (\alpha_1, \ldots, \alpha_n)$ a basis of V and $\mathcal{B} = (\beta_1, \cdots, \beta_m)$ a basis of W, if

$$M(\varphi)^{\mathcal{B}}_{\mathcal{A}} = [a_{ij}] \in M(m \times n; \mathbb{R}),$$

then, under the above isomorphism

$$\varphi = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \alpha_j^* \otimes \beta_i \in V^* \otimes W.$$

Vector Space of Linear Transformations (continued)

Proposition

For any vector spaces V, W and for any $\mathcal{A} = (\alpha_1, \ldots, \alpha_n)$ a basis of V and $\mathcal{B} = (\beta_1, \cdots, \beta_m)$ a basis of W, if

$$M(\varphi)^{\mathcal{B}}_{\mathcal{A}} = [a_{ij}] \in M(m \times n; \mathbb{R}),$$

then, under the above isomorphism

$$\varphi = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \alpha_j^* \otimes \beta_i \in V^* \otimes W.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof. Exercise.

Examples

If $\varphi \colon \mathbb{R}^3 \to \mathbb{R}$ is given by the formula

$$\varphi((x_1, x_2, x_3)) = x_1 + 2x_2 - 7x_3,$$

then

$$\varphi = \varepsilon_1^* + 2\varepsilon_2^* - 7\varepsilon_3^*.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Examples

If $\varphi \colon \mathbb{R}^3 \to \mathbb{R}$ is given by the formula

$$\varphi((x_1, x_2, x_3)) = x_1 + 2x_2 - 7x_3$$

then

$$\varphi = \varepsilon_1^* + 2\varepsilon_2^* - 7\varepsilon_3^*.$$

If $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$, where $\varepsilon_1, \varepsilon_2, \varepsilon_3$ is the standard basis of \mathbb{R}^3 and ζ_1, ζ_2 is the standard basis of \mathbb{R}^2 , is given by the formula

$$\varphi((x_1, x_2, x_3)) = (x_1 + 2x_2 - 7x_3, 5x_1 - 8x_2) =$$

 $x_1(1,5) + x_2(2,-8) + x_3(-7,0) = x_1(\zeta_1 + 5\zeta_2) + x_2(2\zeta_1 - 8\zeta_2) + x_3(-7\zeta_1),$ then

$$M(\varphi)_{st}^{st} = \begin{bmatrix} 1 & 2 & -7 \\ 5 & -8 & 0 \end{bmatrix},$$
$$\varphi = \varepsilon_1^* \otimes \zeta_1 + 2\varepsilon_2^* \otimes \zeta_1 - 7\varepsilon_3^* \otimes \zeta_1 + 5\varepsilon_1^* \otimes \zeta_2 - 8\varepsilon_2^* \otimes \zeta_2.$$

Trace

Definition

Let $\varphi \colon V \to V$, i.e., $\varphi \in V^* \otimes V$ be a linear endomorphism. The trace of φ is equal to $Tr(\varphi)$, where

$$\mathsf{Tr}\colon V^*\otimes V\ni \alpha\otimes\beta\mapsto \alpha(\beta)\in\mathbb{R},$$

is the unique linear transformation corresponding to the bilinear transformation

$$V^* \times V \ni (\alpha, \beta) \mapsto \alpha(\beta) \in \mathbb{R}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ
Trace

Definition

Let $\varphi \colon V \to V$, i.e., $\varphi \in V^* \otimes V$ be a linear endomorphism. The trace of φ is equal to $Tr(\varphi)$, where

$$\mathsf{Tr}\colon V^*\otimes V\ni \alpha\otimes\beta\mapsto \alpha(\beta)\in\mathbb{R},$$

is the unique linear transformation corresponding to the bilinear transformation

$$V^* \times V \ni (\alpha, \beta) \mapsto \alpha(\beta) \in \mathbb{R}.$$

Proposition

For any basis $\mathcal{A} = (\alpha_1, \dots, \alpha_n)$ of V, if $\mathcal{M}(\varphi)^{\mathcal{A}}_{\mathcal{A}} = [a_{ij}]$, then

$$\mathsf{Tr}(\varphi) = \sum_{i=1}^{n} a_{ii}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Trace (continued)

Proof. By the definition

$$\varphi = \sum_{i,j=1}^n \mathsf{a}_{ij} \alpha_j^* \otimes \alpha_i,$$

 and

$$\operatorname{Tr}(\alpha_j^* \otimes \alpha_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Trace of a Matrix

Definition Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix. The trace of matrix A is equal to

$$\mathsf{Tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Trace of a Matrix

Definition

Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix. The trace of matrix A is equal to

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Corollary

For any linear endomorphism $\varphi\colon V\to V$ and any basis ${\mathcal A}$ of vector space V

$$\operatorname{Tr}(\varphi) = \operatorname{Tr}(M(\varphi)_{\mathcal{A}}^{\mathcal{A}}),$$

that is for any invertible matrix $C \in M(n \times n; \mathbb{R})$

$$\mathsf{Tr}(A) = \mathsf{Tr}\big(C^{-1}AC\big),$$

i.e., the trace admits the same value on similar matrices.

Trace of a Matrix (continued)

Proposition

For any matrices $A, B, C \in M(n \times n; \mathbb{R})$ and scalars $\alpha, \beta \in \mathbb{R}$

i)
$$\operatorname{Tr}(A) = \operatorname{Tr}(A^{\mathsf{T}}),$$

ii) $\operatorname{Tr}(\alpha A + \beta B) = \alpha \operatorname{Tr}(A) + \beta \operatorname{Tr}(B),$
iii) $\operatorname{Tr}(AB) = \operatorname{Tr}(BA),$
i) $\operatorname{Tr}(ABC) = \operatorname{Tr}(BCA) = \operatorname{Tr}(CAD)$

iv)
$$Tr(ABC) = Tr(BCA) = Tr(CAB)$$
.

Proof.

Points i) and ii) are obvious and iv) follows from iii).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Trace of a Matrix (continued)

Proof.
iii) let
$$C = [c_{ij}] = AB$$
 and $C' = [c'_{ij}] = BA$. Then
 $Tr(C) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji},$
 $Tr(C') = \sum_{i=1}^{n} c'_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}a_{ji} =$
 $= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji}b_{ij} = Tr(C).$

Non-canonical Isomorphism

Remark

If V is a finite dimensional vector space then the vector spaces V and V^* are isomorphic, however there is no canonical isomorphism.

Example

For example, let $V = \mathbb{R}^2$ and let $F, G: V \to V^*$ be linear transformations given by the conditions

$$\begin{aligned} F(\varepsilon_1) &= \varepsilon_1^*, \quad G(\alpha_1) = \alpha_1^*, \\ F(\varepsilon_2) &= \varepsilon_2^*, \quad G(\alpha_2) = \alpha_2^*, \end{aligned}$$

where $\alpha_1=(1,2), \alpha_2=(1,3)$ then

$$F(\alpha_1) = F(\varepsilon_1 + 2\varepsilon_2) = \varepsilon_1^* + 2\varepsilon_2^* \neq \alpha_1^* =$$

$$= 3\varepsilon_1^* - \varepsilon_2^*$$

Non-canonical Isomorphism

Remark

If V is infinite dimensional then V is not isomorphic to V^* (the reason is purely set-theoretical). For example

 $(\mathbb{R} \oplus \mathbb{R} \oplus \ldots)^* \simeq (\mathbb{R} \times \mathbb{R} \times \ldots).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Bidual Space

Definition

For any vector space V, the **bidual space** is equal to

 $V^{**} = (V^*)^*.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Bidual Space

Definition

For any vector space V, the **bidual space** is equal to

 $V^{**} = (V^*)^*.$

Proposition

If V is finite dimensional, there exists a canonical isomorphism of V and V^{**} (which does not depend on the particular choice of a basis)

$$F: V \ni v \mapsto (V^* \ni f \mapsto f(v) \in \mathbb{R}) \in (V^*)^* = V^{**}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Bidual Space

Definition

For any vector space V, the **bidual space** is equal to

 $V^{**} = (V^*)^*.$

Proposition

If V is finite dimensional, there exists a canonical isomorphism of V and V^{**} (which does not depend on the particular choice of a basis)

$$F: V \ni v \mapsto (V^* \ni f \mapsto f(v) \in \mathbb{R}) \in (V^*)^* = V^{**}.$$

Proof.

$$v \in \ker F \Leftrightarrow f(v) = 0$$
 for all $f \in V^* \Leftrightarrow v = \mathbf{0}$,

since any non–zero vector can be completed to basis, and then $v^*(v) = 1$.

Frobenius Norm

Proposition

The bilinear (real, Frobenius) form

 $\langle \cdot, \cdot \rangle$: $M(m \times n; \mathbb{R}) \times M(m \times n; \mathbb{R}) \ni (A, B) \mapsto \operatorname{Tr}(A^{\mathsf{T}}B) \in \mathbb{R}$, is

$$\langle A,B\rangle = \langle B,A\rangle,$$

ii) positive definite, i.e.,

$$\langle A, A \rangle > 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

if $A \neq \mathbf{0}$,

Proposition

iii) non-degenerate, i.e., the linear transformation

 $\langle A, \cdot \rangle$: $M(m \times n; \mathbb{R}) \ni B \mapsto \langle A, B \rangle \in \mathbb{R}$,

is non-zero if and only if $A \neq \mathbf{0}$,

iv) invariant under the left and the right multiplication by an orthogonal matrix, i.e., if $Q \in M(m \times m; \mathbb{R})$ satisfies $Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_m$, then

$$\langle QA, QB \rangle = \langle A, B \rangle,$$

and if $P \in M(n \times n; \mathbb{R})$ satisfies $P^{\mathsf{T}}P = PP^{\mathsf{T}} = I_n$, then

$$\langle AP, BP \rangle = \langle A, B \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof.

i) $\operatorname{Tr}(A^{\mathsf{T}}B) = \operatorname{Tr}((A^{\mathsf{T}}B)^{\mathsf{T}}) = \operatorname{Tr}(B^{\mathsf{T}}A),$

ii) if
$$A = [a_{ij}] \neq \mathbf{0}$$
, then
 $\operatorname{Tr}(A^{\mathsf{T}}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji}a_{ji} = \sum_{i,j=1}^{n} a_{ij}^{2} > 0$,
iii) follows from *ii*) (substitute $B = A$),
iv) $\operatorname{Tr}((QA)^{\mathsf{T}}QB) = \operatorname{Tr}(A^{\mathsf{T}}Q^{\mathsf{T}}QB) = \operatorname{Tr}(A^{\mathsf{T}}B)$ and
 $\operatorname{Tr}((AP)^{\mathsf{T}}BP) = \operatorname{Tr}(P^{\mathsf{T}}A^{\mathsf{T}}BP) = \operatorname{Tr}(A^{\mathsf{T}}B)$ since $P^{\mathsf{T}} = P^{-1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

For any matrix $A \in M(m \times n; \mathbb{R})$ the **Frobenius norm** of A is equal to

$$\|A\|_{F} = \sqrt{\langle A, A \rangle} = \sqrt{\operatorname{Tr}(A^{\mathsf{T}}A)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proposition

i)
$$\|A\|_{F} = 0 \iff A = \mathbf{0}$$
,
ii) $\|\alpha A\|_{F} = |\alpha| \|A\|_{F}$ for any scalar $\alpha \in \mathbb{R}$,
iii) $\|A + B\|_{F} \le \|A\|_{F} + \|B\|_{F}$, for any matrices
 $A, B \in M(n \times m; \mathbb{R})$
iv) $\|A\|_{F} = \|A^{\mathsf{T}}\|_{F}$,

- v) $||AB||_F \leq ||A||_F ||B||_F$, for any matrix $A \in M(m \times n; \mathbb{R})$ and any matrix $B \in M(n \times k; \mathbb{R})$,
- vi) $||QAP||_F = ||A||_F$ for any matrix $A \in M(n \times m; \mathbb{R})$, any orthogonal matrix $Q \in M(m \times m; \mathbb{R})$ and any orthogonal matrix $P \in M(n \times n; \mathbb{R})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof.

- i) the Frobenius form is positive definite,
- ii) obvious,
- iii) by the Cauchy–Schwarz inequality for the Frobenius form $|\langle A, B \rangle| \leq ||A||_F ||B||_F$, then $||A + B||_F^2 = ||A||_F^2 + 2\langle A, B \rangle + ||B||_F^2 \leq (||A||_F + ||B||_F)^2$, iv) obvious,

Proof.

v) from the Cauchy–Schwarz inequality for the standard scalar product in \mathbb{R}^n , if $AB = [c_{pq}]$,

$$||AB||_F^2 = \sum_{p=1}^m \sum_{q=1}^k c_{pq}^2 =$$

$$\sum_{p=1}^{m} \sum_{q=1}^{k} \left(\sum_{r=1}^{n} a_{pr} b_{rq} \right)^{2} \leq \sum_{p=1}^{m} \sum_{q=1}^{n} \left(\sum_{r=1}^{n} a_{pr}^{2} \right) \left(\sum_{r'=1}^{n} b_{qr'}^{2} \right) = \\ = \left(\sum_{p=1}^{m} \left(\sum_{r=1}^{n} a_{pr}^{2} \right) \right) \left(\sum_{q=1}^{k} \left(\sum_{r'=1}^{n} b_{qr'}^{2} \right) \right) = \|A\|_{F}^{2} \|B\|_{F}^{2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

vi) follows from the properties of the Frobenius form.

Remark

 $||AB||_F = ||A||_F ||B||_F$ holds if and only if *i*-th row of A is linearly dependent with *i*-th column of B for any *i* (equality in standard Cauchy–Schwarz inequality).

 $||A + B||_F = ||A||_F + ||B||_F$ holds if and only if $\langle A, B \rangle = ||A|| ||B||$, i.e. $A = \lambda B$ or $B = \lambda A$ for some $\lambda \ge 0$ (as in the standard Minkowski inequality).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Remark

 $||AB||_F = ||A||_F ||B||_F$ holds if and only if *i*-th row of A is linearly dependent with *i*-th column of B for any *i* (equality in standard Cauchy–Schwarz inequality).

 $||A + B||_F = ||A||_F + ||B||_F$ holds if and only if $\langle A, B \rangle = ||A|| ||B||$, i.e. $A = \lambda B$ or $B = \lambda A$ for some $\lambda \ge 0$ (as in the standard Minkowski inequality).

By the SVD decomposition if $\sigma_1(A), \ldots, \sigma_r(A) \in \mathbb{R}$ denote the singular values of A (i.e., square roots of the non-zero eigenvalues of the matrix $A^{\mathsf{T}}A$) then

$$\|A\|_F = \sqrt{\sigma_1^2(A) + \ldots + \sigma_r^2(A)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\|A\|_F = \sqrt{\sigma_1^2(A) + \ldots + \sigma_r^2(A)},$$
$$\|A\|_2 = \sigma_1(A),$$

therefore for any matrix $A \in M(m \times n; \mathbb{C})$

$$\|A\|_2 \leq \|A\|_F \leq \sqrt{\min\{m,n\}} \|A\|_2.$$

Note that any two norms in a finite-dimensional space are equivalent (i.e. they induce the same topology and convergence in one norm is equivalent to the convergence in the other).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matrix Multiplication as a Sum of Rank 1 Matrices

Remark

In some contexts (large sparse matrices) it is useful to interpret the matrix product in the following way. Let $A \in M(m \times n; \mathbb{R})$ and let $B \in M(n \times l; \mathbb{R})$. The matrix product of A by B is equal to the sum rank 1 matrices

$$AB = \sum_{s=1}^{n} C_i R_i = \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{bmatrix} \begin{bmatrix} b_{i1} & b_{i2} & \dots & b_{in} \end{bmatrix}.$$

Proof. The (i,j) entry of $C_s R_s$ is equal to $a_{is}b_{si}$.