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Sum and Scalar Multiplication

Proposition

Let V ,W be vector spaces. Let ϕ,ψ : V ÝÑ W be linear
transformations and let α P R. The transformation
ϕ`ψ : V ÝÑ W , defined by pϕ`ψqpvq “ ϕpvq `ψpvq for v P V ,
and the transformation αϕ defined by pαϕqpvq “ αϕpvq are linear.
The transformation ϕ ` ψ is called the sum of ϕ and ψ and αϕ is
called the product of the transformation ϕ with scalar α.



Sum and Scalar Multiplication

Proposition

Let V ,W be vector spaces. Let ϕ,ψ : V ÝÑ W be linear
transformations and let α P R. The transformation
ϕ`ψ : V ÝÑ W , defined by pϕ`ψqpvq “ ϕpvq `ψpvq for v P V ,
and the transformation αϕ defined by pαϕqpvq “ αϕpvq are linear.
The transformation ϕ ` ψ is called the sum of ϕ and ψ and αϕ is
called the product of the transformation ϕ with scalar α.

Example

Let ϕ,ψ : R3 ÝÑ R
2 be given by

ϕppx1, x2, x3qq “ px1 ` 2x2 ´ x3, x1 ` 2x2 ` x3q and
ψppx1, x2, x3qq “ p´x1 ` x2 ` x3, 3x1 ´ 2x2 ` x3q. Then
pϕ ` ψqppx1, x2, x3qq “ p3x2, 4x1 ` 2x3q and
p2ϕqppx1, x2, x3qq “ p2x1 ` 4x2 ´ 2x3, 2x1 ` 4x2 ` 2x3q (for α “ 2).



Composition

Proposition

Let U,V ,W be vectors spaces and let ϕ : U ÝÑ V , ψ : V ÝÑ W
be linear transformations. The transformation

ψ ˝ ϕ : U ÝÑ W ,

given by
pψ ˝ ϕqpvq “ ψpϕpvqqq

for v P U, is linear. It is called the composition of ψ with ϕ.



Example

Let ϕ : R3 ÝÑ R
2 and ψ : R2 ÝÑ R

2 be linear transformations
given by ϕppx1, x2, x3qq “ px1 ´ x2 ` 2x3,´x1 ` 3x2 ´ x3q and
ψppy1, y2qq “ py1 ´ y2, y1 ` 2y2qq. Then
pψ ˝ ϕqppx1, x2, x3qq “ ψppx1 ´ x2 ` 2x3,´x1 ` 3x2 ´ x3qq “
ppx1´x2`2x3q´p´x1`3x2´x3q, px1´x2`2x3q`2p´x1`3x2´x3qq “
p2x1 ´ 4x2 ` 3x3,´x1 ` 5x2q.



Operations on Matrices

Definition
Let A,B P Mpm ˆ n;Rq, α P R, A “ raijs,B “ rbij s. The sum of
matrices A and B is the matrix A ` B “ raij ` bijs. The product
of matrix A by scalar α is the matrix αA “ rαaij s.



Operations on Matrices

Definition
Let A,B P Mpm ˆ n;Rq, α P R, A “ raijs,B “ rbij s. The sum of
matrices A and B is the matrix A ` B “ raij ` bijs. The product
of matrix A by scalar α is the matrix αA “ rαaij s.

Example

Let α “ 2 and let A,B P Mp2 ˆ 3;Rq be given by

A “

„

1 2 ´1
0 1 0



, B “

„

´1 3 2
1 0 1



.

Then

A ` B “

„

0 5 1
1 1 1



, αA “

„

2 4 ´2
0 2 0



.



Matrix Multiplication

Definition
Let A P Mpm ˆ n;Rq and let B P Mpn ˆ l ;Rq. The matrix
product of A by B is the matrix AB “ rcij s P Mpm ˆ l ;Rq where
cij “

řn
s“1

aisbsj “ ai1b1j ` ai2b2j ` . . . ` ainbnj for i “ 1, . . . ,m
and j “ 1, . . . , l .



Matrix Multiplication

Definition
Let A P Mpm ˆ n;Rq and let B P Mpn ˆ l ;Rq. The matrix
product of A by B is the matrix AB “ rcij s P Mpm ˆ l ;Rq where
cij “

řn
s“1

aisbsj “ ai1b1j ` ai2b2j ` . . . ` ainbnj for i “ 1, . . . ,m
and j “ 1, . . . , l .

In particular, if Ri “
“

ai1 ai2 . . . ain

‰

P Mp1 ˆ n;Rq is the

i´th row of matrix A and Cj “

»

—

—

—

–

b1j

b2j

...
bnj

fi

ffi

ffi

ffi

fl

P Mpn ˆ 1;Rq is the j´th

column of matrix B then RiCj “
“

ai1b1j ` . . . ` ainbnj

‰

is a
1 ˆ 1 matrix which can be identified with a real number.



Matrix Multiplication (continued)
Using this identification we can write

AB “

»

—

—

—

–

R1C1 R1C2 . . . R1Cl

R2C1 R2C2 . . . R2Cl

...
...

. . .
...

RmC1 RmC2 . . . RmCl

fi

ffi

ffi

ffi

fl

.



Matrix Multiplication (continued)
Using this identification we can write

AB “

»

—

—

—

–

R1C1 R1C2 . . . R1Cl

R2C1 R2C2 . . . R2Cl

...
...

. . .
...

RmC1 RmC2 . . . RmCl

fi

ffi

ffi

ffi

fl

.

For example
»

—

—

—

–

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

a11

a21

...
am1

fi

ffi

ffi

ffi

fl

“ the first column of A

“

1 0 ¨ ¨ ¨ 0
‰

»

—

—

—

–

b11 b12 . . . b1k

b21 b22 . . . b2k

...
...

. . .
...

bn1 bn2 . . . bnk

fi

ffi

ffi

ffi

fl

“

“
“

b11 b12 ¨ ¨ ¨ b1k

‰

“ the first row of B

and so on.



Example

Let A P Mp3 ˆ 2;Rq and B P Mp2 ˆ 2;Rq be given by

A “

»

–

1 2
2 3

´1 1

fi

fl , B “

„

1 1
1 ´2



Then

AB “

»

–

R1

R2

R3

fi

fl

“

C1 C2

‰

“

»

–

R1C1 R1C2

R2C1 R2C2

R3C1 R3C3

fi

fl “

»

–

3 ´3
5 ´4
0 ´3

fi

fl .

The first column of AB is the sum of columns of A and the second
one is the first column of A minus twice the second column of A.



Warning

The matrix multiplication is, in general, not commutative. For
example

„

1 0
0 0

 „

0 1
0 0



“

„

0 1
0 0



but

„

0 1
0 0

 „

1 0
0 0



“

„

0 0
0 0



.



Operations on Linear Transformations and Matrices

Theorem (Addition)

Let V ,W be vector spaces and let ϕ,ψ : V ÝÑ W be linear
transformations. Let A,B be bases of V and W respectively. Then
Mpϕ ` ψqB

A
“ MpϕqB

A
` MpψqB

A
.

Theorem (Composition and multiplication)

Let U,V ,W be vectors spaces and let ϕ : U ÝÑ V , ψ : V ÝÑ W
be linear transformations. Let A,B, C be the bases of U,V and
W , respectively. Then Mpψ ˝ ϕqC

A
“ MpψqC

B
MpϕqB

A
.



Example (continued)

Let ϕ : R3 ÝÑ R
2 and ψ : R2 ÝÑ R

2 be linear transformations
given by ϕppx1, x2, x3qq “ px1 ´ x2 ` 2x3,´x1 ` 3x2 ´ x3q and
ψppy1, y2qq “ py1 ´ y2, y1 ` 2y2qq. Recall that
pψ ˝ ϕqppx1, x2, x3qq “ p2x1 ´ 4x2 ` 3x3,´x1 ` 5x2q.



Example (continued)

Let ϕ : R3 ÝÑ R
2 and ψ : R2 ÝÑ R

2 be linear transformations
given by ϕppx1, x2, x3qq “ px1 ´ x2 ` 2x3,´x1 ` 3x2 ´ x3q and
ψppy1, y2qq “ py1 ´ y2, y1 ` 2y2qq. Recall that
pψ ˝ ϕqppx1, x2, x3qq “ p2x1 ´ 4x2 ` 3x3,´x1 ` 5x2q. We will
compute this again, using matrix multiplication.



Example (continued)

Let ϕ : R3 ÝÑ R
2 and ψ : R2 ÝÑ R

2 be linear transformations
given by ϕppx1, x2, x3qq “ px1 ´ x2 ` 2x3,´x1 ` 3x2 ´ x3q and
ψppy1, y2qq “ py1 ´ y2, y1 ` 2y2qq. Recall that
pψ ˝ ϕqppx1, x2, x3qq “ p2x1 ´ 4x2 ` 3x3,´x1 ` 5x2q. We will
compute this again, using matrix multiplication. Let A be the
standard basis in R

3 and let B “ C be the standard basis in R
2.

Then

Mpψ ˝ ϕqC
A “ MpψqC

BMpϕqB
A “

„

1 ´1
1 2

 „

1 ´1 2
´1 3 ´1



“

“

„

2 ´4 3
´1 5 0



.

This agrees with the formula of ψ ˝ ϕ.



Applications

Proposition

Let V ,W be vector spaces and let ϕ : V ÝÑ W be a linear
transformation. Let A “ pv1, . . . , vnq be an ordered basis of V and
let B “ pw1, . . . ,wmq be an ordered basis of W . For any vector
v P V let α1, . . . , αn be the coordinates of v relative to the basis
A and let β1, . . . , βm be the coordinates of ϕpvq relative to the
basis B, that is v “ α1v1 ` . . . ` αnvn and
ϕpvq “ β1w1 ` . . . ` βmwm. Then

MpϕqB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1

β2

...
βm

fi

ffi

ffi

ffi

fl

.



Example

Let ψ : R2 ÝÑ R
2 be a linear transformations given by

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis in R

2 and let
A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq be other two bases of R2.



Example

Let ψ : R2 ÝÑ R
2 be a linear transformations given by

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis in R

2 and let
A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq be other two bases of R2.
We check immediately that

ψp1, 2q “ p´1, 5q “ 4p1, 0q ´ 5p1,´1q,

ψp0, 1q “ p´1, 2q “ 1p1, 0q ´ 2p1,´1q.

Therefore

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



.



Example

Let ψ : R2 ÝÑ R
2 be a linear transformations given by

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis in R

2 and let
A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq be other two bases of R2.
We check immediately that

ψp1, 2q “ p´1, 5q “ 4p1, 0q ´ 5p1,´1q,

ψp0, 1q “ p´1, 2q “ 1p1, 0q ´ 2p1,´1q.

Therefore

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



.

Pick, say, v “ p1, 1q. Since v “ 1p1, 2q ´ 1p0, 1q, the coordinates of
v relative to A are 1,´1. Since ψpvq “ p0, 3q “ 3p1, 0q ´ 3p1,´1q,
the coordinates of ψpvq relative to B are 3,´3.



Example (continued)

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



.



Example (continued)

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



.

the coordinates of v “ p1, 1q relative to the basis A are 1,´1

the coordinates of ψpvq “ p0, 3q relative to the basis B are 3,´3



Example (continued)

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



.

the coordinates of v “ p1, 1q relative to the basis A are 1,´1

the coordinates of ψpvq “ p0, 3q relative to the basis B are 3,´3

Mpψqst
st

„

1
1



“

„

1 ´1
1 2

 „

1
1



“

„

0
3



MpψqB
A

„

1
´1



“

„

4 1
´5 ´2

 „

1
´1



“

„

3
´3



.



Applications (continued)

Let V be a vector space. The function idV : V ÝÑ V given by
idV pvq “ v for any v P V is a linear transformation called the
identity.



Applications (continued)

Let V be a vector space. The function idV : V ÝÑ V given by
idV pvq “ v for any v P V is a linear transformation called the
identity.

Corollary

Let A “ pv1, . . . , vnq and B “ pw1, . . . ,wnq be two ordered bases
of V . For any v P V let α1, . . . , αn be the coordinates of v relative
to the basis A and let β1, . . . , βn be the coordinates of v relative
to the basis B. Then

MpidV qB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1

β2

...
βn

fi

ffi

ffi

ffi

fl

.



Applications (continued)

Let V be a vector space. The function idV : V ÝÑ V given by
idV pvq “ v for any v P V is a linear transformation called the
identity.

Corollary

Let A “ pv1, . . . , vnq and B “ pw1, . . . ,wnq be two ordered bases
of V . For any v P V let α1, . . . , αn be the coordinates of v relative
to the basis A and let β1, . . . , βn be the coordinates of v relative
to the basis B. Then

MpidV qB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1

β2

...
βn

fi

ffi

ffi

ffi

fl

.

The matrix MpidV qB
A

is called a change-of-coordinates matrix.



Applications (continued)

Proposition

Let V ,W be vector spaces and let ϕ : V ÝÑ W be a linear
transformation. Let A,A1 be (ordered) bases of V and let B,B1 be
(ordered) bases of W . Then

MpϕqB1

A1 “ MpidW qB1

B MpϕqB
AMpidV qA

A1 .

Proof.
This follows directly from the fact that idW ˝ϕ ˝ idV “ ϕ and the
formula relating composition of linear transformations with matrix
multiplication.



Example (continued)

Let ψ : R2 ÝÑ R
2 be a linear transformation given by the formula

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis of R2 and let A “ pp1, 2q, p0, 1qq,
B “ pp1, 0q, p1,´1qq be other two bases of R2.



Example (continued)

Let ψ : R2 ÝÑ R
2 be a linear transformation given by the formula

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis of R2 and let A “ pp1, 2q, p0, 1qq,
B “ pp1, 0q, p1,´1qq be other two bases of R2.We have already
checked that

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2





Example (continued)

Let ψ : R2 ÝÑ R
2 be a linear transformation given by the formula

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis of R2 and let A “ pp1, 2q, p0, 1qq,
B “ pp1, 0q, p1,´1qq be other two bases of R2.We have already
checked that

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



Let check this again using the previous Proposition. It says that

MpψqB
A “ MpidR2qB

stMpψqst
stMpidR2qst

A



Example (continued)

Let ψ : R2 ÝÑ R
2 be a linear transformation given by the formula

ψppx1, x2qq “ px1 ´ x2, x1 ` 2x2q. Let st “ pp1, 0q, p0, 1qq be the
standard basis of R2 and let A “ pp1, 2q, p0, 1qq,
B “ pp1, 0q, p1,´1qq be other two bases of R2.We have already
checked that

Mpψqst
st “

„

1 ´1
1 2



, MpψqB
A “

„

4 1
´5 ´2



Let check this again using the previous Proposition. It says that

MpψqB
A “ MpidR2qB

stMpψqst
stMpidR2qst

A

We need to compute MpidR2qB
st and MpidR2qst

A
.



Example (continued)
We need to compute MpidR2qB

st and MpidR2qst
A. Recall that

A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq.



Example (continued)
We need to compute MpidR2qB

st and MpidR2qst
A. Recall that

A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq. Since

idpp1, 2qq “ 1p1, 0q ` 2p0, 1q,

idp0, 1q “ 0p1, 0q ` 1p0, 1q,

we have MpidR2qst
A “

„

1 0
2 1



.



Example (continued)
We need to compute MpidR2qB

st and MpidR2qst
A. Recall that

A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq. Since

idpp1, 2qq “ 1p1, 0q ` 2p0, 1q,

idp0, 1q “ 0p1, 0q ` 1p0, 1q,

we have MpidR2qst
A “

„

1 0
2 1



. Since

idpp1, 0qq “ 1p1, 0q ` 0p1,´1q,

idpp0, 1qq “ 1p1, 0q ´ 1p1,´1q,

we have MpidR2qB
st “

„

1 1
0 ´1



.



Example (continued)
We need to compute MpidR2qB

st and MpidR2qst
A. Recall that

A “ pp1, 2q, p0, 1qq, B “ pp1, 0q, p1,´1qq. Since

idpp1, 2qq “ 1p1, 0q ` 2p0, 1q,

idp0, 1q “ 0p1, 0q ` 1p0, 1q,

we have MpidR2qst
A “

„

1 0
2 1



. Since

idpp1, 0qq “ 1p1, 0q ` 0p1,´1q,

idpp0, 1qq “ 1p1, 0q ´ 1p1,´1q,

we have MpidR2qB
st “

„

1 1
0 ´1



. Using

MpψqB
A

“ MpidR2qB
stMpψqst

stMpidR2qst
A

one can check that

„

4 1
´5 ´2



“

„

1 1
0 ´1

 „

1 ´1
1 2

 „

1 0
2 1





Elementary Matrices

Fix α P R, n ą 0 and define the following matrices
Di ,α “ rdkl s,Lij “ rℓkl s,Tij “ rtkl s P Mpn ˆ n;Rq as follows



Elementary Matrices

Fix α P R, n ą 0 and define the following matrices
Di ,α “ rdkl s,Lij “ rℓkl s,Tij “ rtkl s P Mpn ˆ n;Rq as follows

i) dkk “ 1 for k ‰ i , dii “ α, dkl “ 0 elsewhere,



Elementary Matrices

Fix α P R, n ą 0 and define the following matrices
Di ,α “ rdkl s,Lij “ rℓkl s,Tij “ rtkl s P Mpn ˆ n;Rq as follows

i) dkk “ 1 for k ‰ i , dii “ α, dkl “ 0 elsewhere,

ii) ℓkk “ 1 for k “ 1, . . . , n, ℓij “ 1, ℓkl “ 0 elsewhere,



Elementary Matrices

Fix α P R, n ą 0 and define the following matrices
Di ,α “ rdkl s,Lij “ rℓkl s,Tij “ rtkl s P Mpn ˆ n;Rq as follows

i) dkk “ 1 for k ‰ i , dii “ α, dkl “ 0 elsewhere,

ii) ℓkk “ 1 for k “ 1, . . . , n, ℓij “ 1, ℓkl “ 0 elsewhere,

iii) tkk “ 1 for k R ti , ju, tij “ tji “ 1, tkl “ 0 elsewhere.



Elementary Matrices (continued)

i
»

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

1 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
i 0 α 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Di ,α “
...

...
...

. . .
...

...
...

0 0 0 ¨ ¨ ¨ 1 0 0
0 0 0 ¨ ¨ ¨ 0 1 0
0 0 0 ¨ ¨ ¨ 0 0 1

,

j
»

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

1 0 0 0 0 ¨ ¨ ¨ 0
i 0 1 0 1 0 ¨ ¨ ¨ 0

0 0 1 0 0 ¨ ¨ ¨ 0
Lij “ 0 0 0 1 0 ¨ ¨ ¨ 0

0 0 0 0 1 ¨ ¨ ¨ 0
...

...
...

...
...

. . .
...

0 0 0 0 0 ¨ ¨ ¨ 1

,

i j
»

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

1 0 0 0 ¨ ¨ ¨ 0 0 0
0 1 0 0 ¨ ¨ ¨ 0 0 0

i 0 0 0 0 ¨ ¨ ¨ 0 1 0
0 0 0 1 ¨ ¨ ¨ 0 0 0

Tij “
...

...
...

...
. . .

...
...

...
0 0 0 0 ¨ ¨ ¨ 1 0 0

j 0 0 1 0 ¨ ¨ ¨ 0 0 0
0 0 0 0 ¨ ¨ ¨ 0 0 1

.



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition

Let A P Mpn ˆ m;Rq. Then



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition

Let A P Mpn ˆ m;Rq. Then

i) ADi ,α “ matrix A with the i-th column multiplied by α,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition

Let A P Mpn ˆ m;Rq. Then

i) ADi ,α “ matrix A with the i-th column multiplied by α,

ii) ALij “ matrix A with the i-th column added to the j-th one,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition

Let A P Mpn ˆ m;Rq. Then

i) ADi ,α “ matrix A with the i-th column multiplied by α,

ii) ALij “ matrix A with the i-th column added to the j-th one,

iii) ATij “ matrix A with the i-th and j-th columns swapped,



Elementary Matrices (continued)

Proposition

Let A P Mpn ˆ m;Rq. Then

i) Di ,αA “ matrix A with the i-th row multiplied by α,

ii) LijA “ matrix A with the j-th row added to the i-th row,

iii) TijA “ matrix A with the i-th and j-th rows swapped,

that is, elementary row operations correspond to multiplication by
elementary matrices from the left.

Proposition

Let A P Mpn ˆ m;Rq. Then

i) ADi ,α “ matrix A with the i-th column multiplied by α,

ii) ALij “ matrix A with the i-th column added to the j-th one,

iii) ATij “ matrix A with the i-th and j-th columns swapped,

that is, elementary column operations correspond to multiplication
by elementary matrices from the right.



Matrix Multiplication is Associative

Proposition

For any matrices
A P Mpm ˆ n;Rq,B P Mpn ˆ l ;Rq,C P Mpl ˆ k;Rq

pABqC “ ApBCq.



Matrix Multiplication is Associative

Proposition

For any matrices
A P Mpm ˆ n;Rq,B P Mpn ˆ l ;Rq,C P Mpl ˆ k;Rq

pABqC “ ApBCq.

Proof.
Let AB “ rfijs P Mpm ˆ l ;Rq,BC “ rgij s P Mpn ˆ k;Rq. Then



Matrix Multiplication is Associative

Proposition

For any matrices
A P Mpm ˆ n;Rq,B P Mpn ˆ l ;Rq,C P Mpl ˆ k;Rq

pABqC “ ApBCq.

Proof.
Let AB “ rfijs P Mpm ˆ l ;Rq,BC “ rgij s P Mpn ˆ k;Rq. Then

fir “
n

ÿ

s“1

aisbsr ,

gsj “
l

ÿ

r“1

bsr crj .



Matrix Multiplication is Associative (continued)

Proof.
The entry in the i-th row and the j-th column of the matrix
pABqC is equal to

l
ÿ

r“1

fircrj “
l

ÿ

r“1

˜

n
ÿ

s“1

aisbsr

¸

crj “
l

ÿ

r“1

n
ÿ

s“1

aisbsrcrj .

The entry in the i-th row and the j-th column of the matrix ApBCq
is equal to

n
ÿ

s“1

aisgsj “
n

ÿ

s“1

ais

˜

l
ÿ

r“1

bsrcrj

¸

“
n

ÿ

s“1

l
ÿ

r“1

aisbsr crj “

“
l

ÿ

r“1

n
ÿ

s“1

aisbsr crj .



Coordinate Vector

Definition
Let V be a vector space and let A “ pv1, . . . , vnq be its ordered
basis. For any v P V by

“

v
‰

A
we denote the coordinate vector of

v relative to A, i.e. a n–by–1 matrix with coordinates of v relative
to A. In particular, if v “ α1v1 ` α2v2 ` . . . ` αnvn then

“

v
‰

A
“

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

.



Coordinate Vector

Definition
Let V be a vector space and let A “ pv1, . . . , vnq be its ordered
basis. For any v P V by

“

v
‰

A
we denote the coordinate vector of

v relative to A, i.e. a n–by–1 matrix with coordinates of v relative
to A. In particular, if v “ α1v1 ` α2v2 ` . . . ` αnvn then

“

v
‰

A
“

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

.

Example

If A “ pp1, 1q, p1, 2qq, v “ p1, 3q then

“

v
‰

st
“

„

1
3



and
“

v
‰

A
“

„

´1
2



.



Image by the Matrix of Linear Transformation

Proposition

Let V ,W be vector spaces and let ϕ : V ÝÑ W be a linear
transformation. Let A “ pv1, . . . , vnq be an ordered basis of V and
let B “ pw1, . . . ,wmq be an ordered basis of W . For any vector
v P V let α1, . . . , αn be the coordinates of v relative to the basis
A and let β1, . . . , βm be the coordinates of ϕpvq relative to the
basis B, that is v “ α1v1 ` . . . ` αnvn and
ϕpvq “ β1w1 ` . . . ` βmwm. Then

MpϕqB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1

β2

...
βm

fi

ffi

ffi

ffi

fl

or equivalently
MpϕqB

A

“

v
‰

A
“

“

ϕpvq
‰

B
.



Image by the Matrix of Linear Transformation – Proof

MpϕqB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

“ α1

»

—

—

—

–

a11

a21

...
am1

fi

ffi

ffi

ffi

fl

` α2

»

—

—

—

–

a12

a22

...
am2

fi

ffi

ffi

ffi

fl

` . . .` αn

»

—

—

—

–

a1n

a2n

...
amn

fi

ffi

ffi

ffi

fl

.



Image by the Matrix of Linear Transformation – Proof

MpϕqB
A

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

α1

α2

...
αn

fi

ffi

ffi

ffi

fl

“

“ α1

»

—

—

—

–

a11

a21

...
am1

fi

ffi

ffi

ffi

fl

` α2

»

—

—

—

–

a12

a22

...
am2

fi

ffi

ffi

ffi

fl

` . . .` αn

»

—

—

—

–

a1n

a2n

...
amn

fi

ffi

ffi

ffi

fl

.

On the other hand

α1ϕpv1q “ α1pa11w1 ` a21w2 ` . . .` am1wmq,

α2ϕpv2q “ α2pa12w1 ` a22w2 ` . . .` am2wmq,

...

αnϕpvnq “ αnpa1nw1 ` a2nw2 ` . . .` amnwmq,

and

ϕpvq “ ϕpα1v1 ` α2v2 ` . . . ` αnvnq “ α1ϕpv1q ` α2ϕpv2q ` . . .` αnϕpvnq.



Matrix of the Sum of Linear Transformations

Proposition

Let V ,W be vector spaces and let ϕ,ψ : V ÝÑ W be linear
transformations. Let A,B be bases of V and W respectively and
α P R any scalar. Then Mpϕ` ψqB

A
“ MpϕqB

A
` MpψqB

A
and

MpαϕqB
A

“ αMpϕqB
A

.

Proof.
Let A “ pv1, . . . , vnq and B “ pw1, . . . ,wmq be the ordered bases
of V and W , respectively. If

ϕpvi q “ a1iw1 ` a2iw2 ` . . . ` amiwm,

ψpvi q “ b1iw1 ` b2iw2 ` . . . ` bmiwm,

then

pϕ ` ψqpvi q “ ϕpvi q ` ψpvi q “ pa1i ` b1iqw1 ` pa2i ` b2i qw2 ` . . .

. . . ` pami ` bmiqwm,

pαϕqpvi q “ αϕpvi q “ pαa1i qw1 ` pαa2i qw2 ` . . . ` pαami qwm.



Matrix of the Composition of Linear Transformations

Proposition

Let U,V ,W be vectors spaces and let ϕ : U ÝÑ V , ψ : V ÝÑ W
be linear transformations. Let A,B, C be the bases of U,V and
W , respectively. Then Mpψ ˝ ϕqC

A
“ MpψqC

B
MpϕqB

A
.



Matrix of the Composition of Linear Transformations

Proposition

Let U,V ,W be vectors spaces and let ϕ : U ÝÑ V , ψ : V ÝÑ W
be linear transformations. Let A,B, C be the bases of U,V and
W , respectively. Then Mpψ ˝ ϕqC

A
“ MpψqC

B
MpϕqB

A
.

Proof.
By the Proposition on the image by matrix of a linear
transformation

MpϕqB
A

“

v
‰

A
“

“

ϕpvq
‰

B
,

MpψqC
B

“

ϕpvq
‰

B
“

“

ψ pϕpvqq
‰

C
“

“

pψ ˝ ϕqpvq
‰

C
,

that is, by associativity of matrix product

“

pψ ˝ ϕqpvq
‰

C
“ MpψqC

B

`

MpϕqB
Arv sA

˘

“
`

MpψqC
BMpϕqB

A

˘ “

v
‰

A
.



Matrix of the Composition of Linear Transformations

(continued)

Proof.
Therefore, for any v P V

Mpψ ˝ ϕqC
A

“

v
‰

A
“

“

pϕ ˝ ψqpvq
‰

C
“

`

MpψqC
BMpϕqB

A

˘ “

v
‰

A
.

Substituting v “ vi for i “ 1, . . . , n we see that matrices
Mpψ ˝ ϕqC

A
,MpψqC

B
MpϕqB

A
have the same columns, in particular

Mpψ ˝ ϕqC
A “ MpψqC

BMpϕqB
A.



Block Matrix

Definition
Matrix A P Mpm ˆ n;Rq is a block matrix if

A “

»

—

—

—

–

A11 A12 ¨ ¨ ¨ A1q

A21 A22 A2q

...
. . .

...

Ap1 Ap2 ¨ ¨ ¨ Apq

fi

ffi

ffi

ffi

fl

,

where Ai ,j P Mpmi ˆ nj ;Rq and

m “ m1 ` m2 ` . . . ` mp,

n “ n1 ` n2 ` . . . ` nq.



Example

A “

»

—

—

–

1 2 2 6
1 2 2 5
1 1 2 8

2 5 6 2

fi

ffi

ffi

fl

.



Multiplication of Block Matrices

Proposition

If A P Mpm ˆ n;Rq, B P Mpn ˆ l ;Rq are block matrices, where

m “ m1 ` . . . ` mp, n “ n1 ` . . . ` nq, l “ l1 ` . . . ` lr ,

A “ rAijs, B “ rBjks,

for i “ 1, . . . , p, j “ 1, . . . , q, k “ 1, . . . , r , then C “ AB is a
block matrix such that C “ rCik s, where

Cik “
q

ÿ

j“1

AijBjk ,

that is
Cik “ Ai1B1k ` Ai2B2k ` . . . ` AiqBqk .



Multiplication of Block Matrices

Proposition

If A P Mpm ˆ n;Rq, B P Mpn ˆ l ;Rq are block matrices, where

m “ m1 ` . . . ` mp, n “ n1 ` . . . ` nq, l “ l1 ` . . . ` lr ,

A “ rAijs, B “ rBjks,

for i “ 1, . . . , p, j “ 1, . . . , q, k “ 1, . . . , r , then C “ AB is a
block matrix such that C “ rCik s, where

Cik “
q

ÿ

j“1

AijBjk ,

that is
Cik “ Ai1B1k ` Ai2B2k ` . . . ` AiqBqk .

Proof.
Exercise.



Multiplication of Block Matrices (continued)

Remark
The claim follows by the mathematical induction of maxpp, qq. The cases
p “ 1, q “ 2, p “ 2, q “ 1 and p “ q “ 2 may be checked directly. Then,
by separating a single block it is possible to prove the inductive step, i.e.,

AB “

»

—

—

—

–

A11 A12 ¨ ¨ ¨ A1q

A21 A22 A2q

...
. . .

...
Ap1 Ap2 ¨ ¨ ¨ Apq

fi

ffi

ffi

ffi

fl

»

—

—

—

–

B11 B12 ¨ ¨ ¨ B1r

B21 B22 B2r

...
. . .

...
Bq1 Bq2 ¨ ¨ ¨ Bqr

fi

ffi

ffi

ffi

fl

“

“

„

A1,1 A1
1,2

A1
2,1 A1

2,2

 „

B1,1 B1
1,2

B1
2,1 B1

2,2



“

“

„

A1,1B1,1 ` A1

1,2B1

2,1 A1,1B1

1,2 ` A1

1,2B1

2,2

A1

1,2B1

1,1 ` A1

2,2B1

2,1 A1

2,1B1

2,2 ` A1

2,2B1

2,2



“ C .



Multiplication of Block Matrices (continued)
Let Eij “ rekl s P Mpm ˆ n;Rq be a matrix such that

ekl “

#

1 i “ k and j “ l

0 otherwise
.

Let δij be the Kronecker delta, i.e.,

δij “

#

1 i “ j,

0 i ‰ j.

Then, equivalently
ekl “ δikδjl ,

and (matrices E ,E 1 and E 2 may have different sizes)

EijE
1

kl “ δjkE 2

il .

In particular, for any matrix A “ rai js P Mpm ˆ n;Rq

A “
n,m
ÿ

i,j“1

aijEij ,

and the matrix multiplication can be seen as a special case of the block
matrix multiplication.



Example

A “

»

—

—

–

1 2 2 6
1 2 2 5
1 1 2 8
2 5 6 2

fi

ffi

ffi

fl

, B “

»

—

—

–

1 0 2
1 0 1
2 1 2
0 1 1

fi

ffi

ffi

fl

.

AB “

»

—

—

—

—

—

—

–

»

–

1
1
1

fi

fl

“

1
‰

`

»

–

2 2 6
2 2 5
1 2 8

fi

fl

»

–

1
2
0

fi

fl

»

–

1
1
1

fi

fl

“

0 2
‰

`

»

–

2 2 6
2 2 5
1 2 8

fi

fl

»

–

0 1
1 2
1 1

fi

fl

“

2
‰ “

1
‰

`
“

5 6 2
‰

»

–

1
2
0

fi

fl

“

2
‰ “

0 2
‰

`
“

5 6 2
‰

»

–

0 1
1 2
1 1

fi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

»

–

1
1
1

fi

fl `

»

–

6
6
5

fi

fl

»

–

0 2
0 2
0 2

fi

fl `

»

–

8 12
7 11
10 13

fi

fl

2 ` 17
“

0 4
‰

`
“

8 19
‰

fi

ffi

ffi

fl

“

»

—

—

–

7 8 14
7 7 13
6 10 15
19 8 23

fi

ffi

ffi

fl

.



Markov chains – Application

Let S “ t1, . . . ,Nu be the state space.

Definition
A (discrete–time, discrete–state, time–homogenous) Markov
chain) is a sequence of random variables X0,X1,X2, . . . ,Xn, . . .

with values in the set S such that for all i , i0, . . . , in´1, j P S and all
n P N

PpXn`1 “ j | Xn “ i ,Xn´i “ in´1, . . .X1 “ i1,X0 “ i0q “

“ PpXn`1 “ j | Xn “ iq,

and it does not depend on n (i.e. the current state depends only
on the previous state and this dependence is constant in time).



Markov chains – Application

Let S “ t1, . . . ,Nu be the state space.

Definition
A (discrete–time, discrete–state, time–homogenous) Markov
chain) is a sequence of random variables X0,X1,X2, . . . ,Xn, . . .

with values in the set S such that for all i , i0, . . . , in´1, j P S and all
n P N

PpXn`1 “ j | Xn “ i ,Xn´i “ in´1, . . .X1 “ i1,X0 “ i0q “

“ PpXn`1 “ j | Xn “ iq,

and it does not depend on n (i.e. the current state depends only
on the previous state and this dependence is constant in time).

Remark
The number PpXn`1 “ j | Xn “ iq is called the transition
probability form the state i to the state j.



Markov chains – Application (continued)

Definition
The matrix Q “ rqijs P MpN ˆ N;Rq where

qij “ PpXn`1 “ j | Xn “ iq,

is called the transition matrix.



Markov chains – Application (continued)

Definition
The matrix Q “ rqijs P MpN ˆ N;Rq where

qij “ PpXn`1 “ j | Xn “ iq,

is called the transition matrix.

Example

For N “ 2

Q “

»

—

—

—

—

–

PpXn`1 “ 1 | Xn “ 1q PpXn`1 “ 2 | Xn “ 1q

PpXn`1 “ 1 | Xn “ 2q PpXn`1 “ 2 | Xn “ 2q

fi

ffi

ffi

ffi

ffi

fl

.



Markov chains – Example

Each year a consumer of product A switches to product B with
probability one–half. On the other hand, with probability
two–thirds a consumer of product B continues buying it and with
probability one–third starts buying product A. If S “ t1, 2u and 1
stands for product A and 2 for product B then

Q “

»

—

—

—

—

–

PpXn`1 “ 1 | Xn “ 1q PpXn`1 “ 2 | Xn “ 1q

PpXn`1 “ 1 | Xn “ 2q PpXn`1 “ 2 | Xn “ 2q

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1

2

1

2

1

3

2

3

fi

ffi

ffi

ffi

ffi

fl

.



Markov chains – Example (continued)

1 2

q12 “ 1

2

q21 “ 1

3

q11 “ 1

2
q22 “ 2

3

1 stands for product A and 2 stands for product B

Q “

»

—

—

—

—

–

q11 q12

q21 q22

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1

2

1

2

1

3

2

3

fi

ffi

ffi

ffi

ffi

fl

.



Markov chains – Example (continued)

What is the probability that a consumer of product A switches to
product B after two years?



Markov chains – Example (continued)

What is the probability that a consumer of product A switches to
product B after two years?

PpX2 “ 2 | X0 “ 1q “

“ PpX2 “ 2 | X1 “ 1qPpX1 “ 1 | X0 “ 1q`

`PpX2 “ 2 | X1 “ 2qPpX1 “ 2 | X0 “ 1q “

“
1

2
¨

1

2
`

2

3
¨

1

2
“

1

4
`

2

6
“

7

12
.

(so a consumer switches either in the second or in the first year).



Markov chains (continued)

Definition
The n-step (conditional) probability of a Markov chain is

PpXn`2 “ j | Xn “ iq “ q
pnq
ij ,

and the n-step condition matrix is

Qpnq “ rq
pnq
ij s P MpN ˆ N;Rq.



Markov chains (continued)

Definition
The n-step (conditional) probability of a Markov chain is

PpXn`2 “ j | Xn “ iq “ q
pnq
ij ,

and the n-step condition matrix is

Qpnq “ rq
pnq
ij s P MpN ˆ N;Rq.

Proposition

Qpnq “ Qn “ Q ¨ Q ¨ ¨ ¨ Q
looooomooooon

n-times

.



Markov chains (continued)

Proof.
It is enough to check the case n “ 2. By the law of total probability

q
p2q
ij “ PpXn`2 “ j | Xn “ iq “

“
N

ÿ

s“1

PpXn`2 “ j | Xn`1 “ sqPpXn`1 “ s | Xn “ iq “

“
N

ÿ

s“1

qsjqis “
N

ÿ

s“1

qisqsj .



Example (continued)

If Q “

»

—

—

–

1

2

1

2
1

3

2

3

fi

ffi

ffi

fl

, then

Qp2q “

»

—

—

–

PpXn`2 “ 1 | Xn “ 1q PpXn`2 “ 2 | Xn “ 1q

PpXn`2 “ 1 | Xn “ 2q PpXn`2 “ 2 | Xn “ 2q

fi

ffi

ffi

fl

“ Q2 “

»

—

—

–

1

2

1

2
1

3

2

3

fi

ffi

ffi

fl

»

—

—

–

1

2

1

2
1

3

2

3

fi

ffi

ffi

fl

“

»

—

—

–

5

12

7

12
7

18

11

18

fi

ffi

ffi

fl

.



Initial Conditions and Marginal Distribution

Definition
The initial conditions is the (discrete) probability mass function
of the variable X0, i.e the vector

t “ pt1, t2, . . . , tNq “

“ pPpX0 “ 1q,PpX0 “ 2q, . . . ,PpX0 “ Nqq P R
N ,

and the marginal distributions are the probability mass functions
of variables X1,X2, . . .

ti “ pPpXi “ 1q,PpXi “ 2q, . . . ,PpXi “ Nqq P R
N ,

for i “ 1, 2, . . ..



Initial Conditions and Marginal Distribution

Definition
The initial conditions is the (discrete) probability mass function
of the variable X0, i.e the vector

t “ pt1, t2, . . . , tNq “

“ pPpX0 “ 1q,PpX0 “ 2q, . . . ,PpX0 “ Nqq P R
N ,

and the marginal distributions are the probability mass functions
of variables X1,X2, . . .

ti “ pPpXi “ 1q,PpXi “ 2q, . . . ,PpXi “ Nqq P R
N ,

for i “ 1, 2, . . ..

Remark
The marginal distributions depend on the initial conditions.



Initial Conditions and Marginal Distribution (continued)

Proposition

If Q is the transition matrix of a Markov chain then for k ě 1

t⊺k “ t⊺Qk .



Initial Conditions and Marginal Distribution (continued)

Proposition

If Q is the transition matrix of a Markov chain then for k ě 1

t⊺k “ t⊺Qk .

Proof.
By the law of total probability

PpXk “ iq “
N

ÿ

s“1

PpXk “ i | X0 “ sqPpX0 “ sq “

“
N

ÿ

s“1

tsq
pkq
si “

“ the i-th entry of t⊺Qk .



Example

A consumer buys product A with probability 1

5
, product B with

probability 4

5
and the transition matrix is equal to Q “

»

—

—

–

1

2

1

2
1

3

2

3

fi

ffi

ffi

fl

,

so

t “

ˆ

1

5
,

4

5

˙

,

and

t2 “

„

1

5

4

5



Q2 “

„

1

5

4

5



»

—

—

–

5

12

7

12
7

18

11

18

fi

ffi

ffi

fl

“

“

ˆ

71

180
,

109

180

˙

.



Example (continued)

Hence, after 2 years, a consumer buys product A with probability
71

180
and product B with probability 109

180
.



Stable State/Distribution

So, what happens after infinitely many years?
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So, what happens after infinitely many years? Will the probability
of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with
probability 2

5
and product B with probability 3

5
(and the result does

not depend on the initial conditions).



Stable State/Distribution

So, what happens after infinitely many years? Will the probability
of buying product B be equal to one?

It turns out, in a distant time a consumer buys product A with
probability 2

5
and product B with probability 3

5
(and the result does

not depend on the initial conditions).

In particular the vector
`

2

5
, 3

5

˘

is a left eigenvector of matrix Q, or
equivalently, an eigenvector of Q⊺, i.e.,

“

2

5

3

5

‰

»

—

—

–

1

2

1

2
1

3

2

3

fi

ffi

ffi

fl

“
“

2

5

3

5

‰

.



Hamming Codes

p7, 4q Hamming code is a 2 error-detecting, 1 error-correcting
linear code.



Hamming Codes

p7, 4q Hamming code is a 2 error-detecting, 1 error-correcting
linear code.

0000 ÝÑ 0000000
0001 ÝÑ 1101001
0010 ÝÑ 0101010
0011 ÝÑ 1000011
0100 ÝÑ 1001100
0101 ÝÑ 0100101
0110 ÝÑ 1100110
0111 ÝÑ 0001111

1000 ÝÑ 1110000
1001 ÝÑ 0011001
1010 ÝÑ 1011010
1011 ÝÑ 0110011
1100 ÝÑ 0111100
1101 ÝÑ 1010101
1110 ÝÑ 0010110
1111 ÝÑ 1111111

b0b1b2b3 Ñ p0b0p1p2b1b2b3.



Hamming Codes (continued)

b0b1b2b3 Ñ p0b0p1p2b1b2b3,

where
p0 “ b0 ` b1 ` b3,

p1 “ b0 ` b2 ` b3,

p2 “ b0 ` b1 ` b3,

where addition is modulo 2, i.e 1 ` 1 “ 0.



Hamming Codes (continued)

Encoding (and decoding) can be realised by matrix multiplication.

»

—

—

—

—

—

—

—

—

–

1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

–

b0

b1

b2

b3

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

p0

b0

p1

p2

b1

b2

b3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.



Paths in Directed Graphs

Definition
A (simple, finite) directed graph G is a pair G “ pV ,E q where

V “ tv1, . . . , vnu,

is the set of vertices and E Ă V ˆ V is the set of edges (self–loops
are allowed).



Paths in Directed Graphs

Definition
A (simple, finite) directed graph G is a pair G “ pV ,E q where

V “ tv1, . . . , vnu,

is the set of vertices and E Ă V ˆ V is the set of edges (self–loops
are allowed).

Definition
A path from v P V to w P V of length l is a sequence of edges

pvi0, vi1q, pvi1 , vi2q, . . . , pvil´1
, vil q,

such that
vi0 “ v , vil “ w ,

pvik , vik`1
q P E ,

for k “ 0, . . . , l ´ 1.



Adjacency Matrix

Definition
For a fixed simple, finite, directed graph G the adjacency matrix
A “ AG of G is the matrix A “ raij s P Mpn ˆ n;Rq such that

aij “ 1 if and only if pvi , vjq P E ,

and aij “ 0 otherwise.



Example

1

2 3

4



Example

1

2 3

4

A “

»

—

—

–

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

fi

ffi

ffi

fl



Example

1

2 3

4

For example pv1, v2q, pv2, v3q, pv3, v4q is a path from v1 to v4 of
length 3.



Number of Paths

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G,
then pAlqij for any l ě 1 is the number of paths of length l from vi

to vj .



Number of Paths

Proposition

If A is the adjacency matrix of a (finite, simple) directed graph G,
then pAlqij for any l ě 1 is the number of paths of length l from vi

to vj .

Proof.
By induction.



Example (continued)

1

2 3

4



Example (continued)

1

2 3

4

A “

»

—

—

–

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

fi

ffi

ffi

fl

, A2 “

»

—

—

–

0 0 1 2
0 0 0 1
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

, A3 “

»

—

—

–

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

.



Example

1

2 3

4



Example

1

2 3

4

A “

»

—

—

–

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0

fi

ffi

ffi

fl

, A2 “

»

—

—

–

0 0 1 2
1 0 0 1
1 0 0 0
0 1 1 0

fi

ffi

ffi

fl

, A3 “

»

—

—

–

2 0 0 1
1 1 1 0
0 1 1 0
0 0 1 2

fi

ffi

ffi

fl

.



Dual Spaces

Definition
Let V be a vector space. The space dual to V is a vector space

V ˚ “ tϕ : V Ñ R | ϕ is linearu “ HomRpV ,Rq,

with the vector space structure given by

i) pϕ ` ψqpvq “ ϕpvq ` ψpvq,

ii) pαϕqv “ αϕpvq,

for ϕ,ψ P V ˚ and any v P V , α P V .



Dual Basis

Proposition

For any vector space V and any basis A “ pα1, . . . , αnq of vector
space V , there exists the dual basis A˚ “ pα˚

1
, . . . , α˚

nq of the
vector space V ˚ such that

α˚
i pαjq “

"

0 for i ‰ j
1 for i “ j

.

Proof.
There exists dual basis to the standard basis, i.e. st˚ given by

ε˚
1ppx1, . . . , xnqq “ x1,

ε˚
2ppx1, . . . , xnqq “ x2,

...

ε˚
nppx1, . . . , xnqq “ xn.



Dual Basis (continued)

Proof.
Let ϕ : V Ñ V be the linear transformation such that

ϕpαi q “ εi .

Then
α˚

i “ ε˚
i ˝ α.

Assume αi “ pa1j , a2j , . . . , anjq and let A “ raijs P Mpn ˆ n;Rq,
then

Mpϕqst
st “ A´1, Mpε˚

i q “
“

0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨ 0
‰



Dual Basis (continued)

Proof.
Let A´1 “ rbij s. Then

Mpεi q
st
st “ Mpα˚

i qst
stMpϕqst

st “

“
“

bi1 bi2 bi3 ¨ ¨ ¨ bin

‰

That is
ϕ˚

i “ bi1ε
˚
1 ` bi2ε

˚
2 ` . . . ` binε

˚
n.



Example

Let α1 “ p1, 2q, α2 “ p1, 3q be a basis of R2. Then

A “

„

1 1
2 3



, B “ A´1 “

„

3 ´1
´2 1



.

Therefore
α˚

1 “ 3ε˚
1 ´ ε˚

2 ,

α˚
2 “ ´2ε˚

1 ` ε˚
2 ,

or, in more concrete terms,

α˚
1ppx1, x2qq “ 3x1 ´ x2,

α˚
2ppx1, x2qq “ ´2x1 ` x2.



Dual of a linear transformation

Definition
For any linear transformation ϕ : V Ñ W , there exist the dual
linear transformation

ϕ˚ : W ˚ Ñ V ˚,

given by the formula

ϕ˚pf qpvq “ pf ˝ ϕqpvq.



Dual of a linear transformation

Definition
For any linear transformation ϕ : V Ñ W , there exist the dual
linear transformation

ϕ˚ : W ˚ Ñ V ˚,

given by the formula

ϕ˚pf qpvq “ pf ˝ ϕqpvq.

Proposition

If A “ pα1, . . . , αnq,B “ pβ1, . . . , βmq then

Mpϕ˚qA˚

B˚ “
“

MpϕqB
A

‰⊺

.



Dual of a linear transformation (continued)

Proof.
Let MpϕqB

A “ raij s.

ϕ˚pβ˚
i qpαjq “ pβi ˝ ϕqpαj q “

“ βi

˜

m
ÿ

s“1

asjβj

¸

“ aij ,

that the entry in the i´th column and in the j´th row of
Mpϕ˚qA˚

B˚ is equal to aij .



Dual subspaces

Definition
Let W Ă V be any subset of vector space V . Let

W ˚ “ tf P V ˚ | f |W “ 0u.

If W Ă V is a subspace the W ˚ called the dual subspace of W .



Dual subspaces

Definition
Let W Ă V be any subset of vector space V . Let

W ˚ “ tf P V ˚ | f |W “ 0u.

If W Ă V is a subspace the W ˚ called the dual subspace of W .

Proposition

Let ϕ : V Ñ W be a linear transformation. Then

i) ker ϕ˚ “ pimϕq˚,

ii) imϕ˚ “ pker ϕq˚.



Dual subspaces

Definition
Let W Ă V be any subset of vector space V . Let

W ˚ “ tf P V ˚ | f |W “ 0u.

If W Ă V is a subspace the W ˚ called the dual subspace of W .

Proposition

Let ϕ : V Ñ W be a linear transformation. Then

i) ker ϕ˚ “ pimϕq˚,

ii) imϕ˚ “ pker ϕq˚.

Proof.
Omitted. Needs isomorphism Theorem.



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,

ii) Bpv ,w ` w 1q “ Bpv ,wq ` Bpv ,w 1q for any v P V ,w ,w 1 P W ,



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,

ii) Bpv ,w ` w 1q “ Bpv ,wq ` Bpv ,w 1q for any v P V ,w ,w 1 P W ,

iii) Bpαv ,wq “ αBpv ,wq for any v P V ,w P W , α P R,



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,

ii) Bpv ,w ` w 1q “ Bpv ,wq ` Bpv ,w 1q for any v P V ,w ,w 1 P W ,

iii) Bpαv ,wq “ αBpv ,wq for any v P V ,w P W , α P R,

iv) Bpv , βwq “ βBpv ,wq for any v P V ,w P W , β P R.



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,

ii) Bpv ,w ` w 1q “ Bpv ,wq ` Bpv ,w 1q for any v P V ,w ,w 1 P W ,

iii) Bpαv ,wq “ αBpv ,wq for any v P V ,w P W , α P R,

iv) Bpv , βwq “ βBpv ,wq for any v P V ,w P W , β P R.



Bilinear Forms and Bilinear Transformations

Definition
Let V ,W ,U be vector spaces. A function

B : V ˆ W Ñ U

is called a bilinear transformation if

i) Bpv ` v 1,wq “ Bpv ,wq ` Bpv 1,wq for any v , v 1 P V ,w P W ,

ii) Bpv ,w ` w 1q “ Bpv ,wq ` Bpv ,w 1q for any v P V ,w ,w 1 P W ,

iii) Bpαv ,wq “ αBpv ,wq for any v P V ,w P W , α P R,

iv) Bpv , βwq “ βBpv ,wq for any v P V ,w P W , β P R.

Bilinear transformation B is called a form if moreover U “ R.



Equivalence Relation

Definition
An equivalence relation R on the set X is a relation (i.e. a
subset) R Ă X ˆ X such that

i) @xPX px , xq P R (R is reflexive),



Equivalence Relation

Definition
An equivalence relation R on the set X is a relation (i.e. a
subset) R Ă X ˆ X such that

i) @xPX px , xq P R (R is reflexive),

ii) @xPX @yPX px , yq P R ñ py , xq P R (R is symmetric),



Equivalence Relation

Definition
An equivalence relation R on the set X is a relation (i.e. a
subset) R Ă X ˆ X such that

i) @xPX px , xq P R (R is reflexive),

ii) @xPX @yPX px , yq P R ñ py , xq P R (R is symmetric),

iii) @xPX @yPX @zPX px , yq P R ^ py , zq P R ñ px , zq P R (R is
transitive).



Partitions and Equivalence Classes

Equivalence relation R on set X induces a partition of X , given by
its equivalence classes (in fact, there is a bijection between all
partitions of X and all equivalence relations on X ).

Definition
For any x P X the set

rxsR “ ty P X | px , yq P Ru

is called an equivalence class of element x P X . When no
confusion is possible we write rxs .



Quotient Vector Space

Definition
Let W Ă V be a subspace of vector space V . The relation
R Ă V ˆ V , given by the condition

pv , v 1q P R ô v ´ v 1 P W ,

is an equivalence relation on V , compatible with the structure of
the vector space, i.e. the equivalence classes satisfy conditions

i) rv s ` rv 1s “ rv ` v 1s,

ii) αrv s “ rαv s,

for any v , v 1 P V and α P R.



Tensor Product

Definition
For any vector spaces V ,W let U be a (infinite dimensional)
vector space with basis puv ,w qvPV ,wPW and let U0 Ă U be its
subspace spanned by vectors

uv`v 1,w ´uv ,w ´uv 1,w , uv ,w`w 1´uv ,w ´uv ,w 1, uαv ,w ´αuv ,w , uv ,βw ´βuv ,w ,

where v P V ,w P V , α, β P R. By definition, the tensor product
of vector spaces V and W is equal to the quotient space

V b W “ U{U0.



Tensor Product (continued)

Definition
By definition

v b w “ ruv ,w s.

Then, for any v , v 1 P V ,w ,w 1 P W , α, β P R

i) pv ` v 1q b w “ v b w ` v 1 b w ,

ii) v b pw ` w 1q “ v b w ` v b w 1,

iii) pαvq b w “ αpv b wq,

iv) v b pβwq “ βpv b wq.

Moreover, there exists bilinear transformation

π : V ˆ W Q pv ,wq ÞÑ v b w P V b W .



Tensor Product (continued)

Proposition

For any vector spaces V ,W and for any bilinear transformation

B : V ˆ W Ñ U,

there exists a unique linear transformation

ϕB : V b W Ñ U,

such that for any v P V ,w P W

Bpv ,wq “ ϕBpv b wq,

i.e.
V ˆ W

π
ww♣♣
♣♣
♣♣ B

$$❏
❏❏

❏❏
❏

V b V
ϕB

// U



Tensor Product (continued)

Proof.
Let ϕ : linptuv ,w | v P V , w P W uq Ñ U be a linear
transformation given by

ϕpuv ,w q “ Bpv ,wq.

Since B is bilinear, the transformation ϕ sends vectors

uv`v 1,w ´uv ,w ´uv 1,w , uv ,w`w 1´uv ,w ´uv ,w 1, uαv ,w ´αuv ,w , uv ,βw ´βuv ,w ,

to zero (in U). Since vectors ruv ,w s span V b W , ϕ descends to a
linear transformation

ϕ : V b W Q v b w “ ruv ,w s ÞÑ Bpv ,wq P U.



Tensor Product (continued)

Proposition

If A “ pα1, . . . αnq is a basis of V and B “ pβ1, . . . βmq is a basis
of W , then

A b B “ pαi b βjqi“1,...,n,j“1,...,m,

is a basis of V b W . It follows

dim V b W “ pdim V qpdim W q “ nm.



Tensor Product (continued)

Proof.
Consider a bilinear form B : V ˆ W Ñ R, i.e.

V ˆ W
π

ww♣♣
♣♣
♣♣ B

$$■
■■

■■
■

V b W
ϕB

// R

If v “
řn

i“1
viαi and w “

řm

j“1
wjβj are bases of V and W , respectively,

then

Bpv ,wq “
n

ÿ

i“1

m
ÿ

j“1

vi wjBpαi , βjq,

i.e. B is uniquely determined by the values Bpαi , βj q. On the other hand
if aij P R are some numbers, there exists a unique bilinear form B such
that Bpαi , βj q “ aij , given by the formula

Bpv ,wq “
n

ÿ

i“1

m
ÿ

j“1

viwjaij .



Tensor Product (continued)

Proof.
By the properties of tensor product, any linear form ϕ induces a
bilinear form π ˝ ϕ.

V ˆ W
π

ww♦♦
♦♦
♦♦ ϕ˝π

$$■
■■

■■
■

V b W
ϕ

// R

By the universal property, the linear transformation

pV b W q˚ Q ϕ ÞÑ ϕ ˝ π,

is an isomorphism. Therefore

dim V b W “ dimpV b W q˚ “ dim V dim W .



Vector Space of Linear Transformations

Proposition

For any vector spaces V ,W there exists a linear isomorphism of
vector spaces

V ˚ b W Q f b w ÞÑ pV Q v ÞÑ f pvqw P V q P HompV ,W q,

where HompV ,W q denotes the vector space of all linear
transformations from V to W .



Vector Space of Linear Transformations

Proposition

For any vector spaces V ,W there exists a linear isomorphism of
vector spaces

V ˚ b W Q f b w ÞÑ pV Q v ÞÑ f pvqw P V q P HompV ,W q,

where HompV ,W q denotes the vector space of all linear
transformations from V to W .

Proof.
The transformation sends basis to basis.



Vector Space of Linear Transformations (continued)

Proposition

For any vector spaces V ,W and for any A “ pα1, . . . , αnq a basis
of V and B “ pβ1, ¨ ¨ ¨ , βmq a basis of W , if

MpϕqB
A “ raijs P Mpm ˆ n;Rq,

then, under the above isomorphism

ϕ “
m
ÿ

i“1

n
ÿ

j“1

aijα
˚
j b βi P V ˚ b W .



Vector Space of Linear Transformations (continued)

Proposition

For any vector spaces V ,W and for any A “ pα1, . . . , αnq a basis
of V and B “ pβ1, ¨ ¨ ¨ , βmq a basis of W , if

MpϕqB
A “ raijs P Mpm ˆ n;Rq,

then, under the above isomorphism

ϕ “
m
ÿ

i“1

n
ÿ

j“1

aijα
˚
j b βi P V ˚ b W .

Proof.
Exercise.



Examples

If ϕ : R3 Ñ R is given by the formula

ϕppx1, x2, x3qq “ x1 ` 2x2 ´ 7x3,

then
ϕ “ ε˚

1 ` 2ε˚
2 ´ 7ε˚

3 .



Examples

If ϕ : R3 Ñ R is given by the formula

ϕppx1, x2, x3qq “ x1 ` 2x2 ´ 7x3,

then
ϕ “ ε˚

1 ` 2ε˚
2 ´ 7ε˚

3 .

If ϕ : R3 Ñ R
2, where ε1, ε2, ε3 is the standard basis of R3 and

ζ1, ζ2 is the standard basis of R2, is given by the formula

ϕppx1, x2, x3qq “ px1 ` 2x2 ´ 7x3, 5x1 ´ 8x2q “

x1p1, 5q`x2p2,´8q`x3p´7, 0q “ x1pζ1`5ζ2q`x2p2ζ1´8ζ2q`x3p´7ζ1q,

then

Mpϕqst
st “

„

1 2 ´7
5 ´8 0



,

ϕ “ ε˚
1 b ζ1 ` 2ε˚

2 b ζ1 ´ 7ε˚
3 b ζ1 ` 5ε˚

1 b ζ2 ´ 8ε˚
2 b ζ2.



Trace

Definition
Let ϕ : V Ñ V , i.e., ϕ P V ˚ b V be a linear endomorphism. The
trace of ϕ is equal to Trpϕq, where

Tr : V ˚ b V Q α b β ÞÑ αpβq P R,

is the unique linear transformation corresponding to the bilinear
transformation

V ˚ ˆ V Q pα, βq ÞÑ αpβq P R.



Trace

Definition
Let ϕ : V Ñ V , i.e., ϕ P V ˚ b V be a linear endomorphism. The
trace of ϕ is equal to Trpϕq, where

Tr : V ˚ b V Q α b β ÞÑ αpβq P R,

is the unique linear transformation corresponding to the bilinear
transformation

V ˚ ˆ V Q pα, βq ÞÑ αpβq P R.

Proposition

For any basis A “ pα1, . . . , αnq of V , if MpϕqA
A

“ raij s, then

Trpϕq “
n

ÿ

i“1

aii .



Trace (continued)

Proof.
By the definition

ϕ “
n

ÿ

i ,j“1

aijα
˚
j b αi ,

and

Tr
`

α˚
j b αi

˘

“

"

1 if i “ j ,
0 if i ‰ j ,

.



Trace of a Matrix

Definition
Let A “ raijs P Mpn ˆ n;Rq be a matrix. The trace of matrix A is
equal to

TrpAq “
n

ÿ

i“1

aii .



Trace of a Matrix

Definition
Let A “ raijs P Mpn ˆ n;Rq be a matrix. The trace of matrix A is
equal to

TrpAq “
n

ÿ

i“1

aii .

Corollary

For any linear endomorphism ϕ : V Ñ V and any basis A of vector
space V

Trpϕq “ Tr
`

MpϕqA
A

˘

,

that is for any invertible matrix C P Mpn ˆ n;Rq

TrpAq “ Tr
`

C´1AC
˘

,

i.e., the trace admits the same value on similar matrices.



Trace of a Matrix (continued)

Proposition

For any matrices A,B,C P Mpn ˆ n;Rq and scalars α, β P R

i) TrpAq “ TrpA⊺q,

ii) TrpαA ` βBq “ αTrpAq ` β TrpBq,

iii) TrpABq “ TrpBAq,

iv) TrpABCq “ TrpBCAq “ TrpCABq.

Proof.
Points iq and iiq are obvious and ivq follows from iiiq.



Trace of a Matrix (continued)

Proof.

iii) let C “ rcij s “ AB and C 1 “ rc 1
ij s “ BA. Then

TrpCq “
n

ÿ

i“1

cii “
n

ÿ

i“1

n
ÿ

j“1

aijbji ,

Tr
`

C 1
˘

“
n

ÿ

i“1

c 1
ii “

n
ÿ

i“1

n
ÿ

j“1

bijaji “

“
n

ÿ

i“1

n
ÿ

j“1

ajibij “ TrpCq.



Non–canonical Isomorphism

Remark
If V is a finite dimensional vector space then the vector spaces V
and V ˚ are isomorphic, however there is no canonical isomorphism.

Example

For example, let V “ R
2 and let F ,G : V Ñ V ˚ be linear

transformations given by the conditions

F pε1q “ ε˚
1 , Gpα1q “ α˚

1 ,

F pε2q “ ε˚
2 , Gpα2q “ α˚

2 ,

where α1 “ p1, 2q, α2 “ p1, 3q then

F pα1q “ F pε1 ` 2ε2q “ ε˚
1 ` 2ε˚

2 ‰ α˚
1 “

“ 3ε˚
1 ´ ε˚

2 .



Non–canonical Isomorphism

Remark
If V is infinite dimensional then V is not isomorphic to V ˚ (the
reason is purely set–theoretical). For example

pR ‘ R ‘ . . .q˚
⋍ pR ˆ R ˆ . . .q.



The Bidual Space

Definition
For any vector space V , the bidual space is equal to

V ˚˚ “ pV ˚q˚.



The Bidual Space

Definition
For any vector space V , the bidual space is equal to

V ˚˚ “ pV ˚q˚.

Proposition
If V is finite dimensional, there exists a canonical isomorphism of V and
V ˚˚ (which does not depend on the particular choice of a basis)

F : V Q v ÞÑ pV ˚ Q f ÞÑ f pvq P Rq P pV ˚q˚ “ V ˚˚.



The Bidual Space

Definition
For any vector space V , the bidual space is equal to

V ˚˚ “ pV ˚q˚.

Proposition
If V is finite dimensional, there exists a canonical isomorphism of V and
V ˚˚ (which does not depend on the particular choice of a basis)

F : V Q v ÞÑ pV ˚ Q f ÞÑ f pvq P Rq P pV ˚q˚ “ V ˚˚.

Proof.

v P ker F ô f pvq “ 0 for all f P V ˚ ô v “ 0,

since any non–zero vector can be completed to basis, and then
v˚pvq “ 1.



Frobenius Norm

Proposition

The bilinear (real, Frobenius) form

x¨, ¨y : Mpm ˆ n;Rq ˆ Mpm ˆ n;Rq Q pA,Bq ÞÑ TrpA⊺Bq P R,

is

i) symmetric, i.e.,
xA,By “ xB,Ay,

ii) positive definite, i.e.,

xA,Ay ą 0,

if A ‰ 0,



Frobenius Norm (continued)

Proposition

iii) non–degenerate, i.e., the linear transformation

xA, ¨y : Mpm ˆ n;Rq Q B ÞÑ xA,By P R,

is non–zero if and only if A ‰ 0,

iv) invariant under the left and the right multiplication by an
orthogonal matrix, i.e., if Q P Mpm ˆ m;Rq satisfies
Q⊺Q “ QQ⊺ “ Im, then

xQA,QBy “ xA,By,

and if P P Mpn ˆ n;Rq satisfies P⊺P “ PP⊺ “ In, then

xAP,BPy “ xA,By.



Frobenius Norm (continued)

Proof.

i) TrpA⊺Bq “ TrppA⊺Bq⊺q “ TrpB⊺Aq,

ii) if A “ raijs ‰ 0, then
TrpA⊺Aq “

řn
i“1

řn
j“1

ajiaji “
řn

i ,j“1
a2

ij ą 0,

iii) follows from iiq (substitute B “ A),

iv) TrppQAq⊺QBq “ TrpA⊺Q⊺QBq “ TrpA⊺Bq and
TrppAPq⊺BPq “ TrpP⊺A⊺BPq “ TrpA⊺Bq since P⊺ “ P´1.



Frobenius Norm (continued)

Definition
For any matrix A P Mpm ˆ n;Rq the Frobenius norm of A is
equal to

‖A‖F “
a

xA,Ay “
a

TrpA⊺Aq.



Frobenius Norm (continued)

Proposition

i) ‖A‖F “ 0 ô A “ 0,

ii) ‖αA‖F “ |α|‖A‖F for any scalar α P R,

iii) ‖A ` B‖F ď ‖A‖F ` ‖B‖F , for any matrices
A,B P Mpn ˆ m;Rq

iv) ‖A‖F “ ‖A⊺‖F ,

v) ‖AB‖F ď ‖A‖F ‖B‖F , for any matrix A P Mpm ˆ n;Rq and
any matrix B P Mpn ˆ k;Rq,

vi) ‖QAP‖F “ ‖A‖F for any matrix A P Mpn ˆ m;Rq, any
orthogonal matrix Q P Mpm ˆ m;Rq and any orthogonal
matrix P P Mpn ˆ n;Rq



Frobenius Norm (continued)

Proof.

i) the Frobenius form is positive definite,

ii) obvious,

iii) by the Cauchy–Schwarz inequality for the Frobenius form
|xA,By| ď ‖A‖F ‖B‖F , then
‖A ` B‖2

F “ ‖A‖2

F ` 2xA,By ` ‖B‖2

F ď p‖A‖F ` ‖B‖F q2,

iv) obvious,



Frobenius Norm (continued)

Proof.

v) from the Cauchy–Schwarz inequality for the standard scalar
product in R

n, if AB “ rcpqs,

‖AB‖2

F “
m
ÿ

p“1

k
ÿ

q“1

c2

pq “

m
ÿ

p“1

k
ÿ

q“1

˜

n
ÿ

r“1

apr brq

¸2

ď
m
ÿ

p“1

n
ÿ

q“1

˜

n
ÿ

r“1

a2

pr

¸ ˜

n
ÿ

r 1“1

b2

qr 1

¸

“

“

˜

m
ÿ

p“1

˜

n
ÿ

r“1

a2

pr

¸¸ ˜

k
ÿ

q“1

˜

n
ÿ

r 1“1

b2

qr 1

¸¸

“ ‖A‖2

F ‖B‖2

F .

vi) follows from the properties of the Frobenius form.



Frobenius Norm (continued)

Remark
‖AB‖F “ ‖A‖F ‖B‖F holds if and only if i´th row of A is linearly
dependent with i´th column of B for any i (equality in standard
Cauchy–Schwarz inequality).

‖A ` B‖F “ ‖A‖F ` ‖B‖F holds if and only if xA,By “ ‖A‖‖B‖,
i.e. A “ λB or B “ λA for some λ ě 0 (as in the standard
Minkowski inequality).



Frobenius Norm (continued)

Remark
‖AB‖F “ ‖A‖F ‖B‖F holds if and only if i´th row of A is linearly
dependent with i´th column of B for any i (equality in standard
Cauchy–Schwarz inequality).

‖A ` B‖F “ ‖A‖F ` ‖B‖F holds if and only if xA,By “ ‖A‖‖B‖,
i.e. A “ λB or B “ λA for some λ ě 0 (as in the standard
Minkowski inequality).

By the SVD decomposition if σ1pAq, . . . , σr pAq P R denote the
singular values of A (i.e., square roots of the non–zero eigenvalues
of the matrix A⊺A) then

‖A‖F “
b

σ2
1
pAq ` . . . ` σ2

r pAq.



Frobenius Norm (continued)

‖A‖F “
b

σ2
1
pAq ` . . . ` σ2

r pAq,

‖A‖
2

“ σ1pAq,

therefore for any matrix A P Mpm ˆ n;Cq

‖A‖
2

ď ‖A‖F ď
a

mintm, nu‖A‖
2
.

Note that any two norms in a finite–dimensional space are
equivalent (i.e. they induce the same topology and convergence in
one norm is equivalent to the convergence in the other).



Matrix Multiplication as a Sum of Rank 1 Matrices

Remark
In some contexts (large sparse matrices) it is useful to interpret the
matrix product in the following way. Let A P Mpm ˆ n;Rq and let
B P Mpn ˆ l ;Rq. The matrix product of A by B is equal to the
sum rank 1 matrices

AB “
n

ÿ

s“1

CiRi “

»

—

—

—

–

a1i

a2i

...
ani

fi

ffi

ffi

ffi

fl

“

bi1 bi2 . . . bin

‰

.

Proof.
The pi , jq entry of CsRs is equal to aisbsj .


