Linear Algebra

Lecture 4 - Linear Transformations

Oskar Kędzierski

23 October 2023

Definition

Let V,W be vector spaces. A function $\varphi\colon V\longrightarrow W$ is a **linear** transformation if

Definition

Let V,W be vector spaces. A function $\varphi\colon V\longrightarrow W$ is a **linear** transformation if

i)
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 for all $v, w \in V$,

Definition

Let V, W be vector spaces. A function $\varphi \colon V \longrightarrow W$ is a **linear** transformation if

- i) $\varphi(v+w) = \varphi(v) + \varphi(w)$ for all $v, w \in V$,
- ii) $\varphi(\alpha v) = \alpha \varphi(v)$ for all $\alpha \in \mathbb{R}$ and $v \in V$.

Definition

Let V, W be vector spaces. A function $\varphi \colon V \longrightarrow W$ is a **linear** transformation if

- i) $\varphi(v+w) = \varphi(v) + \varphi(w)$ for all $v, w \in V$,
- ii) $\varphi(\alpha v) = \alpha \varphi(v)$ for all $\alpha \in \mathbb{R}$ and $v \in V$.

For example, the function $\varphi\colon\mathbb{R}^3\longrightarrow\mathbb{R}^2$ defined by $\varphi((x_1,x_2,x_3))=(x_1+2x_2-x_3,x_2+x_3)$ is a linear transformation.

Definition

Let V, W be vector spaces. A function $\varphi \colon V \longrightarrow W$ is a **linear** transformation if

- i) $\varphi(v+w) = \varphi(v) + \varphi(w)$ for all $v, w \in V$,
- ii) $\varphi(\alpha v) = \alpha \varphi(v)$ for all $\alpha \in \mathbb{R}$ and $v \in V$.

For example, the function $\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ defined by $\varphi((x_1,x_2,x_3)) = (x_1 + 2x_2 - x_3, x_2 + x_3)$ is a linear transformation.

In general, the following theorem holds:

Linear Transformations (continued)

Theorem

A function $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if and only if

$$\varphi((x_1, \dots, x_n)) = (a_{11}x_1 + \dots + a_{1n}x_n, a_{21}x_1 + \dots + a_{2n}x_n, \dots$$
$$\dots, a_{m1}x_1 + \dots + a_{mn}x_n), \text{ where } a_{ij} \in \mathbb{R}.$$

Linear Transformations (continued)

Theorem

A function $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation if and only if

$$\varphi((x_1, \dots, x_n)) = (a_{11}x_1 + \dots + a_{1n}x_n, a_{21}x_1 + \dots + a_{2n}x_n, \dots$$
$$\dots, a_{m1}x_1 + \dots + a_{mn}x_n), \text{ where } a_{ij} \in \mathbb{R}.$$

Proof.

Assume φ is a linear transformation. Let

$$\varphi(\varepsilon_i)=(a_{1i},a_{2i},\ldots,a_{mi}).$$

Then, by linearity,

$$\varphi(x_1,\ldots,x_n) = \varphi(x_1\varepsilon_1+\ldots+x_n\varepsilon_n) = x_1\varphi(\varepsilon_1)+\ldots+x_n\varphi(\varepsilon_n) = (a_{11}x_1+\ldots+a_{1n}x_n,a_{21}x_1+\ldots+a_{2n}x_n,\ldots,a_{m1}x_1+\ldots+a_{mn}x_n). \quad \Box$$

The transformation $\varphi \colon \mathcal{F}(\mathbb{R},\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\varphi(f) = f(1)$ is linear.

The transformation $\varphi \colon \mathcal{F}(\mathbb{R}, \mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\varphi(f) = f(1)$ is linear.

The transformation $\varphi \colon \mathcal{D}(\mathbb{R}, \mathbb{R}) \longrightarrow \mathcal{F}(\mathbb{R}, \mathbb{R})$, where $\mathcal{D}(\mathbb{R}, \mathbb{R})$ denotes differentiable functions $f \colon \mathbb{R} \longrightarrow \mathbb{R}$, defined by $\varphi(f) = f'$ is linear.

i)
$$\varphi(0) = 0$$
,

- i) $\varphi(0) = 0$,
- ii) if vectors v_1, \ldots, v_k are linearly dependent then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent too,

- i) $\varphi(0) = 0$,
- ii) if vectors v_1, \ldots, v_k are linearly dependent then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent too,
- iii) the set $\varphi(V) = \{ \varphi(v) \mid v \in V \}$ is a subspace of W called the **image** of V, if v_1, \ldots, v_k span V then $\varphi(v_1), \ldots, \varphi(v_k)$ span $\varphi(V)$,

- i) $\varphi(0) = 0$,
- ii) if vectors v_1, \ldots, v_k are linearly dependent then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent too,
- iii) the set $\varphi(V) = \{\varphi(v) \mid v \in V\}$ is a subspace of W called the **image** of V, if v_1, \ldots, v_k span V then $\varphi(v_1), \ldots, \varphi(v_k)$ span $\varphi(V)$,
- iv) the transformation φ is injective if and only if $\ker \varphi = \{ v \in V \mid \varphi(v) = \mathbf{0} \} = \{ \mathbf{0} \},$

- i) $\varphi(0) = 0$,
- ii) if vectors v_1, \ldots, v_k are linearly dependent then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent too,
- iii) the set $\varphi(V) = \{\varphi(v) \mid v \in V\}$ is a subspace of W called the **image** of V, if v_1, \ldots, v_k span V then $\varphi(v_1), \ldots, \varphi(v_k)$ span $\varphi(V)$,
- iv) the transformation φ is injective if and only if $\ker \varphi = \{ v \in V \mid \varphi(v) = \mathbf{0} \} = \{ \mathbf{0} \},$
- v) if φ is injective and the vectors v_1, \ldots, v_k are linearly independent then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly independent too.

Properties (continued)

Theorem

Let V, W be vector spaces. For any basis $v_1, \ldots, v_n \in V$ and any vectors $w_1, \ldots, w_n \in W$ there exists a unique linear transformation $\varphi \colon V \longrightarrow W$ such that $\varphi(v_i) = w_i$ for $i = 1, \ldots, n$.

Properties (continued)

Theorem

Let V, W be vector spaces. For any basis $v_1, \ldots, v_n \in V$ and any vectors $w_1, \ldots, w_n \in W$ there exists a unique linear transformation $\varphi \colon V \longrightarrow W$ such that $\varphi(v_i) = w_i$ for $i = 1, \ldots, n$.

Proof.

For $v = \sum_{i=1}^{n} \alpha_i v_i$ set $\varphi(v) = \sum_{i=1}^{n} \alpha_i w_i$. It is easy to check that φ is a linear transformation (by the uniqueness of coordinates relative to a basis) and it is unique, since any other linear transformation sending v_i to w_i satisfies the same conditions.

Let $\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear transformation such that $\varphi((1,3)) = (1,1,1)$ and $\varphi((0,1)) = (-1,0,2)$.

Let $\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear transformation such that $\varphi((1,3)) = (1,1,1)$ and $\varphi((0,1)) = (-1,0,2)$.

Then
$$\varphi((1,0))=\varphi((1,3)-3(0,1))=\varphi((1,3))-3\varphi((0,1))=(1,1,1)-3(-1,0,2)=(4,1,-5).$$

Let
$$\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 be a linear transformation such that $\varphi((1,3)) = (1,1,1)$ and $\varphi((0,1)) = (-1,0,2)$.

Then
$$\varphi((1,0)) = \varphi((1,3) - 3(0,1)) = \varphi((1,3)) - 3\varphi((0,1)) = (1,1,1) - 3(-1,0,2) = (4,1,-5).$$

Therefore,
$$\varphi((x_1, x_2)) = \varphi(x_1\varepsilon_1 + x_2\varepsilon_2) = x_1(4, 1, -5) + x_2(-1, 0, 2) = (4x_1 - x_2, x_1, -5x_1 + 2x_2).$$

Representation of Transformation by Matrices

Recall that by $M(m \times n; \mathbb{R})$ we denote the set of real matrices with m rows and n columns.

Definition

Let V,W be vector spaces and let $\mathcal{A}=(v_1,\ldots,v_n),\mathcal{B}=(w_1,\ldots,w_m)$ be their ordered bases, respectively. The **matrix of a linear transformation** $\varphi\colon V\longrightarrow W$ relative to the pair of ordered bases \mathcal{A} and \mathcal{B} is the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=[a_{ij}]\in M(m\times n;\mathbb{R})$ given by the conditions $\varphi(v_j)=\sum_{i=1}^m a_{ij}w_i$ for $j=1,\ldots,n$.

Representation of Transformation by Matrices

Recall that by $M(m \times n; \mathbb{R})$ we denote the set of real matrices with m rows and n columns.

Definition

Let V,W be vector spaces and let $\mathcal{A}=(v_1,\ldots,v_n),\mathcal{B}=(w_1,\ldots,w_m)$ be their ordered bases, respectively. The **matrix of a linear transformation** $\varphi\colon V\longrightarrow W$ relative to the pair of ordered bases \mathcal{A} and \mathcal{B} is the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=[a_{ij}]\in M(m\times n;\mathbb{R})$ given by the conditions $\varphi(v_j)=\sum_{i=1}^m a_{ij}w_i$ for $j=1,\ldots,n$.

That is, columns of $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ consist of coefficients of the vectors $\varphi(v_1), \ldots, \varphi(v_n)$ relative to the basis \mathcal{B} .

Let $\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by $\varphi((x_1,x_2,x_3)) = (2x_1-x_2+x_3,x_1+x_3)$ and let $\mathcal{A} = ((1,0,1),(2,0,3),(0,1,1)), \ \mathcal{B} = ((1,1),(0,1))$ be the ordered bases of \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$arphi((1,0,1)) = (3,2) = 3(1,1) - 1(0,1)$$

 $arphi((2,0,3)) = (7,5) = 7(1,1) - 2(0,1)$
 $arphi((0,1,1)) = (0,1) = 0(1,1) + 1(0,1).$

The matrix of φ relative to the (ordered) bases \mathcal{A},\mathcal{B} is

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \left[\begin{array}{ccc} 3 & 7 & 0 \\ -1 & -2 & 1 \end{array} \right]$$

Examples (continued)

Notation

By st we will denote the standard basis of \mathbb{R}^n , i.e. $st = (\varepsilon_1, \dots, \varepsilon_n)$.

For example, the matrix of the linear transformation given by $\varphi((x_1,x_2,x_3))=(2x_1-x_2+3x_3,x_1+x_3)$ relative to the standard bases in \mathbb{R}^3 and \mathbb{R}^2 is

$$M(\varphi)_{st}^{st} = \left[\begin{array}{ccc} 2 & -1 & 3 \\ 1 & 0 & 1 \end{array} \right]$$

since

$$\begin{split} \varphi(\varepsilon_1) &= \varphi((1,0,0)) &= (2,1) = 2(1,0) + 1(0,1) = & 2\varepsilon_1 + 1\varepsilon_2 \\ \varphi(\varepsilon_2) &= \varphi((0,1,0)) = (-1,0) = -1(1,0) + 0(0,1) = -1\varepsilon_1 + 0\varepsilon_2 \\ \varphi(\varepsilon_3) &= \varphi((0,0,1)) &= (3,1) = 3(1,0) + 1(0,1) = & 3\varepsilon_1 + 1\varepsilon_2. \end{split}$$

Elementary Operations and Matrices of Linear Transformations

Proposition

```
Let V, W be vector spaces and let A = (v_1, \ldots, v_n), \mathcal{B} = (w_1, \ldots, w_m) be their ordered bases, respectively. Let A = [a_{ij}] = M(\varphi)^{\mathcal{B}}_{\mathcal{A}} be the matrix of a linear transformation \varphi \colon V \longrightarrow W relative to the bases A and B. If A' = (v_1 + v_2, v_2, \ldots, v_n), A'' = (\alpha v_1, v_2, \ldots, v_n), \mathcal{B}' = (w_1 + w_2, w_2, \ldots, w_m), \mathcal{B}'' = (\alpha w_1, w_2, \ldots, w_m) for some \alpha \neq 0 then
```

Elementary Operations and Matrices of Linear Transformations

Proposition

Let V, W be vector spaces and let $\mathcal{A} = (v_1, \ldots, v_n)$, $\mathcal{B} = (w_1, \ldots, w_m)$ be their ordered bases, respectively. Let $\mathcal{A} = [a_{ij}] = \mathcal{M}(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ be the matrix of a linear transformation $\varphi \colon V \longrightarrow W$ relative to the bases \mathcal{A} and \mathcal{B} . If $\mathcal{A}' = (v_1 + v_2, v_2, \ldots, v_n), \mathcal{A}'' = (\alpha v_1, v_2, \ldots, v_n), \mathcal{B}' = (w_1 + w_2, w_2, \ldots, w_m), \mathcal{B}'' = (\alpha w_1, w_2, \ldots, w_m)$ for some $\alpha \neq 0$ then

$$M(\varphi)_{\mathcal{A}'}^{\mathcal{B}} = \begin{bmatrix} a_{11} + a_{12} & a_{12} & \dots & a_{1n} \\ a_{21} + a_{22} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + a_{m2} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

Elementary Operations and Matrices of Linear Transformations (continued)

$$M(\varphi)_{\mathcal{A}''}^{\mathcal{B}} = \begin{bmatrix} \alpha a_{11} & a_{12} & \dots & a_{1n} \\ \alpha a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

Elementary Operations and Matrices of Linear Transformations (continued)

$$M(\varphi)_{\mathcal{A}''}^{\mathcal{B}} = \begin{bmatrix} \alpha a_{11} & a_{12} & \dots & a_{1n} \\ \alpha a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}'} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} - a_{11} & a_{22} - a_{12} & \dots & a_{2n} - a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

Elementary Operations and Matrices of Linear Transformations (continued)

$$M(\varphi)_{\mathcal{A}''}^{\mathcal{B}} = \begin{bmatrix} \alpha a_{11} & a_{12} & \dots & a_{1n} \\ \alpha a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}'} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} - a_{11} & a_{22} - a_{12} & \dots & a_{2n} - a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}''} = \begin{bmatrix} a_{11}/\alpha & a_{12}/\alpha & \dots & a_{1n}/\alpha \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the formula

$$\varphi((x_1,x_2,x_3))=(3x_1+7x_2+4x_3,x_1+2x_2+x_3).$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the formula

$$\varphi((x_1,x_2,x_3))=(3x_1+7x_2+4x_3,x_1+2x_2+x_3).$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$M(\varphi)_{st}^{st} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ 3 & 7 & 4 \\ 1 & 2 & 1 \end{bmatrix} \overset{c_2-2c_1}{\longrightarrow} \begin{bmatrix} \varepsilon_1 & -2\varepsilon_1+\varepsilon_2 & -\varepsilon_1+\varepsilon_3 \\ 3 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \overset{c_1-c_3}{\longrightarrow}$$

$$\longrightarrow \begin{bmatrix} 2\varepsilon_1 - \varepsilon_3 & -4\varepsilon_1 + 2\varepsilon_2 & -\varepsilon_1 + \varepsilon_3 \\ 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$\mathcal{A} = ((2,0,-1),(-4,2,0),(-1,0,1)), \quad \mathcal{B} = \textit{st.}$$

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the formula

$$\varphi((x_1,x_2,x_3))=(3x_1+7x_2+4x_3,x_1+2x_2+x_3).$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$M(\varphi)_{st}^{st} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ 3 & 7 & 4 \\ 1 & 2 & 1 \end{bmatrix} \stackrel{c_2-2c_1}{\longrightarrow} \begin{bmatrix} \varepsilon_1 & -2\varepsilon_1 + \varepsilon_2 & -\varepsilon_1 + \varepsilon_3 \\ 3 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \stackrel{c_1-c_3}{\longrightarrow}$$

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the formula

$$\varphi((x_1,x_2,x_3))=(3x_1+7x_2+4x_3,x_1+2x_2+x_3).$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$M(\varphi)_{st}^{st} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ 3 & 7 & 4 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{c_2 - 2c_1} \begin{bmatrix} \varepsilon_1 & -2\varepsilon_1 + \varepsilon_2 & -\varepsilon_1 + \varepsilon_3 \\ \frac{c_3 - c_1}{2} & 3 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{c_1 - c_3}$$

$$\longrightarrow \begin{bmatrix} 2\varepsilon_1 - \varepsilon_3 & -4\varepsilon_1 + 2\varepsilon_2 & -\varepsilon_1 + \varepsilon_3 \\ 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the formula

$$\varphi((x_1,x_2,x_3))=(3x_1+7x_2+4x_3,x_1+2x_2+x_3).$$

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$M(\varphi)_{st}^{st} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ 3 & 7 & 4 \\ 1 & 2 & 1 \end{bmatrix} \overset{c_2-2c_1}{\longrightarrow} \begin{bmatrix} \varepsilon_1 & -2\varepsilon_1+\varepsilon_2 & -\varepsilon_1+\varepsilon_3 \\ 3 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \overset{c_1-c_3}{\longrightarrow}$$

$$\longrightarrow \begin{bmatrix} 2\varepsilon_1 - \varepsilon_3 & -4\varepsilon_1 + 2\varepsilon_2 & -\varepsilon_1 + \varepsilon_3 \\ 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$\mathcal{A} = ((2,0,-1),(-4,2,0),(-1,0,1)), \quad \mathcal{B} = st.$$

In fact

$$\mathcal{A} = ((2,0,-1),(-4,2,0),(-1,0,1)), \quad \mathcal{B} = st,$$

$$\varphi((x_1,x_2,x_3)) = (3x_1 + 7x_2 + 4x_3,x_1 + 2x_2 + x_3).$$

In fact

$$\mathcal{A} = ((2,0,-1),(-4,2,0),(-1,0,1)), \quad \mathcal{B} = st,$$

$$\varphi((x_1,x_2,x_3)) = (3x_1 + 7x_2 + 4x_3,x_1 + 2x_2 + x_3).$$

$$\varphi((2,0,-1)) = (2,1) = 2(1,0) + 1(0,1),$$

In fact

$$\mathcal{A} = ((2,0,-1),(-4,2,0),(-1,0,1)), \quad \mathcal{B} = st,$$

$$\varphi((x_1,x_2,x_3)) = (3x_1 + 7x_2 + 4x_3,x_1 + 2x_2 + x_3).$$

$$\varphi((2,0,-1)) = (2,1) = 2(1,0) + 1(0,1),$$

$$\varphi((-4,2,0)) = (2,0) = 2(1,0) + 0(0,1),$$

In fact

$$\mathcal{A} = ((2,0,-1), (-4,2,0), (-1,0,1)), \quad \mathcal{B} = st,$$

$$\varphi((x_1,x_2,x_3)) = (3x_1 + 7x_2 + 4x_3, x_1 + 2x_2 + x_3).$$

$$\varphi((2,0,-1)) = (2,1) = 2(1,0) + 1(0,1),$$

$$\varphi((-4,2,0)) = (2,0) = 2(1,0) + 0(0,1),$$

$$\varphi((-1,0,1)) = (1,0) = 1(1,0) + 0(0,1).$$

In fact

$$\mathcal{A} = ((2,0,-1), (-4,2,0), (-1,0,1)), \quad \mathcal{B} = st,$$

$$\varphi((x_1,x_2,x_3)) = (3x_1 + 7x_2 + 4x_3, x_1 + 2x_2 + x_3).$$

$$\varphi((2,0,-1)) = (2,1) = 2(1,0) + 1(0,1),$$

$$\varphi((-4,2,0)) = (2,0) = 2(1,0) + 0(0,1),$$

$$\varphi((-1,0,1)) = (1,0) = 1(1,0) + 0(0,1).$$

$$M(\varphi)_{\mathcal{A}}^{st} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Rank

Definition

Let $c_1, \ldots, c_n \in \mathbb{R}^m$ denote the vectors corresponding to columns of matrix $A \in M(m \times n; \mathbb{R})$. The dimension of the space $\text{lin}(c_1, \ldots, c_n) \subset \mathbb{R}^m$ will be called **rank** of the matrix A and denoted by r(A).

Rank

Definition

Let $c_1, \ldots, c_n \in \mathbb{R}^m$ denote the vectors corresponding to columns of matrix $A \in M(m \times n; \mathbb{R})$. The dimension of the space $lin(c_1, \ldots, c_n) \subset \mathbb{R}^m$ will be called **rank** of the matrix A and denoted by r(A).

Proposition

Let $\varphi \colon V \longrightarrow W$ be a linear transformation and let \mathcal{A}, \mathcal{B} are ordered bases of V and W, respectively. Then the rank of the matrix $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ is equal to $\dim \varphi(V)$ and hence it does not depend on the bases \mathcal{A}, \mathcal{B} .

Rank

Definition

Let $c_1, \ldots, c_n \in \mathbb{R}^m$ denote the vectors corresponding to columns of matrix $A \in M(m \times n; \mathbb{R})$. The dimension of the space $\text{lin}(c_1, \ldots, c_n) \subset \mathbb{R}^m$ will be called **rank** of the matrix A and denoted by r(A).

Proposition

Let $\varphi \colon V \longrightarrow W$ be a linear transformation and let \mathcal{A}, \mathcal{B} are ordered bases of V and W, respectively. Then the rank of the matrix $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ is equal to $\dim \varphi(V)$ and hence it does not depend on the bases \mathcal{A}, \mathcal{B} .

Corollary

Elementary row operations on matrix A do not change its rank. Therefore, the rank of matrix A is equal to the rank of its (reduced) echelon form A', which is equal to the number of non-zero rows in A'.

Rank-nullity Theorem

Theorem

Let V, W be vector spaces. Let $\varphi \colon V \to W$ be a linear transformation. Assume V is finite–dimensional. Then

 $\dim \ker \varphi + \dim \varphi(V) = \dim V.$

Rank-nullity Theorem

Theorem

Let V, W be vector spaces. Let $\varphi \colon V \to W$ be a linear transformation. Assume V is finite–dimensional. Then

$$\dim \ker \varphi + \dim \varphi(V) = \dim V.$$

Proof.

Without loss of generality one can assume $W=\varphi(V)$ is finite–dimensional and there exist bases $\mathcal{A}=(v_1,\ldots,v_n)$ of V and $\mathcal{B}=(w_1,\ldots,w_r)$ of W such that

$$M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = [I_r \mid \mathbf{0}],$$

where $r = r(A) = \dim \varphi(V)$. It follows that $\ker \varphi = \ln(v_{r+1}, \dots, v_n)$ and $\dim \ker \varphi = n - r$.

Rank decomposition/factorisation

Proposition

For any matrix $A \in M(m \times n; \mathbb{R})$ of rank r = r(A) there exist matrices $S \in M(m \times r; \mathbb{R})$ and $T \in M(r \times n; \mathbb{R})$ such that r = r(A) = r(S) = r(T) and

$$A = ST$$
.

Proof.

Let B be the reduced echelon form of A. Let S consist of columns of A (in the same order) in which there is a pivot in matrix B (this is exactly the basis \mathcal{B} of the column space). Let T consists of non–zero r rows of matrix B. Each column of T contains coordinates of the corresponding column of matrix A relative to the basis \mathcal{B} .

$$A = \left[\begin{array}{cccc} 1 & 2 & -1 & 3 \\ 1 & 3 & 1 & 2 \\ 3 & 8 & 1 & 7 \end{array} \right] \longrightarrow \left[\begin{array}{cccc} 1 & 0 & -5 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Columns number 3 and 4 contain no pivot hence

$$S = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 3 & 8 \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 0 & -5 & 5 \\ 0 & 1 & 2 & -1 \end{bmatrix}.$$

Note that this decomposition is not unique as for any non-singular $G \in M(r \times r; \mathbb{R})$

$$A = (SG)(G^{-1}T).$$

Row rank is equal to column rank

Proposition

For any matrix $A \in M(m \times n; \mathbb{R})$

$$r(A^{\mathsf{T}}) = r(A).$$

Proof.

Let A = ST be a rank decomposition. Then

$$A^{\mathsf{T}} = T^{\mathsf{T}}S^{\mathsf{T}}.$$

Columns of A^{T} are linear combinations of r columns of T^{T} , hence, by Steinitz's Lemma,

$$r(A^{\mathsf{T}}) \leqslant r = r(A)$$
.

Replacing A with A^{T} in the same argument gives

$$r(A) \leqslant r(A^{\mathsf{T}}).$$

A vs A^{T} for square matrices

Proposition

For any $A \in M(n \times n; \mathbb{R})$ there exists an invertible matrix $C \in M(n \times n; \mathbb{R})$ such that

$$A = CA^{\mathsf{T}}C^{-1},$$

i.e., matrices A and AT are similar.

Proof.

Omitted. Easy if you know Jordan decomposition.

