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Definition
Let V, W be vector spaces. A function ¢: V — W is a linear
transformation if

i) o(v+w)=e(v)+ew) forall v,we V,
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For example, the function ¢: R3 — R? defined by
o((x1,x2,x3)) = (x1 + 2x2 — X3, X2 + x3) is a linear transformation.

In general, the following theorem holds:



Linear Transformations (continued)
Theorem
A function ¢: R" — R s a linear transformation if and only if
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Linear Transformations (continued)
Theorem
A function ¢: R" — R s a linear transformation if and only if
(p((xl, .. ,X,,)) = (311X1 + ...+ 31pXn,a21X1 + ...+ a2pXn, - ..

e @mX1 + ... + amnXn), where aj e R.

Proof.
Assume ¢ is a linear transformation. Let
p(ei) = (ati, @iy - - -y ami)-

Then, by linearity,

(X1, ..oy Xn) = (X161 + .. + XnEn) = x10(61) + ... + Xpp(En) =
(311X1~|—. ..t+aipnXp,az21x1+...+axwnpXn, ..., amiX1+.. .+am,,x,,). L]
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Examples

The transformation ¢: F(R,R) — R defined by ¢(f) = f(1) is
linear.

The transformation ¢: D(R,R) — F(R,R), where D(R,R)
denotes differentiable functions f: R — R, defined by o(f) = f’
is linear.
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Properties

Let o: V — W be a linear transformation. Then

) #»(0) =0,
ii) if vectors vi,..., vk are linearly dependent then
©(v1),...,¢(vk) are linearly dependent too,

i) the set (V) = {¢(v) | ve V}is a subspace of W called the
image of V/, if v1,..., vk span V then p(v1),...,p(vk) span
p(V),

iv) the transformation ¢ is injective if and only if
kero ={ve V]p(v) =0} = {0},

v) if @ is injective and the vectors vy, ..., v, are linearly

independent then ¢(v1),...,o(vk) are linearly independent
too.



Properties (continued)

Theorem
Let V', W be vector spaces. For any basis v1,...,v, € V and any
vectors wi, ..., wp € W there exists a unique linear transformation

w: V. — W such that ¢(v;) = w; fori=1,...,n.



Properties (continued)

Theorem

Let V', W be vector spaces. For any basis v1,...,v, € V and any
vectors wi, ..., wp € W there exists a unique linear transformation
w: V. — W such that ¢(v;) = w; fori=1,...,n.

Proof.

For v =", ajvj set o(v) = > ; ajw;. It is easy to check that
@ is a linear transformation (by the uniqueness of coordinates
relative to a basis) and it is unique, since any other linear
transformation sending v; to w; satisfies the same conditions. O



Example

Let p: R2 — R3 be a linear transformation such that
o((1,3)) = (1,1,1) and (0, 1)) = (~1,0,2).



Example

Let p: R2 — R3 be a linear transformation such that
@((173)) = (17 17 1) and SD((Oa 1)) = (_17072)

Then (p((].,O)) = 90((173) - 3(07 1)) = 90((173)) - 390((07 1)) =
(1,1,1) — 3(-1,0,2) = (4,1,-5).



Example

Let p: R2 — R3 be a linear transformation such that
@((173)) = (17 17 1) and SD((Oa 1)) = (_17072)

Then ©((1,0)) = ¢((1,3) —3(0,1)) = »((1,3)) = 3¢((0,1)) =
(1,1,1) — 3(=1,0,2) = (4,1, -5).

Therefore, p((x1,x2)) = @(x161 + x082) =
X1(4, ]_, —5) + XQ(—]_, 0, 2) = <4X1 — X0, X1, —bx1 + 2X2).



Representation of Transformation by Matrices

Recall that by M(m x n; R) we denote the set of real matrices with
m rows and n columns.

Definition
Let V, W be vector spaces and let
A= (vi,...,vp),B = (wi,...,wp) be their ordered bases,

respectively. The matrix of a linear transformation ¢: V — W
relative to the pair of ordered bases A and B is the matrix

M(p)5 = [a;] € M(m x n;R) given by the conditions

o(vj) =" ajwi forj=1,...,n.



Representation of Transformation by Matrices

Recall that by M(m x n; R) we denote the set of real matrices with
m rows and n columns.

Definition
Let V, W be vector spaces and let
A= (vi,...,vp),B = (wi,...,wp) be their ordered bases,

respectively. The matrix of a linear transformation ¢: V — W
relative to the pair of ordered bases A and B is the matrix

M(p)5 = [a;] € M(m x n;R) given by the conditions

o(vj) =" ajwi forj=1,...,n.

That is, columns of M(p)5 consist of coefficients of the vectors
©(vi),...,(vy) relative to the basis 5.



Examples

Let p: R3 — R? be a linear transformation defined by
o((x1,x2,%3)) = (2x1 — x2 + x3,x1 + x3) and let
A=1((1,0,1),(2,0,3),(0,1,1)), B=((1,1),(0,1)) be the
ordered bases of R3 and R?, respectively. Then

©((1,0,1)) = (3,2) = 3(1,1) — 1(0,1)
©((2,0,3)) = (7,5) =7(1,1) — 2(0,1)
©((0,1,1)) = (0,1) = 0(1,1) + 1(0,1).

The matrix of ¢ relative to the (ordered) bases A, B is

mei=| 5 5 Y]



Examples (continued)

Notation
By st we will denote the standard basis of R", i.e.
st = (61, o ,6,,).

For example, the matrix of the linear transformation given by
o((x1,x2,x3)) = (2x1 — x2 + 3x3, x1 + x3) relative to the standard
bases in R3 and R? is

ole1) = ¢((1,0,0)) =(2,1) =2(1,0) +1(0,1) = 21 + e
v(e2) = ¢((0,1,0))= (—1,0) = —1(1,0) + 0(0,1) =—1e1 + Oe>
o(e3) = ¢((0,0,1)) =(3,1) =3(1,0) + 1(0,1) = 31 + leo.



Elementary Operations and Matrices of Linear
Transformations

Proposition
Let V, W be vector spaces and let A = (vi,...,v,),
B = (wi,...,wn) be their ordered bases, respectively. Let

A = [aj] = M(p)5 be the matrix of a linear transformation

@: V. — W relative to the bases A and B. If

A ' =(vi+wv,va,....v), A" = (avi,va,...,vp), B =

(wy +wo,wa ..., wp),B" = (awy,ws ..., wy) for some a # 0 then
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Transformations

Proposition
Let V, W be vector spaces and let A = (vi,...,v,),
B = (wi,...,wn) be their ordered bases, respectively. Let

A = [aj] = M(p)5 be the matrix of a linear transformation
@: V. — W relative to the bases A and B. If
A ' =(vi+wv,va,....v), A" = (avi,va,...,vp), B =

(wy +wo,wa ..., wp),B" = (awy,ws ..., wy) for some a # 0 then
a1 +ap a2 ... a
as1 + ax a» ... asn
B
M(QO)A/ = : - . : 9

aml+am2 am2 ... dmn



Elementary Operations and Matrices
Transformations (continued)

Qdil d12

Qay;  ax
B
M(SD)AN = .

Gaml ame

of Linear

din
a2n

amn



Elementary Operations and Matrices of Linear

Transformations (continued)

Qajl a1
M) = | T
aaml am2

ail aio

a1 —an axn — an
B/
M(p)a = . .

amil am2

din
a2n

amn

ain
d2p — din

amn



Elementary Operations and Matrices of Linear

Transformations (continued)

Qdil d12

aany a2
B
M(QD)_A// = .

Gaml ame
ail aio
dp1 — 411 a2 — d12
amil am2

311/04 312/04

asi azo

amil am2

din
a2n

amn
ain
d2p — din
dmn

al,,/a
a2n

amn



Example
Let ¢: R3 — R? be given by the formula
o((x1,x2,x3)) = (3x1 + Tx2 + 4x3,x1 + 2x2 + X3).

Find bases A of R3 and B of R? such that
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7 4 - 3 1 1 2
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261 —e3 —dep 4+ 28 —e1+ €3
. 2 2 1
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O

) _
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3 7 4| g—ca |3 1 1 2¢
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Example
Let ¢: R3 — R? be given by the formula

o((x1,x2,x3)) = (3x1 + Tx2 + 4x3,x1 + 2x2 + X3).
Find bases A of R3 and B of R? such that

O

100
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7 4| a-a |3 1 1 2
M) = [i 2 1} = {1 0 0 -

261 —e3 —dep +2ep —e1+ €3
. [ 2 2

1
1 0 0 '
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Example

In fact
A=((2,0,-1),(—4,2,0),(-1,0,1)), B = st,

o((x1,x2,x3)) = (3x1 + Tx2 + 4x3, x1 + 2x2 + X3).
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Example

In fact
A=((2,0,-1),(—4,2,0),(-1,0,1)), B = st,

gO((Xl,Xg,X3)) = (3X1 + 7x0 + 4x3,x1 + 2x> + X3).
©((2,0,-1)) = (2,1) =2(1,0) + 1(0, 1),
©((—4,2,0)) = (2,0) =2(1,0) + 0(0,1),

©((~1,0,1)) = (1,0) = 1(1,0) + 0(0, 1).



Example

In fact
A=((2,0,-1),(—4,2,0),(-1,0,1)), B = st,

o((x1,%2,x3)) = (3x1 + Txo + 4x3,x1 + 2x2 + x3).
©((2,0,-1)) = (2,1) =2(1,0) + 1(0, 1),
©((—4,2,0)) = (2,0) =2(1,0) + 0(0, 1),
©((—1,0,1)) = (1,0) = 1(1,0) + 0(0, 1).

wei-[2 5 o)
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Let c1,..., ¢y, € R™ denote the vectors corresponding to columns
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denoted by r(A).
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Rank

Definition

Let c1,..., ¢y, € R™ denote the vectors corresponding to columns
of matrix A€ M(m x n;R). The dimension of the space

lin(ci, ..., cn) < R™ will be called rank of the matrix A and
denoted by r(A).

Proposition
Let p: V — W be a linear transformation and let A, B are
ordered bases of V' and W, respectively. Then the rank of the

matrix M()5 is equal to dim (V) and hence it does not depend
on the bases A, B.

Corollary

Elementary row operations on matrix A do not change its rank.
Therefore, the rank of matrix A is equal to the rank of its
(reduced) echelon form A', which is equal to the number of
non-zero rows in A’.



Rank—nullity Theorem

Theorem
Let V, W be vector spaces. Let p: V — W be a linear
transformation. Assume V is finite—dimensional. Then
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Rank—nullity Theorem

Theorem
Let V, W be vector spaces. Let p: V — W be a linear
transformation. Assume V is finite—dimensional. Then

dimker ¢ + dim (V) = dim V.

Proof.
Without loss of generality one can assume W = (V) is
finite—dimensional and there exist bases A = (vi,...,v,) of V and

B = (wi,...,w,) of W such that

M5 =[11]0],

where r = r(A) = dim p(V). It follows that
kerp = lin(Vy41,...,Vn) and dimkerp = n—r. O



Rank decomposition /factorisation

Proposition

For any matrix A€ M(m x n;R) of rank r = r(A) there exist
matrices S € M(m x r;R) and T € M(r x n;R) such that
r=r(A)=r(S)=r(T) and

A=ST.

Proof.

Let B be the reduced echelon form of A. Let S consist of columns
of A (in the same order) in which there is a pivot in matrix B (this
is exactly the basis B of the column space). Let T consists of
non—zero r rows of matrix B. Each column of T contains
coordinates of the corresponding column of matrix A relative to
the basis B. O]



Example

1 2 -1 3 10 -5 5
A=]113 1 2|—]01 2 -1
38 17 00 0 O

Columns number 3 and 4 contain no pivot hence

1 2
10 -5 5
S=|(13 ]|, T= } .
3 3 01 2 -1
Note that this decomposition is not unique as for any non-singular
Ge M(rx rR)
A= (SG)(G1T).



Row rank is equal to column rank

Proposition
For any matrix A€ M(m x n;R)

r(AT) = r(A).
Proof.
Let A= ST be a rank decomposition. Then
AT = TTST,

Columns of AT are linear combinations of r columns of TT, hence,
by Steinitz's Lemma,

r(AT) < r =r(A).
Replacing A with AT in the same argument gives

r(A) < r(AT).



A vs AT for square matrices

Proposition

For any A€ M(n x n;R) there exists an invertible matrix
C € M(n x n;R) such that

A= CATC !,
i.e., matrices A and AT are similar.

Proof.

Omitted. Easy if you know Jordan decomposition.



