Linear Algebra

Lecture 3 - Linear Independence and Bases

Oskar Kedzierski

16 October 2023



Linearly (In)dependent Vectors

Let V be a vector space.



Linearly (In)dependent Vectors

Let V be a vector space.

Definition
Vectors vi,..., vk € V are said to be linearly dependent if there
exist real numbers ag, ..., ay, not all of which are 0 such that

arvy + ...+ agve = 0.



Linearly (In)dependent Vectors

Let V be a vector space.

Definition

Vectors vi,..., vk € V are said to be linearly dependent if there

exist real numbers asq, ..., o, not all of which are 0 such that
arvy + ...+ agve = 0.

Vectors vi,..., vk € V are said to be linearly independent if they

are not linearly dependent.



Linearly (In)dependent Vectors

Let V be a vector space.

Definition

Vectors vi,..., vk € V are said to be linearly dependent if there

exist real numbers asq, ..., o, not all of which are 0 such that
arvy + ...+ agve = 0.

Vectors vi,..., vk € V are said to be linearly independent if they

are not linearly dependent.

By definition, vectors vy, ..., v, are linearly independent if
a1vy + ...+ agve = 0 implies that oy = ... = a = 0.



Linearly (In)dependent Vectors

Let V be a vector space.

Definition
Vectors vi,..., vk € V are said to be linearly dependent if there
exist real numbers asq, ..., o, not all of which are 0 such that

arvy + ...+ agve = 0.

Vectors vi,..., vk € V are said to be linearly independent if they
are not linearly dependent.

By definition, vectors vy, ..., v, are linearly independent if
a1vy + ...+ agve = 0 implies that oy = ... = a = 0.

Linear independence does not depend on the order of vectors hence
we may talk about independent (finite) sets.



Linearly (In)dependent Vectors

Let V be a vector space.

Definition
Vectors vi,..., vk € V are said to be linearly dependent if there
exist real numbers asq, ..., o, not all of which are 0 such that

arvy + ...+ agve = 0.

Vectors vi,..., vk € V are said to be linearly independent if they
are not linearly dependent.

By definition, vectors vy, ..., v, are linearly independent if
a1vy + ...+ agve = 0 implies that oy = ... = a = 0.

Linear independence does not depend on the order of vectors hence
we may talk about independent (finite) sets. We assume that
empty set is linearly independent.



Examples

i) vectors (1,1,2),(1,1,0),(2,2,1) € R? are linearly dependent
because (1,1,2) + 3(1,1,0) —2(2,2,1) = (0,0,0),
i) vectors (1,2),(0,1) € R? are linearly independent,



Examples

i) vectors (1,1,2),(1,1,0),(2,2,1) € R3 are linearly dependent
because (1,1,2) + 3(1,1,0) —2(2,2,1) = (0,0,0),

i) vectors (1,2),(0,1) € R? are linearly independent,

(0

iii) vectors (1,2),(0,1),(0,0) € R? are linearly dependent,



Examples

i) vectors (1,1,2),(1,1,0),(2,2,1) € R? are linearly dependent
because (1,1,2) + 3(1,1,0) — 2(2,2,1) = (0,0,0),

,2), (

2), (

2), (

iv) vectors (1,2),

0,1)e R2 are linearly independent,
0,1),(0,0) € R? are linearly dependent,
2.4

,4) € R? are linearly dependent,

1
(1
ii) vectors (1
i) vectors (1,
1



Examples

i) vectors (1,1,2),(1,1,0),(2,2,1) € R? are linearly dependent
because (1,1,2) +3(1,1,0) — 2(2,2,1) = (0,0, 0),

i) vectors (1,2),(0,1) € R? are linearly independent,

iii) vectors (1,2),(0,1),(0,0) € R? are linearly dependent,

iv) vectors (1,2), (2,4) € R? are linearly dependent,

I
v) vector ¢; = (0,...,0,1,0,...,0) € R” with 1 at the i-th
coordinate and 0 elsewhere is called unit vector. Vectors
€1,...,&p are linearly independent.
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Properties

Proposition
Single vector v € V s linearly independent if and only if v # 0.

Proposition
Any subset of a set of linearly independent vectors is linearly
independent.

Proposition
A set of at least two vectors is linearly dependent if and only if one
vector is a linear combination of the others.
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Steinitz's (Exchange) Theorem

Theorem (Steinitz's Theorem)

If vectors wi, ..., wm € lin(vi, ..., vy) are linearly independent then
m < n.

We postpone the proof of this theorem until the end of the lecture.

For example, since R” = lin(ey,...,e,) any independent set of
vectors in R” has at most n elements.
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Definition
Vectors vi,...,v, € V form a basis of the vector space V if:
i) they are linearly independent,

i) V=lin(vi,...,vp), i.e. they span V.

In general, a vector space can have many bases.
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Examples

i) vectors (1,2),(0,1) € R? form a basis of R?,
ii) vectors (1,0),(0,1) € R? form a basis of R?,
iii) vectors e1,...,&, form a basis of R". It is called the standard
basis,

iv) the set of solutions of a homogeneous system of linear
equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 0's.
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Example

Consider the following general solution of a homogeneous system
X1 = 2x0 + 4xa + X5

of linear equations:
X3 = — 3x34 — X

The free variables are xp, x4 and xs. By substituting

xp =1,x4 = x5 =0 and then x4 = 1,x = x5 = 0 and

x5 = 1,x0 = x4 = 0 we get three vectors
(2,1,0,0,0),(4,0,—3,1,0),(1,0,—1,0,1) which form a basis of
the space of all solution. In fact, every solution can be uniquely
written in the form

(2X2 +4xq4 + X5, X2, _3X4 - X5,X47X5) =
X2(2, 1,0,0, 0) + X4(4, 0,-3,1, 0) —i—X5(17 0,-1,0, 1), X2, X4, X5 € R.
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Dimension

Proposition
If a vector space V' has a basis consisting of n vectors than any
other basis has n vectors.

Definition

A vector space V is said to be n-dimensional if it has basis
consisting of n vectors. We write dimV = n and say n is
dimension of V. It is assumed that dim{0} = 0. A
finite-dimensional vector space is a space of dimension 0,1,2...,
otherwise it is infinite-dimensional and we write dim V = oo.
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Examples

i) dimR" = n,

i) if Vy < R" is a subspace consisting of solutions of a
homogeneous system of linear equations U then dim V|, =the
number of free variables,

iii) dimR® = oo since it contains arbitrarily many independent
vectors.
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Let vi,...,vkr1 € V and let vq,..., vk be linearly independent
vectors. Then

Vi,...,Vky1 are linearly independent < vy i1 ¢ lin(va, ..., vg).
Proof.
(<) Assume that agvs + ... + ak+1vk+1 = 0. Then aky1 =0, by
the assumption. Vectors vy, ..., v, are linearly independent hence
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Linear Independence and Linear Span

Proposition
Let vi,...,vkr1 € V and let vq,..., vk be linearly independent
vectors. Then

Vi,...,Vky1 are linearly independent < vy i1 ¢ lin(va, ..., vg).

Proof.

(<) Assume that agvs + ... + ak+1vk+1 = 0. Then aky1 =0, by
the assumption. Vectors vy, ..., v, are linearly independent hence
a; =...=q, =0. (=>) if vigp1 € |il’l(V17 R Vk) then there exists
a linear combination of v, ..., vk, vki1 equal to 0 with non-zero
coefficients. O
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Proposition
Let V be a vector space. The following conditions are equivalent:
i) vectors vi,...,v, form a basis of V,
i) vectors vi,...,v, form a minimal set spanning V,
iii) vectors vi,...,v, form a maximal linearly independent set in
V.

i) = ii) basis is a set spanning V/, if removing say v,,, makes it a
smaller set spanning V/, then by the previous Proposition

Vo € lin(vi, ..., vao1),

i) = iii) a minimal set spanning V must be linearly independent
since otherwise you could make it smaller by removing dependent
vectors, it is maximal linearly independent set in V' again by the
previous Proposition,

iii) = i) it is enough to show that vi,..., v, span V, if they do
not, by the previous Proposition, you could make it bigger
contradicting maximality.
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Proposition
Let vq,...,vgx € V are independent vectors. Then
i) k<dimV,
i) vi,...,vx form a basis of V if and only if k = dim V.

i) if W < V is a subspace then dim W < dim V. If
dimW =dimV then V = W,

iv) dimlin(vy, ..., v) = k.
Proof.
i) by the Steinitz's Theorem,
i) («)if k=dimV and vxy1 € V\lin(vy,...,vk) then one can

find dim V' + 1 linearly independent vectors in V/,

i) as in i),



Properties (continued)

Proposition
Let vq,...,vgx € V are independent vectors. Then
i) k<dimV,
i) vi,...,vx form a basis of V if and only if k = dim V.

i) if W < V is a subspace then dim W < dim V. If
dimW =dimV then V = W,

iv) dimlin(vy, ..., v) = k.
Proof.
i) by the Steinitz's Theorem,
i) («)if k=dimV and vxy1 € V\lin(vy,...,vk) then one can

find dim V' + 1 linearly independent vectors in V/,
i) as in i),

iv) by definition.
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independent vi, ..., vk € V such that lin(vy,...,vg) = V.

Proof.

Since V # {0} there exists vi € V,v; # 0 and lin(v;) c V.
Assume vectors vi,...,v, € V are linearly independent and
lin(vi,...,v,) & V. If v,11 € V\Ilin(wvq,...,Vv,) then by the above
Proposition vy, ..., v, v,41 are linearly independent and
lin(vi,...,v,+1) € V. This cannot continue forever as by

Steinitz's Theorem there are at most n linearly independent vectors
in R". []



Subspaces of R”

Proposition

Let V < R" V % {0} be a subspace. Then there exist linearly
independent vi, ..., vk € V such that lin(vy,...,vg) = V.

Proof.

Since V # {0} there exists vi € V,v; # 0 and lin(v;) c V.
Assume vectors vi,...,v, € V are linearly independent and
lin(vi,...,v,) & V. If v,11 € V\Ilin(wvq,...,Vv,) then by the above
Proposition vy, ..., v, v,41 are linearly independent and
lin(vi,...,v,+1) € V. This cannot continue forever as by
Steinitz's Theorem there are at most n linearly independent vectors
in R". []
Corollary

Each subspace of R" has a basis.
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Proposition
Let V =lin(vy,...,vk) and V # {0}. Then there exist numbers
1<ji <jo<...<jm< k such that

i) V= “n(Vj17 ‘/jz7""‘/jm>7

ii) vectors vj, vj,,...,V,, are linearly independent,

'm

i.e. Vj,Vj,...,Vj, isa basis of V.

m
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Let V =lin(vy,...,vk) and V # {0}. Then there exist numbers
1<ji <jo<...<jm< k such that
i) V= “n(Vj17 Vigy e v vs ij>7
ii) vectors vj,, vj,...,V;, are linearly independent,
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Proof.
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Subspaces of R” (continued)

Proposition
Let V =lin(vy,...,vk) and V # {0}. Then there exist numbers
1<ji <jo<...<jm< k such that
i) V= “n(v.i17 Vigy e v vs ij>7
ii) vectors vj,, vj,...,V;, are linearly independent,
i.e. Vj,Vj,...,Vj, isa basis of V.
Proof.

Let 1 < ji < k be the smallest number such that v, # 0. Assume that
there exist numbers 1 < j; < jo < ... < j, < n such that vectors

Viis Vjps - - -, Vj,, are linearly independent and v; € lin(vj,, ..., v;,) for
i < jm. Let jnt1 be the smallest number such that j,, < jm+1 < k and
Vs Elin(vj, ..., vj,), i.e. vectors vj, ..., v, ., are linearly independent.

If there is no such j,.1 then
vielin(vy,...,v,) forany 1 < i<k,

i.e. V =lin(vj,v;,...,vj,) and the proof is finished. O



Coordinates

Proposition

Vectors vi, ..., v, form a basis of V if and only if any vector v e V
can be uniquely written (up to the order of summands) as
V=o1vi+ ...+ QqpVy.



Coordinates

Proposition

Vectors vi, ..., v, form a basis of V if and only if any vector v e V
can be uniquely written (up to the order of summands) as
V=o1vi+ ...+ QqpVy.

Proof.
(=>) basis spans the vector space V/, hence any vector v € V is a
linear combination of v1,...,v,. f v=0aqv1 + ... + a,v, and

v=7»vi+ ...+ Bpvythen 0= (a1 — B1)vi + ... + (an — Bn)Vn.
This gives aj = B for i =1,...,n.



Coordinates

Proposition

Vectors vi, ..., v, form a basis of V if and only if any vector v e V
can be uniquely written (up to the order of summands) as
V=o1vi+ ...+ QqpVy.

Proof.
(=>) basis spans the vector space V/, hence any vector v € V is a
linear combination of v1,...,v,. f v=0aqv1 + ... + a,v, and

v=7»vi+ ...+ Bpvythen 0= (a1 — B1)vi + ... + (an — Bn)Vn.
This gives aj = B for i =1,...,n.

(<) By assumption vy, ..., v, span the vector space V. To prove
they are linearly independent take v = 0. O
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Let B = (v1,..., V) be an ordered basis of V. If
v=aivi+ ...+ a,v, the unique numbers aq,...,a, are called
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For example, let B = (e1,e2,£3), 8" = (£2,€3,¢1) and
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B" are 1,1,1 since



Coordinates (continued)

Definition
Let B = (v1,..., V) be an ordered basis of V. If
v=aivi+ ...+ a,v, the unique numbers aq,...,a, are called

the coordinates of v relative to the basis B.

For example, let B = (e1,e2,£3), 8" = (£2,€3,¢1) and

B" = ((0,0,3),(0,2,0),(1,0,0)) be three bases of R3. The
coordinates of the vector v = (1,2, 3) relative to the basis B are
1,2, 3, relative to the basis B’ are 2,3,1 and relative to the basis
B" are 1,1,1 since

(1,2,3) = 1(1,0,0) + 2(0,1,0) + 3(0,0,1),
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Assume that vectors vi, Vo, ..., v € V are linearly independent
and o € R —{0}. Then

i) vectors va, vy, vs, ..., Vv are linearly independent,
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Linear Independence and Elementary Operations

Let V be a vector space.

Proposition
Assume that vectors vi, Vo, ..., v € V are linearly independent
and c € R—{0}. Then

i) vectors va, vy, vs, ..., Vv are linearly independent,

ii) vectors vi + vo, o, v3,..., vk are linearly independent,

i) vectors avy, va,vs, ..., vk are linearly independent.
Proof.
Assume that v, ..., vk are linearly independent. The expression

a1(vi + vo) + agva + aszvz + ... + axvk = 0 can be rewritten as
a1V + (a1 + ag)vQ + a3z + ... +ave =0. By assumption
ar=a1+ax=a3=...=a,=0s0 a; =0. The third case can
be proven in a similar way. O



Linear Independence and Elementary Operations
(continued)

Corollary
Let vi,...,vp€ V and a € R. The vectors vq, ..., v, form a basis
of V if and only if the vectors vi + avs, o, vs,..., Vv, form a basis

of V.
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V =1lin((1,2,1,3),(2,5,6,7), (4,9,8,13)).



Example

Find a basis of the subspace V — R* given by

V =1lin((1,2,1,3),(2,5,6,7), (4,9,8,13)).

1 21 3] no[1 213
256 7| =014 1| —
4 9 8 13 01 4 1
[t 21 3]n2m[1 0 -7 1
01 4 1 01 4 1



Example

Find a basis of the subspace V — R* given by

V =1lin((1,2,1,3),(2,5,6,7), (4,9,8,13)).

1 21 3] no[1 213
256 7| =014 1| —
4 9 8 13 01 4 1
[t 21 3]n2m[1 0 -7 1
01 4 1 01 4 1

o

The vectors (1,0,—7,1),(0,1,4,1) are linearly independent.



Example

Find a basis of the subspace V — R* given by

V =1lin((1,2,1,3),(2,5,6,7), (4,9,8,13)).

1 21 3] no[1 213
256 7| =014 1| —
4 9 8 13 01 4 1
_)1 3r1;)%10—71
1 01 4 1

The vectors (1,0,—7,1),(0,1,4,1) are linearly independent. From
the previous lecture it follows that

V =1lin((1,0,~7,1),(0,1,4,1)),

therefore B = ((1,0,—7,1),(0,1,4,1)) is a basis of the subspace
V.



Example (continued)

Note that the vectors (1,2,1,3),(2,5,6,7),(4,9,8,13) do not
form a basis of V since they are linearly dependent

2(1’27 173) + (2357677) - (4’958a 13) = (0’07070)3

or equivalently, the reduced echelon form of a matrix with rows
equal to vectors (1,2,1,3),(2,5,6,7),(4,9,8,13) has a zero row.



Row and Column Spaces

Definition
For any matrix A€ M(m x n;R), where A = [aj;], the row space
of matrix A is the subspace of R” spanned by the rows of A, i.e.

rowsp(A) = lin ((311, a1, ..., al,,), (321, dno, ..., 32,,), ey

ooy (@miy@m2, -y amn)) € R™.



Row and Column Spaces

Definition
For any matrix A€ M(m x n;R), where A = [aj;], the row space
of matrix A is the subspace of R” spanned by the rows of A, i.e.

rowsp(A) = lin ((311, a1, ..., al,,), (321, dno, ..., 32,,), ey

ooy (@miy@m2, -y amn)) € R™.

The column space of matrix A is the subspace of R™ spanned by
the columns of A, i.e.

colsp(A) = lin ((a11, @21, - - - am1), (812,322, - - -, Am2), - - -

ooy (a1ny @2ny .-y @mn)) < R™.



Null Space

Definition
The null space (or nullspace) of matrix A is the subspace
N(A) < R" equal to the set of solutions of a homogeneous system

of linear equations given by A, i.e.

axa  + apxe + + 31X 0
a1x1 + apmxx + ... + amxp =0
amiXt + amexe + ... + ampxn =0

N(A) = {v e R" | v is a solution of U}.



Row and Column Spaces, Null Space (continued)

Example
If

then
rowsp(A) = lin((1,2,3), (3,5,7)) c R3,

colsp(A) = lin((1,3),(2,5),(3,7)) < R?,
N(A) = lin((1,-2,1)) c R3,



Proof of Steinitz's (Exchange) Theorem

Theorem (Steinitz's Theorem)

Assume that vectors wy, ..., Wy, € lin(vq,...,v,) = V are linearly
independent.
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Theorem (Steinitz's Theorem)

Assume that vectors w, ..., Wn € lin(vy,...,v,) = V are linearly
independent. Then

i) m< n,

ii) there exist numbers 1 < j1 < jo < ... < jx < n such that
Wi, ..., Wm, Vi, ...,V isa basis of V.

That is, one can extend linearly independent vectors wy,...,wn € V to a
basis of V' using vectors spanning it.



Proof of Steinitz's (Exchange) Theorem

Theorem (Steinitz's Theorem)

Assume that vectors w, ..., Wn € lin(vy,...,v,) = V are linearly
independent. Then

i) m< n,

ii) there exist numbers 1 < j1 < jo < ... < jix < n such that

Wi, ..., Wm, Vi, ...,V isa basis of V.
That is, one can extend linearly independent vectors wy,...,wn € V to a
basis of V' using vectors spanning it.
Proof.
Without loss of generality one can assume that vectors v, ..., v, are
linearly independent (by removing some of them). Assume that
Wi, ..., Wq are linearly independent and m > n. Let aj; € R be the

numbers given by conditions
W, = ajivi + apva + ...+ apvafori=1,...,m

Let A=[a4] fori=1,...,m,j=1,...,n be an m-by-n matrix.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.
Elementary row operations on A correspond to elementary
operations on vectors wy, ..., Wp.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.
Elementary row operations on A correspond to elementary
operations on vectors wy, ..., wn. Let B = [bjj] € M(m x n;R) be

the reduced echelon form of A.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.

Elementary row operations on A correspond to elementary
operations on vectors wy, ..., wn. Let B = [bjj] € M(m x n;R) be
the reduced echelon form of A. Matrix B has no zero row since
that would contradict the assumption that wy, ..., w,, are linearly
independent.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.

Elementary row operations on A correspond to elementary
operations on vectors wy, ..., wn. Let B = [bjj] € M(m x n;R) be
the reduced echelon form of A. Matrix B has no zero row since
that would contradict the assumption that wy, ..., w,, are linearly
independent. If m > n then there are more rows than columns in B
so it has a zero row, therefore m < n.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.

Elementary row operations on A correspond to elementary
operations on vectors wy, ..., wn. Let B = [bjj] € M(m x n;R) be
the reduced echelon form of A. Matrix B has no zero row since
that would contradict the assumption that wy, ..., w,, are linearly
independent. If m > n then there are more rows than columns in B
so it has a zero row, therefore m < n. Let
1<j1<jp<...<jp—m < n be the numbers of columns in B
without pivots.



Proof of Steinitz's (Exchange) Theorem (continued)

Proof.

Elementary row operations on A correspond to elementary
operations on vectors wy, ..., wn. Let B = [bjj] € M(m x n;R) be
the reduced echelon form of A. Matrix B has no zero row since
that would contradict the assumption that wy, ..., w,, are linearly
independent. If m > n then there are more rows than columns in B
so it has a zero row, therefore m < n. Let
1<j1<jp<...<jp—m < n be the numbers of columns in B

without pivots. If we extend matrix B by rows ¢;j,,¢j,,...,€j,_,, to
a square matrix then its reduced echelon form is equal to
1 0
I, = , i.e. elementary row operations on
0 1
Wi,. .., Wm, Vjy,...,V,_, lead to vi,..., v, hence both are bases

of V. O



Bases and Elementary Operations

Proposition

Ifvi,..., vk and wy, ..., wy are two bases of vector space V' then
one can be obtained by a sequence of elementary operations on the
other.



Bases and Elementary Operations

Proposition

Ifvi,..., vk and wy, ..., wy are two bases of vector space V' then
one can be obtained by a sequence of elementary operations on the
other.

Proof.

Let Ae M(n x n;R) be the square matrix as in the above proof.
Then its reduced echelon form has no zero rows so it is equal to
1. O]



Sum of Subspaces

Definition
Let V, W < R" be subspaces. The set

V4+W={v+weR"|veV, we W} cR"

is a subspace of R" called the sum of V and W.
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subspace V' and subspace W .



Sum of Subspaces

Definition
Let V, W < R" be subspaces. The set

V4+W={v+weR"|veV, we W} cR",
is a subspace of R" called the sum of V and W.

Proposition

The subspace V + W is the smallest subspace of R" containing
subspace V' and subspace W .

Proof.
Any subspace containing V and W contains, by definition,
V+W.



Dimension of Sum of Subspaces

Proposition
Let V,W < R" be subspaces. Then

dim(V+ W) =dimV +dimW —dimV n W.



Dimension of Sum of Subspaces

Proposition
Let V,W < R" be subspaces. Then

dim(V+ W) =dimV +dimW —dimV n W.
Proof.
Let uy,...,u, € R" be a basis of V n W which by (the Steinitz's
theorem) can be extended by some vectors vi,...,vs € R" to a

basis of V' and by some vectors wy, ..., w; € R” to a basis of W,
i.e.

dmVnW=r, dmV =r+s, dmW =r+t
Obviously

lin(ug, ... Up,viyooo Ve, W, ..o W) =V + W.



Dimension of Sum of Subspaces (continued)

Proof.
It is enough to show that vectors vy, ... U, vi, ..., Vs, Wy, ..., W
are linearly independent.



Dimension of Sum of Subspaces (continued)

Proof.

It is enough to show that vectors vy, ..., U V1, ..., Vs, Wy, ...

are linearly independent.

Assume
r s t
aiui+ Y Bivi+ Y yiwi = 0.
i=1 i=1 i=1
Then
r s t
Zaiui+2ﬁiw = —Z%Wie VnW,
i=1 i=1

i=1
. . r / / . . .
i.e. it is equal to }}/_; ofju; for some o € R, which implies

B1=...=Bs=0.



Dimension of Sum of Subspaces (continued)

Proof.
It is enough to show that vectors vy, ..., U V1, ..., Vs, Wy, ...
are linearly independent.

Assume
r S t
aiui+ Y Bivi+ Y yiwi = 0.
i=1 i=1 i=1
Then
r s t
Zaiui+2ﬁiw = —Z%Wie VW,
i=1 i=1 i=1
i.e. it is equal to >;;_; afu; for some o} € R, which implies

B1=...= s =0. Analogously 73 = ... =~ = 0 and finally
a1 =...=a, =0.



Dimension of Sum of Subspaces (continued)

Proof

Equivalently, consider linear transformation
s:VxWs(v,w)—v+weR"

Then
kers=Vnn W, ims=V+ W,

hence
dim(V x W) =dim V +dim W = dimkers + dimims =

=dimV n W +dim(V + W).



Direct Sum

Definition
Let V, W < R” be subspaces. The space R" is a direct sum of
the subspaces V and W if

) V+W=R"
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Direct Sum

Definition
Let V, W < R” be subspaces. The space R" is a direct sum of
the subspaces V and W if

i) V+W=R",
i) VnW=/{0}.
Remark

IfR" s a direct sum of V and W it is denoted by
Vo Ww=R"

It follows that
dimV +dimW = n.



Direct Sum (continued)

Proposition

Let V,W < R" be subspaces. The following conditions are
equivalent

) Ve W =R",



Direct Sum (continued)

Proposition
Let V,W < R" be subspaces. The following conditions are
equivalent

i) VeW =R",

ii) for any u € R" there exist unique v € V, w € W such that

u=v+w,



Direct Sum (continued)

Proposition
Let V,W < R" be subspaces. The following conditions are
equivalent

i) VeW =R",

ii) for any u € R" there exist unique v € V, w € W such that

u=v+w,
i) if (vi,...,vk) is a basis of the subspace V' and
(Wi,...,Wn_k) is a basis of the subspace W then

(Vl, ey Vg W1, el Wn—k) is a basis of R".



Direct Sum (continued)

Proposition
Let V,W < R" be subspaces. The following conditions are
equivalent

i) VeW =R",

ii) for any u € R" there exist unique v € V, w € W such that

u=v+w,
i) if (vi,...,vk) is a basis of the subspace V' and
(Wi,...,Wn_k) is a basis of the subspace W then
(Vl, ey Vg W1, el Wn—k) is a basis of R".

Proof.

Exercise.
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Direct Sum — Examples
R? = lin((1,2)) ®lin((1,3)),
R3 = lin((1,0,1),(2,0,3)) ®1in((0,1,1,)),

M(n x n;R) = Sym(n x n;R) @ Skew(n x nm; R),

where
Sym(nx mR) ={Ae M(nx nR) | A= AT},

Skew(n x mR) ={Ae M(nx mR) | A= —AT},
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where
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because
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Direct Sum — Examples
R? = lin((1,2)) ®lin((1, 3)),
R3 = lin((1,0,1),(2,0,3)) ®1in((0,1,1,)),

M(n x n;R) = Sym(n x n;R) @ Skew(n x nm; R),

where
Sym(nx mR) ={Ae M(nx nR) | A= AT},
Skew(n x mR) ={Ae M(nx mR) | A= —AT},
because
Ao A+ AT N A— AT
2 2

and if A€ Sym(n x n;R) n Skew(n x n;R) then

A=—-AT=—-A = 2A=0.



Direct Sum (continued)

Proposition
Let Vi,...,V, c V be subspaces of a vector space V. The
following conditions are equivalent
a) for any v € V there exist unique vectors vi € Vi, ..., v, € V),
such that

V=vi+...+ Vs

b) the following conditions hold
) Vi+...+V,=V,
i) Vin(Vi+...+ Vi1 + Vi +...+ V,) = {0}, for

i=1,...,n.



Direct Sum (continued)

Proposition
Let Vi,...,V, c V be subspaces of a vector space V. The
following conditions are equivalent
a) for any v € V there exist unique vectors vi € Vi, ..., v, € V),
such that

V=vi+...+ Vs

b) the following conditions hold
) Vi+...+V,=V,
i) Vin(Vi+...+ Vi1 + Vi +...+ V,) = {0}, for

i=1,...,n.

If the above holds we say that V is a direct sum of its subspaces
Vi,..., V, and write

V=Vi® @V,



Direct Sum (continued)
Proof.

(=) exercise



Direct Sum (continued)
Proof.

(=) exercise
(<) it is enough to prove uniqueness. Fix i € {1,...,n}. If

V=vi+...+ Vp,

v=v{+...+vn,

where v;,vi € V for j=1,...,n, then
V,'—V,-,= ( —V1)+ +( —V;_1)+(V,-,+1—V,'+1)+...+(V,/7—V,,),
therefore

vi—vieVin(Vi+...4+Vioi+ Vi +...+ V,) = {0},

hence

/
V,' - Vi'



Matroid

Definition
Matroid M is an ordered pair (E,Z) consisting of a finite set E
and a family Z of subsets of E such that

i) JeT,
i) if Ac Band BeZ then AeZ,

iii) if A,BeZ and |A| < |B| (i.e. there are less elements in A)
then there exists e € B\A such that Au {e} € Z.

Elements of E are called points, the set E is called the ground
set, sets A € 7 are called independent sets and sets A ¢ 7 are
called dependent sets.

Example
Let E = {1,...,n} and for some m > 0 let

T ={Ac E||E| <m}.

This is the uniform matroid U, ,.



Representable Matroid

Proposition
Let Ae M(m x n;R) be a matrix. Let E = {1,...,n} and

Z ={J < E | columns of A indexed by J are linearly independent}.

Then (E,Z) is a matroid.



Representable Matroid

Proposition
Let Ae M(m x n;R) be a matrix. Let E = {1,...,n} and

T = {J c E | columns of A indexed by J are linearly independent}.

Then (E,Z) is a matroid.
Proof.

Let A= {wi,...,wx}, B ={vi,..., v}, where w;,v; € R™ and
| > k. By the Steinitz's Exchange Lemma applied to

Wi, .., Wik Elin(wy, oo wi, v, vy) =V

linearly independent vectors wi, ..., wy can be extended to a basis
of V/, by some vectors vy, ..., v where dimV > /. ]



Representable Matroid

Definition

Any matroid isomorphic (i.e. there exists a bijection of ground sets
preserving independent sets) is called to be representable (or
linear) over R.

Remark

There exist matroids which are not representable over any field
(see Vamos matroid or non—Pappus matroid). Therefore the notion
of matroid generalizes the abstract notion of linear independence.



Bases and Circuits

Let M = (E,Z) be a matroid.

Definition

A set B € 7 such that if B< B, B’ € 7 then B = B’ (that is
maximal independent set) is called a basis of M. A set C ¢ 7 such
that if C' = C then C’ € Z (that is minimal dependent set) is
called a circuit of M.

Proposition
If B, B’ are bases of matroid M then |B| = |B|.

Remark

In a representable matroid given by matrix A basis B correspond to
columns which are basis of colsp(A). In the uniform matroid Up, 5
basis is any subset of cardinality m.



Bases and Circuits (continued)

Proposition

Let C,C’ < E be two different circuits of the matroid M = (E,T)
and let e € C n C'. Then there exists a circuit C" < (C u C')\{e}.



Bases and Circuits (continued)

Proof.

Assume on the contrary (C U C’)\{e} does not contain any circuit,
that is all its subsets are independent, in particular

(Cu C')\{e} € Z. It is impossible that C" = C so choose some

f e C'\C. It follows that C'\{f} € Z is independent. Consider a

family
{AcCuC|C\{flcAand AcT}.

This family is non—empty and finite so it contains a maximal
element /. Obviously f ¢ | (otherwise C' < [ but / is independent
and C’ is not). It is impossible that C < / so choose some

g € C\I. Therefore f,g¢ I but f ¢ C and g € C hence f # g and

1< |(CoCNF.gll =]CuC-2<|(Cu e}l

By the condition iii) / can be extended to an independent set by
some element of (C u C")\{e} which contradicts it maximality. [J



Bases and Circuits (continued)

Proposition
Let | € T and let e € E such that | U {e} ¢ Z. Then there exists a
unique circuit C such that C | U {e}.

Proof.
It is clear that such circuit C exists and that for any such circuit
e € C. Assume that there a two circuits C, C’ < [ U {e}. Then
e€ C n C’ and there exists a circuit C” < (C u C’)\{e} which is
not possible as C” ¢ /.
L]

Remark
If | = B is a basis then it is enough that e € E\B. In such case the
unique C is called the fundamental circuit of e with respect to B.



Greedy Algorithm

Assume there is a function w: E — R on the ground set of some
matroid M = (E,Z). For any Ac E let w(A) = > .o w(e). The
following algorithm is called the Greedy Algorithm.
i) set A=,
i) let
F={ee E\A|Au{e} eT},
if F = then STOP,
iii) choose e € F with maximal weight w(e), assign A — A U {e}
and go to step ii)
That is, at each steep choose point e with maximal weight which
preserves independence of A.



Greedy Algorithm (continued)

Proposition
The greedy algorithm returns a basis B of M with maximal weight
w(B), i.e. w(B) = w(B’) for any other basis B'.

Proof.

Say B ={ei1,...,e} and B' = {fi,...,f;} where B = A was
returned by the greedy algorithm and w(f;) = w(fi;1). Then

w(e;) = w(f;) for any i (which proves the statement). Assume
otherwise there exists the least k > 2 such that w(ex) < w(fy).
Let h = {e1,...,ex—1}, b ={f,..., fk}. There exists f; € h\h
such that 1 U {fj} € Z. But w(f;) > w(fx) > w(ex). But then at
the k-iteration the greedy algorithm would choose f; instead of e
(note that f ¢ I1). O



Greedy Algorithm (continued)

Proposition
Let T be a family of subsets of a finite set E such that
i) JeZ,
i) ifAc Band BeT then AcZ,
iii) for any weight function w: E — R yields a maximal element
of T of maximal weight (among other maximal elements).
Then M = (E,T) is a matroid".

Proof.
It is enough to check condition iii). Let A, B € Z and let |A| < |B|.
It follows that

[A\B| < [B\A.

Assume that for each e € B\A the set AU {e} ¢ 7 is dependent.

'based on J. Oxley Matroid Theory



Greedy Algorithm (continued)

Proof.
Fix € > 0 such that

and weight function

1 ee A
w(e) =<e eeB\A
0 otherwise

The greedy algorithms picks all elements from A and then, by the
assumption, some elements of weight 0 so it yields the total weight
equal to w(A). Choose maximal independent set B’ such that

B’ o> B. Then

[A\B

w(B') = w(B) =|An B|+¢c|B\A| > |An B| + BAl

[B\Al =

= |An B| + |A\B| = w(A).



Rank and Span
Let M = (E,Z) be a matroid.

Definition
For any B ¢ E let
r(B) = max{|A| | Ac B, Ae T},

be the rank of a subset B, i.e. the largest size of an independent
subset.
For any B ¢ E let

span(B) = {e€e E | r(Bu{e}) =r(B)},
be the span (or closure) of the set B.

Remark

In a representable matroid rank is equal to the dimension of the
column space (columns indexed by B) and the span consists of all
columns contained in the column space given by B.



Rank and Span (continued)

Proposition

Forany Bc E
r(span(B)) = r(B).

Proof.

Obviously B < span(B) hence r(B) < r(span(B)) (independent
subset of B are subsets of span(B)). Assume the inequality is
strict, i.e. there exists independent set A  span(B) such that
r(B) < |A|. Let A’ c B be the independent subset of B such that
r(B) = |A’|. By the condition iii) there exists e € A\A’ such that
B U {e} € Z. This contradicts that e € span(B) (adding e to B
raises its rank). O



Spanning Set

Definition
A set B c E is spanning if r(B) = r(E).

Remark

Obviously r(B) < r(E) for any B < E and r(E) is equal to a
cardinality of any basis. Hence B is spanning if and only if it
contains a basis.



Basis

Proposition
Let B < E, where M = (E,T) is a matroid. The following

conditions are equivalent
i) B is a basis,
ii) B is maximal independent set,

)
iii) B is spanning independent set,
)

iv) B is minimal spanning set.

Proof.

ii) is definition of i). ii)=iii) condition r(B) < r(E) is impossible
as any two bases are of the same cardinality, iii)=>iv) any subset
B' < B, B’ # B is independent hence

r(B") = |B'| < |B| = r(B) = r(E) so it cannot be spanning.
iv)=>i) B is spanning so it contains a basis B’ but any basis is
spanning so B’ = B.



