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Linearly (In)dependent Vectors

Let V be a vector space.

Definition
Vectors v1, . . . , vk P V are said to be linearly dependent if there
exist real numbers α1, . . . , αk , not all of which are 0 such that

α1v1 ` . . . ` αkvk “ 0.

Vectors v1, . . . , vk P V are said to be linearly independent if they
are not linearly dependent.
By definition, vectors v1, . . . , vk are linearly independent if
α1v1 ` . . . ` αkvk “ 0 implies that α1 “ . . . “ αk “ 0.

Linear independence does not depend on the order of vectors hence
we may talk about independent (finite) sets. We assume that
empty set is linearly independent.
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Examples

i) vectors p1, 1, 2q, p1, 1, 0q, p2, 2, 1q P R3 are linearly dependent
because p1, 1, 2q ` 3p1, 1, 0q ´ 2p2, 2, 1q “ p0, 0, 0q,

ii) vectors p1, 2q, p0, 1q P R2 are linearly independent,

iii) vectors p1, 2q, p0, 1q, p0, 0q P R2 are linearly dependent,
iv) vectors p1, 2q, p2, 4q P R2 are linearly dependent,

v) vector εi “ p0, . . . , 0,
i
q1, 0, . . . , 0q P Rn with 1 at the i-th

coordinate and 0 elsewhere is called unit vector. Vectors
ε1, . . . , εn are linearly independent.
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Properties

Proposition
Single vector v P V is linearly independent if and only if v ‰ 0.

Proposition
Any subset of a set of linearly independent vectors is linearly
independent.

Proposition
A set of at least two vectors is linearly dependent if and only if one
vector is a linear combination of the others.
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Steinitz’s (Exchange) Theorem

Theorem (Steinitz’s Theorem)
If vectors w1, . . . , wm P linpv1, . . . , vnq are linearly independent then
m ď n.

We postpone the proof of this theorem until the end of the lecture.

For example, since Rn “ linpε1, . . . , εnq any independent set of
vectors in Rn has at most n elements.
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Basis

Definition
Vectors v1, . . . , vn P V form a basis of the vector space V if:

i) they are linearly independent,
ii) V “ linpv1, . . . , vnq, i.e. they span V .

In general, a vector space can have many bases.
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Examples

i) vectors p1, 2q, p0, 1q P R2 form a basis of R2,

ii) vectors p1, 0q, p0, 1q P R2 form a basis of R2,
iii) vectors ε1, . . . , εn form a basis of Rn. It is called the standard

basis,
iv) the set of solutions of a homogeneous system of linear

equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 01s.



Examples

i) vectors p1, 2q, p0, 1q P R2 form a basis of R2,
ii) vectors p1, 0q, p0, 1q P R2 form a basis of R2,

iii) vectors ε1, . . . , εn form a basis of Rn. It is called the standard
basis,

iv) the set of solutions of a homogeneous system of linear
equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 01s.



Examples

i) vectors p1, 2q, p0, 1q P R2 form a basis of R2,
ii) vectors p1, 0q, p0, 1q P R2 form a basis of R2,
iii) vectors ε1, . . . , εn form a basis of Rn. It is called the standard

basis,

iv) the set of solutions of a homogeneous system of linear
equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 01s.



Examples

i) vectors p1, 2q, p0, 1q P R2 form a basis of R2,
ii) vectors p1, 0q, p0, 1q P R2 form a basis of R2,
iii) vectors ε1, . . . , εn form a basis of Rn. It is called the standard

basis,
iv) the set of solutions of a homogeneous system of linear

equations is a vector space, its basis can be computed by
substituting subsequently each free variable with 1 and the
other free variables with 01s.



Example

Consider the following general solution of a homogeneous system

of linear equations:
"

x1 “ 2x2 ` 4x4 ` x5
x3 “ ´ 3x4 ´ x5

The free variables are x2, x4 and x5. By substituting
x2 “ 1, x4 “ x5 “ 0 and then x4 “ 1, x2 “ x5 “ 0 and
x5 “ 1, x2 “ x4 “ 0 we get three vectors
p2, 1, 0, 0, 0q, p4, 0, ´3, 1, 0q, p1, 0, ´1, 0, 1q which form a basis of
the space of all solution. In fact, every solution can be uniquely
written in the form

p2x2 ` 4x4 ` x5, x2, ´3x4 ´ x5, x4, x5q “

x2p2, 1, 0, 0, 0q ` x4p4, 0, ´3, 1, 0q ` x5p1, 0, ´1, 0, 1q, x2, x4, x5 P R.
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Dimension

Proposition
If a vector space V has a basis consisting of n vectors than any
other basis has n vectors.

Definition
A vector space V is said to be n-dimensional if it has basis
consisting of n vectors. We write dim V “ n and say n is
dimension of V . It is assumed that dimt0u “ 0. A
finite-dimensional vector space is a space of dimension 0, 1, 2 . . .,
otherwise it is infinite-dimensional and we write dim V “ 8.
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Examples

i) dimRn “ n,

ii) if VU Ă Rn is a subspace consisting of solutions of a
homogeneous system of linear equations U then dim VU “the
number of free variables,

iii) dimR8 “ 8 since it contains arbitrarily many independent
vectors.
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Linear Independence and Linear Span

Proposition
Let v1, . . . , vk`1 P V and let v1, . . . , vk be linearly independent
vectors. Then

v1, . . . , vk`1 are linearly independent ô vk`1 R linpv1, . . . , vkq.

Proof.
pðq Assume that α1v1 ` . . . ` αk`1vk`1 “ 0. Then αk`1 “ 0, by
the assumption. Vectors v1, . . . , vk are linearly independent hence
α1 “ . . . “ αk “ 0. pñq if vk`1 P linpv1, . . . , vkq then there exists
a linear combination of v1, . . . , vk , vk`1 equal to 0 with non-zero
coefficients.
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Properties
Proposition
Let V be a vector space. The following conditions are equivalent:

i) vectors v1, . . . , vn form a basis of V ,

ii) vectors v1, . . . , vn form a minimal set spanning V ,
iii) vectors v1, . . . , vn form a maximal linearly independent set in

V .

iq ñ iiq basis is a set spanning V , if removing say vn, makes it a
smaller set spanning V , then by the previous Proposition
vn R linpv1, . . . , vn´1q,
iiq ñ iiiq a minimal set spanning V must be linearly independent
since otherwise you could make it smaller by removing dependent
vectors, it is maximal linearly independent set in V again by the
previous Proposition,
iiiq ñ iq it is enough to show that v1, . . . , vn span V , if they do
not, by the previous Proposition, you could make it bigger
contradicting maximality.
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Properties (continued)
Proposition
Let v1, . . . , vk P V are independent vectors. Then

i) k ď dim V ,

ii) v1, . . . , vk form a basis of V if and only if k “ dim V .
iii) if W Ă V is a subspace then dim W ď dim V . If

dim W “ dim V then V “ W ,
iv) dim linpv1, . . . , vkq “ k.

Proof.

i) by the Steinitz’s Theorem,
ii) pðq if k “ dim V and vk`1 P V z linpv1, . . . , vkq then one can

find dim V ` 1 linearly independent vectors in V ,

iii) as in iiq,
iv) by definition.
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Subspaces of Rn

Proposition
Let V Ă Rn, V ‰ t0u be a subspace. Then there exist linearly
independent v1, . . . , vk P V such that linpv1, . . . , vkq “ V .

Proof.
Since V ‰ t0u there exists v1 P V , v1 ‰ 0 and linpv1q Ă V .
Assume vectors v1, . . . , vr P V are linearly independent and
linpv1, . . . , vr q Ĺ V . If vr`1 P V z linpv1, . . . , vr q then by the above
Proposition v1, . . . , vr , vr`1 are linearly independent and
linpv1, . . . , vr`1q Ă V . This cannot continue forever as by
Steinitz’s Theorem there are at most n linearly independent vectors
in Rn.

Corollary
Each subspace of Rn has a basis.
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Subspaces of Rn (continued)
Proposition
Let V “ linpv1, . . . , vkq and V ‰ t0u. Then there exist numbers
1 ď j1 ă j2 ă . . . ă jm ď k such that

i) V “ linpvj1 , vj2 , . . . , vjm q,

ii) vectors vj1 , vj2 , . . . , vjm are linearly independent,

i.e. vj1 , vj2 , . . . , vjm is a basis of V .

Proof.
Let 1 ď j1 ď k be the smallest number such that vj1 ‰ 0.

Assume that
there exist numbers 1 ď j1 ă j2 ă . . . ă jm ă n such that vectors
vj1 , vj2 , . . . , vjm are linearly independent and vi P linpvj1 , . . . , vjm q for
i ď jm.

Let jm`1 be the smallest number such that jm ă jm`1 ď k and
vjm`1 R linpvj1 , . . . , vjm q, i.e. vectors vj1 , . . . , vjm`1 are linearly independent.
If there is no such jm`1 then

vi P linpvj1 , . . . , vjm q for any 1 ď i ď k,

i.e. V “ linpvj1 , vj2 , . . . , vjm q and the proof is finished.
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Coordinates

Proposition
Vectors v1, . . . , vn form a basis of V if and only if any vector v P V
can be uniquely written (up to the order of summands) as
v “ α1v1 ` . . . ` αnvn.

Proof.
pñq basis spans the vector space V , hence any vector v P V is a
linear combination of v1, . . . , vn. If v “ α1v1 ` . . . ` αnvn and
v “ β1v1 ` . . . ` βnvn then 0 “ pα1 ´ β1qv1 ` . . . ` pαn ´ βnqvn.
This gives αi “ βi for i “ 1, . . . , n.
pðq By assumption v1, . . . , vn span the vector space V . To prove
they are linearly independent take v “ 0.



Coordinates

Proposition
Vectors v1, . . . , vn form a basis of V if and only if any vector v P V
can be uniquely written (up to the order of summands) as
v “ α1v1 ` . . . ` αnvn.

Proof.
pñq basis spans the vector space V , hence any vector v P V is a
linear combination of v1, . . . , vn. If v “ α1v1 ` . . . ` αnvn and
v “ β1v1 ` . . . ` βnvn then 0 “ pα1 ´ β1qv1 ` . . . ` pαn ´ βnqvn.
This gives αi “ βi for i “ 1, . . . , n.

pðq By assumption v1, . . . , vn span the vector space V . To prove
they are linearly independent take v “ 0.



Coordinates

Proposition
Vectors v1, . . . , vn form a basis of V if and only if any vector v P V
can be uniquely written (up to the order of summands) as
v “ α1v1 ` . . . ` αnvn.

Proof.
pñq basis spans the vector space V , hence any vector v P V is a
linear combination of v1, . . . , vn. If v “ α1v1 ` . . . ` αnvn and
v “ β1v1 ` . . . ` βnvn then 0 “ pα1 ´ β1qv1 ` . . . ` pαn ´ βnqvn.
This gives αi “ βi for i “ 1, . . . , n.
pðq By assumption v1, . . . , vn span the vector space V . To prove
they are linearly independent take v “ 0.



Coordinates (continued)

Definition
Let B “ pv1, . . . , vnq be an ordered basis of V . If
v “ α1v1 ` . . . ` αnvn the unique numbers α1, . . . , αn are called
the coordinates of v relative to the basis B.

For example, let B “ pε1, ε2, ε3q, B1 “ pε2, ε3, ε1q and
B2 “ pp0, 0, 3q, p0, 2, 0q, p1, 0, 0qq be three bases of R3. The
coordinates of the vector v “ p1, 2, 3q relative to the basis B are
1, 2, 3, relative to the basis B1 are 2, 3, 1 and relative to the basis
B2 are 1, 1, 1 since

p1, 2, 3q “ 1p1, 0, 0q ` 2p0, 1, 0q ` 3p0, 0, 1q,

p1, 2, 3q “ 2p0, 1, 0q ` 3p0, 0, 1q ` 1p1, 0, 0q,

p1, 2, 3q “ 1p0, 0, 3q ` 1p0, 2, 0q ` 1p1, 0, 0q.
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Coordinates (continued)

Definition
Let B “ pv1, . . . , vnq be an ordered basis of V . If
v “ α1v1 ` . . . ` αnvn the unique numbers α1, . . . , αn are called
the coordinates of v relative to the basis B.
For example, let B “ pε1, ε2, ε3q, B1 “ pε2, ε3, ε1q and
B2 “ pp0, 0, 3q, p0, 2, 0q, p1, 0, 0qq be three bases of R3. The
coordinates of the vector v “ p1, 2, 3q relative to the basis B are
1, 2, 3, relative to the basis B1 are 2, 3, 1 and relative to the basis
B2 are 1, 1, 1 since

p1, 2, 3q “ 1p1, 0, 0q ` 2p0, 1, 0q ` 3p0, 0, 1q,

p1, 2, 3q “ 2p0, 1, 0q ` 3p0, 0, 1q ` 1p1, 0, 0q,

p1, 2, 3q “ 1p0, 0, 3q ` 1p0, 2, 0q ` 1p1, 0, 0q.



Linear Independence and Elementary Operations

Let V be a vector space.

Proposition
Assume that vectors v1, v2, . . . , vk P V are linearly independent
and α P R ´ t0u. Then

i) vectors v2, v1, v3, . . . , vk are linearly independent,

ii) vectors v1 ` v2, v2, v3, . . . , vk are linearly independent,
iii) vectors αv1, v2, v3, . . . , vk are linearly independent.

Proof.
Assume that v1, . . . , vk are linearly independent. The expression
α1pv1 ` v2q ` α2v2 ` α3v3 ` . . . ` αkvk “ 0 can be rewritten as
α1v1 ` pα1 ` α2qv2 ` α3v3 ` . . . ` αkvk “ 0. By assumption
α1 “ α1 ` α2 “ α3 “ . . . “ αk “ 0 so αi “ 0. The third case can
be proven in a similar way.
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Linear Independence and Elementary Operations
(continued)

Corollary
Let v1, . . . , vn P V and α P R. The vectors v1, . . . , vn form a basis
of V if and only if the vectors v1 ` αv2, v2, v3, . . . , vn form a basis
of V .



Example
Find a basis of the subspace V Ă R4 given by

V “ linpp1, 2, 1, 3q, p2, 5, 6, 7q, p4, 9, 8, 13qq.

»

–

1 2 1 3
2 5 6 7
4 9 8 13

fi

fl

r2´2r1
r3´4r1
ÝÑ

»

–

1 2 1 3
0 1 4 1
0 1 4 1

fi

fl ÝÑ

ÝÑ

„

1 2 1 3
0 1 4 1

ȷ

r1´2r2
ÝÑ

„

1 0 ´7 1
0 1 4 1

ȷ

The vectors p1, 0, ´7, 1q, p0, 1, 4, 1q are linearly independent. From
the previous lecture it follows that

V “ linpp1, 0, ´7, 1q, p0, 1, 4, 1qq,

therefore B “ pp1, 0, ´7, 1q, p0, 1, 4, 1qq is a basis of the subspace
V .
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V “ linpp1, 2, 1, 3q, p2, 5, 6, 7q, p4, 9, 8, 13qq.

»

–

1 2 1 3
2 5 6 7
4 9 8 13

fi

fl

r2´2r1
r3´4r1
ÝÑ

»

–

1 2 1 3
0 1 4 1
0 1 4 1

fi

fl ÝÑ

ÝÑ

„

1 2 1 3
0 1 4 1

ȷ

r1´2r2
ÝÑ

„

1 0 ´7 1
0 1 4 1

ȷ

The vectors p1, 0, ´7, 1q, p0, 1, 4, 1q are linearly independent. From
the previous lecture it follows that

V “ linpp1, 0, ´7, 1q, p0, 1, 4, 1qq,

therefore B “ pp1, 0, ´7, 1q, p0, 1, 4, 1qq is a basis of the subspace
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Example (continued)

Note that the vectors p1, 2, 1, 3q, p2, 5, 6, 7q, p4, 9, 8, 13q do not
form a basis of V since they are linearly dependent

2p1, 2, 1, 3q ` p2, 5, 6, 7q ´ p4, 9, 8, 13q “ p0, 0, 0, 0q,

or equivalently, the reduced echelon form of a matrix with rows
equal to vectors p1, 2, 1, 3q, p2, 5, 6, 7q, p4, 9, 8, 13q has a zero row.



Row and Column Spaces

Definition
For any matrix A P Mpm ˆ n;Rq, where A “ raij s, the row space
of matrix A is the subspace of Rn spanned by the rows of A, i.e.

rowsppAq “ lin ppa11, a12, . . . , a1nq, pa21, a22, . . . , a2nq, . . . ,

. . . , pam1, am2, . . . , amnqq Ă Rn.

The column space of matrix A is the subspace of Rm spanned by
the columns of A, i.e.

colsppAq “ lin ppa11, a21, . . . , am1q, pa12, a22, . . . , am2q, . . .

. . . , pa1n, a2n, . . . , amnqq Ă Rm.
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Null Space

Definition
The null space (or nullspace) of matrix A is the subspace
NpAq Ă Rn equal to the set of solutions of a homogeneous system
of linear equations given by A, i.e.

U :

$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` . . . ` a1nxn “ 0
a21x1 ` a22x2 ` . . . ` a2nxn “ 0

...
... . . . ...

...
am1x1 ` am2x2 ` . . . ` amnxn “ 0

NpAq “ tv P Rn | v is a solution of Uu.



Row and Column Spaces, Null Space (continued)

Example
If

A “

„

1 2 3
3 5 7

ȷ

,

then

rowsppAq “ linpp1, 2, 3q, p3, 5, 7qq Ă R3,

colsppAq “ linpp1, 3q, p2, 5q, p3, 7qq Ă R2,

NpAq “ linpp1, ´2, 1qq Ă R3.



Proof of Steinitz’s (Exchange) Theorem
Theorem (Steinitz’s Theorem)
Assume that vectors w1, . . . , wm P linpv1, . . . , vnq “ V are linearly
independent.

Then

i) m ď n,

ii) there exist numbers 1 ď j1 ă j2 ă . . . ă jk ď n such that
w1, . . . , wm, vj1 , . . . , vjk is a basis of V .

That is, one can extend linearly independent vectors w1, . . . , wm P V to a
basis of V using vectors spanning it.

Proof.
Without loss of generality one can assume that vectors v1, . . . , vn are
linearly independent (by removing some of them). Assume that
w1, . . . , wm are linearly independent and m ą n. Let aij P R be the
numbers given by conditions

wi “ ai1v1 ` ai2v2 ` . . . ` ainvn for i “ 1, . . . , m.

Let A “ raij s for i “ 1, . . . , m, j “ 1, . . . , n be an m-by-n matrix.
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Proof of Steinitz’s (Exchange) Theorem (continued)

Proof.
Elementary row operations on A correspond to elementary
operations on vectors w1, . . . , wm.

Let B “ rbij s P Mpm ˆ n;Rq be
the reduced echelon form of A. Matrix B has no zero row since
that would contradict the assumption that w1, . . . , wm are linearly
independent. If m ą n then there are more rows than columns in B
so it has a zero row, therefore m ď n. Let
1 ď j1 ă j2 ă . . . ă jn´m ď n be the numbers of columns in B
without pivots. If we extend matrix B by rows εj1 , εj2 , . . . , εjn´m to
a square matrix then its reduced echelon form is equal to

In “

»

—

–

1 0
. . .

0 1

fi

ffi

fl

, i.e. elementary row operations on

w1, . . . , wm, vj1 , . . . , vjn´m lead to v1, . . . , vn hence both are bases
of V .
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Proof of Steinitz’s (Exchange) Theorem (continued)
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Bases and Elementary Operations

Proposition
If v1, . . . , vk and w1, . . . , wk are two bases of vector space V then
one can be obtained by a sequence of elementary operations on the
other.

Proof.
Let A P Mpn ˆ n;Rq be the square matrix as in the above proof.
Then its reduced echelon form has no zero rows so it is equal to
In.
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Sum of Subspaces

Definition
Let V , W Ă Rn be subspaces. The set

V ` W “ tv ` w P Rn | v P V , w P W u Ă Rn,

is a subspace of Rn called the sum of V and W .

Proposition
The subspace V ` W is the smallest subspace of Rn containing
subspace V and subspace W .

Proof.
Any subspace containing V and W contains, by definition,
V ` W .
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Sum of Subspaces
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Dimension of Sum of Subspaces
Proposition
Let V , W Ă Rn be subspaces. Then

dimpV ` W q “ dim V ` dim W ´ dim V X W .

Proof.
Let u1, . . . , ur P Rn be a basis of V X W which by (the Steinitz’s
theorem) can be extended by some vectors v1, . . . , vs P Rn to a
basis of V and by some vectors w1, . . . , wt P Rn to a basis of W ,
i.e.

dim V X W “ r , dim V “ r ` s, dim W “ r ` t.

Obviously

linpu1, . . . , ur , v1, . . . , vs , w1, . . . , wtq “ V ` W .
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Dimension of Sum of Subspaces (continued)

Proof.
It is enough to show that vectors u1, . . . , ur , v1, . . . , vs , w1, . . . , wt
are linearly independent.

Assume
r
ÿ

i“1
αiui `

s
ÿ

i“1
βivi `

t
ÿ

i“1
γiwi “ 0.

Then
r
ÿ

i“1
αiui `

s
ÿ

i“1
βivi “ ´

t
ÿ

i“1
γiwi P V X W ,

i.e. it is equal to
řr

i“1 α1
iui for some α1

i P R, which implies
β1 “ . . . “ βs “ 0. Analogously γ1 “ . . . “ γt “ 0 and finally
α1 “ . . . “ αr “ 0.
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Dimension of Sum of Subspaces (continued)

Proof.
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Dimension of Sum of Subspaces (continued)

Proof.
Equivalently, consider linear transformation

s : V ˆ W Q pv , wq ÞÑ v ` w P Rn.

Then
ker s – V X W , im s “ V ` W ,

hence

dimpV ˆ W q “ dim V ` dim W “ dim ker s ` dim im s “

“ dim V X W ` dimpV ` W q.



Direct Sum

Definition
Let V , W Ă Rn be subspaces. The space Rn is a direct sum of
the subspaces V and W if

i) V ` W “ Rn,

ii) V X W “ t0u.

Remark
If Rn is a direct sum of V and W it is denoted by

V ‘ W “ Rn.

It follows that
dim V ` dim W “ n.
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Direct Sum (continued)

Proposition
Let V , W Ă Rn be subspaces. The following conditions are
equivalent

i) V ‘ W “ Rn,

ii) for any u P Rn there exist unique v P V , w P W such that

u “ v ` w ,

iii) if pv1, . . . , vkq is a basis of the subspace V and
pw1, . . . , wn´kq is a basis of the subspace W then
pv1, . . . , vk , w1, . . . , wn´kq is a basis of Rn.

Proof.
Exercise.
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Direct Sum – Examples

R2 “ linpp1, 2qq ‘ linpp1, 3qq,

R3 “ linpp1, 0, 1q, p2, 0, 3qq ‘ linpp0, 1, 1, qq,

Mpn ˆ n;Rq “ Sympn ˆ n;Rq ‘ Skewpn ˆ n;Rq,

where

Sympn ˆ n;Rq “ tA P Mpn ˆ n;Rq | A “ A⊺u,

Skewpn ˆ n;Rq “ tA P Mpn ˆ n;Rq | A “ ´A⊺u,

because
A “

A ` A⊺

2 `
A ´ A⊺

2 ,

and if A P Sympn ˆ n;Rq X Skewpn ˆ n;Rq then

A “ ´A⊺ “ ´A ñ 2A “ 0.
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A “ ´A⊺ “ ´A ñ 2A “ 0.



Direct Sum – Examples

R2 “ linpp1, 2qq ‘ linpp1, 3qq,

R3 “ linpp1, 0, 1q, p2, 0, 3qq ‘ linpp0, 1, 1, qq,

Mpn ˆ n;Rq “ Sympn ˆ n;Rq ‘ Skewpn ˆ n;Rq,
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Skewpn ˆ n;Rq “ tA P Mpn ˆ n;Rq | A “ ´A⊺u,
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A “

A ` A⊺

2 `
A ´ A⊺

2 ,

and if A P Sympn ˆ n;Rq X Skewpn ˆ n;Rq then

A “ ´A⊺ “ ´A ñ 2A “ 0.



Direct Sum (continued)

Proposition
Let V1, . . . , Vn Ă V be subspaces of a vector space V . The
following conditions are equivalent

a) for any v P V there exist unique vectors v1 P V1, . . . , vn P Vn
such that

v “ v1 ` . . . ` vn.

b) the following conditions hold
i) V1 ` . . . ` Vn “ V ,
ii) Vi X pV1 ` . . . ` Vi´1 ` Vi`1 ` . . . ` Vnq “ t0u, for

i “ 1, . . . , n.

If the above holds we say that V is a direct sum of its subspaces
V1, . . . , Vn and write

V “ V1 ‘ ¨ ¨ ¨ ‘ Vn.
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Direct Sum (continued)
Proof.
pñq exercise

pðq it is enough to prove uniqueness. Fix i P t1, . . . , nu. If

v “ v1 ` . . . ` vn,

v “ v 1
1 ` . . . ` v 1

n,

where vj , v 1
j P V for j “ 1, . . . , n, then

vi ´v 1
i “ pv 1

1´v1q`. . .`pv 1
i´1´vi´1q`pv 1

i`1´vi`1q`. . .`pv 1
n´vnq,

therefore

vi ´ v 1
i P Vi X pV1 ` . . . ` Vi´1 ` Vi`1 ` . . . ` Vnq “ t0u,

hence
vi “ v 1

i .
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v “ v1 ` . . . ` vn,

v “ v 1
1 ` . . . ` v 1

n,

where vj , v 1
j P V for j “ 1, . . . , n, then
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Matroid
Definition
Matroid M is an ordered pair pE , Iq consisting of a finite set E
and a family I of subsets of E such that

i) H P I,
ii) if A Ă B and B P I then A P I,
iii) if A, B P I and |A| ă |B| (i.e. there are less elements in A)

then there exists e P BzA such that A Y teu P I.
Elements of E are called points, the set E is called the ground
set, sets A P I are called independent sets and sets A R I are
called dependent sets.

Example
Let E “ t1, . . . , nu and for some m ě 0 let

I “ tA Ă E | |E | ď mu.

This is the uniform matroid Um,n.



Representable Matroid

Proposition
Let A P Mpm ˆ n;Rq be a matrix. Let E “ t1, . . . , nu and

I “ tJ Ă E | columns of A indexed by J are linearly independentu.

Then pE , Iq is a matroid.

Proof.
Let A “ tw1, . . . , wku, B “ tv1, . . . , vlu, where wi , vi P Rm and
l ą k. By the Steinitz’s Exchange Lemma applied to

w1, . . . , wk P linpw1, . . . , wk , v1, . . . , vlq “ V ,

linearly independent vectors w1, . . . , wk can be extended to a basis
of V , by some vectors v1, . . . , vl where dim V ě l .
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Representable Matroid

Definition
Any matroid isomorphic (i.e. there exists a bijection of ground sets
preserving independent sets) is called to be representable (or
linear) over R.

Remark
There exist matroids which are not representable over any field
(see Vámos matroid or non–Pappus matroid). Therefore the notion
of matroid generalizes the abstract notion of linear independence.



Bases and Circuits

Let M “ pE , Iq be a matroid.

Definition
A set B P I such that if B Ă B1, B1 P I then B “ B1 (that is
maximal independent set) is called a basis of M. A set C R I such
that if C 1 Ă C then C 1 P I (that is minimal dependent set) is
called a circuit of M.

Proposition
If B, B1 are bases of matroid M then |B| “ |B1|.

Remark
In a representable matroid given by matrix A basis B correspond to
columns which are basis of colsppAq. In the uniform matroid Um,n
basis is any subset of cardinality m.



Bases and Circuits (continued)

Proposition
Let C , C 1 Ă E be two different circuits of the matroid M “ pE , Iq

and let e P C X C 1. Then there exists a circuit C2 Ă pC Y C 1qzteu.



Bases and Circuits (continued)

Proof.
Assume on the contrary pC Y C 1qzteu does not contain any circuit,
that is all its subsets are independent, in particular
pC Y C 1qzteu P I. It is impossible that C 1 Ă C so choose some
f P C 1zC . It follows that C 1ztf u P I is independent. Consider a
family

␣

A Ă C Y C 1 | C 1ztf u Ă A and A P I
(

.

This family is non–empty and finite so it contains a maximal
element I. Obviously f R I (otherwise C 1 Ă I but I is independent
and C 1 is not). It is impossible that C Ă I so choose some
g P CzI. Therefore f , g R I but f R C and g P C hence f ‰ g and

|I| ď
∣∣pC Y C 1qztf , gu

∣∣ “
∣∣C Y C 1

∣∣ ´ 2 ă
∣∣pC Y C 1qzteu

∣∣.
By the condition iii) I can be extended to an independent set by
some element of pC Y C 1qzteu which contradicts it maximality.



Bases and Circuits (continued)

Proposition
Let I P I and let e P E such that I Y teu R I. Then there exists a
unique circuit C such that C Ă I Y teu.

Proof.
It is clear that such circuit C exists and that for any such circuit
e P C . Assume that there a two circuits C , C 1 Ă I Y teu. Then
e P C X C 1 and there exists a circuit C2 Ă pC Y C 1qzteu which is
not possible as C2 Ć I.

Remark
If I “ B is a basis then it is enough that e P EzB. In such case the
unique C is called the fundamental circuit of e with respect to B.



Greedy Algorithm

Assume there is a function w : E Ñ R on the ground set of some
matroid M “ pE , Iq. For any A Ă E let wpAq “

ř

ePA wpeq. The
following algorithm is called the Greedy Algorithm.

i) set A “ H,
ii) let

F “ te P EzA | A Y teu P Iu,

if F “ H then STOP,
iii) choose e P F with maximal weight wpeq, assign A Ð A Y teu

and go to step ii)
That is, at each steep choose point e with maximal weight which
preserves independence of A.



Greedy Algorithm (continued)

Proposition
The greedy algorithm returns a basis B of M with maximal weight
wpBq, i.e. wpBq ě wpB1q for any other basis B1.

Proof.
Say B “ te1, . . . , er u and B1 “ tf1, . . . , fr u where B “ A was
returned by the greedy algorithm and wpfiq ě wpfi`1q. Then
wpeiq ě wpfiq for any i (which proves the statement). Assume
otherwise there exists the least k ě 2 such that wpekq ă wpfkq.
Let I1 “ te1, . . . , ek´1u, I2 “ tf1, . . . , fku. There exists fj P I2zI1
such that I1 Y tfju P I. But wpfjq ě wpfkq ą wpekq. But then at
the k-iteration the greedy algorithm would choose fj instead of ek
(note that fk R I1).



Greedy Algorithm (continued)

Proposition
Let I be a family of subsets of a finite set E such that

i) H P I,
ii) if A Ă B and B P I then A P I,
iii) for any weight function w : E Ñ R yields a maximal element

of I of maximal weight (among other maximal elements).
Then M “ pE , Iq is a matroid1.

Proof.
It is enough to check condition iii). Let A, B P I and let |A| ă |B|.
It follows that

|AzB| ă |BzA|.

Assume that for each e P BzA the set A Y teu R I is dependent.

1based on J. Oxley Matroid Theory



Greedy Algorithm (continued)
Proof.
Fix ε ą 0 such that

|AzB|
|BzA|

ă ε ă 1,

and weight function

wpeq “

$

&

%

1 e P A
ε e P BzA
0 otherwise

The greedy algorithms picks all elements from A and then, by the
assumption, some elements of weight 0 so it yields the total weight
equal to wpAq. Choose maximal independent set B1 such that
B1 Ą B. Then

wpB1q ě wpBq “ |A X B| ` ε|BzA| ą |A X B| `
|AzB|
|BzA|

|BzA| “

“ |A X B| ` |AzB| “ wpAq.



Rank and Span
Let M “ pE , Iq be a matroid.

Definition
For any B Ă E let

rpBq “ maxt|A| | A Ă B, A P Iu,

be the rank of a subset B, i.e. the largest size of an independent
subset.
For any B Ă E let

spanpBq “ te P E | rpB Y teuq “ rpBqu,

be the span (or closure) of the set B.

Remark
In a representable matroid rank is equal to the dimension of the
column space (columns indexed by B) and the span consists of all
columns contained in the column space given by B.



Rank and Span (continued)

Proposition
For any B Ă E

rpspanpBqq “ rpBq.

Proof.
Obviously B Ă spanpBq hence rpBq ď rpspanpBqq (independent
subset of B are subsets of spanpBq). Assume the inequality is
strict, i.e. there exists independent set A Ă spanpBq such that
rpBq ă |A|. Let A1 Ă B be the independent subset of B such that
rpBq “ |A1|. By the condition iii) there exists e P AzA1 such that
B Y teu P I. This contradicts that e P spanpBq (adding e to B
raises its rank).



Spanning Set

Definition
A set B Ă E is spanning if rpBq “ rpE q.

Remark
Obviously rpBq ď rpE q for any B Ă E and rpE q is equal to a
cardinality of any basis. Hence B is spanning if and only if it
contains a basis.



Basis

Proposition
Let B Ă E, where M “ pE , Iq is a matroid. The following
conditions are equivalent

i) B is a basis,
ii) B is maximal independent set,
iii) B is spanning independent set,
iv) B is minimal spanning set.

Proof.
ii) is definition of i). ii)ñiii) condition rpBq ă rpE q is impossible
as any two bases are of the same cardinality, iii)ñiv) any subset
B1 Ă B, B1 ‰ B is independent hence
rpB1q “ |B1| ă |B| “ rpBq “ rpE q so it cannot be spanning.
iv)ñi) B is spanning so it contains a basis B1 but any basis is
spanning so B1 “ B.


