Linear Algebra Lecture 2 - Vector Spaces

Oskar Kędzierski

9 October 2023

A **vector space** V (or **linear space**) over the real numbers is a set V of objects, called vectors, equipped with two operations:

A **vector space** V (or **linear space**) over the real numbers is a set V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,

A **vector space** V (or **linear space**) over the real numbers is a set V of objects, called vectors, equipped with two operations:

- i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,
- ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,

A **vector space** V (or **linear space**) over the real numbers is a set V of objects, called vectors, equipped with two operations:

- i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,
- ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,

satisfying the following rules:

i) v + w = w + v for any $v, w \in V$ (addition is commutative),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v+w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v+w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
- vii) $\alpha(\beta v) = (\alpha \beta)v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v+w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
- vii) $\alpha(\beta v) = (\alpha \beta)v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),
- viii) 1v = v for any $v \in V$.

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

The following facts are direct consequences of these rules:

- i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.
- ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''.

The following facts are direct consequences of these rules:

- i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.
- ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''.
- iii) $0v = \mathbf{0}$. Consider 0v = (0+0)v = 0v + 0v. Hence $\mathbf{0} = (0v + 0v) + (-0v)$, that is $\mathbf{0} = 0v$.

The following facts are direct consequences of these rules:

- i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.
- ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''.
- iii) $0v = \mathbf{0}$. Consider 0v = (0+0)v = 0v + 0v. Hence $\mathbf{0} = (0v + 0v) + (-0v)$, that is $\mathbf{0} = 0v$.
- iv) (-1)v = -v. Consider $\mathbf{0} = (1-1)v = v + (-1)v$. But -v is unique, hence (-1)v = -v.

The following facts are direct consequences of these rules:

- i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.
- ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''.
- iii) $0v = \mathbf{0}$. Consider 0v = (0+0)v = 0v + 0v. Hence $\mathbf{0} = (0v + 0v) + (-0v)$, that is $\mathbf{0} = 0v$.
- iv) (-1)v = -v. Consider $\mathbf{0} = (1-1)v = v + (-1)v$. But -v is unique, hence (-1)v = -v.

You may try to prove in a similar fashion that $\alpha \mathbf{0} = \mathbf{0}$ or that $\alpha \mathbf{v} = \mathbf{0}$ implies $\alpha = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

i) the zero vector space $\{\mathbf{0}\}$,

- i) the zero vector space $\{0\}$,
- ii) the *n*-tuple space \mathbb{R}^n , with addition $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$, multiplication $\alpha(x_1,\ldots,x_n)=(\alpha x_1,\ldots,\alpha x_n)$ and the zero vector $\mathbf{0}=(0,\ldots,0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^2=$ plane, $\mathbb{R}^3=$ three-dimensional space.

- i) the zero vector space $\{\mathbf{0}\}$,
- ii) the *n*-tuple space \mathbb{R}^n , with addition $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$, multiplication $\alpha(x_1,\ldots,x_n)=(\alpha x_1,\ldots,\alpha x_n)$ and the zero vector $\mathbf{0}=(0,\ldots,0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^2=$ plane, $\mathbb{R}^3=$ three-dimensional space,
- iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $(x_i) + (y_i) = (x_i + y_i)$, multiplication $\alpha(x_i) = (\alpha x_i)$ and the zero vector $\mathbf{0} = (0, 0, \ldots)$,

- i) the zero vector space $\{\mathbf{0}\}$,
- ii) the *n*-tuple space \mathbb{R}^n , with addition $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$, multiplication $\alpha(x_1,\ldots,x_n)=(\alpha x_1,\ldots,\alpha x_n)$ and the zero vector $\mathbf{0}=(0,\ldots,0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^2=$ plane, $\mathbb{R}^3=$ three-dimensional space,
- iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $(x_i) + (y_i) = (x_i + y_i)$, multiplication $\alpha(x_i) = (\alpha x_i)$ and the zero vector $\mathbf{0} = (0, 0, \ldots)$,
- iv) the space of real functions on any non–empty set X $\mathcal{F}(X,\mathbb{R})=\{f:X\longrightarrow\mathbb{R}\}$ with addition and multiplication defined pointwise: (f+g)(x)=f(x)+g(x) and $(\alpha f)(x)=\alpha f(x)$. The zero vector is the constant function admitting 0 everywhere on X.

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

A subspace W of V is called **proper** if $W \neq V$.

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

A subspace W of V is called **proper** if $W \neq V$. Any subspace is a vector space.

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

It can be shown that any subspace of \mathbb{R}^n is of that form.

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

It can be shown that any subspace of \mathbb{R}^n is of that form. Every subspace contains $\mathbf{0}$.

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

It can be shown that any subspace of \mathbb{R}^n is of that form. Every subspace contains $\mathbf{0}$. Note that the set of solutions of a non-homogeneous system of linear equations is not a subspace since it does not contain $\mathbf{0}$.

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X,\mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X,\mathbb{R})$.

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X,\mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X,\mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$.

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X,\mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X,\mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X,\mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X,\mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W.

Examples (continued)

 $\mathbb{R}_c^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X,\mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X,\mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W. You may try to prove that $U \cup V$ is a subspace of W if and only if $U \subset V$ or $V \subset U$.

Linear Combinations

Let V be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$.

Linear Combinations

Let V be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$. The set of all linear combinations of vectors v_1, \ldots, v_k will be denoted by $\text{lin}(v_1, \ldots, v_k)$.

$$lin(v_1,\ldots,v_k) = \{\alpha_1v_1 + \ldots + \alpha_kv_k \in V \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}.$$

Linear Combinations

Let V be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$. The set of all linear combinations of vectors v_1, \ldots, v_k will be denoted by $\text{lin}(v_1, \ldots, v_k)$.

$$lin(v_1,\ldots,v_k) = \{\alpha_1v_1 + \ldots + \alpha_kv_k \in V \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}.$$

For example, the vector (4,1,3) is a linear combination of vectors $v_1 = (1,0,1), v_2 = (0,1,0), v_3 = (1,-1,0) \in \mathbb{R}^3$ with coefficients 3,2,1, because (4,1,3) = 3(1,0,1) + 2(0,1,0) + (1,-1,0).

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let
$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$
 and $w = \beta_1 v_1 + \dots + \beta_k v_k$. Then $v + w = (\alpha_1 + \beta_1)v_1 + \dots + (\alpha_k + \beta_k)v_k$.

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let
$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$
 and $w = \beta_1 v_1 + \dots + \beta_k v_k$. Then $v + w = (\alpha_1 + \beta_1)v_1 + \dots + (\alpha_k + \beta_k)v_k$.

Proposition

If vector $v \in V$ is a linear combination of vectors $v_1, \ldots, v_k \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let
$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$
 and $w = \beta_1 v_1 + \dots + \beta_k v_k$. Then $v + w = (\alpha_1 + \beta_1)v_1 + \dots + (\alpha_k + \beta_k)v_k$.

Proposition

If vector $v \in V$ is a linear combination of vectors $v_1, \ldots, v_k \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Proof.

Let
$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$
. Then $\alpha v = (\alpha \alpha_1) v_1 + \dots + (\alpha \alpha_k) v_k$.

Corollary

The set $lin(v_1, ..., v_k)$ is a subspace of V.

Corollary

The set $lin(v_1, ..., v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$.

Corollary

The set $lin(v_1, ..., v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$. We say W is **spanned** by the vectors $v_1, ..., v_k$.

Corollary

The set $lin(v_1, ..., v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$. We say W is **spanned** by the vectors $v_1, ..., v_k$.

Corollary

If $w_1, \ldots, w_l \in lin(v_1, \ldots, v_k)$ then

$$lin(w_1,\ldots,w_l)\subset lin(v_1,\ldots,v_k)$$

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold:

i)
$$lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k),$$

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold:

- i) $lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k),$
- ii) $lin(v_1, v_2, ..., v_k) = lin(\alpha v_1, v_2, v_3, ..., v_k),$

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold:

- i) $lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k),$
- ii) $lin(v_1, v_2, ..., v_k) = lin(\alpha v_1, v_2, v_3, ..., v_k),$
- iii) $lin(v_1, v_2, ..., v_k) = lin(v_1 + v_2, v_2, v_3, ..., v_k).$

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold:

- i) $lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k),$
- ii) $lin(v_1, v_2, ..., v_k) = lin(\alpha v_1, v_2, v_3, ..., v_k),$
- iii) $lin(v_1, v_2, ..., v_k) = lin(v_1 + v_2, v_2, v_3, ..., v_k).$

Corollary

We have

$$lin(v_1,\ldots,v_k) = lin(v_1 + \alpha v_2, v_2,\ldots,v_k),$$

that is, elementary operations on vectors do not change the spanned subspace.

Proof.

i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k =$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in lin(\alpha v_1, v_2, \dots, v_k)$.

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = (\alpha \alpha_1) \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(\alpha v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(\alpha v_1) + \alpha_2 v_2 + \ldots + \alpha_k v_k = (\alpha \alpha_1)v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k,$$
hence $v \in \text{lin}(v_1, v_2, \ldots, v_k).$

....(1, 12, 111, 14)

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(v_1 + v_2) + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 v_1 + (\alpha_1 + \alpha_2) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k,$

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(v_1 + v_2) + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 v_1 + (\alpha_1 + \alpha_2) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k,$

hence $v \in lin(v_1, v_2, \dots, v_k)$.

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(v_1 + v_2) + \alpha_2 v_2 + \ldots + \alpha_k v_k = = \alpha_1 v_1 + (\alpha_1 + \alpha_2) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k,$$

hence $v \in \text{lin}(v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(v_1 + v_2) + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 v_1 + (\alpha_1 + \alpha_2) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k,$

hence $v \in \text{lin}(v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 (v_1 + v_2) + (\alpha_2 - \alpha_1) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k$,

Proof.

iii) if $v \in \text{lin}(v_1 + v_2, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1(v_1 + v_2) + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 v_1 + (\alpha_1 + \alpha_2) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k,$

hence $v \in \text{lin}(v_1, v_2, \dots, v_k)$. If $v \in \text{lin}(v_1, v_2, \dots, v_k)$ then there exist $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ such that

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k =$$

= $\alpha_1 (v_1 + v_2) + (\alpha_2 - \alpha_1) v_2 + \alpha_3 v_3 + \ldots + \alpha_k v_k$,

hence $v \in lin(v_1 + v_2, v_2, ..., v_k)$.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, \dots, v_k \in \mathbb{R}^n$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, \dots, v_k \in \mathbb{R}^n$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.

Let $A=[a_{ij}]\in M(k\times n;\mathbb{R})$ be a matrix whose rows are equal to v_1,\ldots,v_k , i.e. $v_1=(a_{11},\ldots,a_{1n}),\ldots,v_k=(a_{k1},\ldots,a_{kn})$. Let $B=[b_{ij}]\in M(k\times n;\mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_1,\ldots,w_k\in\mathbb{R}^n$ are rows of B, i.e. $w_1=(b_{11},\ldots,b_{1n}),\ldots,w_k=(b_{k1},\ldots,b_{kn})$.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, \dots, v_k \in \mathbb{R}^n$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.

Let $A=[a_{ij}]\in M(k\times n;\mathbb{R})$ be a matrix whose rows are equal to v_1,\ldots,v_k , i.e. $v_1=(a_{11},\ldots,a_{1n}),\ldots,v_k=(a_{k1},\ldots,a_{kn})$. Let $B=[b_{ij}]\in M(k\times n;\mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_1,\ldots,w_k\in\mathbb{R}^n$ are rows of B, i.e. $w_1=(b_{11},\ldots,b_{1n}),\ldots,w_k=(b_{k1},\ldots,b_{kn})$. The linear span is invariant under elementary operations, therefore

$$V = lin(v_1, \ldots, v_k) = lin(w_1, \ldots, w_k).$$

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations (continued)

Proof.

For simplicity assume that pivots appear in columns of numbers 1, 2, ..., m, where $m \le k$, i.e.

$$w_{1} = (1, 0, 0, \dots, 0, 0, b_{1m}, b_{1(m+1)}, \dots, b_{1n}),$$

$$w_{2} = (0, 1, 0, \dots, 0, 0, b_{2m}, b_{2(m+1)}, \dots, b_{2n}),$$

$$\vdots$$

$$w_{m} = (0, 0, 0, \dots, 0, 1, b_{km}, b_{k(m+1)}, \dots, b_{1n}),$$
and $w_{m+1} = \dots = w_{k} = \mathbf{0}.$

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations (continued)

Proof. Then

$$V = \ln(v_1, \dots, v_k) = \ln(w_1, \dots, w_m) =$$

$$= \{x_1 w_1 + \dots + x_m w_m \in \mathbb{R}^n \mid x_1, \dots, x_m \in \mathbb{R}\} =$$

$$\{(x_1, x_2, \dots, x_m, b_{1m} x_1 + b_{2m} x_2 + \dots + b_{km} x_m,$$

$$, b_{1(m+1)} x_1 + b_{2(m+1)m} x_2 + \dots + b_{k(m+1)} x_m, \dots$$

$$\dots, b_{1n} x_1 + b_{2n} x_2 + \dots + b_{kn} x_m) \mid x_1, \dots, x_m \in \mathbb{R}\},$$

which is equal to the set of solutions of the system

$$\begin{cases} x_{m+1} &= b_{1m}x_1 + b_{2m}x_2 + \dots + b_{km}x_m, \\ x_{m+2} &= b_{1(m+1)}x_1 + b_{2(m+1)}x_2 + \dots + b_{k(m+1)}x_m, \\ \vdots \\ x_n &= b_{1n}x_1 + b_{2n}x_2 + \dots + b_{kn}x_m, \end{cases}$$

of n-m equations with free variables $x_1, \ldots, x_m \in \mathbb{R}$.

Subspaces and Homogenous Systems of Linear Equations (continued)

Proof.

In general, if the numbers of columns with pivots are equal to $1 \leq j_1 < j_2 < \ldots < j_m \leq n$ then one should consider vector

$$x_{j_1}w_1 + x_{j_2}w_2 + \ldots + x_{j_m}w_m,$$

which leads to a homogeneous system of n-m equations in n unknowns and free variables $x_{j_1}, \ldots, x_{j_m} \in \mathbb{R}$.

Example

Let $V = \text{lin}((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) \subset \mathbb{R}^4$ be a subspace of \mathbb{R}^4 . Find a system of linear equations which set of solutions is equal to V.

Example

Let $V = \text{lin}((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) \subset \mathbb{R}^4$ be a subspace of \mathbb{R}^4 . Find a system of linear equations which set of solutions is equal to V.

Put vectors horizontally in a matrix and perform elementary row operations to get the reduced echelon form (up to column permutation).

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 1 & 4 & 2 & 1 \\ 3 & 8 & 4 & 1 \end{bmatrix} \xrightarrow{r_3 - r_1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

Example (continued)

Any vector in the space V is equal to $x_1(1,2,1,0)+x_4(0,2,1,1)=(x_1,2x_1+2x_4,x_1+x_4,x_4)$ for some $x_1,x_4\in\mathbb{R}$. This is a general solution of the following system of linear equations

$$\begin{cases} x_2 = 2x_1 + 2x_4 \\ x_3 = x_1 + x_4 \end{cases}$$

Example (continued)

Any vector in the space V is equal to $x_1(1,2,1,0)+x_4(0,2,1,1)=(x_1,2x_1+2x_4,x_1+x_4,x_4)$ for some $x_1,x_4\in\mathbb{R}$. This is a general solution of the following system of linear equations

$$\begin{cases} x_2 = 2x_1 + 2x_4 \\ x_3 = x_1 + x_4 \end{cases}$$

The system is equal to

$$\begin{cases} 2x_1 - x_2 + 2x_4 = 0 \\ x_1 - x_3 + x_4 = 0 \end{cases}$$

Remarks

Remark

The system corresponding to the subspace $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ is **not unique**.

Remarks

Remark

The system corresponding to the subspace $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ is **not unique**.

Remark

So far we have shown that

$$\begin{cases} \textit{subspaces} \\ \textit{of } \mathbb{R}^n \end{cases} \supset \begin{cases} \textit{linear spans} \\ \textit{of } v_1, \dots, v_k \in \mathbb{R}^n \end{cases} =$$

$$= \begin{cases} \textit{sets of solutions of} \\ \textit{homogeneous systems of} \\ \textit{linear equations in} \\ \textit{n variables} \end{cases}$$

Remarks

Remark

The system corresponding to the subspace $V = \text{lin}(v_1, \dots, v_k) \subset \mathbb{R}^n$ is **not unique**.

Remark

So far we have shown that

$$\begin{cases} \textit{subspaces} \\ \textit{of } \mathbb{R}^n \end{cases} \supset \begin{cases} \textit{linear spans} \\ \textit{of } v_1, \dots, v_k \in \mathbb{R}^n \end{cases} =$$

$$= \begin{cases} \textit{sets of solutions of} \\ \textit{homogeneous systems of} \\ \textit{linear equations in} \\ \textit{n variables} \end{cases}$$

Later we will show that any subspace $V \subset \mathbb{R}^n$ is equal to a linear span of some vectors $v_1, \ldots, v_k \in \mathbb{R}^n$, that is the first inclusion is an equality.

Hölder and Minkowski Inequalities¹

Proposition (Hölder)

For any p, q > 1 such that

$$\frac{1}{p} + \frac{1}{q} = 1,$$

and any $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$ (or $\in \mathbb{C}^n$)

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

¹For proofs see W. Rudin, Functional Analysis

Hölder and Minkowski Inequalities¹

Proposition (Hölder)

For any p, q > 1 such that

$$\frac{1}{p} + \frac{1}{q} = 1,$$

and any $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$ (or $\in \mathbb{C}^n$)

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

Corollary (Minkowski)

For any $p \ge 1$ and any $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$ (or \mathbb{C}^n)

$$\left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{\frac{1}{p}}.$$

¹For proofs see W. Rudin, Functional Analysis

The Spaces ℓ^1 and ℓ^2

Definition

Let

$$\ell^1 = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_i| < +\infty \right\},$$

$$\ell^2 = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_i|^2 < +\infty \right\},$$

$$\ell^{\infty} = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \text{sequence } (x_i) \text{ is bounded} \right\}.$$

The Spaces ℓ^1 and ℓ^2

Definition

Let

$$\ell^1 = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_i| < +\infty \right\},$$

$$\ell^2 = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_i|^2 < +\infty \right\},$$

$$\ell^{\infty} = \left\{ (x_i) \in \mathbb{R}^{\infty} \mid \text{sequence } (x_i) \text{ is bounded} \right\}.$$

Corollary

The sets $\ell^1,\ell^2,\ell^\infty\subset\mathbb{R}^\infty$ are subspaces and

$$\ell^1 \subsetneq \ell^2 \subsetneq \ell^\infty \subsetneq \mathbb{R}^\infty$$
.

Proof. If
$$(x_i), (y_i) \in \ell^{\infty}$$
 then $|x_i| < M$, $|y_i| < N$, therefore $|x_i + y_i| \le |x_i| + |y_i| < M + N$, $|\alpha x_i| < |\alpha| M$,

for any $\alpha \neq 0$.

Proof.

If $(x_i), (y_i) \in \ell^\infty$ then $|x_i| < M, \ |y_i| < N$, therefore

$$|x_i + y_i| \le |x_i| + |y_i| < M + N,$$
$$|\alpha x_i| < |\alpha|M,$$

for any $\alpha \neq 0$. For ℓ^1 and ℓ^2 , since

$$\sum_{i=1}^{\infty} x_i = \lim_{n \to +\infty} \sum_{i=1}^{n} x_i,$$

it is enough to take limits in the Minkowski inequality for p=1 and p=2, respectively.

Proof. If $\sum_{i=1}^{\infty} |x_i| < \infty$ then $\lim_{i \to +\infty} |x_i| = 0$ and the sequence (x_i) is bounded.

Proof.

If $\sum_{i=1}^{\infty}|x_i|<\infty$ then $\lim_{i\to+\infty}|x_i|=0$ and the sequence (x_i) is bounded. Therefore for i>N, where N is large enough, $|x_i|<1$ and

$$|x_i|^2 \le |x_i|,$$

$$\sum_{i=N+1}^{\infty} |x_i|^2 \le \sum_{i=N+1}^{\infty} |x_i| < \infty,$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty$$
.

Proof.

If $\sum_{i=1}^{\infty}|x_i|<\infty$ then $\lim_{i\to+\infty}|x_i|=0$ and the sequence (x_i) is bounded. Therefore for i>N, where N is large enough, $|x_i|<1$ and

$$|x_i|^2 \le |x_i|,$$

$$\sum_{i=N+1}^{\infty} |x_i|^2 \le \sum_{i=N+1}^{\infty} |x_i| < \infty,$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty$$
.

If $x_i = 1$ then $(x_i) \in \ell^{\infty}$ but $(x_i) \notin \ell^2$.

Proof.

If $\sum_{i=1}^{\infty}|x_i|<\infty$ then $\lim_{i\to+\infty}|x_i|=0$ and the sequence (x_i) is bounded. Therefore for i>N, where N is large enough, $|x_i|<1$ and

$$|x_i|^2 \le |x_i|,$$

$$\sum_{i=N+1}^{\infty} |x_i|^2 \le \sum_{i=N+1}^{\infty} |x_i| < \infty,$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty$$
.

If $x_i = 1$ then $(x_i) \in \ell^{\infty}$ but $(x_i) \notin \ell^2$. If $y_i = \frac{1}{i}$ then $(y_i) \in \ell^2$ but $(y_i) \notin \ell^1$.

$$C(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

$$C(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

$$\mathcal{C}^n(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},$$

$$C(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

$$\mathcal{C}^n(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},$$

$$\mathcal{C}^{\infty}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$$

$$C(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f \text{ is continuous} \},$$

$$\mathcal{C}^n(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},$$

$$\mathcal{C}^{\infty}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},$$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$C(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

$$\mathcal{C}^n(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},$$

$$\mathcal{C}^{\infty}(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous} \},$$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

then

$$\mathcal{H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega) \subset \ldots \subset \mathcal{C}^{2}(\Omega) \subset \mathcal{C}^{1}(\Omega) \subset \mathcal{C}(\Omega) \subset \mathbb{F}(\Omega,\mathbb{R}),$$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$.

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$C(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f \text{ is continuous} \},$$

$$\mathcal{C}^n(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},$$

$$\mathcal{C}^{\infty}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

then

$$\mathcal{H}(\Omega)\subset\mathcal{C}^{\infty}(\Omega)\subset\ldots\subset\mathcal{C}^{2}(\Omega)\subset\mathcal{C}^{1}(\Omega)\subset\mathcal{C}(\Omega)\subset\mathbb{F}(\Omega,\mathbb{R}),$$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$. The first inclusion is a theorem in the theory of harmonic functions.

Homogeneous (Ordinary) Linear Differential Equations

If $X=(a,b)\subset\mathbb{R}$ and

$$V = \{x \in \mathcal{C}^n(X) \mid x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x = 0\},\$$

i.e., V is the set of all functions $x \colon X \to \mathbb{R}$ such that $x \in \mathcal{C}^n(X)$ and

$$x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \ldots + a_n(t)x(t) = 0,$$

for all $t \in X$, where

$$a_i: X \to \mathbb{R}$$
,

are continuous functions then

$$V\subset \mathcal{C}^n(X)$$
,

is a subspace of dimension n.

Grassmannian

This material is meant to be read at the end of the course.

Definition

Grassmanian Gr(k, n) is the set of all subspaces of dimension k in the vector space \mathbb{R}^n , that is

$$Gr(k, n) = \{V \subset \mathbb{R}^n \mid \dim V = k\}.$$

It is possible to identify this set with a smooth algebraic variety (you might think of it a special version of a submanifold of \mathbb{R}^{n^2})

$$Gr(k, n) = \{A \in M(n \times n; \mathbb{R}) \mid A^2 = A, \quad A^{\mathsf{T}} = A, \quad \mathsf{rk} A = k\}.$$

There exists a bijection between subspaces of dimension k of \mathbb{R}^n and matrices as above (exercise). Note that Grassmanian is given by a system of polynomial equations in the entries a_{ij} of matrix $A = [a_{ij}]$.

Grassmannian (continued)

There are several methods of inducing a topology on G(k, n). A metric on Gr(k, n) can be defined by

$$d(V,W) = ||P_V - P_W||,$$

where P_V, P_W are (matrices) of orthogonal projections onto k-dimensional subspaces V and W, respectively and $\|\cdot\|$ is (some) matrix norm.

Using the SVD decomposition it is possible to give interpretation of those distances in the terms of principal angles between the subspaces V and W for $\|\cdot\| = \|\cdot\|_2$ and $\|\cdot\| = \|\cdot\|_F$ (exercise).