Linear Algebra

Lecture 2 - Vector Spaces

Oskar Kedzierski

9 October 2023



Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:



Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors v, w € V
we associate the sum v+ w € V,



Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors v, w € V
we associate the sum v+ w € V,

i) multiplication of vectors by real numbers (scalars), i.e. to
each vector v € V and a real number a € R we associate the
product av € V,



Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors v, w € V
we associate the sum v+ w € V,

i) multiplication of vectors by real numbers (scalars), i.e. to
each vector v € V and a real number a € R we associate the
product av € V,

satisfying the following rules:
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i) v+w=w+v forany v,w € V (addition is commutative),
i) u+(v+w)=(u+v)+wforany u,v,w € V (addition is
associative),
iii) there exists 0 € V (the zero vector) such that v + 0 = v for
any v € V,
iv) for any v € V there exists a vector —v € V such that
v+ (—v)=0,
v) (a+B)v=av+Pvforany o, €Rand v eV
(multiplication is distributive with respect to scalar addition),
vi) a(v+w) =av+aw foranya € R and v,w € V
(multiplication is distributive with respect to vector addition),
vii) a(Bv) = (af)v for any o, B € R and v € V (scalar
multiplication is compatible with multiplication of real
numbers),

viii) 1lv = v forany v € V.
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A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 € V is unique. Suppose there is another
0cV, then0=0+0 =0
i) The element —v € V is unique. Suppose there are v/, v € V
such that v+ v/ = v+ v’ =0. Then
(v+v)+v"=(v+ V") + v but this implies v/ = v".
iii) Ov = 0. Consider Ov = (04 0)v = Ov + Ov. Hence
0 = (Ov + 0v) + (—0v), that is 0 = Ov.
iv) (—1)v = —v. Consider 0 = (1 —1)v = v + (—1)v. But —v is
unique, hence (—1)v = —v.
You may try to prove in a similar fashion that a0 = 0 or that
av =0 impliesa=0o0r v=0.
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Examples

i)
i)

ii)

the zero vector space {0},

the n-tuple space R”, with addition

(Xl,...,Xn) + (yl,...,y,,) = (X1 + Vi, Xn +yn),
multiplication a(xi, ..., x,) = (axi,...,ax,) and the zero
vector 0 = (0,...,0), in particular R =line, R? =plane,

R3 =three-dimensional space,

the space R of infinite sequences of real numbers, with
addition (x;) + (i) = (xi + yi), multiplication a(x;) = (ax;)
and the zero vector 0 = (0,0, ...),

the space of real functions on any non—empty set X
F(X,R) = {f : X — R} with addition and multiplication
defined pointwise: (f + g)(x) = f(x) + g(x) and

(af)(x) = af(x). The zero vector is the constant function
admitting 0 everywhere on X.
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Subspaces

Let V be a vector space. A subspace W of V is a non-empty
subset W C V satisfying two conditions:
i) v+w e W for any v,w € W (subspace is closed under
addition),
i) ave W for any o € R and v € W (subspace is closed under
scalar multiplication).
A subspace W of V is called proper if W # V. Any subspace is a
vector space.
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Examples

The set of solutions of any homogeneous system of linear
equations in n unknowns is a subspace of R”

aiux1 + apxe + ... + ainxp =0
aix1y + axxe + ... + awmxp =0
amix1 + amx> + ... + amnxp, =0

It can be shown that any subspace of R” is of that form. Every
subspace contains 0. Note that the set of solutions of a
non-homogeneous system of linear equations is not a subspace
since it does not contain 0.
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R = {sequences (x;) such that x; = 0 for all but finitely many i}
is a subspace of R,

Let xp € X. Then {f € F(X,R) | f(xg) = 0} is a subspace of
F(X,R).

All proper subspaces of R? are lines through the origin (0,0) and
the zero subspace {(0,0)}. Similarly, all proper subspaces of R3
are planes and lines through the origin (0,0,0) and the zero
subspace {(0,0,0)}.

If U,V C W are subspaces of vector space W, then UN V is a
subspace of W. You may try to prove that U U V is a subspace of
Wiifandonlyif UC Vor VCU.
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Linear Combinations

Let V be a vector space. The linear combination of vectors
Vi,..., Vv € V with coefficients aq,...,a, € R is the vector
+ v = Zf‘zl ajv; € V. The set of all linear

a1vy + ...
combinations of vectors vy, ..., vk will be denoted by
lin(vi, ..., vk).

lin(vi,...,vx) ={aivi +...+axvk € V| ai1,...,ax € R}

For example, the vector (4,1, 3) is a linear combination of vectors
=(1,0,1),v» = (0, 1,0), = (1,—-1,0) € R3 with coefficients
0,

37 2,1, because (4,1,3) = 3(1,0,1) +2(0,1,0) + (1,—1,0).
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Linear Span

Let V be a vector space.

Proposition

If vectors v,w € V are linear combinations of vectors

Vi,...,vx € V thensoisv+ w.

Proof.

Let v=aivi +...akvk and w = B1v1 + ... Bkvk. Then
V—I—WZ(Odl—l-,Bl)Vl—l—...—l-(Odk—l-ﬁk)Vk. ]
Proposition

If vector v € V is a linear combination of vectors vq,...,vx € V
then so is av for any o € R.

Proof.

Let v=aqvi+...akvk. Then av = (aai)vi + ...+ (cag)vk. O
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Corollary

The set lin(v1, ..., vk) is a subspace of V. O
Definition

If W =lin(vy,...,vk) then we call W the linear span of the
vectors vq, ..., vx. We say W is spanned by the vectors vy, ..., v.
Corollary

Ifwi,...,w €lin(va,...,vg) then

lin(wy,...,w) Clin(vy,..., vk)
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Let V be a vector space.

Proposition
For any vi,...,vk € V and o € R — {0} the following hold:

i) |in(V1, Vo, ..., Vk) = Iin(v2, Vi, V3,..., Vk),

i) lin(vi,va,...,vg) = lin(avi, vo, v3,. .., vk),

iii) |in(V1, Vo, ...y Vk) = |in(v1 + wo, Vo, V3,..., Vk).
Corollary
We have

|i|‘1(V17 ey Vk) = |in(v1 +avo,vo,. .., Vk),

that is, elementary operations on vectors do not change the
spanned subspace.
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Proof.
i) arvi +aova + ..o apve = aavo + agvy + ..+ v,
i) if v €lin(vi, va,..., vk) then there exist ag,...,ax € R such
that

651
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Proof.
i) arvi +aova + ..o apve = aavo + agvy + ..+ v,
i) if v €lin(vi, va,..., vk) then there exist ag,...,ax € R such
that

651
v=oa1vi+...Fagv = ;(avl) + anvo + ...+ Vg,

hence v € lin(avi, va,...,vk). If v €lin(avi, va,. .., v)
then there exist aq,...,a, € R such that

v=ai(avr)t+aava+...fakvk = (aar)vi+agva+. . .+agvk,

hence v € lin(vy, va, ..., vk).



Linear Span (continued)

Proof.

i) if v €lin(vi + vo, va, ..., vk) then there exist ay,...,ax € R
such that

v=ai(vi+wv)+ave+...+ov =



Linear Span (continued)

Proof.

i) if v €lin(vi + vo, va, ..., vk) then there exist ay,...,ax € R
such that

v=ai(vi+wv)+ave+...+ov =
= a1V + (Ozl + 042)V2 + a3v3 + ...+ Qi vk,
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Proof.

i) if v €lin(vi + v, va,..., vk) then there exist aq,...,ax € R
such that

v:al(v1+v2)+a2v2+...+akvk =
= a1V + (Ozl + 042)V2 + a3v3 + ...+ Qi vk,

hence v € lin(vy, va, ..., vk).
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such that
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Proof.
i) if v €lin(vi + v, va,..., vk) then there exist aq,...,ax € R
such that
v:ozl(v1+v2)+oz2v2+...+akvk:
= a1V + (Ozl + az)VQ + a3v3 + ...+ Qi vk,
hence v € lin(vy, va,...,vk). If v €lin(vi, v, ..., v) then
there exist aq,...,ax € R such that

V=0o1Vi +QoVvo+ ...+ opve =

= al(vl + V2) + (042 — al)v2 + a3v3 + ...+ Vg,
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Proof.
i) if v €lin(vi + v, va,..., vk) then there exist aq,...,ax € R
such that
v:ozl(v1+v2)+oz2v2+...+akvk:
= a1V + (Ozl + az)VQ + a3v3 + ...+ Qi vk,
hence v € lin(vy, va,...,vk). If v €lin(vi, v, ..., v) then
there exist aq,...,ax € R such that

V=0o1Vi +QoVvo+ ...+ opve =

= al(vl + V2) + (042 — al)v2 + a3v3 + ...+ Vg,

hence v € lin(vy + vo, va, ..., k).
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Vi,...,vx € R" where k > 1. Then there exists a homogeneous

system of linear equations in n variables whose set of solutions is
equal to V.
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Proposition
Let V =lin(va,...,vk) C R" be the linear span of vectors
vi,...,vx € R" where k > 1. Then there exists a homogeneous

system of linear equations in n variables whose set of solutions is
equal to V.

Proof.

Let A = [a;] € M(k x n;R) be a matrix whose rows are equal to
Vi, ..., Vg, i.e. vy = (811,...,31,,),...,Vk = (akh...,ak,,). Let

B = [bjj] € M(k x n;R) be a matrix equal to the reduced echelon
form of A, where wy,...,w, € R" are rows of B, i.e.

wi = (bll,...,bln),...,Wk = (bkla---abkn)-



Subspaces of R” and Homogenous Systems of Linear
Equations

Proposition
Let V =lin(va,...,vk) C R" be the linear span of vectors
vi,...,vx € R" where k > 1. Then there exists a homogeneous

system of linear equations in n variables whose set of solutions is
equal to V.

Proof.

Let A = [a;] € M(k x n;R) be a matrix whose rows are equal to
Vi, ..., Vg, i.e. vy = (811,...,31,,),...,Vk = (akh...,ak,,). Let

B = [bjj] € M(k x n;R) be a matrix equal to the reduced echelon
form of A, where wy,...,w, € R" are rows of B, i.e.

wi = (b11, ..., b1n)y ..., Wk = (bk1, ..., bkn). The linear span is

invariant under elementary operations, therefore

V= |ih(V17 ey Vk) = |in(W17 ey Wk).



Subspaces of R” and Homogenous Systems of Linear
Equations (continued)

Proof.
For simplicity assume that pivots appear in columns of numbers
1,2,...,m, where m < k, i.e.

wip = (1, 0, 0, ey 0,0, blmy bl(m+1)7 ey bln),

W = (07 17 07 R 0707 b2m7 b2(m+1)7 EER) b2n)7

Wm = (070707 sy 07 ]-7 bkm7 bk(m+1)7 DRI bln)7

and Wm+1:...:Wk:0.



Subspaces of R” and Homogenous Systems of Linear
Equations (continued)

Proof.

Then
V =lin(vy,...,vk) =lin(wy,...,wy) =

={awm 4o Wi €R | xq, . xm € R} =
{(x1, X2y« -+ s Xmy, b1mX1 + bamX2 + - . . + bgmXm,
s biminy X1 + bami1ym*2 + - -« + bi(mi1)Xm, - - -
coybinxs + bopxo + oo binXm) | X1, .- Xm € RY

which is equal to the set of solutions of the system

Xmy1 = bimx1 + bomxo + ...+ bimXm,
Xmy2 = bymiyxa + byminxe + ...+ br(mi1)Xm,
Xn = bipxg +  banxo + ...+ binXm,

of n — m equations with free variables xy,...,x, € R.



Subspaces and Homogenous Systems of Linear Equations
(continued)

Proof.
In general, if the numbers of columns with pivots are equal to
1<j1 <jp» <...<jm< nthen one should consider vector

Xjyw1 + Xj,We + ...+ X W,

which leads to a homogeneous system of n — m equations in n
unknowns and free variables x;,, ..., x;, € R. ]



Example

Let V =lin((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) C R* be a
subspace of R*. Find a system of linear equations which set of
solutions is equal to V.



Example

Let V =lin((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) C R* be a
subspace of R*. Find a system of linear equations which set of
solutions is equal to V.

Put vectors horizontally in a matrix and perform elementary row
operations to get the reduced echelon form (up to column
permutation).

1210] [1210
0211 g3 (0211 [1210
1421 0211 0211
38 41 0211



Example (continued)

Any vector in the space V is equal to

x1(1,2,1,0) + x4(0,2,1,1) = (x1,2x1 + 2x4, X1 + X4, xa) for some
x1, x4 € R. This is a general solution of the following system of
linear equations

X2 = 2x1 + 2xg
X3 = x1 + Xz



Example (continued)

Any vector in the space V is equal to

x1(1,2,1,0) + x4(0,2,1,1) = (x1,2x1 + 2x4, X1 + X4, xa) for some
x1, x4 € R. This is a general solution of the following system of
linear equations

X2 = 2x1 + 2xg
X3 = x1 + Xz

The system is equal to

2x1 — X + 2x4 =0
X1 — x3 + x4 =0



Remarks

Remark
The system corresponding to the subspace
V =lin(vq,...,vk) C R" is not unique.
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Remarks

Remark

The system corresponding to the subspace
V =lin(vq,...,vk) C R" is not unique.
Remark

So far we have shown that
subspaces S linear spans _
of R" of vi,...,vy€R" [ —

sets of solutions of
homogeneous systems of

linear equations in
n variables

Later we will show that any subspace V C R" is equal to a linear
span of some vectors v, ..., v, € R", that is the first inclusion is
an equality.



Holder and Minkowski Inequalities!

Proposition (Holder)
For any p,q > 1 such that
1 1

4+ Z=1
p q

)

and any (x1,...,%n), (V1,...,¥n) ER" (ore C")

n n n %
E (z w) (z w) |
i=1 i=1 i=1

o=

For proofs see W. Rudin, Functional Analysis



Holder and Minkowski Inequalities!

Proposition (Holder)
For any p,q > 1 such that
1 1

41
P q

)

and any (x1,...,%n), (V1,...,¥n) ER" (ore C")
1 1
n n b n q
E (z w) (z w) |
i=1 i=1 i=1

Corollary (Minkowski)
For any p > 1 and any (x1,...,%), (V1,---,¥n) € R" (or C")

n n % n %
(zmw) g(zw) +<Z|y,-|*’> |
i=1 i=1 i=1

For proofs see W. Rudin, Functional Analysis

©




The Spaces ¢! and ¢?

Definition
Let

0= {(x,-) R |3 x| < +oo},

i=1
? = {(x,-) € R>| Z |X,-|2 < +oo},
i=1
07 = {(x;) € R*™ | sequence (x;) is bounded} .



The Spaces ¢! and ¢?

Definition
Let

0= {(x,-) R |3 x| < +oo},

i=1

? = {(X,') € R>| Z |X,'|2 < +OO},

i=1
07 = {(x;) € R*™ | sequence (x;) is bounded} .

Corollary
The sets (1,02 1> C R> are subspaces and

0t C P CU® CR™,



The Spaces ¢ and (2 (continued)

Proof.
If (xi), (yi) € £° then |x;| < M, |y;| < N, therefore

Ixi + il < |xi| + |lyi| < M+ N,

laxi| < |a|M,

for any o # 0.



The Spaces ¢ and (2 (continued)

Proof.
If (xi), (yi) € £° then |x;| < M, |y;| < N, therefore

Ixi + il < |xi| + |lyi| < M+ N,

laxi| < |a|M,

for any a # 0. For ¢* and (2, since

o n

E x; = lim E X;,
n—

i—1 too i

it is enough to take limits in the Minkowski inequality for p =1
and p = 2, respectively.



The Spaces ¢ and (2 (continued)

Proof.

If 721 |xi| < oo then lim |x;| =0 and the sequence (x;) is

i——+o00
bounded.



The Spaces ¢ and (2 (continued)

Proof.
If 721 |xi| < oo then lim |x;| =0 and the sequence (x;) is
i——+o00
bounded. Therefore for i > N, where N is large enough, |x;| < 1
and
l® < |,
oo 9 oo
Yo lF< Y kil < oo,
i=N+1 i=N+1

which implies



The Spaces ¢ and (2 (continued)

Proof.
If 721 |xi| < oo then lim |x;| =0 and the sequence (x;) is
i——+00
bounded. Therefore for i > N, where N is large enough, |x;| < 1
and
il < Ixil,
oo 9 oo
S P S el <.
i=N+1 i=N+1
which implies
0t c e

If x; = 1 then (x;) € £° but (x;) & 2.



The Spaces ¢ and (2 (continued)

Proof.
If 721 |xi| < oo then lim |x;| =0 and the sequence (x;) is
i——+00
bounded. Therefore for i > N, where N is large enough, |x;| < 1
and
il < Ixil,
oo 9 oo
S P S el <.
i=N+1 i=N+1
which implies
0t c e

If x; = 1 then (x;) € £° but (x;) & (2. If y; = * then (y;) € £2 but
(vi) ¢ £*. 0



Harmonic Functions/Laplace Equation
Let Q C R” be an open set. If

C(Q)={f: Q— R | fis continuous},
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Harmonic Functions/Laplace Equation
Let Q C R” be an open set. If

C(Q)={f: Q— R | fis continuous},
C"(Q) ={f: Q= R|f, " ... " exist and are continuous},

C®(Q)={f: Q=R |f,f" ... exist and are continuous},

02 f o2



Harmonic Functions/Laplace Equation
Let Q C R” be an open set. If

C(Q)={f: Q— R | fis continuous},

C"(Q) ={f: Q= R|f, " ... " exist and are continuous},

C®(Q)={f: Q=R |f,f" ... exist and are continuous},

H(Q):{fec2(§z) y g2x'g+...+§:=o},
then
H(Q) CC®(Q) C...CC%(Q) ccH) cC() c F(QR),

are subspaces of F(2, R).



Harmonic Functions/Laplace Equation
Let Q C R” be an open set. If

C(Q)={f: Q— R | fis continuous},

C"(Q) ={f: Q= R|f, " ... " exist and are continuous},

C®(Q)={f: Q=R |f,f" ... exist and are continuous},

H(Q) = {fec2(§z) y gi’;+...+§:=o},
then
H(Q) CC®(Q) C...CC%(Q) ccH) cC() c F(QR),

are subspaces of F(,R). The first inclusion is a theorem in the
theory of harmonic functions.



Homogeneous (Ordinary) Linear Differential Equations

If X =(a,b) C R and
V={xeC"(X)|x" +ax(" 1 4 . 4a,x=0}

i.e., V is the set of all functions x: X — R such that x € C"(X)
and
xM(t) + ap (£)x"D(t) 4+ ...+ an(t)x(t) = 0,

for all t € X, where
aj: X — R,

are continuous functions then
vV C C"(X),

is a subspace of dimension n.



Grassmannian

This material is meant to be read at the end of the course.

Definition
Grassmanian Gr(k, n) is the set of all subspaces of dimension k in
the vector space R”, that is

Gr(k,n) ={V C R" | dimV = k}.

It is possible to identify this set with a smooth algebraic variety
(you might think of it a special version of a submanifold of an)

Gr(k,n)={Ac M(nxnmR)|A2=A AT=A rkA=k}

There exists a bijection between subspaces of dimension k of R”
and matrices as above (exercise). Note that Grassmanian is given
by a system of polynomial equations in the entries a;; of matrix



Grassmannian (continued)

There are several methods of inducing a topology on G(k, n). A
metric on Gr(k, n) can be defined by

d(V, W) = |Pv = Pwl|,

where Py, Py, are (matrices) of orthogonal projections onto
k-dimensional subspaces V and W, respectively and ||-|| is (some)
matrix norm.

Using the SVD decomposition it is possible to give interpretation
of those distances in the terms of principal angles between the
subspaces V and W for ||-|| = |||, and [|-|| = ||-||¢ (exercise).



