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Vector Spaces

A vector space V (or linear space) over the real numbers is a set
V of objects, called vectors, equipped with two operations:

i) addition of two vectors, i.e. to each pair of vectors v , w ∈ V
we associate the sum v + w ∈ V ,

ii) multiplication of vectors by real numbers (scalars), i.e. to
each vector v ∈ V and a real number α ∈ R we associate the
product αv ∈ V ,

satisfying the following rules:
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Vector Spaces (continued)
i) v + w = w + v for any v , w ∈ V (addition is commutative),

ii) u + (v + w) = (u + v) + w for any u, v , w ∈ V (addition is
associative),

iii) there exists 0 ∈ V (the zero vector) such that v + 0 = v for
any v ∈ V ,

iv) for any v ∈ V there exists a vector −v ∈ V such that
v + (−v) = 0,

v) (α + β)v = αv + βv for any α, β ∈ R and v ∈ V
(multiplication is distributive with respect to scalar addition),

vi) α(v + w) = αv + αw for any α ∈ R and v , w ∈ V
(multiplication is distributive with respect to vector addition),

vii) α(βv) = (αβ)v for any α, β ∈ R and v ∈ V (scalar
multiplication is compatible with multiplication of real
numbers),

viii) 1v = v for any v ∈ V .
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A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 ∈ V is unique. Suppose there is another

0′ ∈ V , then 0 = 0 + 0′ = 0′.

ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V
such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 ∈ V is unique. Suppose there is another

0′ ∈ V , then 0 = 0 + 0′ = 0′.
ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V

such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 ∈ V is unique. Suppose there is another

0′ ∈ V , then 0 = 0 + 0′ = 0′.
ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V

such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 ∈ V is unique. Suppose there is another

0′ ∈ V , then 0 = 0 + 0′ = 0′.
ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V

such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



A Few Facts

The following facts are direct consequences of these rules:
i) The element 0 ∈ V is unique. Suppose there is another

0′ ∈ V , then 0 = 0 + 0′ = 0′.
ii) The element −v ∈ V is unique. Suppose there are v ′, v ′′ ∈ V

such that v + v ′ = v + v ′′ = 0. Then
(v + v ′) + v ′′ = (v + v ′′) + v ′ but this implies v ′ = v ′′.

iii) 0v = 0. Consider 0v = (0 + 0)v = 0v + 0v . Hence
0 = (0v + 0v) + (−0v), that is 0 = 0v .

iv) (−1)v = −v . Consider 0 = (1 − 1)v = v + (−1)v . But −v is
unique, hence (−1)v = −v .

You may try to prove in a similar fashion that α0 = 0 or that
αv = 0 implies α = 0 or v = 0.



Examples

i) the zero vector space {0},

ii) the n-tuple space Rn, with addition
(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),
multiplication α(x1, . . . , xn) = (αx1, . . . , αxn) and the zero
vector 0 = (0, . . . , 0), in particular R =line, R2 =plane,
R3 =three-dimensional space,

iii) the space R∞ of infinite sequences of real numbers, with
addition (xi) + (yi) = (xi + yi), multiplication α(xi) = (αxi)
and the zero vector 0 = (0, 0, . . .),

iv) the space of real functions on any non–empty set X
F(X ,R) = {f : X −→ R} with addition and multiplication
defined pointwise: (f + g)(x) = f (x) + g(x) and
(αf )(x) = αf (x). The zero vector is the constant function
admitting 0 everywhere on X .
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Subspaces

Let V be a vector space. A subspace W of V is a non-empty
subset W ⊂ V satisfying two conditions:

i) v + w ∈ W for any v , w ∈ W (subspace is closed under
addition),

ii) αv ∈ W for any α ∈ R and v ∈ W (subspace is closed under
scalar multiplication).

A subspace W of V is called proper if W ̸= V . Any subspace is a
vector space.
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Examples

The set of solutions of any homogeneous system of linear
equations in n unknowns is a subspace of Rn

a11x1 + a12x2 + . . . + a1nxn = 0
a21x1 + a22x2 + . . . + a2nxn = 0

...
... . . . ...

...
am1x1 + am2x2 + . . . + amnxn = 0

It can be shown that any subspace of Rn is of that form. Every
subspace contains 0. Note that the set of solutions of a
non-homogeneous system of linear equations is not a subspace
since it does not contain 0.
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Examples (continued)

R∞
c = {sequences (xi) such that xi = 0 for all but finitely many i}

is a subspace of R∞.

Let x0 ∈ X . Then {f ∈ F(X ,R) | f (x0) = 0} is a subspace of
F(X ,R).

All proper subspaces of R2 are lines through the origin (0, 0) and
the zero subspace {(0, 0)}. Similarly, all proper subspaces of R3

are planes and lines through the origin (0, 0, 0) and the zero
subspace {(0, 0, 0)}.

If U, V ⊂ W are subspaces of vector space W , then U ∩ V is a
subspace of W . You may try to prove that U ∪ V is a subspace of
W if and only if U ⊂ V or V ⊂ U.
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Linear Combinations

Let V be a vector space. The linear combination of vectors
v1, . . . , vk ∈ V with coefficients α1, . . . , αk ∈ R is the vector
α1v1 + . . . + αkvk =

∑k
i=1 αivi ∈ V .

The set of all linear
combinations of vectors v1, . . . , vk will be denoted by
lin(v1, . . . , vk).

lin(v1, . . . , vk) = {α1v1 + . . . + αkvk ∈ V | α1, . . . , αk ∈ R}.

For example, the vector (4, 1, 3) is a linear combination of vectors
v1 = (1, 0, 1), v2 = (0, 1, 0), v3 = (1, −1, 0) ∈ R3 with coefficients
3, 2, 1, because (4, 1, 3) = 3(1, 0, 1) + 2(0, 1, 0) + (1, −1, 0).
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Linear Span (continued)

Corollary
The set lin(v1, . . . , vk) is a subspace of V .

Definition
If W = lin(v1, . . . , vk) then we call W the linear span of the
vectors v1, . . . , vk . We say W is spanned by the vectors v1, . . . , vk .

Corollary
If w1, . . . , wl ∈ lin(v1, . . . , vk) then

lin(w1, . . . , wl) ⊂ lin(v1, . . . , vk)

.
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Linear Span (continued)

Let V be a vector space.

Proposition
For any v1, . . . , vk ∈ V and α ∈ R − {0} the following hold:

i) lin(v1, v2, . . . , vk) = lin(v2, v1, v3, . . . , vk),

ii) lin(v1, v2, . . . , vk) = lin(αv1, v2, v3, . . . , vk),
iii) lin(v1, v2, . . . , vk) = lin(v1 + v2, v2, v3, . . . , vk).

Corollary
We have

lin(v1, . . . , vk) = lin(v1 + αv2, v2, . . . , vk),

that is, elementary operations on vectors do not change the
spanned subspace.
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Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk =

α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk).

If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that
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Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk =

α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk).

If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk =

(αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk = α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk).

If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk =

(αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk = α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk).

If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk =

(αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk = α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk). If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk =

(αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk = α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk). If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk = (αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
i) α1v1 + α2v2 + . . . + αkvk = α2v2 + α1v1 + . . . + αkvk ,

ii) if v ∈ lin(v1, v2, . . . , vk) then there exist α1, . . . , αk ∈ R such
that

v = α1v1 + . . . + αkvk = α1
α

(αv1) + α2v2 + . . . + αkvk ,

hence v ∈ lin(αv1, v2, . . . , vk). If v ∈ lin(αv1, v2, . . . , vk)
then there exist α1, . . . , αk ∈ R such that

v = α1(αv1)+α2v2+. . .+αkvk = (αα1)v1+α2v2+. . .+αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =

= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).

If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =

= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =
= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).

If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =

= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =
= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk).

If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =

= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =
= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk). If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =

= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =
= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk). If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =
= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Linear Span (continued)

Proof.
iii) if v ∈ lin(v1 + v2, v2, . . . , vk) then there exist α1, . . . , αk ∈ R

such that

v = α1(v1 + v2) + α2v2 + . . . + αkvk =
= α1v1 + (α1 + α2)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1, v2, . . . , vk). If v ∈ lin(v1, v2, . . . , vk) then
there exist α1, . . . , αk ∈ R such that

v = α1v1 + α2v2 + . . . + αkvk =
= α1(v1 + v2) + (α2 − α1)v2 + α3v3 + . . . + αkvk ,

hence v ∈ lin(v1 + v2, v2, . . . , vk).



Subspaces of Rn and Homogenous Systems of Linear
Equations

Proposition
Let V = lin(v1, . . . , vk) ⊂ Rn be the linear span of vectors
v1, . . . , vk ∈ Rn where k ≥ 1. Then there exists a homogeneous
system of linear equations in n variables whose set of solutions is
equal to V .

Proof.
Let A = [aij ] ∈ M(k × n;R) be a matrix whose rows are equal to
v1, . . . , vk , i.e. v1 = (a11, . . . , a1n), . . . , vk = (ak1, . . . , akn). Let
B = [bij ] ∈ M(k × n;R) be a matrix equal to the reduced echelon
form of A, where w1, . . . , wk ∈ Rn are rows of B, i.e.
w1 = (b11, . . . , b1n), . . . , wk = (bk1, . . . , bkn). The linear span is
invariant under elementary operations, therefore

V = lin(v1, . . . , vk) = lin(w1, . . . , wk).
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Subspaces of Rn and Homogenous Systems of Linear
Equations (continued)

Proof.
For simplicity assume that pivots appear in columns of numbers
1, 2, . . . , m, where m ≤ k, i.e.

w1 = (1, 0, 0, . . . , 0, 0, b1m, b1(m+1), . . . , b1n),

w2 = (0, 1, 0, . . . , 0, 0, b2m, b2(m+1), . . . , b2n),
...

wm = (0, 0, 0, . . . , 0, 1, bkm, bk(m+1), . . . , b1n),

and wm+1 = . . . = wk = 0.



Subspaces of Rn and Homogenous Systems of Linear
Equations (continued)

Proof.
Then

V = lin(v1, . . . , vk) = lin(w1, . . . , wm) =

= {x1w1 + . . . + xmwm ∈ Rn | x1, . . . , xm ∈ R} =

{(x1, x2, . . . , xm, b1mx1 + b2mx2 + . . . + bkmxm,

, b1(m+1)x1 + b2(m+1)mx2 + . . . + bk(m+1)xm, . . .

. . . , b1nx1 + b2nx2 + . . . + bknxm) | x1, . . . , xm ∈ R} ,

which is equal to the set of solutions of the system
xm+1 = b1mx1 + b2mx2 + . . . + bkmxm,
xm+2 = b1(m+1)x1 + b2(m+1)x2 + . . . + bk(m+1)xm,

...
xn = b1nx1 + b2nx2 + . . . + bknxm,

of n − m equations with free variables x1, . . . , xm ∈ R.



Subspaces and Homogenous Systems of Linear Equations
(continued)

Proof.
In general, if the numbers of columns with pivots are equal to
1 ≤ j1 < j2 < . . . < jm ≤ n then one should consider vector

xj1w1 + xj2w2 + . . . + xjmwm,

which leads to a homogeneous system of n − m equations in n
unknowns and free variables xj1 , . . . , xjm ∈ R.



Example

Let V = lin((1, 2, 1, 0), (0, 2, 1, 1), (1, 4, 2, 1), (3, 8, 4, 1)) ⊂ R4 be a
subspace of R4. Find a system of linear equations which set of
solutions is equal to V .

Put vectors horizontally in a matrix and perform elementary row
operations to get the reduced echelon form (up to column
permutation).

1 2 1 0
0 2 1 1
1 4 2 1
3 8 4 1


r3−r1
r4−3r1−→


1 2 1 0
0 2 1 1
0 2 1 1
0 2 1 1

 −→
[

1 2 1 0
0 2 1 1

]
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Example (continued)

Any vector in the space V is equal to
x1(1, 2, 1, 0) + x4(0, 2, 1, 1) = (x1, 2x1 + 2x4, x1 + x4, x4) for some
x1, x4 ∈ R. This is a general solution of the following system of
linear equations {

x2 = 2x1 + 2x4
x3 = x1 + x4

The system is equal to{
2x1 − x2 + 2x4 = 0
x1 − x3 + x4 = 0
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Remarks

Remark
The system corresponding to the subspace
V = lin(v1, . . . , vk) ⊂ Rn is not unique.

Remark
So far we have shown that{

subspaces
of Rn

}
⊃
{

linear spans
of v1,...,vk∈Rn

}
=

=
{

sets of solutions of
homogeneous systems of

linear equations in
n variables

}
Later we will show that any subspace V ⊂ Rn is equal to a linear
span of some vectors v1, . . . , vk ∈ Rn, that is the first inclusion is
an equality.



Remarks

Remark
The system corresponding to the subspace
V = lin(v1, . . . , vk) ⊂ Rn is not unique.

Remark
So far we have shown that{

subspaces
of Rn

}
⊃
{

linear spans
of v1,...,vk∈Rn

}
=

=
{

sets of solutions of
homogeneous systems of

linear equations in
n variables

}

Later we will show that any subspace V ⊂ Rn is equal to a linear
span of some vectors v1, . . . , vk ∈ Rn, that is the first inclusion is
an equality.



Remarks

Remark
The system corresponding to the subspace
V = lin(v1, . . . , vk) ⊂ Rn is not unique.

Remark
So far we have shown that{

subspaces
of Rn

}
⊃
{

linear spans
of v1,...,vk∈Rn

}
=

=
{

sets of solutions of
homogeneous systems of

linear equations in
n variables

}
Later we will show that any subspace V ⊂ Rn is equal to a linear
span of some vectors v1, . . . , vk ∈ Rn, that is the first inclusion is
an equality.



Hölder and Minkowski Inequalities1

Proposition (Hölder)
For any p, q > 1 such that

1
p + 1

q = 1,

and any (x1, . . . , xn), (y1, . . . , yn) ∈ Rn (or ∈ Cn)

n∑
i=1

|xiyi | ≤

( n∑
i=1

|xi |p
) 1

p
( n∑

i=1
|yi |q

) 1
q

.

Corollary (Minkowski)
For any p ≥ 1 and any (x1, . . . , xn), (y1, . . . , yn) ∈ Rn (or Cn)( n∑

i=1
|xi + yi |p

) 1
p

≤

( n∑
i=1

|xi |p
) 1

p

+
( n∑

i=1
|yi |p

) 1
p

.

1For proofs see W. Rudin, Functional Analysis
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The Spaces ℓ1 and ℓ2

Definition
Let

ℓ1 =
{

(xi) ∈ R∞ |
∞∑

i=1
|xi | < +∞

}
,

ℓ2 =
{

(xi) ∈ R∞ |
∞∑

i=1
|xi |2 < +∞

}
,

ℓ∞ = {(xi) ∈ R∞ | sequence (xi) is bounded} .

Corollary
The sets ℓ1, ℓ2, ℓ∞ ⊂ R∞ are subspaces and

ℓ1 ⊊ ℓ2 ⊊ ℓ∞ ⊊ R∞.
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The Spaces ℓ1 and ℓ2 (continued)

Proof.
If (xi), (yi) ∈ ℓ∞ then |xi | < M, |yi | < N, therefore

|xi + yi | ≤ |xi | + |yi | < M + N,

|αxi | < |α|M,

for any α ̸= 0.

For ℓ1 and ℓ2, since
∞∑

i=1
xi = lim

n→+∞

n∑
i=1

xi ,

it is enough to take limits in the Minkowski inequality for p = 1
and p = 2, respectively.
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The Spaces ℓ1 and ℓ2 (continued)

Proof.
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and
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i=N+1
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which implies
ℓ1 ⊂ ℓ2 ⊂ ℓ∞.

If xi = 1 then (xi) ∈ ℓ∞ but (xi) /∈ ℓ2. If yi = 1
i then (yi) ∈ ℓ2 but

(yi) /∈ ℓ1.
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Harmonic Functions/Laplace Equation
Let Ω ⊂ Rn be an open set. If

C(Ω) = {f : Ω → R | f is continuous},

Cn(Ω) = {f : Ω → R | f ′, f ′′, . . . , f (n) exist and are continuous},

C∞(Ω) = {f : Ω → R | f ′, f ′′, . . . exist and are continuous},

H(Ω) =
{

f ∈ C2(Ω) | ∂2f
∂x2

1
+ . . . + ∂2f

∂x2
n

= 0
}

,

then

H(Ω) ⊂ C∞(Ω) ⊂ . . . ⊂ C2(Ω) ⊂ C1(Ω) ⊂ C(Ω) ⊂ F(Ω,R),

are subspaces of F(Ω,R). The first inclusion is a theorem in the
theory of harmonic functions.
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Homogeneous (Ordinary) Linear Differential Equations

If X = (a, b) ⊂ R and

V = {x ∈ Cn(X ) | x (n) + a1x (n−1) + . . . + anx = 0},

i.e., V is the set of all functions x : X → R such that x ∈ Cn(X )
and

x (n)(t) + a1(t)x (n−1)(t) + . . . + an(t)x(t) = 0,

for all t ∈ X , where
ai : X → R,

are continuous functions then

V ⊂ Cn(X ),

is a subspace of dimension n.



Grassmannian

This material is meant to be read at the end of the course.

Definition
Grassmanian Gr(k, n) is the set of all subspaces of dimension k in
the vector space Rn, that is

Gr(k, n) = {V ⊂ Rn | dim V = k}.

It is possible to identify this set with a smooth algebraic variety
(you might think of it a special version of a submanifold of Rn2)

Gr(k, n) = {A ∈ M(n × n;R) | A2 = A, A⊺ = A, rk A = k}.

There exists a bijection between subspaces of dimension k of Rn

and matrices as above (exercise). Note that Grassmanian is given
by a system of polynomial equations in the entries aij of matrix
A = [aij ].



Grassmannian (continued)

There are several methods of inducing a topology on G(k, n). A
metric on Gr(k, n) can be defined by

d(V , W ) = ∥PV − PW ∥,

where PV , PW are (matrices) of orthogonal projections onto
k-dimensional subspaces V and W , respectively and ∥·∥ is (some)
matrix norm.

Using the SVD decomposition it is possible to give interpretation
of those distances in the terms of principal angles between the
subspaces V and W for ∥·∥ = ∥·∥2 and ∥·∥ = ∥·∥F (exercise).


