Linear Algebra Lecture 2 - Vector Spaces

Oskar Kędzierski

14 October 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:

- A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
 - i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,

- A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
 - i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,
 - ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
 - i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v + w \in V$,
 - ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,

satisfying the following rules:

i)
$$v + w = w + v$$
 for any $v, w \in V$ (addition is commutative),

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

i)
$$v + w = w + v$$
 for any $v, w \in V$ (addition is commutative),

ii)
$$u + (v + w) = (u + v) + w$$
 for any $u, v, w \in V$ (addition is associative),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v + w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v + w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
- vii) $\alpha(\beta v) = (\alpha \beta)v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),

- i) v + w = w + v for any $v, w \in V$ (addition is commutative),
- ii) u + (v + w) = (u + v) + w for any $u, v, w \in V$ (addition is associative),
- iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v + \mathbf{0} = v$ for any $v \in V$,
- iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v + (-v) = \mathbf{0}$,
- v) $(\alpha + \beta)v = \alpha v + \beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
- vi) $\alpha(v + w) = \alpha v + \alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
- vii) $\alpha(\beta v) = (\alpha \beta)v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),

viii)
$$1v = v$$
 for any $v \in V$.

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

ii) The element $-v \in V$ is unique. Suppose there are $v', v'' \in V$ such that $v + v' = v + v'' = \mathbf{0}$. Then (v + v') + v'' = (v + v'') + v' but this implies v' = v''. iii) $0v = \mathbf{0}$. Consider 0v = (0 + 0)v = 0v + 0v. Hence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$\mathbf{0} = (0v + 0v) + (-0v)$$
, that is $\mathbf{0} = 0v$.

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

unique, hence (-1)v = -v.

The following facts are direct consequences of these rules:

i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}' \in V$, then $\mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

You may try to prove in a similar fashion that $\alpha \mathbf{0} = \mathbf{0}$ or that $\alpha \mathbf{v} = \mathbf{0}$ implies $\alpha = 0$ or $\mathbf{v} = \mathbf{0}$.

i) the zero vector space $\{\mathbf{0}\}$,

i) the zero vector space $\{\mathbf{0}\}$,

ii) the *n*-tuple space \mathbb{R}^n , with addition $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$, multiplication $\alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n)$ and the zero vector $\mathbf{0} = (0, \ldots, 0)$, in particular \mathbb{R} =line, \mathbb{R}^2 =plane, \mathbb{R}^3 =three-dimensional space,

i) the zero vector space $\{\mathbf{0}\}$,

ii) the *n*-tuple space
$$\mathbb{R}^n$$
, with addition
 $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$,
multiplication $\alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n)$ and the zero
vector $\mathbf{0} = (0, \ldots, 0)$, in particular \mathbb{R} =line, \mathbb{R}^2 =plane,
 \mathbb{R}^3 =three-dimensional space,

iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $(x_i) + (y_i) = (x_i + y_i)$, multiplication $\alpha(x_i) = (\alpha x_i)$ and the zero vector $\mathbf{0} = (0, 0, \ldots)$,

i) the zero vector space $\{\mathbf{0}\}$,

ii) the *n*-tuple space
$$\mathbb{R}^n$$
, with addition
 $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$,
multiplication $\alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n)$ and the zero
vector $\mathbf{0} = (0, \ldots, 0)$, in particular \mathbb{R} =line, \mathbb{R}^2 =plane,
 \mathbb{R}^3 =three-dimensional space,

- iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $(x_i) + (y_i) = (x_i + y_i)$, multiplication $\alpha(x_i) = (\alpha x_i)$ and the zero vector $\mathbf{0} = (0, 0, ...)$,
- iv) the space of real functions on any non-empty set X $\mathcal{F}(X,\mathbb{R}) = \{f : X \longrightarrow \mathbb{R}\}$ with addition and multiplication defined pointwise: (f + g)(x) = f(x) + g(x) and $(\alpha f)(x) = \alpha f(x)$. The zero vector is the constant function admitting 0 everywhere on X.

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:
 - i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A subspace W of V is called **proper** if $W \neq V$.

Let V be a vector space. A **subspace** W of V is a non-empty subset $W \subset V$ satisfying two conditions:

- i) $v + w \in W$ for any $v, w \in W$ (subspace is closed under addition),
- ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

A subspace W of V is called **proper** if $W \neq V$. Any subspace is a vector space.

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

-	(a ₁₁ x ₁	+	a ₁₂ x ₂	+		+	a _{1n} x _n	= 0
	a ₂₁ x ₁	+	<i>a</i> ₂₂ <i>x</i> ₂	+		+	a _{1n} x _n a _{2n} x _n	= 0
١	:		:		·		÷	÷
	$a_{m1}x_1$	+	a _{m2} x ₂	+		+	a _{mn} x _n	= 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

It can be shown that any subspace of \mathbb{R}^n is of that form.

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

1	a ₁₁ x ₁	+	a ₁₂ x ₂	+		+	a _{1n} x _n	= 0
	a ₂₁ x ₁	+	<i>a</i> ₂₂ <i>x</i> ₂	+		+	a _{1n} x _n a _{2n} x _n	= 0
	-		÷		·•.		÷	÷
	$a_{m1}x_1$	+	$a_{m2}x_2$	+		+	a _{mn} x _n	= 0

It can be shown that any subspace of \mathbb{R}^n is of that form. Every subspace contains **0**.

・ロト・西ト・山田・山田・山口・

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0\\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

It can be shown that any subspace of \mathbb{R}^n is of that form. Every subspace contains **0**. Note that the set of solutions of a non-homogeneous system of linear equations is not a subspace since it does not contain **0**.

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X, \mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X, \mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}.$

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X, \mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X, \mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W.

Examples (continued)

 $\mathbb{R}_{c}^{\infty} = \{ \text{sequences } (x_i) \text{ such that } x_i = 0 \text{ for all but finitely many } i \}$ is a subspace of \mathbb{R}^{∞} .

Let $x_0 \in X$. Then $\{f \in \mathcal{F}(X, \mathbb{R}) \mid f(x_0) = 0\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^2 are lines through the origin (0,0) and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^3 are planes and lines through the origin (0,0,0) and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W. You may try to prove that $U \cup V$ is a subspace of W if and only if $U \subset V$ or $V \subset U$.

Linear Combinations

Let *V* be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$.

Linear Combinations

Let *V* be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$. The set of all linear combinations of vectors v_1, \ldots, v_k will be denoted by $lin(v_1, \ldots, v_k)$.

$$lin(v_1,\ldots,v_k) = \{\alpha_1v_1 + \ldots + \alpha_kv_k \in V \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Combinations

Let *V* be a vector space. The **linear combination** of vectors $v_1, \ldots, v_k \in V$ with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is the vector $\alpha_1 v_1 + \ldots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i \in V$. The set of all linear combinations of vectors v_1, \ldots, v_k will be denoted by $lin(v_1, \ldots, v_k)$.

$$lin(v_1,\ldots,v_k) = \{\alpha_1v_1 + \ldots + \alpha_kv_k \in V \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}.$$

For example, the vector (4, 1, 3) is a linear combination of vectors $v_1 = (1, 0, 1), v_2 = (0, 1, 0), v_3 = (1, -1, 0) \in \mathbb{R}^3$ with coefficients 3, 2, 1, because (4, 1, 3) = 3(1, 0, 1) + 2(0, 1, 0) + (1, -1, 0).

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let $v = \alpha_1 v_1 + \ldots \alpha_k v_k$ and $w = \beta_1 v_1 + \ldots \beta_k v_k$. Then $v + w = (\alpha_1 + \beta_1)v_1 + \ldots + (\alpha_k + \beta_k)v_k$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let
$$v = \alpha_1 v_1 + \ldots \alpha_k v_k$$
 and $w = \beta_1 v_1 + \ldots \beta_k v_k$. Then
 $v + w = (\alpha_1 + \beta_1)v_1 + \ldots + (\alpha_k + \beta_k)v_k$.

Proposition

If vector $v \in V$ is a linear combination of vectors $v_1, \ldots, v_k \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_1, \ldots, v_k \in V$ then so is v + w.

Proof.

Let
$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k$$
 and $\mathbf{w} = \beta_1 \mathbf{v}_1 + \dots + \beta_k \mathbf{v}_k$. Then
 $\mathbf{v} + \mathbf{w} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \dots + (\alpha_k + \beta_k)\mathbf{v}_k$.

Proposition

If vector $v \in V$ is a linear combination of vectors $v_1, \ldots, v_k \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Proof.

Let $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$. Then $\alpha \mathbf{v} = (\alpha \alpha_1) \mathbf{v}_1 + \ldots + (\alpha \alpha_k) \mathbf{v}_k$. \Box

Corollary

The set $lin(v_1, \ldots, v_k)$ is a subspace of V.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Corollary

The set $lin(v_1, \ldots, v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$.

Corollary

The set $lin(v_1, \ldots, v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$. We say W is **spanned** by the vectors $v_1, ..., v_k$.

Corollary

The set $lin(v_1, \ldots, v_k)$ is a subspace of V.

Definition

If $W = lin(v_1, ..., v_k)$ then we call W the **linear span** of the vectors $v_1, ..., v_k$. We say W is **spanned** by the vectors $v_1, ..., v_k$.

Corollary

If $w_1, \ldots, w_l \in lin(v_1, \ldots, v_k)$ then

$$\mathsf{lin}(w_1,\ldots,w_l)\subset\mathsf{lin}(v_1,\ldots,v_k)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold: i) $lin(v_1, v_2, \ldots, v_k) = lin(v_2, v_1, v_3, \ldots, v_k),$

Let V be a vector space.

Proposition

For any $v_1, \ldots, v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold: i) $lin(v_1, v_2, \ldots, v_k) = lin(v_2, v_1, v_3, \ldots, v_k)$, ii) $lin(v_1, v_2, \ldots, v_k) = lin(\alpha v_1, v_2, v_3, \ldots, v_k)$,

Let V be a vector space.

Proposition

For any $v_1, ..., v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold: i) $lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k)$, ii) $lin(v_1, v_2, ..., v_k) = lin(\alpha v_1, v_2, v_3, ..., v_k)$, iii) $lin(v_1, v_2, ..., v_k) = lin(v_1 + v_2, v_2, v_3, ..., v_k)$.

Let V be a vector space.

Proposition

For any $v_1, ..., v_k \in V$ and $\alpha \in \mathbb{R} - \{0\}$ the following hold: i) $lin(v_1, v_2, ..., v_k) = lin(v_2, v_1, v_3, ..., v_k)$, ii) $lin(v_1, v_2, ..., v_k) = lin(\alpha v_1, v_2, v_3, ..., v_k)$, iii) $lin(v_1, v_2, ..., v_k) = lin(v_1 + v_2, v_2, v_3, ..., v_k)$.

Corollary

We have

$$lin(v_1,\ldots,v_k) = lin(v_1 + \alpha v_2, v_2,\ldots,v_k),$$

that is, elementary operations on vectors do not change the spanned subspace.

Proof.

i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k =$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

hence $v \in lin(\alpha v_1, v_2, \ldots, v_k)$.

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

hence $v \in lin(\alpha v_1, v_2, ..., v_k)$. If $v \in lin(\alpha v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in lin(\alpha v_1, v_2, ..., v_k)$. If $v \in lin(\alpha v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = (\alpha \alpha_1) \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

Proof.

- i) $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \alpha_2 \mathbf{v}_2 + \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k$
- ii) if $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_k \mathbf{v}_k = \frac{\alpha_1}{\alpha} (\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

hence $v \in lin(\alpha v_1, v_2, ..., v_k)$. If $v \in lin(\alpha v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\alpha \mathbf{v}_1) + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = (\alpha \alpha_1) \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

hence $v \in lin(v_1, v_2, \ldots, v_k)$.

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

= $\alpha_1\mathbf{v}_1 + (\alpha_1 + \alpha_2)\mathbf{v}_2 + \alpha_3\mathbf{v}_3 + \ldots + \alpha_k\mathbf{v}_k,$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

= $\alpha_1\mathbf{v}_1 + (\alpha_1 + \alpha_2)\mathbf{v}_2 + \alpha_3\mathbf{v}_3 + \ldots + \alpha_k\mathbf{v}_k,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

hence $v \in lin(v_1, v_2, \ldots, v_k)$.

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

= $\alpha_1\mathbf{v}_1 + (\alpha_1 + \alpha_2)\mathbf{v}_2 + \alpha_3\mathbf{v}_3 + \ldots + \alpha_k\mathbf{v}_k,$

hence $v \in lin(v_1, v_2, ..., v_k)$. If $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

= $\alpha_1\mathbf{v}_1 + (\alpha_1 + \alpha_2)\mathbf{v}_2 + \alpha_3\mathbf{v}_3 + \ldots + \alpha_k\mathbf{v}_k,$

hence $v \in lin(v_1, v_2, ..., v_k)$. If $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

= $\alpha_1 (\mathbf{v}_1 + \mathbf{v}_2) + (\alpha_2 - \alpha_1) \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \ldots + \alpha_k \mathbf{v}_k,$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof.

iii) if $v \in lin(v_1 + v_2, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1(\mathbf{v}_1 + \mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \ldots + \alpha_k\mathbf{v}_k =$$

= $\alpha_1\mathbf{v}_1 + (\alpha_1 + \alpha_2)\mathbf{v}_2 + \alpha_3\mathbf{v}_3 + \ldots + \alpha_k\mathbf{v}_k,$

hence $v \in lin(v_1, v_2, ..., v_k)$. If $v \in lin(v_1, v_2, ..., v_k)$ then there exist $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k =$$

= $\alpha_1 (\mathbf{v}_1 + \mathbf{v}_2) + (\alpha_2 - \alpha_1) \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \ldots + \alpha_k \mathbf{v}_k,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

hence $v \in lin(v_1 + v_2, v_2, ..., v_k)$.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, ..., v_k \in \mathbb{R}^n$ where $k \ge 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, ..., v_k \in \mathbb{R}^n$ where $k \ge 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.

Let $A = [a_{ij}] \in M(k \times n; \mathbb{R})$ be a matrix whose rows are equal to v_1, \ldots, v_k , i.e. $v_1 = (a_{11}, \ldots, a_{1n}), \ldots, v_k = (a_{k1}, \ldots, a_{kn})$. Let $B = [b_{ij}] \in M(k \times n; \mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_1, \ldots, w_k \in \mathbb{R}^n$ are rows of B, i.e. $w_1 = (b_{11}, \ldots, b_{1n}), \ldots, w_k = (b_{k1}, \ldots, b_{kn})$.

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations

Proposition

Let $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ be the linear span of vectors $v_1, ..., v_k \in \mathbb{R}^n$ where $k \ge 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.

Let $A = [a_{ij}] \in M(k \times n; \mathbb{R})$ be a matrix whose rows are equal to v_1, \ldots, v_k , i.e. $v_1 = (a_{11}, \ldots, a_{1n}), \ldots, v_k = (a_{k1}, \ldots, a_{kn})$. Let $B = [b_{ij}] \in M(k \times n; \mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_1, \ldots, w_k \in \mathbb{R}^n$ are rows of B, i.e. $w_1 = (b_{11}, \ldots, b_{1n}), \ldots, w_k = (b_{k1}, \ldots, b_{kn})$. The linear span is invariant under elementary operations, therefore

$$V = \ln(v_1, \ldots, v_k) = \ln(w_1, \ldots, w_k).$$

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations (continued)

Proof.

For simplicity assume that pivots appear in columns of numbers 1, 2, ..., m, where $m \le k$, i.e.

$$w_{1} = (1, 0, 0, \dots, 0, 0, b_{1m}, b_{1(m+1)}, \dots, b_{1n}),$$

$$w_{2} = (0, 1, 0, \dots, 0, 0, b_{2m}, b_{2(m+1)}, \dots, b_{2n}),$$

$$\vdots$$

$$w_{m} = (0, 0, 0, \dots, 0, 1, b_{km}, b_{k(m+1)}, \dots, b_{1n}),$$
and $w_{m+1} = \dots = w_{k} = \mathbf{0}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Subspaces of \mathbb{R}^n and Homogenous Systems of Linear Equations (continued)

$$V = lin(v_1, ..., v_k) = lin(w_1, ..., w_m) =$$

= {x_1w_1 + ... + x_mw_m \in \mathbb{R}^n | x_1, ..., x_m \in \mathbb{R}} =
{(x_1, x_2, ..., x_m, b_{1m}x_1 + b_{2m}x_2 + ... + b_{km}x_m,
, b_{1(m+1)}x_1 + b_{2(m+1)m}x_2 + ... + b_{k(m+1)}x_m, ...
..., b_{1n}x_1 + b_{2n}x_2 + ... + b_{kn}x_m) | x_1, ..., x_m \in \mathbb{R}},

which is equal to the set of solutions of the system

$$\begin{cases} x_{m+1} = b_{1m}x_1 + b_{2m}x_2 + \dots + b_{km}x_m, \\ x_{m+2} = b_{1(m+1)}x_1 + b_{2(m+1)}x_2 + \dots + b_{k(m+1)}x_m, \\ \vdots \\ x_n = b_{1n}x_1 + b_{2n}x_2 + \dots + b_{kn}x_m, \end{cases}$$
of $n-m$ equations with free variables $x_1, \dots, x_m \in \mathbb{R}$.

Subspaces and Homogenous Systems of Linear Equations (continued)

Proof.

In general, if the numbers of columns with pivots are equal to $1 \le j_1 < j_2 < \ldots < j_m \le n$ then one should consider vector

$$x_{j_1}w_1+x_{j_2}w_2+\ldots+x_{j_m}w_m,$$

which leads to a homogeneous system of n - m equations in n unknowns and free variables $x_{j_1}, \ldots, x_{j_m} \in \mathbb{R}$.

Example

Let $V = \text{lin}((1,2,1,0), (0,2,1,1), (1,4,2,1), (3,8,4,1)) \subset \mathbb{R}^4$ be a subspace of \mathbb{R}^4 . Find a system of linear equations which set of solutions is equal to V.

Example

Let $V = \text{lin}((1,2,1,0), (0,2,1,1), (1,4,2,1), (3,8,4,1)) \subset \mathbb{R}^4$ be a subspace of \mathbb{R}^4 . Find a system of linear equations which set of solutions is equal to V.

Put vectors horizontally in a matrix and perform elementary row operations to get the reduced echelon form (up to column permutation).

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 1 & 4 & 2 & 1 \\ 3 & 8 & 4 & 1 \end{bmatrix} \stackrel{r_3-r_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

Example (continued)

Any vector in the space V is equal to $x_1(1,2,1,0) + x_4(0,2,1,1) = (x_1,2x_1+2x_4,x_1+x_4,x_4)$ for some $x_1, x_4 \in \mathbb{R}$. This is a general solution of the following system of linear equations

$$\begin{cases} x_2 = 2x_1 + 2x_4 \\ x_3 = x_1 + x_4 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example (continued)

Any vector in the space V is equal to $x_1(1,2,1,0) + x_4(0,2,1,1) = (x_1,2x_1 + 2x_4,x_1 + x_4,x_4)$ for some $x_1, x_4 \in \mathbb{R}$. This is a general solution of the following system of linear equations

$$\begin{cases} x_2 = 2x_1 + 2x_4 \\ x_3 = x_1 + x_4 \end{cases}$$

The system is equal to

$$\begin{cases} 2x_1 - x_2 + 2x_4 = 0\\ x_1 - x_3 + x_4 = 0 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks

Remark The system corresponding to the subspace $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ is not unique.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remarks

Remark The system corresponding to the subspace $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ is not unique.

Remark

So far we have shown that

$$\begin{cases} subspaces\\ of \mathbb{R}^n \end{cases} \supset \begin{cases} linear spans\\ of v_1, ..., v_k \in \mathbb{R}^n \end{cases} = \\ = \begin{cases} sets of solutions of\\ homogeneous systems of\\ linear equations in\\ n variables \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remarks

Remark The system corresponding to the subspace $V = lin(v_1, ..., v_k) \subset \mathbb{R}^n$ is not unique.

Remark

So far we have shown that

$$\begin{cases} subspaces \\ of \mathbb{R}^n \end{cases} \supset \begin{cases} linear spans \\ of v_1, \dots, v_k \in \mathbb{R}^n \end{cases} = \\ = \begin{cases} sets of solutions of \\ homogeneous systems of \\ linear equations in \\ n variables \end{cases}$$

Later we will show that any subspace $V \subset \mathbb{R}^n$ is equal to a linear span of some vectors $v_1, \ldots, v_k \in \mathbb{R}^n$, that is the first inclusion is an equality.

Hölder and Minkowski Inequalities¹

Proposition (Hölder)

а

For any p, q > 1 such that

$$\begin{aligned} &\frac{1}{p} + \frac{1}{q} = 1,\\ &\text{nd any } (x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n \text{ (or } \in \mathbb{C}^n)\\ &\sum_{i=1}^n |x_i y_i| \leq \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n |y_i|^q\right)^{\frac{1}{q}}.\end{aligned}$$

¹For proofs see W. Rudin, *Functional Analysis*

Hölder and Minkowski Inequalities¹

Proposition (Hölder)

For any p, q > 1 such that

$$\frac{1}{p} + \frac{1}{q} = 1,$$

and any $(x_1,\ldots,x_n),(y_1,\ldots,y_n)\in\mathbb{R}^n$ (or $\in\mathbb{C}^n$)

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

Corollary (Minkowski) For any $p \ge 1$ and any $(x_1, ..., x_n), (y_1, ..., y_n) \in \mathbb{R}^n$ (or \mathbb{C}^n)

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}.$$

¹For proofs see W. Rudin, *Functional Analysis*

The Spaces ℓ^1 and ℓ^2

Definition Let

$$\ell^1 = \left\{ (x_i) \in \mathbb{R}^\infty \mid \sum_{i=1}^\infty |x_i| < +\infty
ight\}, \ \ell^2 = \left\{ (x_i) \in \mathbb{R}^\infty \mid \sum_{i=1}^\infty |x_i|^2 < +\infty
ight\},$$

 $\ell^{\infty} = \{(x_i) \in \mathbb{R}^{\infty} \mid \text{sequence } (x_i) \text{ is bounded}\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Spaces ℓ^1 and ℓ^2

Definition Let

$$\ell^{1} = \left\{ (x_{i}) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_{i}| < +\infty \right\},$$
$$\ell^{2} = \left\{ (x_{i}) \in \mathbb{R}^{\infty} \mid \sum_{i=1}^{\infty} |x_{i}|^{2} < +\infty \right\},$$

 $\ell^{\infty} = \{(x_i) \in \mathbb{R}^{\infty} \mid \text{sequence } (x_i) \text{ is bounded}\}.$

Corollary

The sets $\ell^1, \ell^2, \ell^\infty \subset \mathbb{R}^\infty$ are subspaces and

$$\ell^1 \subsetneq \ell^2 \subsetneq \ell^\infty \subsetneq \mathbb{R}^\infty.$$

Proof.
If
$$(x_i), (y_i) \in \ell^{\infty}$$
 then $|x_i| < M$, $|y_i| < N$, therefore
 $|x_i + y_i| \le |x_i| + |y_i| < M + N$,
 $|\alpha x_i| < |\alpha|M$,

for any $\alpha \neq 0$.

Proof.
If
$$(x_i), (y_i) \in \ell^{\infty}$$
 then $|x_i| < M$, $|y_i| < N$, therefore
 $|x_i + y_i| \le |x_i| + |y_i| < M + N$,
 $|\alpha x_i| < |\alpha|M$,
for any $\alpha \ne 0$. For ℓ^1 and ℓ^2 , since

$$\sum_{i=1}^{\infty} x_i = \lim_{n \to +\infty} \sum_{i=1}^{n} x_i,$$

it is enough to take limits in the Minkowski inequality for p = 1 and p = 2, respectively.

Proof. If $\sum_{i=1}^{\infty} |x_i| < \infty$ then $\lim_{i \to +\infty} |x_i| = 0$ and the sequence (x_i) is bounded.

Proof.

If $\sum_{i=1}^{\infty} |x_i| < \infty$ then $\lim_{i \to +\infty} |x_i| = 0$ and the sequence (x_i) is bounded. Therefore for i > N, where N is large enough, $|x_i| < 1$ and

$$\begin{aligned} |x_i|^2 &\leq |x_i|,\\ \sum_{i=N+1}^{\infty} |x_i|^2 &\leq \sum_{i=N+1}^{\infty} |x_i| < \infty, \end{aligned}$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof.

If $\sum_{i=1}^{\infty} |x_i| < \infty$ then $\lim_{i \to +\infty} |x_i| = 0$ and the sequence (x_i) is bounded. Therefore for i > N, where N is large enough, $|x_i| < 1$ and

$$\begin{aligned} |x_i|^2 &\leq |x_i|,\\ \sum_{i=N+1}^{\infty} |x_i|^2 &\leq \sum_{i=N+1}^{\infty} |x_i| < \infty, \end{aligned}$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $x_i = 1$ then $(x_i) \in \ell^{\infty}$ but $(x_i) \notin \ell^2$.

Proof.

If $\sum_{i=1}^{\infty} |x_i| < \infty$ then $\lim_{i \to +\infty} |x_i| = 0$ and the sequence (x_i) is bounded. Therefore for i > N, where N is large enough, $|x_i| < 1$ and

$$|x_i|^2 \le |x_i|,$$
$$\sum_{i=N+1}^{\infty} |x_i|^2 \le \sum_{i=N+1}^{\infty} |x_i| < \infty,$$

which implies

$$\ell^1 \subset \ell^2 \subset \ell^\infty.$$

If $x_i = 1$ then $(x_i) \in \ell^{\infty}$ but $(x_i) \notin \ell^2$. If $y_i = \frac{1}{i}$ then $(y_i) \in \ell^2$ but $(y_i) \notin \ell^1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

 $\mathcal{C}(\Omega) = \{ f \colon \Omega \to \mathbb{R} \mid f \text{ is continuous} \},\$

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$\mathcal{C}(\Omega) = \{ f \colon \Omega \to \mathbb{R} \mid f \text{ is continuous} \},\$$

 $\mathcal{C}^{n}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},\$

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$\mathcal{C}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

 $\mathcal{C}^{n}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},\$

 $\mathcal{C}^{\infty}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$\mathcal{C}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

 $\mathcal{C}^{n}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},\$

 $\mathcal{C}^{\infty}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$\mathcal{C}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ is continuous}\},\$$

 $\mathcal{C}^{n}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},\$

 $\mathcal{C}^{\infty}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

then

 $\mathcal{H}(\Omega)\subset \mathcal{C}^\infty(\Omega)\subset \ldots \subset \mathcal{C}^2(\Omega)\subset \mathcal{C}^1(\Omega)\subset \mathcal{C}(\Omega)\subset \mathbb{F}(\Omega,\mathbb{R}),$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$.

Let $\Omega \subset \mathbb{R}^n$ be an open set. If

$$\mathcal{C}(\Omega) = \{ f \colon \Omega \to \mathbb{R} \mid f \text{ is continuous} \},\$$

 $\mathcal{C}^{n}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f', f'', \dots, f^{(n)} \text{ exist and are continuous}\},\$

 $\mathcal{C}^{\infty}(\Omega) = \{f \colon \Omega \to \mathbb{R} \mid f', f'', \dots \text{ exist and are continuous}\},\$

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{C}^2(\Omega) \mid \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2} = 0 \right\},\,$$

then

$$\mathcal{H}(\Omega)\subset\mathcal{C}^\infty(\Omega)\subset\ldots\subset\mathcal{C}^2(\Omega)\subset\mathcal{C}^1(\Omega)\subset\mathcal{C}(\Omega)\subset\mathbb{F}(\Omega,\mathbb{R}),$$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$. The first inclusion is a theorem in the theory of harmonic functions.

Homogeneous (Ordinary) Linear Differential Equations

If
$$X = (a, b) \subset \mathbb{R}$$
 and
 $V = \{x \in \mathcal{C}^n(X) \mid x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x = 0\},$

i.e., V is the set of all functions $x \colon X \to \mathbb{R}$ such that $x \in \mathcal{C}^n(X)$ and

$$x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \ldots + a_n(t)x(t) = 0,$$

for all $t \in X$, where

$$a_i: X \to \mathbb{R},$$

are continuous functions then

$$V \subset \mathcal{C}^n(X),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a subspace of dimension n.

Grassmannian

This material is meant to be read at the end of the course.

Definition

Grassmanian Gr(k, n) is the set of all subspaces of dimension k in the vector space \mathbb{R}^n , that is

$$Gr(k, n) = \{V \subset \mathbb{R}^n \mid \dim V = k\}.$$

It is possible to identify this set with a smooth algebraic variety (you might think of it a special version of a submanifold of \mathbb{R}^{n^2})

$$\operatorname{Gr}(k,n) = \{A \in M(n \times n; \mathbb{R}) \mid A^2 = A, \quad A^{\mathsf{T}} = A, \quad \operatorname{rk} A = k\}.$$

There exists a bijection between subspaces of dimension k of \mathbb{R}^n and matrices as above (exercise). Note that Grassmanian is given by a system of polynomial equations in the entries a_{ij} of matrix $A = [a_{ij}]$.

Grassmannian (continued)

There are several methods of inducing a topology on G(k, n). A metric on Gr(k, n) can be defined by

$$d(V,W) = \|P_V - P_W\|,$$

where P_V , P_W are (matrices) of orthogonal projections onto k-dimensional subspaces V and W, respectively and $\|\cdot\|$ is (some) matrix norm.

Using the SVD decomposition it is possible to give interpretation of those distances in the terms of principal angles between the subspaces V and W for $\|\cdot\| = \|\cdot\|_2$ and $\|\cdot\| = \|\cdot\|_F$ (exercise).