Linear Algebra
 Lecture 2 - Vector Spaces

Oskar Kędzierski

9 October 2023

Vector Spaces

A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:

Vector Spaces

A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v+w \in V$,

Vector Spaces

A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v+w \in V$,
ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,

Vector Spaces

A vector space V (or linear space) over the real numbers is a set V of objects, called vectors, equipped with two operations:
i) addition of two vectors, i.e. to each pair of vectors $v, w \in V$ we associate the sum $v+w \in V$,
ii) multiplication of vectors by real numbers (scalars), i.e. to each vector $v \in V$ and a real number $\alpha \in \mathbb{R}$ we associate the product $\alpha v \in V$,
satisfying the following rules:

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,
iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v+(-v)=\mathbf{0}$,

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,
iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v+(-v)=\mathbf{0}$,
v) $(\alpha+\beta) v=\alpha v+\beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,
iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v+(-v)=\mathbf{0}$,
v) $(\alpha+\beta) v=\alpha v+\beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
vi) $\alpha(v+w)=\alpha v+\alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,
iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v+(-v)=\mathbf{0}$,
v) $(\alpha+\beta) v=\alpha v+\beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
vi) $\alpha(v+w)=\alpha v+\alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
vii) $\alpha(\beta v)=(\alpha \beta) v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),

Vector Spaces (continued)

i) $v+w=w+v$ for any $v, w \in V$ (addition is commutative),
ii) $u+(v+w)=(u+v)+w$ for any $u, v, w \in V$ (addition is associative),
iii) there exists $\mathbf{0} \in V$ (the zero vector) such that $v+\mathbf{0}=v$ for any $v \in V$,
iv) for any $v \in V$ there exists a vector $-v \in V$ such that $v+(-v)=\mathbf{0}$,
v) $(\alpha+\beta) v=\alpha v+\beta v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (multiplication is distributive with respect to scalar addition),
vi) $\alpha(v+w)=\alpha v+\alpha w$ for any $\alpha \in \mathbb{R}$ and $v, w \in V$ (multiplication is distributive with respect to vector addition),
vii) $\alpha(\beta v)=(\alpha \beta) v$ for any $\alpha, \beta \in \mathbb{R}$ and $v \in V$ (scalar multiplication is compatible with multiplication of real numbers),
viii) $1 v=v$ for any $v \in V$.

A Few Facts

The following facts are direct consequences of these rules:
i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}^{\prime} \in V$, then $\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}$.

A Few Facts

The following facts are direct consequences of these rules:
i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}^{\prime} \in V$, then $\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}$.
ii) The element $-v \in V$ is unique. Suppose there are $v^{\prime}, v^{\prime \prime} \in V$ such that $v+v^{\prime}=v+v^{\prime \prime}=\mathbf{0}$. Then $\left(v+v^{\prime}\right)+v^{\prime \prime}=\left(v+v^{\prime \prime}\right)+v^{\prime}$ but this implies $v^{\prime}=v^{\prime \prime}$.

A Few Facts

The following facts are direct consequences of these rules:
i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}^{\prime} \in V$, then $\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}$.
ii) The element $-v \in V$ is unique. Suppose there are $v^{\prime}, v^{\prime \prime} \in V$ such that $v+v^{\prime}=v+v^{\prime \prime}=\mathbf{0}$. Then $\left(v+v^{\prime}\right)+v^{\prime \prime}=\left(v+v^{\prime \prime}\right)+v^{\prime}$ but this implies $v^{\prime}=v^{\prime \prime}$.
iii) $0 v=\mathbf{0}$. Consider $0 v=(0+0) v=0 v+0 v$. Hence $\mathbf{0}=(0 v+0 v)+(-0 v)$, that is $\mathbf{0}=0 v$.

A Few Facts

The following facts are direct consequences of these rules:
i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}^{\prime} \in V$, then $\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}$.
ii) The element $-v \in V$ is unique. Suppose there are $v^{\prime}, v^{\prime \prime} \in V$ such that $v+v^{\prime}=v+v^{\prime \prime}=\mathbf{0}$. Then $\left(v+v^{\prime}\right)+v^{\prime \prime}=\left(v+v^{\prime \prime}\right)+v^{\prime}$ but this implies $v^{\prime}=v^{\prime \prime}$.
iii) $0 v=\mathbf{0}$. Consider $0 v=(0+0) v=0 v+0 v$. Hence $\mathbf{0}=(0 v+0 v)+(-0 v)$, that is $\mathbf{0}=0 v$.
iv) $(-1) v=-v$. Consider $\mathbf{0}=(1-1) v=v+(-1) v$. But $-v$ is unique, hence $(-1) v=-v$.

A Few Facts

The following facts are direct consequences of these rules:
i) The element $\mathbf{0} \in V$ is unique. Suppose there is another $\mathbf{0}^{\prime} \in V$, then $\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}$.
ii) The element $-v \in V$ is unique. Suppose there are $v^{\prime}, v^{\prime \prime} \in V$ such that $v+v^{\prime}=v+v^{\prime \prime}=\mathbf{0}$. Then $\left(v+v^{\prime}\right)+v^{\prime \prime}=\left(v+v^{\prime \prime}\right)+v^{\prime}$ but this implies $v^{\prime}=v^{\prime \prime}$.
iii) $0 v=\mathbf{0}$. Consider $0 v=(0+0) v=0 v+0 v$. Hence $\mathbf{0}=(0 v+0 v)+(-0 v)$, that is $\mathbf{0}=0 v$.
iv) $(-1) v=-v$. Consider $\mathbf{0}=(1-1) v=v+(-1) v$. But $-v$ is unique, hence $(-1) v=-v$.
You may try to prove in a similar fashion that $\alpha \mathbf{0}=\mathbf{0}$ or that $\alpha v=\mathbf{0}$ implies $\alpha=0$ or $\boldsymbol{v}=\mathbf{0}$.

Examples

i) the zero vector space $\{\mathbf{0}\}$,

Examples

i) the zero vector space $\{\mathbf{0}\}$,
ii) the n-tuple space \mathbb{R}^{n}, with addition $\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$, multiplication $\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)$ and the zero vector $\mathbf{0}=(0, \ldots, 0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^{2}=$ plane, $\mathbb{R}^{3}=$ three-dimensional space,

Examples

i) the zero vector space $\{\mathbf{0}\}$,
ii) the n-tuple space \mathbb{R}^{n}, with addition $\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$, multiplication $\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)$ and the zero vector $\mathbf{0}=(0, \ldots, 0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^{2}=$ plane, $\mathbb{R}^{3}=$ three-dimensional space,
iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $\left(x_{i}\right)+\left(y_{i}\right)=\left(x_{i}+y_{i}\right)$, multiplication $\alpha\left(x_{i}\right)=\left(\alpha x_{i}\right)$ and the zero vector $\mathbf{0}=(0,0, \ldots)$,

Examples

i) the zero vector space $\{\mathbf{0}\}$,
ii) the n-tuple space \mathbb{R}^{n}, with addition $\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$, multiplication $\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)$ and the zero vector $\mathbf{0}=(0, \ldots, 0)$, in particular $\mathbb{R}=$ line, $\mathbb{R}^{2}=$ plane, $\mathbb{R}^{3}=$ three-dimensional space,
iii) the space \mathbb{R}^{∞} of infinite sequences of real numbers, with addition $\left(x_{i}\right)+\left(y_{i}\right)=\left(x_{i}+y_{i}\right)$, multiplication $\alpha\left(x_{i}\right)=\left(\alpha x_{i}\right)$ and the zero vector $\mathbf{0}=(0,0, \ldots)$,
iv) the space of real functions on any non-empty set X $\mathcal{F}(X, \mathbb{R})=\{f: X \longrightarrow \mathbb{R}\}$ with addition and multiplication defined pointwise: $(f+g)(x)=f(x)+g(x)$ and $(\alpha f)(x)=\alpha f(x)$. The zero vector is the constant function admitting 0 everywhere on X.

Subspaces

Let V be a vector space. A subspace W of V is a non-empty subset $W \subset V$ satisfying two conditions:

Subspaces

Let V be a vector space. A subspace W of V is a non-empty subset $W \subset V$ satisfying two conditions:
i) $v+w \in W$ for any $v, w \in W$ (subspace is closed under addition),

Subspaces

Let V be a vector space. A subspace W of V is a non-empty subset $W \subset V$ satisfying two conditions:
i) $v+w \in W$ for any $v, w \in W$ (subspace is closed under addition),
ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).

Subspaces

Let V be a vector space. A subspace W of V is a non-empty subset $W \subset V$ satisfying two conditions:
i) $v+w \in W$ for any $v, w \in W$ (subspace is closed under addition),
ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).
A subspace W of V is called proper if $W \neq V$.

Subspaces

Let V be a vector space. A subspace W of V is a non-empty subset $W \subset V$ satisfying two conditions:
i) $v+w \in W$ for any $v, w \in W$ (subspace is closed under addition),
ii) $\alpha v \in W$ for any $\alpha \in \mathbb{R}$ and $v \in W$ (subspace is closed under scalar multiplication).
A subspace W of V is called proper if $W \neq V$. Any subspace is a vector space.

Examples

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^{n}

$$
\left\{\begin{array}{ccccccc}
a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n}
\end{array}=0\right.
$$

Examples

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^{n}

$$
\left\{\begin{array}{ccccccc}
a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n}
\end{array}=0\right.
$$

It can be shown that any subspace of \mathbb{R}^{n} is of that form.

Examples

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^{n}

$$
\left\{\begin{array}{ccccccc}
a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n}
\end{array}=0\right.
$$

It can be shown that any subspace of \mathbb{R}^{n} is of that form. Every subspace contains $\mathbf{0}$.

Examples

The set of solutions of any homogeneous system of linear equations in n unknowns is a subspace of \mathbb{R}^{n}

$$
\left\{\begin{array}{ccccccc}
a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n}
\end{array}=0\right.
$$

It can be shown that any subspace of \mathbb{R}^{n} is of that form. Every subspace contains $\mathbf{0}$. Note that the set of solutions of a non-homogeneous system of linear equations is not a subspace since it does not contain $\mathbf{0}$.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Let $x_{0} \in X$. Then $\left\{f \in \mathcal{F}(X, \mathbb{R}) \mid f\left(x_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Let $x_{0} \in X$. Then $\left\{f \in \mathcal{F}(X, \mathbb{R}) \mid f\left(x_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^{2} are lines through the origin $(0,0)$ and the zero subspace $\{(0,0)\}$.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Let $x_{0} \in X$. Then $\left\{f \in \mathcal{F}(X, \mathbb{R}) \mid f\left(x_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^{2} are lines through the origin $(0,0)$ and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^{3} are planes and lines through the origin $(0,0,0)$ and the zero subspace $\{(0,0,0)\}$.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Let $x_{0} \in X$. Then $\left\{f \in \mathcal{F}(X, \mathbb{R}) \mid f\left(x_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^{2} are lines through the origin $(0,0)$ and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^{3} are planes and lines through the origin $(0,0,0)$ and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W.

Examples (continued)

$\mathbb{R}_{c}^{\infty}=\left\{\right.$ sequences $\left(x_{i}\right)$ such that $x_{i}=0$ for all but finitely many $\left.i\right\}$ is a subspace of \mathbb{R}^{∞}.

Let $x_{0} \in X$. Then $\left\{f \in \mathcal{F}(X, \mathbb{R}) \mid f\left(x_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.

All proper subspaces of \mathbb{R}^{2} are lines through the origin $(0,0)$ and the zero subspace $\{(0,0)\}$. Similarly, all proper subspaces of \mathbb{R}^{3} are planes and lines through the origin $(0,0,0)$ and the zero subspace $\{(0,0,0)\}$.

If $U, V \subset W$ are subspaces of vector space W, then $U \cap V$ is a subspace of W. You may try to prove that $U \cup V$ is a subspace of W if and only if $U \subset V$ or $V \subset U$.

Linear Combinations

Let V be a vector space. The linear combination of vectors $v_{1}, \ldots, v_{k} \in V$ with coefficients $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ is the vector $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\sum_{i=1}^{k} \alpha_{i} v_{i} \in V$.

Linear Combinations

Let V be a vector space. The linear combination of vectors $v_{1}, \ldots, v_{k} \in V$ with coefficients $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ is the vector $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\sum_{i=1}^{k} \alpha_{i} v_{i} \in V$. The set of all linear combinations of vectors v_{1}, \ldots, v_{k} will be denoted by $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$.

$$
\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k} \in V \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}\right\}
$$

Linear Combinations

Let V be a vector space. The linear combination of vectors $v_{1}, \ldots, v_{k} \in V$ with coefficients $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ is the vector $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\sum_{i=1}^{k} \alpha_{i} v_{i} \in V$. The set of all linear combinations of vectors v_{1}, \ldots, v_{k} will be denoted by $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$.

$$
\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k} \in V \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}\right\}
$$

For example, the vector $(4,1,3)$ is a linear combination of vectors $v_{1}=(1,0,1), v_{2}=(0,1,0), v_{3}=(1,-1,0) \in \mathbb{R}^{3}$ with coefficients $3,2,1$, because $(4,1,3)=3(1,0,1)+2(0,1,0)+(1,-1,0)$.

Linear Span

Let V be a vector space.
Proposition
If vectors $v, w \in V$ are linear combinations of vectors $v_{1}, \ldots, v_{k} \in V$ then so is $v+w$.

Linear Span

Let V be a vector space.
Proposition
If vectors $v, w \in V$ are linear combinations of vectors $v_{1}, \ldots, v_{k} \in V$ then so is $v+w$.

Proof.
Let $v=\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k}$ and $w=\beta_{1} v_{1}+\ldots \beta_{k} v_{k}$. Then $v+w=\left(\alpha_{1}+\beta_{1}\right) v_{1}+\ldots+\left(\alpha_{k}+\beta_{k}\right) v_{k}$.

Linear Span

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_{1}, \ldots, v_{k} \in V$ then so is $v+w$.

Proof.
Let $v=\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k}$ and $w=\beta_{1} v_{1}+\ldots \beta_{k} v_{k}$. Then $v+w=\left(\alpha_{1}+\beta_{1}\right) v_{1}+\ldots+\left(\alpha_{k}+\beta_{k}\right) v_{k}$.

Proposition
If vector $v \in V$ is a linear combination of vectors $v_{1}, \ldots, v_{k} \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Linear Span

Let V be a vector space.

Proposition

If vectors $v, w \in V$ are linear combinations of vectors $v_{1}, \ldots, v_{k} \in V$ then so is $v+w$.

Proof.
Let $v=\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k}$ and $w=\beta_{1} v_{1}+\ldots \beta_{k} v_{k}$. Then $v+w=\left(\alpha_{1}+\beta_{1}\right) v_{1}+\ldots+\left(\alpha_{k}+\beta_{k}\right) v_{k}$.

Proposition

If vector $v \in V$ is a linear combination of vectors $v_{1}, \ldots, v_{k} \in V$ then so is αv for any $\alpha \in \mathbb{R}$.

Proof.
Let $v=\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k}$. Then $\alpha v=\left(\alpha \alpha_{1}\right) v_{1}+\ldots+\left(\alpha \alpha_{k}\right) v_{k}$.

Linear Span (continued)

Corollary
The set $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ is a subspace of V.

Linear Span (continued)

Corollary
The set $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ is a subspace of V.
Definition
If $W=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ then we call W the linear span of the vectors v_{1}, \ldots, v_{k}.

Linear Span (continued)

Corollary
The set $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ is a subspace of V.
Definition
If $W=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ then we call W the linear span of the vectors v_{1}, \ldots, v_{k}. We say W is spanned by the vectors v_{1}, \ldots, v_{k}.

Linear Span (continued)

Corollary

The set $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ is a subspace of V.

Definition

If $W=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ then we call W the linear span of the vectors v_{1}, \ldots, v_{k}. We say W is spanned by the vectors v_{1}, \ldots, v_{k}.

Corollary
If $w_{1}, \ldots, w_{l} \in \operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$ then

$$
\operatorname{lin}\left(w_{1}, \ldots, w_{l}\right) \subset \operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)
$$

Linear Span (continued)

Let V be a vector space.
Proposition
For any $v_{1}, \ldots, v_{k} \in V$ and $\alpha \in \mathbb{R}-\{0\}$ the following hold:
i) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{2}, v_{1}, v_{3}, \ldots, v_{k}\right)$,

Linear Span (continued)

Let V be a vector space.

Proposition

For any $v_{1}, \ldots, v_{k} \in V$ and $\alpha \in \mathbb{R}-\{0\}$ the following hold:
i) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{2}, v_{1}, v_{3}, \ldots, v_{k}\right)$,
ii) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(\alpha v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$,

Linear Span (continued)

Let V be a vector space.

Proposition

For any $v_{1}, \ldots, v_{k} \in V$ and $\alpha \in \mathbb{R}-\{0\}$ the following hold:
i) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{2}, v_{1}, v_{3}, \ldots, v_{k}\right)$,
ii) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(\alpha v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$,
iii) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{1}+v_{2}, v_{2}, v_{3}, \ldots, v_{k}\right)$.

Linear Span (continued)

Let V be a vector space.

Proposition

For any $v_{1}, \ldots, v_{k} \in V$ and $\alpha \in \mathbb{R}-\{0\}$ the following hold:
i) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{2}, v_{1}, v_{3}, \ldots, v_{k}\right)$,
ii) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(\alpha v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$,
iii) $\operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{1}+v_{2}, v_{2}, v_{3}, \ldots, v_{k}\right)$.

Corollary
We have

$$
\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{lin}\left(v_{1}+\alpha v_{2}, v_{2}, \ldots, v_{k}\right)
$$

that is, elementary operations on vectors do not change the spanned subspace.

Linear Span (continued)

Proof.
i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=
$$

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\frac{\alpha_{1}}{\alpha}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\frac{\alpha_{1}}{\alpha}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

hence $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$.

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\frac{\alpha_{1}}{\alpha}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

hence $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that
$v=\alpha_{1}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=$

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\frac{\alpha_{1}}{\alpha}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

hence $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\left(\alpha \alpha_{1}\right) v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k},
$$

Linear Span (continued)

Proof.

i) $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\alpha_{2} v_{2}+\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$,
ii) if $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=\frac{\alpha_{1}}{\alpha}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

hence $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(\alpha v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that
$v=\alpha_{1}\left(\alpha v_{1}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=\left(\alpha \alpha_{1}\right) v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}$,
hence $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=
$$

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1} v_{1}+\left(\alpha_{1}+\alpha_{2}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1} v_{1}+\left(\alpha_{1}+\alpha_{2}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

hence $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1} v_{1}+\left(\alpha_{1}+\alpha_{2}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

hence $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}=
$$

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1} v_{1}+\left(\alpha_{1}+\alpha_{2}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

hence $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1}\left(v_{1}+v_{2}\right)+\left(\alpha_{2}-\alpha_{1}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

Linear Span (continued)

Proof.

iii) if $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1}\left(v_{1}+v_{2}\right)+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1} v_{1}+\left(\alpha_{1}+\alpha_{2}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

hence $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v \in \operatorname{lin}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
\begin{gathered}
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}= \\
=\alpha_{1}\left(v_{1}+v_{2}\right)+\left(\alpha_{2}-\alpha_{1}\right) v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{k} v_{k}
\end{gathered}
$$

hence $v \in \operatorname{lin}\left(v_{1}+v_{2}, v_{2}, \ldots, v_{k}\right)$.

Subspaces of \mathbb{R}^{n} and Homogenous Systems of Linear Equations

Proposition

Let $V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ be the linear span of vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Subspaces of \mathbb{R}^{n} and Homogenous Systems of Linear Equations

Proposition

Let $V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ be the linear span of vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.
Let $A=\left[a_{i j}\right] \in M(k \times n ; \mathbb{R})$ be a matrix whose rows are equal to v_{1}, \ldots, v_{k}, i.e. $v_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, v_{k}=\left(a_{k 1}, \ldots, a_{k n}\right)$. Let $B=\left[b_{i j}\right] \in M(k \times n ; \mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_{1}, \ldots, w_{k} \in \mathbb{R}^{n}$ are rows of B, i.e.
$w_{1}=\left(b_{11}, \ldots, b_{1 n}\right), \ldots, w_{k}=\left(b_{k 1}, \ldots, b_{k n}\right)$.

Subspaces of \mathbb{R}^{n} and Homogenous Systems of Linear Equations

Proposition

Let $V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ be the linear span of vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ where $k \geq 1$. Then there exists a homogeneous system of linear equations in n variables whose set of solutions is equal to V.

Proof.
Let $A=\left[a_{i j}\right] \in M(k \times n ; \mathbb{R})$ be a matrix whose rows are equal to v_{1}, \ldots, v_{k}, i.e. $v_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, v_{k}=\left(a_{k 1}, \ldots, a_{k n}\right)$. Let $B=\left[b_{i j}\right] \in M(k \times n ; \mathbb{R})$ be a matrix equal to the reduced echelon form of A, where $w_{1}, \ldots, w_{k} \in \mathbb{R}^{n}$ are rows of B, i.e. $w_{1}=\left(b_{11}, \ldots, b_{1 n}\right), \ldots, w_{k}=\left(b_{k 1}, \ldots, b_{k n}\right)$. The linear span is invariant under elementary operations, therefore

$$
V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{lin}\left(w_{1}, \ldots, w_{k}\right)
$$

Subspaces of \mathbb{R}^{n} and Homogenous Systems of Linear Equations (continued)

Proof.

For simplicity assume that pivots appear in columns of numbers $1,2, \ldots, m$, where $m \leq k$, i.e.

$$
\begin{gathered}
w_{1}=\left(1,0,0, \ldots, 0,0, b_{1 m}, b_{1(m+1)}, \ldots, b_{1 n}\right), \\
w_{2}=\left(0,1,0, \ldots, 0,0, b_{2 m}, b_{2(m+1)}, \ldots, b_{2 n}\right), \\
\vdots \\
w_{m}=\left(0,0,0, \ldots, 0,1, b_{k m}, b_{k(m+1)}, \ldots, b_{1 n}\right), \\
\text { and } w_{m+1}=\ldots=w_{k}=\mathbf{0} .
\end{gathered}
$$

Subspaces of \mathbb{R}^{n} and Homogenous Systems of Linear Equations (continued)

Proof.
Then

$$
\begin{gathered}
V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{lin}\left(w_{1}, \ldots, w_{m}\right)= \\
=\left\{x_{1} w_{1}+\ldots+x_{m} w_{m} \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{m} \in \mathbb{R}\right\}= \\
\left\{\left(x_{1}, x_{2}, \ldots, x_{m}, b_{1 m} x_{1}+b_{2 m} x_{2}+\ldots+b_{k m} x_{m}\right.\right. \\
, b_{1(m+1)} x_{1}+b_{2(m+1) m} x_{2}+\ldots+b_{k(m+1)} x_{m}, \ldots \\
\left.\left.\ldots, b_{1 n} x_{1}+b_{2 n} x_{2}+\ldots+b_{k n} x_{m}\right) \mid x_{1}, \ldots, x_{m} \in \mathbb{R}\right\},
\end{gathered}
$$

which is equal to the set of solutions of the system

$$
\left\{\begin{array}{rlll}
x_{m+1} & =b_{1 m} x_{1} & +b_{2 m} x_{2} & +\ldots+b_{k m} x_{m} \\
x_{m+2} & =b_{1(m+1)} x_{1} & +b_{2(m+1)} x_{2} & +\ldots+b_{k(m+1)} x_{m} \\
& \vdots \\
x_{n} & =b_{1 n} x_{1}+b_{2 n} x_{2} & +\ldots+b_{k n} x_{m}
\end{array}\right.
$$

of $n-m$ equations with free variables $x_{1}, \ldots, x_{m} \in \mathbb{R}$.

Subspaces and Homogenous Systems of Linear Equations (continued)

Proof.

In general, if the numbers of columns with pivots are equal to $1 \leq j_{1}<j_{2}<\ldots<j_{m} \leq n$ then one should consider vector

$$
x_{j_{1}} w_{1}+x_{j_{2}} w_{2}+\ldots+x_{j_{m}} w_{m},
$$

which leads to a homogeneous system of $n-m$ equations in n unknowns and free variables $x_{j_{1}}, \ldots, x_{j_{m}} \in \mathbb{R}$.

Example

Let $V=\operatorname{lin}((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) \subset \mathbb{R}^{4}$ be a subspace of \mathbb{R}^{4}. Find a system of linear equations which set of solutions is equal to V.

Example

Let $V=\operatorname{lin}((1,2,1,0),(0,2,1,1),(1,4,2,1),(3,8,4,1)) \subset \mathbb{R}^{4}$ be a subspace of \mathbb{R}^{4}. Find a system of linear equations which set of solutions is equal to V.

Put vectors horizontally in a matrix and perform elementary row operations to get the reduced echelon form (up to column permutation).

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & 1 \\
1 & 4 & 2 & 1 \\
3 & 8 & 4 & 1
\end{array}\right] \xrightarrow{\substack{r_{3}-r_{1} \\
r_{4}-3 r_{1}}}\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & 1
\end{array}\right]
$$

Example (continued)

Any vector in the space V is equal to
$x_{1}(1,2,1,0)+x_{4}(0,2,1,1)=\left(x_{1}, 2 x_{1}+2 x_{4}, x_{1}+x_{4}, x_{4}\right)$ for some $x_{1}, x_{4} \in \mathbb{R}$. This is a general solution of the following system of linear equations

$$
\left\{\begin{array}{l}
x_{2}=2 x_{1}+2 x_{4} \\
x_{3}=x_{1}+x_{4}
\end{array}\right.
$$

Example (continued)

Any vector in the space V is equal to
$x_{1}(1,2,1,0)+x_{4}(0,2,1,1)=\left(x_{1}, 2 x_{1}+2 x_{4}, x_{1}+x_{4}, x_{4}\right)$ for some $x_{1}, x_{4} \in \mathbb{R}$. This is a general solution of the following system of linear equations

$$
\left\{\begin{array}{l}
x_{2}=2 x_{1}+2 x_{4} \\
x_{3}=x_{1}+x_{4}
\end{array}\right.
$$

The system is equal to

$$
\left\{\begin{array}{c}
2 x_{1}-x_{2}-2 x_{4}=0 \\
x_{1}
\end{array}-x_{3}+x_{4}=0\right.
$$

Remarks

Remark
The system corresponding to the subspace $V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ is not unique.

Remarks

Remark

The system corresponding to the subspace
$V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ is not unique.

Remark

So far we have shown that

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { subspaces } \\
\text { of } \mathbb{R}^{n}
\end{array}\right\} \supset\left\{\begin{array}{c}
\text { linear spans } \\
\text { of } v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}
\end{array}\right\}= \\
=\left\{\begin{array}{c}
\text { sets of solutions of } \\
\text { hogeneous systems of } \\
\text { linear equations in } \\
n \text { variables }
\end{array}\right\}
\end{gathered}
$$

Remarks

Remark

The system corresponding to the subspace
$V=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ is not unique.
Remark
So far we have shown that

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { subspaces } \\
\text { of } \mathbb{R}^{n}
\end{array}\right\} \supset\left\{\begin{array}{c}
\text { linear spans } \\
\text { of } v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}
\end{array}\right\}= \\
=\left\{\begin{array}{c}
\text { sets of solutions of } \\
\text { hogeneous systems of } \\
\text { linear equations in } \\
n \text { variables }
\end{array}\right\}
\end{gathered}
$$

Later we will show that any subspace $V \subset \mathbb{R}^{n}$ is equal to a linear span of some vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$, that is the first inclusion is an equality.

Hölder and Minkowski Inequalities ${ }^{1}$

Proposition (Hölder)
For any $p, q>1$ such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

and any $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}\left(\right.$ or $\left.\in \mathbb{C}^{n}\right)$

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

Hölder and Minkowski Inequalities ${ }^{1}$

Proposition (Hölder)

For any $p, q>1$ such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

and any $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}\left(\right.$ or $\left.\in \mathbb{C}^{n}\right)$

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

Corollary (Minkowski)
For any $p \geq 1$ and any $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ (or \mathbb{C}^{n})

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}} .
$$

${ }^{1}$ For proofs see W. Rudin, Functional Analysis

The Spaces ℓ^{1} and ℓ^{2}

Definition
Let

$$
\begin{gathered}
\ell^{1}=\left\{\left(x_{i}\right) \in \mathbb{R}^{\infty}\left|\sum_{i=1}^{\infty}\right| x_{i} \mid<+\infty\right\}, \\
\ell^{2}=\left\{\left.\left(x_{i}\right) \in \mathbb{R}^{\infty}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{2}<+\infty\right\}, \\
\ell^{\infty}=\left\{\left(x_{i}\right) \in \mathbb{R}^{\infty} \mid \text { sequence }\left(x_{i}\right) \text { is bounded }\right\} .
\end{gathered}
$$

The Spaces ℓ^{1} and ℓ^{2}

Definition
Let

$$
\begin{gathered}
\ell^{1}=\left\{\left(x_{i}\right) \in \mathbb{R}^{\infty}\left|\sum_{i=1}^{\infty}\right| x_{i} \mid<+\infty\right\}, \\
\ell^{2}=\left\{\left.\left(x_{i}\right) \in \mathbb{R}^{\infty}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{2}<+\infty\right\}, \\
\ell^{\infty}=\left\{\left(x_{i}\right) \in \mathbb{R}^{\infty} \mid \text { sequence }\left(x_{i}\right) \text { is bounded }\right\} .
\end{gathered}
$$

Corollary
The sets $\ell^{1}, \ell^{2}, \ell^{\infty} \subset \mathbb{R}^{\infty}$ are subspaces and

$$
\ell^{1} \subsetneq \ell^{2} \subsetneq \ell^{\infty} \subsetneq \mathbb{R}^{\infty} .
$$

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\left(x_{i}\right),\left(y_{i}\right) \in \ell^{\infty}$ then $\left|x_{i}\right|<M,\left|y_{i}\right|<N$, therefore

$$
\begin{gathered}
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|<M+N, \\
\left|\alpha x_{i}\right|<|\alpha| M
\end{gathered}
$$

for any $\alpha \neq 0$.

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\left(x_{i}\right),\left(y_{i}\right) \in \ell^{\infty}$ then $\left|x_{i}\right|<M,\left|y_{i}\right|<N$, therefore

$$
\begin{gathered}
\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|<M+N, \\
\left|\alpha x_{i}\right|<|\alpha| M
\end{gathered}
$$

for any $\alpha \neq 0$. For ℓ^{1} and ℓ^{2}, since

$$
\sum_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow+\infty} \sum_{i=1}^{n} x_{i}
$$

it is enough to take limits in the Minkowski inequality for $p=1$ and $p=2$, respectively.

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\sum_{i=1}^{\infty}\left|x_{i}\right|<\infty$ then $\lim _{i \rightarrow+\infty}\left|x_{i}\right|=0$ and the sequence $\left(x_{i}\right)$ is bounded.

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\sum_{i=1}^{\infty}\left|x_{i}\right|<\infty$ then $\lim _{i \rightarrow+\infty}\left|x_{i}\right|=0$ and the sequence $\left(x_{i}\right)$ is bounded. Therefore for $i>N$, where N is large enough, $\left|x_{i}\right|<1$ and

$$
\begin{gathered}
\left|x_{i}\right|^{2} \leq\left|x_{i}\right| \\
\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{2} \leq \sum_{i=N+1}^{\infty}\left|x_{i}\right|<\infty
\end{gathered}
$$

which implies

$$
\ell^{1} \subset \ell^{2} \subset \ell^{\infty} .
$$

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\sum_{i=1}^{\infty}\left|x_{i}\right|<\infty$ then $\lim _{i \rightarrow+\infty}\left|x_{i}\right|=0$ and the sequence $\left(x_{i}\right)$ is bounded. Therefore for $i>N$, where N is large enough, $\left|x_{i}\right|<1$ and

$$
\begin{gathered}
\left|x_{i}\right|^{2} \leq\left|x_{i}\right| \\
\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{2} \leq \sum_{i=N+1}^{\infty}\left|x_{i}\right|<\infty
\end{gathered}
$$

which implies

$$
\ell^{1} \subset \ell^{2} \subset \ell^{\infty}
$$

If $x_{i}=1$ then $\left(x_{i}\right) \in \ell^{\infty}$ but $\left(x_{i}\right) \notin \ell^{2}$.

The Spaces ℓ^{1} and ℓ^{2} (continued)

Proof.

If $\sum_{i=1}^{\infty}\left|x_{i}\right|<\infty$ then $\lim _{i \rightarrow+\infty}\left|x_{i}\right|=0$ and the sequence $\left(x_{i}\right)$ is bounded. Therefore for $i>N$, where N is large enough, $\left|x_{i}\right|<1$ and

$$
\begin{gathered}
\left|x_{i}\right|^{2} \leq\left|x_{i}\right| \\
\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{2} \leq \sum_{i=N+1}^{\infty}\left|x_{i}\right|<\infty
\end{gathered}
$$

which implies

$$
\ell^{1} \subset \ell^{2} \subset \ell^{\infty} .
$$

If $x_{i}=1$ then $\left(x_{i}\right) \in \ell^{\infty}$ but $\left(x_{i}\right) \notin \ell^{2}$. If $y_{i}=\frac{1}{i}$ then $\left(y_{i}\right) \in \ell^{2}$ but $\left(y_{i}\right) \notin \ell^{1}$.

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\},
$$

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\},
$$

$\mathcal{C}^{n}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}\right.$ exist and are continuous $\}$,

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\begin{gathered}
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\}, \\
\mathcal{C}^{n}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)} \text { exist and are continuous }\right\}, \\
\mathcal{C}^{\infty}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots \text { exist and are continuous }\right\},
\end{gathered}
$$

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\begin{gathered}
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\}, \\
\mathcal{C}^{n}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)} \text { exist and are continuous }\right\}, \\
\mathcal{C}^{\infty}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots \text { exist and are continuous }\right\}, \\
\mathcal{H}(\Omega)=\left\{f \in \mathcal{C}^{2}(\Omega) \left\lvert\, \frac{\partial^{2} f}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=0\right.\right\},
\end{gathered}
$$

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\begin{gathered}
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\} \\
\mathcal{C}^{n}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)} \text { exist and are continuous }\right\}, \\
\mathcal{C}^{\infty}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots \text { exist and are continuous }\right\},
\end{gathered}
$$

$$
\mathcal{H}(\Omega)=\left\{f \in \mathcal{C}^{2}(\Omega) \left\lvert\, \frac{\partial^{2} f}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=0\right.\right\}
$$

then

$$
\mathcal{H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega) \subset \ldots \subset \mathcal{C}^{2}(\Omega) \subset \mathcal{C}^{1}(\Omega) \subset \mathcal{C}(\Omega) \subset \mathbb{F}(\Omega, \mathbb{R})
$$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$.

Harmonic Functions/Laplace Equation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. If

$$
\begin{gathered}
\mathcal{C}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\}, \\
\mathcal{C}^{n}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)} \text { exist and are continuous }\right\}, \\
\mathcal{C}^{\infty}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \mid f^{\prime}, f^{\prime \prime}, \ldots \text { exist and are continuous }\right\}, \\
\mathcal{H}(\Omega)=\left\{f \in \mathcal{C}^{2}(\Omega) \left\lvert\, \frac{\partial^{2} f}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=0\right.\right\},
\end{gathered}
$$

then

$$
\mathcal{H}(\Omega) \subset \mathcal{C}^{\infty}(\Omega) \subset \ldots \subset \mathcal{C}^{2}(\Omega) \subset \mathcal{C}^{1}(\Omega) \subset \mathcal{C}(\Omega) \subset \mathbb{F}(\Omega, \mathbb{R})
$$

are subspaces of $\mathbb{F}(\Omega, \mathbb{R})$. The first inclusion is a theorem in the theory of harmonic functions.

Homogeneous (Ordinary) Linear Differential Equations

If $X=(a, b) \subset \mathbb{R}$ and

$$
V=\left\{x \in \mathcal{C}^{n}(X) \mid x^{(n)}+a_{1} x^{(n-1)}+\ldots+a_{n} x=0\right\}
$$

i.e., V is the set of all functions $x: X \rightarrow \mathbb{R}$ such that $x \in \mathcal{C}^{n}(X)$ and

$$
x^{(n)}(t)+a_{1}(t) x^{(n-1)}(t)+\ldots+a_{n}(t) x(t)=0
$$

for all $t \in X$, where

$$
a_{i}: X \rightarrow \mathbb{R}
$$

are continuous functions then

$$
V \subset \mathcal{C}^{n}(X)
$$

is a subspace of dimension n.

Grassmannian

This material is meant to be read at the end of the course.

Definition

Grassmanian $\operatorname{Gr}(k, n)$ is the set of all subspaces of dimension k in the vector space \mathbb{R}^{n}, that is

$$
\operatorname{Gr}(k, n)=\left\{V \subset \mathbb{R}^{n} \mid \operatorname{dim} V=k\right\} .
$$

It is possible to identify this set with a smooth algebraic variety (you might think of it a special version of a submanifold of $\mathbb{R}^{n^{2}}$)

$$
\operatorname{Gr}(k, n)=\left\{A \in M(n \times n ; \mathbb{R}) \mid A^{2}=A, \quad A^{\top}=A, \quad \text { rk } A=k\right\}
$$

There exists a bijection between subspaces of dimension k of \mathbb{R}^{n} and matrices as above (exercise). Note that Grassmanian is given by a system of polynomial equations in the entries $a_{i j}$ of matrix $A=\left[a_{i j}\right]$.

Grassmannian (continued)

There are several methods of inducing a topology on $G(k, n)$. A metric on $\operatorname{Gr}(k, n)$ can be defined by

$$
d(V, W)=\left\|P_{V}-P_{W}\right\|
$$

where P_{V}, P_{W} are (matrices) of orthogonal projections onto k-dimensional subspaces V and W, respectively and $\|\cdot\|$ is (some) matrix norm.

Using the SVD decomposition it is possible to give interpretation of those distances in the terms of principal angles between the subspaces V and W for $\|\cdot\|=\|\cdot\|_{2}$ and $\|\cdot\|=\|\cdot\|_{F}$ (exercise).

