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Quadratic Form

Definition
A function @: R" — R is called a quadratic form if

QUXL, -, Xn)) = a11XF 4 ... + apnX> + Z ajjXiX;,

1<i<j<n

that is, it is a function given by a homogeneous polynomial of
degree 2 in variables xi, ..., xp.
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that is, it is a function given by a homogeneous polynomial of
degree 2 in variables xi, ..., xp.

Examples

Q((x1, %)) = X7 — %3



Quadratic Form

Definition
A function @: R" — R is called a quadratic form if

QUXL, -, Xn)) = a11XF 4 ... + apnX> + Z ajjXiX;,

1<i<j<n

that is, it is a function given by a homogeneous polynomial of
degree 2 in variables xi, ..., xp.

Examples
Q((x1, %)) = X — x3

Q((Xl, X2, X3)) = Xf + 2X22 + 5X§ + 2x1Xp — 2x1x3 + 2XpX3



Symmetric Matrix

Recall

Definition
Matrix A = [a;] € M(n x n;R) is called symmetric if AT = A, i.e.
ajj = ajj for i,j= 1,...,n.



Symmetric Matrix

Recall

Definition

Matrix A = [a;] € M(n x n;R) is called symmetric if AT = A, i.e.
ajj = ajj for i,j= 1,...,n.

Example

0
matrix | 2 4 -3 is symmetric
5



Symmetric Matrix

Recall
Definition
Matrix A = [a;] € M(n x n;R) is called symmetric if AT = A, i.e.
ajj = ajj for i,j= 1,...,n.
Example
0 2 5
matrix | 2 4 -3 is symmetric
5 -3 1
0 2 6
matrix 2 4 -3 is not symmetric
5 -3 1



Matrix of a Quadratic Form

Definition

Let Q((x1,---,Xn)) = DLy @iX? + Di<icjcn 2iXiX; be a quadratic
form. The matrix of the quadratic form @ is a symmetric matrix
M = [bjj] € M(n x n;R) such that bj = aj; and bj; = bjj = %a;j for
1<i<j<n



Matrix of a Quadratic Form

Definition

Let Q((x1,---,Xn)) = DLy @iX? + Di<icjcn 2iXiX; be a quadratic
form. The matrix of the quadratic form @ is a symmetric matrix
M = [bjj] € M(n x n;R) such that bj = aj; and bj; = bjj = %a;j for
1<i<j<n

Example

The matrix of the form Q((x1,x)) = x} — x3 is M = [ (1) _(1) ] ‘



Matrix of a Quadratic Form

Definition

Let Q((x1,---,Xn)) = DLy @iX? + Di<icjcn 2iXiX; be a quadratic
form. The matrix of the quadratic form @ is a symmetric matrix
M = [bjj] € M(n x n;R) such that bj = aj; and bj; = bjj = %a;j for
1<i<j<n

Example

The matrix of the form Q((x1,x)) = x} — x3 is M = [ (1) _(1) ] ‘

The matrix of the form Q((x1,x2,x3)) = xZ + 2x3 + 5x2 + 2x1%0
—4x1x3 + 8xox3 is



Matrix of a Quadratic Form (continued)

Proposition
Let M be a matrix of the quadratic form Q: R" — R. Then

Q((x1,...,%n)) = xTMx,
X1
where x =

Xn



Matrix of a Quadratic Form (continued)

Proposition
Let M be a matrix of the quadratic form Q: R" — R. Then

Q((x1,...,%n)) = xTMx,
X1
where x =
Xn
Proof.
Entries of matrix M in the i-th row get multiplied by x; and
elements in the j-th column get multiplied by x;. For every i # j

the monomial x;x; comes from the entry in the i-th row, j-th
column and from the entry in the j-th row, i-th column. U



Matrix of a Quadratic Form (continued)

Formal explanation

Dot b1sxs
Q((x1, .. sxn) =xTMx = [x1 x2 -+ xp] Do basxs | =

22:1 bnsxs

n n n
:XIZ blsXs+X2Z b2sXs+~'+XnZ bnsxs =
s=1 s=1

s=1
n
= Z b,'jX,'Xj.
ij=1



Positive/Negative Definite Quadratic Form

Definition

Quadratic form @: R” — R (resp. symmetric matrix
M e M(n x n;R)) is positive definite if Q(x) > 0 (resp.
xTMx > 0) for any x e R", x # 0.



Positive/Negative Definite Quadratic Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive definite if Q(x) > 0 (resp.
xTMx > 0) for any x e R", x # 0.

Quadratic form Q (resp. symmetric matrix M) is negative
definite if Q(x) <0 (resp. xTMx < 0) for any x € R", x # 0.



Positive/Negative Definite Quadratic Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive definite if Q(x) > 0 (resp.
xTMx > 0) for any x e R", x # 0.

Quadratic form Q (resp. symmetric matrix M) is negative
definite if Q(x) <0 (resp. xTMx < 0) for any x € R", x # 0.

Example
The quadratic form | - ||2: R” — R is positive definite since

Ix|I? = x? 4+ ...+ x2 > 0 for x # 0.



Positive/Negative Definite Quadratic Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive definite if Q(x) > 0 (resp.
xTMx > 0) for any x e R", x # 0.

Quadratic form @ (resp. symmetric matrix M) is negative
definite if Q(x) <0 (resp. xTMx < 0) for any x € R", x # 0.

Example

The quadratic form | - ||2: R” — R is positive definite since
Ix|I? = x? 4+ ...+ x2 > 0 for x # 0.

The quadratic form Q((x1,x2)) = x# — x3 is not positive definite
since Q((0,1)) = —1 < 0. It is not negative definite since
Q((1,0)) =1 >0.



Positive/Negative Definite Quadratic Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive definite if Q(x) > 0 (resp.
xTMx > 0) for any x e R", x # 0.

Quadratic form @ (resp. symmetric matrix M) is negative
definite if Q(x) <0 (resp. xTMx < 0) for any x € R", x # 0.

Example

The quadratic form | - ||2: R” — R is positive definite since
Ix|I? = x? 4+ ...+ x2 > 0 for x # 0.

The quadratic form Q((x1,x2)) = x# — x3 is not positive definite
since Q((0,1)) = —1 < 0. It is not negative definite since
Q((1,0)) =1 >0.

The quadratic form Q((x1,x2,x3)) = x? + 2x3 + 5x5 + 2x1%
—2x1x3 + 2xpox3 = (Xl + Xo — X3)2 + (X2 + 2X3)2 is not positive
definite since Q((3,—2,1)) = 0. It is not negative definite.



Recall
(ai+ax+...+a,)° = a2+ as+...+a>+2ajar+2a1a3+. .. +2a1a,+

+2araz+2apas+...+2axa,+2azas+...+2azap+...... +2a,_1an



Recall
(ai+ax+...+a,)° = a2+ as+...+a>+2ajar+2a1a3+. .. +2a1a,+

+2araz+2apas+...+2axa,+2azas+...+2azap+...... +2a,_1an

For example
(x1—3x2 + 2X3)2 =



Recall
(ai+ax+...+a,)° = a2+ as+...+a>+2ajar+2a1a3+. .. +2a1a,+

+2araz+2apas+...+2axa,+2azas+...+2azap+...... +2a,_1an

For example
(x1—3x2 + 2X3)2 =

= X2+ (=3)23 + 223 +2- (—3)x1x2+2 - 2x1x3 + 2 (—3) - 2x0x3 =

= X12 + 9X22 + 4x§ —b6x1x0 + 4x1x3 — 12x0x3



Recall
(ai+ax+...+a,)° = a2+ as+...+a>+2ajar+2a1a3+. .. +2a1a,+

+2araz+2apas+...+2axa,+2azas+...+2azap+...... +2a,_1an

For example
(x1—3x2 + 2X3)2 =

= X2+ (=3)23 + 223 +2- (—3)x1x2+2 - 2x1x3 + 2 (—3) - 2x0x3 =

= X12 + 9X22 + 4x§ —b6x1x0 + 4x1x3 — 12x0x3

Proposition

A quadratic form Q: R" — R can expressed (possibly after a
change of coordinates) as Q((x1,...,x,)) = +I2 £ 3+ ... + /2
where I1, ..., I, are linear functions such that I;,..., 1, do not
depend on the variables x1,...,xj_1 fori =2,...,n.



Recall
(ai+ax+...+a,)° = a2+ as+...+a>+2ajar+2a1a3+. .. +2a1a,+

+2araz+2apas+...+2axa,+2azas+...+2azap+...... +2a,_1an

For example
(x1—3x2 + 2X3)2 =

= X2+ (=3)23 + 223 +2- (—3)x1x2+2 - 2x1x3 + 2 (—3) - 2x0x3 =

= X12 + 9X22 + 4x§ —b6x1x0 + 4x1x3 — 12x0x3

Proposition

A quadratic form Q: R" — R can expressed (possibly after a
change of coordinates) as Q((x1,...,x,)) = +I2 £ 3+ ... + /2

where I1, ..., I, are linear functions such that I;,..., 1, do not
depend on the variables x1,...,xj_1 fori =2,...,n.
Proof.

(sketch) Use the above formula. O



Example

Q((x1,x2,x3)) = X12 + 2)(22 + 5X32 + 2x1x0 —2Xx1X3 + 2XoX3 =
(x1 +x0 — X3)2 + X22 +4xox3 + 4X§ =(x1 +x — X3)2 + (x + 2X3)2



Example

Q((x1,x2,x3)) = X12 + 2)(22 + 5X32 + 2x1x0 —2Xx1X3 + 2XoX3 =
(x1 +x0 — X3)2 + X22 +4xox3 + 4X§ =(x1 +x — X3)2 + (x + 2X3)2

Q((x1,x2,x3)) = x12 — X22 + X32 + 2x1x0 — dx1x3 =
(x1+X2—QX3)2—2x22—|—4X2X3—3x§ = (X1+X2—QX3)2—2(X2—X3)2—X§



Example

Q((x1,x2,x3)) = X12 + 2><22 + 5X32 + 2x1x0 —2Xx1X3 + 2XoX3 =
(x1 +x0 — X3)2 + X22 +4xox3 + 4X§ =(x1 +x — X3)2 + (x + 2X3)2

Q((x1,x2,x3)) = x12 — X22 + X32 + 2x1x0 — dx1x3 =
(x1+X2—QX3)2—2x22—|—4X2X3—3x§ = (X1+X2—QX3)2—2(x2—X3)2—x§

What to do if there is no square? Do the following substitution:
X1=Y1—=y2
Q((x1,x2,x3)) = x1x2 + 2x1x3 = {X2X=y1;ry2}
3=Y3

(vi—y2) 1 +y2) +2(y1 — y2)y3 = yZ — ¥3 + 2y1y3 — 2y2y3 =
i +y3)2—y2—y2 =2y = (y1+y3)2 = (y2 + y3)?



Example (continued)

Q((Xl,X2,X3)) = X12 + 2X22 + 5X§ + 2x1x0 —2x1X3 + 2Xpx3 =

(x1 +x0 —x3)2 + X22 + 4xox3 + 4x§ = (x1+x2 —x3)% + (x2 +2x3)?
Let

Y = Xx1+x2—Xx3
y2 = X2 +2x3
y3 = X3

then Q((y1,y2,y3)) = y§ + y3, where

)4 X1 1 1 -1
w|=P|x]|, for P=|[0 1 2
y3 X3 00 1
In particular
1 00 1 00 11 -1
yT[0 1 0fy=(Px)T|0 1 O|Px=xT 1 2 1|x
0 0O 0 0O -1 1



Sylvester's Criterion

Proposition

Let M € M(n x n;R) be a symmetric matrix. Let W; denote the
determinant of the upper-left i-by-i submatrix of M. Matrix M is
positive definite if and only if W; > 0 for i =1,... n.



Sylvester’s Criterion

Proposition

Let M € M(n x n;R) be a symmetric matrix. Let W; denote the
determinant of the upper-left i-by-i submatrix of M. Matrix M is
positive definite if and only if W; > 0 for i =1,... n.

Proof.
Omitted. O

Remark
The determinants W; are sometimes called leading principal
minors.



Example

Consider the symmetric matrix



Example

Consider the symmetric matrix

and compute its leading principal minors



Example

Consider the symmetric matrix

and compute its leading principal minors
Wy =det|[ 1 ]=1>0,



Example

Consider the symmetric matrix

and compute its leading principal minors
Wy =det|[ 1 ]=1>0,

11
W2=det|:1 2]=1>0,



Example

Consider the symmetric matrix

11 -1
M = 1 2 1
-1 1 6
and compute its leading principal minors
Wy =det|[ 1 ]=1>0,
11
W2—det|: 1 2]—1>0,
1 1 -1 | a+e 0 0 —1
Wy=det| 1 2 1 [®L%det| 2 3 1 |=1>0.
-1 1 6 57 6



Example

Consider the symmetric matrix

and compute its leading principal minors
Wy =det|[ 1 ]=1>0,
1 ; ] =1>0,
1 1 -1 | a+e 0 0 -1

Wy=det| 1 2 1 [®L%det| 2 3 1 |=1>0.

-1 1 6 57 6
By Sylverster's criterion the quadratic form x3 + 2x5 + 6x§ + 2x1%0
—2x1x3 + 2xpx3 is positive definite.

W5 =det|:



Another Example

Consider the symmetric matrix



Another Example

Consider the symmetric matrix

and compute its leading principal minors



Another Example

Consider the symmetric matrix

and compute its leading principal minors
Wi=det| 1 ]=1>0,



Another Example

Consider the symmetric matrix

and compute its leading principal minors
Wi=det| 1 ]=1>0,

11
W2—det|:1 2]—1>0,



Another Example

Consider the symmetric matrix

11 -1
M = 1 2 1
-1 1 5
and compute its leading principal minors
Wi=det| 1 ]=1>0,
11
W2—det|: 1 2]—].>0,
1 ]. _1 c+c3 0 0 _1
Ws=det| 1 2 1 |%E%det| 2 3 1 |=03%0.
-1 1 5 4 6 b



Another Example

Consider the symmetric matrix

and compute its leading principal minors
Wi=det| 1 ]=1>0,

W2=det{i ;]=1>0,
11 -17 ate 00 -1

W5 = det 1 2 1 |“%det| 23 1]|=0%0.
11 5 46 5

By Sylverster's criterion the quadratic form
Q((Xl,Xz,Xg,)) = X12 + 2X22 + 5X§ + 2x1x0 —2x1x3 + 2xpx3 is not
positive definite.



Another Example

Consider the symmetric matrix

and compute its leading principal minors
Wi=det| 1 ]=1>0,

W2=det{i ;]=1>0,
11 -17 ate 00 -1

W5 = det 1 2 1 |“%det| 23 1]|=0%0.
11 5 46 5

By Sylverster's criterion the quadratic form
Q((Xl,Xz,Xg,)) = X12 + 2X22 + 5X§ + 2x1x0 —2x1x3 + 2xpx3 is not
positive definite. In fact, Q((3,—2,1)) = 0.



Sylvester’s Criterion (continued)

A quadratic form @Q is positive definite if and only if —Q is
negative definite.



Sylvester’s Criterion (continued)

A quadratic form @Q is positive definite if and only if —Q is
negative definite.

Proposition

Let M e M(n x n;R) be a symmetric matrix. Let W; denote the
determinant of the upper-left i-by-i submatrix of M. Matrix M is
negative definite if and only if



Sylvester’s Criterion (continued)

A quadratic form @Q is positive definite if and only if —Q is
negative definite.

Proposition

Let M e M(n x n;R) be a symmetric matrix. Let W; denote the
determinant of the upper-left i-by-i submatrix of M. Matrix M is
negative definite if and only if

W; < 0 for odd i,

W; > 0 for even i,

fori=1,...,n.



Example

Consider the symmetric matrix

Ll Iy



Example

Consider the symmetric matrix
-1 -1
(Y

and compute its leading principal minors



Example

Consider the symmetric matrix
-1 -1
(Y

and compute its leading principal minors
Wi =det| -1 | =-1<0,



Example

Consider the symmetric matrix
-1 -1
v-|
and compute its leading principal minors

Wi =det| -1 | =-1<0,

-1 -1
N ey



Example

Consider the symmetric matrix

-1 -1
(Y
and compute its leading principal minors
Wi =det| -1 | =-1<0,

-1 -1
W2—d€t|:_1 _2]—1>0,
The quadratic form —x? — 2xyx — 2x2 = —(x1 + x2)? — x3 is

negative definite.



Sylvester’s Criterion — Warning

It crucial that matrix A is symmetric. For example, let
-1 -3
M= [ - ] .

e]Mer = =1, eIMey =2,

Then

hence matrix M is indefinite, however

Wi =-1, W,=1.



Postive/Negative Semidefinite Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive semidefinite if Q(x) > 0 (resp.
xTMx = 0) for any x € R".



Postive/Negative Semidefinite Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive semidefinite if Q(x) > 0 (resp.
xTMx = 0) for any x € R".

Quadratic form Q (resp. symmetric matrix M) is negative
semidefinite if Q(x) < 0 (resp. xTMx < 0) for any x € R".



Postive/Negative Semidefinite Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive semidefinite if Q(x) > 0 (resp.
xTMx = 0) for any x € R".

Quadratic form @ (resp. symmetric matrix M) is negative
semidefinite if Q(x) < 0 (resp. xTMx < 0) for any x € R".
Quadratic form Q (resp. symmetric matrix M) is indefinite if
there exist x,y € R"” such that Q(x) > 0, Q(y) < 0 (resp.
xTMx > 0,yTMy < 0).



Postive/Negative Semidefinite Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive semidefinite if Q(x) > 0 (resp.
xTMx = 0) for any x € R".

Quadratic form @ (resp. symmetric matrix M) is negative
semidefinite if Q(x) < 0 (resp. xTMx < 0) for any x € R".
Quadratic form Q (resp. symmetric matrix M) is indefinite if
there exist x,y € R"” such that Q(x) > 0, Q(y) < 0 (resp.
xTMx > 0,yTMy < 0).

Remark
A positive (resp. negative) definite quadratic form is positive (resp.
negative) semidefinite.



Postive/Negative Semidefinite Form

Definition

Quadratic form Q: R” — R (resp. symmetric matrix

M e M(n x n;R)) is positive semidefinite if Q(x) > 0 (resp.
xTMx = 0) for any x € R".

Quadratic form @ (resp. symmetric matrix M) is negative
semidefinite if Q(x) < 0 (resp. xTMx < 0) for any x € R".
Quadratic form Q (resp. symmetric matrix M) is indefinite if
there exist x,y € R"” such that Q(x) > 0, Q(y) < 0 (resp.
xTMx > 0,yTMy < 0).

Remark

A positive (resp. negative) definite quadratic form is positive (resp.
negative) semidefinite. A quadratic form is indefinite if and only if
it is not positive semidefinite and it is not negative semidefinite.



Examples

The quadratic form Q((x1,x2)) = x¥ — x3 is indefinite since
Q((1,0)) > 0 and Q((0,1)) < 0.



Examples

The quadratic form Q((x1,x2)) = x¥ — x3 is indefinite since
Q((1,0)) > 0 and Q((0,1)) < 0.

The quadratic form Q((x1,x2,x3)) = X2 + 2x5 + 5x2 + 2x1x
—2x1x3 + 2x0x3 = (x1 + X2 — x3) + (x2 + 2x3)? is positive
semidefinite. It is not positive definite.



Examples

The quadratic form Q((x1,x2)) = x¥ — x3 is indefinite since
Q((1,0)) > 0 and Q((0,1)) < 0.

The quadratic form Q((x1,x2,x3)) = X2 + 2x5 + 5x2 + 2x1x
—2x1x3 + 2x0x3 = (x1 + X2 — x3) + (x2 + 2x3)? is positive
semidefinite. It is not positive definite.

The quadratic form
Q((x1,x2)) = —x — 2x1x0 — 2x3 = —(x1 + x2)? — X3 is negative
definite.



Examples

The quadratic form Q((x1,x2)) = x¥ — x3 is indefinite since
Q((1,0)) > 0 and Q((0,1)) < 0.

The quadratic form Q((x1,x2,x3)) = X2 + 2x5 + 5x2 + 2x1x
—2x1x3 + 2x0x3 = (x1 + X2 — x3) + (x2 + 2x3)? is positive
semidefinite. It is not positive definite.

The quadratic form
Q((x1,x2)) = —x — 2x1x0 — 2x3 = —(x1 + x2)? — X3 is negative
definite.

The quadratic form
Q((x1,x2,x3)) = —xF — 2x1x2 — 2x5 = —(x1 + x2)% — x5 is not
negative definite since Q((0,0,1)) = 0. It is negative semidefinite.



Warning

Consider the quadratic form Q((x1,x2)) = —x3.



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite.



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite. Its matrix is

v-lo )



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite. Its matrix is

v-lo )

Compute the leading principal minors



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite. Its matrix is

0 O
v-lo 1]
Compute the leading principal minors
W1=det[ 0 ] =0=0,



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite. Its matrix is

0 O
v-lo 1]
Compute the leading principal minors
W1=det[ 0 ] =0=0,

W2=det{0 0



Warning

Consider the quadratic form Q((x1,x2)) = —x3. It is negative
semidefinite. Its matrix is

0 O
v-lo 1]
Compute the leading principal minors
W1=det[ 0 ] =0=0,

W, = det 0 0:|:0>0,

0 —1
This shows there is no direct analogue of Sylvester's criterion for
positive/negative semidefinite matrices.



Warning (continued)

Proposition
Let M € M(n x n;R) be a symmetric square matrix. Then matrix
M is positive semidefinite if and only if for any

Jc{l,....n},J #
detMJ;JZO,

that is all principal minors are non—negative.



Warning (continued)

Proposition

Let M e M(n x n;R) be a symmetric square matrix. Then matrix
M is positive semidefinite if and only if for any
Jc{l,....n},J #

detMJ;JZO,

that is all principal minors are non—negative.

Proof.

The proof uses spectral theorem and eigenvalue criterion.

(=) The restriction of M to the subspace lin({¢; | i € J}) is
positive semidefinite and has matrix equal to M,.,. Since M,.; is
symmetric and positive semidefinite, by the eigenvalue criterion
det M., is equal to the product of eignevalues hence it is
non—negative.



Warning (continued)

Proof.
(«<=) Proof by induction on n. Let Q(x) = xTMx and let
ui,...,Up € R" be an orthonormal basis such that uf Mu; = 0 for

i # j. Moreover assume, by rearranging u;'s, that

Q(u1) < Q(u2) ... < Q(up). It is enough to prove Q(uy) = 0. If
uy -ex =0 (i.e. the k—th component of u; vanishes) for some
ke{l,...,n} then uy €lin(e1,...,6k-1,€ks1,---,En) and
Q(u1) = 0, by the inductive assumption. Assume uy - e # 0 for
any k=1,...,n.



Warning (continued)

Proof.

For i = 2 and some k = 1,...,n consider vector
v = (uj-er)ur — (u1 - ex) ;.
Since v - €, = 0 by the inductive assumption
Q(v) = (uj - ek)*Q(u1) + (u1 - ex)*Q(uj) = 0.

If some Q(u;) = 0 with k such that u; - e # 0 (u; needs to have a
non-zero coordinate) then Q(u1) = 0. Assume now
Q(u2),...,Q(up) > 0. Then, by choosing J = {1,...,n} and
using the eigenvalue criterion

Q(u1)Q(u2) ... - Q(us) = 0,

that is Q(u1) = 0. O



Warning (continued)

Remark
Note that for a n x n matrix there are 2" — 1 conditions to check,
making this criterion impractical.



Warning (continued)

Corollary

Let A€ M(n x n;R) be a symmetric square matrix. Then matrix A
is negative semidefinite if and only if for any J < {1,...,n},J # &

detAy.; =0, when #J is even,

detAy.; <0, when #J is odd,

that is principal minors of M of even order are non—negative and
principal minors of M of odd order are non—positive.

Proof.
Matrix M is positive semidefinite if and only if matrix —M is
negative semidefinite. O



Warning (continued)

In particular, for

<
I

o ]

det Ml;l = det [0] =0, det M2;2 = det [—].] =-1<0,

we have

det M1,2;1,2 =detM =0,

therefore matrix M is not positive semidefinite. In fact, it is
negative semidefinite.



Positive Definite Quadratic Form

Proposition

Let Ae M(m x n;R) be a matrix. Then matrix

M = ATA e M(n x n;R) is symmetric and positive semidefinite.
Moreover, the matrix ATA is positive definite if and only if
r(A) = n (i.e. columns of matrix A are linearly independent).



Positive Definite Quadratic Form

Proposition

Let Ae M(m x n;R) be a matrix. Then matrix

M = ATA e M(n x n;R) is symmetric and positive semidefinite.
Moreover, the matrix ATA is positive definite if and only if
r(A) = n (i.e. columns of matrix A are linearly independent).

Proof.
For any x e R"

XT(ATA)x = (AX)T(Ax) = [ Ax|?

(<) If r(A) = n (i.e. the linear transformation ¢: R” — R™ given
by A= M(p) is injective by the rank—nullity theorem) then

|Ax|| =0 <= Ax =0 <= x = 0.



Positive Definite Quadratic Form

Proposition

Let Ae M(m x n;R) be a matrix. Then matrix

M = ATA e M(n x n;R) is symmetric and positive semidefinite.
Moreover, the matrix ATA is positive definite if and only if
r(A) = n (i.e. columns of matrix A are linearly independent).

Proof.

For any x e R"

XT(ATA)x = (AX)T(Ax) = [ Ax|?

(<) If r(A) = n (i.e. the linear transformation ¢: R” — R™ given
by A= M(p) is injective by the rank—nullity theorem) then

|Ax|| =0 <= Ax =0 <= x = 0.

(=) if Ax =0 = x = 0 then ker p = {0} which, by the
rank—nullity theorem, gives r(A) = n. O



Example

Let A= € M(3 x 2;R) where r(A) = 2. The matrix

—= N
W = N

1 2

1 21 6 7
ATA:[ ] 2 1 :[ }

21 3 13 7 14

is positive definite and the matrix

1 2 12 1 5 4 7
(ANTAT = AAT= |2 1 s 1 3|~ 4 5 51,

1 3 7 5 10

is positive semidefinite and it is not positive definite (this will be
justified later).



Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix M € M(n x n;R) is diagonalizable by an
orthonormal eigenbasis.



Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix M € M(n x n;R) is diagonalizable by an
orthonormal eigenbasis.

In particular, the characteristic polynomial wp;(\) = det(M — \I)
has n real roots (=eigenvalues) counted with multiplicities .



Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix M € M(n x n;R) is diagonalizable by an
orthonormal eigenbasis.

In particular, the characteristic polynomial wp;(\) = det(M — \I)
has n real roots (=eigenvalues) counted with multiplicities .

Theorem
Let @: R" — R be a quadratic form and let M be its matrix. Let
A1y ..., An € R be the roots of wpy(\). Then

i) form Q is positive definite <= A1,...,A, >0,

ii) form Q is positive semidefinite <= A1,...,A, =0,

iv

)
)
iii) form Q is negative definite <= A1,...,\, <0,
) form Q is negative semidefinite <= A1,...,A, <0,
)

v) form Q is indefinite <= \; <0,); > 0 for some

1<i,j<n



Eigenvalues and Positivity (continued)
Proof.

Let vi,...,v, € R" be a basis of R” consisting of eigenvectors of
M, that is

MV;Z)\,'V;'FOF[Z].,...,I?,
*

where \; € R is an eigenvalue of M and v; = { ] € M(nx1,R) is
taken to be a n-by-1 matrix. :



Eigenvalues and Positivity (continued)

Proof.

Let vi,...,v, € R" be a basis of R” consisting of eigenvectors of
M, that is

MV,':)\,'V; forizl,...,n,
*
where \; € R is an eigenvalue of M and v; = { ] € M(nx1,R) is

taken to be a n-by-1 matrix. Let v;, v; be vecto?js such that
A # )\J'. Then

vi Myj = vl (Mvj) = vl (Ajvj) = Aj(vi - v)),



Eigenvalues and Positivity (continued)
Proof.

Let vi,...,v, € R" be a basis of R” consisting of eigenvectors of
M, that is

MV,':)\,'V; fori:1,...,n,
*
where \; € R is an eigenvalue of M and v; = { ] € M(nx1,R) is

taken to be a n-by-1 matrix. Let v;, v; be vecto?js such that
A # )\J'. Then

viMy; = vI(Mvy;) = vi(\jv;) = Xi(v; - v))

i VIVj i j i\ Yj Vit Vi)

vIMy; = (v MT)v; = (Mv;)Tv; = (\ivi)Tv; = Ai(vi - v;).

This is possible only if v; - v; = 0, i.e. vectors v;, v; are
perpendicular.



Eigenvalues and Positivity (continued)
Proof.

Let vi,...,v, € R" be a basis of R” consisting of eigenvectors of
M, that is

MV;Z)\,'V;'FOF[Z].,...,I?,
*

where \; € R is an eigenvalue of M and v; = { ] € M(nx1,R) is

taken to be a n-by-1 matrix. Let v;, v; be vecto?js such that
A # )\J'. Then

vi Myj = vl (Mvj) = vl (Ajvj) = Aj(vi - v)),
vIMy; = (v MT)v; = (Mv;)Tv; = (\ivi)Tv; = Ai(vi - v;).

This is possible only if v; - v; = 0, i.e. vectors v;, v; are
perpendicular. Using Gram-Schmidt process for eigenspaces V|,
one can assume the basis vi, ..., v, is orthonormal.



Eigenvalues and Positivity (continued)

Proof.
That is
0 fori+#j
A P= T P=
VitVi= Vi {lforizj'
For any v € R"” there exist unique a1, ...,a, € R such that

V=ao1vi+ ...+ QpVy.



Eigenvalues and Positivity (continued)

Proof.
That is
0 fori+#j
P P= T P= .

VitVi= Vi {lforizj

For any v € R"” there exist unique a1, ...,a, € R such that
V=ao1vi+ ...+ QpVy.

Now

Q(v) =viMv = viIM(aqvi + ... + apv,) =

= (vi+...+apvy)T(A\aavi+. ..+ papvy) = Ala%—i-. A a%.



Eigenvalues and Positivity (continued)

Proof.
That is
0 fori+#j
P P= T P= .

VitVi= Vi {lforizj

For any v € R"” there exist unique a1, ...,a, € R such that
V=ao1vi+ ...+ QpVy.

Now

Q(v) =viMv = viIM(aqvi + ... + apv,) =
= (vi+...+apvy)T(A\aavi+. ..+ papvy) = Ala%—i-. A a%.

In particular
Q(V,') = V,-TMV,' = )\,‘,

Q(v) >0 forany v # 0 <= A1,...,\, >0,

Q(v) =0 forany v <= \1,..., A\, = 0.



Example

Let
1 0
M= { - } |
The eigenvalues are A\; =1 > 0, \» = —1 < 0 therefore the
quadratic form Q((x1,x2)) = xZ — x3 is indefinite.
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Example
Let



Example

Let

100

M=|[0 2 2

0 2 2
The characteristic polynomial
wiy(A) = (1= X)((2—=X)2—4) = A1 —-A)(A—4) has
non-negative roots Ay = 0, A2 = 1, A3 = 4, A1, A2, A3 = 0.
Therefore the quadratic form
Q((x1,x2,x3)) = X2 + 2x3 + 255 + 4xaxz = x¥ + 2(x2 + x3)? is
positive semidefinite.



Example (continued)

1 2
Let A= |2 1| e M(3x2;R) where r(A) = 2. The matrix
1 3
1 2 5 4 7
ATA=12 1 [; i ﬂ =14 5 5[,
1 3 7 5 10
is positive semidefinite and it is not positive definite.
5—X 4 7 5—A 4 -1 a+(5-Ncs
det| 4 5-Xx 5 |®Z%det| 4 5-) 2x-—5| b
7 5 10—\ 7 5 -
0 0 -1
=det | —2\2+15A—21 7A—15 2A—5| =
A2 —BA+7 5—4)\ -2

det —2X2 + 150 —21 7A—15| _
1o —s 47 5—4r| T

= —A(A% — 20\ + 35).



Example (continued)

Therefore one eigenvalue of ATA is equal to 0, and, by the Viete's
formulas,
A1+ A2 =20>0,

)\1/\2 =35> 0,

the other two eigenvalues are non—negative. In fact

5 4 7 5
[> -1 -3](4 5 5| |-1|=0.
7 5 10| | -3



Spectral Theorem

Proposition

Let p: R" — R" be an endomorphism. If there exists an
orthonormal basis A of R" such that M ()4 A is symmetric then for
any orthonormal basis B of R" matrix M()% is symmetric.



Spectral Theorem

Proposition

Let p: R" — R" be an endomorphism. If there exists an
orthonormal basis A of R" such that M ()4 A is symmetric then for
any orthonormal basis B of R" matrix M()% is symmetric.

Proof.
Let M = M(p)4, N = M(p)5. Matrix

Q = M(id)z = M(id)zM(id)F,

is orthogonal, i.e. Q71 = QT.



Spectral Theorem

Proposition

Let p: R" — R" be an endomorphism. If there exists an
orthonormal basis A of R" such that M ()4 A is symmetric then for
any orthonormal basis B of R" matrix M()% is symmetric.

Proof.
Let M = M(p)4, N = M(p)5. Matrix

Q = M(id)g = M(id)zM(id)F,
is orthogonal, i.e. @' = QT. Because
N = QTMQv

we have
NT = Q"TMT(QT)T = N



Spectral Theorem (continued)

Proposition

Let p: R" — R" be an endomorphism such that matrix M ()t is
symmetric. Then there exists € R and v € R", v # 0 such that
o(v) = pv, i.e u is an eigenvalue of ¢ and v is an eigenvector for

L.



Spectral Theorem (continued)

Proposition

Let p: R" — R" be an endomorphism such that matrix M ()t is
symmetric. Then there exists € R and v € R", v # 0 such that
o(v) = pv, i.e u is an eigenvalue of ¢ and v is an eigenvector for
1h.

Proof.

Let M = M(p)SE and let wy () = det(M — ) be the
characteristic polynomial of . By the fundamental theorem of
algebra there exists a complex root u € C of wy, and a complex
eigenvector v € C", i.e. wy(u) =0 and Mv = pv. Matrix M is
real therefore MV = iv. Moreover

VIMy = (M¥)Tv = 7ivTv = 7|,

VTMy = 7T (Mv) = 77 (uv) = ullv].

This implies 1 € R and since V|, is given a system of linear
equations with real coefficients one can choose v € R". L]



Spectral Theorem (continued)

Proposition
st

Let ¢: R" — R" be an endomorphism such that matrix M(p)% is
symmetric. Then for any subspace W < R" such that o(W) c W,

(W) c wt.



Spectral Theorem (continued)

Proposition
Let : R" — R" be an endomorphism such that matrix M(p)3t is
symmetric. Then for any subspace W < R" such that o(W) c W,

(W) c wt.

Let M = M()$ and let w e W+ be any vector. We need to
check that vTI(Mw) =0 for a any ve W.



Spectral Theorem (continued)

Proposition
Let : R" — R" be an endomorphism such that matrix M(p)3t is
symmetric. Then for any subspace W < R" such that o(W) c W,

(W) c wt.

Let M = M()$ and let w e W+ be any vector. We need to
check that vT(Mw) = 0 for a any v e W. In fact

viMw = (Mv)Tw = 0.



Spectral Theorem

Theorem
Symmetric matrix M € M(n x n;R) is diagonalizable.



Spectral Theorem

Theorem
Symmetric matrix M € M(n x n;R) is diagonalizable.

Proof.

Let ¢ be an endomorphism given by M = M(p)st. Assume
W < R" is a subspace spanned by pairwise perpendicular
eigenvectors of . Let V = W



Spectral Theorem

Theorem
Symmetric matrix M € M(n x n;R) is diagonalizable.

Proof.

Let ¢ be an endomorphism given by M = M(p)st. Assume

W < R" is a subspace spanned by pairwise perpendicular
eigenvectors of . Let V = W, Matrix of ¢ relative to some
orthonormal basis of V' is symmetric and ¢(V) < V. Therefore
there exists ;+ € R and a non—-zero vector v € V such that

e(v) = pv.



Spectral Theorem

Theorem
Symmetric matrix M € M(n x n;R) is diagonalizable.

Proof.

Let ¢ be an endomorphism given by M = M(p)st. Assume

W < R" is a subspace spanned by pairwise perpendicular
eigenvectors of . Let V = W, Matrix of ¢ relative to some
orthonormal basis of V' is symmetric and ¢(V) < V. Therefore
there exists ;+ € R and a non—-zero vector v € V such that

©(v) = pv. By continuing this process we obtain an orthogonal
basis of R" consisting of eigenvectors of .



Spectral Theorem (continued)

Corollary

For any symmetric matrix M € M(n x n;R) there exists matrix
Q € M(n x n;R) such that Q1 = QT and the matrix

D= Q™MQ,

is diagonal.



Spectral Theorem (continued)

Corollary

For any symmetric matrix M € M(n x n;R) there exists matrix
Q € M(n x n;R) such that Q1 = QT and the matrix

D= Q™MQ,
is diagonal.
Proof.
Let A = (v1,...,V,) be an orthonormal basis of R” consisting of

eigenvectors of M. If Q = M(id)j then the matrix Q" 1MQ is
diagonal and QTQ = /,, i.e. Q1 = Q. m



Characterization of Real Symmetric Matrices

Corollary

Let M € M(n x n;R) be a real matrix. Then M = MT if and only
if there exists an orthogonal matrix Q € M(n x m;R) (i.e.
QTQ = 1) such that the matrix

D=Q"™MQe M(n x n;R),

is diagonal.

(=) previous corollary



Characterization of Real Symmetric Matrices

Corollary

Let M € M(n x n;R) be a real matrix. Then M = MT if and only
if there exists an orthogonal matrix Q € M(n x m;R) (i.e.
QTQ = 1) such that the matrix

D=Q"™MQe M(n x n;R),

is diagonal.

(=) previous corollary

(<) If D= QTMQ then M = QDQT and since DT = D

MT = (QT)TDTQT = QDQT = M.



Bilinear Form
Definition
Let V be a vector space. A function
B:VxV->R

is called a bilinear form if
i) B(v+u,w)=B(v,w) + B(u,w) for any u,v,we V,



Bilinear Form

Definition
Let V be a vector space. A function

B:VxV-R

is called a bilinear form if
i) B(v+u,w)=B(v,w) + B(u,w) for any u,v,we V,
i) B(v,u+ w) = B(v,u) + B(v,w) for any u,v,w e V,



Bilinear Form

Definition
Let V be a vector space. A function

B:VxV-R

is called a bilinear form if
i) B(v+u,w)=B(v,w) + B(u,w) for any u,v,we V,
i) B(v,u+ w) = B(v,u) + B(v,w) for any u,v,w e V,

iii) Blav,w) = aB(v,w) for any v,w € V,a e R,



Bilinear Form

Definition
Let V be a vector space. A function

B:VxV-R

is called a bilinear form if
i) B(v+u,w)= B(v,w)+ B(u,w) for any u,v,w e V,
i) B(v,u+w) = B(v,u) + B(v,w) for any u,v,w e V,
iii) Blav,w) = aB(v,w) for any v,w € V,a e R,
iv) B(

v, Bw) = B(v,w) for any v,w e V, B e R.



Bilinear Form

Definition
Let V be a vector space. A function

B:VxV-R

is called a bilinear form if
i) B(v+u,w)= B(v,w)+ B(u,w) for any u,v,w e V,
i) B(v,u+w) = B(v,u) + B(v,w) for any u,v,w e V,
iii) Blav,w) = aB(v,w) for any v,w € V,a e R,
iv) B(

v, Bw) = B(v,w) for any v,w e V, B e R.



Bilinear Form

Definition
Let V be a vector space. A function

B:VxV-R

is called a bilinear form if
i) B(v+u,w)= B(v,w)+ B(u,w) for any u,v,w e V,
i) B(v,u+w) = B(v,u) + B(v,w) for any u,v,w e V,
iii) Blav,w) = aB(v,w) for any v,w € V,a e R,
iv) B(

v, Bw) = B(v,w) for any v,w e V, B e R.

Bilinear form B is called symmetric if moreover
v) B(v,w) = B(w,v) for any v,w e V.



Bilinear Forms (continued)

Definition
If B: V x V — R is a bilinear form and A = (v1,...,v,) is a basis
of V then the matrix of bilinear form B relative to the basis A is

equal to
M(B) 4 = [mjj] € M(n x m;R),

where mj; = B(vj,v;), i.e
B(vi,vi) B(vi,va) ... B(vi,v,)
B(vo,v1) B(va,va) ... B(wva,v,)
M(B)a = . . . .

B(Vp,v1) B(vay,v2) ... B(vp,vp)



Bilinear Forms (continued)

Proposition
For any v,w € V and any basis A

B(v,w) = [v]j4 M(B) 4 [W]A.



Bilinear Forms (continued)

Proposition
For any v,w € V and any basis A

B(v,w) = [V]; M(B) 4 [W]A.

Proof.
Let A= (v1,...,vp) and let
Vv=oaivi+...+apvy,w=p01vi+ ...+ Bpv,.

B(v,w) = Z a; Z B(vi, Wj),Bj) =
i=1 =1

n n
=2 00 | 2 mib |
i=1 j=1

where M(B) 4 = [mj;].



Bilinear Forms (continued)

Corollary
If A, B are bases of V then for C = M(id)5

M(B) 4 = CTM(B)5C.



Bilinear Forms (continued)

Corollary
If A, B are bases of V then for C = M(id)5

M(B)4 = CTM(B)gC.
Proof.

Let M(B)4 = M = [mj;] and let A = (vi,...,v,). By the previous
proposition

el (CTM(B)pC)ej = (Cej)T M(B)p (Cej) = [v,-]TB/\/I(B)B[vj]B =

= B(vi, vj).
On the other hand, for any M = [my]

T = m
g;Mej = my;,

hence CTM(B)gC = M = M(B) 4. O



Bilinear Forms (continued)
Let B: VxV —=R.

Corollary
If B is a symmetric bilinear form then for any basis A of V

M(B)T, = M(B)..



Bilinear Forms (continued)
Let B: VxV —=R.

Corollary
If B is a symmetric bilinear form then for any basis A of V

M(B)}y = M(B)a.
If B is a bilinear form and for some basis A of V
M(B)}y = M(B) 4,

then B is symmetric bilinear form.



Bilinear Forms (continued)
Let B: VxV —=R.

Corollary
If B is a symmetric bilinear form then for any basis A of V

M(B)}y = M(B)a.
If B is a bilinear form and for some basis A of V

M(B), (B).4;

I
<

then B is symmetric bilinear form.

Proof.
For the second claim, let M = [mj;] = M(B) 4 be symmetric, i.e.
MT = M. Then for any v,w € R"

Bv,w) = [v]\M[w] , = ([v]M[w],)" = [w]M[v], = Blw,v),

i.e. Bis symmetric. £



Quadratic Forms

Let V be a vector space.

Definition
Function @: V — R is a quadratic form if there exist a bilinear
form B: V x V — R such that Q(v) = B(v,v) for any v e V.



Quadratic Forms

Let V be a vector space.

Definition
Function @: V — R is a quadratic form if there exist a bilinear
form B: V x V — R such that Q(v) = B(v,v) for any v e V.

Proposition
If Q@: V — R is a quadratic form then

Bs(v,w) = % (RQlv+w,v+w)—Q(v,v) — Qlw,w)),

is a symmetric bilinear form such that Q(v) = Bs(v,v).



Quadratic Forms

Let V be a vector space.

Definition

Function @: V — R is a quadratic form if there exist a bilinear
form B: V x V — R such that Q(v) = B(v,v) for any v e V.
Proposition

If Q@: V — R is a quadratic form then

Bs(v,w) = % (RQlv+w,v+w)—Q(v,v) — Qlw,w)),

is a symmetric bilinear form such that Q(v) = Bs(v,v).

Proof.

Bs(v,w) = = (B(v,w) + B(w,Vv)).

N —



Sylvester's Criterion

Proposition
Let Q: V — R be a quadratic form such that Q(v) = B(v, v)
where B is a symmetric bilinear form. Let A = (v1,...,v,) be a

basis of V. Then Q is positive definite if and only if
det M(B) 4, > 0,

fori=1,...,n where A; = (v1,...,V).



Sylvester's Criterion

Proposition
Let Q: V — R be a quadratic form such that Q(v) = B(v, v)
where B is a symmetric bilinear form. Let A = (v1,...,v,) be a

basis of V. Then Q is positive definite if and only if

det M(B).4, > 0,

fori=1,...,n where A; = (v1,...,V).

Proof.

(=) The quadratic form Q restricted to lin(v,. .., v;) is positive
hence the matrix M(B) 4, is symmetric diagonalizable and by the
eigenvalue criterion its all eigenvalues A1,..., A; > 0 are positive.
Therefore

det M(B) 4, = A1+ ... A > 0.

Note that eigenvalues depend on /.



Sylvester’s Criterion (continued)

Proof.

(<) let Vi =lin(vq, ..., vk). By induction on k we prove the claim
.the quadratic form Q|y, is positive definite”,

which for k = n is the assertion of the Theorem.



Sylvester’s Criterion (continued)

Proof.

(<) let Vi =lin(vq, ..., vk). By induction on k we prove the claim
.the quadratic form Q|y, is positive definite”,

which for k = n is the assertion of the Theorem.

For k =1 the claim holds since det M(B) 4, = B(v1,v1) > 0.



Sylvester's Criterion (continued)

Proof.

(<) let Vi =lin(vq, ..., vk). By induction on k we prove the claim
.the quadratic form Q|y, is positive definite”,
which for k = n is the assertion of the Theorem.

For k =1 the claim holds since det M(B) 4, = B(v1,v1) > 0.

For k = 2 let A1, A2 € R are eigenvalues of M(B) 4,.



Sylvester’s Criterion (continued)

Proof.

(<) let Vi =lin(vq, ..., vk). By induction on k we prove the claim
.the quadratic form Q|y, is positive definite”,

which for k = n is the assertion of the Theorem.
For k =1 the claim holds since det M(B) 4, = B(v1,v1) > 0.

For k = 2 let A1, A2 € R are eigenvalues of M(B) 4,. By Viete's
formulas

{ A+ A = B(vi,v1) + B(va, v2),
MA2 = B(vi,v1)B(v2,v2) — B(vi, v2)*.

Because A1 Ay = det M(B) 4, > 0 either
B(vi,v1) < 0,B(va,v2) <0 or B(vq,v1) > 0,B(vz,v2) > 0. Since
B(v1,vi) = det M(B) 4, > 0 the latter holds, hence A1, A, > 0.



Sylvester’s Criterion (continued)

Proof.
Assume that k > 3 and det M(B) 4, > 0, for i = 1,... k (i.e.
Q|v,_, is positive definite) but Q|y, is not positive definite.



Sylvester's Criterion (continued)

Proof.
Assume that k > 3 and det M(B) 4, > 0, for i = 1,... k (i.e.
Q|v,_, is positive definite) but Q|y, is not positive definite.

Therefore M(B) 4, has at least two negative eigenvalues A1, A < 0
or a negative eigenvalue \ < 0 of multiplicity at least 2
(det M(B).4, > 0 is equal to the product of eigenvalues).



Sylvester's Criterion (continued)

Proof.
Assume that k > 3 and det M(B) 4, > 0, for i = 1,... k (i.e.
Q|v,_, is positive definite) but Q|y, is not positive definite.

Therefore M(B) 4, has at least two negative eigenvalues A1, A < 0
or a negative eigenvalue \ < 0 of multiplicity at least 2
(det M(B).4, > 0 is equal to the product of eigenvalues).
In both cases there exist eigenvectors wy, wo € V) of M(B)4,, that
is

[ ] [ ]A fori=1,2,

and [w;l]j4 [W2]A =0 (mcludmg the case A\; = \p = ).



Sylvester's Criterion (continued)

Proof.
Assume that k > 3 and det M(B) 4, > 0, for i = 1,... k (i.e.
Q|v,_, is positive definite) but Q|y, is not positive definite.

Therefore M(B) 4, has at least two negative eigenvalues A1, A < 0
or a negative eigenvalue \ < 0 of multiplicity at least 2
(det M(B).4, > 0 is equal to the product of eigenvalues).

In both cases there exist eigenvectors wy, wo € V) of M(B)4,, that

© [ ] [ ]A fori=1,2,

and [wl]Lk[wﬂA =0 (mcludmg the case \; = A = \). Note
that wy, wo ¢ Vi _q.



Sylvester's Criterion (continued)

Proof.
Let wiy = agvi + ...+ apvi, wo = B1vy + ... + Brvk and let
v =m1w1 + yowr € Vi_1 where y; = ﬁk,’)/Q = —ay. Then

Y1,7v2 # 0 since wy, wy ¢ Vi_1. Vectors wy, wy are perpendicular
(i.e. linearly independent), therefore v # 0. Hence

[V]LkM(B)Ak [V]Ak =

= (’Yl [Wl]_Ak + 72[W2]Ak)T M(B) 4, <71[W1]Ak + 72[W2]Ak) —

=gl [+ 2238 [ | < 0
On the other hand

(V] M(B) 4[], = Q(v) >0,

because Q|\/k_1 is positive definite, which yields a
contradiction. O



Summary

Let M e M(n x n;R) be a symmetric matrix. The following are
equivalent

i) xTMx = 0 (matrix M is positive semidefinite),
) min{\ | X is an eigenvalue of M} > 0,
i) min{xTMx e R | ||x| =1} =0,
) all principal minors of M are non—negative,
) there exists a matrix N € M(n x n;R) such that M = NTN.



Summary (continued)

Let M e M(n x n;R) be a symmetric matrix. The following are
equivalent

i) xTMx > 0 for x # 0 (matrix M is positive definite),
) min{\ | A is an eigenvalue of M} > 0,
) min{xTMx e R | ||x|| =1} >0,
iv) all leading principal minors of M are positive,
)

there exists a non-singular (i.e. det N # 0) matrix
N e M(n x n;R) such that M = NTN.



Interlacing Eigenvalues

Theorem

If M e M(n x n;R) is a symmetric matrix, i.e. M = MT. Let M;
denote the top left i—by—i submatrix of M. Fix m < n. Let

A1, ..., Am denote the eigenvalues of M, and 1, ..., um+1 denote
the eigenvalues of M,.1. Then

Proof.
Omitted. O



Hessian Matrix

Definition

Let f: U — R, Uc R, be a function of class C? on the open set
U. Hessian matrix at xg € U is the symmetric matrix

He(xo) = H(xo) € M(k x k;R) given by

2 2F 2f 2f
2200 Fean (o) g 00) - g (o)
o2f 2f 52f 0*f
0x20x1 (XO) 6X2 (XO) 0x20x3 (XO) T Oxe0xk (XO)
(92 f 62 f 63 f 62 f
Hr(xo) = 0x30x1 (x0) 0x30%2 (x0) 03 0) 030 (o)

2f 2f >f o*f
O0xy 0x1 (XO) Oxy Ox (XO) Ox) 0x3 (XO) e a_xz (XO) |



Definition

Let f: U — R, Uc R, be a function of class C? on the open set

Hessian Matrix

U. Hessian matrix at xg € U is the symmetric matrix

Hr(xo) =

Ht(x0) =

Remark

2f 2f
S_Xf (x0) ﬁ (x0)
0%f P
aX22aX1 (XO) a;(Z (XO)
o°f O2f
0x30x1 (XO) 0x30x2 (XO)
82f. a2f.
Oxk0x1 (XO) OXk 0 (XO)

H(xo) € M(k x k;R) given by

2*f
0x10x3
0%f
aXQ 6X3

6x

Pf
Ox) 0x3

(x0)
(x0)

63f (XO)

(x0)

0%f (
0x10xk
9%f (
6X26Xk
03f (
6X36Xk

&
~—

&
~—

)

&

2.
g—xg(Xo)

If f is not of class C? the matrix H¢(xo) may not be symmetric.




Local Minima or Maxima of a Multivariate Function

Theorem
Let f: U— R, Uc RK be a function of class C?> on the open set
U. If xo € U is a critical point of function f, i.e.

of of
f! = | = T =
(XO) <aX1 (Xo), " Oxs (X0)> 0,
and the Hessian matrix H(xg) is negative (respectively, positive)

definite, then f has strict local maximum (respectively strict local
minimum) at the point xo € U.



Local Minima or Maxima of a Multivariate Function

Theorem
Let f: U— R, Uc RK be a function of class C?> on the open set
U. If xo € U is a critical point of function f, i.e.

f/(Xo) = <§—)2(X0), ey %(Xg)) = 0,

and the Hessian matrix H(xg) is negative (respectively, positive)
definite, then f has strict local maximum (respectively strict local
minimum) at the point xo € U.

If the matrix H(xp) is indefinite then f has no local extremum at
xo (the point xq is so called saddle point).

Proof.

Analysis course (use multivariate Taylor formula). O



Example — Local Maximum

graph of the function f(x,y) = —x? — y?




Example — Local Minimum

graph of the function f(x,y) = x? + y?

Hr(0,0) = [ 2

0
0 2

] positive definite

acy



Example — Saddle Point — No Local Extremum

graph of the function f(x,y) = x> — y?

Hr(0,0) = [ .

01 . ..
9 ] indefinite

acy



Local Minima or Maxima of a Multivariate Function
(continued)

Remark
If the matrix H(xp) is positive semidefinite or negative semidefinite
then the function f has at xg local minimum or local maximum or

a saddle point (the criterion is indecisive).



Example — Hessian Matrix Positive Semidefinite — Weak
Local Minimum

graph of the function f(x,y) = x?

Hf(0,0) = { (2) 8 ] positive semidefinite



Example — Hessian Matrix Positive Semidefinite — Strict
Local Minimum

graph of the function f(x,y) = x> 4+ y*

v,

[] /
ossioei iy,

n
N s
N N 4

y
St

LSS

Hf(0,0) = { (2) 8 ] positive semidefinite

=] F = DA



Example — Hessian Matrix Positive Semidefinite — Saddle
Point

graph of the function f(x,y) = x> — y*

Hf(0,0) = { (2) 8 ] positive semidefinite



Square Root of a Positive Semidefinite Matrix

Find a matrix X € M(2 x 2; R) such that

> | 5 -4
I



Square Root of a Positive Semidefinite Matrix

Find a matrix X € M(2 x 2; R) such that

2 5 —4(
I

It can be checked that

where



Square Root of a Positive Semidefinite Matrix (continued)

~1 0] 1 2]
ol -
X =Q 0 3 Q=1 1]’
1 0] -1 2]
= QT =
X3 Q _0 _3_ Q 2 —1|°
1 0] 2 -1
ol -
%=q 0 —3_Q -1 2




Multivariate Gaussian Distribution
The probability density function of multivariate n-dimensional
e—%(x—u)TZ*I(X—u)’

Gaussian distribution is given by
1 1

N=

(detX)

NS

x| p,Xx) =
pix | 1, %) 2n)
where x € R" for some fixed € R" and X € M(n x m;R) a

symmetric positive definite matrix.



Multivariate Gaussian Distribution
The probability density function of multivariate n-dimensional
e—%(x—u)TZ*I(X—u),

Gaussian distribution is given by
1 1

N=

(detX)

NS

p(X | ,u,Z) = (271‘)

where x € R" for some fixed € R" and X € M(n x m;R) a
symmetric positive definite matrix. There exists an orthogonal

matrix Q € M(n x n;R) (i.e. QQT = QTQ = /) such that

QXQ = . _
o2
Lop>0, Q=[vi v Vo] and B = (vi,va,...,v,)

where o1, .
is an orthonormal basis of R”.



Multivariate Gaussian Distribution (continued)

Then if .
X = Z XiVi,
i=1

(i.e. [x]g=[x1 x2 ---xa]") and
o= (/1’17”27"' 7”")7

then
n 1 _(x,-ﬂ;i)2
pix | wX) =[] ——ze * ,
,-Ul@m?)%
i.e., it is a product of one—dimensional Gaussian probability density
functions.



Multivariate Gaussian Distribution — Example
Let

5 3 1 1 Lo 1 1
s |2 3| _|v2 v ViV
35 RN N AV N I
2 2 V2 W2 V2 W2
5 3
s-1_|[8 8 ’
35
8 8
1 1
n= (273)7 vi= E(l’l)’ V2 \_@(17 _1))
then
p((Xl,X2) | ,LL,Z) _ 2i%e—%(5(x1—2)2+6(x1—2)(XQ—3)+5(X2—3)2)’
™
(92 (o—3)?
p(X1V1—|-X2V2|,u,Z)— 1 o 122 1 o 283 ’



Multivariate Gaussian Distribution — Example

1 _
probability density functions for ¥ = 5 [_g g] , 1= (2,3)



Inner product

Definition
Inner product space V is a vector space V over C or R, with a
function
(o Vx V-G,
such that

i) {v,w)=<{w,v) forany v,we V,



Inner product

Definition
Inner product space V is a vector space V over C or R, with a
function
(o Vx V-G,
such that

i) {v,w)=<{w,v) forany v,we V,
ii) for any v € V the function {v,-): V — C is linear, i.e. for any
w,w' eV and aeC



Inner product

Definition
Inner product space V is a vector space V over C or R, with a
function
(o Vx V-G,
such that

i) {v,w)=<{w,v) forany v,we V,
ii) for any v € V the function {v,-): V — C is linear, i.e. for any
w,w' eV and aeC
a) vyw+w') ={v,w) +{v,w),



Inner product

Definition
Inner product space V is a vector space V over C or R, with a
function
(o Vx V-G,
such that

i) {v,w)=<{w,v) forany v,we V,
ii) for any v € V the function {v,-): V — C is linear, i.e. for any
w,w' eV and aeC
a) vyw+w') ={v,w) +{v,w),
b) {v,aw) = alv,w)



Inner product

Definition
Inner product space V is a vector space V over C or R, with a
function
(o Vx V-G,
such that

i) {v,w)=<{w,v) forany v,we V,
ii) for any v € V the function {v,-): V — C is linear, i.e. for any
w,w' eV and aeC
a) vyw+w') ={v,w) +{v,w),
b) (v, aw) = alv,w)
iii) {v,v) >0 for any v # 0.



Example

Example
The vector space V = C" with

n

{v,w) = ZVJWJ =Viw = v*'w,
j=1

for any v = (vi,...,vy),w = (wy,...,w,) € C" is the standard
inner product space



Example

Example
The vector space V = C" with

n

{v,w) = ZVJWJ =Viw = v*'w,
j=1

for any v = (vi,...,vy),w = (wy,...,w,) € C" is the standard
inner product space

Example
The vector space V = C(][a, b]; C) of continuous functions

b -
(F.g) = j w(x)FE)g(x) dx.

where w is a fixed weight function w € V such that
w(x) € R,w(x) > 0 for x € (a, b) is an inner product space.



Norm

Let V be an inner product space.
Definition

Norm of vector v € V is equal to

VIl = A/<v, v).



Norm

Let V be an inner product space.
Definition

Norm of vector v € V is equal to

VIl = A/<v, v).

If V is complete as a metric space induced by the norm it is called
a Hilbert space.



Adjoint Transformation

Proposition

Let V and W be inner product spaces. For any linear
transformation ¢: V — W there exists a unique linear
transformation ©*: W — V such that

{p(v), Wy =<Lv, (W)



Adjoint Transformation (continued)

Proof.

The inner products induce isomorphisms V ~ V* and W ~ W*
because the linear transformations are monomorphisms hence
isomorphisms (since the product is positive definite),

Vovie{v,-ye V¥

Wawm—{w,)e W*

These isomorphisms induce an isomorphism
Hom(V,W)=V*@W ~ VR W* ~ W*® V = Hom(W, V),

and ¢™* is the image of ¢ under this isomorphism. O



Adjoint Transformation (continued)

Proof.
Let

p=a®t,

where v € V* t € W. Let s, € V be a vector such that

a() = <SOH '>7
(i.e. vector corresponding to « under isomorphism V ~ V*). By
definition
a* = {t,")® s,.

Then for any ve V,we W

(p(v), w) = La(v)t,w) = a(v){t, w).

On the other hand

<V7 (p*(W)> = <V7 <t7 W>Sa> = <t7 W><V7 Sa> = <t7 W>a(v)'



Adjoint Transformation (continued)

Proposition
Let ¢: C" — C" be a linear transformation where C" is a standard
inner product space (domain and codomain). If A= Mg (p) then

A* = ZT = M::(SO*%

where
A* = AT = AT,



Adjoint Transformation (continued)

Proposition
Let ¢: C" — C" be a linear transformation where C" is a standard
inner product space (domain and codomain). If A= Mg (p) then

A* = ZT = M::(SO*%

where
A* = AT = AT,
Proof.
Forany v =(v1,...,vy),w = (wy,...,w,) e C"

(Av,w) = (AV)Tw = VT (ATw) = VTA*w = (v, A*w).



Normal, Unitary, Hermitian and Skew—Hermitian Matrix

Definition
Matrix A€ M(n x n; C) is normal if

A*A = AA*.



Normal, Unitary, Hermitian and Skew—Hermitian Matrix

Definition
Matrix A€ M(n x n; C) is normal if

A*A = AA*.
Definition
Matrix U € M(n x n; C) is unitary if

U*U = UU* = I,.



Normal, Unitary, Hermitian and Skew—Hermitian Matrix

Definition
Matrix A€ M(n x n; C) is normal if

A*A = AA*.

Definition
Matrix U € M(n x n; C) is unitary if
U*U = UU* = I,.
Definition
Matrix H € M(n x n; C) is Hermitian if
H = H*.
Matrix H € M(n x n; C) is skew—Hermitian if

H = —H*.



Normal, Unitary, Hermitian and Skew—Hermitian Matrix
(continued)

Proposition
Unitary, Hermitian and skew—Hermitian matrices are normal.



Normal Transformation

Let V be an inner product space.

Definition
Endomorphism (linear transformation)

p: V-V,

is normal if
pop* =g op.



Normal Transformation

Let V be an inner product space.
Definition
Endomorphism (linear transformation)

p: V-V,

is normal if
pop* =y op.

Proposition
Endomorphism ¢ is normal if and only if the matrix Mﬁ‘(gp) is
normal for any (some) orthonormal basis A of V.



Normal Transformation

Let V be an inner product space.
Definition
Endomorphism (linear transformation)

p: V-V,

is normal if
pop* =y op.

Proposition
Endomorphism ¢ is normal if and only if the matrix Mﬁ‘(gp) is
normal for any (some) orthonormal basis A of V.

Proof.

Exercise.



Normal Matrix is Unitary Diagonalizable

Proposition
Let A€ M(n x n;C) be normal matrix. Then there exists a unitary
matrix U € M(n x n; C) such that the matrix

U*AU = UTTAU,

is diagonal.



Normal Matrix is Unitary Diagonalizable

Proposition
Let A€ M(n x n;C) be normal matrix. Then there exists a unitary
matrix U € M(n x n; C) such that the matrix

U*AU = UTTAU,

is diagonal.

Proof.
Let A\e C,ve C". Then

AV — Av|® = (Av, Av) — (v, Av) — (Av, Av) + (Av, Av) =
= (v, A*Av) — (A*v, Av) — v, A*V) + v, Av) =
= (v, AA*V) — (A*v, Av) — Qw, A*v) + Qwv, Av) =
— [|Aa*v = v

Therefore v € C" is an eigenvector of A if and only if it is an eigenvector
of A* (and the corresponding eigenvalues are conjugated).



Normal Matrix is Unitary Diagonalizable (continued)

Proof.
Let A € C be an eigenvalue of A and let v € C” be a corresponding
eigenvector of norm 1. Let

V =lin(v)t = {we W |{v,w)=0}.

Then
AV c V,

since for w e V
(v, Aw) = (A*v,w) = Qwv, w) = 0.

The endomorphism A|y is normal (since (¢|v)* = (¢*)|v) and by
the induction the theorem holds. The unitary matrix

U e M(n x n;C) has in columns normalized (i.e. of length 1)
eigenvectors obtained by the above procedure. ]



Characterization of Complex Normal, Unitary, Hermitian
and Skew—Hermitian Matrices

Let Ae M(n x n;C) be a matrix with (possibly repeating)

eigenvalues A1,..., A\, € C. Let

D = diag(A1,...,A,) € M(n x n;C) be a diagonal matrix with
complex numbers A1, ..., A, € C on the diagonal.

Proposition

Then

A is normal <

< there exists unitary matrix U € M(nxn; C) such that U*AU = D.

Moreover
i) matrix A is unitary < |\;j|=1forj=1,...,n,
i) matrix A is Hermitian < X\, e R forj=1,... n,

iii) matrix A is skew—Hermitian < \j € /—1R forj=1,...,n,



Characterization of Complex Normal, Unitary, Hermitian
and Skew—Hermitian Matrices (continued)

Proof.

Easy exercise. Respectively, one has
i) D* = D71,

i) D* =D,

i) D* = —D.



Normal, Orthogonal, Symmetric and Skew—Symmetric
Matrix

Definition
Matrix A€ M(n x n;R) is normal if

ATA = AAT.



Normal, Orthogonal, Symmetric and Skew—Symmetric
Matrix

Definition
Matrix A€ M(n x n;R) is normal if

ATA = AAT.
Definition
Matrix Q € M(n x n;R) is orthogonal if

QTR = QQT = /.



Normal, Orthogonal, Symmetric and Skew—Symmetric
Matrix

Definition
Matrix A€ M(n x n;R) is normal if

ATA = AAT.
Definition
Matrix Q € M(n x n;R) is orthogonal if
QTR =QQT = /.

Definition
Matrix H € M(n x n;R) is symmetric if

H=HT.
Matrix H € M(n x n; R) is skew—symmetric if

H=—-HT.



Normal, Orthogonal, Symmetric and Skew—Symmetric
Matrix (continued)

Proposition
Orthogonal, symmetric and skew-symmetric real matrices are
normal.



Characterization of Real Normal Matrices

Proposition
Let Ae M(n x n;R) be a normal matrix. Then
i) X is an eigenvalue of A <= ) is an eigenvalue of A,

i) v=Rev+ ilmv is an eigenvector for the eigenvalue \ of
A < Vv =Rev —ilmv is an eigenvector for the eigenvalue
A of A.



Characterization of Real Normal Matrices (continued)

Proof.

The characteristic polynomial of A has real coefficients hence its
strictly complex roots form pairs A\, A\. Let A = a + bi where
a,beR.

Av=)\v < ARev+ilmv) = (a+ bi)(Rev+ilmv) <

ARev =aRev—-»bimv
Almv =bRev + blmv’

where the right—hand side remains invariant under changing the
sign of b and Imv.



Characterization of Real Normal Matrices (continued)

Proposition

Let Ae M(n x n;R) be a normal matrix. Let v,w € C" be two
complex eigenvectors corresponding, respectively, to eigenvalues A
and ji of A. Assume X # pi. Then

(Rev)-(Rew) = (Imv)-(Imw) = (Rev)-(Imw) = (Imv)-(Rew) = 0.



Characterization of Real Normal Matrices (continued)

Proposition

Let Ae M(n x n;R) be a normal matrix. Let v,w € C" be two
complex eigenvectors corresponding, respectively, to eigenvalues A
and ji of A. Assume X # pi. Then

(Rev)-(Rew) = (Imv)-(Imw) = (Rev)-(Imw) = (Imv)-(Rew) = 0.

Proof.

Assume w ¢ R. Then w,w are eigenvectors of A, both unitary
orthogonal to v.

(Rev+ilmv,Rew + ilmw) =0
(Rev +ilmv,Rew —ilmw) =0

{(<Re v,Rew) + mv,Imw)) + i({Imv,Rew) — (Rev,Imw)) =0
((Rev,Rew) —{Imv,Imw)) + i({Imv,Rew) + (Rev,Imw)) =0

O



Characterization of Real Normal Matrices (continued)

Proof.
If A, v € R then they are different, and (Rev) - (Rew) = 0 since
v = Rev,w = Rew are real and unitary orthogonal.



Characterization of Real Normal Matrices (continued)

Proof.
If A, v € R then they are different, and (Rev) - (Rew) = 0 since

v = Rev,w = Rew are real and unitary orthogonal. If A € R and
1 ¢ R then the above proof works as well. ]



Characterization of Real Normal Matrices (continued)

Proof.

If A, v € R then they are different, and (Rev) - (Rew) = 0 since

v = Rev,w = Rew are real and unitary orthogonal. If A € R and
1 ¢ R then the above proof works as well. ]

Corollary

If v,w € C are complex eigenvectors for the strictly complex
eigenvalue \, and {v,w) = 0 (i.e. unitary orthogonal) then

(Rev)-(Rew) = (Imv)-(Imw) = (Rev)-(Imw) = (Imv)-(Rew) = 0.



Characterization of Real Normal Matrices (continued)

Proposition
Let A€ M(n x n;R) be a normal matrix. Let ve C" be a unit complex
eigenvector corresponding to a strictly complex eigenvalue \ ¢ R. Then

(Rev) - (Imv) =0,
and

[Rev|| = [[imv] =

1
%.



Characterization of Real Normal Matrices (continued)

Proposition
Let A€ M(n x n;R) be a normal matrix. Let ve C" be a unit complex
eigenvector corresponding to a strictly complex eigenvalue \ ¢ R. Then

(Rev) - (Imv) =0,
and 1
IRevi| = fimv] = .
Proof.
Then V is a unit eigenvector, unitary orthogonal to v
0=(Rev+ilmv,Rev—ilmv) =
= ((Rev,Rew) — {mv,Imw)) + 2i{(Re v, Imw),

moreover
2 2 2
L= vl = [IRe v[ + [ltm v]]".



Characterization of Real Normal Matrices (continued)

Corollary

Let Ae M(n x n;R) be a normal matrix. Let pi,...,pum € R be
(possibly repeating) real eigenvalues of A. Let

AL, AL A2, A2y .o, Ak, Ak € C be (possibly repeating) strictly
complex eigenvalues of A, where aj = aj + ibj for j =1,... k. Let
Uiy .oy Umy V1, VI, V2, Vo, ..., Vi, Vx € C" be the corresponding
unitary orthonormal basis of C", consisting of the corresponding
eigenvectors, such that uj = Reu; for j=1,...,m. Then

AZ(Ul,...,Uk,

\/§Rev1,\F2lmvl,\/ERev2,\/§|mv2,...,\/§Revk,\f2|mvk),

is an real orthogonal basis of R".



Characterization of Real Normal Matrices (continued)

Corollary
Moreover, if @ = M(id)%; then Q € M(n x n;R) is an (real) orthogonal
matrix (i.e. QTQ = QQT = 1) and

g | O]~ ] 0 0 0 0 0f--- 0 017
0 |p|---]0 0 0 0 0 0 0
0 Im 0 0
0 ai b] 0 0. 0 0
QTAQ = 0 —b1 a1 0 0]--- 0 0
0 0 0| a b 0 0
0 0 0|=b a 0 0
00| 0 0 0 0 0 ak  bx
00| 0 0 0 0 0 —br ak |




Characterization of Real Orthogonal Matrices (continued)

Corollary
Matrix A€ M(n x n;R) is orthogonal if and only if there exists an
orthogonal matrix Q € M(n x n;R) and numbers @1, ..., ok € R such
that
+1] 0 0 0 0 0 0 0 0
0 | +1 0 0 0 0 0 0
0 +1 0 0
0 cosp1  sing 0 0f--- 0 0
QTAQ = 0 —sinp;  Cos¢ 0 0f--- 0 0
0 0 0 cosy  sings 0 0
0 0 0| —singy cosys 0 0
0 0 0 0 0 0 0f--- COoS Pk Sin i
L O 0 0 0 0 0 Of--- | —sinpx cospx |




Characterization of Real Symmetric Matrices (continued)

Corollary

Matrix A€ M(n x n;R) is symmetric if and only if there exists an
orthogonal matrix @ € M(n x n;R) and numbers py, ..., u, € R such
that

11 0
QTAQ =
0 Lon



Characterization of Real Skew—Symetric Normal Matrices

Corollary

Matrix A€ M(n x n;R) is skew—symmetric if and only if there exists an
orthogonal matrix @ € M(n x n;R) and numbers by, ..., by € R such that

rojo|---lo] 0o ol o of-- 0 0]
0/0 0 0] 0 o0 0 o0
0 0 0 o0
0 0 b| 0 0O 0 o0
QTAQ=| 0 —b 0 0 0 0 0
0 0 0| 0 b 0 0
0 0 0|—b 0 0 0
0/0] 0 0 0] 0 0 0 b«
Lo|o] o 0 ol 0 o0 —be 0 |




Example

Let
1 1 0
A=1|0 1 1
1 01
Then
2 11
ATA=AAT=|1 2 1.
1 1 2
Moreover

wa(x) = det(A —xl) = —x3 +3x% = 3x +2 = — (x — 2) (x2—x+1),

therefore

It can be checked that

Vi =1in((1,1,1)), Vi = lin((1,)%, =X)), Vix) = lin((1, =\, A2)),

—

(notethat > +1=0,A2=X—1, A=} =-\2).



Example (continued)

Since
(1,1, 1) = (1,2, =N)] = [(1,=A,0)| = V3
we have
up = %(1,1,1),
vi = i(l A2 —)N),
V3
vy = i(1 —\, A%,
V3
If
b1l o
V31 oy a2 |
Then

U*U = UU* = 1.



Example (continued)

If

then

UDU* = A,

11
A2 =
-A A2

1
1
1

-2

I 1
O
— — O

— O



Example (continued)

Let 1
u =v = %(1)171)7
V2 1 1
- 2R L1, -=2,-=
upy = \/_ evy = \/§( 27 2 )
2
uz =V2Imvy = %(0,?,—?).
If
1 V2 0
1 1 V6
e=—|1 -% 2.
\/§ 1 \{5 26
V2 2
then

QTR =QQT=1.



Example (continued)

Moreover, let

Then

= A,

QBQT

o 1_ﬁﬁ_2
— 1_ﬁﬁ_z

120

-1
© Y i
o 1_2ﬁ_2
N o o
SRS ﬁ_z
o S-S

(I
— o

-

O
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Rayleigh Quotient

Definition
For any matrix M € M(n x n; C) and any vector x € C",x # 0, the
Rayleigh quotient R(M, x) is equal to

x*Mx

x*x

R(M,x) =




Rayleigh Quotient

Definition
For any matrix M € M(n x n; C) and any vector x € C",x # 0, the
Rayleigh quotient R(M, x) is equal to

x*Mx

x*x

R(M,x) =

Proposition
For any complex number o € C

R(M,ax) = R(M, x).



Rayleigh Quotient (continued)
Proposition
For any Hermitian matrix M € M(n x n;C) (i.e., M* = M)
R(M,x) € R,

Amin < R(M,X) < Amax,

where Amin, Amax € R are the smallest and the greatest (real)
eigenvalues of matrix M. Moreover, those bounds are attained by
R(M, x) by the corresponding eigenvectors x € C".



Rayleigh Quotient (continued)
Proposition
For any Hermitian matrix M € M(n x n;C) (i.e., M* = M)
R(M,x) € R,

Amin < R(M,X) < Amax,

where Amin, Amax € R are the smallest and the greatest (real)
eigenvalues of matrix M. Moreover, those bounds are attained by
R(M, x) by the corresponding eigenvectors x € C".

Proof.
As R(M,x)* = R(M, x), it follows that R(M, x) € R. Let
Vi,...,vp € C" be a unitary orthonormal basis of C”, in which

matrix of M is diagonal (i.e., it consist of eigenvectors v; of matrix
M such that Mv; = \;v; and vaI\/Iv,- =0 for i # j). Let

X =0o1V1L + ...+ QpVp.



Rayleigh Quotient (continued)

Proof.
Then . )
R(M,x) = 72":“"'0"'2' .
g el
Since Amin < Aj < Amax, it follows that

" Aag)?
)\min < M < )\max-
Zi:1 |cvi

The bounds are attained for x = v; where Mv; = A\,,ipv; and for
x = vj where Mv; = A\pacv;.



Rayleigh Quotient (continued)

Proposition
For any matrix M € M(n x n;C) and any vector x € C" the
Rayleigh quotient

x*Mx

x*x

A= R(M,x) =

9

is the least square solution of the (possibly inconsistent) equation

Mx = Ax.



Rayleigh Quotient (continued)

Proposition
For any matrix M € M(n x n;C) and any vector x € C" the
Rayleigh quotient

x*Mx

x*x

A= R(M,x) =

9

is the least square solution of the (possibly inconsistent) equation

Mx = Ax.
Proof.
The orthogonal projection of Mx onto V = lin(x) is equal to
*
M
Py (Mx) = X X)x.

x*x



Rayleigh Quotient (continued)

Proposition

For any fixed symmetric matrix M = MT € M(n x n;R) the
eigenvectors of M are stationary points of the Rayleigh quotient,
that is if Mx = Ax for some x € R", x # 0 then

V.R(M,x) = 0.



Rayleigh Quotient (continued)

Proposition

For any fixed symmetric matrix M = MT € M(n x n;R) the
eigenvectors of M are stationary points of the Rayleigh quotient,
that is if Mx = Ax for some x € R", x # 0 then

Vi«R(M,x) =0.
Proof.
0
OR a—XJ_(XTMX)(XTX) (XTI\/IX) (XTX)
™ —(M,x) = Tx)? =
_ 2(Mx);(xTx) — (xT Mx)2x; _
T2
2

= 71y (Mx = R(M, x)x);,

where (Mx); denotes the j-th entry of the vector Mx.



Eigenvalue Decomposition

Proposition
Let M € M(n x n;C) be a matrix such that there exists basis
A= (vi,...,v,) of C" and numbers \1, ..., A\, € C such that

M = CDC*,

where C = M(id)%f and D = diag(\1,...,An). Then

n

%

M = Z )\,'V,'V,- y
i=1

where v;v;* are rank 1 matrices.



Eigenvalue Decomposition (continued)

Proof.

M =

n

1

CD;C* = (an A,-C,-) c* = zn:)\,-C,-C*,
1 i=1 i=1

where D; = diag(0,...,0,X;,0,...,0) and C; € M(n x n;C) is a
zero matrix with i—th column replaced with eigenvector v;. Then

GC* = CGCF = vvi.



Eigenvalue Decomposition (continued)

Corollary

Let M e M(n x n;C) be a Hermitian matrix (i.e. M* = M). Let
Vi,...,vp € C" be a unitary orthonormal basis consisting of
eigenvectors of M corresponding to eigenvalues A1, ..., A, € R.
Then

n
M = Z )\,'V,'V,-*.
i=1



Sherman—Morrison Formula
The following formula expresses the inverse of rank 1 update of matrix A.
Proposition
For any matrix invertible A€ M(n x n;C) and vectors v,w € C such that
1+ w*Av # 0 the matrix A + vw* is invertible and

A lvw*A-L

At w7 =AT - ——
(A+ww?) 1+ w*A-1y



Sherman—Morrison Formula
The following formula expresses the inverse of rank 1 update of matrix A.
Proposition
For any matrix invertible A€ M(n x n;C) and vectors v,w € C such that

1+ w*Av # 0 the matrix A+ vw¥* is invertible and

Afl *Afl
(A+w*)™t=A"1 - ad

1+ wrA-1y
Proof.
First we show that
(I +uw*) ™t =1— %
(I + uw™) (I— %) —
:I—%—I—uw*—w*u%:



Sherman—Morrison Formula (continued)

Proof.

Since A is invertible there exists u € C" such that v = Au, i.e.
u=A"1v. Then

A+ w* = A(l + uw™),

and the matrix A 4+ vw* is invertible if and only if the matrix
I + uw™ is invertible. Moreover

A+w*) =l +w*) A= (1- _uw? ATl =
1+ w*u
A~ lyw*A-1

a4 WA
1+ w*A-1ly



Singular Value Decomposition — SVD

Theorem

For any matrix A€ M(m x n;C) there exist unitary matrices
Ue M(mx m;C),V e M(nx n;C) and a unique (real)
generalized diagonal matrix

Y =diag(o1,...,0,,0,...,0) € M(m x n;R) such that

o1=200=2...20,>0,

where r = r(A) oraz
A= UZV*.



Singular Value Decomposition — SVD

Theorem

For any matrix A€ M(m x n;C) there exist unitary matrices
Ue M(mx m;C),V e M(nx n;C) and a unique (real)
generalized diagonal matrix

Y =diag(o1,...,0,,0,...,0) € M(m x n;R) such that

o1=200=2...20,>0,

where r = r(A) oraz
A= UZV*.

Remark
Matrices U, V' are not uniquely determined (unlike the matrix ¥).



Singular Value Decomposition — SVD (continued)

Proof.

Let o1 = ||A||,. By the definition of ||-||, and the compactness of a
ball in C™ there exist vectors v; € C™ and vectors u; € C" such
that [ui/l, = url, = 1, and

AV1 = o1Uy.

Let Vi € M(n x n;C) be a unitary matrix with the first column
equal to vector vq, and let U; € M(m x m; C) be a unitary matrix
with first column equal to u;. Then

o1 w*
Ui AV, = {01 B],
where w e C" 1 and Be M((m—1) x (n—1);C). O

%ee L. N. Trefethen, D. Bau, Ill, Numerical Linear Algebra, SIAM



Singular Value Decomposition — SVD (continued)

Proof.

Then
o1 w*||op
0 B w

It follows that w = 0, otherwise o7 is not maximal. By the
inductive assumption there exists unitary matrices
Voe M((n—1) x (n—1);C) and U, € M((m—1) x (m—1);C)

such that
B 1 0l[ocx O] 0O7F, .
A_Ul{o Uz][() 22] {o VJ Vi

2 2



Singular Value Decomposition — SVD (continued)

Proof.

To prove uniqueness of ¥, assume there exists a vector w
corresponding to the singular value o1, such that vi, w are linearly
independent (i.e., ||Aw||, = o1) such that ||w|, = 1 (otherwise the
subspace lin(v;)* is uniquely determined). Then the vector

w — (viw)vg

Vo =
lw = (viwwll,’

equal to the unit vector of the projection of vector w onto the
subspace lin(v;) c C™, satisfies the condition

w = av; + By,

where |a|? + |3]> = 1 (vector w is a unit vector and vectors v, vy
are orthogonal). O



Singular Value Decomposition — SVD (continued)

Proof.
Then [|Av||, < o1, and if ||Av|, < o1, then

2 2 2 2 2
[Aw (3 = [al*[|Ava[l3 + 5] [|Avally < o1,

which leads to contradiction. Therefore, vector w is a vector
corresponding to the singular value o7 of matrix B. The claim
follow by induction.



Real Singular Value Decomposition

Theorem

For any matrix A€ M(m x n;R) there exists orthogonal matrices
Ue M(mx m;R),V € M(n x n;C) and a uniquely determined
generalized diagonal matrix

Y =diag(o1,...,0,,0,...,0) € M(m x n;R) such that

o1 =002 ...20,>0,

where r = r(A) and
A=UXVT.



Real Singular Value Decomposition

Theorem

For any matrix A€ M(m x n;R) there exists orthogonal matrices
Ue M(mx m;R),V € M(n x n;C) and a uniquely determined
generalized diagonal matrix

Y =diag(o1,...,0,,0,...,0) € M(m x n;R) such that

o1 =002 ...20,>0,

where r = r(A) and
A=UXVT.

Remark
As before, the orthogonal matrices U,V are not uniquely
determined.



Real Singular Value Decomposition (continued)

The following proof, using the spectral theorem, after a slight
modification works in the complex case too.
Proof.

Matrix ATA € M(n x n;R) is symmetric and positive semidefinite
hence there exists orthonormal basis (not uniquely determined)

Vi,...,Vv, € R" of R"” consisting of eigenvectors of ATA such that
0 i#j, .
VITATAVJ' = {)\/ i=], s for i,j=1, s

A== =)\ >0,
A= .. Ay =0,

where A\; = 0 is an eigenvalue of ATA corresponding to eigenvector
v; € R" and r € N is some natural number such that 1 < r < n.



Real Singular Value Decomposition (continued)

Proof.
Let
oi=+/Aj, for i=1,...,n,
and
ui=—Av;eR™ for i=1,...,r
gj
Then
1 0 i#j ..
Ty, = TATAv; = L, for 0j=1,
u: u.l O'iO'J'V’ VJ {1[ i=j, 1,
Moreover

Av;=0, for i=r+1,...,n,
as ||Av;||> = vJATAy; = 0.



Real Singular Value Decomposition (continued)

Proof.

Let ug,...,Ur, Ups1,...,Un € R™ be an extension of some
orthonormal basis of imA < R™ to some othonormal basis R"
(both not uniquely determined). Let U € M(m x m;R) be an
orthogonal matrix which columns are equal to uq,...,u, € R™,
respectively and let V € M(n x n;R) be an orthogonal matrix
which columns are equal to vq,...,v, € R, respectively. Let

Y =diag(o1,...,0,,0,...,0) € M(m x n;R).



Real Singular Value Decomposition (continued)

Proof.

Then
1

UZVTV,' = UZ,-e,- =0ojui = 0j <—AV,'> = AV;,

gi

fori=1,...,r, and

UZVTV; = UZ,-e,- = OU,' = 0,
fori=r+1,...,n Therefore

A= UTVT,

and r(A) = r as r(X) = r and matrices U, V are non-singular. For
the uniqueness of matrix X proceed like in the complex case. O



Real Singular Value Decomposition (continued)

Remark
The proof implies that

,

_ T

A= Z oju;v; .
i=1



Real Singular Value Decomposition (continued)

Remark
The proof implies that

,

_ T

A= Z oju;v; .
i=1

Remark

The preceding proof works after small modification in the complex
case.



Pseudoinverse

Definition
With the same notation
Y =diag(o1,...,0,,0,...,0) € M(m x n;R) set
Y= diag(al_l,...,ar_l,O,...,0) € M(n x m;R),
AT = VEZTU*.

Matrix A™ is called pseudoinverse or Moore—Penrose
pseudoinverse of A (note that matrix X is of the same size as
XT).



Pseudoinverse (continued)

Proposition

For any matrix A€ M(m x n;C) there exists at most one matrix
At e M(n x m;C) such that

) AATA = A,



Pseudoinverse (continued)

Proposition

For any matrix A€ M(m x n;C) there exists at most one matrix
At e M(n x m;C) such that

) AATA = A,
i) AtAAY = At



Pseudoinverse (continued)

Proposition

For any matrix A€ M(m x n;C) there exists at most one matrix
At e M(n x m;C) such that

i) AATA = A,
i) AYAAT = AT,
i) (AAT)* = AAT,



Pseudoinverse (continued)

Proposition
For any matrix A€ M(m x n;C) there exists at most one matrix
At e M(n x m;C) such that

i) AATA = A,

i) AYAAT = AT,
i) (AAT)* = AAT,
iv) (ATA)" = AT A,



Pseudoinverse (continued)

Proposition

For any matrix A€ M(m x n;C) there exists at most one matrix
At e M(n x m;C) such that

i) AATA = A,

i) AYAAT = AT,
i) (AAT)* = AAT,
iv) (ATA)" = AT A,

(in particular matrices AA*, AT A are Hermitian). Moreover, matrix
AT = VEtU*,

satisfies the above conditions.



Pseudoinverse (continued)

Proof.
Let
A= ULV*,

At = VItTU*,
be the singular value decomposition of A, where
Y =diag(o1,...,0,,0,...,0) € M(m x n;R),

Yt = diag(al_l,...,ar_l,o,...,0) € M(n x m; R).
Then

Yyt = { g 8 ] e M(mxm;R), ¥It¥ = {%’%] € M(nxn;R).

In particular
YYty =%, Ytyyt=3x" .



Pseudoinverse (continued)

Proof.
Then

i)
AATA = (USVF)VETU*(USV*) = U(EETE)V* = A,



Pseudoinverse (continued)

Proof.
Then

i)
AATA = (UZVH)VETU*(UZV*) = U(EETE)V* = A,
i)
ATAAT = (VETUHUSVH*(VETU*) = V(ZTEZH)U* = AT



Pseudoinverse (continued)

Proof.
Then

i)
AATA = (UZVH)VEZTU*(ULV*) = U(ZZTE)V* = A,
i)
ATAAT = (VEZHUHUZVH(VETU*) = V(ZTZEh)U* = AT,
i)
(ATA)" = A*(AT)* = (USV*)*(VETU*)* =
= (VIZ*UH(UZT)*V*) = V(ZrD)*Vv* = V(ZtE)Vv* =
= (VZTUH)(UZV*) = V(ZTD)V* = ATA.



Pseudoinverse (continued)

Proof.
Then

i)
AATA = (UZVH)VEZTU*(ULV*) = U(ZZTE)V* = A,
i)
ATAAT = (VEZHUHUZVH(VETU*) = V(ZTZEh)U* = AT,
i)
(ATA)" = A*(AT)* = (USV*)*(VETU*)* =
= (VIZ*UH(UZT)*V*) = V(ZrD)*Vv* = V(ZtE)Vv* =
= (VZTUH)(UZV*) = V(ZTD)V* = ATA.

iv) j.w.



Pseudoinverse (continued)

Proof.

Assume that matrices A*, A+ satisfy conditions i) — iv). Then
AT = ATAAT = AT(A)AT = AT (AATAIAT = AT((A)AF(A)AT =

— AT((AATA)AT (AA +A)) = (ATA)*(A

= (A*(AM)*)(A*(A™)%) )FAT)((AT)*A*) =
AT)H(A*(AT)*AY) =
A AAT)A)* =
Al+)*A* _

/

+(A+*

'+

\_//'\

= (A*(AT)*A) (AT A

A
A (
= (A(AT A (A )" A" (
A (

*(ATAFAT(AA T (AAT)F =



Pseudoinverse (continued)

Proof.
— AF(ATYFAH(ATYAY =
= (ATAFAT(AAH)* = (ATA)AT(AAT) =
= AH(AATA)AT = ATAAT = A'F,



Singular Value Decomposition — Remarks

Remarks

D)

if matrix A is real then there exists real orthogonal matrices
U,V such that A= UX VT,

when o1 > 0y > ... > o, > 0, that is the singular values are
pairwise different then the columns 1,2,... r of U i V are
uniquely determined up to a constant «; € C (respectively
aj € R, when A is real) such that |a;| = 1,

when A€ M(n x n;C) and det A # 0 then AT = A~1,

the following matrix norms of A are determined by the
singular values of A, i.e.,

1Al = \/270

||A||2 =01,



Singular Value Decomposition — Remarks (continued)

Remarks
i) let A= UXV*, thatis

AV = UXx.
Denote by u1, ..., u, the columns of matrix
Ue M(mx m;R) and by v1,..., v, the columns of matrix

VeM(nxnmR). Thenfori=1,..., maxm,n
AV,':U,'U,'.

Moreover

ker A =1lin(Vet1,...,Vpn)

imA = lin(ug, ..., ur).



Singular Value Decomposition — Remarks (continued)
Remarks

vi) for any k <r let ¥ = diag(oy,...,0%,0,...,0) € M(m x n;R).
Then the matrix
Ak = UL V¥,

satisfies the condition: for any matrix B € M(m x n; C) of rank k
[A— B||2 > ||A- Ak||2 = Ok+1,

|A=Bllp = A= Adlp = \JoF s + ...+ 02,

where, assuming A = [a;;] € M(m x n; C) the norms are defined as
follows

IAllF = +/Tr(A*A) = \/Tr(AA%) =

[All, = sup{l|Ax|l; € R | x e R", [[x]l; = 1} = 1/ Amax (A*A),

[xll; = Vx*x.



The Best Low Rank Approximation

Proposition
Let Ae M(m x n;C) be any matrix and let A = ULV* be its singular
value decomposition, where

Y = diag(o1,...,0,0,...,0) € M(m x m;R),

andoy > 0p>...20,>0, ie., r(A) =r. Then, for any k such that
0 < k < r and for any matrix B€ M(m x n;C) such that r(B) = k it
holds

[A— Al < [[A- B,

where
A = UL V*,
Yy = diag(o1,...,04,0,...,0) € M(m x n;R),

that is, matrix Ak of rank k is the best approximation of matrix A among
matrices of rank k of the same size as matrix A (in the norm

[All = supyx,=1 1A ]2)-



The Best Low Rank Approximation (continued)

Proof.
Obviously r(Ax) = k. Moreover

|A = Al = |Udiag(0, ..., 0xs1,- .., 00,0...,0) V| =

= ||diag(0,...,0k+1,---,0,,0...,0)|| = Okt1.

Let Be M(m x n;C) be any matrix such that r(B) = k. Let
W = {weR™| Bw = 0}.

Let wy,...,wy,_k € C" be an unitary orthonormal basis of subspace
W c C". Let wq,...,v, € C" denote columns of matrix V. Let

velin(va,...,vkg1) n W {0},
be any (non—zero) vector such that

vl = 1.



The Best Low Rank Approximation (continued)

Proof.
Then
[A— Bl = (A= B)v| = [|Av| =
r r
= Z(UiUiVi*)V = Z ((viv)ujo;)
i=1 i=k+1
r r
= Z a?(viv)? = o Z (Viv)? = opq1,
i=k+1 i=k+1
since
n r

P =Y w2 =12 3 (v

i=1 i=k+1



Singular Value Decomposition — Example

a9

Then, assuming A = UL V™, we have

Let

18 74

1 3 1 3
S E [
7w vol L0 0| m vw

AA* = (USV*)(VE*U*) = UST*U* = {50 30] -

_ f 80 0]l
0 20f|L —Lif°
f V2 2

A*A = (VE*U*)(USV*) = VEFSV* = {26 18]

o

S-Sl



Singular Value Decomposition — Example (continued)

Hence
1 1 1 3
A 5 5 _ ? ? 45 0 V10 @
SO N v R d B YT N v v
that is
1 1 1 3
T A B S R i
TV 0 25 T
A= UxXV*,

therefore the best rank 1 approximation of matrix A in the norm

[l oraz [|-[| ¢ is
1 3
45 0] |vis vi|_|[2 6
0 0 % —L 2 6|
10 v/10

|

Sk
Sk



Singular Value Decomposition — Example (continued)

1 1 1 3
a=| 8ol S O ]|VE Vi
-1 7 5 L0 25|~
0 V1o
2 6
me s )
3 -1
B:A—Alz[_3 1},
and
IBllp = v/3%2 + (—1)2 + 32 + (—1)2 = 21/5 = g2(A),
N 18—X —6] o
det(B*B )\I)—det{_6 2_/\]—)\()\ 20),
hence

1Bl = /Amax(B*B) = v/20 = 4+/5.



Optimal Solution of a System of Linear Equations

Definition

For any system of linear equations Ax = b where

Ae M(m x n;C),be M(m x 1;C) the vector x € C" is called the
optimal solution if

| Ax — b, < || Ay — b, for any y € C",
and if [|Ax — b]l, = X — b, then [|x]|, < [IX'|l,

Proposition
For any matrices A€ M(m x n;C),be M(m x 1;C) the vector

x=A"h

is the optimal solution of the system Ax = b.



Optimal Solution of a System of Linear Equations

Proof.
Let P = AAT be the matrix of orthogonal projection onto im(A).
Then for any x

|Ax — bll, = |Ax = Pb + (P — 1)b], =

= [[Ax = Pbl[, + [[(P = 1)blly = [|(P = 1)bl[,.

The lower bound (which does not depend on x) is attained when
x = Ath. Assume that Ax = Ax’ where x = A" b € im(A*).
Therefore there exists n € ker A such that x’ = x 4+ n where x and
n are perpendicular. Therefore

X[z = lxllz + llnlly = lix]l-



Example

For
11 3
A=12 3|, B= 0
11 -1
3 3
3 1 3
+ _ 2 2
A [—1 1 —1}
It follows
10
+A _ +p _
ATA = {O 1] , A™B= {_

which is the optimal solution of AX = B.



Hadamard's inequality

Proposition
For any matrix A€ M(n x n;R)

det Al < fleal - lleall;

where ¢; is the i—th column of matrix A and

leill = 4/l e

is the (Euclidean) length of the i—th column, for i =1,...

Moreover, the equality holds if and only if

¢ilc, for i+#j.



Hadamard's inequality (continued)

Proof.
If ¢; = 0 or det A = 0 then there is nothing to prove. Dividing each
column of matrix A by its length the problem reduces to the

following one
|det A] < 1,

where ||¢i|| =1 fori=1,...,n. Let
M = ATA.
Then matrix M is a positive definite symmetric matrix. Moreover,
n
TrM = Z mj; = n,
i=1

where M = [mjj] as columns of matrix A are of length 1.



Hadamard's inequality (continued)

Proof.

By spectral theorem matrix M is diagonalizable and therefore
det M = X1 -...- Ap.

Moreover

=1,

A A"
det M = det(ATA) = (det A)2 = A\-... A, < <L>

n

by the Arithmetic-Geometric Mean Inequality. The upper bound is
achieved when
AM=X=...=\ =1,

i.e., when M = ATA = | that is when columns of A or pairwise
perpendicular.



Cauchy-Schwarz Inequality

Proposition
Let A€ M(n x n;R) be a positive semidefinite symmetric matrix.
Then for any x,y € R"

XTAy| < (xTAX)Z (yTAy)? .
Proof.
For any t € R,
0<(x—ty)TA(x — ty) = (yTAy) t? — 2 (xTAy) t + (xTAx) .
Hence, the discriminant

A=4 (XTAy)2 — 4 (xTAx) (yTAy) < 0.



Cauchy-Schwarz Inequality (continued)

Definition

Vector x € R" is isotropic (with respect to a symmetric matrix A)
if xTAx = 0.

Corollary

Let A€ M(n x n;R) be a symmetric positive semidefinite matrix.

Then x € R" is isotropic if and only if Ax = 0.
Proof.

Assume y € R" is istotropic in the proof of Cauchy—Schwarz
inequality. Then the linear function

—2(xTAy) t + (xTAx) = 0,

is non—negative for any x € R"”. This implies xTAy = 0 for any
xeR" ie. Ay =0. O



Convex Cone

Definition
A subset C < R" is a cone, if
i) for any viwe C
v+weC,

i) for any v e C and any « € R such that a > 0,
ae C.

The cone C is pointed if it does not contain a one—dimensional
subspace of R” (i.e, a line). The cone C is (closed) polyhedral if
it equal to the intersection of finite (closed) half-spaces in R".



Dual Cone

Definition
Let A< R” be any subset. Let v - w be a scalar product in bR".
Then the set

AV ={veR"|v-w =0 for any w e A},
is called the dual cone of the set A.

Proposition
For any subset A < R" the set AV is a closed convex cone.

Proof.

Exercise.



Cone Spanned by Set

Definition
A cone C < R" is spanned by set A c R" if

C={Oz1V1+...OLka€Rn|V1,...,Vk€A, ai, ..., oy =0, kZl}

We write
C = cone(A),

and ifAZ{Vl,...,Vk}

C = cone(vi, ..., k).



Extremal Rays of a Cone

Definition

Let C = R" be a (convex) cone. Vector (or a half-line spanned by
it) ve C,v # 0 is an extremal ray of cone C, if for any

vi,wwe V,if v =v; + v then v{ = tv or v, = tv for some t > 0.



The Positive Semidefinite Cone

Definition
Let
S"={Ae M(nx nR") | AT = A} € M(n x n;R),

be the (";1) subspace of symmetric matrices with the (standard)

scalar product given by
A-B=Tr(AB),
for any A,Be S".

Definition
Let
Coo = {A € S"| Ais postive semidefinite},
C-o = {A€S"| Ais postive definite},

denote the positive semidefinite and positive definite cones,
respectively.



The Positive Semidefinite Cone (continued)
Proposition
i) the positive semidefinite cone Csq is a closed convex pointed cone,
ii) the positive semidefinite cone Csq is self-dual, i.e.
2o = Coo,

with respect to the scalar product given by the trace,

iii) the positive semidefinite cone Csq is spanned by rank 1 matrices
wT, ie.,
Cso = cone ({wT eS| veR"}),

iv) the matrices vwT are exactly the extremal rays of the cone Csq,

V)

int Cs9 = Cso.



The Positive Semidefinite Cone (continued)
Proposition
i) the positive semidefinite cone Csq is a closed convex pointed cone,
ii) the positive semidefinite cone Csq is self-dual, i.e.
2o = Coo,

with respect to the scalar product given by the trace,

iii) the positive semidefinite cone Csq is spanned by rank 1 matrices
wT, ie.,
Cso = cone ({wT eS| veR"}),

iv) the matrices vwT are exactly the extremal rays of the cone Csq,

V)

int Cs9 = Cso.

Proof.

Omitted. Involves mostly eigenvalue decomposition. Ol



The Positive Semidefinite Cone (continued)

Remark

The positive semidefinite cone is described by polynomial inequalities
given by the all principal minors (Sylvester’s criterion). For example
matrix

is positive semidefinite if and only if

a=0,
c>=0,
ac—b%> = 0.

The extremal rays of the positive semidefinite cone are exactly of the form

HIER ]

for any s, t € R.



The Positive Semidefinite Cone (continued)

Remark
When ||v|| = 1 the matrix wT is the matrix of the orthogonal (linear)
projections onto lin(v), i.e.

M(P“n(v)):g = wT.
In general, for any v # 0

.
M(Pino)) =

St oyt



Non—negative Polynomials

Definitions
Let d = 1. A polynomial p(x) of degree 2d is non—negative if for any
xeR

p(x) = 0.

Proposition

A polynomial p(x) of degree 2d is non—negative if and only if all its real
roots are of even multiplicity and if azy > 0 where p(x) = apgx®" + ...
(that is the leading coefficient is positive).

Proof.

Exercise. O



Non—negative Polynomials (continued)

Proposition

A polynomial p(x) = Zfio ajx' of degree 2d is non—negative if and only
if there exists a symmetric positive semidefinite matrix

M = [mjj] e M((d + 1) x (d + 1);R) such that

g = Z m,-j,

i+j=k

for any k = 0,...,2d where rows and columns of matrix M are
numbered from O to d. Moreover the correspondence is one—to—one.



Non—negative Polynomials (continued)

Proof.
(<) Let x = (1,x,x%,...,x%). Then

p(x) = xTMx = 0.
=)
d
= n z—2z)(z—7)

where z;,Z; € C are complex roots of p(x). Let

d
q(X):ﬁHX_zl ZCI.

Let

q1(x) =Req(x) = Y (Rec) x',

OR

Il
<}

g(x) =Imgqg(x) = (Im ¢;) x",

UR

Il
o

1



Non—negative Polynomials (continued)

Proof.
i.e.

q(x) = q1(x) + V—1q.

Then for any x e R

p(x) = a(x)q(x) = |g(x)* = ai (x) + g3 (x) =
= (vVTx)? + (wTx)? = xT(WT + wwT)x,

where
v = (Recy,Recy,...,Recy) e RITL,

w=(Img,Imac,...,Imcy) € R+,



Example

Let
1 0 0
0 1 0
A= 0 0 1
-1 2 -1
Then
2 =2 1
M=ATA=| -2 5 =21,
1 -2 2

is positive definite. Therefore, the polynomial

1 -2 2 2

2 =2 1 1
p(x) = [1 X X2] -2 5 =2 X :2X4—4X3+7X2—4x—|—27
X

is non—negative. In fact,

f(x) > £(0.3768669139161389. ..) ~ 1.312973699214175 ... > 0.



Quiz

Is it possible to find n > 1 and x1,x2,x3 € R" such that

[x1 = %2l = [[x2 = x3|| =1, [xg —x3| =37



Quiz

Is it possible to find n > 1 and x1,x2,x3 € R" such that
1 = x2f| = [}x2 = x3f| = 1, [[x1 — x3]| = 37
No, it is not possible as
X1 — x2f] < [|x1 — %2 4+ %2 — x3]| <

< [xa = x| + fx2 = xs]],

(triangle inequality) but it is not true that 3< 1+ 1= 2.



Properties of Pseudoinverses

Proposition

Let Ae M(m x n;R) be any matrix. Then P = AA™ is a matrix of
the orthogonal projection onto imA and Q = A" A is a matrix of
the orthogonal projection onto imAT.

Proof.
Let A= UXVT be an SVD decomposition of A. Then

P=UZVTVITUT = U:,l:rU;I:l;rv

is symmetric where r = r(A) and U. 1., denotes first r columns of
matrix A (orthonormal basis or imA). Moreover

P? = AATAAT = AAT = P.

Similarly for Q. O



Properties of Pseudoinverses (continued)

Proposition
Let Ae M(m x n;R) be any matrix.

At = (ATATAT, AT = AT(AAT)*.
Proof.
Let A= UXVT be an SVD decomposition of A. Then
ATA = VX2V,
(ATA) = v(22) v,
(ATA)TA = V(22)TVTVEUT = A*.

The second part is similar.



Properties of Pseudoinverses (continued)

Proposition
Let Ae M(m x n;R) be a matrix. If r(A) = m (full row rank) then

AT = AT(AAT) L,
If r(A) = n (full column rank) then

AT = (ATA) AT
Proof.

Follows from the above proposition (matrices AAT and ATA are
invertible).



Properties of Pseudoinverses (continued)

The following lemma will be subsequently used in the proof of
Greville's conditions.

Proposition
Let A, Be M(m x n;R) be any matrices. Then

AT = ATAAT,

BT = BTBB™.

Proof.
Since ATA is a matrix of (orthogonal) projection onto im(AT) and
BB is a matrix of (orthogonal) projection onto im(B)

AT = ATAAT,

B = BB'B.

Conjugating the last equation finishes the proof. O



Inverse Law

Theorem (Greville)
Let Ae M(m x m;R), Be M(n x k;R). If (AB)* = B*A* then
im(ATAB) < im(B) and im(BBTAT) c im(AT).

Proof.

By the above lemma applied to AB (the second case) using the main
assumption
BTAT = BTATABBTA™,

Multiplying on the right by AATAB gives
BTATAATAB = BTATABBTATAATAB.
By the above lemma

BTATAATAB = BTATABBY(ATAAT)AB = BTATABBTATAB,

BTATA(I — BBY)ATAB = 0.



Inverse Law(continued)

Proof.
BTATA(I — BBY)ATAB = 0.
The middle matrix is idempotent and symmetric hence
|1~ BBHATAB|[; = 0,
which is equivalent to
im(ATAB) < im(B).

The rest is similar to the previous argument.



Inverse Law(continued)

In fact, the converse holds.

Theorem (Greville)
Let Ae M(m x m;R), Be M(n x k;R). Ifim(BBTAT) < im(AT)
and im(ATAB) c im(B) then (AB)" = B*A*.

Proof.
The assumptions imply that

ATABBTAT = BBTAT,

BBYATAB = ATAB,

Multiplying the first equation on the right by ((AB)T)" and on the
left by B gives

BTATABBTAT((AB)T)" = BYBBTAT((AB)")™.



Inverse Law(continued)

Proof.
BTATABBTAT((AB)T)" = BYBBTAT((AB)")™.
BTATAB(AB)T((AB)T)" = (B*BBT)AT((AB)")™.
By the previous lemma this is equivalent to
BTATAB = (AB)T((AB)"),

therefore the matrix BTATAB is symmetric.



Inverse Law(continued)

Proof.
Similarly, by multiplying

BB*ATAB = ATAB,
on the left by ((A)+)T
((A)*)TBBMTAB - (((A)*)TATA)B,

((A)+)TBB+ATAB — AB.

Multiplying the above on the right by (AB)" and using on the left hand
side B = (BTB)"BT gives

((A)*)TB(BTB)*BTAT(AB)(AB)+ — (AB)(AB)",

(") (8)) 4B = (4B)(4B)*,

which, after conjugating side-wise implies that ABB*A™.is symmetric.



Inverse Law(continued)

Proof.

The first Penrose condition is easily verified.
ABB*ATAB = AB(B*AAB) =
— AB(AB)T((AB)")* = AB.
Note that
im(BB* A*) < im(A*) = im(BBTA") < im(A").

(im(A*) = im(A*) and any eigenvector of BB* is an eigenvector of BB,
moreover any linear combination of eigenvectors of BB* corresponding to
non-zero eigenvalues is an eigenvalue of BB™.)



Inverse Law(continued)

Proof.
The second Penrose condition follows from im(BB*A™) < im(A™). Fix
any vector u and let

v — BYATABBYATu — BYATA(BBTA")u.
There exists vector w such that (BBTAY)u = Atw, i.e.,
v =B"ATAATw = BTA*w = BYBB*Atu = B*Atu.
Since vector u was arbitrary

BTATABBTAT = BTAT.



Inverse Law(continued)

Remark
This also shows that condition im(ATAB) c im(B) implies
conditions i), ii) and iii) for BTAY.



Positive Semidefinite Block Matrix

Proposition

For any matrices
Ae M(mx m;R),Be M(nx m;R),Ce M(nx n;R) where A and

C are symmetric, let
A BT
v=s €]

be a symmetric positive semidefinite matrix. Then

BT = AA*BT, B = (CC")TB.



Positive Semidefinite Block Matrix (continued)

Proof.

By spectral decomposition there exist N € M((m+ n) x (m+ n); R)
such that M = NTN. Assume that N = [Nl Nz], where

Ny e M((m+ n) x m;R), N, € M((m+ n) x n;R). Then

A= NlTNl, BT = NlTN2, C= N2TN2.
Moreover,
AA*BT = (NI Ny)(N]Ny)* NI Nz = NI = BT,

as (NJNy)(NJN;p)™ is an orthogonal projection onto
im(N]Ny) = im(NJ). Similarly,

(CCH)TB = (NI No) ™ (NI N2)NI Ny = NI



Schur Complement

Definition
For any matrices Ae M(m x m;R),Be M(m x m;R), C €
M(n x m;R), D € M(n x n;R) and the matrix

A B
v-[e o]

the Schur complement of matrix A with respect to M is

M|A =D — CA'B.



Schur Complement (continued)

Proposition

A positive symmetric semidefinite matrix

A BT
i=[s 2]

is conjugate to the matrix diag(A, M|A), where
M|A = C — BA*BT.

Proof.
I o|[A o ][I AtBT|
BAt 1|0 M|A 0 / a
[ A o[ ABT]
T | BATA I\/I|A 0 / a
[ A AA*BT [ A AAtET
" |BATA BA+AA+BT+I\/I|A T |BATA C

|- m



Schur Complement (continued)

Corollary
If a symmetric matrix

A BT
i=[s 2]

is positive semidefinite then matrix A is positive semidefinite and
the Schur complement M|A is postive semidefinite. If matrix A is
positive semidefinite and the Schur complement M|A is postive
semidefinite for symmetric matrix M and BATA = B (for example
when A is invertible) then M is positive semidefinite. Similar
theorem is true for positive definite matrices.



Quiz (continued)

Is it possible to find n > 1 and xp,Xo,...,x5 € R” such that
(addition modulo 6)

[[xi = xjz1] =1,

[xi = Xisa|| = V3,

Ixi — xi+3|| =27



Quiz (continued)

Is it possible to find n > 1 and xp,Xo,...,x5 € R” such that
(addition modulo 6)
[[xi = xjz1] =1,

[x; — xi4a|| = V/3,
Ixi — xi+3|| =27

Yes, it is. Those are vertices of a regular hexagon with sides of
length 1 and n = 2.



Multidimensional Scaling

Definition
A symmetric non—negative matrix D = [djj] € M(n x n;Rx) is
called Euclidean distance matrix if there exist m > 1 and

X1,...,X, ER™,
such that

dij = [xi — ;|-
Definition
Let

H=1—n11" € M(n x n;R),

be the centering matrix.

%based on K. V. Mardia, J. T. Kent, J. M. Bibby Mulitvariate Analysis



Multidimensional Scaling

Proposition
Let D = [aj] € M(n x n;Rx0) be a non-negative symmetric
matrix. Let A = [a;] € M(n x n;R) be a matrix given by the
condition )

2

Let
B = HAH.



Multidimensional Scaling (continued)

Proposition
Then D is an Euclidean distance matrix if and only if matrix B is
postive semidefinite. Moreover, in this case, let

Al=...=2An >0,

denote (all) positive eigenvalues of B (i.e., eigenvalue of
multiplicity k appear exactly k times) with corresponding pairwise

orthogonal eigenvectors wy, ..., wp, such that fori=1,....m

wi - Wi = )\;.
Then x; € R™ and x; lie in the rows of the matrix [vl e vm] .
Moreover the barycenter of vi,..., vy, is 0 and B is the Gram

matrix of vectors vi,...,Vm, i.e. bj = v;-v;.



Example 1

Let
013 0 —3 —3
D=1 0 1|, A= —% 0 —%
310 -3 -3 0
Then
1 38 5 —43
B:HAH:E 5 —-10 51,
—43 5 38
which has eigenvalues)\z—% or)\=00r)\=%, i.e. it is not

positive semidefinite.
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Example 2 (continued)

Then

B =HAH = -

which has eigenvalues A\ = 0 (of multiplicity 4)

2
1
-1
-2
-1
1

—= =N e

-2
-1

multiplicity 2), i.e. it is positive semidefinite.

-1 1
-2 -1
-1 -2
1 -1’
2 1
1 2
and A = 3 (of



Example 2 (continued)

Moreover
V() = lin((1,0,-1,-1,0,1),(0,1,1,0, -1, 1)),
which, after Gram-Schmidt process gives orthogonal basis
Vizy = lin((1,0,-1,-1,0,1),(1,2,1,-1,-2,-1)).
Let

V3

1 -1,0,1
2( 0 )07 )7

w1 =

1
wp = 5(1,2,1,-1,-2,-1).

Then wy-we =0and wy - wy = wy - wp = 3.



Example 2 (continued)

Vectors xg, . .., x5 € R? can be read from the rows of the matrix

— l i_

2 2

1 0

1 _3

o vl = | 2

T2 T2

-1 0

_1 3
L~ 2 2

Those are exactly the (complex) sixth roots of unity (clockwise).



