Linear Algebra
 Lecture 14 - Quadratic Forms

Oskar Kędzierski

22 January 2024

Quadratic Form

Definition
A function $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is called a quadratic form if

$$
Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=a_{11} x_{1}^{2}+\ldots+a_{n n} x_{n}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j},
$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_{1}, \ldots, x_{n}.

Quadratic Form

Definition
A function $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is called a quadratic form if

$$
Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=a_{11} x_{1}^{2}+\ldots+a_{n n} x_{n}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j},
$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_{1}, \ldots, x_{n}.

Examples

$$
Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}
$$

Quadratic Form

Definition
A function $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is called a quadratic form if

$$
Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=a_{11} x_{1}^{2}+\ldots+a_{n n} x_{n}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j},
$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_{1}, \ldots, x_{n}.

Examples

$$
\begin{gathered}
Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2} \\
Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}
\end{gathered}
$$

Symmetric Matrix

Recall

Definition
Matrix $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ is called symmetric if $A^{\top}=A$, i.e. $a_{i j}=a_{j i}$ for $i, j=1, \ldots, n$.

Symmetric Matrix

Recall

Definition
Matrix $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ is called symmetric if $A^{\top}=A$, i.e. $a_{i j}=a_{j i}$ for $i, j=1, \ldots, n$.

Example

$$
\text { matrix }\left[\begin{array}{rrr}
0 & 2 & 5 \\
2 & 4 & -3 \\
5 & -3 & 1
\end{array}\right] \text { is symmetric }
$$

Symmetric Matrix

Recall

Definition
Matrix $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ is called symmetric if $A^{\top}=A$, i.e. $a_{i j}=a_{j i}$ for $i, j=1, \ldots, n$.

Example

$$
\begin{aligned}
& \text { matrix }\left[\begin{array}{rrr}
0 & 2 & 5 \\
2 & 4 & -3 \\
5 & -3 & 1
\end{array}\right] \text { is symmetric } \\
& \text { matrix }\left[\begin{array}{rrr}
0 & 2 & 6 \\
2 & 4 & -3 \\
5 & -3 & 1
\end{array}\right] \text { is not symmetric }
\end{aligned}
$$

Matrix of a Quadratic Form

Definition

Let $Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j}$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M=\left[b_{i j}\right] \in M(n \times n ; \mathbb{R})$ such that $b_{i i}=a_{i i}$ and $b_{i j}=b_{j i}=\frac{1}{2} a_{i j}$ for $1 \leqslant i<j \leqslant n$.

Matrix of a Quadratic Form

Definition

Let $Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j}$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M=\left[b_{i j}\right] \in M(n \times n ; \mathbb{R})$ such that $b_{i i}=a_{i i}$ and $b_{i j}=b_{j i}=\frac{1}{2} a_{i j}$ for $1 \leqslant i<j \leqslant n$.

Example
The matrix of the form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is $M=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.

Matrix of a Quadratic Form

Definition

Let $Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{1 \leqslant i<j \leqslant n} a_{i j} x_{i} x_{j}$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M=\left[b_{i j}\right] \in M(n \times n ; \mathbb{R})$ such that $b_{i i}=a_{i i}$ and $b_{i j}=b_{j i}=\frac{1}{2} a_{i j}$ for $1 \leqslant i<j \leqslant n$.

Example

The matrix of the form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is $M=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
The matrix of the form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}$ $-4 x_{1} x_{3}+8 x_{2} x_{3}$ is

$$
M=\left[\begin{array}{rrr}
1 & 1 & -2 \\
1 & 2 & 4 \\
-2 & 4 & 5
\end{array}\right]
$$

Matrix of a Quadratic Form (continued)

Proposition
Let M be a matrix of the quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$. Then

$$
Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=x^{\top} M x
$$

where $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$.

Matrix of a Quadratic Form (continued)

Proposition

Let M be a matrix of the quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$. Then

$$
Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=x^{\top} M x
$$

where $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$.
Proof.
Entries of matrix M in the i-th row get multiplied by x_{i} and elements in the j-th column get multiplied by x_{j}. For every $i \neq j$ the monomial $x_{i} x_{j}$ comes from the entry in the i-th row, j-th column and from the entry in the j-th row, i-th column.

Matrix of a Quadratic Form (continued)

Formal explanation

$$
\begin{aligned}
& Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)=x^{\top} M x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
\sum_{s=1}^{n} b_{1 s} x_{s} \\
\sum_{s=1}^{n} b_{2 s} x_{s} \\
\vdots \sum_{s=1}^{n} b_{n s} x_{s}
\end{array}\right]= \\
&=x_{1} \sum_{s=1}^{n} b_{1 s} x_{s}+x_{2} \sum_{s=1}^{n} b_{2 s} x_{s}+\ldots+x_{n} \sum_{s=1}^{n} b_{n s} x_{s}= \\
&= \sum_{i, j=1}^{n} b_{i j} x_{i} x_{j} .
\end{aligned}
$$

Positive/Negative Definite Quadratic Form

Definition
Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive definite if $Q(x)>0$ (resp. $\left.x^{\top} M x>0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.

Positive/Negative Definite Quadratic Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive definite if $Q(x)>0$ (resp. $\left.x^{\top} M x>0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.
Quadratic form Q (resp. symmetric matrix M) is negative definite if $Q(x)<0\left(\right.$ resp. $\left.x^{\top} M x<0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.

Positive/Negative Definite Quadratic Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive definite if $Q(x)>0$ (resp.
$\left.x^{\top} M x>0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.
Quadratic form Q (resp. symmetric matrix M) is negative definite if $Q(x)<0\left(\right.$ resp. $\left.x^{\top} M x<0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}>0$ for $x \neq \mathbf{0}$.

Positive/Negative Definite Quadratic Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive definite if $Q(x)>0$ (resp.
$\left.x^{\top} M x>0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.
Quadratic form Q (resp. symmetric matrix M) is negative definite if $Q(x)<0\left(\right.$ resp. $\left.x^{\top} M x<0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}>0$ for $x \neq \mathbf{0}$.
The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is not positive definite since $Q((0,1))=-1<0$. It is not negative definite since $Q((1,0))=1>0$.

Positive/Negative Definite Quadratic Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive definite if $Q(x)>0$ (resp.
$x^{\top} M x>0$) for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.
Quadratic form Q (resp. symmetric matrix M) is negative definite if $Q(x)<0\left(\right.$ resp. $\left.x^{\top} M x<0\right)$ for any $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}>0$ for $x \neq \mathbf{0}$.
The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is not positive definite since $Q((0,1))=-1<0$. It is not negative definite since $Q((1,0))=1>0$.
The quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}$ $-2 x_{1} x_{3}+2 x_{2} x_{3}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}$ is not positive definite since $Q((3,-2,1))=0$. It is not negative definite.

Recall

$\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2 a_{1} a_{2}+2 a_{1} a_{3}+\ldots+2 a_{1} a_{n}+$ $+2 a_{2} a_{3}+2 a_{2} a_{4}+\ldots+2 a_{2} a_{n}+2 a_{3} a_{4}+\ldots+2 a_{3} a_{n}+\ldots \ldots+2 a_{n-1} a_{n}$

Recall

$\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2 a_{1} a_{2}+2 a_{1} a_{3}+\ldots+2 a_{1} a_{n}+$ $+2 a_{2} a_{3}+2 a_{2} a_{4}+\ldots+2 a_{2} a_{n}+2 a_{3} a_{4}+\ldots+2 a_{3} a_{n}+\ldots \ldots+2 a_{n-1} a_{n}$
For example

$$
\left(x_{1}-3 x_{2}+2 x_{3}\right)^{2}=
$$

Recall

$$
\begin{aligned}
& \left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2 a_{1} a_{2}+2 a_{1} a_{3}+\ldots+2 a_{1} a_{n}+ \\
& +2 a_{2} a_{3}+2 a_{2} a_{4}+\ldots+2 a_{2} a_{n}+2 a_{3} a_{4}+\ldots+2 a_{3} a_{n}+\ldots \ldots+2 a_{n-1} a_{n}
\end{aligned}
$$

For example

$$
\begin{gathered}
\left(x_{1}-3 x_{2}+2 x_{3}\right)^{2}= \\
=x_{1}^{2}+(-3)^{2} x_{2}^{2}+2^{2} x_{3}^{2}+2 \cdot(-3) x_{1} x_{2}+2 \cdot 2 x_{1} x_{3}+2 \cdot(-3) \cdot 2 x_{2} x_{3}= \\
=x_{1}^{2}+9 x_{2}^{2}+4 x_{3}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-12 x_{2} x_{3}
\end{gathered}
$$

Recall

$$
\begin{aligned}
& \left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2 a_{1} a_{2}+2 a_{1} a_{3}+\ldots+2 a_{1} a_{n}+ \\
& +2 a_{2} a_{3}+2 a_{2} a_{4}+\ldots+2 a_{2} a_{n}+2 a_{3} a_{4}+\ldots+2 a_{3} a_{n}+\ldots \ldots+2 a_{n-1} a_{n}
\end{aligned}
$$

For example

$$
\begin{gathered}
\left(x_{1}-3 x_{2}+2 x_{3}\right)^{2}= \\
=x_{1}^{2}+(-3)^{2} x_{2}^{2}+2^{2} x_{3}^{2}+2 \cdot(-3) x_{1} x_{2}+2 \cdot 2 x_{1} x_{3}+2 \cdot(-3) \cdot 2 x_{2} x_{3}= \\
=x_{1}^{2}+9 x_{2}^{2}+4 x_{3}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-12 x_{2} x_{3}
\end{gathered}
$$

Proposition

A quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ can expressed (possibly after a change of coordinates) as $Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)= \pm l_{1}^{2} \pm l_{2}^{2} \pm \ldots \pm I_{n}^{2}$ where I_{1}, \ldots, I_{n} are linear functions such that l_{i}, \ldots, I_{n} do not depend on the variables x_{1}, \ldots, x_{i-1} for $i=2, \ldots, n$.

Recall

$$
\begin{aligned}
& \left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2 a_{1} a_{2}+2 a_{1} a_{3}+\ldots+2 a_{1} a_{n}+ \\
& +2 a_{2} a_{3}+2 a_{2} a_{4}+\ldots+2 a_{2} a_{n}+2 a_{3} a_{4}+\ldots+2 a_{3} a_{n}+\ldots \ldots+2 a_{n-1} a_{n}
\end{aligned}
$$

For example

$$
\begin{gathered}
\left(x_{1}-3 x_{2}+2 x_{3}\right)^{2}= \\
=x_{1}^{2}+(-3)^{2} x_{2}^{2}+2^{2} x_{3}^{2}+2 \cdot(-3) x_{1} x_{2}+2 \cdot 2 x_{1} x_{3}+2 \cdot(-3) \cdot 2 x_{2} x_{3}= \\
=x_{1}^{2}+9 x_{2}^{2}+4 x_{3}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-12 x_{2} x_{3}
\end{gathered}
$$

Proposition

A quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ can expressed (possibly after a change of coordinates) as $Q\left(\left(x_{1}, \ldots, x_{n}\right)\right)= \pm l_{1}^{2} \pm l_{2}^{2} \pm \ldots \pm I_{n}^{2}$ where I_{1}, \ldots, I_{n} are linear functions such that l_{i}, \ldots, I_{n} do not depend on the variables x_{1}, \ldots, x_{i-1} for $i=2, \ldots, n$.

Proof.

(sketch) Use the above formula.

Example

$$
\begin{aligned}
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}= \\
& \left(x_{1}+x_{2}-x_{3}\right)^{2}+x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}= \\
& \left(x_{1}+x_{2}-x_{3}\right)^{2}+x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2} \\
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}= \\
& \left(x_{1}+x_{2}-2 x_{3}\right)^{2}-2 x_{2}^{2}+4 x_{2} x_{3}-3 x_{3}^{2}=\left(x_{1}+x_{2}-2 x_{3}\right)^{2}-2\left(x_{2}-x_{3}\right)^{2}-x_{3}^{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}= \\
& \left(x_{1}+x_{2}-x_{3}\right)^{2}+x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2} \\
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}= \\
& \left(x_{1}+x_{2}-2 x_{3}\right)^{2}-2 x_{2}^{2}+4 x_{2} x_{3}-3 x_{3}^{2}=\left(x_{1}+x_{2}-2 x_{3}\right)^{2}-2\left(x_{2}-x_{3}\right)^{2}-x_{3}^{2}
\end{aligned}
$$

What to do if there is no square? Do the following substitution:

$$
\begin{aligned}
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1} x_{2}+2 x_{1} x_{3}=\left\{\begin{array}{c}
x_{1}=y_{1}-y_{2} \\
x_{2}=y_{1}+y_{2} \\
x_{3}=y_{2}
\end{array}\right\}= \\
& \left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)+2\left(y_{1}-y_{2}\right) y_{3}=y_{1}^{2}-y_{2}^{2}+2 y_{1} y_{3}-2 y_{2} y_{3}= \\
& \left(y_{1}+y_{3}\right)^{2}-y_{2}^{2}-y_{3}^{2}-2 y_{2} y_{3}=\left(y_{1}+y_{3}\right)^{2}-\left(y_{2}+y_{3}\right)^{2}
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
& Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}= \\
& \left(x_{1}+x_{2}-x_{3}\right)^{2}+x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}
\end{aligned}
$$

Let

$$
\left\{\begin{array}{rrr}
y_{1} & = & x_{1}+x_{2}-x_{3} \\
y_{2} & = & x_{2}+2 x_{3} \\
y_{3} & = & x_{3}
\end{array},\right.
$$

then $Q\left(\left(y_{1}, y_{2}, y_{3}\right)\right)=y_{1}^{2}+y_{2}^{2}$, where

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=P\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \text { for } \quad P=\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

In particular

$$
y^{\top}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] y=(P x)^{\top}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] P x=x^{\top}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right] x .
$$

Sylvester's Criterion

Proposition

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. Let W_{i} denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is positive definite if and only if $W_{i}>0$ for $i=1, \ldots, n$.

Sylvester's Criterion

Proposition

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. Let W_{i} denote the determinant of the upper-left i-by- i submatrix of M. Matrix M is positive definite if and only if $W_{i}>0$ for $i=1, \ldots, n$.

Proof.
Omitted.

Remark

The determinants W_{i} are sometimes called leading principal minors.

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

and compute its leading principal minors

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

and compute its leading principal minors $W_{1}=\operatorname{det}[1]=1>0$,

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[1]=1>0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=1>0$,

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[1]=1>0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=1>0$,
$W_{3}=\operatorname{det}\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6\end{array}\right] \stackrel{\substack{c_{1}+c_{3} \\ c_{2}+c_{3}}}{=} \operatorname{det}\left[\begin{array}{rrr}0 & 0 & -1 \\ 2 & 3 & 1 \\ 5 & 7 & 6\end{array}\right]=1>0$.

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 6
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[1]=1>0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=1>0$,
$W_{3}=\operatorname{det}\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6\end{array}\right] \stackrel{\substack{c_{1}+c_{3} \\ c_{2}+c_{3}}}{=} \operatorname{det}\left[\begin{array}{rrr}0 & 0 & -1 \\ 2 & 3 & 1 \\ 5 & 7 & 6\end{array}\right]=1>0$.
By Sylverster's criterion the quadratic form $x_{1}^{2}+2 x_{2}^{2}+6 x_{3}^{2}+2 x_{1} x_{2}$ $-2 x_{1} x_{3}+2 x_{2} x_{3}$ is positive definite.

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors

$$
W_{1}=\operatorname{det}[1]=1>0,
$$

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors

$$
\begin{aligned}
& W_{1}=\operatorname{det}\left[\begin{array}{l}
1]=1>0 \\
W_{2}=\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=1>0
\end{array},=\right.\text {, }
\end{aligned}
$$

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors

$$
W_{1}=\operatorname{det}[1]=1>0,
$$

$$
W_{2}=\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=1>0
$$

$$
W_{3}=\operatorname{det}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right] \stackrel{c_{1}+c_{3}}{c_{2}+c_{3}}=\stackrel{y}{=} \operatorname{det}\left[\begin{array}{rrr}
0 & 0 & -1 \\
2 & 3 & 1 \\
4 & 6 & 5
\end{array}\right]=0 \ngtr 0
$$

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[1]=1>0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=1>0$,
$W_{3}=\operatorname{det}\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5\end{array}\right] \stackrel{\begin{array}{c}c_{1}+c_{3} \\ c_{2}+c_{3}\end{array}}{\stackrel{y}{l}} \operatorname{det}\left[\begin{array}{rrr}0 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 6 & 5\end{array}\right]=0 \ngtr 0$.
By Sylverster's criterion the quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ is not positive definite.

Another Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 5
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[1]=1>0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=1>0$,
$W_{3}=\operatorname{det}\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5\end{array}\right] \stackrel{\begin{array}{c}c_{1}+c_{3} \\ c_{2}+c_{3}\end{array}}{\stackrel{y}{l}} \operatorname{det}\left[\begin{array}{rrr}0 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 6 & 5\end{array}\right]=0 \ngtr 0$.
By Sylverster's criterion the quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ is not positive definite. In fact, $Q((3,-2,1))=0$.

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if $-Q$ is negative definite.

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if $-Q$ is negative definite.

Proposition
Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. Let W_{i} denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is negative definite if and only if

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if $-Q$ is negative definite.

Proposition

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. Let W_{i} denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is negative definite if and only if

$$
\begin{aligned}
& W_{i}<0 \text { for odd } i, \\
& W_{i}>0 \text { for even } i,
\end{aligned}
$$

for $i=1, \ldots, n$.

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]
$$

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]
$$

and compute its leading principal minors

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]
$$

and compute its leading principal minors

$$
W_{1}=\operatorname{det}[-1]=-1<0,
$$

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]
$$

and compute its leading principal minors
$W_{1}=\operatorname{det}[-1]=-1<0$,
$W_{2}=\operatorname{det}\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]=1>0$,

Example

Consider the symmetric matrix

$$
M=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]
$$

and compute its leading principal minors

$$
\begin{aligned}
& W_{1}=\operatorname{det}\left[\begin{array}{l}
-1]=-1<0 \\
W_{2}=\operatorname{det}\left[\begin{array}{ll}
-1 & -1 \\
-1 & -2
\end{array}\right]=1>0
\end{array},\right.
\end{aligned}
$$

The quadratic form $-x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}=-\left(x_{1}+x_{2}\right)^{2}-x_{2}^{2}$ is negative definite.

Sylvester's Criterion - Warning

It crucial that matrix A is symmetric. For example, let

$$
M=\left[\begin{array}{rr}
-1 & -3 \\
1 & 2
\end{array}\right]
$$

Then

$$
\varepsilon_{1}^{\top} M \varepsilon_{1}=-1, \quad \varepsilon_{2}^{\top} M \varepsilon_{2}=2
$$

hence matrix M is indefinite, however

$$
W_{1}=-1, \quad W_{2}=1
$$

Postive/Negative Semidefinite Form

Definition
Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive semidefinite if $Q(x) \geqslant 0$ (resp.
$\left.x^{\top} M x \geqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.

Postive/Negative Semidefinite Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive semidefinite if $Q(x) \geqslant 0$ (resp.
$\left.x^{\top} M x \geqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.
Quadratic form Q (resp. symmetric matrix M) is negative semidefinite if $Q(x) \leqslant 0$ (resp. $\left.x^{\top} M x \leqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.

Postive/Negative Semidefinite Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive semidefinite if $Q(x) \geqslant 0$ (resp.
$\left.x^{\top} M x \geqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.
Quadratic form Q (resp. symmetric matrix M) is negative semidefinite if $Q(x) \leqslant 0$ (resp. $x^{\top} M x \leqslant 0$) for any $x \in \mathbb{R}^{n}$. Quadratic form Q (resp. symmetric matrix M) is indefinite if there exist $x, y \in \mathbb{R}^{n}$ such that $Q(x)>0, Q(y)<0$ (resp.
$\left.x^{\top} M x>0, y^{\top} M y<0\right)$.

Postive/Negative Semidefinite Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive semidefinite if $Q(x) \geqslant 0$ (resp.
$\left.x^{\top} M x \geqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.
Quadratic form Q (resp. symmetric matrix M) is negative semidefinite if $Q(x) \leqslant 0$ (resp. $x^{\top} M x \leqslant 0$) for any $x \in \mathbb{R}^{n}$. Quadratic form Q (resp. symmetric matrix M) is indefinite if there exist $x, y \in \mathbb{R}^{n}$ such that $Q(x)>0, Q(y)<0$ (resp.
$\left.x^{\top} M x>0, y^{\top} M y<0\right)$.

Remark

A positive (resp. negative) definite quadratic form is positive (resp. negative) semidefinite.

Postive/Negative Semidefinite Form

Definition

Quadratic form $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n ; \mathbb{R})$) is positive semidefinite if $Q(x) \geqslant 0$ (resp.
$\left.x^{\top} M x \geqslant 0\right)$ for any $x \in \mathbb{R}^{n}$.
Quadratic form Q (resp. symmetric matrix M) is negative semidefinite if $Q(x) \leqslant 0$ (resp. $x^{\top} M x \leqslant 0$) for any $x \in \mathbb{R}^{n}$. Quadratic form Q (resp. symmetric matrix M) is indefinite if there exist $x, y \in \mathbb{R}^{n}$ such that $Q(x)>0, Q(y)<0$ (resp.
$\left.x^{\top} M x>0, y^{\top} M y<0\right)$.

Remark

A positive (resp. negative) definite quadratic form is positive (resp. negative) semidefinite. A quadratic form is indefinite if and only if it is not positive semidefinite and it is not negative semidefinite.

Examples

The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is indefinite since $Q((1,0))>0$ and $Q((0,1))<0$.

Examples

The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is indefinite since $Q((1,0))>0$ and $Q((0,1))<0$.

The quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}$ $-2 x_{1} x_{3}+2 x_{2} x_{3}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}$ is positive semidefinite. It is not positive definite.

Examples

The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is indefinite since $Q((1,0))>0$ and $Q((0,1))<0$.

The quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}$ $-2 x_{1} x_{3}+2 x_{2} x_{3}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}$ is positive semidefinite. It is not positive definite.

The quadratic form
$Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}=-\left(x_{1}+x_{2}\right)^{2}-x_{2}^{2}$ is negative definite.

Examples

The quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is indefinite since $Q((1,0))>0$ and $Q((0,1))<0$.

The quadratic form $Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}$ $-2 x_{1} x_{3}+2 x_{2} x_{3}=\left(x_{1}+x_{2}-x_{3}\right)^{2}+\left(x_{2}+2 x_{3}\right)^{2}$ is positive semidefinite. It is not positive definite.

The quadratic form
$Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}=-\left(x_{1}+x_{2}\right)^{2}-x_{2}^{2}$ is negative definite.

The quadratic form
$Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=-x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}=-\left(x_{1}+x_{2}\right)^{2}-x_{2}^{2}$ is not negative definite since $Q((0,0,1))=0$. It is negative semidefinite.

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$.

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite.

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite. Its matrix is

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite. Its matrix is

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Compute the leading principal minors

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite. Its matrix is

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Compute the leading principal minors

$$
W_{1}=\operatorname{det}[0]=0 \geqslant 0
$$

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite. Its matrix is

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Compute the leading principal minors $W_{1}=\operatorname{det}[0]=0 \geqslant 0$,
$W_{2}=\operatorname{det}\left[\begin{array}{rr}0 & 0 \\ 0 & -1\end{array}\right]=0 \geqslant 0$,

Warning

Consider the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=-x_{2}^{2}$. It is negative semidefinite. Its matrix is

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Compute the leading principal minors $W_{1}=\operatorname{det}[0]=0 \geqslant 0$,
$W_{2}=\operatorname{det}\left[\begin{array}{rr}0 & 0 \\ 0 & -1\end{array}\right]=0 \geqslant 0$,
This shows there is no direct analogue of Sylvester's criterion for positive/negative semidefinite matrices.

Warning (continued)

Proposition

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric square matrix. Then matrix M is positive semidefinite if and only if for any
$J \subset\{1, \ldots, n\}, J \neq \varnothing$

$$
\operatorname{det} M_{J ; J} \geqslant 0
$$

that is all principal minors are non-negative.

Warning (continued)

Proposition

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric square matrix. Then matrix M is positive semidefinite if and only if for any
$J \subset\{1, \ldots, n\}, J \neq \varnothing$

$$
\operatorname{det} M_{J ; J} \geqslant 0,
$$

that is all principal minors are non-negative.

Proof.

The proof uses spectral theorem and eigenvalue criterion. (\Longrightarrow) The restriction of M to the subspace $\operatorname{lin}\left(\left\{\varepsilon_{i} \mid i \in J\right\}\right)$ is positive semidefinite and has matrix equal to $M_{J ; J}$. Since $M_{J ; J}$ is symmetric and positive semidefinite, by the eigenvalue criterion det $M_{J ; J}$ is equal to the product of eignevalues hence it is non-negative.

Warning (continued)

Proof.

(\Longleftarrow) Proof by induction on n. Let $Q(x)=x^{\top} M x$ and let $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ be an orthonormal basis such that $u_{i}^{\top} M u_{j}=0$ for $i \neq j$. Moreover assume, by rearranging u_{i} 's, that $Q\left(u_{1}\right) \leqslant Q\left(u_{2}\right) \ldots \leqslant Q\left(u_{n}\right)$. It is enough to prove $Q\left(u_{1}\right) \geqslant 0$. If $u_{1} \cdot \varepsilon_{k}=0$ (i.e. the k-th component of u_{1} vanishes) for some $k \in\{1, \ldots, n\}$ then $u_{1} \in \operatorname{lin}\left(\varepsilon_{1}, \ldots, \varepsilon_{k-1}, \varepsilon_{k+1}, \ldots, \varepsilon_{n}\right)$ and $Q\left(u_{1}\right) \geqslant 0$, by the inductive assumption. Assume $u_{1} \cdot \varepsilon_{k} \neq 0$ for any $k=1, \ldots, n$.

Warning (continued)

Proof.

For $i \geqslant 2$ and some $k=1, \ldots, n$ consider vector

$$
v=\left(u_{i} \cdot \varepsilon_{k}\right) u_{1}-\left(u_{1} \cdot \varepsilon_{k}\right) u_{i}
$$

Since $v \cdot \varepsilon_{k}=0$ by the inductive assumption

$$
Q(v)=\left(u_{i} \cdot \varepsilon_{k}\right)^{2} Q\left(u_{1}\right)+\left(u_{1} \cdot \varepsilon_{k}\right)^{2} Q\left(u_{i}\right) \geqslant 0 .
$$

If some $Q\left(u_{i}\right)=0$ with k such that $u_{i} \cdot \varepsilon_{k} \neq 0$ (u_{i} needs to have a non-zero coordinate) then $Q\left(u_{1}\right) \geqslant 0$. Assume now $Q\left(u_{2}\right), \ldots, Q\left(u_{n}\right)>0$. Then, by choosing $J=\{1, \ldots, n\}$ and using the eigenvalue criterion

$$
Q\left(u_{1}\right) Q\left(u_{2}\right) \cdot \ldots \cdot Q\left(u_{n}\right) \geqslant 0
$$

that is $Q\left(u_{1}\right) \geqslant 0$.

Warning (continued)

Remark

Note that for a $n \times n$ matrix there are $2^{n}-1$ conditions to check, making this criterion impractical.

Warning (continued)

Corollary

Let $A \in M(n \times n ; \mathbb{R})$ be a symmetric square matrix. Then matrix A is negative semidefinite if and only if for any $J \subset\{1, \ldots, n\}, J \neq \varnothing$

$$
\begin{aligned}
& \operatorname{det} A_{J ; J} \geqslant 0, \quad \text { when } \# J \text { is even, } \\
& \operatorname{det} A_{J ; J} \leqslant 0, \quad \text { when } \# J \text { is odd, }
\end{aligned}
$$

that is principal minors of M of even order are non-negative and principal minors of M of odd order are non-positive.

Proof.
Matrix M is positive semidefinite if and only if matrix $-M$ is negative semidefinite.

Warning (continued)

In particular, for

$$
M=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right]
$$

we have

$$
\begin{gathered}
\operatorname{det} M_{1 ; 1}=\operatorname{det}[0]=0, \quad \operatorname{det} M_{2 ; 2}=\operatorname{det}[-1]=-1<0, \\
\operatorname{det} M_{1,2 ; 1,2}=\operatorname{det} M=0
\end{gathered}
$$

therefore matrix M is not positive semidefinite. In fact, it is negative semidefinite.

Positive Definite Quadratic Form

Proposition
Let $A \in M(m \times n ; \mathbb{R})$ be a matrix. Then matrix
$M=A^{\top} A \in M(n \times n ; \mathbb{R})$ is symmetric and positive semidefinite.
Moreover, the matrix $A^{\top} A$ is positive definite if and only if $r(A)=n$ (i.e. columns of matrix A are linearly independent).

Positive Definite Quadratic Form

Proposition

Let $A \in M(m \times n ; \mathbb{R})$ be a matrix. Then matrix
$M=A^{\top} A \in M(n \times n ; \mathbb{R})$ is symmetric and positive semidefinite.
Moreover, the matrix $A^{\top} A$ is positive definite if and only if $r(A)=n$ (i.e. columns of matrix A are linearly independent).

Proof.
For any $x \in \mathbb{R}^{n}$

$$
x^{\top}\left(A^{\top} A\right) x=(A x)^{\top}(A x)=\|A x\|^{2} \geqslant 0 .
$$

(\Leftarrow) If $r(A)=n$ (i.e. the linear transformation $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $A=M(\varphi)_{s t}^{s t}$ is injective by the rank-nullity theorem) then

$$
\|A x\|=0 \Longleftrightarrow A x=\mathbf{0} \Longleftrightarrow x=\mathbf{0} .
$$

Positive Definite Quadratic Form

Proposition

Let $A \in M(m \times n ; \mathbb{R})$ be a matrix. Then matrix
$M=A^{\top} A \in M(n \times n ; \mathbb{R})$ is symmetric and positive semidefinite.
Moreover, the matrix $A^{\top} A$ is positive definite if and only if $r(A)=n$ (i.e. columns of matrix A are linearly independent).

Proof.
For any $x \in \mathbb{R}^{n}$

$$
x^{\top}\left(A^{\top} A\right) x=(A x)^{\top}(A x)=\|A x\|^{2} \geqslant 0 .
$$

(\Leftarrow) If $r(A)=n$ (i.e. the linear transformation $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $A=M(\varphi)_{s t}^{s t}$ is injective by the rank-nullity theorem) then

$$
\|A x\|=0 \Longleftrightarrow A x=\mathbf{0} \Longleftrightarrow x=\mathbf{0} .
$$

(\Rightarrow) if $A x=\mathbf{0} \Rightarrow x=\mathbf{0}$ then ker $\varphi=\{\mathbf{0}\}$ which, by the rank-nullity theorem, gives $r(A)=n$.

Example

$$
\begin{gathered}
\text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 3
\end{array}\right] \in M(3 \times 2 ; \mathbb{R}) \text { where } r(A)=2 \text {. The matrix } \\
A^{\top} A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
6 & 7 \\
7 & 14
\end{array}\right]
\end{gathered}
$$

is positive definite and the matrix

$$
\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
5 & 4 & 7 \\
4 & 5 & 5 \\
7 & 5 & 10
\end{array}\right]
$$

is positive semidefinite and it is not positive definite (this will be justified later).

Eigenvalues and Positivity

Theorem (Spectral Theorem)
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.

Eigenvalues and Positivity

Theorem (Spectral Theorem)
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.
In particular, the characteristic polynomial $w_{M}(\lambda)=\operatorname{det}(M-\lambda /)$ has n real roots (=eigenvalues) counted with multiplicities .

Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.
In particular, the characteristic polynomial $w_{M}(\lambda)=\operatorname{det}(M-\lambda I)$ has n real roots (=eigenvalues) counted with multiplicities .

Theorem

Let $Q: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a quadratic form and let M be its matrix. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ be the roots of $w_{M}(\lambda)$. Then
i) form Q is positive definite $\Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n}>0$,
ii) form Q is positive semidefinite $\Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n} \geqslant 0$,
iii) form Q is negative definite $\Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n}<0$,
iv) form Q is negative semidefinite $\Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n} \leqslant 0$,
v) form Q is indefinite $\Longleftrightarrow \lambda_{i}<0, \lambda_{j}>0$ for some $1 \leqslant i, j \leqslant n$.

Eigenvalues and Positivity (continued)

Proof.
Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be a basis of \mathbb{R}^{n} consisting of eigenvectors of M, that is

$$
M v_{i}=\lambda_{i} v_{i} \text { for } i=1, \ldots, n,
$$

where $\lambda_{i} \in \mathbb{R}$ is an eigenvalue of M and $v_{i}=\left[\begin{array}{c}* \\ \vdots \\ \dot{*}\end{array}\right] \in M(n \times 1 ; \mathbb{R})$ is taken to be a n-by- 1 matrix.

Eigenvalues and Positivity (continued)

Proof.

Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be a basis of \mathbb{R}^{n} consisting of eigenvectors of M, that is

$$
M v_{i}=\lambda_{i} v_{i} \text { for } i=1, \ldots, n,
$$

where $\lambda_{i} \in \mathbb{R}$ is an eigenvalue of M and $v_{i}=\left[\begin{array}{c}* \\ \vdots \\ \vdots\end{array}\right] \in M(n \times 1 ; \mathbb{R})$ is taken to be a n-by- 1 matrix. Let v_{i}, v_{j} be vectors such that $\lambda_{i} \neq \lambda_{j}$. Then

$$
v_{i}^{\top} M v_{j}=v_{i}^{\top}\left(M v_{j}\right)=v_{i}^{\top}\left(\lambda_{j} v_{j}\right)=\lambda_{j}\left(v_{i} \cdot v_{j}\right)
$$

Eigenvalues and Positivity (continued)

Proof.

Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be a basis of \mathbb{R}^{n} consisting of eigenvectors of M, that is

$$
M v_{i}=\lambda_{i} v_{i} \text { for } i=1, \ldots, n,
$$

where $\lambda_{i} \in \mathbb{R}$ is an eigenvalue of M and $v_{i}=\left[\begin{array}{c}* \\ \vdots \\ \vdots\end{array}\right] \in M(n \times 1 ; \mathbb{R})$ is taken to be a n-by- 1 matrix. Let v_{i}, v_{j} be vectors such that $\lambda_{i} \neq \lambda_{j}$. Then

$$
\begin{gathered}
v_{i}^{\top} M v_{j}=v_{i}^{\top}\left(M v_{j}\right)=v_{i}^{\top}\left(\lambda_{j} v_{j}\right)=\lambda_{j}\left(v_{i} \cdot v_{j}\right), \\
v_{i}^{\top} M v_{j}=\left(v_{i}^{\top} M^{\top}\right) v_{j}=\left(M v_{i}\right)^{\top} v_{j}=\left(\lambda_{i} v_{i}\right)^{\top} v_{j}=\lambda_{i}\left(v_{i} \cdot v_{j}\right)
\end{gathered}
$$

This is possible only if $v_{i} \cdot v_{j}=0$, i.e. vectors v_{i}, v_{j} are perpendicular.

Eigenvalues and Positivity (continued)

Proof.

Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be a basis of \mathbb{R}^{n} consisting of eigenvectors of M, that is

$$
M v_{i}=\lambda_{i} v_{i} \text { for } i=1, \ldots, n,
$$

where $\lambda_{i} \in \mathbb{R}$ is an eigenvalue of M and $v_{i}=\left[\begin{array}{c}* \\ \vdots \\ *\end{array}\right] \in M(n \times 1 ; \mathbb{R})$ is taken to be a n-by- 1 matrix. Let v_{i}, v_{j} be vectors such that $\lambda_{i} \neq \lambda_{j}$. Then

$$
\begin{gathered}
v_{i}^{\top} M v_{j}=v_{i}^{\top}\left(M v_{j}\right)=v_{i}^{\top}\left(\lambda_{j} v_{j}\right)=\lambda_{j}\left(v_{i} \cdot v_{j}\right), \\
v_{i}^{\top} M v_{j}=\left(v_{i}^{\top} M^{\top}\right) v_{j}=\left(M v_{i}\right)^{\top} v_{j}=\left(\lambda_{i} v_{i}\right)^{\top} v_{j}=\lambda_{i}\left(v_{i} \cdot v_{j}\right)
\end{gathered}
$$

This is possible only if $v_{i} \cdot v_{j}=0$, i.e. vectors v_{i}, v_{j} are perpendicular. Using Gram-Schmidt process for eigenspaces $V_{\left(\lambda_{i}\right)}$ one can assume the basis v_{1}, \ldots, v_{n} is orthonormal.

Eigenvalues and Positivity (continued)

Proof.
That is

$$
v_{i} \cdot v_{j}=v_{i}^{\top} v_{j}=\left\{\begin{array}{l}
0 \text { for } i \neq j \\
1 \text { for } i=j
\end{array}\right.
$$

For any $v \in \mathbb{R}^{n}$ there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Eigenvalues and Positivity (continued)

Proof.
That is

$$
v_{i} \cdot v_{j}=v_{i}^{\top} v_{j}=\left\{\begin{array}{l}
0 \text { for } i \neq j \\
1 \text { for } i=j
\end{array}\right.
$$

For any $v \in \mathbb{R}^{n}$ there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Now

$$
\begin{gathered}
Q(v)=v^{\top} M v=v^{\top} M\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)= \\
=\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)^{\top}\left(\lambda_{1} \alpha_{1} v_{1}+\ldots+\lambda_{n} \alpha_{n} v_{n}\right)=\lambda_{1} \alpha_{1}^{2}+\ldots+\lambda_{n} \alpha_{n}^{2} .
\end{gathered}
$$

Eigenvalues and Positivity (continued)

Proof.
That is

$$
v_{i} \cdot v_{j}=v_{i}^{\top} v_{j}=\left\{\begin{array}{l}
0 \text { for } i \neq j \\
1 \text { for } i=j
\end{array}\right.
$$

For any $v \in \mathbb{R}^{n}$ there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Now

$$
\begin{gathered}
Q(v)=v^{\top} M v=v^{\top} M\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)= \\
=\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)^{\top}\left(\lambda_{1} \alpha_{1} v_{1}+\ldots+\lambda_{n} \alpha_{n} v_{n}\right)=\lambda_{1} \alpha_{1}^{2}+\ldots+\lambda_{n} \alpha_{n}^{2} .
\end{gathered}
$$

In particular

$$
Q\left(v_{i}\right)=v_{i}^{\top} M v_{i}=\lambda_{i},
$$

$$
\begin{gathered}
Q(v)>0 \text { for any } v \neq 0 \Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n}>0, \\
Q(v) \geqslant 0 \text { for any } v \Longleftrightarrow \lambda_{1}, \ldots, \lambda_{n} \geqslant 0 .
\end{gathered}
$$

Example

Let

$$
M=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=1>0, \lambda_{2}=-1<0$ therefore the quadratic form $Q\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}-x_{2}^{2}$ is indefinite.

Example

Let

$$
M=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

Example

Let

$$
M=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

The characteristic polynomial
$w_{M}(\lambda)=(1-\lambda)\left((2-\lambda)^{2}-4\right)=\lambda(1-\lambda)(\lambda-4)$ has non-negative roots $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=4, \lambda_{1}, \lambda_{2}, \lambda_{3} \geqslant 0$.
Therefore the quadratic form
$Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+4 x_{2} x_{3}=x_{1}^{2}+2\left(x_{2}+x_{3}\right)^{2}$ is positive semidefinite.

Example (continued)

$$
\text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 3
\end{array}\right] \in M(3 \times 2 ; \mathbb{R}) \text { where } r(A)=2 \text {. The matrix }
$$

$$
A^{\top} A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
5 & 4 & 7 \\
4 & 5 & 5 \\
7 & 5 & 10
\end{array}\right],
$$

is positive semidefinite and it is not positive definite.

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 4 & 7 \\
4 & 5-\lambda & 5 \\
7 & 5 & 10-\lambda
\end{array}\right] \stackrel{c_{3}-2 c_{2}}{=} \operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 4 & -1 \\
4 & 5-\lambda & 2 \lambda-5 \\
7 & 5 & -\lambda
\end{array}\right] \stackrel{c_{1}+(5-\lambda) c_{3}}{c_{2}+4 c_{3}}= \\
=\operatorname{det}\left[\begin{array}{ccc}
0 & 0 & -1 \\
-2 \lambda^{2}+15 \lambda-21 & 7 \lambda-15 & 2 \lambda-5 \\
\lambda^{2}-5 \lambda+7 & 5-4 \lambda & -\lambda
\end{array}\right]= \\
=-\operatorname{det}\left[\begin{array}{cc}
-2 \lambda^{2}+15 \lambda-21 & 7 \lambda-15 \\
\lambda^{2}-5 \lambda+7 & 5-4 \lambda
\end{array}\right]= \\
=-\lambda\left(\lambda^{2}-20 \lambda+35\right) .
\end{gathered}
$$

Example (continued)

Therefore one eigenvalue of $A^{\top} A$ is equal to 0 , and, by the Viete's formulas,

$$
\begin{gathered}
\lambda_{1}+\lambda_{2}=20>0, \\
\lambda_{1} \lambda_{2}=35>0,
\end{gathered}
$$

the other two eigenvalues are non-negative. In fact

$$
\left[\begin{array}{lll}
5 & -1 & -3
\end{array}\right]\left[\begin{array}{ccc}
5 & 4 & 7 \\
4 & 5 & 5 \\
7 & 5 & 10
\end{array}\right]\left[\begin{array}{r}
5 \\
-1 \\
-3
\end{array}\right]=0
$$

Spectral Theorem

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^{n} such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^{n} matrix $M(\varphi)_{\mathcal{B}}^{\mathcal{B}}$ is symmetric.

Spectral Theorem

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^{n} such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^{n} matrix $M(\varphi)_{\mathcal{B}}^{\mathcal{B}}$ is symmetric.

Proof.
Let $M=M(\varphi)_{\mathcal{A}}^{\mathcal{A}}, N=M(\varphi)_{\mathcal{B}}^{\mathcal{B}}$. Matrix

$$
Q=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=M(\mathrm{id})_{s t}^{\mathcal{A}} M(\mathrm{id})_{\mathcal{B}}^{s t}
$$

is orthogonal, i.e. $Q^{-1}=Q^{\top}$.

Spectral Theorem

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^{n} such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^{n} matrix $M(\varphi)_{\mathcal{B}}^{\mathcal{B}}$ is symmetric.

Proof.
Let $M=M(\varphi)_{\mathcal{A}}^{\mathcal{A}}, N=M(\varphi)_{\mathcal{B}}^{\mathcal{B}}$. Matrix

$$
Q=M(\mathrm{id})_{\mathcal{B}}^{\mathcal{A}}=M(\mathrm{id})_{s t}^{\mathcal{A}} M(\mathrm{id})_{\mathcal{B}}^{s t},
$$

is orthogonal, i.e. $Q^{-1}=Q^{\top}$. Because

$$
N=Q^{\top} M Q
$$

we have

$$
N^{\top}=Q^{\top} M^{\top}\left(Q^{\top}\right)^{\top}=N
$$

Spectral Theorem (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism such that matrix $M(\varphi)_{\text {st }}^{s t}$ is symmetric. Then there exists $\mu \in \mathbb{R}$ and $v \in \mathbb{R}^{n}, v \neq \mathbf{0}$ such that $\varphi(v)=\mu v$, i.e μ is an eigenvalue of φ and v is an eigenvector for μ.

Spectral Theorem (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism such that matrix $M(\varphi)_{\text {st }}^{s t}$ is symmetric. Then there exists $\mu \in \mathbb{R}$ and $v \in \mathbb{R}^{n}, v \neq \mathbf{0}$ such that $\varphi(v)=\mu v$, i.e μ is an eigenvalue of φ and v is an eigenvector for μ.
Proof.
Let $M=M(\varphi)_{s t}^{s t}$ and let $w_{M}(\lambda)=\operatorname{det}\left(M-\lambda I_{n}\right)$ be the characteristic polynomial of φ. By the fundamental theorem of algebra there exists a complex root $\mu \in \mathbb{C}$ of w_{M} and a complex eigenvector $v \in \mathbb{C}^{n}$, i.e. $w_{M}(\mu)=0$ and $M v=\mu v$. Matrix M is real therefore $M \bar{v}=\overline{\mu v}$. Moreover

$$
\begin{gathered}
\bar{v}^{\top} M v=(M \bar{v})^{\top} v={\overline{\mu v^{\top}} v=\bar{\mu}\|v\|,}^{\bar{v}^{\top} M v=\bar{v}^{\top}(M v)=\bar{v}^{\top}(\mu v)=\mu\|v\| .} .
\end{gathered}
$$

This implies $\mu \in \mathbb{R}$ and since $V_{(\mu)}$ is given a system of linear equations with real coefficients one can choose $v \in \mathbb{R}^{n}$.

Spectral Theorem (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism such that matrix $M(\varphi)_{s t}^{s t}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^{n}$ such that $\varphi(W) \subset W$,

$$
\varphi\left(W^{\perp}\right) \subset W^{\perp}
$$

Spectral Theorem (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism such that matrix $M(\varphi)_{s t}^{s t}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^{n}$ such that $\varphi(W) \subset W$,

$$
\varphi\left(W^{\perp}\right) \subset W^{\perp}
$$

Let $M=M(\varphi)_{s t}^{s t}$ and let $w \in W^{\perp}$ be any vector. We need to check that $v^{\top}(M w)=0$ for a any $v \in W$.

Spectral Theorem (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an endomorphism such that matrix $M(\varphi)_{s t}^{s t}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^{n}$ such that $\varphi(W) \subset W$,

$$
\varphi\left(W^{\perp}\right) \subset W^{\perp}
$$

Let $M=M(\varphi)_{s t}^{s t}$ and let $w \in W^{\perp}$ be any vector. We need to check that $v^{\top}(M w)=0$ for a any $v \in W$. In fact

$$
v^{\top} M w=(M v)^{\top} w=0 .
$$

Spectral Theorem

Theorem
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable.

Spectral Theorem

Theorem
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable.

Proof.

Let φ be an endomorphism given by $M=M(\varphi)_{s t}^{s t}$. Assume $W \subset \mathbb{R}^{n}$ is a subspace spanned by pairwise perpendicular eigenvectors of φ. Let $V=W^{\perp}$.

Spectral Theorem

Theorem
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable.

Proof.

Let φ be an endomorphism given by $M=M(\varphi)_{\text {st }}^{s t}$. Assume $W \subset \mathbb{R}^{n}$ is a subspace spanned by pairwise perpendicular eigenvectors of φ. Let $V=W^{\perp}$. Matrix of φ relative to some orthonormal basis of V is symmetric and $\varphi(V) \subset V$. Therefore there exists $\mu \in \mathbb{R}$ and a non-zero vector $v \in V$ such that $\varphi(v)=\mu v$.

Spectral Theorem

Theorem
Symmetric matrix $M \in M(n \times n ; \mathbb{R})$ is diagonalizable.
Proof.
Let φ be an endomorphism given by $M=M(\varphi)_{s t}^{s t}$. Assume $W \subset \mathbb{R}^{n}$ is a subspace spanned by pairwise perpendicular eigenvectors of φ. Let $V=W^{\perp}$. Matrix of φ relative to some orthonormal basis of V is symmetric and $\varphi(V) \subset V$. Therefore there exists $\mu \in \mathbb{R}$ and a non-zero vector $v \in V$ such that $\varphi(v)=\mu v$. By continuing this process we obtain an orthogonal basis of \mathbb{R}^{n} consisting of eigenvectors of φ.

Spectral Theorem (continued)

Corollary

For any symmetric matrix $M \in M(n \times n ; \mathbb{R})$ there exists matrix $Q \in M(n \times n ; \mathbb{R})$ such that $Q^{-1}=Q^{\top}$ and the matrix

$$
D=Q^{\top} M Q
$$

is diagonal.

Spectral Theorem (continued)

Corollary

For any symmetric matrix $M \in M(n \times n ; \mathbb{R})$ there exists matrix $Q \in M(n \times n ; \mathbb{R})$ such that $Q^{-1}=Q^{\top}$ and the matrix

$$
D=Q^{\top} M Q
$$

is diagonal.
Proof.
Let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of M. If $Q=M(\mathrm{id})_{\mathcal{A}}^{s t}$ then the matrix $Q^{-1} M Q$ is diagonal and $Q^{\top} Q=I_{n}$, i.e. $Q^{-1}=Q^{\top}$.

Characterization of Real Symmetric Matrices

Corollary
Let $M \in M(n \times n ; \mathbb{R})$ be a real matrix. Then $M=M^{\top}$ if and only if there exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ (i.e. $Q^{\top} Q=I$) such that the matrix

$$
D=Q^{\top} M Q \in M(n \times n ; \mathbb{R})
$$

is diagonal.
(\Rightarrow) previous corollary

Characterization of Real Symmetric Matrices

Corollary

Let $M \in M(n \times n ; \mathbb{R})$ be a real matrix. Then $M=M^{\top}$ if and only if there exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ (i.e. $Q^{\top} Q=1$) such that the matrix

$$
D=Q^{\top} M Q \in M(n \times n ; \mathbb{R})
$$

is diagonal.
(\Rightarrow) previous corollary
(\Leftarrow) If $D=Q^{\top} M Q$ then $M=Q D Q^{\top}$ and since $D^{\top}=D$

$$
M^{\top}=\left(Q^{\top}\right)^{\top} D^{\top} Q^{\top}=Q D Q^{\top}=M .
$$

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,
ii) $B(v, u+w)=B(v, u)+B(v, w)$ for any $u, v, w \in V$,

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,
ii) $B(v, u+w)=B(v, u)+B(v, w)$ for any $u, v, w \in V$,
iii) $B(\alpha v, w)=\alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,
ii) $B(v, u+w)=B(v, u)+B(v, w)$ for any $u, v, w \in V$,
iii) $B(\alpha v, w)=\alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
iv) $B(v, \beta w)=\beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,
ii) $B(v, u+w)=B(v, u)+B(v, w)$ for any $u, v, w \in V$,
iii) $B(\alpha v, w)=\alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
iv) $B(v, \beta w)=\beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Bilinear Form

Definition

Let V be a vector space. A function

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called a bilinear form if
i) $B(v+u, w)=B(v, w)+B(u, w)$ for any $u, v, w \in V$,
ii) $B(v, u+w)=B(v, u)+B(v, w)$ for any $u, v, w \in V$,
iii) $B(\alpha v, w)=\alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
iv) $B(v, \beta w)=\beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Bilinear form B is called symmetric if moreover
v) $B(v, w)=B(w, v)$ for any $v, w \in V$.

Bilinear Forms (continued)

Definition

If $B: V \times V \rightarrow \mathbb{R}$ is a bilinear form and $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V then the matrix of bilinear form B relative to the basis \mathcal{A} is equal to

$$
M(B)_{\mathcal{A}}=\left[m_{i j}\right] \in M(n \times n ; \mathbb{R})
$$

where $m_{i j}=B\left(v_{i}, v_{j}\right)$, i.e

$$
M(B)_{\mathcal{A}}=\left[\begin{array}{cccc}
B\left(v_{1}, v_{1}\right) & B\left(v_{1}, v_{2}\right) & \ldots & B\left(v_{1}, v_{n}\right) \\
B\left(v_{2}, v_{1}\right) & B\left(v_{2}, v_{2}\right) & \ldots & B\left(v_{2}, v_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
B\left(v_{n}, v_{1}\right) & B\left(v_{n}, v_{2}\right) & \ldots & B\left(v_{n}, v_{n}\right)
\end{array}\right] .
$$

Bilinear Forms (continued)

Proposition

For any $v, w \in V$ and any basis \mathcal{A}

$$
B(v, w)=[v]_{\mathcal{A}}^{\top} M(B)_{\mathcal{A}}[w]_{\mathcal{A}} .
$$

Bilinear Forms (continued)

Proposition

For any $v, w \in V$ and any basis \mathcal{A}

$$
B(v, w)=[v]_{\mathcal{A}}^{\top} M(B)_{\mathcal{A}}[w]_{\mathcal{A}} .
$$

Proof.
Let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ and let
$v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, w=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}$.

$$
\begin{aligned}
B(v, w) & =\sum_{i=1}^{n} \alpha_{i}\left(\sum_{j=1}^{n} B\left(v_{i}, w_{j}\right) \beta_{j}\right)= \\
& =\sum_{i=1}^{n} \alpha_{i}\left(\sum_{j=1}^{n} m_{i j} \beta_{j}\right)
\end{aligned}
$$

where $M(B)_{\mathcal{A}}=\left[m_{i j}\right]$.

Bilinear Forms (continued)

Corollary
If \mathcal{A}, \mathcal{B} are bases of V then for $C=M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}$

$$
M(B)_{\mathcal{A}}=C^{\top} M(B)_{\mathcal{B}} C
$$

Bilinear Forms (continued)

Corollary
If \mathcal{A}, \mathcal{B} are bases of V then for $C=M(i d){ }_{\mathcal{A}}^{\mathcal{B}}$

$$
M(B)_{\mathcal{A}}=C^{\top} M(B)_{\mathcal{B}} C
$$

Proof.
Let $M(B)_{\mathcal{A}}=M=\left[m_{i j}\right]$ and let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$. By the previous proposition

$$
\begin{aligned}
\varepsilon_{i}^{\top}\left(C^{\top} M(B)_{\mathcal{B}} C\right) \varepsilon_{j}=\left(C \varepsilon_{j}\right)^{\top} M(B)_{\mathcal{B}}\left(C \varepsilon_{j}\right)=\left[v_{i}\right]_{\mathcal{B}}^{\top} M(B)_{\mathcal{B}}\left[v_{j}\right]_{\mathcal{B}}= \\
=B\left(v_{i}, v_{j}\right) .
\end{aligned}
$$

On the other hand, for any $M=\left[m_{i j}\right]$

$$
\varepsilon_{i}^{\top} M \varepsilon_{j}=m_{i j}
$$

hence $C^{\top} M(B)_{\mathcal{B}} C=M=M(B)_{\mathcal{A}}$.

Bilinear Forms (continued)

Let $B: V \times V \rightarrow \mathbb{R}$.
Corollary
If B is a symmetric bilinear form then for any basis \mathcal{A} of V

$$
M(B)_{\mathcal{A}}^{\top}=M(B)_{\mathcal{A}}
$$

Bilinear Forms (continued)

Let $B: V \times V \rightarrow \mathbb{R}$.
Corollary
If B is a symmetric bilinear form then for any basis \mathcal{A} of V

$$
M(B)_{\mathcal{A}}^{\top}=M(B)_{\mathcal{A}} .
$$

If B is a bilinear form and for some basis \mathcal{A} of V

$$
M(B)_{\mathcal{A}}^{\top}=M(B)_{\mathcal{A}},
$$

then B is symmetric bilinear form.

Bilinear Forms (continued)

Let $B: V \times V \rightarrow \mathbb{R}$.
Corollary
If B is a symmetric bilinear form then for any basis \mathcal{A} of V

$$
M(B)_{\mathcal{A}}^{\top}=M(B)_{\mathcal{A}}
$$

If B is a bilinear form and for some basis \mathcal{A} of V

$$
M(B)_{\mathcal{A}}^{\top}=M(B)_{\mathcal{A}},
$$

then B is symmetric bilinear form.
Proof.
For the second claim, let $M=\left[m_{i j}\right]=M(B)_{\mathcal{A}}$ be symmetric, i.e. $M^{\top}=M$. Then for any $v, w \in \mathbb{R}^{n}$
$B(v, w)=[v]_{\mathcal{A}}^{\top} M[w]_{\mathcal{A}}=\left([v]_{\mathcal{A}}^{\top} M[w]_{\mathcal{A}}\right)^{\top}=[w]_{\mathcal{A}}^{\top} M[v]_{\mathcal{A}}=B(w, v)$,
i.e. B is symmetric.

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \rightarrow \mathbb{R}$ is a quadratic form if there exist a bilinear form $B: V \times V \rightarrow \mathbb{R}$ such that $Q(v)=B(v, v)$ for any $v \in V$.

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \rightarrow \mathbb{R}$ is a quadratic form if there exist a bilinear form $B: V \times V \rightarrow \mathbb{R}$ such that $Q(v)=B(v, v)$ for any $v \in V$.

Proposition
If $Q: V \rightarrow \mathbb{R}$ is a quadratic form then

$$
B_{s}(v, w)=\frac{1}{2}(Q(v+w, v+w)-Q(v, v)-Q(w, w))
$$

is a symmetric bilinear form such that $Q(v)=B_{s}(v, v)$.

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \rightarrow \mathbb{R}$ is a quadratic form if there exist a bilinear form $B: V \times V \rightarrow \mathbb{R}$ such that $Q(v)=B(v, v)$ for any $v \in V$.

Proposition
If $Q: V \rightarrow \mathbb{R}$ is a quadratic form then

$$
B_{s}(v, w)=\frac{1}{2}(Q(v+w, v+w)-Q(v, v)-Q(w, w))
$$

is a symmetric bilinear form such that $Q(v)=B_{s}(v, v)$.
Proof.

$$
B_{s}(v, w)=\frac{1}{2}(B(v, w)+B(w, v)) .
$$

Sylvester's Criterion

Proposition

Let $Q: V \rightarrow \mathbb{R}$ be a quadratic form such that $Q(v)=B(v, v)$ where B is a symmetric bilinear form. Let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Then Q is positive definite if and only if

$$
\operatorname{det} M(B)_{\mathcal{A}_{i}}>0
$$

for $i=1, \ldots, n$ where $\mathcal{A}_{i}=\left(v_{1}, \ldots, v_{i}\right)$.

Sylvester's Criterion

Proposition

Let $Q: V \rightarrow \mathbb{R}$ be a quadratic form such that $Q(v)=B(v, v)$ where B is a symmetric bilinear form. Let $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Then Q is positive definite if and only if

$$
\operatorname{det} M(B)_{\mathcal{A}_{i}}>0
$$

for $i=1, \ldots, n$ where $\mathcal{A}_{i}=\left(v_{1}, \ldots, v_{i}\right)$.
Proof.
(\Rightarrow) The quadratic form Q restricted to $\operatorname{lin}\left(v_{1}, \ldots, v_{i}\right)$ is positive hence the matrix $M(B)_{\mathcal{A}_{i}}$ is symmetric diagonalizable and by the eigenvalue criterion its all eigenvalues $\lambda_{1}, \ldots, \lambda_{i}>0$ are positive. Therefore

$$
\operatorname{det} M(B)_{\mathcal{A}_{i}}=\lambda_{1} \cdot \ldots \cdot \lambda_{i}>0
$$

Note that eigenvalues depend on i.

Sylvester's Criterion (continued)

Proof.
(\Leftarrow) let $V_{k}=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$. By induction on k we prove the claim
„the quadratic form $Q \mid v_{k}$ is positive definite",
which for $k=n$ is the assertion of the Theorem.

Sylvester's Criterion (continued)

Proof.
(\Leftarrow) let $V_{k}=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$. By induction on k we prove the claim ,the quadratic form $\left.Q\right|_{V_{k}}$ is positive definite",
which for $k=n$ is the assertion of the Theorem.
For $k=1$ the claim holds since $\operatorname{det} M(B)_{\mathcal{A}_{1}}=B\left(v_{1}, v_{1}\right)>0$.

Sylvester's Criterion (continued)

Proof.
(\Leftarrow) let $V_{k}=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$. By induction on k we prove the claim "the quadratic form $Q \mid v_{k}$ is positive definite",
which for $k=n$ is the assertion of the Theorem.

For $k=1$ the claim holds since $\operatorname{det} M(B)_{\mathcal{A}_{1}}=B\left(v_{1}, v_{1}\right)>0$.
For $k=2$ let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ are eigenvalues of $M(B)_{\mathcal{A}_{2}}$.

Sylvester's Criterion (continued)

Proof.

(\Leftarrow) let $V_{k}=\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$. By induction on k we prove the claim „the quadratic form $\left.Q\right|_{V_{k}}$ is positive definite", which for $k=n$ is the assertion of the Theorem.

For $k=1$ the claim holds since $\operatorname{det} M(B)_{\mathcal{A}_{1}}=B\left(v_{1}, v_{1}\right)>0$.
For $k=2$ let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ are eigenvalues of $M(B)_{\mathcal{A}_{2}}$. By Viete's formulas

$$
\left\{\begin{array}{ccc}
\lambda_{1}+\lambda_{2} & =B\left(v_{1}, v_{1}\right)+B\left(v_{2}, v_{2}\right), \\
\lambda_{1} \lambda_{2} & =B\left(v_{1}, v_{1}\right) B\left(v_{2}, v_{2}\right)-B\left(v_{1}, v_{2}\right)^{2} .
\end{array}\right.
$$

Because $\lambda_{1} \lambda_{2}=\operatorname{det} M(B)_{\mathcal{A}_{2}}>0$ either $B\left(v_{1}, v_{1}\right)<0, B\left(v_{2}, v_{2}\right)<0$ or $B\left(v_{1}, v_{1}\right)>0, B\left(v_{2}, v_{2}\right)>0$. Since $B\left(v_{1}, v_{1}\right)=\operatorname{det} M(B)_{\mathcal{A}_{1}}>0$ the latter holds, hence $\lambda_{1}, \lambda_{2}>0$.

Sylvester's Criterion (continued)

Proof.

Assume that $k \geqslant 3$ and $\operatorname{det} M(B)_{\mathcal{A}_{i}}>0$, for $i=1, \ldots, k$ (i.e. $Q \mid v_{k-1}$ is positive definite) but $Q \mid v_{k}$ is not positive definite.

Sylvester's Criterion (continued)

Proof.

Assume that $k \geqslant 3$ and $\operatorname{det} M(B)_{\mathcal{A}_{i}}>0$, for $i=1, \ldots, k$ (i.e. $Q \mid v_{k-1}$ is positive definite) but $Q \mid v_{k}$ is not positive definite.

Therefore $M(B)_{\mathcal{A}_{k}}$ has at least two negative eigenvalues $\lambda_{1}, \lambda_{2}<0$ or a negative eigenvalue $\lambda<0$ of multiplicity at least 2 ($\operatorname{det} M(B)_{\mathcal{A}_{k}}>0$ is equal to the product of eigenvalues).

Sylvester's Criterion (continued)

Proof.

Assume that $k \geqslant 3$ and $\operatorname{det} M(B)_{\mathcal{A}_{i}}>0$, for $i=1, \ldots, k$ (i.e.
$Q \mid v_{k-1}$ is positive definite) but $Q \mid v_{k}$ is not positive definite.
Therefore $M(B)_{\mathcal{A}_{k}}$ has at least two negative eigenvalues $\lambda_{1}, \lambda_{2}<0$ or a negative eigenvalue $\lambda<0$ of multiplicity at least 2 (det $M(B)_{\mathcal{A}_{k}}>0$ is equal to the product of eigenvalues).

In both cases there exist eigenvectors $w_{1}, w_{2} \in V_{k}$ of $M(B)_{\mathcal{A}_{k}}$, that is

$$
M(B)_{\mathcal{A}_{k}}\left[w_{i}\right]_{\mathcal{A}_{k}}=\lambda_{i}\left[w_{i}\right]_{\mathcal{A}_{k}} \text { for } i=1,2
$$

and $\left[w_{1}\right]_{\mathcal{A}_{k}}^{\top}\left[w_{2}\right]_{\mathcal{A}_{k}}=0$ (including the case $\lambda_{1}=\lambda_{2}=\lambda$).

Sylvester's Criterion (continued)

Proof.

Assume that $k \geqslant 3$ and $\operatorname{det} M(B)_{\mathcal{A}_{i}}>0$, for $i=1, \ldots, k$ (i.e.
$Q \mid v_{k-1}$ is positive definite) but $Q \mid v_{k}$ is not positive definite.
Therefore $M(B)_{\mathcal{A}_{k}}$ has at least two negative eigenvalues $\lambda_{1}, \lambda_{2}<0$ or a negative eigenvalue $\lambda<0$ of multiplicity at least 2 (det $M(B)_{\mathcal{A}_{k}}>0$ is equal to the product of eigenvalues).

In both cases there exist eigenvectors $w_{1}, w_{2} \in V_{k}$ of $M(B)_{\mathcal{A}_{k}}$, that is

$$
M(B)_{\mathcal{A}_{k}}\left[w_{i}\right]_{\mathcal{A}_{k}}=\lambda_{i}\left[w_{i}\right]_{\mathcal{A}_{k}} \text { for } i=1,2
$$

and $\left[w_{1}\right]_{\mathcal{A}_{k}}^{\top}\left[w_{2}\right]_{\mathcal{A}_{k}}=0$ (including the case $\lambda_{1}=\lambda_{2}=\lambda$). Note that $w_{1}, w_{2} \notin V_{k-1}$.

Sylvester's Criterion (continued)

Proof.

Let $w_{1}=\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}, w_{2}=\beta_{1} v_{1}+\ldots+\beta_{k} v_{k}$ and let $v=\gamma_{1} w_{1}+\gamma_{2} w_{2} \in V_{k-1}$ where $\gamma_{1}=\beta_{k}, \gamma_{2}=-\alpha_{k}$. Then $\gamma_{1}, \gamma_{2} \neq 0$ since $w_{1}, w_{2} \notin V_{k-1}$. Vectors w_{1}, w_{2} are perpendicular (i.e. linearly independent), therefore $v \neq \mathbf{0}$. Hence

$$
\begin{gathered}
{[v]_{\mathcal{A}_{k}}^{\top} M(B)_{\mathcal{A}_{k}}[v]_{\mathcal{A}_{k}}=} \\
=\left(\gamma_{1}\left[w_{1}\right]_{\mathcal{A}_{k}}+\gamma_{2}\left[w_{2}\right]_{\mathcal{A}_{k}}\right)^{\top} M(B)_{\mathcal{A}_{k}}\left(\gamma_{1}\left[w_{1}\right]_{\mathcal{A}_{k}}+\gamma_{2}\left[w_{2}\right]_{\mathcal{A}_{k}}\right)= \\
=\lambda_{1} \gamma_{1}^{2}\left\|\left[w_{1}\right]_{\mathcal{A}_{k}}\right\|^{2}+\lambda_{2} \gamma_{2}^{2}\left\|\left[w_{2}\right]_{\mathcal{A}_{k}}\right\|^{2}<0
\end{gathered}
$$

On the other hand

$$
[v]_{\mathcal{A}_{k}}^{\top} M(B)_{\mathcal{A}_{k}}[v]_{\mathcal{A}_{k}}=Q(v)>0
$$

because $\left.Q\right|_{V_{k-1}}$ is positive definite, which yields a contradiction.

Summary

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. The following are equivalent
i) $x^{\top} M x \geqslant 0$ (matrix M is positive semidefinite),
ii) $\min \{\lambda \mid \lambda$ is an eigenvalue of $M\} \geqslant 0$,
iii) $\min \left\{x^{\top} M x \in \mathbb{R} \mid\|x\|=1\right\} \geqslant 0$,
iv) all principal minors of M are non-negative,
v) there exists a matrix $N \in M(n \times n ; \mathbb{R})$ such that $M=N^{\top} N$.

Summary (continued)

Let $M \in M(n \times n ; \mathbb{R})$ be a symmetric matrix. The following are equivalent
i) $x^{\top} M x>0$ for $x \neq \mathbf{0}$ (matrix M is positive definite),
ii) $\min \{\lambda \mid \lambda$ is an eigenvalue of $M\}>0$,
iii) $\min \left\{x^{\top} M x \in \mathbb{R} \mid\|x\|=1\right\}>0$,
iv) all leading principal minors of M are positive,
v) there exists a non-singular (i.e. $\operatorname{det} N \neq 0$) matrix $N \in M(n \times n ; \mathbb{R})$ such that $M=N^{\top} N$.

Interlacing Eigenvalues

Theorem
If $M \in M(n \times n ; \mathbb{R})$ is a symmetric matrix, i.e. $M=M^{\top}$. Let M_{i} denote the top left $i-b y-i$ submatrix of M. Fix $m<n$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the eigenvalues of M_{m} and $\mu_{1}, \ldots, \mu_{m+1}$ denote the eigenvalues of M_{m+1}. Then

$$
\mu_{1} \leqslant \lambda_{1} \leqslant \mu_{2} \leqslant \lambda_{2} \leqslant \mu_{3} \leqslant \ldots \leqslant \lambda_{m} \leqslant \mu_{m+1}
$$

Proof.
Omitted.

Hessian Matrix

Definition

Let $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{k}$, be a function of class \mathcal{C}^{2} on the open set U. Hessian matrix at $x_{0} \in U$ is the symmetric matrix $H_{f}\left(x_{0}\right)=H\left(x_{0}\right) \in M(k \times k ; \mathbb{R})$ given by

$$
H_{f}\left(x_{0}\right)=\left[\begin{array}{ccccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{k}}\left(x_{0}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{k}}\left(x_{0}\right) \\
\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{f} f}{\partial x_{3}^{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{3} \partial x_{k}}\left(x_{0}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{k} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{k} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{k} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{k}^{2}}\left(x_{0}\right)
\end{array}\right] .
$$

Hessian Matrix

Definition

Let $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{k}$, be a function of class \mathcal{C}^{2} on the open set U. Hessian matrix at $x_{0} \in U$ is the symmetric matrix $H_{f}\left(x_{0}\right)=H\left(x_{0}\right) \in M(k \times k ; \mathbb{R})$ given by

$$
H_{f}\left(x_{0}\right)=\left[\begin{array}{ccccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{k}}\left(x_{0}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{k}}\left(x_{0}\right) \\
\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{f} f}{\partial x_{3}^{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{3} \partial x_{k}}\left(x_{0}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{k} \partial x_{1}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{k} \partial x_{2}}\left(x_{0}\right) & \frac{\partial^{2} f}{\partial x_{k} \partial x_{3}}\left(x_{0}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{k}^{2}}\left(x_{0}\right)
\end{array}\right] .
$$

Remark

If f is not of class \mathcal{C}^{2} the matrix $H_{f}\left(x_{0}\right)$ may not be symmetric.

Local Minima or Maxima of a Multivariate Function

Theorem

Let $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{k}$ be a function of class \mathcal{C}^{2} on the open set U. If $x_{0} \in U$ is a critical point of function f, i.e.

$$
f^{\prime}\left(x_{0}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x_{0}\right), \ldots, \frac{\partial f}{\partial x_{k}}\left(x_{0}\right)\right)=\mathbf{0}
$$

and the Hessian matrix $H\left(x_{0}\right)$ is negative (respectively, positive) definite, then f has strict local maximum (respectively strict local minimum) at the point $x_{0} \in U$.

Local Minima or Maxima of a Multivariate Function

Theorem

Let $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{k}$ be a function of class \mathcal{C}^{2} on the open set U. If $x_{0} \in U$ is a critical point of function f, i.e.

$$
f^{\prime}\left(x_{0}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x_{0}\right), \ldots, \frac{\partial f}{\partial x_{k}}\left(x_{0}\right)\right)=\mathbf{0}
$$

and the Hessian matrix $H\left(x_{0}\right)$ is negative (respectively, positive) definite, then f has strict local maximum (respectively strict local minimum) at the point $x_{0} \in U$.

If the matrix $H\left(x_{0}\right)$ is indefinite then f has no local extremum at x_{0} (the point x_{0} is so called saddle point).

Proof.
Analysis course (use multivariate Taylor formula).

Example - Local Maximum

graph of the function $f(x, y)=-x^{2}-y^{2}$

$$
H_{f}(0,0)=\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right] \text { negative definite }
$$

Example - Local Minimum

graph of the function $f(x, y)=x^{2}+y^{2}$

$$
H_{f}(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \text { positive definite }
$$

Example - Saddle Point - No Local Extremum

graph of the function $f(x, y)=x^{2}-y^{2}$

$$
H_{f}(0,0)=\left[\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right] \text { indefinite }
$$

Local Minima or Maxima of a Multivariate Function (continued)

Remark

If the matrix $H\left(x_{0}\right)$ is positive semidefinite or negative semidefinite then the function f has at x_{0} local minimum or local maximum or a saddle point (the criterion is indecisive).

Example - Hessian Matrix Positive Semidefinite - Weak Local Minimum

$$
\text { graph of the function } f(x, y)=x^{2}
$$

$$
H_{f}(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \text { positive semidefinite }
$$

Example - Hessian Matrix Positive Semidefinite - Strict Local Minimum

graph of the function $f(x, y)=x^{2}+y^{4}$

$$
H_{f}(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \text { positive semidefinite }
$$

Example - Hessian Matrix Positive Semidefinite - Saddle Point

$$
\text { graph of the function } f(x, y)=x^{2}-y^{4}
$$

$$
H_{f}(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \text { positive semidefinite }
$$

Square Root of a Positive Semidefinite Matrix

Find a matrix $X \in M(2 \times 2 ; \mathbb{R})$ such that

$$
X^{2}=\left[\begin{array}{rr}
5 & -4 \\
-4 & 5
\end{array}\right]=A
$$

Square Root of a Positive Semidefinite Matrix

Find a matrix $X \in M(2 \times 2 ; \mathbb{R})$ such that

$$
X^{2}=\left[\begin{array}{rr}
5 & -4 \\
-4 & 5
\end{array}\right]=A
$$

It can be checked that

$$
A=Q^{\top}\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right] Q
$$

where

$$
Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Square Root of a Positive Semidefinite Matrix (continued)

$$
\begin{aligned}
& X_{1}=Q^{\top}\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] Q=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \\
& X_{2}=Q^{\top}\left[\begin{array}{rr}
-1 & 0 \\
0 & 3
\end{array}\right] Q=\left[\begin{array}{rr}
1 & -2 \\
-2 & 1
\end{array}\right], \\
& X_{3}=Q^{\top}\left[\begin{array}{rr}
1 & 0 \\
0 & -3
\end{array}\right] Q=\left[\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right], \\
& X_{4}=Q^{\top}\left[\begin{array}{rr}
1 & 0 \\
0 & -3
\end{array}\right] Q=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] .
\end{aligned}
$$

Multivariate Gaussian Distribution

The probability density function of multivariate n-dimensional Gaussian distribution is given by

$$
p(x \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \frac{1}{(\operatorname{det} \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}
$$

where $x \in \mathbb{R}^{n}$ for some fixed $\mu \in \mathbb{R}^{n}$ and $\Sigma \in M(n \times n ; \mathbb{R})$ a symmetric positive definite matrix.

Multivariate Gaussian Distribution

The probability density function of multivariate n-dimensional Gaussian distribution is given by

$$
p(x \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \frac{1}{(\operatorname{det} \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}
$$

where $x \in \mathbb{R}^{n}$ for some fixed $\mu \in \mathbb{R}^{n}$ and $\Sigma \in M(n \times n ; \mathbb{R})$ a symmetric positive definite matrix. There exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ (i.e. $\left.Q Q^{\top}=Q^{\top} Q=I\right)$ such that

$$
Q^{\top} \Sigma Q=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

where $\sigma_{1}, \ldots, \sigma_{n}>0, Q=\left[v_{1} v_{2} \cdots v_{n}\right]$ and $\mathcal{B}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n}.

Multivariate Gaussian Distribution (continued)

Then if

$$
x=\sum_{i=1}^{n} x_{i} v_{i}
$$

(i.e. $[x]_{\mathcal{B}}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{\top}$) and

$$
\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)
$$

then

$$
p(x \mid \mu, \Sigma)=\prod_{i=1}^{n} \frac{1}{\left(2 \pi \sigma_{i}^{2}\right)^{\frac{1}{2}}} e^{-\frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}},
$$

i.e., it is a product of one-dimensional Gaussian probability density functions.

Multivariate Gaussian Distribution - Example

Let

$$
\begin{gathered}
\Sigma=\left[\begin{array}{rr}
\frac{5}{2} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{5}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]^{\top}\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right], \\
\Sigma^{-1}=\left[\begin{array}{cc}
\frac{5}{8} & \frac{3}{8} \\
\frac{3}{8} & \frac{5}{8}
\end{array}\right] \\
\mu=(2,3), \quad v_{1}=\frac{1}{\sqrt{2}}(1,1), \quad v_{2}=\frac{1}{\sqrt{2}}(1,-1),
\end{gathered}
$$

then

$$
\begin{gathered}
p\left(\left(x_{1}, x_{2}\right) \mid \mu, \Sigma\right)=\frac{1}{2 \pi} \frac{1}{2} e^{-\frac{1}{16}\left(5\left(x_{1}-2\right)^{2}+6\left(x_{1}-2\right)\left(x_{2}-3\right)+5\left(x_{2}-3\right)^{2}\right)} \\
p\left(x_{1} v_{1}+x_{2} v_{2} \mid \mu, \Sigma\right)=\frac{1}{(2 \pi)^{\frac{1}{2}}} e^{-\frac{\left(x_{1}-2\right)^{2}}{2}} \frac{1}{2(2 \pi)^{\frac{1}{2}}} e^{-\frac{\left(x_{2}-3\right)^{2}}{8}}
\end{gathered}
$$

Multivariate Gaussian Distribution - Example

probability density functions for $\Sigma=\frac{1}{2}\left[\begin{array}{rr}5 & -3 \\ -3 & 5\end{array}\right], \mu=(2,3)$

Inner product

Definition

Inner product space V is a vector space V over \mathbb{C} or \mathbb{R}, with a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C},
$$

such that

$$
\text { i) }\langle v, w\rangle=\overline{\langle w, v\rangle} \text { for any } v, w \in V
$$

Inner product

Definition

Inner product space V is a vector space V over \mathbb{C} or \mathbb{R}, with a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}
$$

such that
i) $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for any $v, w \in V$,
ii) for any $v \in V$ the function $\langle v, \cdot\rangle: V \rightarrow \mathbb{C}$ is linear, i.e. for any $w, w^{\prime} \in V$ and $\alpha \in \mathbb{C}$

Inner product

Definition

Inner product space V is a vector space V over \mathbb{C} or \mathbb{R}, with a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C},
$$

such that
i) $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for any $v, w \in V$,
ii) for any $v \in V$ the function $\langle v, \cdot\rangle: V \rightarrow \mathbb{C}$ is linear, i.e. for any $w, w^{\prime} \in V$ and $\alpha \in \mathbb{C}$
a) $\left\langle v, w+w^{\prime}\right\rangle=\langle v, w\rangle+\left\langle v, w^{\prime}\right\rangle$,

Inner product

Definition

Inner product space V is a vector space V over \mathbb{C} or \mathbb{R}, with a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C},
$$

such that
i) $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for any $v, w \in V$,
ii) for any $v \in V$ the function $\langle v, \cdot\rangle: V \rightarrow \mathbb{C}$ is linear, i.e. for any $w, w^{\prime} \in V$ and $\alpha \in \mathbb{C}$
a) $\left\langle v, w+w^{\prime}\right\rangle=\langle v, w\rangle+\left\langle v, w^{\prime}\right\rangle$,
b) $\langle v, \alpha w\rangle=\alpha\langle v, w\rangle$

Inner product

Definition

Inner product space V is a vector space V over \mathbb{C} or \mathbb{R}, with a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C},
$$

such that
i) $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for any $v, w \in V$,
ii) for any $v \in V$ the function $\langle v, \cdot\rangle: V \rightarrow \mathbb{C}$ is linear, i.e. for any $w, w^{\prime} \in V$ and $\alpha \in \mathbb{C}$
a) $\left\langle v, w+w^{\prime}\right\rangle=\langle v, w\rangle+\left\langle v, w^{\prime}\right\rangle$,
b) $\langle v, \alpha w\rangle=\alpha\langle v, w\rangle$
iii) $\langle v, v\rangle>0$ for any $v \neq \mathbf{0}$.

Example

Example

The vector space $V=\mathbb{C}^{n}$ with

$$
\langle v, w\rangle=\sum_{j=1}^{n} \overline{v_{j}} w_{j}=\bar{v}^{\top} w=v^{*} w,
$$

for any $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$ is the standard inner product space

Example

Example

The vector space $V=\mathbb{C}^{n}$ with

$$
\langle v, w\rangle=\sum_{j=1}^{n} \overline{v_{j}} w_{j}=\bar{v}^{\top} w=v^{*} w
$$

for any $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$ is the standard inner product space

Example

The vector space $V=\mathcal{C}([a, b] ; \mathbb{C})$ of continuous functions

$$
\langle f, g\rangle=\int_{a}^{b} w(x) \overline{f(x)} g(x) \mathrm{d} x
$$

where w is a fixed weight function $w \in V$ such that $w(x) \in \mathbb{R}, w(x)>0$ for $x \in(a, b)$ is an inner product space.

Norm

Let V be an inner product space.
Definition
Norm of vector $v \in V$ is equal to

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Norm

Let V be an inner product space.
Definition
Norm of vector $v \in V$ is equal to

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

If V is complete as a metric space induced by the norm it is called a Hilbert space.

Adjoint Transformation

Proposition

Let V and W be inner product spaces. For any linear transformation $\varphi: V \rightarrow W$ there exists a unique linear transformation $\varphi^{*}: W \rightarrow V$ such that

$$
\langle\varphi(v), w\rangle_{W}=\left\langle v, \varphi^{*}(w)\right\rangle_{v}
$$

Adjoint Transformation (continued)

Proof.
The inner products induce isomorphisms $V \simeq V^{*}$ and $W \simeq W^{*}$ because the linear transformations are monomorphisms hence isomorphisms (since the product is positive definite),

$$
\begin{gathered}
V \ni v \mapsto\langle v, \cdot\rangle \in V^{*} \\
W \ni w \mapsto\langle w, \cdot\rangle \in W^{*}
\end{gathered}
$$

These isomorphisms induce an isomorphism

$$
\operatorname{Hom}(V, W)=V^{*} \otimes W \simeq V \otimes W^{*} \simeq W^{*} \otimes V=\operatorname{Hom}(W, V)
$$

and φ^{*} is the image of φ under this isomorphism.

Adjoint Transformation (continued)

Proof.
Let

$$
\varphi=\alpha \otimes t
$$

where $\alpha \in V^{*}, t \in W$. Let $s_{\alpha} \in V$ be a vector such that

$$
\alpha(\cdot)=\left\langle s_{\alpha}, \cdot\right\rangle
$$

(i.e. vector corresponding to α under isomorphism $V \simeq V^{*}$). By definition

$$
\alpha^{*}=\langle t, \cdot\rangle \otimes s_{\alpha}
$$

Then for any $v \in V, w \in W$

$$
\langle\varphi(v), w\rangle=\langle\alpha(v) t, w\rangle=\overline{\alpha(v)}\langle t, w\rangle .
$$

On the other hand

$$
\left\langle v, \varphi^{*}(w)\right\rangle=\left\langle v,\langle t, w\rangle s_{\alpha}\right\rangle=\langle t, w\rangle\left\langle v, s_{\alpha}\right\rangle=\langle t, w\rangle \overline{\alpha(v)}
$$

Adjoint Transformation (continued)

Proposition

Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation where \mathbb{C}^{n} is a standard inner product space (domain and codomain). If $A=M_{s t}^{s t}(\varphi)$ then

$$
A^{*}=\bar{A}^{\top}=M_{s t}^{s t}\left(\varphi^{*}\right),
$$

where

$$
A^{*}=\bar{A}^{\top}=\overline{A^{\top}} .
$$

Adjoint Transformation (continued)

Proposition

Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation where \mathbb{C}^{n} is a standard inner product space (domain and codomain). If $A=M_{s t}^{s t}(\varphi)$ then

$$
A^{*}=\bar{A}^{\top}=M_{s t}^{s t}\left(\varphi^{*}\right),
$$

where

$$
A^{*}=\bar{A}^{\top}=\overline{A^{\top}} .
$$

Proof.
For any $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$

$$
\langle A v, w\rangle=(\bar{A} \bar{v})^{\top} w=\bar{v}^{\top}\left(\bar{A}^{\top} w\right)=\bar{v}^{\top} A^{*} w=\left\langle v, A^{*} w\right\rangle
$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix
Definition
Matrix $A \in M(n \times n ; \mathbb{C})$ is normal if

$$
A^{*} A=A A^{*} .
$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix
Definition
Matrix $A \in M(n \times n ; \mathbb{C})$ is normal if

$$
A^{*} A=A A^{*} .
$$

Definition
Matrix $U \in M(n \times n ; \mathbb{C})$ is unitary if

$$
U^{*} U=U U^{*}=I_{n}
$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix
Definition
Matrix $A \in M(n \times n ; \mathbb{C})$ is normal if

$$
A^{*} A=A A^{*} .
$$

Definition
Matrix $U \in M(n \times n ; \mathbb{C})$ is unitary if

$$
U^{*} U=U U^{*}=I_{n} .
$$

Definition
Matrix $H \in M(n \times n ; \mathbb{C})$ is Hermitian if

$$
H=H^{*} .
$$

Matrix $H \in M(n \times n ; \mathbb{C})$ is skew-Hermitian if

$$
H=-H^{*} .
$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix (continued)

Proposition
Unitary, Hermitian and skew-Hermitian matrices are normal.

Normal Transformation

Let V be an inner product space.
Definition
Endomorphism (linear transformation)

$$
\varphi: V \rightarrow V
$$

is normal if

$$
\varphi \circ \varphi^{*}=\varphi^{*} \circ \varphi
$$

Normal Transformation

Let V be an inner product space.
Definition
Endomorphism (linear transformation)

$$
\varphi: V \rightarrow V
$$

is normal if

$$
\varphi \circ \varphi^{*}=\varphi^{*} \circ \varphi
$$

Proposition
Endomorphism φ is normal if and only if the matrix $M_{\mathcal{A}}^{\mathcal{A}}(\varphi)$ is normal for any (some) orthonormal basis \mathcal{A} of V.

Normal Transformation

Let V be an inner product space.
Definition
Endomorphism (linear transformation)

$$
\varphi: V \rightarrow V
$$

is normal if

$$
\varphi \circ \varphi^{*}=\varphi^{*} \circ \varphi
$$

Proposition
Endomorphism φ is normal if and only if the matrix $M_{\mathcal{A}}^{\mathcal{A}}(\varphi)$ is normal for any (some) orthonormal basis \mathcal{A} of V.

Proof.
Exercise.

Normal Matrix is Unitary Diagonalizable

Proposition

Let $A \in M(n \times n ; \mathbb{C})$ be normal matrix. Then there exists a unitary matrix $U \in M(n \times n ; \mathbb{C})$ such that the matrix

$$
U^{*} A U=U^{-1} A U,
$$

is diagonal.

Normal Matrix is Unitary Diagonalizable

Proposition

Let $A \in M(n \times n ; \mathbb{C})$ be normal matrix. Then there exists a unitary matrix $U \in M(n \times n ; \mathbb{C})$ such that the matrix

$$
U^{*} A U=U^{-1} A U,
$$

is diagonal.

Proof.

Let $\lambda \in \mathbb{C}, v \in \mathbb{C}^{n}$. Then

$$
\begin{gathered}
\|A v-\lambda v\|^{2}=\langle A v, A v\rangle-\langle\lambda v, A v\rangle-\langle A v, \lambda v\rangle+\langle\lambda v, \lambda v\rangle= \\
=\left\langle v, A^{*} A v\right\rangle-\left\langle A^{*} v, \bar{\lambda} v\right\rangle-\left\langle\bar{\lambda} v, A^{*} v\right\rangle+\langle\bar{\lambda} v, \bar{\lambda} v\rangle= \\
=\left\langle v, A A^{*} v\right\rangle-\left\langle A^{*} v, \bar{\lambda} v\right\rangle-\left\langle\bar{\lambda} v, A^{*} v\right\rangle+\langle\bar{\lambda} v, \bar{\lambda} v\rangle= \\
=\left\|A^{*} v-\bar{\lambda} v\right\|^{2} .
\end{gathered}
$$

Therefore $v \in \mathbb{C}^{n}$ is an eigenvector of A if and only if it is an eigenvector of A^{*} (and the corresponding eigenvalues are conjugated).

Normal Matrix is Unitary Diagonalizable (continued)

Proof.
Let $\lambda \in \mathbb{C}$ be an eigenvalue of A and let $v \in \mathbb{C}^{n}$ be a corresponding eigenvector of norm 1. Let

$$
V=\operatorname{lin}(v)^{\perp}=\{w \in W \mid\langle v, w\rangle=0\}
$$

Then

$$
A V \subset V
$$

since for $w \in V$

$$
\langle v, A w\rangle=\left\langle A^{*} v, w\right\rangle=\langle\bar{\lambda} v, w\rangle=0 .
$$

The endomorphism $\left.A\right|_{V}$ is normal (since $\left.(\varphi \mid v)^{*}=\left(\varphi^{*}\right) \mid v\right)$ and by the induction the theorem holds. The unitary matrix $U \in M(n \times n ; \mathbb{C})$ has in columns normalized (i.e. of length 1) eigenvectors obtained by the above procedure.

Characterization of Complex Normal, Unitary, Hermitian

 and Skew-Hermitian MatricesLet $A \in M(n \times n ; \mathbb{C})$ be a matrix with (possibly repeating) eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Let
$D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in M(n \times n ; \mathbb{C})$ be a diagonal matrix with complex numbers $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ on the diagonal.

Proposition
Then

$$
\text { A is normal } \Leftrightarrow
$$

\Leftrightarrow there exists unitary matrix $U \in M(n \times n ; \mathbb{C})$ such that $U^{*} A U=D$.
Moreover
i) matrix A is unitary $\Leftrightarrow\left|\lambda_{i}\right|=1$ for $j=1, \ldots, n$,
ii) matrix A is Hermitian $\Leftrightarrow \lambda_{i} \in \mathbb{R}$ for $j=1, \ldots, n$,
iii) matrix A is skew-Hermitian $\Leftrightarrow \lambda_{i} \in \sqrt{-1} \mathbb{R}$ for $j=1, \ldots, n$,

Characterization of Complex Normal, Unitary, Hermitian and Skew-Hermitian Matrices (continued)

Proof.

Easy exercise. Respectively, one has
i) $D^{*}=D^{-1}$,
ii) $D^{*}=D$,
iii) $D^{*}=-D$.

Normal, Orthogonal, Symmetric and Skew-Symmetric Matrix

Definition
Matrix $A \in M(n \times n ; \mathbb{R})$ is normal if

$$
A^{\top} A=A A^{\top}
$$

Normal, Orthogonal, Symmetric and Skew-Symmetric Matrix

Definition
Matrix $A \in M(n \times n ; \mathbb{R})$ is normal if

$$
A^{\top} A=A A^{\top} .
$$

Definition
Matrix $Q \in M(n \times n ; \mathbb{R})$ is orthogonal if

$$
Q^{\top} Q=Q Q^{\top}=I_{n}
$$

Normal, Orthogonal, Symmetric and Skew-Symmetric Matrix

Definition
Matrix $A \in M(n \times n ; \mathbb{R})$ is normal if

$$
A^{\top} A=A A^{\top} .
$$

Definition
Matrix $Q \in M(n \times n ; \mathbb{R})$ is orthogonal if

$$
Q^{\top} Q=Q Q^{\top}=I_{n}
$$

Definition
Matrix $H \in M(n \times n ; \mathbb{R})$ is symmetric if

$$
H=H^{\top} .
$$

Matrix $H \in M(n \times n ; \mathbb{R})$ is skew-symmetric if

$$
H=-H^{\top} .
$$

Normal, Orthogonal, Symmetric and Skew-Symmetric Matrix (continued)

Proposition
Orthogonal, symmetric and skew-symmetric real matrices are normal.

Characterization of Real Normal Matrices

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Then
i) λ is an eigenvalue of $A \Longleftrightarrow \bar{\lambda}$ is an eigenvalue of A,
ii) $v=\operatorname{Re} v+i \operatorname{lm} v$ is an eigenvector for the eigenvalue λ of $A \Longleftrightarrow \bar{v}=\operatorname{Re} v-i \operatorname{lm} v$ is an eigenvector for the eigenvalue $\bar{\lambda}$ of A.

Characterization of Real Normal Matrices (continued)

Proof.

The characteristic polynomial of A has real coefficients hence its strictly complex roots form pairs $\lambda, \bar{\lambda}$. Let $\lambda=a+b i$ where $a, b \in \mathbb{R}$.

$$
\begin{aligned}
A v=\lambda v \Leftrightarrow & A(\operatorname{Re} v+i \operatorname{Im} v)=(a+b i)(\operatorname{Re} v+i \operatorname{Im} v) \Leftrightarrow \\
& \Leftrightarrow\left\{\begin{array}{l}
A \operatorname{Re} v=a \operatorname{Re} v-b \operatorname{Im} v \\
A \operatorname{Im} v=b \operatorname{Re} v+b \operatorname{Im} v
\end{array}\right.
\end{aligned}
$$

where the right-hand side remains invariant under changing the sign of b and Im v.

Characterization of Real Normal Matrices (continued)

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Let $v, w \in \mathbb{C}^{n}$ be two complex eigenvectors corresponding, respectively, to eigenvalues λ and μ of A. Assume $\bar{\lambda} \neq \mu$. Then
$(\operatorname{Re} v) \cdot(\operatorname{Re} w)=(\operatorname{lm} v) \cdot(\operatorname{lm} w)=(\operatorname{Re} v) \cdot(\operatorname{Im} w)=(\operatorname{lm} v) \cdot(\operatorname{Re} w)=0$.

Characterization of Real Normal Matrices (continued)

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Let $v, w \in \mathbb{C}^{n}$ be two complex eigenvectors corresponding, respectively, to eigenvalues λ and μ of A. Assume $\bar{\lambda} \neq \mu$. Then
$(\operatorname{Re} v) \cdot(\operatorname{Re} w)=(\operatorname{lm} v) \cdot(\operatorname{lm} w)=(\operatorname{Re} v) \cdot(\operatorname{Im} w)=(\operatorname{lm} v) \cdot(\operatorname{Re} w)=0$.

Proof.
Assume $w \notin \mathbb{R}$. Then w, \bar{w} are eigenvectors of A, both unitary orthogonal to v.

$$
\left\{\begin{array}{l}
\langle\operatorname{Re} v+i \operatorname{Im} v, \operatorname{Re} w+i \operatorname{lm} w\rangle=0 \\
\langle\operatorname{Re} v+i \operatorname{Im} v, \operatorname{Re} w-i \operatorname{lm} w\rangle=0
\end{array} \Leftrightarrow\right.
$$

$\Leftrightarrow\left\{\begin{array}{l}(\langle\operatorname{Re} v, \operatorname{Re} w\rangle+\langle\operatorname{Im} v, \operatorname{Im} w\rangle)+i(\langle\operatorname{Im} v, \operatorname{Re} w\rangle-\langle\operatorname{Re} v, \operatorname{Im} w\rangle)=0 \\ (\langle\operatorname{Re} v, \operatorname{Re} w\rangle-\langle\operatorname{Im} v, \operatorname{Im} w\rangle)+i(\langle\operatorname{Im} v, \operatorname{Re} w\rangle+\langle\operatorname{Re} v, \operatorname{Im} w\rangle)=0\end{array}\right.$

Characterization of Real Normal Matrices (continued)

Proof.
If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot(\operatorname{Re} w)=0$ since $v=\operatorname{Re} v, w=\operatorname{Re} w$ are real and unitary orthogonal.

Characterization of Real Normal Matrices (continued)

Proof.
If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot(\operatorname{Re} w)=0$ since $v=\operatorname{Re} v, w=\operatorname{Re} w$ are real and unitary orthogonal. If $\lambda \in \mathbb{R}$ and $\mu \notin \mathbb{R}$ then the above proof works as well.

Characterization of Real Normal Matrices (continued)

Proof.

If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot(\operatorname{Re} w)=0$ since $v=\operatorname{Re} v, w=\operatorname{Re} w$ are real and unitary orthogonal. If $\lambda \in \mathbb{R}$ and $\mu \notin \mathbb{R}$ then the above proof works as well.

Corollary
If $v, w \in \mathbb{C}$ are complex eigenvectors for the strictly complex eigenvalue λ, and $\langle v, w\rangle=0$ (i.e. unitary orthogonal) then
$(\operatorname{Re} v) \cdot(\operatorname{Re} w)=(\operatorname{lm} v) \cdot(\operatorname{lm} w)=(\operatorname{Re} v) \cdot(\operatorname{Im} w)=(\operatorname{lm} v) \cdot(\operatorname{Re} w)=0$.

Characterization of Real Normal Matrices (continued)

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Let $v \in \mathbb{C}^{n}$ be a unit complex eigenvector corresponding to a strictly complex eigenvalue $\lambda \notin \mathbb{R}$. Then

$$
(\operatorname{Re} v) \cdot(\operatorname{Im} v)=0,
$$

and

$$
\|\operatorname{Re} v\|=\|\operatorname{lm} v\|=\frac{1}{\sqrt{2}}
$$

Characterization of Real Normal Matrices (continued)

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Let $v \in \mathbb{C}^{n}$ be a unit complex eigenvector corresponding to a strictly complex eigenvalue $\lambda \notin \mathbb{R}$. Then

$$
(\operatorname{Re} v) \cdot(\operatorname{lm} v)=0
$$

and

$$
\|\operatorname{Re} v\|=\|\operatorname{lm} v\|=\frac{1}{\sqrt{2}}
$$

Proof.

Then \bar{v} is a unit eigenvector, unitary orthogonal to v

$$
\begin{gathered}
0=\langle\operatorname{Re} v+i \operatorname{Im} v, \operatorname{Re} v-i \operatorname{Im} v\rangle= \\
=(\langle\operatorname{Re} v, \operatorname{Re} w\rangle-\langle\operatorname{Im} v, \operatorname{Im} w\rangle)+2 i\langle\operatorname{Re} v, \operatorname{Im} w\rangle,
\end{gathered}
$$

moreover

$$
1=\|v\|^{2}=\|\operatorname{Re} v\|^{2}+\|\operatorname{Im} v\|^{2}
$$

Characterization of Real Normal Matrices (continued)

Corollary

Let $A \in M(n \times n ; \mathbb{R})$ be a normal matrix. Let $\mu_{1}, \ldots, \mu_{m} \in \mathbb{R}$ be (possibly repeating) real eigenvalues of A. Let $\lambda_{1}, \overline{\lambda_{1}}, \lambda_{2}, \overline{\lambda_{2}}, \ldots, \lambda_{k}, \overline{\lambda_{k}} \in \mathbb{C}$ be (possibly repeating) strictly complex eigenvalues of A, where $\alpha_{j}=a_{j}+i b_{j}$ for $j=1, \ldots, k$. Let $u_{1}, \ldots, u_{m}, v_{1}, \overline{v_{1}}, v_{2}, \overline{v_{2}}, \ldots, v_{k}, \overline{v_{k}} \in \mathbb{C}^{n}$ be the corresponding unitary orthonormal basis of \mathbb{C}^{n}, consisting of the corresponding eigenvectors, such that $u_{j}=\operatorname{Re} u_{j}$ for $j=1, \ldots, m$. Then

$$
\mathcal{A}=\left(u_{1}, \ldots, u_{k}\right.
$$

$\left.\sqrt{2} \operatorname{Re} v_{1}, \sqrt{2} \operatorname{Im} v_{1}, \sqrt{2} \operatorname{Re} v_{2}, \sqrt{2} \operatorname{Im} v_{2}, \ldots, \sqrt{2} \operatorname{Re} v_{k}, \sqrt{2} \operatorname{Im} v_{k}\right)$,
is an real orthogonal basis of \mathbb{R}^{n}.

Characterization of Real Normal Matrices (continued)

Corollary
Moreover, if $Q=M(\mathrm{id}){ }_{\mathcal{A}}^{s t}$ then $Q \in M(n \times n ; \mathbb{R})$ is an (real) orthogonal matrix (i.e. $Q^{\top} Q=Q Q^{\top}=1$) and
$Q^{\top} A Q=\left[\begin{array}{c|c|c|c|rr|rr|r|rr}\mu_{1} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & \mu_{2} & \cdots & 0 & 0 & 0 & 0 & 0 & & 0 & 0 \\ \hline \vdots & & \ddots & & & & & & & \vdots & \vdots \\ \hline 0 & & & \mu_{m} & & & & & & 0 & 0 \\ \hline 0 & & & & a_{1} & b_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & & & & -b_{1} & a_{1} & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & & & & 0 & 0 & a_{2} & b_{2} & & 0 & 0 \\ 0 & & & & 0 & 0 & -b_{2} & a_{2} & & 0 & 0 \\ \hline \vdots & & & & \vdots & \vdots & & & \ddots & \vdots & \vdots \\ \hline 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & a_{k} & b_{k} \\ 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & -b_{k} & a_{k}\end{array}\right]$.

Characterization of Real Orthogonal Matrices (continued)

Corollary

Matrix $A \in M(n \times n ; \mathbb{R})$ is orthogonal if and only if there exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ and numbers $\varphi_{1}, \ldots, \varphi_{k} \in \mathbb{R}$ such that
$Q^{\top} A Q=\left[\begin{array}{c|c|c|c|r|r|rr|r|rr} \pm 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & \pm 1 & & & 0 & 0 & 0 & 0 & & 0 & 0 \\ \hline \vdots & & \ddots & & & & & & & \vdots & \vdots \\ \hline 0 & & & \pm 1 & & & & & & 0 & 0 \\ \hline 0 & & & & \cos \varphi_{1} & \sin \varphi_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & & & & -\sin \varphi_{1} & \cos \varphi_{1} & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & & & & 0 & 0 & \cos \varphi_{2} & \sin \varphi_{2} & & 0 & 0 \\ 0 & & & & 0 & 0 & -\sin \varphi_{2} & \cos \varphi_{2} & & 0 & 0 \\ \hline \vdots & & & & \vdots & \vdots & & & \ddots & \vdots & \vdots \\ \hline 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & \cos \varphi_{k} & \sin \varphi_{k} \\ 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & -\sin \varphi_{k} & \cos \varphi_{k}\end{array}\right]$

Characterization of Real Symmetric Matrices (continued)

Corollary

Matrix $A \in M(n \times n ; \mathbb{R})$ is symmetric if and only if there exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ and numbers $\mu_{1}, \ldots, \mu_{n} \in \mathbb{R}$ such that

$$
Q^{\top} A Q=\left[\begin{array}{ccc}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right]
$$

Characterization of Real Skew-Symetric Normal Matrices

Corollary

Matrix $A \in M(n \times n ; \mathbb{R})$ is skew-symmetric if and only if there exists an orthogonal matrix $Q \in M(n \times n ; \mathbb{R})$ and numbers $b_{1}, \ldots, b_{k} \in \mathbb{R}$ such that
$Q^{\top} A Q=\left[\begin{array}{c|c|c|c|rr|rr|r|rr}0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & 0 & & & 0 & 0 & 0 & 0 & & 0 & 0 \\ \hline \vdots & & \ddots & & & & & & & \vdots & \vdots \\ \hline 0 & & & 0 & & & & & & 0 & 0 \\ \hline 0 & & & & 0 & b_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & & & & -b_{1} & 0 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & & & & 0 & 0 & 0 & b_{2} & & 0 & 0 \\ 0 & & & & 0 & 0 & -b_{2} & 0 & & 0 & 0 \\ \hline \vdots & & & & \vdots & \vdots & & & \ddots & \vdots & \vdots \\ \hline 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & 0 & b_{k} \\ 0 & 0 & 0 & & 0 & 0 & 0 & 0 & \cdots & -b_{k} & 0\end{array}\right]$.

Example

Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Then

$$
A^{\top} A=A A^{\top}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Moreover

$$
w_{A}(x)=\operatorname{det}(A-x I)=-x^{3}+3 x^{2}-3 x+2=-(x-2)\left(x^{2}-x+1\right)
$$

therefore

$$
\mu=2, \quad \lambda=\frac{1+i \sqrt{3}}{2}=e^{\frac{i \pi}{3}}, \quad \bar{\lambda}=\frac{1-i \sqrt{3}}{2}=e^{-\frac{i \pi}{3}} .
$$

It can be checked that

$$
V_{(\mu)}=\operatorname{lin}((1,1,1)), \quad V_{(\lambda)}=\operatorname{lin}\left(\left(1, \lambda^{2},-\lambda\right)\right), \quad V_{(\bar{\lambda})}=\operatorname{lin}\left(\left(1,-\lambda, \lambda^{2}\right)\right),
$$

(note that $\lambda^{3}+1=0, \lambda^{2}=\lambda-1, \bar{\lambda}=\frac{1}{\lambda}=-\lambda^{2}$).

Example (continued)

Since

$$
|(1,1,1)|=\left|\left(1, \lambda^{2},-\lambda\right)\right|=\left|\left(1,-\lambda, \lambda^{2}\right)\right|=\sqrt{3},
$$

we have

$$
\begin{aligned}
u_{1} & =\frac{1}{\sqrt{3}}(1,1,1), \\
v_{1} & =\frac{1}{\sqrt{3}}\left(1, \lambda^{2},-\lambda\right), \\
\bar{v}_{1} & =\frac{1}{\sqrt{3}}\left(1,-\lambda, \lambda^{2}\right) .
\end{aligned}
$$

If

$$
U=\frac{1}{\sqrt{3}}\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & \lambda^{2} & -\lambda \\
1 & -\lambda & \lambda^{2}
\end{array}\right]
$$

Then

$$
U^{*} U=U U^{*}=I .
$$

Example (continued)

If

$$
D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & -\lambda^{2}
\end{array}\right],
$$

then

$$
U D U^{*}=A,
$$

i.e.

$$
\begin{gathered}
\frac{1}{\sqrt{3}}\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & \lambda^{2} & -\lambda \\
1 & -\lambda & \lambda^{2}
\end{array}\right]\left[\begin{array}{rcc}
2 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & -\lambda^{2}
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -\lambda & \lambda^{2} \\
1 & \lambda^{2} & -\lambda^{2}
\end{array}\right]= \\
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Example (continued)

Let

$$
\begin{gathered}
u_{1}=v_{1}=\frac{1}{\sqrt{3}}(1,1,1), \\
u_{2}=\sqrt{2} \operatorname{Re} v_{1}=\frac{\sqrt{2}}{\sqrt{3}}\left(1,-\frac{1}{2},-\frac{1}{2}\right), \\
u_{3}=\sqrt{2} \operatorname{lm} v_{1}=\frac{\sqrt{2}}{\sqrt{3}}\left(0, \frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right) .
\end{gathered}
$$

If

$$
Q=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
1 & -\frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{2} \\
1 & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{2}
\end{array}\right]
$$

then

$$
Q^{\top} Q=Q Q^{\top}=I
$$

Example (continued)

Moreover, let

$$
B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] .
$$

Then

$$
Q B Q^{\top}=A
$$

i.e.

$$
\begin{gathered}
\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
1 & -\frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{2} \\
1 & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{2}
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 0 \\
\sqrt{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & \frac{\sqrt{6}}{2} & -\frac{\sqrt{6}}{2}
\end{array}\right]= \\
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Rayleigh Quotient

Definition
For any matrix $M \in M(n \times n ; \mathbb{C})$ and any vector $x \in \mathbb{C}^{n}, x \neq \mathbf{0}$, the Rayleigh quotient $R(M, x)$ is equal to

$$
R(M, x)=\frac{x^{*} M x}{x^{*} x}
$$

Rayleigh Quotient

Definition

For any matrix $M \in M(n \times n ; \mathbb{C})$ and any vector $x \in \mathbb{C}^{n}, x \neq \mathbf{0}$, the Rayleigh quotient $R(M, x)$ is equal to

$$
R(M, x)=\frac{x^{*} M x}{x^{*} x} .
$$

Proposition
For any complex number $\alpha \in \mathbb{C}$

$$
R(M, \alpha x)=R(M, x)
$$

Rayleigh Quotient (continued)

Proposition

For any Hermitian matrix $M \in M(n \times n ; \mathbb{C})\left(\right.$ i.e., $\left.M^{*}=M\right)$

$$
\begin{gathered}
R(M, x) \in \mathbb{R} \\
\lambda_{\min } \leqslant R(M, x) \leqslant \lambda_{\max }
\end{gathered}
$$

where $\lambda_{\min }, \lambda_{\max } \in \mathbb{R}$ are the smallest and the greatest (real) eigenvalues of matrix M. Moreover, those bounds are attained by $R(M, x)$ by the corresponding eigenvectors $x \in \mathbb{C}^{n}$.

Rayleigh Quotient (continued)

Proposition

For any Hermitian matrix $M \in M(n \times n ; \mathbb{C})\left(\right.$ i.e., $\left.M^{*}=M\right)$

$$
\begin{gathered}
R(M, x) \in \mathbb{R} \\
\lambda_{\min } \leqslant R(M, x) \leqslant \lambda_{\max }
\end{gathered}
$$

where $\lambda_{\min }, \lambda_{\max } \in \mathbb{R}$ are the smallest and the greatest (real) eigenvalues of matrix M. Moreover, those bounds are attained by $R(M, x)$ by the corresponding eigenvectors $x \in \mathbb{C}^{n}$.

Proof.
As $R(M, x)^{*}=R(M, x)$, it follows that $R(M, x) \in \mathbb{R}$. Let $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ be a unitary orthonormal basis of \mathbb{C}^{n}, in which matrix of M is diagonal (i.e., it consist of eigenvectors v_{i} of matrix M such that $M v_{i}=\lambda_{i} v_{i}$ and $v_{j}^{\top} M v_{i}=0$ for $i \neq j$). Let

$$
x=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Rayleigh Quotient (continued)

Proof.
Then

$$
R(M, x)=\frac{\sum_{i=1}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}}
$$

Since $\lambda_{\text {min }} \leqslant \lambda_{i} \leqslant \lambda_{\text {max }}$, it follows that

$$
\lambda_{\min } \leqslant \frac{\sum_{i=1}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}} \leqslant \lambda_{\max } .
$$

The bounds are attained for $x=v_{i}$ where $M v_{i}=\lambda_{\text {min }} v_{i}$ and for $x=v_{j}$ where $M v_{j}=\lambda_{\text {max }} v_{j}$.

Rayleigh Quotient (continued)

Proposition

For any matrix $M \in M(n \times n ; \mathbb{C})$ and any vector $x \in \mathbb{C}^{n}$ the Rayleigh quotient

$$
\lambda=R(M, x)=\frac{x^{*} M x}{x^{*} x}
$$

is the least square solution of the (possibly inconsistent) equation

$$
M x=\lambda x
$$

Rayleigh Quotient (continued)

Proposition

For any matrix $M \in M(n \times n ; \mathbb{C})$ and any vector $x \in \mathbb{C}^{n}$ the Rayleigh quotient

$$
\lambda=R(M, x)=\frac{x^{*} M x}{x^{*} x}
$$

is the least square solution of the (possibly inconsistent) equation

$$
M x=\lambda x
$$

Proof.
The orthogonal projection of $M x$ onto $V=\operatorname{lin}(x)$ is equal to

$$
P_{V}(M x)=\frac{x^{*}(M x)}{x^{*} x} x
$$

Rayleigh Quotient (continued)

Proposition

For any fixed symmetric matrix $M=M^{\top} \in M(n \times n ; \mathbb{R})$ the eigenvectors of M are stationary points of the Rayleigh quotient, that is if $M x=\lambda x$ for some $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$ then

$$
\boldsymbol{\nabla}_{x} R(M, x)=\mathbf{0}
$$

Rayleigh Quotient (continued)

Proposition

For any fixed symmetric matrix $M=M^{\top} \in M(n \times n ; \mathbb{R})$ the eigenvectors of M are stationary points of the Rayleigh quotient, that is if $M x=\lambda x$ for some $x \in \mathbb{R}^{n}, x \neq \mathbf{0}$ then

$$
\boldsymbol{\nabla}_{x} R(M, x)=\mathbf{0}
$$

Proof.

$$
\begin{aligned}
\frac{\partial R}{\partial x_{j}}(M, x)= & \frac{\frac{\partial}{\partial x_{j}}\left(x^{\top} M x\right)\left(x^{\top} x\right)-\left(x^{\top} M x\right) \frac{\partial}{\partial x_{j}}\left(x^{\top} x\right)}{\left(x^{\top} x\right)^{2}}= \\
= & \frac{2(M x)_{j}\left(x^{\top} x\right)-\left(x^{\top} M x\right) 2 x_{j}}{\left(x^{\top} x\right)^{2}}= \\
& =\frac{2}{x^{\top} x}(M x-R(M, x) x)_{j},
\end{aligned}
$$

where $(M x)_{j}$ denotes the j-th entry of the vector $M x$.

Eigenvalue Decomposition

Proposition

Let $M \in M(n \times n ; \mathbb{C})$ be a matrix such that there exists basis $\mathcal{A}=\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{C}^{n} and numbers $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
M=C D C^{*},
$$

where $C=M(\mathrm{id})_{\mathcal{A}}^{s t}$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then

$$
M=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{*}
$$

where $v_{i} v_{i}^{*}$ are rank 1 matrices.

Eigenvalue Decomposition (continued)

Proof.

$$
M=\sum_{i=1}^{n} C D_{i} C^{*}=\left(\sum_{i=1}^{n} \lambda_{i} C_{i}\right) C^{*}=\sum_{i=1}^{n} \lambda_{i} C_{i} C^{*}
$$

where $D_{i}=\operatorname{diag}\left(0, \ldots, 0, \lambda_{i}, 0, \ldots, 0\right)$ and $C_{i} \in M(n \times n ; \mathbb{C})$ is a zero matrix with $i-$ th column replaced with eigenvector v_{i}. Then

$$
C_{i} C^{*}=C_{i} C_{i}^{*}=v_{i} v_{i}^{*}
$$

Eigenvalue Decomposition (continued)

Corollary

Let $M \in M(n \times n ; \mathbb{C})$ be a Hermitian matrix (i.e. $\left.M^{*}=M\right)$. Let $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ be a unitary orthonormal basis consisting of eigenvectors of M corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Then

$$
M=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{*}
$$

Sherman-Morrison Formula

The following formula expresses the inverse of rank 1 update of matrix A. Proposition
For any matrix invertible $A \in M(n \times n ; \mathbb{C})$ and vectors $v, w \in \mathbb{C}$ such that $1+w^{*} A v \neq 0$ the matrix $A+v w^{*}$ is invertible and

$$
\left(A+v w^{*}\right)^{-1}=A^{-1}-\frac{A^{-1} v w^{*} A^{-1}}{1+w^{*} A^{-1} v} .
$$

Sherman-Morrison Formula

The following formula expresses the inverse of rank 1 update of matrix A.

Proposition

For any matrix invertible $A \in M(n \times n ; \mathbb{C})$ and vectors $v, w \in \mathbb{C}$ such that $1+w^{*} A v \neq 0$ the matrix $A+v w^{*}$ is invertible and

$$
\left(A+v w^{*}\right)^{-1}=A^{-1}-\frac{A^{-1} v w^{*} A^{-1}}{1+w^{*} A^{-1} v}
$$

Proof.

First we show that

$$
\begin{gathered}
\left(I+u w^{*}\right)^{-1}=I-\frac{u w^{*}}{1+w^{*} u} . \\
\left(I+u w^{*}\right)\left(I-\frac{u w^{*}}{1+w^{*} u}\right)= \\
=I-\frac{u w^{*}}{1+w^{*} u}+u w^{*}-w^{*} u \frac{u w^{*}}{1+w^{*} u}=I .
\end{gathered}
$$

Sherman-Morrison Formula (continued)

Proof.

Since A is invertible there exists $u \in \mathbb{C}^{n}$ such that $v=A u$, i.e. $u=A^{-1} v$. Then

$$
A+v w^{*}=A\left(I+u w^{*}\right)
$$

and the matrix $A+v w^{*}$ is invertible if and only if the matrix $I+u w^{*}$ is invertible. Moreover

$$
\begin{gathered}
\left(A+v w^{*}\right)^{-1}=\left(I+u w^{*}\right)^{-1} A^{-1}=\left(I-\frac{u w^{*}}{1+w^{*} u}\right) A^{-1}= \\
=A^{-1}-\frac{A^{-1} v w^{*} A^{-1}}{1+w^{*} A^{-1} v}
\end{gathered}
$$

Singular Value Decomposition - SVD

Theorem
For any matrix $A \in M(m \times n ; \mathbb{C})$ there exist unitary matrices $U \in M(m \times m ; \mathbb{C}), V \in M(n \times n ; \mathbb{C})$ and a unique (real) generalized diagonal matrix $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$ such that

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0
$$

where $r=r(A)$ oraz

$$
A=U \Sigma V^{*}
$$

Singular Value Decomposition - SVD

Theorem
For any matrix $A \in M(m \times n ; \mathbb{C})$ there exist unitary matrices $U \in M(m \times m ; \mathbb{C}), V \in M(n \times n ; \mathbb{C})$ and a unique (real) generalized diagonal matrix
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$ such that

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0
$$

where $r=r(A)$ oraz

$$
A=U \Sigma V^{*}
$$

Remark
Matrices U, V are not uniquely determined (unlike the matrix Σ).

Singular Value Decomposition - SVD (continued)

Proof.
Let $\sigma_{1}=\|A\|_{2}$. By the definition of $\|\cdot\|_{2}$ and the compactness of a ball in \mathbb{C}^{m} there exist vectors $v_{1} \in \mathbb{C}^{m}$ and vectors $u_{1} \in \mathbb{C}^{n}$ such that $\left\|v_{1}\right\|_{2}=\left\|u_{1}\right\|_{2}=1$, and

$$
A v_{1}=\sigma_{1} u_{1}
$$

Let $V_{1} \in M(n \times n ; \mathbb{C})$ be a unitary matrix with the first column equal to vector v_{1}, and let $U_{1} \in M(m \times m ; \mathbb{C})$ be a unitary matrix with first column equal to u_{1}. Then

$$
U_{1}^{*} A V_{1}=\left[\begin{array}{cc}
\sigma_{1} & w^{*} \\
\mathbf{0} & B
\end{array}\right]
$$

where $w \in \mathbb{C}^{n-1}$ and $B \in M((m-1) \times(n-1) ; \mathbb{C})$.

[^0]
Singular Value Decomposition - SVD (continued)

Proof.
Then

$$
\left\|\left[\begin{array}{cc}
\sigma_{1} & w^{*} \\
\mathbf{0} & B
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
w
\end{array}\right]\right\|_{2} \geqslant \sigma_{1}^{2}+w^{*} w=\sqrt{\sigma_{1}^{2}+w^{*} w}\left\|\left[\begin{array}{c}
\sigma_{1} \\
w
\end{array}\right]\right\|_{2} .
$$

It follows that $w=\mathbf{0}$, otherwise σ_{1} is not maximal. By the inductive assumption there exists unitary matrices $V_{2} \in M((n-1) \times(n-1) ; \mathbb{C})$ and $U_{2} \in M((m-1) \times(m-1) ; \mathbb{C})$ such that

$$
A=U_{1}\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \Sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & V_{2}
\end{array}\right]^{*} V_{1}^{*} .
$$

Singular Value Decomposition - SVD (continued)

Proof.

To prove uniqueness of Σ, assume there exists a vector w corresponding to the singular value σ_{1}, such that v_{1}, w are linearly independent (i.e., $\|A w\|_{2}=\sigma_{1}$) such that $\|w\|_{2}=1$ (otherwise the subspace $\operatorname{lin}\left(v_{1}\right)^{\perp}$ is uniquely determined). Then the vector

$$
v_{2}=\frac{w-\left(v_{1}^{*} w\right) v_{1}}{\left\|w-\left(v_{1}^{*} w\right) v_{1}\right\|_{2}}
$$

equal to the unit vector of the projection of vector w onto the subspace $\operatorname{lin}\left(v_{1}\right)^{\perp} \subset \mathbb{C}^{m}$, satisfies the condition

$$
w=\alpha v_{1}+\beta v_{2}
$$

where $|\alpha|^{2}+|\beta|^{2}=1$ (vector w is a unit vector and vectors v_{1}, v_{2} are orthogonal).

Singular Value Decomposition - SVD (continued)

Proof.
Then $\|A v\|_{2} \leqslant \sigma_{1}$, and if $\|A v\|_{2}<\sigma_{1}$, then

$$
\|A w\|_{2}^{2}=|\alpha|^{2}\left\|A v_{1}\right\|_{2}^{2}+|\beta|^{2}\left\|A v_{2}\right\|_{2}^{2}<\sigma_{1}
$$

which leads to contradiction. Therefore, vector w is a vector corresponding to the singular value σ_{1} of matrix B. The claim follow by induction.

Real Singular Value Decomposition

Theorem
For any matrix $A \in M(m \times n ; \mathbb{R})$ there exists orthogonal matrices $U \in M(m \times m ; \mathbb{R}), V \in M(n \times n ; \mathbb{C})$ and a uniquely determined generalized diagonal matrix $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$ such that

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0
$$

where $r=r(A)$ and

$$
A=U \Sigma V^{\top} .
$$

Real Singular Value Decomposition

Theorem
For any matrix $A \in M(m \times n ; \mathbb{R})$ there exists orthogonal matrices $U \in M(m \times m ; \mathbb{R}), V \in M(n \times n ; \mathbb{C})$ and a uniquely determined generalized diagonal matrix
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$ such that

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0
$$

where $r=r(A)$ and

$$
A=U \Sigma V^{\top}
$$

Remark
As before, the orthogonal matrices U, V are not uniquely determined.

Real Singular Value Decomposition (continued)

The following proof, using the spectral theorem, after a slight modification works in the complex case too.

Proof.
Matrix $A^{\top} A \in M(n \times n ; \mathbb{R})$ is symmetric and positive semidefinite hence there exists orthonormal basis (not uniquely determined) $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ of \mathbb{R}^{n} consisting of eigenvectors of $A^{\top} A$ such that

$$
\begin{gathered}
v_{i}^{\top} A^{\top} A v_{j}=\left\{\begin{array}{cc}
0 & i \neq j, \\
\lambda_{i} & i=j,
\end{array} \quad \text { for } \quad i, j=1, \ldots, r,\right. \\
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{r}>0 \\
\lambda_{r+1}=\ldots \lambda_{n}=0
\end{gathered}
$$

where $\lambda_{i} \geqslant 0$ is an eigenvalue of $A^{\top} A$ corresponding to eigenvector $v_{i} \in \mathbb{R}^{n}$ and $r \in \mathbb{N}$ is some natural number such that $1 \leqslant r \leqslant n$.

Real Singular Value Decomposition (continued)

Proof.
Let

$$
\sigma_{i}=\sqrt{\lambda_{i}}, \quad \text { for } \quad i=1, \ldots, n
$$

and

$$
u_{i}=\frac{1}{\sigma_{i}} A v_{i} \in \mathbb{R}^{m}, \quad \text { for } \quad i=1, \ldots, r
$$

Then

$$
u_{i}^{\top} u_{j}=\frac{1}{\sigma_{i} \sigma_{j}} v_{i}^{\top} A^{\top} A v_{j}=\left\{\begin{array}{ll}
0 & i \neq j, \\
1_{i} & i=j,
\end{array} \quad \text { for } \quad i, j=1, \ldots, r .\right.
$$

Moreover

$$
A v_{i}=\mathbf{0}, \quad \text { for } \quad i=r+1, \ldots, n,
$$

as $\left\|A v_{i}\right\|^{2}=v_{i}^{\top} A^{\top} A v_{i}=0$.

Real Singular Value Decomposition (continued)

Proof.

Let $u_{1}, \ldots, u_{r}, u_{r+1}, \ldots, u_{m} \in \mathbb{R}^{m}$ be an extension of some orthonormal basis of imA $\subset \mathbb{R}^{m}$ to some othonormal basis \mathbb{R}^{m} (both not uniquely determined). Let $U \in M(m \times m ; \mathbb{R})$ be an orthogonal matrix which columns are equal to $u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}$, respectively and let $V \in M(n \times n ; \mathbb{R})$ be an orthogonal matrix which columns are equal to $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, respectively. Let

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})
$$

Real Singular Value Decomposition (continued)

Proof.
Then

$$
U \Sigma V^{\top} v_{i}=U \Sigma_{i} e_{i}=\sigma_{i} u_{i}=\sigma_{i}\left(\frac{1}{\sigma_{i}} A v_{i}\right)=A v_{i}
$$

for $i=1, \ldots, r$, and

$$
U \Sigma V^{\top} v_{i}=U \Sigma_{i} e_{i}=0 u_{i}=\mathbf{0}
$$

for $i=r+1, \ldots, n$. Therefore

$$
A=U \Sigma V^{\top}
$$

and $r(A)=r$ as $r(\Sigma)=r$ and matrices U, V are non-singular. For the uniqueness of matrix Σ proceed like in the complex case.

Real Singular Value Decomposition (continued)

Remark

The proof implies that

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

Real Singular Value Decomposition (continued)

Remark

The proof implies that

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

Remark
The preceding proof works after small modification in the complex case.

Pseudoinverse

Definition

With the same notation
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$ set

$$
\begin{gathered}
\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right) \in M(n \times m ; \mathbb{R}) \\
A^{+}=V \Sigma^{+} U^{*}
\end{gathered}
$$

Matrix A^{+}is called pseudoinverse or Moore-Penrose pseudoinverse of A (note that matrix Σ^{+}is of the same size as $\left.\Sigma^{\top}\right)$.

Pseudoinverse (continued)

Proposition

For any matrix $A \in M(m \times n ; \mathbb{C})$ there exists at most one matrix $A^{+} \in M(n \times m ; \mathbb{C})$ such that
i) $A A^{+} A=A$,

Pseudoinverse (continued)

Proposition

For any matrix $A \in M(m \times n ; \mathbb{C})$ there exists at most one matrix $A^{+} \in M(n \times m ; \mathbb{C})$ such that
i) $A A^{+} A=A$,
ii) $A^{+} A A^{+}=A^{+}$,

Pseudoinverse (continued)

Proposition

For any matrix $A \in M(m \times n ; \mathbb{C})$ there exists at most one matrix $A^{+} \in M(n \times m ; \mathbb{C})$ such that
i) $A A^{+} A=A$,
ii) $A^{+} A A^{+}=A^{+}$,
iii) $\left(A A^{+}\right)^{*}=A A^{+}$,

Pseudoinverse (continued)

Proposition

For any matrix $A \in M(m \times n ; \mathbb{C})$ there exists at most one matrix $A^{+} \in M(n \times m ; \mathbb{C})$ such that
i) $A A^{+} A=A$,
ii) $A^{+} A A^{+}=A^{+}$,
iii) $\left(A A^{+}\right)^{*}=A A^{+}$,
iv) $\left(A^{+} A\right)^{*}=A^{+} A$,

Pseudoinverse (continued)

Proposition

For any matrix $A \in M(m \times n ; \mathbb{C})$ there exists at most one matrix $A^{+} \in M(n \times m ; \mathbb{C})$ such that
i) $A A^{+} A=A$,
ii) $A^{+} A A^{+}=A^{+}$,
iii) $\left(A A^{+}\right)^{*}=A A^{+}$,
iv) $\left(A^{+} A\right)^{*}=A^{+} A$,
(in particular matrices $A A^{+}, A^{+} A$ are Hermitian). Moreover, matrix

$$
A^{+}=V \Sigma^{+} U^{*}
$$

satisfies the above conditions.

Pseudoinverse (continued)

Proof.

Let

$$
\begin{aligned}
A & =U \Sigma V^{*} \\
A^{+} & =V \Sigma^{+} U^{*}
\end{aligned}
$$

be the singular value decomposition of A, where

$$
\begin{gathered}
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R}), \\
\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right) \in M(n \times m ; \mathbb{R}) .
\end{gathered}
$$

Then
$\Sigma \Sigma^{+}=\left[\begin{array}{c|c}I_{r} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0}\end{array}\right] \in M(m \times m ; \mathbb{R}), \quad \Sigma^{+} \Sigma=\left[\begin{array}{c|c}I_{r} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0}\end{array}\right] \in M(n \times n ; \mathbb{R})$.
In particular

$$
\Sigma \Sigma^{+} \Sigma=\Sigma, \quad \Sigma^{+} \Sigma \Sigma^{+}=\Sigma^{+} .
$$

Pseudoinverse (continued)

Proof.

Then
i)

$$
A A^{+} A=\left(U \Sigma V^{*}\right) V \Sigma^{+} U^{*}\left(U \Sigma V^{*}\right)=U\left(\Sigma \Sigma^{+} \Sigma\right) V^{*}=A
$$

Pseudoinverse (continued)

Proof.

Then
i)

$$
A A^{+} A=\left(U \Sigma V^{*}\right) V \Sigma^{+} U^{*}\left(U \Sigma V^{*}\right)=U\left(\Sigma \Sigma^{+} \Sigma\right) V^{*}=A
$$

ii)

$$
A^{+} A A^{+}=\left(V \Sigma^{+} U^{*}\right) U \Sigma V^{*}\left(V \Sigma^{+} U^{*}\right)=V\left(\Sigma^{+} \Sigma \Sigma^{+}\right) U^{*}=A^{+}
$$

Pseudoinverse (continued)

Proof.

Then
i)

$$
A A^{+} A=\left(U \Sigma V^{*}\right) V \Sigma^{+} U^{*}\left(U \Sigma V^{*}\right)=U\left(\Sigma \Sigma^{+} \Sigma\right) V^{*}=A
$$

ii)

$$
A^{+} A A^{+}=\left(V \Sigma^{+} U^{*}\right) U \Sigma V^{*}\left(V \Sigma^{+} U^{*}\right)=V\left(\Sigma^{+} \Sigma \Sigma^{+}\right) U^{*}=A^{+}
$$

iii)

$$
\begin{gathered}
\left(A^{+} A\right)^{*}=A^{*}\left(A^{+}\right)^{*}=\left(U \Sigma V^{*}\right)^{*}\left(V \Sigma^{+} U^{*}\right)^{*}= \\
=\left(V \Sigma^{*} U^{*}\right)\left(U\left(\Sigma^{+}\right)^{*} V^{*}\right)=V\left(\Sigma^{+} \Sigma\right)^{*} V^{*}=V\left(\Sigma^{+} \Sigma\right) V^{*}= \\
=\left(V \Sigma^{+} U^{*}\right)\left(U \Sigma V^{*}\right)=V\left(\Sigma^{+} \Sigma\right) V^{*}=A^{+} A .
\end{gathered}
$$

Pseudoinverse (continued)

Proof.

Then
i)

$$
A A^{+} A=\left(U \Sigma V^{*}\right) V \Sigma^{+} U^{*}\left(U \Sigma V^{*}\right)=U\left(\Sigma \Sigma^{+} \Sigma\right) V^{*}=A
$$

ii)

$$
A^{+} A A^{+}=\left(V \Sigma^{+} U^{*}\right) U \Sigma V^{*}\left(V \Sigma^{+} U^{*}\right)=V\left(\Sigma^{+} \Sigma \Sigma^{+}\right) U^{*}=A^{+}
$$

iii)

$$
\begin{gathered}
\left(A^{+} A\right)^{*}=A^{*}\left(A^{+}\right)^{*}=\left(U \Sigma V^{*}\right)^{*}\left(V \Sigma^{+} U^{*}\right)^{*}= \\
=\left(V \Sigma^{*} U^{*}\right)\left(U\left(\Sigma^{+}\right)^{*} V^{*}\right)=V\left(\Sigma^{+} \Sigma\right)^{*} V^{*}=V\left(\Sigma^{+} \Sigma\right) V^{*}= \\
=\left(V \Sigma^{+} U^{*}\right)\left(U \Sigma V^{*}\right)=V\left(\Sigma^{+} \Sigma\right) V^{*}=A^{+} A .
\end{gathered}
$$

iv) j.w.

Pseudoinverse (continued)

Proof.

Assume that matrices $A^{+}, A^{\prime}+$ satisfy conditions i) - iv). Then

$$
\begin{gathered}
A^{+}=A^{+} A A^{+}=A^{+}(A) A^{+}=A^{+}\left(A A^{\prime+} A\right) A^{+}=A^{+}\left((A) A^{\prime+}(A)\right) A^{+}= \\
=A^{+}\left(\left(A A^{\prime+} A\right) A^{\prime+}\left(A A^{\prime+} A\right)\right) A^{+}=\left(A^{+} A\right)^{*}\left(A^{\prime+} A\right)^{*} A^{\prime+}\left(A A^{\prime+}\right)^{*}\left(A A^{+}\right)^{*}= \\
=\left(A^{*}\left(A^{+}\right)^{*}\right)\left(A^{*}\left(A^{\prime+}\right)^{*}\right) A^{\prime+}\left(\left(A^{\prime+}\right)^{*} A^{*}\right)\left(\left(A^{+}\right)^{*} A^{*}\right)= \\
=\left(A^{*}\left(A^{+}\right)^{*} A^{*}\right)\left(A^{\prime+}\right)^{*} A^{\prime+}\left(A^{\prime+}\right)^{*}\left(A^{*}\left(A^{+}\right)^{*} A^{*}\right)= \\
=\left(A\left(A^{+}\right) A\right)^{*}\left(A^{\prime+}\right)^{*} A^{\prime+}\left(A^{\prime+}\right)^{*}\left(A\left(A^{+}\right) A\right)^{*}= \\
=A^{*}\left(A^{\prime+}\right)^{*} A^{\prime+}\left(A^{\prime+}\right)^{*} A^{*}=
\end{gathered}
$$

Pseudoinverse (continued)

Proof.

$$
\begin{gathered}
=A^{*}\left(A^{\prime+}\right)^{*} A^{\prime+}\left(A^{\prime+}\right)^{*} A^{*}= \\
=\left(A^{\prime+} A\right)^{*} A^{\prime+}\left(A A^{\prime+}\right)^{*}=\left(A^{\prime+} A\right) A^{\prime+}\left(A A^{\prime+}\right)= \\
=A^{\prime+}\left(A A^{\prime+} A\right) A^{\prime+}=A^{\prime+} A A^{\prime+}=A^{\prime+}
\end{gathered}
$$

Singular Value Decomposition - Remarks

Remarks

i) if matrix A is real then there exists real orthogonal matrices U, V such that $A=U \Sigma V^{\top}$,
ii) when $\sigma_{1}>\sigma_{2}>\ldots>\sigma_{r}>0$, that is the singular values are pairwise different then the columns $1,2, \ldots, r$ of $U i V$ are uniquely determined up to a constant $\alpha_{i} \in \mathbb{C}$ (respectively $\alpha_{i} \in \mathbb{R}$, when A is real) such that $\left|\alpha_{i}\right|=1$,
iii) when $A \in M(n \times n ; \mathbb{C})$ and $\operatorname{det} A \neq 0$ then $A^{+}=A^{-1}$,
iv) the following matrix norms of A are determined by the singular values of A, i.e.,

$$
\begin{gathered}
\|A\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}} \\
\|A\|_{2}=\sigma_{1}
\end{gathered}
$$

Singular Value Decomposition - Remarks (continued)

Remarks

i) let $A=U \Sigma V^{*}$, that is

$$
A V=U \Sigma
$$

Denote by u_{1}, \ldots, u_{m} the columns of matrix $U \in M(m \times m ; \mathbb{R})$ and by v_{1}, \ldots, v_{n} the columns of matrix $V \in M(n \times n ; \mathbb{R})$. Then for $i=1, \ldots, \max m, n$

$$
A v_{i}=\sigma_{i} u_{i} .
$$

Moreover

$$
\begin{aligned}
\operatorname{ker} A & =\operatorname{lin}\left(v_{r+1}, \ldots, v_{n}\right) \\
\operatorname{imA} & =\operatorname{lin}\left(u_{1}, \ldots, u_{r}\right) .
\end{aligned}
$$

Singular Value Decomposition - Remarks (continued)

Remarks

vi) for any $k \leqslant r$ let $\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})$.

Then the matrix

$$
A_{k}=U \Sigma_{k} V^{*}
$$

satisfies the condition: for any matrix $B \in M(m \times n ; \mathbb{C})$ of rank k

$$
\begin{gathered}
\|A-B\|_{2} \geqslant\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}, \\
\|A-B\|_{F} \geqslant\left\|A-A_{k}\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\ldots+\sigma_{r}^{2}},
\end{gathered}
$$

where, assuming $A=\left[a_{i j}\right] \in M(m \times n ; \mathbb{C})$ the norms are defined as follows

$$
\begin{gathered}
\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)}=\sqrt{\operatorname{Tr}\left(A A^{*}\right)}=\sqrt{\sum_{\substack{i=1, \ldots, n \\
j=1, \ldots, m}}\left|a_{i j}\right|^{2}}, \\
\|A\|_{2}=\sup \left\{\|A x\|_{2} \in \mathbb{R} \mid x \in \mathbb{R}^{n},\|x\|_{2}=1\right\}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}, \\
\|x\|_{2}=\sqrt{x^{*} x} .
\end{gathered}
$$

The Best Low Rank Approximation

Proposition

Let $A \in M(m \times n ; \mathbb{C})$ be any matrix and let $A=U \Sigma V^{*}$ be its singular value decomposition, where

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R})
$$

and $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0$, i.e., $r(A)=r$. Then, for any k such that $0 \leqslant k<r$ and for any matrix $B \in M(m \times n ; \mathbb{C})$ such that $r(B)=k$ it holds

$$
\left\|A-A_{k}\right\| \leqslant\|A-B\|,
$$

where

$$
\begin{gathered}
A_{k}=U \Sigma_{k} V^{*} \\
\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right) \in M(m \times n ; \mathbb{R}),
\end{gathered}
$$

that is, matrix A_{k} of rank k is the best approximation of matrix A among matrices of rank k of the same size as matrix A (in the norm $\left.\|A\|=\sup _{\|x\|_{2}=1}\|A x\|_{2}\right)$.

The Best Low Rank Approximation (continued)

Proof.
Obviously $r\left(A_{k}\right)=k$. Moreover

$$
\begin{gathered}
\left\|A-A_{k}\right\|=\left\|U \operatorname{diag}\left(0, \ldots, \sigma_{k+1}, \ldots, \sigma_{r}, 0 \ldots, 0\right) V^{*}\right\|= \\
=\left\|\operatorname{diag}\left(0, \ldots, \sigma_{k+1}, \ldots, \sigma_{r}, 0 \ldots, 0\right)\right\|=\sigma_{k+1}
\end{gathered}
$$

Let $B \in M(m \times n ; \mathbb{C})$ be any matrix such that $r(B)=k$. Let

$$
W=\left\{w \in \mathbb{R}^{m} \mid B w=\mathbf{0}\right\} .
$$

Let $w_{1}, \ldots, w_{n-k} \in \mathbb{C}^{n}$ be an unitary orthonormal basis of subspace $W \subset \mathbb{C}^{n}$. Let $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ denote columns of matrix V. Let

$$
v \in \operatorname{lin}\left(v_{1}, \ldots, v_{k+1}\right) \cap W \neq\{\boldsymbol{0}\}
$$

be any (non-zero) vector such that

$$
\|v\|=1
$$

The Best Low Rank Approximation (continued)

Proof.

Then

$$
\begin{gathered}
\|A-B\| \geqslant\|(A-B) v\|=\|A v\|= \\
=\left\|\sum_{i=1}^{r}\left(u_{i} \sigma_{i} v_{i}^{*}\right) v\right\|=\left\|\sum_{i=k+1}^{r}\left(\left(v_{i}^{*} v\right) u_{i} \sigma_{i}\right)\right\|= \\
=\sum_{i=k+1}^{r} \sigma_{i}^{2}\left(v_{i}^{*} v\right)^{2} \geqslant \sigma_{k+1} \sum_{i=k+1}^{r}\left(v_{i}^{*} v\right)^{2} \geqslant \sigma_{k+1},
\end{gathered}
$$

since

$$
\|V v\|^{2}=\sum_{i=1}^{n}\left(v_{i}^{*} v\right)^{2}=1 \geqslant \sum_{i=k+1}^{r}\left(v_{i}^{*} v\right)^{2} .
$$

Singular Value Decomposition - Example

Let

$$
A=\left[\begin{array}{rr}
5 & 5 \\
-1 & 7
\end{array}\right]
$$

Then, assuming $A=U \Sigma V^{*}$, we have

$$
\begin{aligned}
A^{*} A & =\left(V \Sigma^{*} U^{*}\right)\left(U \Sigma V^{*}\right)=V \Sigma^{*} \Sigma V^{*}=\left[\begin{array}{ll}
26 & 18 \\
18 & 74
\end{array}\right]= \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right]\left[\begin{array}{cc}
80 & 0 \\
0 & 20
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right] \\
A A^{*} & =\left(U \Sigma V^{*}\right)\left(V \Sigma^{*} U^{*}\right)=U \Sigma \Sigma^{*} U^{*}=\left[\begin{array}{ll}
50 & 30 \\
30 & 50
\end{array}\right]= \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
80 & 0 \\
0 & 20
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] .
\end{aligned}
$$

Singular Value Decomposition - Example (continued)

Hence

$$
A=\left[\begin{array}{rr}
5 & 5 \\
-1 & 7
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
4 \sqrt{5} & 0 \\
0 & 2 \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right],
$$

that is

$$
\begin{gathered}
U=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
4 \sqrt{5} & 0 \\
0 & 2 \sqrt{5}
\end{array}\right], \quad V=\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right], \\
\end{gathered}
$$

therefore the best rank 1 approximation of matrix A in the norm $\|\cdot\|_{2}$ oraz $\|\cdot\|_{F}$ is

$$
A_{1}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
4 \sqrt{5} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 6 \\
2 & 6
\end{array}\right] .
$$

Singular Value Decomposition - Example (continued)

$$
\begin{gathered}
A=\left[\begin{array}{rr}
5 & 5 \\
-1 & 7
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
4 \sqrt{5} & 0 \\
0 & 2 \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{3}} \\
A_{1}=\left[\begin{array}{ll}
2 & 6 \\
2 & 6
\end{array}\right], \\
\frac{1}{\sqrt{10}}
\end{array}\right], \\
B=A-A_{1}=\left[\begin{array}{rr}
3 & -1 \\
-3 & 1
\end{array}\right],
\end{gathered}
$$

and

$$
\begin{aligned}
& \|B\|_{F}=\sqrt{3^{2}+(-1)^{2}+3^{2}+(-1)^{2}}=2 \sqrt{5}=\sigma_{2}(A), \\
& \operatorname{det}\left(B^{*} B-\lambda I\right)=\operatorname{det}\left[\begin{array}{cc}
18-\lambda & -6 \\
-6 & 2-\lambda
\end{array}\right]=\lambda\left(\lambda^{2}-20\right),
\end{aligned}
$$

hence

$$
\|B\|_{2}=\sqrt{\lambda_{\max }\left(B^{*} B\right)}=\sqrt{20}=4 \sqrt{5} .
$$

Optimal Solution of a System of Linear Equations

Definition

For any system of linear equations $A x=b$ where $A \in M(m \times n ; \mathbb{C}), b \in M(m \times 1 ; \mathbb{C})$ the vector $x \in \mathbb{C}^{n}$ is called the optimal solution if

$$
\|A x-b\|_{2} \leqslant\|A y-b\|_{2} \text { for any } y \in \mathbb{C}^{n}
$$

and if $\|A x-b\|_{2}=\left\|A x^{\prime}-b\right\|_{2}$ then $\|x\|_{2} \leqslant\left\|x^{\prime}\right\|_{2}$,
Proposition
For any matrices $A \in M(m \times n ; \mathbb{C}), b \in M(m \times 1 ; \mathbb{C})$ the vector

$$
x=A^{+} b
$$

is the optimal solution of the system $A x=b$.

Optimal Solution of a System of Linear Equations

Proof.

Let $P=A A^{+}$be the matrix of orthogonal projection onto $\operatorname{im}(A)$.
Then for any x

$$
\begin{gathered}
\|A x-b\|_{2}=\|A x-P b+(P-I) b\|_{2}= \\
=\|A x-P b\|_{2}+\|(P-I) b\|_{2} \geqslant\|(P-I) b\|_{2} .
\end{gathered}
$$

The lower bound (which does not depend on x) is attained when $x=A^{+} b$. Assume that $A x=A x^{\prime}$ where $x=A^{+} b \in \operatorname{im}\left(A^{*}\right)$.
Therefore there exists $n \in \operatorname{ker} A$ such that $x^{\prime}=x+n$ where x and n are perpendicular. Therefore

$$
\left\|x^{\prime}\right\|_{2}=\|x\|_{2}+\|n\|_{2} \geqslant\|x\|_{2}
$$

Example

For

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right] . \\
A^{+}=\left[\begin{array}{rrr}
\frac{3}{2} & -1 & \frac{3}{2} \\
-1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

It follows

$$
A^{+} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A^{+} B=\left[\begin{array}{r}
3 \\
-2
\end{array}\right],
$$

which is the optimal solution of $A X=B$.

Hadamard's inequality

Proposition

For any matrix $A \in M(n \times n ; \mathbb{R})$

$$
|\operatorname{det} A| \leqslant\left\|c_{1}\right\| \cdot \ldots \cdot\left\|c_{n}\right\|
$$

where c_{i} is the $i-$ th column of matrix A and

$$
\left\|c_{i}\right\|=\sqrt{c_{i}^{\top} c_{i}}
$$

is the (Euclidean) length of the $i-t h$ column, for $i=1, \ldots, n$.
Moreover, the equality holds if and only if

$$
c_{i} \perp c_{j}, \quad \text { for } \quad i \neq j
$$

Hadamard's inequality (continued)

Proof.

If $c_{i}=\mathbf{0}$ or $\operatorname{det} A=0$ then there is nothing to prove. Dividing each column of matrix A by its length the problem reduces to the following one

$$
|\operatorname{det} A| \leqslant 1
$$

where $\left\|c_{i}\right\|=1$ for $i=1, \ldots, n$. Let

$$
M=A^{\top} A
$$

Then matrix M is a positive definite symmetric matrix. Moreover,

$$
\operatorname{Tr} M=\sum_{i=1}^{n} m_{i i}=n
$$

where $M=\left[m_{i j}\right]$ as columns of matrix A are of length 1 .

Hadamard's inequality (continued)

Proof.

By spectral theorem matrix M is diagonalizable and therefore

$$
\operatorname{det} M=\lambda_{1} \cdot \ldots \cdot \lambda_{n}
$$

Moreover
$\operatorname{det} M=\operatorname{det}\left(A^{\top} A\right)=(\operatorname{det} A)^{2}=\lambda_{1} \cdot \ldots \cdot \lambda_{n} \leqslant\left(\frac{\lambda_{1}+\ldots+\lambda_{n}}{n}\right)^{n}=1$,
by the Arithmetic-Geometric Mean Inequality. The upper bound is achieved when

$$
\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=1
$$

i.e., when $M=A^{\top} A=I$ that is when columns of A or pairwise perpendicular.

Cauchy-Schwarz Inequality

Proposition

Let $A \in M(n \times n ; \mathbb{R})$ be a positive semidefinite symmetric matrix. Then for any $x, y \in \mathbb{R}^{n}$

$$
\left|x^{\top} A y\right| \leqslant\left(x^{\top} A x\right)^{\frac{1}{2}}\left(y^{\top} A y\right)^{\frac{1}{2}}
$$

Proof.
For any $t \in \mathbb{R}$,

$$
0 \leqslant(x-t y)^{\top} A(x-t y)=\left(y^{\top} A y\right) t^{2}-2\left(x^{\top} A y\right) t+\left(x^{\top} A x\right)
$$

Hence, the discriminant

$$
\Delta=4\left(x^{\top} A y\right)^{2}-4\left(x^{\top} A x\right)\left(y^{\top} A y\right) \leqslant 0
$$

Cauchy-Schwarz Inequality (continued)

Definition

Vector $x \in \mathbb{R}^{n}$ is isotropic (with respect to a symmetric matrix A) if $x^{\top} A x=0$.

Corollary
Let $A \in M(n \times n ; \mathbb{R})$ be a symmetric positive semidefinite matrix.
Then $x \in \mathbb{R}^{n}$ is isotropic if and only if $A x=\mathbf{0}$.
Proof.
Assume $y \in \mathbb{R}^{n}$ is istotropic in the proof of Cauchy-Schwarz inequality. Then the linear function

$$
-2\left(x^{\top} A y\right) t+\left(x^{\top} A x\right) \geqslant 0
$$

is non-negative for any $x \in \mathbb{R}^{n}$. This implies $x^{\top} A y=0$ for any $x \in \mathbb{R}^{n}$, i.e. $A y=\mathbf{0}$.

Convex Cone

Definition

A subset $C \subset \mathbb{R}^{n}$ is a cone, if
i) for any $v, w \in C$

$$
v+w \in C
$$

ii) for any $v \in C$ and any $\alpha \in \mathbb{R}$ such that $\alpha \geqslant 0$,

$$
\alpha \in C .
$$

The cone C is pointed if it does not contain a one-dimensional subspace of \mathbb{R}^{n} (i.e, a line). The cone C is (closed) polyhedral if it equal to the intersection of finite (closed) half-spaces in \mathbb{R}^{n}.

Dual Cone

Definition

Let $A \subset \mathbb{R}^{n}$ be any subset. Let $v \cdot w$ be a scalar product in $b R^{n}$. Then the set

$$
A^{v}=\left\{v \in \mathbb{R}^{n} \mid v \cdot w \geqslant 0 \text { for any } w \in A\right\}
$$

is called the dual cone of the set A.
Proposition
For any subset $A \subset \mathbb{R}^{n}$ the set A^{\vee} is a closed convex cone.
Proof.
Exercise.

Cone Spanned by Set

Definition
A cone $C \subset \mathbb{R}^{n}$ is spanned by set $A \subset \mathbb{R}^{n}$ if
$C=\left\{\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k} \in \mathbb{R}^{n} \mid v_{1}, \ldots, v_{k} \in A, \alpha_{1}, \ldots, \alpha_{k} \geqslant 0, k \geqslant 1\right\}$.
We write

$$
C=\operatorname{cone}(A)
$$

and if $A=\left\{v_{1}, \ldots, v_{k}\right\}$

$$
C=\operatorname{cone}\left(v_{1}, \ldots, v_{k}\right)
$$

Extremal Rays of a Cone

Definition

Let $C \subset \mathbb{R}^{n}$ be a (convex) cone. Vector (or a half-line spanned by it) $v \in C, v \neq \mathbf{0}$ is an extremal ray of cone C, if for any
$v_{1}, v_{2} \in V$, if $v=v_{1}+v_{2}$ then $v_{1}=t v$ or $v_{2}=t v$ for some $t \geqslant 0$.

The Positive Semidefinite Cone

Definition

Let

$$
\mathbb{S}^{n}=\left\{A \in M\left(n \times n ; \mathbb{R}^{n}\right) \mid A^{\top}=A\right\} \subset M(n \times n ; \mathbb{R}),
$$

be the $\binom{n+1}{2}$ subspace of symmetric matrices with the (standard) scalar product given by

$$
A \cdot B=\operatorname{Tr}(A B)
$$

for any $A, B \in \mathbb{S}^{n}$.

Definition

Let

$$
\begin{gathered}
C_{\geqslant 0}=\left\{A \in \mathbb{S}^{n} \mid A \text { is postive semidefinite }\right\}, \\
C_{>0}=\left\{A \in \mathbb{S}^{n} \mid A \text { is postive definite }\right\}
\end{gathered}
$$

denote the positive semidefinite and positive definite cones, respectively.

The Positive Semidefinite Cone (continued)

Proposition

i) the positive semidefinite cone $C_{\geqslant 0}$ is a closed convex pointed cone,
ii) the positive semidefinite cone $C_{\geqslant 0}$ is self-dual, i.e.

$$
C_{\geqslant 0}^{\vee}=C_{\geqslant 0},
$$

with respect to the scalar product given by the trace,
iii) the positive semidefinite cone $C_{\geqslant 0}$ is spanned by rank 1 matrices $v v^{\top}$, i.e.,

$$
C_{\geqslant 0}=\operatorname{cone}\left(\left\{v v^{\top} \in \mathbb{S}^{n} \mid v \in \mathbb{R}^{n}\right\}\right),
$$

iv) the matrices v^{\top} are exactly the extremal rays of the cone $C_{\geqslant 0}$,
v)

$$
\operatorname{int} C_{\geqslant 0}=C_{>0} .
$$

The Positive Semidefinite Cone (continued)

Proposition

i) the positive semidefinite cone $C_{\geqslant 0}$ is a closed convex pointed cone,
ii) the positive semidefinite cone $C_{\geqslant 0}$ is self-dual, i.e.

$$
C_{\geqslant 0}^{\vee}=C_{\geqslant 0},
$$

with respect to the scalar product given by the trace,
iii) the positive semidefinite cone $C_{\geqslant 0}$ is spanned by rank 1 matrices $v v^{\top}$, i.e.,

$$
C_{\geqslant 0}=\operatorname{cone}\left(\left\{v v^{\top} \in \mathbb{S}^{n} \mid v \in \mathbb{R}^{n}\right\}\right),
$$

iv) the matrices v^{\top} are exactly the extremal rays of the cone $C_{\geqslant 0}$,
v)

$$
\operatorname{int} C_{\geqslant 0}=C_{>0} .
$$

Proof.
Omitted. Involves mostly eigenvalue decomposition.

The Positive Semidefinite Cone (continued)

Remark

The positive semidefinite cone is described by polynomial inequalities given by the all principal minors (Sylvester's criterion). For example matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right],
$$

is positive semidefinite if and only if

$$
\left\{\begin{array}{c}
a \geqslant 0 \\
c \geqslant 0 \\
a c-b^{2} \geqslant 0
\end{array}\right.
$$

The extremal rays of the positive semidefinite cone are exactly of the form

$$
\left[\begin{array}{l}
s \\
t
\end{array}\right]\left[\begin{array}{ll}
s & t
\end{array}\right]=\left[\begin{array}{ll}
s^{2} & s t \\
s t & t^{2}
\end{array}\right]
$$

for any $s, t \in \mathbb{R}$.

The Positive Semidefinite Cone (continued)

Remark

When $\|v\|=1$ the matrix $v v^{\top}$ is the matrix of the orthogonal (linear) projections onto $\operatorname{lin}(v)$, i.e.

$$
M\left(P_{\operatorname{lin}(v)}\right)_{s t}^{s t}=v v^{\top} .
$$

In general, for any $v \neq \mathbf{0}$

$$
M\left(P_{\operatorname{lin}(v)}\right)_{s t}^{s t}=\frac{v v^{\top}}{v^{\top} v} .
$$

Non-negative Polynomials

Definitions

Let $d \geqslant 1$. A polynomial $p(x)$ of degree $2 d$ is non-negative if for any $x \in \mathbb{R}$

$$
p(x) \geqslant 0 .
$$

Proposition

A polynomial $p(x)$ of degree $2 d$ is non-negative if and only if all its real roots are of even multiplicity and if $a_{2 d}>0$ where $p(x)=a_{2 d} x^{2 n}+\ldots$ (that is the leading coefficient is positive).

Proof.
Exercise.

Non-negative Polynomials (continued)

Proposition

A polynomial $p(x)=\sum_{i=0}^{2 d} a_{i} x^{i}$ of degree $2 d$ is non-negative if and only if there exists a symmetric positive semidefinite matrix
$M=\left[m_{i j}\right] \in M((d+1) \times(d+1) ; \mathbb{R})$ such that

$$
a_{k}=\sum_{i+j=k} m_{i j}
$$

for any $k=0, \ldots, 2 d$ where rows and columns of matrix M are numbered from 0 to d. Moreover the correspondence is one-to-one.

Non-negative Polynomials (continued)

Proof.
(\Leftarrow) Let $\mathbf{x}=\left(1, x, x^{2}, \ldots, x^{d}\right)$. Then

$$
p(x)=\mathbf{x}^{\top} M \mathbf{x} \geqslant 0
$$

(\Rightarrow)

$$
p(z)=a_{2 d} \prod_{i=1}^{d}\left(z-z_{i}\right)\left(z-\overline{z_{i}}\right)
$$

where $z_{i}, \bar{z}_{i} \in \mathbb{C}$ are complex roots of $p(x)$. Let

$$
q(x)=\sqrt{a_{2 d}} \prod_{i=1}^{d}\left(x-z_{i}\right)=\sum_{i=0}^{d} c_{i} x^{i}
$$

Let

$$
\begin{aligned}
& q_{1}(x)=\operatorname{Re} q(x)=\sum_{i=0}^{d}\left(\operatorname{Re} c_{i}\right) x^{i} \\
& q_{2}(x)=\operatorname{Im} q(x)=\sum_{i=0}^{d}\left(\operatorname{lm} c_{i}\right) x^{i}
\end{aligned}
$$

Non-negative Polynomials (continued)

Proof.

i.e.

$$
q(x)=q_{1}(x)+\sqrt{-1} q_{2}
$$

Then for any $x \in \mathbb{R}$

$$
\begin{aligned}
p(x) & =q(x) \overline{q(x)}=|q(x)|^{2}=q_{1}^{2}(x)+q_{2}^{2}(x)= \\
& =\left(v^{\top} \mathbf{x}\right)^{2}+\left(w^{\top} \mathbf{x}\right)^{2}=\mathbf{x}^{\top}\left(v v^{\top}+w w^{\top}\right) \mathbf{x}
\end{aligned}
$$

where

$$
\begin{aligned}
& v=\left(\operatorname{Re} c_{0}, \operatorname{Re} c_{1}, \ldots, \operatorname{Re} c_{d}\right) \in \mathbb{R}^{d+1} \\
& w=\left(\operatorname{Im} c_{0}, \operatorname{Im} c_{1}, \ldots, \operatorname{Im} c_{d}\right) \in \mathbb{R}^{d+1}
\end{aligned}
$$

Example

Let

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 2 & -1
\end{array}\right]
$$

Then

$$
M=A^{\top} A=\left[\begin{array}{rrr}
2 & -2 & 1 \\
-2 & 5 & -2 \\
1 & -2 & 2
\end{array}\right],
$$

is positive definite. Therefore, the polynomial

$$
p(x)=\left[\begin{array}{lll}
1 & x & x^{2}
\end{array}\right]\left[\begin{array}{rrr}
2 & -2 & 1 \\
-2 & 5 & -2 \\
1 & -2 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right]=2 x^{4}-4 x^{3}+7 x^{2}-4 x+2,
$$

is non-negative. In fact,

$$
f(x) \geqslant f(0.3768669139161389 \ldots) \approx 1.312973699214175 \ldots>0
$$

Quiz

Is it possible to find $n \geqslant 1$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{n}$ such that

$$
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|=\left\|\mathbf{x}_{2}-\mathbf{x}_{3}\right\|=1, \quad\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|=3 ?
$$

Quiz

Is it possible to find $n \geqslant 1$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{n}$ such that

$$
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|=\left\|\mathbf{x}_{2}-\mathbf{x}_{3}\right\|=1, \quad\left\|\mathbf{x}_{1}-\mathbf{x}_{3}\right\|=3 ?
$$

No, it is not possible as

$$
\begin{gathered}
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leqslant\left\|\mathbf{x}_{1}-\mathbf{x}_{2}+\mathbf{x}_{2}-\mathbf{x}_{3}\right\| \leqslant \\
\leqslant\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|+\left\|\mathbf{x}_{2}-\mathbf{x}_{3}\right\|
\end{gathered}
$$

(triangle inequality) but it is not true that $3 \leqslant 1+1=2$.

Properties of Pseudoinverses

Proposition

Let $A \in M(m \times n ; \mathbb{R})$ be any matrix. Then $P=A A^{+}$is a matrix of the orthogonal projection onto imA and $Q=A^{+} A$ is a matrix of the orthogonal projection onto im A^{\top}.

Proof.
Let $A=U \Sigma V^{\top}$ be an SVD decomposition of A. Then

$$
P=U \Sigma V^{\top} V \Sigma^{+} U^{\top}=U_{:, 1: r} U_{:, 1: r}^{\top},
$$

is symmetric where $r=r(A)$ and $U_{:, 1: r}$ denotes first r columns of matrix A (orthonormal basis or $\operatorname{im} A$). Moreover

$$
P^{2}=A A^{+} A A^{+}=A A^{+}=P
$$

Similarly for Q.

Properties of Pseudoinverses (continued)

Proposition
Let $A \in M(m \times n ; \mathbb{R})$ be any matrix.

$$
A^{+}=\left(A^{\top} A\right)^{+} A^{\top}, \quad A^{+}=A^{\top}\left(A A^{\top}\right)^{+} .
$$

Proof.
Let $A=U \Sigma V^{\top}$ be an SVD decomposition of A. Then

$$
\begin{gathered}
A^{\top} A=V \Sigma^{2} V^{\top} \\
\left(A^{\top} A\right)^{+}=V\left(\Sigma^{2}\right)^{+} V^{\top} \\
\left(A^{\top} A\right)^{+} A=V\left(\Sigma^{2}\right)^{+} V^{\top} V \Sigma U^{\top}=A^{+} .
\end{gathered}
$$

The second part is similar.

Properties of Pseudoinverses (continued)

Proposition
Let $A \in M(m \times n ; \mathbb{R})$ be a matrix. If $r(A)=m$ (full row rank) then

$$
A^{+}=A^{\top}\left(A A^{\top}\right)^{-1}
$$

If $r(A)=n$ (full column rank) then

$$
A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}
$$

Proof.

Follows from the above proposition (matrices $A A^{\top}$ and $A^{\top} A$ are invertible).

Properties of Pseudoinverses (continued)

The following lemma will be subsequently used in the proof of Greville's conditions.
Proposition
Let $A, B \in M(m \times n ; \mathbb{R})$ be any matrices. Then

$$
\begin{aligned}
& A^{\top}=A^{+} A A^{\top} \\
& B^{\top}=B^{\top} B B^{+}
\end{aligned}
$$

Proof.

Since $A^{+} A$ is a matrix of (orthogonal) projection onto im $\left(A^{\top}\right)$ and $B B^{+}$is a matrix of (orthogonal) projection onto im(B)

$$
\begin{aligned}
A^{\top} & =A^{+} A A^{\top} \\
B & =B B^{+} B
\end{aligned}
$$

Conjugating the last equation finishes the proof.

Inverse Law

Theorem (Greville)

Let $A \in M(m \times n ; \mathbb{R}), \quad B \in M(n \times k ; \mathbb{R})$. If $(A B)^{+}=B^{+} A^{+}$then $\operatorname{im}\left(A^{\top} A B\right) \subset \operatorname{im}(B)$ and $\operatorname{im}\left(B B^{\top} A^{\top}\right) \subset \operatorname{im}\left(A^{\top}\right)$.

Proof.
By the above lemma applied to $A B$ (the second case) using the main assumption

$$
B^{\top} A^{\top}=B^{\top} A^{\top} A B B^{+} A^{+}
$$

Multiplying on the right by $A A^{\top} A B$ gives

$$
B^{\top} A^{\top} A A^{\top} A B=B^{\top} A^{\top} A B B^{+} A^{+} A A^{\top} A B .
$$

By the above lemma

$$
B^{\top} A^{\top} A A^{\top} A B=B^{\top} A^{\top} A B B^{+}\left(A^{+} A A^{\top}\right) A B=B^{\top} A^{\top} A B B^{+} A^{\top} A B,
$$

i.e.,

$$
B^{\top} A^{\top} A\left(I-B B^{+}\right) A^{\top} A B=0 .
$$

Inverse Law(continued)

Proof.

$$
B^{\top} A^{\top} A\left(I-B B^{+}\right) A^{\top} A B=0 .
$$

The middle matrix is idempotent and symmetric hence

$$
\left\|\left(I-B B^{+}\right) A^{\top} A B\right\|_{2}^{2}=0
$$

which is equivalent to

$$
\operatorname{im}\left(A^{\top} A B\right) \subset \operatorname{im}(B)
$$

The rest is similar to the previous argument.

Inverse Law(continued)

In fact, the converse holds.
Theorem (Greville)
Let $A \in M(m \times n ; \mathbb{R}), B \in M(n \times k ; \mathbb{R})$. If $\operatorname{im}\left(B B^{\top} A^{\top}\right) \subset \operatorname{im}\left(A^{\top}\right)$ and $\operatorname{im}\left(A^{\top} A B\right) \subset \operatorname{im}(B)$ then $(A B)^{+}=B^{+} A^{+}$.

Proof.
The assumptions imply that

$$
\begin{aligned}
A^{+} A B B^{\top} A^{\top} & =B B^{\top} A^{\top}, \\
B B^{+} A^{\top} A B & =A^{\top} A B,
\end{aligned}
$$

Multiplying the first equation on the right by $\left((A B)^{\top}\right)^{+}$and on the left by B^{+}gives

$$
B^{+} A^{+} A B B^{\top} A^{\top}\left((A B)^{\top}\right)^{+}=B^{+} B B^{\top} A^{\top}\left((A B)^{\top}\right)^{+} .
$$

Inverse Law(continued)

Proof.

$$
\begin{gathered}
B^{+} A^{+} A B B^{\top} A^{\top}\left((A B)^{\top}\right)^{+}=B^{+} B B^{\top} A^{\top}\left((A B)^{\top}\right)^{+} \\
B^{+} A^{+} A B(A B)^{\top}\left((A B)^{\top}\right)^{+}=\left(B^{+} B B^{\top}\right) A^{\top}\left((A B)^{\top}\right)^{+}
\end{gathered}
$$

By the previous lemma this is equivalent to

$$
B^{+} A^{+} A B=(A B)^{\top}\left((A B)^{\top}\right)^{+},
$$

therefore the matrix $B^{+} A^{+} A B$ is symmetric.

Inverse Law(continued)

Proof.
Similarly, by multiplying

$$
B B^{+} A^{\top} A B=A^{\top} A B,
$$

on the left by $\left((A)^{+}\right)^{\top}$

$$
\begin{gathered}
\left((A)^{+}\right)^{\top} B B^{+} A^{\top} A B=\left(\left((A)^{+}\right)^{\top} A^{\top} A\right) B \\
\left((A)^{+}\right)^{\top} B B^{+} A^{\top} A B=A B
\end{gathered}
$$

Multiplying the above on the right by $(A B)^{+}$and using on the left hand side $B^{+}=\left(B^{\top} B\right)^{+} B^{\top}$ gives

$$
\begin{gathered}
\left((A)^{+}\right)^{\top} B\left(B^{\top} B\right)^{+} B^{\top} A^{\top}(A B)(A B)^{+}=(A B)(A B)^{+}, \\
\left((A)^{+}\right)^{\top}\left((B)^{+}\right)^{\top}(A B)^{\top}=(A B)(A B)^{+},
\end{gathered}
$$

which, after conjugating side-wise implies that $A B B^{+} A^{+}$is symmetric.

Inverse Law(continued)

Proof.

The first Penrose condition is easily verified.

$$
\begin{aligned}
& A B B^{+} A^{+} A B=A B\left(B^{+} A^{+} A B\right)= \\
& =A B(A B)^{\top}\left((A B)^{\top}\right)^{+}=A B
\end{aligned}
$$

Note that

$$
\operatorname{im}\left(B B^{*} A^{*}\right) \subset \operatorname{im}\left(A^{*}\right) \Longrightarrow \operatorname{im}\left(B B^{+} A^{+}\right) \subset \operatorname{im}\left(A^{+}\right)
$$

($\operatorname{im}\left(A^{+}\right)=\operatorname{im}\left(A^{*}\right)$ and any eigenvector of $B B^{*}$ is an eigenvector of $B B^{+}$, moreover any linear combination of eigenvectors of $B B^{*}$ corresponding to non-zero eigenvalues is an eigenvalue of $B B^{+}$.)

Inverse Law(continued)

Proof.

The second Penrose condition follows from $\operatorname{im}\left(B B^{+} A^{+}\right) \subset \operatorname{im}\left(A^{+}\right)$. Fix any vector u and let

$$
v=B^{+} A^{+} A B B^{+} A^{+} u=B^{+} A^{+} A\left(B B^{+} A^{+}\right) u .
$$

There exists vector w such that $\left(B B^{+} A^{+}\right) u=A^{+} w$, i.e.,

$$
v=B^{+} A^{+} A A^{+} w=B^{+} A^{+} w=B^{+} B B^{+} A^{+} u=B^{+} A^{+} u .
$$

Since vector u was arbitrary

$$
B^{+} A^{+} A B B^{+} A^{+}=B^{+} A^{+} .
$$

Inverse Law(continued)

Remark

This also shows that condition $\operatorname{im}\left(A^{\top} A B\right) \subset \operatorname{im}(B)$ implies conditions i), ii) and iii) for $B^{+} A^{+}$.

Positive Semidefinite Block Matrix

Proposition

For any matrices
$A \in M(m \times m ; \mathbb{R}), B \in M(n \times m ; \mathbb{R}), C \in M(n \times n ; \mathbb{R})$ where A and
C are symmetric, let

$$
M=\left[\begin{array}{cc}
A & B^{\top} \\
B & C
\end{array}\right],
$$

be a symmetric positive semidefinite matrix. Then

$$
B^{\top}=A A^{+} B^{\top}, \quad B=\left(C C^{+}\right)^{\top} B
$$

Positive Semidefinite Block Matrix (continued)

Proof.

By spectral decomposition there exist $N \in M((m+n) \times(m+n) ; \mathbb{R})$ such that $M=N^{\top} N$. Assume that $N=\left[\begin{array}{ll}N_{1} & N_{2}\end{array}\right]$, where $N_{1} \in M((m+n) \times m ; \mathbb{R}), N_{2} \in M((m+n) \times n ; \mathbb{R})$. Then

$$
A=N_{1}^{\top} N_{1}, \quad B^{\top}=N_{1}^{\top} N_{2}, \quad C=N_{2}^{\top} N_{2} .
$$

Moreover,

$$
A A^{+} B^{\top}=\left(N_{1}^{\top} N_{1}\right)\left(N_{1}^{\top} N_{1}\right)^{+} N_{1}^{\top} N_{2}=N_{1}^{\top} N_{2}=B^{\top},
$$

as $\left(N_{1}^{\top} N_{1}\right)\left(N_{1}^{\top} N_{1}\right)^{+}$is an orthogonal projection onto $\operatorname{im}\left(N_{1}^{\top} N_{1}\right)=\operatorname{im}\left(N_{1}^{\top}\right)$. Similarly,

$$
\left(C C^{+}\right)^{\top} B=\left(N_{2}^{\top} N_{2}\right)^{+}\left(N_{2}^{\top} N_{2}\right) N_{2}^{\top} N_{1}=N_{2}^{\top} N_{1} .
$$

Schur Complement

Definition

For any matrices $A \in M(m \times m ; \mathbb{R}), B \in M(m \times n ; \mathbb{R}), C \in$ $M(n \times m ; \mathbb{R}), D \in M(n \times n ; \mathbb{R})$ and the matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

the Schur complement of matrix A with respect to M is

$$
M \mid A=D-C A^{+} B
$$

Schur Complement (continued)

Proposition
A positive symmetric semidefinite matrix

$$
M=\left[\begin{array}{cc}
A & B^{\top} \\
B & C
\end{array}\right]
$$

is conjugate to the matrix $\operatorname{diag}(A, M \mid A)$, where $M \mid A=C-B A^{+} B^{\top}$.
Proof.

$$
\begin{gathered}
{\left[\begin{array}{cc}
l & 0 \\
B A^{+} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & M \mid A
\end{array}\right]\left[\begin{array}{cc}
l & A^{+} B^{\top} \\
0 & I
\end{array}\right]=} \\
=\left[\begin{array}{cc}
A & 0 \\
B A^{+} A & M \mid A
\end{array}\right]\left[\begin{array}{cc}
l & A^{+} B^{\top} \\
0 & I
\end{array}\right]= \\
=\left[\begin{array}{cc}
A & A A^{+} B^{\top} \\
B A^{+} A & B A^{+} A A^{+} B^{\top}+M \mid A
\end{array}\right]=\left[\begin{array}{cc}
A & A A^{+} B^{\top} \\
B A^{+} A & C
\end{array}\right]=M .
\end{gathered}
$$

Schur Complement (continued)

Corollary

If a symmetric matrix

$$
M=\left[\begin{array}{cc}
A & B^{\top} \\
B & C
\end{array}\right]
$$

is positive semidefinite then matrix A is positive semidefinite and the Schur complement $M \mid A$ is postive semidefinite. If matrix A is positive semidefinite and the Schur complement $M \mid A$ is postive semidefinite for symmetric matrix M and $B A^{+} A=B$ (for example when A is invertible) then M is positive semidefinite. Similar theorem is true for positive definite matrices.

Quiz (continued)

Is it possible to find $n \geqslant 1$ and $\mathbf{x}_{0}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{5} \in \mathbb{R}^{n}$ such that (addition modulo 6)

$$
\begin{array}{r}
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 1}\right\|=1 \\
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 2}\right\|=\sqrt{3} \\
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 3}\right\|=2 ?
\end{array}
$$

Quiz (continued)

Is it possible to find $n \geqslant 1$ and $\mathbf{x}_{0}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{5} \in \mathbb{R}^{n}$ such that (addition modulo 6)

$$
\begin{gathered}
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 1}\right\|=1 \\
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 2}\right\|=\sqrt{3} \\
\left\|\mathbf{x}_{i}-\mathbf{x}_{i \pm 3}\right\|=2 ?
\end{gathered}
$$

Yes, it is. Those are vertices of a regular hexagon with sides of length 1 and $n=2$.

Multidimensional Scaling

Definition
A symmetric non-negative matrix $D=\left[d_{i j}\right] \in M\left(n \times n ; \mathbb{R}_{\geqslant 0}\right)$ is called Euclidean distance matrix if there exist $m \geqslant 1$ and

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{m}
$$

such that

$$
d_{i j}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|
$$

Definition
Let

$$
H=I-n \mathbb{1} \mathbb{1}^{\top} \in M(n \times n ; \mathbb{R})
$$

be the centering matrix.

Multidimensional Scaling

Proposition

Let $D=\left[a_{i j}\right] \in M\left(n \times n ; \mathbb{R}_{\geqslant 0}\right)$ be a non-negative symmetric matrix. Let $A=\left[a_{i j}\right] \in M(n \times n ; \mathbb{R})$ be a matrix given by the condition

$$
a_{i j}=-\frac{1}{2} d_{i j}^{2}
$$

Let

$$
B=H A H .
$$

Multidimensional Scaling (continued)

Proposition

Then D is an Euclidean distance matrix if and only if matrix B is postive semidefinite. Moreover, in this case, let

$$
\lambda_{1} \geqslant \ldots \geqslant \lambda_{m}>0
$$

denote (all) positive eigenvalues of B (i.e., eigenvalue of multiplicity k appear exactly k times) with corresponding pairwise orthogonal eigenvectors w_{1}, \ldots, w_{m} such that for $i=1, \ldots, m$

$$
w_{i} \cdot w_{i}=\lambda_{i}
$$

Then $\mathbf{x}_{i} \in \mathbb{R}^{m}$ and \mathbf{x}_{i} lie in the rows of the matrix $\left[\begin{array}{lll}v_{1} & \cdots & v_{m}\end{array}\right]$. Moreover the barycenter of v_{1}, \ldots, v_{m} is $\mathbf{0}$ and B is the Gram matrix of vectors v_{1}, \ldots, v_{m}, i.e. $b_{i j}=v_{i} \cdot v_{j}$.

Example 1

Let

$$
D=\left[\begin{array}{lll}
0 & 1 & 3 \\
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right], \quad A=\left[\begin{array}{rrr}
0 & -\frac{1}{2} & -\frac{9}{2} \\
-\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{9}{2} & -\frac{1}{2} & 0
\end{array}\right] .
$$

Then

$$
B=H A H=\frac{1}{18}\left[\begin{array}{rrr}
38 & 5 & -43 \\
5 & -10 & 5 \\
-43 & 5 & 38
\end{array}\right],
$$

which has eigenvalues $\lambda=-\frac{5}{6}$ or $\lambda=0$ or $\lambda=\frac{9}{2}$, i.e. it is not positive semidefinite.

Example 2

Let

$$
\begin{aligned}
& D=\left[\begin{array}{rrrrrr}
0 & 1 & \sqrt{3} & 2 & \sqrt{3} & 1 \\
1 & 0 & 1 & \sqrt{3} & 2 & \sqrt{3} \\
\sqrt{3} & 1 & 0 & 1 & \sqrt{3} & 2 \\
2 & \sqrt{3} & 1 & 0 & 1 & \sqrt{3} \\
\sqrt{3} & 2 & \sqrt{3} & 1 & 0 & 1 \\
1 & \sqrt{3} & 2 & \sqrt{3} & 1 & 0
\end{array}\right], \\
& A=\left[\begin{array}{rrrrrr}
0 & -\frac{1}{2} & -\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} & -2 & -\frac{3}{2} \\
-\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} & -2 \\
-2 & -\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} \\
-\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2} & 0
\end{array}\right] .
\end{aligned}
$$

Example 2 (continued)

Then

$$
B=H A H=\frac{1}{2}\left[\begin{array}{rrrrrr}
2 & 1 & -1 & -2 & -1 & 1 \\
1 & 2 & 1 & -1 & -2 & -1 \\
-1 & 1 & 2 & 1 & -1 & -2 \\
-2 & -1 & 1 & 2 & 1 & -1 \\
-1 & -2 & -1 & 1 & 2 & 1 \\
1 & -1 & -2 & -1 & 1 & 2
\end{array}\right]
$$

which has eigenvalues $\lambda=0$ (of multiplicity 4) and $\lambda=3$ (of multiplicity 2), i.e. it is positive semidefinite.

Example 2 (continued)

Moreover

$$
V_{(3)}=\operatorname{lin}((1,0,-1,-1,0,1),(0,1,1,0,-1,-1))
$$

which, after Gram-Schmidt process gives orthogonal basis

$$
V_{(3)}=\operatorname{lin}((1,0,-1,-1,0,1),(1,2,1,-1,-2,-1)) .
$$

Let

$$
\begin{aligned}
& w_{1}=\frac{\sqrt{3}}{2}(1,0,-1,-1,0,1), \\
& w_{2}=\frac{1}{2}(1,2,1,-1,-2,-1) .
\end{aligned}
$$

Then $w_{1} \cdot w_{2}=0$ and $w_{1} \cdot w_{1}=w_{2} \cdot w_{2}=3$.

Example 2 (continued)

Vectors $\mathbf{x}_{0}, \ldots, \mathbf{x}_{5} \in \mathbb{R}^{2}$ can be read from the rows of the matrix

$$
\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
1 & 0 \\
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-1 & 0 \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] .
$$

Those are exactly the (complex) sixth roots of unity (clockwise).

[^0]: ${ }^{0}$ see L. N. Trefethen, D. Bau, III, Numerical Linear Algebra, SIAM

