Linear Algebra

Lecture 14 - Quadratic Forms

Oskar Kędzierski

22 January 2024

Quadratic Form

Definition

A function $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ is called a **quadratic form** if

$$Q((x_1, \dots, x_n)) = a_{11}x_1^2 + \dots + a_{nn}x_n^2 + \sum_{1 \le i < j \le n} a_{ij}x_ix_j,$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_1, \ldots, x_n .

Quadratic Form

Definition

A function $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ is called a **quadratic form** if

$$Q((x_1, \dots, x_n)) = a_{11}x_1^2 + \dots + a_{nn}x_n^2 + \sum_{1 \leq i < j \leq n} a_{ij}x_ix_j,$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_1, \ldots, x_n .

Examples

$$Q((x_1, x_2)) = x_1^2 - x_2^2$$

Quadratic Form

Definition

A function $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ is called a **quadratic form** if

$$Q((x_1, \dots, x_n)) = a_{11}x_1^2 + \dots + a_{nn}x_n^2 + \sum_{1 \le i < j \le n} a_{ij}x_ix_j,$$

that is, it is a function given by a homogeneous polynomial of degree 2 in variables x_1, \ldots, x_n .

Examples

$$Q((x_1, x_2)) = x_1^2 - x_2^2$$

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$

Symmetric Matrix

Recall

Definition

Matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called **symmetric** if $A^T = A$, i.e. $a_{ij} = a_{ji}$ for $i, j = 1, \dots, n$.

Symmetric Matrix

Recall

Definition

Matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called **symmetric** if $A^{\mathsf{T}} = A$, i.e. $a_{ij} = a_{ji}$ for i, j = 1, ..., n.

Example

Symmetric Matrix

Recall

Definition

Matrix $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ is called **symmetric** if $A^T = A$, i.e. $a_{ij} = a_{ji}$ for i, j = 1, ..., n.

Example

$$\begin{array}{c} \mathsf{matrix} \; \begin{bmatrix} \; 0 & \; 2 & \; 5 \\ \; 2 & \; 4 & \; -3 \\ \; 5 & \; -3 & \; 1 \; \end{bmatrix} \; \mathsf{is} \; \mathsf{symmetric} \\ \mathsf{matrix} \; \begin{bmatrix} \; 0 & \; 2 & \; 6 \\ \; 2 & \; 4 & \; -3 \\ \; 5 & \; -3 & \; 1 \; \end{bmatrix} \; \mathsf{is} \; \mathsf{not} \; \mathsf{symmetric} \\ \end{array}$$

Matrix of a Quadratic Form

Definition

Let $Q((x_1, \ldots, x_n)) = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{1 \leqslant i < j \leqslant n} a_{ij} x_i x_j$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M = [b_{ij}] \in M(n \times n; \mathbb{R})$ such that $b_{ii} = a_{ii}$ and $b_{ij} = b_{ji} = \frac{1}{2} a_{ij}$ for $1 \leqslant i < j \leqslant n$.

Matrix of a Quadratic Form

Definition

Let $Q((x_1,\ldots,x_n))=\sum_{i=1}^n a_{ii}x_i^2+\sum_{1\leqslant i< j\leqslant n} a_{ij}x_ix_j$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M=[b_{ij}]\in M(n\times n;\mathbb{R})$ such that $b_{ii}=a_{ii}$ and $b_{ij}=b_{ji}=\frac{1}{2}a_{ij}$ for $1\leqslant i< j\leqslant n$.

Example

The matrix of the form
$$Q((x_1, x_2)) = x_1^2 - x_2^2$$
 is $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Matrix of a Quadratic Form

Definition

Let $Q((x_1,\ldots,x_n))=\sum_{i=1}^n a_{ii}x_i^2+\sum_{1\leqslant i< j\leqslant n} a_{ij}x_ix_j$ be a quadratic form. The matrix of the quadratic form Q is a symmetric matrix $M=[b_{ij}]\in M(n\times n;\mathbb{R})$ such that $b_{ii}=a_{ii}$ and $b_{ij}=b_{ji}=\frac{1}{2}a_{ij}$ for $1\leqslant i< j\leqslant n$.

Example

The matrix of the form $Q((x_1, x_2)) = x_1^2 - x_2^2$ is $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

The matrix of the form $Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3 + 8x_2x_3$ is

$$M = \left[\begin{array}{rrr} 1 & 1 & -2 \\ 1 & 2 & 4 \\ -2 & 4 & 5 \end{array} \right]$$

Matrix of a Quadratic Form (continued)

Proposition

Let M be a matrix of the quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$. Then

$$Q((x_1,\ldots,x_n))=x^{\mathsf{T}}Mx,$$

where
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
.

Matrix of a Quadratic Form (continued)

Proposition

Let M be a matrix of the quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$. Then

$$Q((x_1,\ldots,x_n))=x^\intercal Mx,$$

where
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
.

Proof.

Entries of matrix M in the i-th row get multiplied by x_i and elements in the j-th column get multiplied by x_j . For every $i \neq j$ the monomial $x_i x_j$ comes from the entry in the i-th row, j-th column and from the entry in the j-th row, i-th column.

Matrix of a Quadratic Form (continued)

Formal explanation

$$Q((x_{1},...,x_{n})) = x^{T}Mx = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} \sum_{s=1}^{n} b_{1s}x_{s} \\ \sum_{s=1}^{n} b_{2s}x_{s} \\ \vdots \sum_{s=1}^{n} b_{ns}x_{s} \end{bmatrix} =$$

$$= x_{1} \sum_{s=1}^{n} b_{1s}x_{s} + x_{2} \sum_{s=1}^{n} b_{2s}x_{s} + \dots + x_{n} \sum_{s=1}^{n} b_{ns}x_{s} =$$

$$= \sum_{i,j=1}^{n} b_{ij}x_{i}x_{j}.$$

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive definite** if Q(x) > 0 (resp. $x^T M x > 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive definite** if Q(x) > 0 (resp. $x^T M x > 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$. Quadratic form Q (resp. symmetric matrix M) is **negative definite** if Q(x) < 0 (resp. $x^T M x < 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive definite** if Q(x) > 0 (resp. $x^T M x > 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$. Quadratic form Q (resp. symmetric matrix M) is **negative definite** if Q(x) < 0 (resp. $x^T M x < 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^2 \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^2 = x_1^2 + \ldots + x_n^2 > 0$ for $x \neq \mathbf{0}$.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive definite** if Q(x) > 0 (resp. $x^T M x > 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$. Quadratic form Q (resp. symmetric matrix M) is **negative definite** if Q(x) < 0 (resp. $x^T M x < 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^2 \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^2 = x_1^2 + \ldots + x_n^2 > 0$ for $x \neq \mathbf{0}$. The quadratic form $Q((x_1, x_2)) = x_1^2 - x_2^2$ is not positive definite since Q((0,1)) = -1 < 0. It is not negative definite since Q((1,0)) = 1 > 0.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive definite** if Q(x) > 0 (resp. $x^T M x > 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$. Quadratic form Q (resp. symmetric matrix M) is **negative definite** if Q(x) < 0 (resp. $x^T M x < 0$) for any $x \in \mathbb{R}^n$, $x \neq \mathbf{0}$.

Example

The quadratic form $\|\cdot\|^2 \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ is positive definite since $\|x\|^2 = x_1^2 + \ldots + x_n^2 > 0$ for $x \neq \mathbf{0}$.

The quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is not positive definite since Q((0,1))=-1<0. It is not negative definite since Q((1,0))=1>0.

The quadratic form $Q((x_1,x_2,x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 -2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$ is not positive definite since Q((3,-2,1)) = 0. It is not negative definite.

$$(a_1 + a_2 + \dots + a_n)^2 = a_1^2 + a_2^2 + \dots + a_n^2 + 2a_1a_2 + 2a_1a_3 + \dots + 2a_1a_n + 2a_2a_3 + 2a_2a_4 + \dots + 2a_2a_n + 2a_3a_4 + \dots + 2a_3a_n + \dots + 2a_{n-1}a_n$$

$$(a_1+a_2+\ldots+a_n)^2=a_1^2+a_2^2+\ldots+a_n^2+2a_1a_2+2a_1a_3+\ldots+2a_1a_n+\\+2a_2a_3+2a_2a_4+\ldots+2a_2a_n+2a_3a_4+\ldots+2a_3a_n+\ldots+2a_{n-1}a_n$$
 For example

$$(x_1 - 3x_2 + 2x_3)^2 =$$

$$(a_1+a_2+\ldots+a_n)^2=a_1^2+a_2^2+\ldots+a_n^2+2a_1a_2+2a_1a_3+\ldots+2a_1a_n+\\+2a_2a_3+2a_2a_4+\ldots+2a_2a_n+2a_3a_4+\ldots+2a_3a_n+\ldots+2a_{n-1}a_n$$
 For example

$$(x_1-3x_2+2x_3)^2=$$

$$= x_1^2 + (-3)^2 x_2^2 + 2^2 x_3^2 + 2 \cdot (-3) x_1 x_2 + 2 \cdot 2 x_1 x_3 + 2 \cdot (-3) \cdot 2 x_2 x_3 =$$

$$= x_1^2 + 9 x_2^2 + 4 x_3^2 - 6 x_1 x_2 + 4 x_1 x_3 - 12 x_2 x_3$$

$$(a_1+a_2+\ldots+a_n)^2=a_1^2+a_2^2+\ldots+a_n^2+2a_1a_2+2a_1a_3+\ldots+2a_1a_n+\\+2a_2a_3+2a_2a_4+\ldots+2a_2a_n+2a_3a_4+\ldots+2a_3a_n+\ldots+2a_{n-1}a_n$$
 For example
$$(x_1-3x_2+2x_3)^2=$$

$$= x_1^2 + (-3)^2 x_2^2 + 2^2 x_3^2 + 2 \cdot (-3) x_1 x_2 + 2 \cdot 2 x_1 x_3 + 2 \cdot (-3) \cdot 2 x_2 x_3 =$$

$$= x_1^2 + 9 x_2^2 + 4 x_3^2 - 6 x_1 x_2 + 4 x_1 x_3 - 12 x_2 x_3$$

Proposition

A quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ can expressed (possibly after a change of coordinates) as $Q((x_1,\ldots,x_n))=\pm l_1^2\pm l_2^2\pm \ldots \pm l_n^2$ where l_1,\ldots,l_n are linear functions such that l_i,\ldots,l_n do not depend on the variables x_1,\ldots,x_{i-1} for $i=2,\ldots,n$.

$$(a_1+a_2+\ldots+a_n)^2=a_1^2+a_2^2+\ldots+a_n^2+2a_1a_2+2a_1a_3+\ldots+2a_1a_n+\\+2a_2a_3+2a_2a_4+\ldots+2a_2a_n+2a_3a_4+\ldots+2a_3a_n+\ldots+2a_{n-1}a_n$$
 For example

$$(x_1 - 3x_2 + 2x_3)^2 =$$

$$= x_1^2 + (-3)^2 x_2^2 + 2^2 x_3^2 + 2 \cdot (-3) x_1 x_2 + 2 \cdot 2 x_1 x_3 + 2 \cdot (-3) \cdot 2 x_2 x_3 =$$

$$= x_1^2 + 9 x_2^2 + 4 x_3^2 - 6 x_1 x_2 + 4 x_1 x_3 - 12 x_2 x_3$$

Proposition

A quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ can expressed (possibly after a change of coordinates) as $Q((x_1,\ldots,x_n))=\pm l_1^2\pm l_2^2\pm \ldots \pm l_n^2$ where l_1,\ldots,l_n are linear functions such that l_i,\ldots,l_n do not depend on the variables x_1,\ldots,x_{i-1} for $i=2,\ldots,n$.

Proof.

(sketch) Use the above formula.

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + x_2^2 + 4x_2x_3 + 4x_3^2 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$$

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + x_2^2 + 4x_2x_3 + 4x_3^2 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$$

$$Q((x_1, x_2, x_3)) = x_1^2 - x_2^2 + x_3^2 + 2x_1x_2 - 4x_1x_3 = (x_1 + x_2 - 2x_3)^2 - 2x_2^2 + 4x_2x_3 - 3x_3^2 = (x_1 + x_2 - 2x_3)^2 - 2(x_2 - x_3)^2 - x_3^2$$

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + x_2^2 + 4x_2x_3 + 4x_3^2 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$$

$$Q((x_1, x_2, x_3)) = x_1^2 - x_2^2 + x_3^2 + 2x_1x_2 - 4x_1x_3 = (x_1 + x_2 - 2x_3)^2 - 2x_2^2 + 4x_2x_3 - 3x_3^2 = (x_1 + x_2 - 2x_3)^2 - 2(x_2 - x_3)^2 - x_3^2$$

What to do if there is no square? Do the following substitution:

$$Q((x_1, x_2, x_3)) = x_1 x_2 + 2x_1 x_3 = \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_1 + y_2 \end{cases} = (y_1 - y_2)(y_1 + y_2) + 2(y_1 - y_2)y_3 = y_1^2 - y_2^2 + 2y_1 y_3 - 2y_2 y_3 = (y_1 + y_3)^2 - y_2^2 - y_3^2 - 2y_2 y_3 = (y_1 + y_3)^2 - (y_2 + y_3)^2$$

Example (continued)

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + x_2^2 + 4x_2x_3 + 4x_3^2 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$$
 Let

$$\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 + 2x_3 \\ y_3 = x_3 \end{cases},$$

then $Q((y_1, y_2, y_3)) = y_1^2 + y_2^2$, where

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = P \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \text{for} \quad P = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

In particular

$$y^{\mathsf{T}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} y = (Px)^{\mathsf{T}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} Px = x^{\mathsf{T}} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{bmatrix} x.$$

Sylvester's Criterion

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Let W_i denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is positive definite if and only if $W_i > 0$ for $i = 1, \ldots, n$.

Sylvester's Criterion

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Let W_i denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is positive definite if and only if $W_i > 0$ for $i = 1, \ldots, n$.

Proof.

Omitted.

Remark

The determinants W_i are sometimes called **leading principal** minors.

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

and compute its leading principal minors

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

and compute its leading principal minors $W_1 = \det \begin{bmatrix} 1 \end{bmatrix} = 1 > 0$,

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

and compute its leading principal minors

$$W_1=\det\left[\begin{array}{cc} 1\end{array}
ight]=1>0,$$
 $W_2=\det\left[\begin{array}{cc} 1&1\\1&2\end{array}
ight]=1>0,$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

and compute its leading principal minors

$$\begin{split} & W_1 = \det \left[\begin{array}{cc} 1 \end{array} \right] = 1 > 0, \\ & W_2 = \det \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right] = 1 > 0, \\ & W_3 = \det \left[\begin{array}{cc} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right] \overset{c_1 + c_3}{\overset{c_2 + c_3}{=}} \det \left[\begin{array}{cc} 0 & 0 & -1 \\ 2 & 3 & 1 \\ 5 & 7 & 6 \end{array} \right] = 1 > 0. \end{split}$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right]$$

and compute its leading principal minors

$$\begin{split} W_1 &= \det \left[\begin{array}{cc} 1 \end{array} \right] = 1 > 0, \\ W_2 &= \det \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right] = 1 > 0, \\ W_3 &= \det \left[\begin{array}{cc} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 6 \end{array} \right] \overset{c_1 + c_3}{\overset{c_2 + c_3}{=}} \det \left[\begin{array}{cc} 0 & 0 & -1 \\ 2 & 3 & 1 \\ 5 & 7 & 6 \end{array} \right] = 1 > 0. \end{split}$$

By Sylverster's criterion the quadratic form $x_1^2 + 2x_2^2 + 6x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ is positive definite.

Another Example

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

and compute its leading principal minors $W_1 = \det \begin{bmatrix} 1 \end{bmatrix} = 1 > 0$,

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

$$W_1=\det\left[\begin{array}{cc} 1\end{array}
ight]=1>0,$$
 $W_2=\det\left[\begin{array}{cc} 1&1\\1&2\end{array}
ight]=1>0,$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

$$\begin{aligned} &W_1 = \det \left[\begin{array}{c} 1 \end{array} \right] = 1 > 0, \\ &W_2 = \det \left[\begin{array}{c} 1 & 1 \\ 1 & 2 \end{array} \right] = 1 > 0, \\ &W_3 = \det \left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right] \overset{c_1 + c_3}{\overset{c_2 + c_3}{=}} \det \left[\begin{array}{ccc} 0 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 6 & 5 \end{array} \right] = 0 \geqslant 0. \end{aligned}$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

and compute its leading principal minors

$$\begin{split} & W_1 = \det \left[\begin{array}{c} 1 \end{array} \right] = 1 > 0, \\ & W_2 = \det \left[\begin{array}{c} 1 & 1 \\ 1 & 2 \end{array} \right] = 1 > 0, \\ & W_3 = \det \left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right] \stackrel{c_1 + c_3}{\overset{c_2 + c_3}{=}} \det \left[\begin{array}{ccc} 0 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 6 & 5 \end{array} \right] = 0 \geqslant 0. \end{split}$$

By Sylverster's criterion the quadratic form

 $Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ is not positive definite.

Consider the symmetric matrix

$$M = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right]$$

and compute its leading principal minors

$$\begin{split} & W_1 = \det \left[\begin{array}{c} 1 \end{array} \right] = 1 > 0, \\ & W_2 = \det \left[\begin{array}{c} 1 & 1 \\ 1 & 2 \end{array} \right] = 1 > 0, \\ & W_3 = \det \left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 5 \end{array} \right] \begin{bmatrix} c_1 + c_3 \\ c_2 + c_3 \\ det \begin{bmatrix} 0 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 6 & 5 \end{array} \right] = 0 \geqslant 0. \end{split}$$

By Sylverster's criterion the quadratic form

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$
 is not positive definite. In fact, $Q((3, -2, 1)) = 0$.

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if -Q is negative definite.

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if -Q is negative definite.

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Let W_i denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is negative definite if and only if

Sylvester's Criterion (continued)

A quadratic form Q is positive definite if and only if -Q is negative definite.

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. Let W_i denote the determinant of the upper-left i-by-i submatrix of M. Matrix M is negative definite if and only if

$$W_i < 0$$
 for odd i ,

$$W_i > 0$$
 for even i ,

for
$$i = 1, ..., n$$
.

Consider the symmetric matrix

$$M = \left[\begin{array}{rr} -1 & -1 \\ -1 & -2 \end{array} \right]$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rr} -1 & -1 \\ -1 & -2 \end{array} \right]$$

Consider the symmetric matrix

$$M = \left[\begin{array}{rr} -1 & -1 \\ -1 & -2 \end{array} \right]$$

$$W_1=\det\left[\begin{array}{c}-1\end{array}
ight]=-1<0$$
,

Consider the symmetric matrix

$$M = \left[\begin{array}{cc} -1 & -1 \\ -1 & -2 \end{array} \right]$$

$$W_1 = \det \begin{bmatrix} -1 \end{bmatrix} = -1 < 0,$$

 $W_2 = \det \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix} = 1 > 0,$

Consider the symmetric matrix

$$M = \left[\begin{array}{rr} -1 & -1 \\ -1 & -2 \end{array} \right]$$

and compute its leading principal minors

$$W_1 = \det \begin{bmatrix} -1 \end{bmatrix} = -1 < 0,$$

 $W_2 = \det \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix} = 1 > 0,$

The quadratic form $-x_1^2 - 2x_1x_2 - 2x_2^2 = -(x_1 + x_2)^2 - x_2^2$ is negative definite.

Sylvester's Criterion – Warning

It crucial that matrix A is **symmetric**. For example, let

$$M = \left[\begin{array}{cc} -1 & -3 \\ 1 & 2 \end{array} \right].$$

Then

$$\varepsilon_1^{\mathsf{T}} M \varepsilon_1 = -1, \quad \varepsilon_2^{\mathsf{T}} M \varepsilon_2 = 2,$$

hence matrix M is indefinite, however

$$W_1 = -1, \quad W_2 = 1.$$

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive semidefinite** if $Q(x) \ge 0$ (resp. $x^\intercal M x \ge 0$) for any $x \in \mathbb{R}^n$.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive semidefinite** if $Q(x) \ge 0$ (resp. $x^T M x \ge 0$) for any $x \in \mathbb{R}^n$.

Quadratic form Q (resp. symmetric matrix M) is **negative** semidefinite if $Q(x) \leq 0$ (resp. $x^{\mathsf{T}} M x \leq 0$) for any $x \in \mathbb{R}^n$.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive semidefinite** if $Q(x) \geqslant 0$ (resp. $x^T M x \geqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **negative semidefinite** if $Q(x) \leqslant 0$ (resp. $x^T M x \leqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **indefinite** if there exist $x, y \in \mathbb{R}^n$ such that Q(x) > 0, Q(y) < 0 (resp. $x^T M x > 0$, $y^T M y < 0$).

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive semidefinite** if $Q(x) \geqslant 0$ (resp. $x^T M x \geqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **negative semidefinite** if $Q(x) \leqslant 0$ (resp. $x^T M x \leqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **indefinite** if there exist $x, y \in \mathbb{R}^n$ such that Q(x) > 0, Q(y) < 0 (resp. $x^T M x > 0$, $y^T M y < 0$).

Remark

A positive (resp. negative) definite quadratic form is positive (resp. negative) semidefinite.

Definition

Quadratic form $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ (resp. symmetric matrix $M \in M(n \times n; \mathbb{R})$) is **positive semidefinite** if $Q(x) \geqslant 0$ (resp. $x^T M x \geqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **negative semidefinite** if $Q(x) \leqslant 0$ (resp. $x^T M x \leqslant 0$) for any $x \in \mathbb{R}^n$. Quadratic form Q (resp. symmetric matrix M) is **indefinite** if there exist $x, y \in \mathbb{R}^n$ such that Q(x) > 0, Q(y) < 0 (resp. $x^T M x > 0$, $y^T M y < 0$).

Remark

A positive (resp. negative) definite quadratic form is positive (resp. negative) semidefinite. A quadratic form is indefinite if and only if it is not positive semidefinite and it is not negative semidefinite.

The quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is indefinite since Q((1,0))>0 and Q((0,1))<0.

The quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is indefinite since Q((1,0))>0 and Q((0,1))<0.

The quadratic form $Q((x_1,x_2,x_3))=x_1^2+2x_2^2+5x_3^2+2x_1x_2-2x_1x_3+2x_2x_3=(x_1+x_2-x_3)^2+(x_2+2x_3)^2$ is positive semidefinite. It is not positive definite.

The quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is indefinite since Q((1,0))>0 and Q((0,1))<0.

The quadratic form $Q((x_1,x_2,x_3)) = x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 -2x_1x_3 + 2x_2x_3 = (x_1 + x_2 - x_3)^2 + (x_2 + 2x_3)^2$ is positive semidefinite. It is not positive definite.

The quadratic form $Q((x_1, x_2)) = -x_1^2 - 2x_1x_2 - 2x_2^2 = -(x_1 + x_2)^2 - x_2^2$ is negative definite.

The quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is indefinite since Q((1,0))>0 and Q((0,1))<0.

The quadratic form $Q((x_1,x_2,x_3))=x_1^2+2x_2^2+5x_3^2+2x_1x_2-2x_1x_3+2x_2x_3=(x_1+x_2-x_3)^2+(x_2+2x_3)^2$ is positive semidefinite. It is not positive definite.

The quadratic form

$$Q((x_1,x_2)) = -x_1^2 - 2x_1x_2 - 2x_2^2 = -(x_1 + x_2)^2 - x_2^2$$
 is negative definite.

The quadratic form

$$Q((x_1,x_2,x_3))=-x_1^2-2x_1x_2-2x_2^2=-(x_1+x_2)^2-x_2^2$$
 is not negative definite since $Q((0,0,1))=0$. It is negative semidefinite.

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$.

Consider the quadratic form $Q((x_1,x_2))=-x_2^2$. It is negative semidefinite.

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$. It is negative semidefinite. Its matrix is

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$. It is negative semidefinite. Its matrix is

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

Compute the leading principal minors

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$. It is negative semidefinite. Its matrix is

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

Compute the leading principal minors $W_1 = \det \begin{bmatrix} 0 \end{bmatrix} = 0 \ge 0$,

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$. It is negative semidefinite. Its matrix is

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

Compute the leading principal minors

$$W_1 = \det \begin{bmatrix} 0 \end{bmatrix} = 0 \geqslant 0,$$

 $W_2 = \det \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} = 0 \geqslant 0,$

Consider the quadratic form $Q((x_1, x_2)) = -x_2^2$. It is negative semidefinite. Its matrix is

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

Compute the leading principal minors

$$W_1 = \det \begin{bmatrix} 0 \end{bmatrix} = 0 \geqslant 0,$$

 $W_2 = \det \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} = 0 \geqslant 0,$

This shows **there is no** direct analogue of Sylvester's criterion for positive/negative semidefinite matrices.

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric square matrix. Then matrix M is positive semidefinite if and only if for any $J \subset \{1, \dots, n\}, J \neq \emptyset$

$$\det M_{J;J} \geqslant 0$$
,

that is all principal minors are non-negative.

Proposition

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric square matrix. Then matrix M is positive semidefinite if and only if for any $J \subset \{1, \ldots, n\}, J \neq \emptyset$

$$\det M_{J;J} \geqslant 0$$
,

that is all principal minors are non-negative.

Proof.

The proof uses spectral theorem and eigenvalue criterion. (\Longrightarrow) The restriction of M to the subspace $\text{lin}(\{\varepsilon_i \mid i \in J\})$ is positive semidefinite and has matrix equal to $M_{J;J}$. Since $M_{J;J}$ is symmetric and positive semidefinite, by the eigenvalue criterion $\det M_{J;J}$ is equal to the product of eignevalues hence it is non–negative.

Proof.

(\iff) Proof by induction on n. Let $Q(x) = x^{\mathsf{T}} M x$ and let $u_1, \ldots, u_n \in \mathbb{R}^n$ be an orthonormal basis such that $u_i^{\mathsf{T}} M u_j = 0$ for $i \neq j$. Moreover assume, by rearranging u_i 's, that $Q(u_1) \leqslant Q(u_2) \ldots \leqslant Q(u_n)$. It is enough to prove $Q(u_1) \geqslant 0$. If $u_1 \cdot \varepsilon_k = 0$ (i.e. the k-th component of u_1 vanishes) for some $k \in \{1, \ldots, n\}$ then $u_1 \in \text{lin}(\varepsilon_1, \ldots, \varepsilon_{k-1}, \varepsilon_{k+1}, \ldots, \varepsilon_n)$ and $Q(u_1) \geqslant 0$, by the inductive assumption. Assume $u_1 \cdot \varepsilon_k \neq 0$ for any $k = 1, \ldots, n$.

Proof.

For $i \ge 2$ and some k = 1, ..., n consider vector

$$\mathbf{v} = (\mathbf{u}_i \cdot \varepsilon_k)\mathbf{u}_1 - (\mathbf{u}_1 \cdot \varepsilon_k)\mathbf{u}_i.$$

Since $v \cdot \varepsilon_k = 0$ by the inductive assumption

$$Q(v) = (u_i \cdot \varepsilon_k)^2 Q(u_1) + (u_1 \cdot \varepsilon_k)^2 Q(u_i) \geqslant 0.$$

If some $Q(u_i)=0$ with k such that $u_i\cdot \varepsilon_k\neq 0$ (u_i needs to have a non–zero coordinate) then $Q(u_1)\geqslant 0$. Assume now $Q(u_2),\ldots,Q(u_n)>0$. Then, by choosing $J=\{1,\ldots,n\}$ and using the eigenvalue criterion

$$Q(u_1)Q(u_2)\cdot\ldots\cdot Q(u_n)\geqslant 0,$$

that is $Q(u_1) \geqslant 0$.

Remark

Note that for a $n \times n$ matrix there are $2^n - 1$ conditions to check, making this criterion impractical.

Warning (continued)

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be a symmetric square matrix. Then matrix A is negative semidefinite if and only if for any $J \subset \{1, \dots, n\}, J \neq \emptyset$

$$\det A_{J;J}\geqslant 0,\quad \text{when }\# J \text{ is even},$$

$$\det A_{J;J} \leqslant 0$$
, when $\#J$ is odd,

that is principal minors of M of even order are non-negative and principal minors of M of odd order are non-positive.

Proof.

Matrix M is positive semidefinite if and only if matrix -M is negative semidefinite.

Warning (continued)

In particular, for

$$M = \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right]$$

we have

$$\det M_{1;1}=\det \left[0\right]=0,\quad \det M_{2;2}=\det \left[-1\right]=-1<0,$$

$$\det M_{1,2;1,2}=\det M=0,$$

therefore matrix M is not positive semidefinite. In fact, it is negative semidefinite.

Positive Definite Quadratic Form

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be a matrix. Then matrix $M = A^{\mathsf{T}}A \in M(n \times n; \mathbb{R})$ is symmetric and positive semidefinite. Moreover, the matrix $A^{\mathsf{T}}A$ is positive definite if and only if r(A) = n (i.e. columns of matrix A are linearly independent).

Positive Definite Quadratic Form

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be a matrix. Then matrix $M = A^{\mathsf{T}} A \in M(n \times n; \mathbb{R})$ is symmetric and positive semidefinite. Moreover, the matrix $A^{\mathsf{T}} A$ is positive definite if and only if r(A) = n (i.e. columns of matrix A are linearly independent).

Proof.

For any $x \in \mathbb{R}^n$

$$x^{\mathsf{T}}(A^{\mathsf{T}}A)x = (Ax)^{\mathsf{T}}(Ax) = ||Ax||^2 \geqslant 0.$$

 (\Leftarrow) If r(A)=n (i.e. the linear transformation $\varphi\colon\mathbb{R}^n\to\mathbb{R}^m$ given by $A=M(\varphi)^{st}_{st}$ is injective by the rank–nullity theorem) then

$$||Ax|| = 0 \iff Ax = \mathbf{0} \iff x = \mathbf{0}.$$

Positive Definite Quadratic Form

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be a matrix. Then matrix $M = A^T A \in M(n \times n; \mathbb{R})$ is symmetric and positive semidefinite. Moreover, the matrix $A^T A$ is positive definite if and only if r(A) = n (i.e. columns of matrix A are linearly independent).

Proof.

For any $x \in \mathbb{R}^n$

$$x^{\mathsf{T}}(A^{\mathsf{T}}A)x = (Ax)^{\mathsf{T}}(Ax) = ||Ax||^2 \geqslant 0.$$

 (\Leftarrow) If r(A) = n (i.e. the linear transformation $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ given by $A = M(\varphi)^{st}_{st}$ is injective by the rank–nullity theorem) then

$$||Ax|| = 0 \iff Ax = \mathbf{0} \iff x = \mathbf{0}.$$

 (\Rightarrow) if $Ax = \mathbf{0} \Rightarrow x = \mathbf{0}$ then $\ker \varphi = \{\mathbf{0}\}$ which, by the rank–nullity theorem, gives r(A) = n.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix} \in M(3 \times 2; \mathbb{R})$$
 where $r(A) = 2$. The matrix

$$A^{\mathsf{T}}A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 7 \\ 7 & 14 \end{bmatrix},$$

is positive definite and the matrix

$$(A^{\mathsf{T}})^{\mathsf{T}} A^{\mathsf{T}} = A A^{\mathsf{T}} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 7 \\ 4 & 5 & 5 \\ 7 & 5 & 10 \end{bmatrix},$$

is positive semidefinite and it is not positive definite (this will be justified later).

Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.

Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.

In particular, the characteristic polynomial $w_M(\lambda) = \det(M - \lambda I)$ has n real roots (=eigenvalues) counted with multiplicities .

Eigenvalues and Positivity

Theorem (Spectral Theorem)

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable by an orthonormal eigenbasis.

In particular, the characteristic polynomial $w_M(\lambda) = \det(M - \lambda I)$ has n real roots (=eigenvalues) counted with multiplicities .

Theorem

Let $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a quadratic form and let M be its matrix. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ be the roots of $w_M(\lambda)$. Then

- i) form Q is positive definite $\iff \lambda_1, \dots, \lambda_n > 0$,
- ii) form Q is positive semidefinite $\iff \lambda_1, \ldots, \lambda_n \geqslant 0$,
- iii) form Q is negative definite $\iff \lambda_1, \dots, \lambda_n < 0$,
- iv) form Q is negative semidefinite $\iff \lambda_1, \dots, \lambda_n \leq 0$,
- v) form Q is indefinite $\iff \lambda_i < 0, \lambda_j > 0$ for some $1 \le i, j \le n$.

Proof.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n consisting of eigenvectors of M, that is

$$Mv_i = \lambda_i v_i$$
 for $i = 1, \ldots, n$,

where $\lambda_i \in \mathbb{R}$ is an eigenvalue of M and $v_i = \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} \in M(n \times 1; \mathbb{R})$ is taken to be a n-by-1 matrix.

Proof.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n consisting of eigenvectors of M, that is

$$Mv_i = \lambda_i v_i$$
 for $i = 1, \ldots, n$,

where $\lambda_i \in \mathbb{R}$ is an eigenvalue of M and $v_i = \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} \in M(n \times 1; \mathbb{R})$ is taken to be a n-by-1 matrix. Let v_i, v_j be vectors such that $\lambda_i \neq \lambda_j$. Then

$$v_i^{\mathsf{T}} M v_j = v_i^{\mathsf{T}} (M v_j) = v_i^{\mathsf{T}} (\lambda_j v_j) = \lambda_j (v_i \cdot v_j),$$

Proof.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n consisting of eigenvectors of M, that is

$$Mv_i = \lambda_i v_i$$
 for $i = 1, \ldots, n$,

where $\lambda_i \in \mathbb{R}$ is an eigenvalue of M and $v_i = \left[\begin{smallmatrix}*\\ \vdots\\ *\end{smallmatrix}\right] \in M(n \times 1; \mathbb{R})$ is taken to be a n-by-1 matrix. Let v_i, v_j be vectors such that $\lambda_i \neq \lambda_j$. Then

$$\begin{aligned} \mathbf{v}_i^\mathsf{T} M \mathbf{v}_j &= \mathbf{v}_i^\mathsf{T} (M \mathbf{v}_j) = \mathbf{v}_i^\mathsf{T} (\lambda_j \mathbf{v}_j) = \lambda_j (\mathbf{v}_i \cdot \mathbf{v}_j), \\ \mathbf{v}_i^\mathsf{T} M \mathbf{v}_j &= (\mathbf{v}_i^\mathsf{T} M^\mathsf{T}) \mathbf{v}_j = (M \mathbf{v}_i)^\mathsf{T} \mathbf{v}_j = (\lambda_i \mathbf{v}_i)^\mathsf{T} \mathbf{v}_j = \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_j). \end{aligned}$$

This is possible only if $v_i \cdot v_j = 0$, i.e. vectors v_i , v_j are perpendicular.

Proof.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be a basis of \mathbb{R}^n consisting of eigenvectors of M, that is

$$Mv_i = \lambda_i v_i$$
 for $i = 1, \ldots, n$,

where $\lambda_i \in \mathbb{R}$ is an eigenvalue of M and $v_i = \left[\begin{smallmatrix}*\\ \vdots\\ *\end{smallmatrix}\right] \in M(n \times 1; \mathbb{R})$ is taken to be a n-by-1 matrix. Let v_i, v_j be vectors such that $\lambda_i \neq \lambda_j$. Then

$$\begin{aligned} \mathbf{v}_i^\mathsf{T} \mathbf{M} \mathbf{v}_j &= \mathbf{v}_i^\mathsf{T} (\mathbf{M} \mathbf{v}_j) = \mathbf{v}_i^\mathsf{T} (\lambda_j \mathbf{v}_j) = \lambda_j (\mathbf{v}_i \cdot \mathbf{v}_j), \\ \mathbf{v}_i^\mathsf{T} \mathbf{M} \mathbf{v}_j &= (\mathbf{v}_i^\mathsf{T} \mathbf{M}^\mathsf{T}) \mathbf{v}_j = (\mathbf{M} \mathbf{v}_i)^\mathsf{T} \mathbf{v}_j = (\lambda_i \mathbf{v}_i)^\mathsf{T} \mathbf{v}_j = \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_j). \end{aligned}$$

This is possible only if $v_i \cdot v_j = 0$, i.e. vectors v_i , v_j are perpendicular. Using Gram-Schmidt process for eigenspaces $V_{(\lambda_i)}$ one can assume the basis v_1, \ldots, v_n is orthonormal.

Proof.

That is

$$v_i \cdot v_j = v_i^\mathsf{T} v_j = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}.$$

For any $v \in \mathbb{R}^n$ there exist unique $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Proof.

That is

$$v_i \cdot v_j = v_i^\mathsf{T} v_j = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}.$$

For any $v \in \mathbb{R}^n$ there exist unique $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Now

$$Q(v) = v^{\mathsf{T}} M v = v^{\mathsf{T}} M (\alpha_1 v_1 + \ldots + \alpha_n v_n) =$$

$$= (\alpha_1 v_1 + \ldots + \alpha_n v_n)^{\mathsf{T}} (\lambda_1 \alpha_1 v_1 + \ldots + \lambda_n \alpha_n v_n) = \lambda_1 \alpha_1^2 + \ldots + \lambda_n \alpha_n^2.$$

Proof.

That is

$$v_i \cdot v_j = v_i^\mathsf{T} v_j = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}.$$

For any $v \in \mathbb{R}^n$ there exist unique $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Now

$$Q(v) = v^{\mathsf{T}} M v = v^{\mathsf{T}} M (\alpha_1 v_1 + \ldots + \alpha_n v_n) =$$

$$= (\alpha_1 v_1 + \ldots + \alpha_n v_n)^{\mathsf{T}} (\lambda_1 \alpha_1 v_1 + \ldots + \lambda_n \alpha_n v_n) = \lambda_1 \alpha_1^2 + \ldots + \lambda_n \alpha_n^2.$$

In particular

$$Q(v_i) = v_i^\mathsf{T} M v_i = \lambda_i,$$
 $Q(v) > 0$ for any $v \neq 0 \Longleftrightarrow \lambda_1, \ldots, \lambda_n > 0,$ $Q(v) \geqslant 0$ for any $v \Longleftrightarrow \lambda_1, \ldots, \lambda_n \geqslant 0.$

Let

$$M = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

The eigenvalues are $\lambda_1=1>0, \lambda_2=-1<0$ therefore the quadratic form $Q((x_1,x_2))=x_1^2-x_2^2$ is indefinite.

Let

$$M = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{array} \right].$$

Let

$$M = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{array} \right].$$

The characteristic polynomial

$$w_M(\lambda)=(1-\lambda)((2-\lambda)^2-4)=\lambda(1-\lambda)(\lambda-4)$$
 has non-negative roots $\lambda_1=0,\lambda_2=1,\lambda_3=4,\,\lambda_1,\lambda_2,\lambda_3\geqslant 0.$

Therefore the quadratic form

$$Q((x_1, x_2, x_3)) = x_1^2 + 2x_2^2 + 2x_3^2 + 4x_2x_3 = x_1^2 + 2(x_2 + x_3)^2$$
 is positive semidefinite.

Example (continued)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix} \in M(3 \times 2; \mathbb{R})$$
 where $r(A) = 2$. The matrix

$$A^{\mathsf{T}}A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 7 \\ 4 & 5 & 5 \\ 7 & 5 & 10 \end{bmatrix},$$

is positive semidefinite and it is not positive definite.

$$\det\begin{bmatrix} 5 - \lambda & 4 & 7 \\ 4 & 5 - \lambda & 5 \\ 7 & 5 & 10 - \lambda \end{bmatrix} \stackrel{c_3 - 2c_2}{=} \det\begin{bmatrix} 5 - \lambda & 4 & -1 \\ 4 & 5 - \lambda & 2\lambda - 5 \\ 7 & 5 & -\lambda \end{bmatrix} \stackrel{c_1 + (5 - \lambda)c_3}{\stackrel{c_2 + 4c_3}{=}}$$

$$= \det\begin{bmatrix} 0 & 0 & -1 \\ -2\lambda^2 + 15\lambda - 21 & 7\lambda - 15 & 2\lambda - 5 \\ \lambda^2 - 5\lambda + 7 & 5 - 4\lambda & -\lambda \end{bmatrix} =$$

$$= -\det\begin{bmatrix} -2\lambda^2 + 15\lambda - 21 & 7\lambda - 15 \\ \lambda^2 - 5\lambda + 7 & 5 - 4\lambda \end{bmatrix} =$$

$$= -\lambda(\lambda^2 - 20\lambda + 35).$$

Example (continued)

Therefore one eigenvalue of $A^{T}A$ is equal to 0, and, by the Viete's formulas,

$$\lambda_1 + \lambda_2 = 20 > 0,$$

 $\lambda_1 \lambda_2 = 35 > 0,$

the other two eigenvalues are non-negative. In fact

$$\begin{bmatrix} 5 & -1 & -3 \end{bmatrix} \begin{bmatrix} 5 & 4 & 7 \\ 4 & 5 & 5 \\ 7 & 5 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ -3 \end{bmatrix} = 0.$$

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^n such that $M(\varphi)^{\mathcal{A}}_{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^n matrix $M(\varphi)^{\mathcal{B}}_{\mathcal{B}}$ is symmetric.

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^n such that $M(\varphi)^{\mathcal{A}}_{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^n matrix $M(\varphi)^{\mathcal{B}}_{\mathcal{B}}$ is symmetric.

Proof.

Let
$$M=M(\varphi)^{\mathcal{A}}_{\mathcal{A}}, N=M(\varphi)^{\mathcal{B}}_{\mathcal{B}}$$
. Matrix

$$Q = M(\mathsf{id})^{\mathcal{A}}_{\mathcal{B}} = M(\mathsf{id})^{\mathcal{A}}_{st} M(\mathsf{id})^{st}_{\mathcal{B}},$$

is orthogonal, i.e. $Q^{-1} = Q^{\mathsf{T}}$.

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism. If there exists an orthonormal basis \mathcal{A} of \mathbb{R}^n such that $M(\varphi)^{\mathcal{A}}_{\mathcal{A}}$ is symmetric then for any orthonormal basis \mathcal{B} of \mathbb{R}^n matrix $M(\varphi)^{\mathcal{B}}_{\mathcal{B}}$ is symmetric.

Proof.

Let
$$M = M(\varphi)^{\mathcal{A}}_{\mathcal{A}}, N = M(\varphi)^{\mathcal{B}}_{\mathcal{B}}$$
. Matrix

$$Q = M(\mathsf{id})^{\mathcal{A}}_{\mathcal{B}} = M(\mathsf{id})^{\mathcal{A}}_{st} M(\mathsf{id})^{st}_{\mathcal{B}},$$

is orthogonal, i.e. $Q^{-1} = Q^{\mathsf{T}}$. Because

$$N = Q^{\mathsf{T}} M Q$$

we have

$$N^{\mathsf{T}} = Q^{\mathsf{T}} M^{\mathsf{T}} (Q^{\mathsf{T}})^{\mathsf{T}} = N.$$

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism such that matrix $M(\varphi)^{st}_{st}$ is symmetric. Then there exists $\mu \in \mathbb{R}$ and $v \in \mathbb{R}^n, v \neq \mathbf{0}$ such that $\varphi(v) = \mu v$, i.e μ is an eigenvalue of φ and v is an eigenvector for μ .

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism such that matrix $M(\varphi)_{st}^{st}$ is symmetric. Then there exists $\mu \in \mathbb{R}$ and $v \in \mathbb{R}^n$, $v \neq \mathbf{0}$ such that $\varphi(v) = \mu v$, i.e μ is an eigenvalue of φ and v is an eigenvector for μ .

Proof.

Let $M = M(\varphi)_{st}^{st}$ and let $w_M(\lambda) = \det(M - \lambda I_n)$ be the characteristic polynomial of φ . By the fundamental theorem of algebra there exists a complex root $\mu \in \mathbb{C}$ of w_M and a complex eigenvector $v \in \mathbb{C}^n$, i.e. $w_M(\mu) = 0$ and $Mv = \mu v$. Matrix M is real therefore $M\overline{v} = \overline{\mu}\overline{v}$. Moreover

$$\overline{v}^{\mathsf{T}} M v = (M \overline{v})^{\mathsf{T}} v = \overline{\mu} v^{\mathsf{T}} v = \overline{\mu} ||v||,$$

$$\overline{v}^{\mathsf{T}} M v = \overline{v}^{\mathsf{T}} (M v) = \overline{v}^{\mathsf{T}} (\mu v) = \mu \|v\|.$$

This implies $\mu \in \mathbb{R}$ and since $V_{(\mu)}$ is given a system of linear equations with real coefficients one can choose $v \in \mathbb{R}^n$.

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism such that matrix $M(\varphi)^{st}_{st}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^n$ such that $\varphi(W) \subset W$,

$$\varphi(W^{\perp}) \subset W^{\perp}$$
.

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism such that matrix $M(\varphi)^{st}_{st}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^n$ such that $\varphi(W) \subset W$,

$$\varphi(W^{\perp}) \subset W^{\perp}$$
.

Let $M=M(\varphi)_{st}^{st}$ and let $w\in W^{\perp}$ be any vector. We need to check that $v^{\mathsf{T}}(Mw)=0$ for a any $v\in W$.

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism such that matrix $M(\varphi)^{\mathrm{st}}_{\mathrm{st}}$ is symmetric. Then for any subspace $W \subset \mathbb{R}^n$ such that $\varphi(W) \subset W$,

$$\varphi(W^{\perp}) \subset W^{\perp}$$
.

Let $M=M(\varphi)_{st}^{st}$ and let $w\in W^\perp$ be any vector. We need to check that $v^\intercal(Mw)=0$ for a any $v\in W$. In fact

$$v^{\mathsf{T}} M w = (M v)^{\mathsf{T}} w = 0.$$

Theorem

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable.

Theorem

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable.

Proof.

Let φ be an endomorphism given by $M=M(\varphi)^{st}_{st}$. Assume $W\subset \mathbb{R}^n$ is a subspace spanned by pairwise perpendicular eigenvectors of φ . Let $V=W^\perp$.

Theorem

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable.

Proof.

Let φ be an endomorphism given by $M=M(\varphi)^{st}_{st}$. Assume $W\subset \mathbb{R}^n$ is a subspace spanned by pairwise perpendicular eigenvectors of φ . Let $V=W^\perp$. Matrix of φ relative to some orthonormal basis of V is symmetric and $\varphi(V)\subset V$. Therefore there exists $\mu\in\mathbb{R}$ and a non–zero vector $v\in V$ such that $\varphi(v)=\mu v$.

Theorem

Symmetric matrix $M \in M(n \times n; \mathbb{R})$ is diagonalizable.

Proof.

Let φ be an endomorphism given by $M=M(\varphi)^{st}_{st}$. Assume $W\subset \mathbb{R}^n$ is a subspace spanned by pairwise perpendicular eigenvectors of φ . Let $V=W^\perp$. Matrix of φ relative to some orthonormal basis of V is symmetric and $\varphi(V)\subset V$. Therefore there exists $\mu\in\mathbb{R}$ and a non–zero vector $v\in V$ such that $\varphi(v)=\mu v$. By continuing this process we obtain an orthogonal basis of \mathbb{R}^n consisting of eigenvectors of φ .

Corollary

For any symmetric matrix $M \in M(n \times n; \mathbb{R})$ there exists matrix $Q \in M(n \times n; \mathbb{R})$ such that $Q^{-1} = Q^{\mathsf{T}}$ and the matrix

$$D = Q^{\mathsf{T}} M Q$$
,

is diagonal.

Corollary

For any symmetric matrix $M \in M(n \times n; \mathbb{R})$ there exists matrix $Q \in M(n \times n; \mathbb{R})$ such that $Q^{-1} = Q^{\mathsf{T}}$ and the matrix

$$D = Q^{\mathsf{T}} M Q$$
,

is diagonal.

Proof.

Let $\mathcal{A}=(v_1,\ldots,v_n)$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of M. If $Q=M(\mathrm{id})^{st}_{\mathcal{A}}$ then the matrix $Q^{-1}MQ$ is diagonal and $Q^{\mathsf{T}}Q=I_n$, i.e. $Q^{-1}=Q^{\mathsf{T}}$.

Characterization of Real Symmetric Matrices

Corollary

Let $M \in M(n \times n; \mathbb{R})$ be a real matrix. Then $M = M^T$ if and only if there exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ (i.e. $Q^TQ = I$) such that the matrix

$$D = Q^{\mathsf{T}} M Q \in M(n \times n; \mathbb{R}),$$

is diagonal.

(⇒) previous corollary

Characterization of Real Symmetric Matrices

Corollary

Let $M \in M(n \times n; \mathbb{R})$ be a real matrix. Then $M = M^T$ if and only if there exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ (i.e. $Q^TQ = I$) such that the matrix

$$D = Q^{\mathsf{T}} M Q \in M(n \times n; \mathbb{R}),$$

is diagonal.

(⇒) previous corollary

(
$$\Leftarrow$$
) If $D=Q^\intercal MQ$ then $M=QDQ^\intercal$ and since $D^\intercal=D$
$$M^\intercal=(Q^\intercal)^\intercal D^\intercal Q^\intercal=QDQ^\intercal=M.$$

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

i)
$$B(v + u, w) = B(v, w) + B(u, w)$$
 for any $u, v, w \in V$,

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

- i) B(v + u, w) = B(v, w) + B(u, w) for any $u, v, w \in V$,
- ii) B(v, u + w) = B(v, u) + B(v, w) for any $u, v, w \in V$,

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

- i) B(v+u,w)=B(v,w)+B(u,w) for any $u,v,w\in V$,
- ii) B(v, u + w) = B(v, u) + B(v, w) for any $u, v, w \in V$,
- iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

- i) B(v + u, w) = B(v, w) + B(u, w) for any $u, v, w \in V$,
- ii) B(v, u + w) = B(v, u) + B(v, w) for any $u, v, w \in V$,
- iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
- iv) $B(v, \beta w) = \beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

- i) B(v + u, w) = B(v, w) + B(u, w) for any $u, v, w \in V$,
- ii) B(v, u + w) = B(v, u) + B(v, w) for any $u, v, w \in V$,
- iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
- iv) $B(v, \beta w) = \beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Definition

Let V be a vector space. A function

$$B \colon V \times V \to \mathbb{R}$$

is called a bilinear form if

- i) B(v + u, w) = B(v, w) + B(u, w) for any $u, v, w \in V$,
- ii) B(v, u + w) = B(v, u) + B(v, w) for any $u, v, w \in V$,
- iii) $B(\alpha v, w) = \alpha B(v, w)$ for any $v, w \in V, \alpha \in \mathbb{R}$,
- iv) $B(v, \beta w) = \beta B(v, w)$ for any $v, w \in V, \beta \in \mathbb{R}$.

Bilinear form B is called **symmetric** if moreover

v) B(v, w) = B(w, v) for any $v, w \in V$.

Definition

If $B \colon V \times V \to \mathbb{R}$ is a bilinear form and $\mathcal{A} = (v_1, \dots, v_n)$ is a basis of V then the **matrix of bilinear form** B relative to the basis \mathcal{A} is equal to

$$M(B)_{\mathcal{A}} = [m_{ij}] \in M(n \times n; \mathbb{R}),$$

where $m_{ij} = B(v_i, v_j)$, i.e

$$M(B)_{A} = \begin{bmatrix} B(v_{1}, v_{1}) & B(v_{1}, v_{2}) & \dots & B(v_{1}, v_{n}) \\ B(v_{2}, v_{1}) & B(v_{2}, v_{2}) & \dots & B(v_{2}, v_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ B(v_{n}, v_{1}) & B(v_{n}, v_{2}) & \dots & B(v_{n}, v_{n}) \end{bmatrix}.$$

Proposition

For any $v, w \in V$ and any basis A

$$B(v,w) = \left[v\right]_{\mathcal{A}}^{\mathsf{T}} M(B)_{\mathcal{A}} \left[w\right]_{\mathcal{A}}.$$

Proposition

For any $v, w \in V$ and any basis A

$$B(v, w) = [v]_{\mathcal{A}}^{\mathsf{T}} M(B)_{\mathcal{A}} [w]_{\mathcal{A}}.$$

Proof.

Let
$$\mathcal{A} = (v_1, \dots, v_n)$$
 and let $v = \alpha_1 v_1 + \dots + \alpha_n v_n$, $w = \beta_1 v_1 + \dots + \beta_n v_n$.

$$B(v, w) = \sum_{i=1}^{n} \alpha_{i} \left(\sum_{j=1}^{n} B(v_{i}, w_{j}) \beta_{j} \right) =$$

$$= \sum_{i=1}^{n} \alpha_{i} \left(\sum_{j=1}^{n} m_{ij} \beta_{j} \right),$$

where $M(B)_{\mathcal{A}} = [m_{ij}].$

Corollary

If
$$\mathcal{A},\mathcal{B}$$
 are bases of V then for $C=M(\mathsf{id})_{\mathcal{A}}^{\mathcal{B}}$

$$M(B)_{\mathcal{A}} = C^{\mathsf{T}} M(B)_{\mathcal{B}} C.$$

Corollary

If \mathcal{A}, \mathcal{B} are bases of V then for $C = M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}$

$$M(B)_{\mathcal{A}} = C^{\mathsf{T}} M(B)_{\mathcal{B}} C.$$

Proof.

Let $M(B)_{\mathcal{A}}=M=[m_{ij}]$ and let $\mathcal{A}=(v_1,\ldots,v_n)$. By the previous proposition

$$\varepsilon_{i}^{\mathsf{T}}\left(C^{\mathsf{T}}M(B)_{\mathcal{B}}C\right)\varepsilon_{j} = \left(C\varepsilon_{j}\right)^{\mathsf{T}}M(B)_{\mathcal{B}}\left(C\varepsilon_{j}\right) = \left[v_{i}\right]_{\mathcal{B}}^{\mathsf{T}}M(B)_{\mathcal{B}}\left[v_{j}\right]_{\mathcal{B}} = B(v_{i}, v_{i}).$$

On the other hand, for any $M = [m_{ij}]$

$$\varepsilon_i^{\mathsf{T}} M \varepsilon_i = m_{ij},$$

hence $C^{\mathsf{T}}M(B)_{\mathcal{B}}C = M = M(B)_{\mathcal{A}}$.

Let $B: V \times V \rightarrow \mathbb{R}$.

Corollary

If B is a symmetric bilinear form then for any basis ${\cal A}$ of V

$$M(B)_{\mathcal{A}}^{\mathsf{T}} = M(B)_{\mathcal{A}}.$$

Let $B: V \times V \to \mathbb{R}$.

Corollary

If B is a symmetric bilinear form then for any basis ${\cal A}$ of V

$$M(B)_{\mathcal{A}}^{\mathsf{T}} = M(B)_{\mathcal{A}}.$$

If B is a bilinear form and for some basis A of V

$$M(B)_{\mathcal{A}}^{\mathsf{T}} = M(B)_{\mathcal{A}},$$

then B is symmetric bilinear form.

Let $B: V \times V \rightarrow \mathbb{R}$.

Corollary

If B is a symmetric bilinear form then for any basis ${\mathcal A}$ of V

$$M(B)_{\mathcal{A}}^{\mathsf{T}} = M(B)_{\mathcal{A}}.$$

If B is a bilinear form and for some basis A of V

$$M(B)_A^{\mathsf{T}} = M(B)_{\mathcal{A}},$$

then B is symmetric bilinear form.

Proof.

For the second claim, let $M = [m_{ij}] = M(B)_A$ be symmetric, i.e. $M^T = M$. Then for any $v, w \in \mathbb{R}^n$

$$B(v,w) = [v]_{\mathcal{A}}^{\mathsf{T}} M[w]_{\mathcal{A}} = ([v]_{\mathcal{A}}^{\mathsf{T}} M[w]_{\mathcal{A}})^{\mathsf{T}} = [w]_{\mathcal{A}}^{\mathsf{T}} M[v]_{\mathcal{A}} = B(w,v),$$

i.e. *B* is symmetric.

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \to \mathbb{R}$ is a quadratic form if there exist a bilinear

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \to \mathbb{R}$ is a **quadratic form** if there exist a bilinear form $B: V \times V \to \mathbb{R}$ such that Q(v) = B(v, v) for any $v \in V$.

Proposition

If $Q: V \to \mathbb{R}$ is a quadratic form then

$$B_s(v, w) = \frac{1}{2} (Q(v + w, v + w) - Q(v, v) - Q(w, w)),$$

is a **symmetric** bilinear form such that $Q(v) = B_s(v, v)$.

Quadratic Forms

Let V be a vector space.

Definition

Function $Q: V \to \mathbb{R}$ is a **quadratic form** if there exist a bilinear form $B: V \times V \to \mathbb{R}$ such that Q(v) = B(v, v) for any $v \in V$.

Proposition

If $Q: V \to \mathbb{R}$ is a quadratic form then

$$B_s(v, w) = \frac{1}{2} (Q(v + w, v + w) - Q(v, v) - Q(w, w)),$$

is a **symmetric** bilinear form such that $Q(v) = B_s(v, v)$.

Proof.

$$B_s(v,w) = \frac{1}{2} \left(B(v,w) + B(w,v) \right).$$

Sylvester's Criterion

Proposition

Let $Q: V \to \mathbb{R}$ be a quadratic form such that Q(v) = B(v, v) where B is a symmetric bilinear form. Let $\mathcal{A} = (v_1, \dots, v_n)$ be a basis of V. Then Q is positive definite if and only if

$$\det M(B)_{\mathcal{A}_i} > 0,$$

for
$$i = 1, \ldots, n$$
 where $A_i = (v_1, \ldots, v_i)$.

Sylvester's Criterion

Proposition

Let $Q: V \to \mathbb{R}$ be a quadratic form such that Q(v) = B(v, v) where B is a symmetric bilinear form. Let $\mathcal{A} = (v_1, \dots, v_n)$ be a basis of V. Then Q is positive definite if and only if

$$\det M(B)_{\mathcal{A}_i} > 0,$$

for $i = 1, \ldots, n$ where $A_i = (v_1, \ldots, v_i)$.

Proof.

 (\Rightarrow) The quadratic form Q restricted to $\text{lin}(v_1,\ldots,v_i)$ is positive hence the matrix $M(B)_{\mathcal{A}_i}$ is symmetric diagonalizable and by the eigenvalue criterion its all eigenvalues $\lambda_1,\ldots,\lambda_i>0$ are positive. Therefore

$$\det M(B)_{\mathcal{A}_i} = \lambda_1 \cdot \ldots \cdot \lambda_i > 0.$$

Note that eigenvalues depend on i.

Proof.

(\Leftarrow) let $V_k= \text{lin}(v_1,\dots,v_k).$ By induction on k we prove the claim "the quadratic form $Q|_{V_k}$ is positive definite",

which for k = n is the assertion of the Theorem.

Proof.

(\Leftarrow) let $V_k= \text{lin}(v_1,\dots,v_k).$ By induction on k we prove the claim "the quadratic form $Q|_{V_k}$ is positive definite",

which for k = n is the assertion of the Theorem.

For k = 1 the claim holds since det $M(B)_{A_1} = B(v_1, v_1) > 0$.

Proof.

(\Leftarrow) let $V_k= \text{lin}(v_1,\dots,v_k).$ By induction on k we prove the claim "the quadratic form $Q|_{V_k}$ is positive definite",

which for k = n is the assertion of the Theorem.

For k = 1 the claim holds since det $M(B)_{A_1} = B(v_1, v_1) > 0$.

For k = 2 let $\lambda_1, \lambda_2 \in \mathbb{R}$ are eigenvalues of $M(B)_{A_2}$.

Proof.

(\Leftarrow) let $V_k= \text{lin}(v_1,\dots,v_k).$ By induction on k we prove the claim "the quadratic form $Q|_{V_k}$ is positive definite",

which for k = n is the assertion of the Theorem.

For k = 1 the claim holds since det $M(B)_{A_1} = B(v_1, v_1) > 0$.

For k=2 let $\lambda_1,\lambda_2\in\mathbb{R}$ are eigenvalues of $M(B)_{\mathcal{A}_2}$. By Viete's formulas

$$\begin{cases} \lambda_1 + \lambda_2 &= B(v_1, v_1) + B(v_2, v_2), \\ \lambda_1 \lambda_2 &= B(v_1, v_1) B(v_2, v_2) - B(v_1, v_2)^2. \end{cases}$$

Because $\lambda_1\lambda_2 = \det M(B)_{\mathcal{A}_2} > 0$ either $B(v_1,v_1) < 0, B(v_2,v_2) < 0$ or $B(v_1,v_1) > 0, B(v_2,v_2) > 0$. Since $B(v_1,v_1) = \det M(B)_{\mathcal{A}_1} > 0$ the latter holds, hence $\lambda_1,\lambda_2 > 0$.

Proof.

Assume that $k\geqslant 3$ and $\det M(B)_{\mathcal{A}_i}>0$, for $i=1,\ldots,k$ (i.e. $Q|_{V_{k-1}}$ is positive definite) but $Q|_{V_k}$ is not positive definite.

Proof.

Assume that $k \ge 3$ and $\det M(B)_{\mathcal{A}_i} > 0$, for $i = 1, \ldots, k$ (i.e. $Q|_{V_{k-1}}$ is positive definite) but $Q|_{V_k}$ is not positive definite.

Therefore $M(B)_{\mathcal{A}_k}$ has at least two negative eigenvalues $\lambda_1,\lambda_2<0$ or a negative eigenvalue $\lambda<0$ of multiplicity at least 2 (det $M(B)_{\mathcal{A}_k}>0$ is equal to the product of eigenvalues).

Proof.

Assume that $k \ge 3$ and $\det M(B)_{\mathcal{A}_i} > 0$, for $i = 1, \dots, k$ (i.e. $Q|_{V_{k-1}}$ is positive definite) but $Q|_{V_k}$ is not positive definite.

Therefore $M(B)_{\mathcal{A}_k}$ has at least two negative eigenvalues $\lambda_1, \lambda_2 < 0$ or a negative eigenvalue $\lambda < 0$ of multiplicity at least 2 (det $M(B)_{\mathcal{A}_k} > 0$ is equal to the product of eigenvalues).

In both cases there exist eigenvectors $w_1, w_2 \in V_k$ of $M(B)_{\mathcal{A}_k}$, that is

$$M(B)_{\mathcal{A}_k} [w_i]_{\mathcal{A}_k} = \lambda_i [w_i]_{\mathcal{A}_k} \text{ for } i = 1, 2,$$

and $[w_1]_{\mathcal{A}_k}^{\mathsf{T}}[w_2]_{\mathcal{A}_k} = 0$ (including the case $\lambda_1 = \lambda_2 = \lambda$).

Proof.

Assume that $k \ge 3$ and $\det M(B)_{\mathcal{A}_i} > 0$, for $i = 1, \dots, k$ (i.e. $Q|_{V_{k-1}}$ is positive definite) but $Q|_{V_k}$ is not positive definite.

Therefore $M(B)_{\mathcal{A}_k}$ has at least two negative eigenvalues $\lambda_1, \lambda_2 < 0$ or a negative eigenvalue $\lambda < 0$ of multiplicity at least 2 (det $M(B)_{\mathcal{A}_k} > 0$ is equal to the product of eigenvalues).

In both cases there exist eigenvectors $w_1, w_2 \in V_k$ of $M(B)_{\mathcal{A}_k}$, that is

$$M(B)_{\mathcal{A}_k} [w_i]_{\mathcal{A}_k} = \lambda_i [w_i]_{\mathcal{A}_k}$$
 for $i = 1, 2,$

and $[w_1]_{\mathcal{A}_k}^{\mathsf{T}}[w_2]_{\mathcal{A}_k} = 0$ (including the case $\lambda_1 = \lambda_2 = \lambda$). Note that $w_1, w_2 \notin V_{k-1}$.

Proof.

Let $w_1=\alpha_1v_1+\ldots+\alpha_kv_k, w_2=\beta_1v_1+\ldots+\beta_kv_k$ and let $v=\gamma_1w_1+\gamma_2w_2\in V_{k-1}$ where $\gamma_1=\beta_k, \gamma_2=-\alpha_k$. Then $\gamma_1,\gamma_2\neq 0$ since $w_1,w_2\notin V_{k-1}$. Vectors w_1,w_2 are perpendicular (i.e. linearly independent), therefore $v\neq \mathbf{0}$. Hence

$$[v]_{\mathcal{A}_k}^{\mathsf{T}} M(B)_{\mathcal{A}_k} [v]_{\mathcal{A}_k} =$$

$$= \left(\gamma_1 [w_1]_{\mathcal{A}_k} + \gamma_2 [w_2]_{\mathcal{A}_k} \right)^{\mathsf{T}} M(B)_{\mathcal{A}_k} \left(\gamma_1 [w_1]_{\mathcal{A}_k} + \gamma_2 [w_2]_{\mathcal{A}_k} \right) =$$

$$= \lambda_1 \gamma_1^2 ||[w_1]_{\mathcal{A}_k}||^2 + \lambda_2 \gamma_2^2 ||[w_2]_{\mathcal{A}_k}||^2 < 0.$$

On the other hand

$$[v]_{\mathcal{A}_{k}}^{\mathsf{T}} M(B)_{\mathcal{A}_{k}} [v]_{\mathcal{A}_{k}} = Q(v) > 0,$$

because $Q|_{V_{k-1}}$ is positive definite, which yields a contradiction.

Summary

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. The following are equivalent

- i) $x^{T}Mx \ge 0$ (matrix M is positive semidefinite),
- ii) $\min\{\lambda \mid \lambda \text{ is an eigenvalue of } M\} \geqslant 0$,
- iii) $\min\{x^{T}Mx \in \mathbb{R} \mid ||x|| = 1\} \ge 0$,
- iv) all principal minors of M are non-negative,
- v) there exists a matrix $N \in M(n \times n; \mathbb{R})$ such that $M = N^T N$.

Summary (continued)

Let $M \in M(n \times n; \mathbb{R})$ be a symmetric matrix. The following are equivalent

- i) $x^{T}Mx > 0$ for $x \neq \mathbf{0}$ (matrix M is positive definite),
- ii) $\min\{\lambda \mid \lambda \text{ is an eigenvalue of } M\} > 0$,
- iii) $\min\{x^{\mathsf{T}} M x \in \mathbb{R} \mid ||x|| = 1\} > 0$,
- iv) all leading principal minors of M are positive,
- v) there exists a non–singular (i.e. det $N \neq 0$) matrix $N \in M(n \times n; \mathbb{R})$ such that $M = N^T N$.

Interlacing Eigenvalues

Theorem

If $M \in M(n \times n; \mathbb{R})$ is a symmetric matrix, i.e. $M = M^{\mathsf{T}}$. Let M_i denote the top left i-by-i submatrix of M. Fix m < n. Let $\lambda_1, \ldots, \lambda_m$ denote the eigenvalues of M_m and μ_1, \ldots, μ_{m+1} denote the eigenvalues of M_{m+1} . Then

$$\mu_1 \leqslant \lambda_1 \leqslant \mu_2 \leqslant \lambda_2 \leqslant \mu_3 \leqslant \ldots \leqslant \lambda_m \leqslant \mu_{m+1}.$$

Proof.

Omitted.

Hessian Matrix

Definition

Let $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^k$, be a function of class C^2 on the open set U. **Hessian matrix** at $x_0 \in U$ is the symmetric matrix $H_f(x_0) = H(x_0) \in M(k \times k; \mathbb{R})$ given by

$$H_{f}(x_{0}) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{1}\partial x_{3}}(x_{0}) & \dots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{k}}(x_{0}) \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{3}}(x_{0}) & \dots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{k}}(x_{0}) \\ \frac{\partial^{2}f}{\partial x_{3}\partial x_{1}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{3}\partial x_{2}}(x_{0}) & \frac{\partial^{3}f}{\partial x_{3}^{3}}(x_{0}) & \dots & \frac{\partial^{2}f}{\partial x_{3}\partial x_{k}}(x_{0}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{k}\partial x_{1}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{k}\partial x_{2}}(x_{0}) & \frac{\partial^{2}f}{\partial x_{k}\partial x_{3}}(x_{0}) & \dots & \frac{\partial^{2}f}{\partial x_{k}^{2}}(x_{0}) \end{bmatrix}.$$

Hessian Matrix

Definition

Let $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^k$, be a function of class C^2 on the open set U. **Hessian matrix** at $x_0 \in U$ is the symmetric matrix $H_f(x_0) = H(x_0) \in M(k \times k; \mathbb{R})$ given by

$$H_f(x_0) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x_0) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_0) & \frac{\partial^2 f}{\partial x_1 \partial x_3}(x_0) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_k}(x_0) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_0) & \frac{\partial^2 f}{\partial x_2^2}(x_0) & \frac{\partial^2 f}{\partial x_2 \partial x_3}(x_0) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_k}(x_0) \\ \frac{\partial^2 f}{\partial x_3 \partial x_1}(x_0) & \frac{\partial^2 f}{\partial x_3 \partial x_2}(x_0) & \frac{\partial^3 f}{\partial x_3^3}(x_0) & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_k}(x_0) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_k \partial x_1}(x_0) & \frac{\partial^2 f}{\partial x_k \partial x_2}(x_0) & \frac{\partial^2 f}{\partial x_k \partial x_3}(x_0) & \dots & \frac{\partial^2 f}{\partial x_k^2}(x_0) \end{bmatrix}.$$

Remark

If f is not of class C^2 the matrix $H_f(x_0)$ may not be symmetric.

Local Minima or Maxima of a Multivariate Function

Theorem

Let $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^k$ be a function of class C^2 on the open set U. If $x_0 \in U$ is a **critical point** of function f, i.e.

$$f'(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_k}(x_0)\right) = \mathbf{0},$$

and the Hessian matrix $H(x_0)$ is negative (respectively, positive) definite, then f has strict local maximum (respectively strict local minimum) at the point $x_0 \in U$.

Local Minima or Maxima of a Multivariate Function

Theorem

Let $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^k$ be a function of class C^2 on the open set U. If $x_0 \in U$ is a **critical point** of function f, i.e.

$$f'(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_k}(x_0)\right) = \mathbf{0},$$

and the Hessian matrix $H(x_0)$ is negative (respectively, positive) definite, then f has strict local maximum (respectively strict local minimum) at the point $x_0 \in U$.

If the matrix $H(x_0)$ is indefinite then f has no local extremum at x_0 (the point x_0 is so called **saddle point**).

Proof.

Analysis course (use multivariate Taylor formula).

Example - Local Maximum

$$H_f(0,0) = \left[egin{array}{cc} -2 & 0 \\ 0 & -2 \end{array}
ight]$$
 negative definite

Example - Local Minimum

$$H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 positive definite

Example – Saddle Point – No Local Extremum

graph of the function
$$f(x, y) = x^2 - y^2$$

$$H_f(0,0) = \left[egin{array}{cc} 2 & 0 \\ 0 & -2 \end{array}
ight]$$
 indefinite

Local Minima or Maxima of a Multivariate Function (continued)

Remark

If the matrix $H(x_0)$ is positive semidefinite or negative semidefinite then the function f has at x_0 local minimum or local maximum or a saddle point (the criterion is indecisive).

Example – Hessian Matrix Positive Semidefinite – Weak Local Minimum

$$H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
 positive semidefinite

Example – Hessian Matrix Positive Semidefinite – Strict Local Minimum

graph of the function
$$f(x, y) = x^2 + y^4$$

$$H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
 positive semidefinite

Example – Hessian Matrix Positive Semidefinite – Saddle Point

$$H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
 positive semidefinite

Square Root of a Positive Semidefinite Matrix

Find a matrix $X \in M(2 \times 2; \mathbb{R})$ such that

$$X^2 = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} = A.$$

Square Root of a Positive Semidefinite Matrix

Find a matrix $X \in M(2 \times 2; \mathbb{R})$ such that

$$X^2 = \begin{vmatrix} 5 & -4 \\ -4 & 5 \end{vmatrix} = A.$$

It can be checked that

$$A = Q^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} Q,$$

where

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

Square Root of a Positive Semidefinite Matrix (continued)

$$X_{1} = Q^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} Q = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix},$$

$$X_{2} = Q^{\mathsf{T}} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} Q = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix},$$

$$X_{3} = Q^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} Q = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix},$$

$$X_{4} = Q^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} Q = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Multivariate Gaussian Distribution

The probability density function of multivariate n-dimensional Gaussian distribution is given by

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\det \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)},$$

where $x \in \mathbb{R}^n$ for some fixed $\mu \in \mathbb{R}^n$ and $\Sigma \in M(n \times n; \mathbb{R})$ a symmetric positive definite matrix.

Multivariate Gaussian Distribution

The probability density function of multivariate *n*-dimensional Gaussian distribution is given by

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\det \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)},$$

where $x \in \mathbb{R}^n$ for some fixed $\mu \in \mathbb{R}^n$ and $\Sigma \in M(n \times n; \mathbb{R})$ a symmetric positive definite matrix. There exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ (i.e. $QQ^{\mathsf{T}} = Q^{\mathsf{T}}Q = I$) such that

$$Q^{\mathsf{T}} \Sigma Q = \left[\begin{array}{cccc} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{array} \right],$$

where $\sigma_1, \ldots, \sigma_n > 0$, $Q = [v_1 \ v_2 \ \cdots v_n]$ and $\mathcal{B} = (v_1, v_2, \ldots, v_n)$ is an orthonormal basis of \mathbb{R}^n .

Multivariate Gaussian Distribution (continued)

Then if

$$x = \sum_{i=1}^{n} x_i v_i,$$

(i.e. $[x]_{\mathcal{B}} = [x_1 \ x_2 \ \cdots x_n]^{\mathsf{T}})$ and

$$\mu=(\mu_1,\mu_2,\ldots,\mu_n),$$

then

$$p(x \mid \mu, \Sigma) = \prod_{i=1}^{n} \frac{1}{(2\pi\sigma_i^2)^{\frac{1}{2}}} e^{-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}},$$

i.e., it is a product of one-dimensional Gaussian probability density functions.

Multivariate Gaussian Distribution – Example

Let

$$\Sigma = \begin{bmatrix} \frac{5}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{5}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix},$$

$$\Sigma^{-1} = \begin{bmatrix} \frac{5}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{5}{8} \end{bmatrix},$$

$$\mu = (2,3), \quad v_1 = \frac{1}{\sqrt{2}}(1,1), \quad v_2 = \frac{1}{\sqrt{2}}(1,-1),$$

then

$$p((x_1, x_2) \mid \mu, \Sigma) = \frac{1}{2\pi} \frac{1}{2} e^{-\frac{1}{16}(5(x_1 - 2)^2 + 6(x_1 - 2)(x_2 - 3) + 5(x_2 - 3)^2)},$$

$$p(x_1 v_1 + x_2 v_2 \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}} e^{-\frac{(x_1 - 2)^2}{2}} \frac{1}{2(2\pi)^{\frac{1}{2}}} e^{-\frac{(x_2 - 3)^2}{8}},$$

Multivariate Gaussian Distribution – Example

probability density functions for
$$\Sigma=\frac{1}{2}\begin{bmatrix}5&-3\\-3&5\end{bmatrix},~\mu=(2,3)$$

Definition

Inner product space V is a vector space V over $\mathbb C$ or $\mathbb R$, with a function

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C},$$

i)
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
 for any $v, w \in V$,

Definition

Inner product space V is a vector space V over $\mathbb C$ or $\mathbb R$, with a function

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C},$$

- i) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for any $v, w \in V$,
- ii) for any $v \in V$ the function $\langle v, \cdot \rangle \colon V \to \mathbb{C}$ is linear, i.e. for any $w, w' \in V$ and $\alpha \in \mathbb{C}$

Definition

Inner product space V is a vector space V over $\mathbb C$ or $\mathbb R$, with a function

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C},$$

- i) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for any $v, w \in V$,
- ii) for any $v \in V$ the function $\langle v, \cdot \rangle \colon V \to \mathbb{C}$ is linear, i.e. for any $w, w' \in V$ and $\alpha \in \mathbb{C}$
 - a) $\langle v, w + w' \rangle = \langle v, w \rangle + \langle v, w' \rangle$,

Definition

Inner product space V is a vector space V over $\mathbb C$ or $\mathbb R$, with a function

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C},$$

- i) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for any $v, w \in V$,
- ii) for any $v \in V$ the function $\langle v, \cdot \rangle \colon V \to \mathbb{C}$ is linear, i.e. for any $w, w' \in V$ and $\alpha \in \mathbb{C}$
 - a) $\langle v, w + w' \rangle = \langle v, w \rangle + \langle v, w' \rangle$,
 - b) $\langle \mathbf{v}, \alpha \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$

Definition

Inner product space V is a vector space V over $\mathbb C$ or $\mathbb R$, with a function

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C},$$

- i) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for any $v, w \in V$,
- ii) for any $v \in V$ the function $\langle v, \cdot \rangle \colon V \to \mathbb{C}$ is linear, i.e. for any $w, w' \in V$ and $\alpha \in \mathbb{C}$
 - a) $\langle v, w + w' \rangle = \langle v, w \rangle + \langle v, w' \rangle$,
 - b) $\langle \mathbf{v}, \alpha \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$
- iii) $\langle v, v \rangle > 0$ for any $v \neq \mathbf{0}$.

Example

Example

The vector space $V = \mathbb{C}^n$ with

$$\langle v, w \rangle = \sum_{j=1}^{n} \overline{v_j} w_j = \overline{v}^{\mathsf{T}} w = v^* w,$$

for any $v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in\mathbb{C}^n$ is the standard inner product space

Example

Example

The vector space $V = \mathbb{C}^n$ with

$$\langle v, w \rangle = \sum_{j=1}^{n} \overline{v_j} w_j = \overline{v}^{\mathsf{T}} w = v^* w,$$

for any $v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in\mathbb{C}^n$ is the standard inner product space

Example

The vector space $V = \mathcal{C}([a,b];\mathbb{C})$ of continuous functions

$$\langle f, g \rangle = \int_a^b w(x) \overline{f(x)} g(x) dx,$$

where w is a fixed **weight function** $w \in V$ such that $w(x) \in \mathbb{R}$, w(x) > 0 for $x \in (a, b)$ is an inner product space.

Norm

Let V be an inner product space.

Definition

Norm of vector $v \in V$ is equal to

$$\|v\| = \sqrt{\langle v, v \rangle}.$$

Norm

Let V be an inner product space.

Definition

Norm of vector $v \in V$ is equal to

$$||v|| = \sqrt{\langle v, v \rangle}.$$

If V is complete as a metric space induced by the norm it is called a Hilbert space.

Adjoint Transformation

Proposition

Let V and W be inner product spaces. For any linear transformation $\varphi \colon V \to W$ there exists a unique linear transformation $\varphi^* \colon W \to V$ such that

$$\langle \varphi(\mathbf{v}), \mathbf{w} \rangle_{\mathbf{W}} = \langle \mathbf{v}, \varphi^*(\mathbf{w}) \rangle_{\mathbf{V}}.$$

Proof.

The inner products induce isomorphisms $V \simeq V^*$ and $W \simeq W^*$ because the linear transformations are monomorphisms hence isomorphisms (since the product is positive definite),

$$V \ni v \mapsto \langle v, \cdot \rangle \in V^*,$$

$$W \ni w \mapsto \langle w, \cdot \rangle \in W^*.$$

These isomorphisms induce an isomorphism

$$\mathsf{Hom}(V,W) = V^* \otimes W \simeq V \otimes W^* \simeq W^* \otimes V = \mathsf{Hom}(W,V),$$

and φ^* is the image of φ under this isomorphism.

Proof.

Let

$$\varphi = \alpha \otimes t,$$

where $\alpha \in V^*, t \in W$. Let $s_{\alpha} \in V$ be a vector such that

$$\alpha(\cdot) = \langle s_{\alpha}, \cdot \rangle,$$

(i.e. vector corresponding to α under isomorphism $V \simeq V^*$). By definition

$$\alpha^* = \langle t, \cdot \rangle \otimes s_{\alpha}.$$

Then for any $v \in V$, $w \in W$

$$\langle \varphi(\mathbf{v}), \mathbf{w} \rangle = \langle \alpha(\mathbf{v})t, \mathbf{w} \rangle = \overline{\alpha(\mathbf{v})} \langle t, \mathbf{w} \rangle.$$

On the other hand

$$\langle v, \varphi^*(w) \rangle = \langle v, \langle t, w \rangle s_{\alpha} \rangle = \langle t, w \rangle \langle v, s_{\alpha} \rangle = \langle t, w \rangle \overline{\alpha(v)}.$$

Proposition

Let $\varphi \colon \mathbb{C}^n \to \mathbb{C}^n$ be a linear transformation where \mathbb{C}^n is a standard inner product space (domain and codomain). If $A = M_{st}^{st}(\varphi)$ then

$$A^* = \overline{A}^{\mathsf{T}} = M_{st}^{st}(\varphi^*),$$

where

$$A^* = \overline{A}^{\mathsf{T}} = \overline{A}^{\mathsf{T}}.$$

Proposition

Let $\varphi \colon \mathbb{C}^n \to \mathbb{C}^n$ be a linear transformation where \mathbb{C}^n is a standard inner product space (domain and codomain). If $A = M_{st}^{st}(\varphi)$ then

$$\mathbf{A}^* = \overline{\mathbf{A}}^\mathsf{T} = \mathbf{M}_{\mathsf{st}}^{\mathsf{st}}(\varphi^*),$$

where

$$A^* = \overline{A}^{\mathsf{T}} = \overline{A}^{\mathsf{T}}.$$

Proof.

For any
$$v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in\mathbb{C}^n$$

$$\langle Av, w \rangle = (\overline{A}\overline{v})^{\mathsf{T}}w = \overline{v}^{\mathsf{T}}(\overline{A}^{\mathsf{T}}w) = \overline{v}^{\mathsf{T}}A^*w = \langle v, A^*w \rangle.$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{C})$ is **normal** if

 $A^*A = AA^*$.

Normal, Unitary, Hermitian and Skew–Hermitian Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{C})$ is **normal** if

$$A^*A = AA^*$$
.

Definition

Matrix $U \in M(n \times n; \mathbb{C})$ is unitary if

$$U^*U=UU^*=I_n.$$

Normal, Unitary, Hermitian and Skew-Hermitian Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{C})$ is **normal** if

$$A^*A = AA^*$$
.

Definition

Matrix $U \in M(n \times n; \mathbb{C})$ is unitary if

$$U^*U=UU^*=I_n.$$

Definition

Matrix $H \in M(n \times n; \mathbb{C})$ is **Hermitian** if

$$H=H^*$$
.

Matrix $H \in M(n \times n; \mathbb{C})$ is **skew–Hermitian** if

$$H = -H^*$$
.

Normal, Unitary, Hermitian and Skew–Hermitian Matrix (continued)

Proposition

Unitary, Hermitian and skew-Hermitian matrices are normal.

Normal Transformation

Let V be an inner product space.

Definition

Endomorphism (linear transformation)

$$\varphi\colon V\to V$$
,

is **normal** if

$$\varphi \circ \varphi^* = \varphi^* \circ \varphi.$$

Normal Transformation

Let V be an inner product space.

Definition

Endomorphism (linear transformation)

$$\varphi\colon V\to V$$
,

is normal if

$$\varphi \circ \varphi^* = \varphi^* \circ \varphi.$$

Proposition

Endomorphism φ is normal if and only if the matrix $M_{\mathcal{A}}^{\mathcal{A}}(\varphi)$ is normal for any (some) orthonormal basis \mathcal{A} of V.

Normal Transformation

Let V be an inner product space.

Definition

Endomorphism (linear transformation)

$$\varphi\colon V\to V$$
,

is normal if

$$\varphi \circ \varphi^* = \varphi^* \circ \varphi.$$

Proposition

Endomorphism φ is normal if and only if the matrix $M_{\mathcal{A}}^{\mathcal{A}}(\varphi)$ is normal for any (some) orthonormal basis \mathcal{A} of V.

Proof.

Exercise.

Normal Matrix is Unitary Diagonalizable

Proposition

Let $A \in M(n \times n; \mathbb{C})$ be normal matrix. Then there exists a unitary matrix $U \in M(n \times n; \mathbb{C})$ such that the matrix

$$U^*AU = U^{-1}AU,$$

is diagonal.

Normal Matrix is Unitary Diagonalizable

Proposition

Let $A \in M(n \times n; \mathbb{C})$ be normal matrix. Then there exists a unitary matrix $U \in M(n \times n; \mathbb{C})$ such that the matrix

$$U^*AU = U^{-1}AU,$$

is diagonal.

Proof.

Let $\lambda \in \mathbb{C}$, $v \in \mathbb{C}^n$. Then

$$||Av - \lambda v||^{2} = \langle Av, Av \rangle - \langle \lambda v, Av \rangle - \langle Av, \lambda v \rangle + \langle \lambda v, \lambda v \rangle =$$

$$= \langle v, A^{*}Av \rangle - \langle A^{*}v, \overline{\lambda}v \rangle - \langle \overline{\lambda}v, A^{*}v \rangle + \langle \overline{\lambda}v, \overline{\lambda}v \rangle =$$

$$= \langle v, AA^{*}v \rangle - \langle A^{*}v, \overline{\lambda}v \rangle - \langle \overline{\lambda}v, A^{*}v \rangle + \langle \overline{\lambda}v, \overline{\lambda}v \rangle =$$

$$= ||A^{*}v - \overline{\lambda}v||^{2}.$$

Therefore $v \in \mathbb{C}^n$ is an eigenvector of A if and only if it is an eigenvector of A^* (and the corresponding eigenvalues are conjugated).

Normal Matrix is Unitary Diagonalizable (continued)

Proof.

Let $\lambda \in \mathbb{C}$ be an eigenvalue of A and let $v \in \mathbb{C}^n$ be a corresponding eigenvector of norm 1. Let

$$V = lin(v)^{\perp} = \{ w \in W \mid \langle v, w \rangle = 0 \}.$$

Then

$$AV \subset V$$
,

since for $w \in V$

$$\langle v, Aw \rangle = \langle A^*v, w \rangle = \langle \overline{\lambda}v, w \rangle = 0.$$

The endomorphism $A|_V$ is normal (since $(\varphi|_V)^* = (\varphi^*)|_V$) and by the induction the theorem holds. The unitary matrix $U \in M(n \times n; \mathbb{C})$ has in columns normalized (i.e. of length 1) eigenvectors obtained by the above procedure.

Characterization of Complex Normal, Unitary, Hermitian and Skew–Hermitian Matrices

Let $A \in M(n \times n; \mathbb{C})$ be a matrix with (possibly repeating) eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Let $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in M(n \times n; \mathbb{C})$ be a diagonal matrix with complex numbers $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ on the diagonal.

Proposition

Then

A is normal ⇔

 \Leftrightarrow there exists unitary matrix $U \in M(n \times n; \mathbb{C})$ such that $U^*AU = D$.

Moreover

- i) matrix A is unitary $\Leftrightarrow |\lambda_i| = 1$ for j = 1, ..., n,
- ii) matrix A is Hermitian $\Leftrightarrow \lambda_i \in \mathbb{R}$ for $j = 1, \ldots, n$,
- iii) matrix A is skew–Hermitian $\Leftrightarrow \lambda_i \in \sqrt{-1}\mathbb{R}$ for j = 1, ..., n,

Characterization of Complex Normal, Unitary, Hermitian and Skew–Hermitian Matrices (continued)

Proof.

Easy exercise. Respectively, one has

- i) $D^* = D^{-1}$,
- ii) $D^* = D$,
- iii) $D^* = -D$.

Normal, Orthogonal, Symmetric and Skew–Symmetric Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is **normal** if

 $A^{\mathsf{T}}A = AA^{\mathsf{T}}$.

Normal, Orthogonal, Symmetric and Skew–Symmetric Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is **normal** if

$$A^{\mathsf{T}}A = AA^{\mathsf{T}}$$
.

Definition

Matrix $Q \in M(n \times n; \mathbb{R})$ is **orthogonal** if

$$Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_n.$$

Normal, Orthogonal, Symmetric and Skew–Symmetric Matrix

Definition

Matrix $A \in M(n \times n; \mathbb{R})$ is **normal** if

$$A^{\mathsf{T}}A = AA^{\mathsf{T}}$$
.

Definition

Matrix $Q \in M(n \times n; \mathbb{R})$ is **orthogonal** if

$$Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_n.$$

Definition

Matrix $H \in M(n \times n; \mathbb{R})$ is **symmetric** if

$$H = H^{\mathsf{T}}$$
.

Matrix $H \in M(n \times n; \mathbb{R})$ is skew–symmetric if

$$H = -H^{\mathsf{T}}$$
.

Normal, Orthogonal, Symmetric and Skew–Symmetric Matrix (continued)

Proposition

Orthogonal, symmetric and skew-symmetric real matrices are normal.

Characterization of Real Normal Matrices

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Then

- i) λ is an eigenvalue of $A \iff \overline{\lambda}$ is an eigenvalue of A,
- ii) v = Re v + i Im v is an eigenvector for the eigenvalue λ of $A \iff \overline{v} = \text{Re } v i \text{ Im } v$ is an eigenvector for the eigenvalue $\overline{\lambda}$ of A.

Proof.

The characteristic polynomial of A has real coefficients hence its strictly complex roots form pairs $\lambda, \overline{\lambda}$. Let $\lambda = a + bi$ where $a, b \in \mathbb{R}$.

$$Av = \lambda v \Leftrightarrow A(\operatorname{Re} v + i \operatorname{Im} v) = (a + bi)(\operatorname{Re} v + i \operatorname{Im} v) \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} A \operatorname{Re} v = a \operatorname{Re} v - b \operatorname{Im} v \\ A \operatorname{Im} v = b \operatorname{Re} v + b \operatorname{Im} v \end{cases},$$

where the right-hand side remains invariant under changing the sign of b and Im v.

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Let $v, w \in \mathbb{C}^n$ be two complex eigenvectors corresponding, respectively, to eigenvalues λ and μ of A. Assume $\overline{\lambda} \neq \mu$. Then

$$(\operatorname{Re} \nu) \cdot (\operatorname{Re} w) = (\operatorname{Im} \nu) \cdot (\operatorname{Im} w) = (\operatorname{Re} \nu) \cdot (\operatorname{Im} w) = (\operatorname{Im} \nu) \cdot (\operatorname{Re} w) = 0.$$

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Let $v, w \in \mathbb{C}^n$ be two complex eigenvectors corresponding, respectively, to eigenvalues λ and μ of A. Assume $\overline{\lambda} \neq \mu$. Then

$$(\operatorname{Re} v) \cdot (\operatorname{Re} w) = (\operatorname{Im} v) \cdot (\operatorname{Im} w) = (\operatorname{Re} v) \cdot (\operatorname{Im} w) = (\operatorname{Im} v) \cdot (\operatorname{Re} w) = 0.$$

Proof.

Assume $w \notin \mathbb{R}$. Then w, \overline{w} are eigenvectors of A, both unitary orthogonal to v.

$$\begin{cases} \langle \operatorname{Re} v + i \operatorname{Im} v, \operatorname{Re} w + i \operatorname{Im} w \rangle = 0 \\ \langle \operatorname{Re} v + i \operatorname{Im} v, \operatorname{Re} w - i \operatorname{Im} w \rangle = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \left(\left\langle \operatorname{Re} v, \operatorname{Re} w \right\rangle + \left\langle \operatorname{Im} v, \operatorname{Im} w \right\rangle \right) + i\left(\left\langle \operatorname{Im} v, \operatorname{Re} w \right\rangle - \left\langle \operatorname{Re} v, \operatorname{Im} w \right\rangle \right) = 0 \\ \left(\left\langle \operatorname{Re} v, \operatorname{Re} w \right\rangle - \left\langle \operatorname{Im} v, \operatorname{Im} w \right\rangle \right) + i\left(\left\langle \operatorname{Im} v, \operatorname{Re} w \right\rangle + \left\langle \operatorname{Re} v, \operatorname{Im} w \right\rangle \right) = 0 \end{cases}$$

Proof.

If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot (\operatorname{Re} w) = 0$ since $v = \operatorname{Re} v, w = \operatorname{Re} w$ are real and unitary orthogonal.

Proof.

If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot (\operatorname{Re} w) = 0$ since $v = \operatorname{Re} v, w = \operatorname{Re} w$ are real and unitary orthogonal. If $\lambda \in \mathbb{R}$ and $\mu \notin \mathbb{R}$ then the above proof works as well.

Proof.

If $\lambda, \mu \in \mathbb{R}$ then they are different, and $(\operatorname{Re} v) \cdot (\operatorname{Re} w) = 0$ since $v = \operatorname{Re} v, w = \operatorname{Re} w$ are real and unitary orthogonal. If $\lambda \in \mathbb{R}$ and $\mu \notin \mathbb{R}$ then the above proof works as well.

Corollary

If $v, w \in \mathbb{C}$ are complex eigenvectors for the strictly complex eigenvalue λ , and $\langle v, w \rangle = 0$ (i.e. unitary orthogonal) then

$$(\operatorname{Re} v) \cdot (\operatorname{Re} w) = (\operatorname{Im} v) \cdot (\operatorname{Im} w) = (\operatorname{Re} v) \cdot (\operatorname{Im} w) = (\operatorname{Im} v) \cdot (\operatorname{Re} w) = 0.$$

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Let $v \in \mathbb{C}^n$ be a **unit** complex eigenvector corresponding to a strictly complex eigenvalue $\lambda \notin \mathbb{R}$. Then

$$(\operatorname{Re} v) \cdot (\operatorname{Im} v) = 0,$$

and

$$\|\mathsf{Re}\,v\| = \|\mathsf{Im}\,v\| = \frac{1}{\sqrt{2}}.$$

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Let $v \in \mathbb{C}^n$ be a **unit** complex eigenvector corresponding to a strictly complex eigenvalue $\lambda \notin \mathbb{R}$. Then

$$(\operatorname{Re} v) \cdot (\operatorname{Im} v) = 0,$$

and

$$\|\mathsf{Re}\,v\| = \|\mathsf{Im}\,v\| = \frac{1}{\sqrt{2}}.$$

Proof.

Then \overline{v} is a unit eigenvector, unitary orthogonal to v

$$0 = \langle \operatorname{Re} v + i \operatorname{Im} v, \operatorname{Re} v - i \operatorname{Im} v \rangle =$$

$$= (\langle \operatorname{Re} v, \operatorname{Re} w \rangle - \langle \operatorname{Im} v, \operatorname{Im} w \rangle) + 2i \langle \operatorname{Re} v, \operatorname{Im} w \rangle,$$

moreover

$$1 = \|v\|^2 = \|\operatorname{Re} v\|^2 + \|\operatorname{Im} v\|^2.$$

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be a normal matrix. Let $\mu_1, \ldots, \mu_m \in \mathbb{R}$ be (possibly repeating) real eigenvalues of A. Let $\lambda_1, \overline{\lambda_1}, \lambda_2, \overline{\lambda_2}, \ldots, \lambda_k, \overline{\lambda_k} \in \mathbb{C}$ be (possibly repeating) strictly complex eigenvalues of A, where $\alpha_j = a_j + ib_j$ for $j = 1, \ldots, k$. Let $u_1, \ldots, u_m, v_1, \overline{v_1}, v_2, \overline{v_2}, \ldots, v_k, \overline{v_k} \in \mathbb{C}^n$ be the corresponding unitary orthonormal basis of \mathbb{C}^n , consisting of the corresponding eigenvectors, such that $u_j = \text{Re } u_j$ for $j = 1, \ldots, m$. Then

$$\mathcal{A}=(u_1,\ldots,u_k,$$

 $\sqrt{2} \operatorname{Re} v_1, \sqrt{2} \operatorname{Im} v_1, \sqrt{2} \operatorname{Re} v_2, \sqrt{2} \operatorname{Im} v_2, \dots, \sqrt{2} \operatorname{Re} v_k, \sqrt{2} \operatorname{Im} v_k$, is an real orthogonal basis of \mathbb{R}^n .

Corollary

Moreover, if $Q=M(\mathrm{id})^{st}_{\mathcal{A}}$ then $Q\in M(n\times n;\mathbb{R})$ is an (real) orthogonal matrix (i.e. $Q^{\mathsf{T}}Q=QQ^{\mathsf{T}}=I$) and

	μ_1	0		0	0	0	0	0		0	0 7	
$Q^{T}AQ = 0$	0	μ_2		0	0	0	0	0		0	0	
	:		٠.,							:	-:	
	0			μ_{m}						0	0	
	0				a_1	b_1	0	0		0	0	
	0				$-b_1$	a_1	0	0		0	0	
	0				0	0	a_2	b_2		0	0	
	0				0	0	$-b_2$	a_2		0	0	
	:				:	:			٠.,	:		
	0	0	0		0	0	0	0		a_k	b _k	
	0	0	0		0	0	0	0		$-b_k$	a_k	

Corollary

Matrix $A \in M(n \times n; \mathbb{R})$ is orthogonal if and only if there exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ and numbers $\varphi_1, \ldots, \varphi_k \in \mathbb{R}$ such that

	Γ ±1	0		0	0	0	0	0		0	0 7
$Q^{\intercal}AQ =$	0	±1			0	0	0	0		0	0
	:		٠.,							:	:
	0			± 1						0	0
	0				$\cos \varphi_1$	$\sin arphi_1$	0	0		0	0
	0				$-\sin \varphi_1$	$\cos \varphi_1$	0	0		0	0
	0				0	0	$\cos \varphi_2$	$\sin arphi_2$		0	0
	0				0	0	$-\sin \varphi_2$	$\cos \varphi_2$		0	0
	:				:	:			٠.	:	:
	0	0	0		0	0	0	0		$\cos \varphi_k$	$\sin \varphi_k$
	0	0	0		0	0	0	0		$-\sin \varphi_k$	$\cos \varphi_k$

Characterization of Real Symmetric Matrices (continued)

Corollary

Matrix $A \in M(n \times n; \mathbb{R})$ is symmetric if and only if there exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ and numbers $\mu_1, \ldots, \mu_n \in \mathbb{R}$ such that

$$Q^{\mathsf{T}}AQ = \left[\begin{array}{ccc} \mu_1 & & 0 \\ & \ddots & \\ 0 & & \mu_n \end{array} \right].$$

Characterization of Real Skew–Symetric Normal Matrices

Corollary

Matrix $A \in M(n \times n; \mathbb{R})$ is skew–symmetric if and only if there exists an orthogonal matrix $Q \in M(n \times n; \mathbb{R})$ and numbers $b_1, \ldots, b_k \in \mathbb{R}$ such that

	0	0		0	0	0	0	0		0	0	1
$Q^{\dagger}AQ = 0$	0	0			0	0	0	0		0	0	
	:		٠.,							:	:	
	0			0						0	0	
	0				0	b_1	0	0		0	0	
	0				$-b_1$	0	0	0		0	0	١.
	0				0	0	0	b_2		0	0	
	0				0	0	$-b_2$	0		0	0	
	:				:	:			٠.	:	<u>:</u>	
	0	0	0		0	0	0	0		0	b _k	ı
	0	0	0		0	0	0	0		$-b_k$	0	

Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Then

$$A^{\mathsf{T}}A = AA^{\mathsf{T}} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Moreover

$$w_A(x) = \det(A - xI) = -x^3 + 3x^2 - 3x + 2 = -(x - 2)(x^2 - x + 1),$$

therefore

$$\mu = 2$$
, $\lambda = \frac{1 + i\sqrt{3}}{2} = e^{\frac{i\pi}{3}}$, $\overline{\lambda} = \frac{1 - i\sqrt{3}}{2} = e^{-\frac{i\pi}{3}}$.

It can be checked that

$$V_{(\mu)} = \operatorname{lin}((1,1,1)), \quad V_{(\lambda)} = \operatorname{lin}((1,\lambda^2,-\lambda)), \quad V_{(\overline{\lambda})} = \operatorname{lin}((1,-\lambda,\lambda^2)),$$

(note that
$$\lambda^3+1=0, \lambda^2=\lambda-1, \overline{\lambda}=\frac{1}{\lambda}=-\lambda^2$$
).

Since

$$|(1,1,1)| = \left|(1,\lambda^2,-\lambda)\right| = \left|(1,-\lambda,\lambda^2)\right| = \sqrt{3},$$

we have

$$u_1 = \frac{1}{\sqrt{3}}(1, 1, 1),$$

 $v_1 = \frac{1}{\sqrt{3}}(1, \lambda^2, -\lambda),$
 $\overline{v}_1 = \frac{1}{\sqrt{3}}(1, -\lambda, \lambda^2).$

lf

$$U = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1\\ 1 & \lambda^2 & -\lambda\\ 1 & -\lambda & \lambda^2 \end{bmatrix},$$

Then

$$U^*U=UU^*=I.$$

lf

$$D = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \overline{\lambda} \end{array} \right] = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda^2 \end{array} \right],$$

then

$$UDU^* = A$$
,

i.e.

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \lambda^2 & -\lambda \\ 1 & -\lambda & \lambda^2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda^2 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -\lambda & \lambda^2 \\ 1 & \lambda^2 & -\lambda^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Let

$$\begin{split} u_1 &= v_1 = \frac{1}{\sqrt{3}}(1,1,1), \\ u_2 &= \sqrt{2} \, \text{Re} \, v_1 = \frac{\sqrt{2}}{\sqrt{3}} \left(1,-\frac{1}{2},-\frac{1}{2}\right), \\ u_3 &= \sqrt{2} \, \text{Im} \, v_1 = \frac{\sqrt{2}}{\sqrt{3}} \left(0,\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right). \end{split}$$

lf

$$Q = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \sqrt{2} & 0\\ 1 & -\frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{2}\\ 1 & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{2} \end{bmatrix},$$

then

$$Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I.$$

Moreover, let

$$B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

Then

$$QBQ^{\mathsf{T}}=A,$$

i.e.

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \sqrt{2} & 0 \\ 1 & -\frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{2} \\ 1 & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 0 \\ \sqrt{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{\sqrt{6}}{2} & -\frac{\sqrt{6}}{2} \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Rayleigh Quotient

Definition

For any matrix $M \in M(n \times n; \mathbb{C})$ and any vector $x \in \mathbb{C}^n, x \neq \mathbf{0}$, the **Rayleigh quotient** R(M, x) is equal to

$$R(M,x) = \frac{x^*Mx}{x^*x}.$$

Rayleigh Quotient

Definition

For any matrix $M \in M(n \times n; \mathbb{C})$ and any vector $x \in \mathbb{C}^n, x \neq \mathbf{0}$, the **Rayleigh quotient** R(M,x) is equal to

$$R(M,x) = \frac{x^*Mx}{x^*x}.$$

Proposition

For any complex number $\alpha \in \mathbb{C}$

$$R(M, \alpha x) = R(M, x).$$

Proposition

For any Hermitian matrix $M \in M(n \times n; \mathbb{C})$ (i.e., $M^* = M$)

$$R(M, x) \in \mathbb{R}$$
,

$$\lambda_{min} \leqslant R(M,x) \leqslant \lambda_{max},$$

where $\lambda_{min}, \lambda_{max} \in \mathbb{R}$ are the smallest and the greatest (real) eigenvalues of matrix M. Moreover, those bounds are attained by R(M,x) by the corresponding eigenvectors $x \in \mathbb{C}^n$.

Proposition

For any Hermitian matrix $M \in M(n \times n; \mathbb{C})$ (i.e., $M^* = M$)

$$R(M, x) \in \mathbb{R}$$
,

$$\lambda_{min} \leqslant R(M,x) \leqslant \lambda_{max},$$

where $\lambda_{min}, \lambda_{max} \in \mathbb{R}$ are the smallest and the greatest (real) eigenvalues of matrix M. Moreover, those bounds are attained by R(M,x) by the corresponding eigenvectors $x \in \mathbb{C}^n$.

Proof.

As $R(M,x)^* = R(M,x)$, it follows that $R(M,x) \in \mathbb{R}$. Let $v_1, \ldots, v_n \in \mathbb{C}^n$ be a unitary orthonormal basis of \mathbb{C}^n , in which matrix of M is diagonal (i.e., it consist of eigenvectors v_i of matrix M such that $Mv_i = \lambda_i v_i$ and $v_i^T M v_i = 0$ for $i \neq j$). Let

$$x = \alpha_1 v_1 + \ldots + \alpha_n v_n$$
.

Proof.

Then

$$R(M,x) = \frac{\sum_{i=1}^{n} \lambda_i |\alpha_i|^2}{\sum_{i=1}^{n} |\alpha_i|^2}.$$

Since $\lambda_{min} \leq \lambda_i \leq \lambda_{max}$, it follows that

$$\lambda_{min} \leqslant \frac{\sum_{i=1}^{n} \lambda_i |\alpha_i|^2}{\sum_{i=1}^{n} |\alpha_i|^2} \leqslant \lambda_{max}.$$

The bounds are attained for $x = v_i$ where $Mv_i = \lambda_{min}v_i$ and for $x = v_j$ where $Mv_j = \lambda_{max}v_j$.

Proposition

For any matrix $M \in M(n \times n; \mathbb{C})$ and any vector $x \in \mathbb{C}^n$ the Rayleigh quotient

$$\lambda = R(M, x) = \frac{x^* M x}{x^* x},$$

is the least square solution of the (possibly inconsistent) equation

$$Mx = \lambda x$$
.

Proposition

For any matrix $M \in M(n \times n; \mathbb{C})$ and any vector $x \in \mathbb{C}^n$ the Rayleigh quotient

$$\lambda = R(M, x) = \frac{x^* M x}{x^* x},$$

is the least square solution of the (possibly inconsistent) equation

$$Mx = \lambda x$$
.

Proof.

The orthogonal projection of Mx onto V = lin(x) is equal to

$$P_V(Mx) = \frac{x^*(Mx)}{x^*x}x.$$

Proposition

For any fixed symmetric matrix $M=M^{\mathsf{T}}\in M(n\times n;\mathbb{R})$ the eigenvectors of M are stationary points of the Rayleigh quotient, that is if $Mx=\lambda x$ for some $x\in\mathbb{R}^n, x\neq \mathbf{0}$ then

$$\nabla_{\mathbf{x}}R(M,\mathbf{x})=\mathbf{0}.$$

Rayleigh Quotient (continued)

Proposition

For any fixed symmetric matrix $M = M^{\mathsf{T}} \in M(n \times n; \mathbb{R})$ the eigenvectors of M are stationary points of the Rayleigh quotient, that is if $Mx = \lambda x$ for some $x \in \mathbb{R}^n, x \neq \mathbf{0}$ then

$$\nabla_{\mathbf{x}}R(M,\mathbf{x})=\mathbf{0}.$$

Proof.

$$\begin{split} \frac{\partial R}{\partial x_{j}}(M,x) &= \frac{\frac{\partial}{\partial x_{j}}(x^{\mathsf{T}}Mx)(x^{\mathsf{T}}x) - (x^{\mathsf{T}}Mx)\frac{\partial}{\partial x_{j}}(x^{\mathsf{T}}x)}{(x^{\mathsf{T}}x)^{2}} = \\ &= \frac{2(Mx)_{j}(x^{\mathsf{T}}x) - (x^{\mathsf{T}}Mx)2x_{j}}{(x^{\mathsf{T}}x)^{2}} = \\ &= \frac{2}{x^{\mathsf{T}}x}(Mx - R(M,x)x)_{j}, \end{split}$$

where $(Mx)_i$ denotes the *j*-th entry of the vector Mx.

Eigenvalue Decomposition

Proposition

Let $M \in M(n \times n; \mathbb{C})$ be a matrix such that there exists basis $\mathcal{A} = (v_1, \dots, v_n)$ of \mathbb{C}^n and numbers $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ such that

$$M = CDC^*$$

where $C = M(id)^{st}_{\mathcal{A}}$ and $D = diag(\lambda_1, \dots, \lambda_n)$. Then

$$M = \sum_{i=1}^{n} \lambda_i v_i v_i^*,$$

where $v_i v_i^*$ are rank 1 matrices.

Eigenvalue Decomposition (continued)

Proof.

$$M = \sum_{i=1}^{n} CD_i C^* = \left(\sum_{i=1}^{n} \lambda_i C_i\right) C^* = \sum_{i=1}^{n} \lambda_i C_i C^*,$$

where $D_i = \text{diag}(0, \dots, 0, \lambda_i, 0, \dots, 0)$ and $C_i \in M(n \times n; \mathbb{C})$ is a zero matrix with i-th column replaced with eigenvector v_i . Then

$$C_iC^* = C_iC_i^* = v_iv_i^*.$$

Eigenvalue Decomposition (continued)

Corollary

Let $M \in M(n \times n; \mathbb{C})$ be a Hermitian matrix (i.e. $M^* = M$). Let $v_1, \ldots, v_n \in \mathbb{C}^n$ be a unitary orthonormal basis consisting of eigenvectors of M corresponding to eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Then

$$M = \sum_{i=1}^{n} \lambda_i v_i v_i^*.$$

Sherman-Morrison Formula

The following formula expresses the inverse of rank 1 update of matrix A.

Proposition

For any matrix invertible $A \in M(n \times n; \mathbb{C})$ and vectors $v, w \in \mathbb{C}$ such that $1 + w^*Av \neq 0$ the matrix $A + vw^*$ is invertible and

$$(A + vw^*)^{-1} = A^{-1} - \frac{A^{-1}vw^*A^{-1}}{1 + w^*A^{-1}v}.$$

Sherman-Morrison Formula

The following formula expresses the inverse of rank 1 update of matrix A.

Proposition

For any matrix invertible $A \in M(n \times n; \mathbb{C})$ and vectors $v, w \in \mathbb{C}$ such that $1 + w^*Av \neq 0$ the matrix $A + vw^*$ is invertible and

$$(A + vw^*)^{-1} = A^{-1} - \frac{A^{-1}vw^*A^{-1}}{1 + w^*A^{-1}v}.$$

Proof.

First we show that

$$(I + uw^*)^{-1} = I - \frac{uw^*}{1 + w^*u}.$$

$$(I + uw^*) \left(I - \frac{uw^*}{1 + w^*u}\right) =$$

$$= I - \frac{uw^*}{1 + w^*u} + uw^* - w^*u \frac{uw^*}{1 + w^*u} = I.$$

Sherman–Morrison Formula (continued)

Proof.

Since A is invertible there exists $u \in \mathbb{C}^n$ such that v = Au, i.e. $u = A^{-1}v$. Then

$$A + vw^* = A(I + uw^*),$$

and the matrix $A + vw^*$ is invertible if and only if the matrix $I + uw^*$ is invertible. Moreover

$$(A + vw^*)^{-1} = (I + uw^*)^{-1}A^{-1} = \left(I - \frac{uw^*}{1 + w^*u}\right)A^{-1} =$$
$$= A^{-1} - \frac{A^{-1}vw^*A^{-1}}{1 + w^*A^{-1}v}.$$

Singular Value Decomposition – SVD

Theorem

For any matrix $A \in M(m \times n; \mathbb{C})$ there exist unitary matrices $U \in M(m \times m; \mathbb{C}), V \in M(n \times n; \mathbb{C})$ and a unique (real) generalized diagonal matrix

$$\Sigma = \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R})$$
 such that

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$$
,

where r = r(A) oraz

$$A = U\Sigma V^*$$
.

Singular Value Decomposition – SVD

Theorem

For any matrix $A \in M(m \times n; \mathbb{C})$ there exist unitary matrices $U \in M(m \times m; \mathbb{C})$, $V \in M(n \times n; \mathbb{C})$ and a unique (real) generalized diagonal matrix

$$\Sigma = \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R})$$
 such that

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$$
,

where r = r(A) oraz

$$A = U\Sigma V^*$$
.

Remark

Matrices U, V are not uniquely determined (unlike the matrix Σ).

Proof.

Let $\sigma_1 = \|A\|_2$. By the definition of $\|\cdot\|_2$ and the compactness of a ball in \mathbb{C}^m there exist vectors $v_1 \in \mathbb{C}^m$ and vectors $u_1 \in \mathbb{C}^n$ such that $\|v_1\|_2 = \|u_1\|_2 = 1$, and

$$Av_1 = \sigma_1 u_1.$$

Let $V_1 \in M(n \times n; \mathbb{C})$ be a unitary matrix with the first column equal to vector v_1 , and let $U_1 \in M(m \times m; \mathbb{C})$ be a unitary matrix with first column equal to u_1 . Then

$$U_1^*AV_1 = \begin{bmatrix} \sigma_1 & w^* \\ \mathbf{0} & B \end{bmatrix},$$

where $w \in \mathbb{C}^{n-1}$ and $B \in M((m-1) \times (n-1); \mathbb{C})$.

⁰see L. N. Trefethen, D. Bau, III, Numerical Linear Algebra, SIAM 📳 📱 🔊 🤉

Proof.

Then

$$\left\| \begin{bmatrix} \sigma_1 & w^* \\ \mathbf{0} & B \end{bmatrix} \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2 \geqslant \sigma_1^2 + w^* w = \sqrt{\sigma_1^2 + w^* w} \left\| \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2.$$

It follows that $w = \mathbf{0}$, otherwise σ_1 is not maximal. By the inductive assumption there exists unitary matrices

 $V_2 \in M((n-1) \times (n-1); \mathbb{C})$ and $U_2 \in M((m-1) \times (m-1); \mathbb{C})$ such that

$$A = U_1 \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & V_2 \end{bmatrix}^* V_1^*.$$

Proof.

To prove uniqueness of Σ , assume there exists a vector w corresponding to the singular value σ_1 , such that v_1, w are linearly independent (i.e., $\|Aw\|_2 = \sigma_1$) such that $\|w\|_2 = 1$ (otherwise the subspace $\text{lin}(v_1)^{\perp}$ is uniquely determined). Then the vector

$$v_2 = \frac{w - (v_1^* w)v_1}{\|w - (v_1^* w)v_1\|_2},$$

equal to the unit vector of the projection of vector w onto the subspace $\lim (v_1)^{\perp} \subset \mathbb{C}^m$, satisfies the condition

$$\mathbf{w} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2,$$

where $|\alpha|^2 + |\beta|^2 = 1$ (vector w is a unit vector and vectors v_1, v_2 are orthogonal).

Proof.

Then $||Av||_2 \leqslant \sigma_1$, and if $||Av||_2 < \sigma_1$, then

$$||Aw||_2^2 = |\alpha|^2 ||Av_1||_2^2 + |\beta|^2 ||Av_2||_2^2 < \sigma_1,$$

which leads to contradiction. Therefore, vector w is a vector corresponding to the singular value σ_1 of matrix B. The claim follow by induction.

Real Singular Value Decomposition

Theorem

For any matrix $A \in M(m \times n; \mathbb{R})$ there exists orthogonal matrices $U \in M(m \times m; \mathbb{R}), V \in M(n \times n; \mathbb{C})$ and a uniquely determined generalized diagonal matrix

$$\Sigma = \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R})$$
 such that

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$$
,

where r = r(A) and

$$A = U\Sigma V^{\mathsf{T}}.$$

Real Singular Value Decomposition

Theorem

For any matrix $A \in M(m \times n; \mathbb{R})$ there exists orthogonal matrices $U \in M(m \times m; \mathbb{R}), V \in M(n \times n; \mathbb{C})$ and a uniquely determined generalized diagonal matrix

$$\Sigma = \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R})$$
 such that

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$$
,

where r = r(A) and

$$A = U\Sigma V^{\mathsf{T}}.$$

Remark

As before, the orthogonal matrices U, V are not uniquely determined.

The following proof, using the spectral theorem, after a slight modification works in the complex case too.

Proof.

Matrix $A^{\mathsf{T}}A \in M(n \times n; \mathbb{R})$ is symmetric and positive semidefinite hence there exists orthonormal basis (not uniquely determined) $v_1, \ldots, v_n \in \mathbb{R}^n$ of \mathbb{R}^n consisting of eigenvectors of $A^{\mathsf{T}}A$ such that

$$v_i^{\mathsf{T}} A^{\mathsf{T}} A v_j = \begin{cases} 0 & i \neq j, \\ \lambda_i & i = j, \end{cases}, \quad \text{for} \quad i, j = 1, \dots, r,$$

$$\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_r > 0,$$

$$\lambda_{r+1} = \dots \lambda_n = 0,$$

where $\lambda_i \geqslant 0$ is an eigenvalue of A^TA corresponding to eigenvector $v_i \in \mathbb{R}^n$ and $r \in \mathbb{N}$ is some natural number such that $1 \leqslant r \leqslant n$.

Proof.

Let

$$\sigma_i = \sqrt{\lambda_i}, \quad \text{for} \quad i = 1, \dots, n,$$

and

$$u_i = \frac{1}{\sigma_i} A v_i \in \mathbb{R}^m$$
, for $i = 1, \dots, r$.

Then

$$u_i^{\mathsf{T}} u_j = \frac{1}{\sigma_i \sigma_i} v_i^{\mathsf{T}} A^{\mathsf{T}} A v_j = \begin{cases} 0 & i \neq j, \\ 1_i & i = j, \end{cases}, \text{ for } i, j = 1, \dots, r.$$

Moreover

$$Av_i = \mathbf{0}, \text{ for } i = r + 1, ..., n,$$

as
$$||Av_i||^2 = v_i^T A^T A v_i = 0.$$

Proof.

Let $u_1,\ldots,u_r,u_{r+1},\ldots,u_m\in\mathbb{R}^m$ be an extension of some orthonormal basis of $imA\subset\mathbb{R}^m$ to some othonormal basis \mathbb{R}^m (both not uniquely determined). Let $U\in M(m\times m;\mathbb{R})$ be an orthogonal matrix which columns are equal to $u_1,\ldots,u_m\in\mathbb{R}^m$, respectively and let $V\in M(n\times n;\mathbb{R})$ be an orthogonal matrix which columns are equal to $v_1,\ldots,v_n\in\mathbb{R}^n$, respectively. Let

$$\Sigma = \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R}).$$

Proof.

Then

$$U\Sigma V^{\mathsf{T}}v_{i} = U\Sigma_{i}e_{i} = \sigma_{i}u_{i} = \sigma_{i}\left(\frac{1}{\sigma_{i}}Av_{i}\right) = Av_{i},$$

for $i = 1, \ldots, r$, and

$$U\Sigma V^{\mathsf{T}}v_i = U\Sigma_i e_i = 0u_i = \mathbf{0},$$

for $i = r + 1, \dots, n$. Therefore

$$A = U\Sigma V^{\mathsf{T}},$$

and r(A) = r as $r(\Sigma) = r$ and matrices U, V are non–singular. For the uniqueness of matrix Σ proceed like in the complex case.

Remark

The proof implies that

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}.$$

Remark

The proof implies that

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}.$$

Remark

The preceding proof works after small modification in the complex case.

Pseudoinverse

Definition

With the same notation

$$\Sigma = \mathsf{diag}(\sigma_1,\ldots,\sigma_r,0,\ldots,0) \in \mathit{M}(\mathit{m}\times\mathit{n};\mathbb{R}) \; \mathsf{set}$$

$$\Sigma^+ = \mathsf{diag}(\sigma_1^{-1},\ldots,\sigma_r^{-1},0,\ldots,0) \in \mathit{M}(\mathit{n}\times\mathit{m};\mathbb{R}),$$

$$A^+ = \mathit{V}\Sigma^+\mathit{U}^*.$$

Matrix A^+ is called **pseudoinverse** or **Moore–Penrose pseudoinverse** of A (note that matrix Σ^+ is of the same size as Σ^{T}).

Proposition

i)
$$AA^{+}A = A$$
,

Proposition

- i) $AA^{+}A = A$,
- ii) $A^+AA^+ = A^+$,

Proposition

- i) $AA^{+}A = A$,
- ii) $A^+AA^+ = A^+$,
- iii) $(AA^{+})^{*} = AA^{+}$,

Proposition

- i) $AA^{+}A = A$,
- ii) $A^{+}AA^{+} = A^{+}$,
- iii) $(AA^+)^* = AA^+$,
- iv) $(A^+A)^* = A^+A$,

Proposition

For any matrix $A \in M(m \times n; \mathbb{C})$ there exists at most one matrix $A^+ \in M(n \times m; \mathbb{C})$ such that

- i) $AA^{+}A = A$,
- ii) $A^+AA^+ = A^+$,
- iii) $(AA^{+})^{*} = AA^{+}$,
- iv) $(A^+A)^* = A^+A$,

(in particular matrices AA^+, A^+A are Hermitian). Moreover, matrix

$$A^+ = V\Sigma^+ U^*,$$

satisfies the above conditions.

Proof.

Let

$$A = U\Sigma V^*,$$
$$A^+ = V\Sigma^+ U^*.$$

be the singular value decomposition of A, where

$$\begin{split} \Sigma &= \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R}), \\ \Sigma^+ &= \mathsf{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0) \in \mathit{M}(\mathit{n} \times \mathit{m}; \mathbb{R}). \end{split}$$

Then

$$\Sigma\Sigma^{+} = \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in M(m \times m; \mathbb{R}), \quad \Sigma^{+}\Sigma = \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in M(n \times n; \mathbb{R}).$$

In particular

$$\Sigma\Sigma^{+}\Sigma = \Sigma, \quad \Sigma^{+}\Sigma\Sigma^{+} = \Sigma^{+}.$$

```
Proof.
Then
i)
```

$$AA^{+}A = (U\Sigma V^{*})V\Sigma^{+}U^{*}(U\Sigma V^{*}) = U(\Sigma\Sigma^{+}\Sigma)V^{*} = A,$$

```
Proof. Then i) AA^+A=(U\Sigma V^*)V\Sigma^+U^*(U\Sigma V^*)=U(\Sigma\Sigma^+\Sigma)V^*=A, ii) A^+AA^+=(V\Sigma^+U^*)U\Sigma V^*(V\Sigma^+U^*)=V(\Sigma^+\Sigma\Sigma^+)U^*=A^+,
```

```
Proof.
Then
          AA^{+}A = (U\Sigma V^{*})V\Sigma^{+}U^{*}(U\Sigma V^{*}) = U(\Sigma\Sigma^{+}\Sigma)V^{*} = A,
  ii)
      A^{+}AA^{+} = (V\Sigma^{+}U^{*})U\Sigma V^{*}(V\Sigma^{+}U^{*}) = V(\Sigma^{+}\Sigma\Sigma^{+})U^{*} = A^{+},
iii)
                  (A^+A)^* = A^*(A^+)^* = (U\Sigma V^*)^*(V\Sigma^+U^*)^* =
         = (V\Sigma^*U^*)(U(\Sigma^+)^*V^*) = V(\Sigma^+\Sigma)^*V^* = V(\Sigma^+\Sigma)V^* =
                   = (V\Sigma^+U^*)(U\Sigma V^*) = V(\Sigma^+\Sigma)V^* = A^+A.
```

```
Proof.
Then
          AA^{+}A = (U\Sigma V^{*})V\Sigma^{+}U^{*}(U\Sigma V^{*}) = U(\Sigma\Sigma^{+}\Sigma)V^{*} = A,
  ii)
      A^{+}AA^{+} = (V\Sigma^{+}U^{*})U\Sigma V^{*}(V\Sigma^{+}U^{*}) = V(\Sigma^{+}\Sigma\Sigma^{+})U^{*} = A^{+},
 iii)
                  (A^+A)^* = A^*(A^+)^* = (U\Sigma V^*)^*(V\Sigma^+U^*)^* =
         = (V\Sigma^*U^*)(U(\Sigma^+)^*V^*) = V(\Sigma^+\Sigma)^*V^* = V(\Sigma^+\Sigma)V^* =
                   = (V\Sigma^+U^*)(U\Sigma V^*) = V(\Sigma^+\Sigma)V^* = A^+A.
 iv) j.w.
```

Proof.

Assume that matrices $A^+, A^{\prime +}$ satisfy conditions i) – iv). Then

$$A^{+} = A^{+}AA^{+} = A^{+}(A)A^{+} = A^{+}(AA'^{+}A)A^{+} = A^{+}((A)A'^{+}(A))A^{+} =$$

$$= A^{+}((AA'^{+}A)A'^{+}(AA'^{+}A))A^{+} = (A^{+}A)^{*}(A'^{+}A)^{*}A'^{+}(AA'^{+})^{*}(AA^{+})^{*} =$$

$$= (A^{*}(A^{+})^{*})(A^{*}(A'^{+})^{*})A'^{+}((A'^{+})^{*}A^{*})((A^{+})^{*}A^{*}) =$$

$$= (A^{*}(A^{+})^{*}A^{*})(A'^{+})^{*}A'^{+}(A'^{+})^{*}(A^{*}(A^{+})^{*}A^{*}) =$$

$$= (A(A^{+})A)^{*}(A'^{+})^{*}A'^{+}(A'^{+})^{*}(A(A^{+})A)^{*} =$$

$$= A^{*}(A'^{+})^{*}A'^{+}(A'^{+})^{*}A^{*} =$$

Proof.

$$= A^*(A^{'+})^*A^{'+}(A^{'+})^*A^* =$$

$$= (A^{'+}A)^*A^{'+}(AA^{'+})^* = (A^{'+}A)A^{'+}(AA^{'+}) =$$

$$= A^{'+}(AA^{'+}A)A^{'+} = A^{'+}AA^{'+} = A^{'+}.$$

Singular Value Decomposition – Remarks

Remarks

- i) if matrix A is real then there exists real orthogonal matrices U, V such that $A = U \Sigma V^{\mathsf{T}}$,
- ii) when $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$, that is the singular values are pairwise different then the columns $1, 2, \ldots, r$ of U i V are uniquely determined up to a constant $\alpha_i \in \mathbb{C}$ (respectively $\alpha_i \in \mathbb{R}$, when A is real) such that $|\alpha_i| = 1$,
- iii) when $A \in M(n \times n; \mathbb{C})$ and $\det A \neq 0$ then $A^+ = A^{-1}$,
- iv) the following matrix norms of A are determined by the singular values of A, i.e.,

$$||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2},$$

$$||A||_2 = \sigma_1,$$

Singular Value Decomposition – Remarks (continued)

Remarks

i) let $A = U\Sigma V^*$, that is

$$AV = U\Sigma$$
.

Denote by u_1, \ldots, u_m the columns of matrix $U \in M(m \times m; \mathbb{R})$ and by v_1, \ldots, v_n the columns of matrix $V \in M(n \times n; \mathbb{R})$. Then for $i = 1, \ldots, \max m, n$

$$Av_i = \sigma_i u_i$$
.

Moreover

$$\ker A = \lim(v_{r+1}, \dots, v_n)$$

 $imA = \lim(u_1, \dots, u_r).$

Singular Value Decomposition – Remarks (continued)

Remarks

vi) for any $k \le r$ let $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) \in M(m \times n; \mathbb{R})$. Then the matrix

$$A_k = U\Sigma_k V^*$$

satisfies the condition: for any matrix $B \in M(m \times n; \mathbb{C})$ of rank k

$$||A - B||_2 \ge ||A - A_k||_2 = \sigma_{k+1},$$

$$||A - B||_F \ge ||A - A_k||_F = \sqrt{\sigma_{k+1}^2 + \ldots + \sigma_r^2},$$

where, assuming $A = [a_{ij}] \in M(m \times n; \mathbb{C})$ the norms are defined as follows

$$\|A\|_F = \sqrt{\mathsf{Tr}(A^*A)} = \sqrt{\mathsf{Tr}(AA^*)} = \sqrt{\sum_{\substack{i=1,\ldots,n\\j=1,\ldots,m}} |a_{ij}|^2},$$

$$\begin{split} \left\|A\right\|_2 &= \sup\{\left\|Ax\right\|_2 \in \mathbb{R} \mid x \in \mathbb{R}^n, \ \left\|x\right\|_2 = 1\} = \sqrt{\lambda_{\max}(A^*A)}, \\ \left\|x\right\|_2 &= \sqrt{x^*x}. \end{split}$$

The Best Low Rank Approximation

Proposition

Let $A \in M(m \times n; \mathbb{C})$ be any matrix and let $A = U\Sigma V^*$ be its singular value decomposition, where

$$\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \in M(m \times n; \mathbb{R}),$$

and $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$, i.e., r(A) = r. Then, for any k such that $0 \leqslant k < r$ and for any matrix $B \in M(m \times n; \mathbb{C})$ such that r(B) = k it holds

$$||A-A_k|| \leqslant ||A-B||,$$

where

$$A_k = U\Sigma_k V^*,$$

$$\Sigma_k = \mathsf{diag}(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0) \in \mathit{M}(\mathit{m} \times \mathit{n}; \mathbb{R}),$$

that is, matrix A_k of rank k is the best approximation of matrix A among matrices of rank k of the same size as matrix A (in the norm $\|A\| = \sup_{\|x\|_2 = 1} \|Ax\|_2$).

The Best Low Rank Approximation (continued)

Proof.

Obviously $r(A_k) = k$. Moreover

$$||A - A_k|| = ||U \operatorname{diag}(0, \dots, \sigma_{k+1}, \dots, \sigma_r, 0, \dots, 0)V^*|| =$$

= $||\operatorname{diag}(0, \dots, \sigma_{k+1}, \dots, \sigma_r, 0, \dots, 0)|| = \sigma_{k+1}.$

Let $B \in M(m \times n; \mathbb{C})$ be any matrix such that r(B) = k. Let

$$W = \{ w \in \mathbb{R}^m \mid Bw = \mathbf{0} \}.$$

Let $w_1, \ldots, w_{n-k} \in \mathbb{C}^n$ be an unitary orthonormal basis of subspace $W \subset \mathbb{C}^n$. Let $v_1, \ldots, v_n \in \mathbb{C}^n$ denote columns of matrix V. Let

$$v \in \operatorname{lin}(v_1,\ldots,v_{k+1}) \cap W \neq \{\mathbf{0}\},\$$

be any (non-zero) vector such that

$$||v|| = 1.$$

The Best Low Rank Approximation (continued)

Proof.

Then

$$||A - B|| \ge ||(A - B)v|| = ||Av|| =$$

$$= \left\| \sum_{i=1}^{r} (u_i \sigma_i v_i^*) v \right\| = \left\| \sum_{i=k+1}^{r} ((v_i^* v) u_i \sigma_i) \right\| =$$

$$= \sum_{i=k+1}^{r} \sigma_i^2 (v_i^* v)^2 \ge \sigma_{k+1} \sum_{i=k+1}^{r} (v_i^* v)^2 \ge \sigma_{k+1},$$

since

$$||Vv||^2 = \sum_{i=1}^n (v_i^*v)^2 = 1 \ge \sum_{i=k+1}^r (v_i^*v)^2.$$

Singular Value Decomposition – Example

Let

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix}.$$

Then, assuming $A = U\Sigma V^*$, we have

$$A^*A = (V\Sigma^*U^*)(U\Sigma V^*) = V\Sigma^*\Sigma V^* = \begin{bmatrix} 26 & 18\\ 18 & 74 \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} 80 & 0\\ 0 & 20 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix},$$

$$AA^* = (U\Sigma V^*)(V\Sigma^*U^*) = U\Sigma \Sigma^*U^* = \begin{bmatrix} 50 & 30\\ 30 & 50 \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 80 & 0\\ 0 & 20 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

Singular Value Decomposition – Example (continued)

Hence

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4\sqrt{5} & 0 \\ 0 & 2\sqrt{5} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix},$$

that is

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4\sqrt{5} & 0 \\ 0 & 2\sqrt{5} \end{bmatrix}, \quad V = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix},$$
$$A = U\Sigma V^*.$$

therefore the best rank 1 approximation of matrix A in the norm $\|\cdot\|_2$ oraz $\|\cdot\|_F$ is

$$A_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4\sqrt{5} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}.$$

Singular Value Decomposition – Example (continued)

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4\sqrt{5} & 0 \\ 0 & 2\sqrt{5} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \end{bmatrix},$$

$$A_1 = \begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix},$$

$$B = A - A_1 = \begin{bmatrix} 3 & -1 \\ -3 & 1 \end{bmatrix},$$

and

$$\begin{split} \|B\|_F &= \sqrt{3^2 + (-1)^2 + 3^2 + (-1)^2} = 2\sqrt{5} = \sigma_2(A), \\ \det(B^*B - \lambda I) &= \det\begin{bmatrix} 18 - \lambda & -6 \\ -6 & 2 - \lambda \end{bmatrix} = \lambda(\lambda^2 - 20), \end{split}$$

hence

$$||B||_2 = \sqrt{\lambda_{max}(B^*B)} = \sqrt{20} = 4\sqrt{5}.$$

Optimal Solution of a System of Linear Equations

Definition

For any system of linear equations Ax = b where $A \in M(m \times n; \mathbb{C}), b \in M(m \times 1; \mathbb{C})$ the vector $x \in \mathbb{C}^n$ is called the optimal solution if

$$\|Ax-b\|_2\leqslant \|Ay-b\|_2 \text{ for any }y\in\mathbb{C}^n,$$
 and if $\|Ax-b\|_2=\|Ax'-b\|_2$ then $\|x\|_2\leqslant \|x'\|_2$,

Proposition

For any matrices $A \in M(m \times n; \mathbb{C}), b \in M(m \times 1; \mathbb{C})$ the vector

$$x = A^+ b$$

is the optimal solution of the system Ax = b.

Optimal Solution of a System of Linear Equations

Proof.

Let $P = AA^+$ be the matrix of orthogonal projection onto $\operatorname{im}(A)$. Then for any x

$$||Ax - b||_2 = ||Ax - Pb + (P - I)b||_2 =$$

= $||Ax - Pb||_2 + ||(P - I)b||_2 \ge ||(P - I)b||_2.$

The lower bound (which does not depend on x) is attained when $x = A^+b$. Assume that Ax = Ax' where $x = A^+b \in \operatorname{im}(A^*)$. Therefore there exists $n \in \ker A$ such that x' = x + n where x and n are perpendicular. Therefore

$$||x'||_2 = ||x||_2 + ||n||_2 \ge ||x||_2.$$

Example

For

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$$
$$A^{+} = \begin{bmatrix} \frac{3}{2} & -1 & \frac{3}{2} \\ -1 & 1 & -1 \end{bmatrix}$$

It follows

$$A^+A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A^+B = \begin{bmatrix} 3 \\ -2 \end{bmatrix},$$

which is the optimal solution of AX = B.

Hadamard's inequality

Proposition

For any matrix $A \in M(n \times n; \mathbb{R})$

$$|\det A| \leq ||c_1|| \cdot \ldots \cdot ||c_n||,$$

where c_i is the i-th column of matrix A and

$$||c_i|| = \sqrt{c_i^{\mathsf{T}} c_i},$$

is the (Euclidean) length of the i-th column, for $i=1,\ldots,n$. Moreover, the equality holds if and only if

$$c_i \perp c_j$$
, for $i \neq j$.

Hadamard's inequality (continued)

Proof.

If $c_i = \mathbf{0}$ or $\det A = 0$ then there is nothing to prove. Dividing each column of matrix A by its length the problem reduces to the following one

$$|\det A| \leq 1$$
,

where $||c_i|| = 1$ for $i = 1, \ldots, n$. Let

$$M = A^{\mathsf{T}}A$$
.

Then matrix M is a positive definite symmetric matrix. Moreover,

$$\operatorname{Tr} M = \sum_{i=1}^{n} m_{ii} = n,$$

where $M = [m_{ij}]$ as columns of matrix A are of length 1.

Hadamard's inequality (continued)

Proof.

By spectral theorem matrix M is diagonalizable and therefore

$$\det M = \lambda_1 \cdot \ldots \cdot \lambda_n$$
.

Moreover

$$\det M = \det(A^{\mathsf{T}}A) = (\det A)^2 = \lambda_1 \cdot \ldots \cdot \lambda_n \leqslant \left(\frac{\lambda_1 + \ldots + \lambda_n}{n}\right)^n = 1,$$

by the Arithmetic-Geometric Mean Inequality. The upper bound is achieved when

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 1,$$

i.e., when $M = A^{T}A = I$ that is when columns of A or pairwise perpendicular.

Cauchy-Schwarz Inequality

Proposition

Let $A \in M(n \times n; \mathbb{R})$ be a positive semidefinite symmetric matrix. Then for any $x, y \in \mathbb{R}^n$

$$|x^{\mathsf{T}}Ay| \leqslant (x^{\mathsf{T}}Ax)^{\frac{1}{2}} (y^{\mathsf{T}}Ay)^{\frac{1}{2}}.$$

Proof.

For any $t \in \mathbb{R}$,

$$0 \leqslant (x - ty)^{\mathsf{T}} A(x - ty) = (y^{\mathsf{T}} A y) t^2 - 2 (x^{\mathsf{T}} A y) t + (x^{\mathsf{T}} A x).$$

Hence, the discriminant

$$\Delta = 4 (x^{\mathsf{T}} A y)^2 - 4 (x^{\mathsf{T}} A x) (y^{\mathsf{T}} A y) \leq 0.$$

Cauchy–Schwarz Inequality (continued)

Definition

Vector $x \in \mathbb{R}^n$ is **isotropic** (with respect to a symmetric matrix A) if $x^T A x = 0$.

Corollary

Let $A \in M(n \times n; \mathbb{R})$ be a symmetric positive semidefinite matrix. Then $x \in \mathbb{R}^n$ is isotropic if and only if $Ax = \mathbf{0}$.

Proof.

Assume $y \in \mathbb{R}^n$ is istotropic in the proof of Cauchy–Schwarz inequality. Then the linear function

$$-2(x^{\mathsf{T}}Ay)t + (x^{\mathsf{T}}Ax) \geqslant 0,$$

is non–negative for any $x \in \mathbb{R}^n$. This implies $x^{\mathsf{T}}Ay = 0$ for any $x \in \mathbb{R}^n$, i.e. $Ay = \mathbf{0}$.

Convex Cone

Definition

A subset $C \subset \mathbb{R}^n$ is a **cone**, if

i) for any $v, w \in C$

$$v + w \in C$$
,

ii) for any $v \in C$ and any $\alpha \in \mathbb{R}$ such that $\alpha \geqslant 0$,

$$\alpha \in C$$
.

The cone C is **pointed** if it does not contain a one–dimensional subspace of \mathbb{R}^n (i.e, a line). The cone C is **(closed) polyhedral** if it equal to the intersection of finite (closed) half–spaces in \mathbb{R}^n .

Dual Cone

Definition

Let $A \subset \mathbb{R}^n$ be any subset. Let $v \cdot w$ be a scalar product in bR^n . Then the set

$$A^{\vee} = \{ v \in \mathbb{R}^n \mid v \cdot w \geqslant 0 \text{ for any } w \in A \},$$

is called the dual cone of the set A.

Proposition

For any subset $A \subset \mathbb{R}^n$ the set A^{\vee} is a closed convex cone.

Proof.

Exercise.

Cone Spanned by Set

Definition

A cone $C \subset \mathbb{R}^n$ is spanned by set $A \subset \mathbb{R}^n$ if

$$C = \{\alpha_1 v_1 + \dots + \alpha_k v_k \in \mathbb{R}^n \mid v_1, \dots, v_k \in A, \alpha_1, \dots, \alpha_k \geqslant 0, k \geqslant 1\}.$$

We write

$$C = cone(A)$$
,

and if $A = \{v_1, \ldots, v_k\}$

$$C = \operatorname{cone}(v_1, \ldots, v_k).$$

Extremal Rays of a Cone

Definition

Let $C \subset \mathbb{R}^n$ be a (convex) cone. Vector (or a half-line spanned by it) $v \in C$, $v \neq \mathbf{0}$ is an **extremal ray** of cone C, if for any $v_1, v_2 \in V$, if $v = v_1 + v_2$ then $v_1 = tv$ or $v_2 = tv$ for some $t \geq 0$.

The Positive Semidefinite Cone

Definition

Let

$$\mathbb{S}^n = \{ A \in M(n \times n; \mathbb{R}^n) \mid A^{\mathsf{T}} = A \} \subset M(n \times n; \mathbb{R}),$$

be the $\binom{n+1}{2}$ subspace of symmetric matrices with the (standard) scalar product given by

$$A \cdot B = Tr(AB),$$

for any $A, B \in \mathbb{S}^n$.

Definition

Let

$$C_{\geqslant 0} = \{ A \in \mathbb{S}^n \mid A \text{ is postive semidefinite} \},$$

$$C_{>0} = \{ A \in \mathbb{S}^n \mid A \text{ is postive definite} \},$$

denote the **positive semidefinite** and **positive definite** cones, respectively.

Proposition

- i) the positive semidefinite cone $C_{\geqslant 0}$ is a closed convex pointed cone,
- ii) the positive semidefinite cone $C_{\geq 0}$ is self-dual, i.e.

$$C_{\geqslant 0}^{\vee}=C_{\geqslant 0},$$

with respect to the scalar product given by the trace,

iii) the positive semidefinite cone $C_{\geq 0}$ is spanned by rank 1 matrices vv^{T} , i.e.,

$$C_{\geq 0} = \operatorname{cone}(\{vv^{\mathsf{T}} \in \mathbb{S}^n \mid v \in \mathbb{R}^n\}),$$

iv) the matrices vv^{T} are exactly the extremal rays of the cone $C_{\geq 0}$,

int
$$C_{\geq 0} = C_{>0}$$
.

Proposition

- i) the positive semidefinite cone $C_{\geqslant 0}$ is a closed convex pointed cone,
- ii) the positive semidefinite cone $C_{\geq 0}$ is self-dual, i.e.

$$C_{\geq 0}^{\vee} = C_{\geq 0}$$

with respect to the scalar product given by the trace,

iii) the positive semidefinite cone $C_{\geq 0}$ is spanned by rank 1 matrices vv^{T} , i.e.,

$$C_{\geq 0} = \operatorname{cone}\left(\left\{vv^{\mathsf{T}} \in \mathbb{S}^n \mid v \in \mathbb{R}^n\right\}\right),$$

iv) the matrices vv^{T} are exactly the extremal rays of the cone $C_{\geq 0}$,

v)

$$int C_{\geqslant 0} = C_{>0}.$$

Proof.

Omitted. Involves mostly eigenvalue decomposition.

Remark

The positive semidefinite cone is described by polynomial inequalities given by the all principal minors (Sylvester's criterion). For example matrix

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix},$$

is positive semidefinite if and only if

$$\begin{cases} a \geqslant 0, \\ c \geqslant 0, \\ ac - b^2 \geqslant 0. \end{cases}$$

The extremal rays of the positive semidefinite cone are exactly of the form

$$\begin{bmatrix} s \\ t \end{bmatrix} \begin{bmatrix} s & t \end{bmatrix} = \begin{bmatrix} s^2 & st \\ st & t^2 \end{bmatrix},$$

for any $s, t \in \mathbb{R}$.

Remark

When ||v|| = 1 the matrix vv^{T} is the matrix of the orthogonal (linear) projections onto $\mathsf{lin}(v)$, i.e.

$$M(P_{\text{lin}(v)})_{st}^{st} = vv^{\mathsf{T}}.$$

In general, for any $v \neq 0$

$$M(P_{\operatorname{lin}(v)})_{st}^{st} = \frac{vv^{\mathsf{T}}}{v^{\mathsf{T}}v}.$$

Non-negative Polynomials

Definitions

Let $d\geqslant 1$. A polynomial p(x) of degree 2d is **non–negative** if for any $x\in\mathbb{R}$

$$p(x) \geqslant 0$$
.

Proposition

A polynomial p(x) of degree 2d is non-negative if and only if all its real roots are of even multiplicity and if $a_{2d} > 0$ where $p(x) = a_{2d}x^{2n} + \dots$ (that is the leading coefficient is positive).

Proof.

Exercise.

Non-negative Polynomials (continued)

Proposition

A polynomial $p(x) = \sum_{i=0}^{2d} a_i x^i$ of degree 2d is non-negative if and only if there exists a symmetric positive semidefinite matrix $M = [m_{ii}] \in M((d+1) \times (d+1); \mathbb{R})$ such that

$$a_k = \sum_{i+j=k} m_{ij},$$

for any k = 0, ..., 2d where rows and columns of matrix M are numbered from 0 to d. Moreover the correspondence is one–to–one.

Non-negative Polynomials (continued)

Proof.

$$(\Leftarrow)$$
 Let $\mathbf{x} = (1, x, x^2, \dots, x^d)$. Then

$$p(x) = \mathbf{x}^{\mathsf{T}} M \mathbf{x} \geqslant 0.$$

$$(\Rightarrow)$$

$$p(z) = a_{2d} \prod_{i=1}^{d} (z - z_i)(z - \overline{z_i}),$$

where $z_i, \overline{z_i} \in \mathbb{C}$ are complex roots of p(x). Let

$$q(x) = \sqrt{a_{2d}} \prod_{i=1}^{d} (x - z_i) = \sum_{i=1}^{d} c_i x^i.$$

Let

$$q_1(x) = \operatorname{Re} q(x) = \sum_{i=0}^d \left(\operatorname{Re} c_i\right) x^i,$$

$$q_2(x) = \operatorname{Im} q(x) = \sum_{i=0}^d \left(\operatorname{Im} c_i\right) x^i,$$

Non-negative Polynomials (continued)

Proof.

i.e.

$$q(x) = q_1(x) + \sqrt{-1}q_2.$$

Then for any $x \in \mathbb{R}$

$$p(x) = q(x)\overline{q(x)} = |q(x)|^2 = q_1^2(x) + q_2^2(x) =$$

$$= (v^{\mathsf{T}}x)^2 + (w^{\mathsf{T}}x)^2 = x^{\mathsf{T}}(vv^{\mathsf{T}} + ww^{\mathsf{T}})x,$$

where

$$v = (\operatorname{Re} c_0, \operatorname{Re} c_1, \dots, \operatorname{Re} c_d) \in \mathbb{R}^{d+1},$$

 $w = (\operatorname{Im} c_0, \operatorname{Im} c_1, \dots, \operatorname{Im} c_d) \in \mathbb{R}^{d+1}.$

Example

Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & -1 \end{bmatrix}.$$

Then

$$M = A^{\mathsf{T}} A = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 2 \end{bmatrix},$$

is positive definite. Therefore, the polynomial

$$p(x) = \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = 2x^4 - 4x^3 + 7x^2 - 4x + 2,$$

is non-negative. In fact,

$$f(x) \ge f(0.3768669139161389...) \approx 1.312973699214175... > 0.$$

Quiz

Is it possible to find $n \ge 1$ and $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^n$ such that

$$\|\textbf{x}_1 - \textbf{x}_2\| = \|\textbf{x}_2 - \textbf{x}_3\| = 1, \quad \|\textbf{x}_1 - \textbf{x}_3\| = 3?$$

Quiz

Is it possible to find $n \geqslant 1$ and $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^n$ such that

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = \|\mathbf{x}_2 - \mathbf{x}_3\| = 1, \quad \|\mathbf{x}_1 - \mathbf{x}_3\| = 3?$$

No, it is not possible as

$$\|\mathbf{x}_1 - \mathbf{x}_2\| \le \|\mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_2 - \mathbf{x}_3\| \le$$

 $\le \|\mathbf{x}_1 - \mathbf{x}_2\| + \|\mathbf{x}_2 - \mathbf{x}_3\|,$

(triangle inequality) but it is not true that $3 \leqslant 1 + 1 = 2$.

Properties of Pseudoinverses

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be any matrix. Then $P = AA^+$ is a matrix of the orthogonal projection onto imA and $Q = A^+A$ is a matrix of the orthogonal projection onto im A^T .

Proof.

Let $A = U\Sigma V^{T}$ be an SVD decomposition of A. Then

$$P = U\Sigma V^{\mathsf{T}} V\Sigma^{+} U^{\mathsf{T}} = U_{:,1:r} U_{:,1:r}^{\mathsf{T}},$$

is symmetric where r = r(A) and $U_{:,1:r}$ denotes first r columns of matrix A (orthonormal basis or imA). Moreover

$$P^2 = AA^+AA^+ = AA^+ = P.$$

Similarly for Q.

Properties of Pseudoinverses (continued)

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be any matrix.

$$A^{+} = (A^{\mathsf{T}}A)^{+}A^{\mathsf{T}}, \quad A^{+} = A^{\mathsf{T}}(AA^{\mathsf{T}})^{+}.$$

Proof.

Let $A = U\Sigma V^{T}$ be an SVD decomposition of A. Then

$$A^{\mathsf{T}}A = V\Sigma^{2}V^{\mathsf{T}},$$

$$(A^{\mathsf{T}}A)^{+} = V(\Sigma^{2})^{+}V^{\mathsf{T}},$$

$$(A^{\mathsf{T}}A)^{+}A = V(\Sigma^{2})^{+}V^{\mathsf{T}}V\Sigma U^{\mathsf{T}} = A^{+}.$$

The second part is similar.

Properties of Pseudoinverses (continued)

Proposition

Let $A \in M(m \times n; \mathbb{R})$ be a matrix. If r(A) = m (full row rank) then

$$A^+ = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}.$$

If r(A) = n (full column rank) then

$$A^+ = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}.$$

Proof.

Follows from the above proposition (matrices AA^{T} and $A^{T}A$ are invertible).

Properties of Pseudoinverses (continued)

The following lemma will be subsequently used in the proof of Greville's conditions.

Proposition

Let $A, B \in M(m \times n; \mathbb{R})$ be any matrices. Then

$$A^{\mathsf{T}} = A^{\mathsf{+}} A A^{\mathsf{T}},$$

$$B^{\mathsf{T}} = B^{\mathsf{T}}BB^{+}$$
.

Proof.

Since A^+A is a matrix of (orthogonal) projection onto im(A^{T}) and BB^+ is a matrix of (orthogonal) projection onto im(B)

$$A^{\mathsf{T}} = A^{\mathsf{+}} A A^{\mathsf{T}},$$

$$B = BB^{+}B$$
.

Conjugating the last equation finishes the proof.

Inverse Law

Theorem (Greville)

Let $A \in M(m \times n; \mathbb{R}), \ B \in M(n \times k; \mathbb{R}).$ If $(AB)^+ = B^+A^+$ then $\operatorname{im}(A^{\mathsf{T}}AB) \subset \operatorname{im}(B)$ and $\operatorname{im}(BB^{\mathsf{T}}A^{\mathsf{T}}) \subset \operatorname{im}(A^{\mathsf{T}}).$

Proof.

By the above lemma applied to AB (the second case) using the main assumption

$$B^{\mathsf{T}}A^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}ABB^{+}A^{+},$$

Multiplying on the right by $AA^{T}AB$ gives

$$B^{\mathsf{T}}A^{\mathsf{T}}AA^{\mathsf{T}}AB = B^{\mathsf{T}}A^{\mathsf{T}}ABB^{+}A^{+}AA^{\mathsf{T}}AB.$$

By the above lemma

$$B^{\mathsf{T}}A^{\mathsf{T}}AA^{\mathsf{T}}AB = B^{\mathsf{T}}A^{\mathsf{T}}ABB^{+}(A^{+}AA^{\mathsf{T}})AB = B^{\mathsf{T}}A^{\mathsf{T}}ABB^{+}A^{\mathsf{T}}AB,$$

i.e.,

$$B^{\mathsf{T}}A^{\mathsf{T}}A(I-BB^{+})A^{\mathsf{T}}AB=0.$$

Proof.

$$B^{\mathsf{T}}A^{\mathsf{T}}A(I-BB^{+})A^{\mathsf{T}}AB=0.$$

The middle matrix is idempotent and symmetric hence

$$\|(I - BB^{+})A^{\mathsf{T}}AB\|_{2}^{2} = 0,$$

which is equivalent to

$$\operatorname{im}(A^{\mathsf{T}}AB) \subset \operatorname{im}(B).$$

The rest is similar to the previous argument.

In fact, the converse holds.

Theorem (Greville)

Let $A \in M(m \times n; \mathbb{R}), \ B \in M(n \times k; \mathbb{R}).$ If $im(BB^{T}A^{T}) \subset im(A^{T})$ and $im(A^{T}AB) \subset im(B)$ then $(AB)^{+} = B^{+}A^{+}$.

Proof.

The assumptions imply that

$$A^{+}ABB^{T}A^{T} = BB^{T}A^{T},$$

 $BB^{+}A^{T}AB = A^{T}AB.$

Multiplying the first equation on the right by $((AB)^{\mathsf{T}})^+$ and on the left by B^+ gives

$$B^{+}A^{+}ABB^{\mathsf{T}}A^{\mathsf{T}}((AB)^{\mathsf{T}})^{+} = B^{+}BB^{\mathsf{T}}A^{\mathsf{T}}((AB)^{\mathsf{T}})^{+}.$$

Proof.

$$B^{+}A^{+}ABB^{\mathsf{T}}A^{\mathsf{T}}((AB)^{\mathsf{T}})^{+} = B^{+}BB^{\mathsf{T}}A^{\mathsf{T}}((AB)^{\mathsf{T}})^{+}.$$

$$B^{+}A^{+}AB(AB)^{\mathsf{T}}((AB)^{\mathsf{T}})^{+} = (B^{+}BB^{\mathsf{T}})A^{\mathsf{T}}((AB)^{\mathsf{T}})^{+}.$$

By the previous lemma this is equivalent to

$$B^{+}A^{+}AB = (AB)^{\mathsf{T}}((AB)^{\mathsf{T}})^{+},$$

therefore the matrix B^+A^+AB is symmetric.

Proof.

Similarly, by multiplying

$$BB^{+}A^{\mathsf{T}}AB = A^{\mathsf{T}}AB$$
,

on the left by $(A)^+$

$$\left((A)^{+} \right)^{\mathsf{T}} B B^{+} A^{\mathsf{T}} A B = \left(\left((A)^{+} \right)^{\mathsf{T}} A^{\mathsf{T}} A \right) B,$$
$$\left((A)^{+} \right)^{\mathsf{T}} B B^{+} A^{\mathsf{T}} A B = A B.$$

Multiplying the above on the right by $(AB)^+$ and using on the left hand side $B^+ = (B^{\mathsf{T}}B)^+B^{\mathsf{T}}$ gives

$$((A)^{+})^{\mathsf{T}} B (B^{\mathsf{T}} B)^{+} B^{\mathsf{T}} A^{\mathsf{T}} (AB) (AB)^{+} = (AB) (AB)^{+},$$
$$((A)^{+})^{\mathsf{T}} ((B)^{+})^{\mathsf{T}} (AB)^{\mathsf{T}} = (AB) (AB)^{+},$$

which, after conjugating side-wise implies that ABB^+A^+ is symmetric.

Proof.

The first Penrose condition is easily verified.

$$ABB^+A^+AB = AB(B^+A^+AB) =$$

= $AB(AB)^{\mathsf{T}}((AB)^{\mathsf{T}})^+ = AB.$

Note that

$$\operatorname{im}(BB^*A^*) \subset \operatorname{im}(A^*) \Longrightarrow \operatorname{im}(BB^+A^+) \subset \operatorname{im}(A^+).$$

 $(im(A^+) = im(A^*)$ and any eigenvector of BB^* is an eigenvector of BB^+ , moreover any linear combination of eigenvectors of BB^* corresponding to non–zero eigenvalues is an eigenvalue of BB^+ .)

Proof.

The second Penrose condition follows from $im(BB^+A^+) \subset im(A^+)$. Fix any vector u and let

$$v = B^{+}A^{+}ABB^{+}A^{+}u = B^{+}A^{+}A(BB^{+}A^{+})u.$$

There exists vector w such that $(BB^+A^+)u = A^+w$, i.e.,

$$v = B^{+}A^{+}AA^{+}w = B^{+}A^{+}w = B^{+}BB^{+}A^{+}u = B^{+}A^{+}u.$$

Since vector *u* was arbitrary

$$B^+A^+ABB^+A^+ = B^+A^+.$$

Remark

This also shows that condition $\operatorname{im}(A^TAB) \subset \operatorname{im}(B)$ implies conditions i), ii) and iii) for B^+A^+ .

Positive Semidefinite Block Matrix

Proposition

For any matrices

 $A \in M(m \times m; \mathbb{R}), B \in M(n \times m; \mathbb{R}), C \in M(n \times n; \mathbb{R})$ where A and C are symmetric, let

$$M = \begin{bmatrix} A & B^{\mathsf{T}} \\ B & C \end{bmatrix},$$

be a symmetric positive semidefinite matrix. Then

$$B^{\mathsf{T}} = AA^{+}B^{\mathsf{T}}, \quad B = (CC^{+})^{\mathsf{T}}B.$$

Positive Semidefinite Block Matrix (continued)

Proof.

By spectral decomposition there exist $N \in M((m+n) \times (m+n); \mathbb{R})$ such that $M = N^T N$. Assume that $N = \begin{bmatrix} N_1 & N_2 \end{bmatrix}$, where $N_1 \in M((m+n) \times m; \mathbb{R})$, $N_2 \in M((m+n) \times n; \mathbb{R})$. Then

$$A = N_1^{\mathsf{T}} N_1, \quad B^{\mathsf{T}} = N_1^{\mathsf{T}} N_2, \quad C = N_2^{\mathsf{T}} N_2.$$

Moreover,

$$AA^{+}B^{T} = (N_{1}^{T}N_{1})(N_{1}^{T}N_{1})^{+}N_{1}^{T}N_{2} = N_{1}^{T}N_{2} = B^{T},$$

as $(N_1^T N_1)(N_1^T N_1)^+$ is an orthogonal projection onto $\operatorname{im}(N_1^T N_1) = \operatorname{im}(N_1^T)$. Similarly,

$$(CC^{+})^{\mathsf{T}}B = (N_{2}^{\mathsf{T}}N_{2})^{+}(N_{2}^{\mathsf{T}}N_{2})N_{2}^{\mathsf{T}}N_{1} = N_{2}^{\mathsf{T}}N_{1}.$$

Schur Complement

Definition

For any matrices $A \in M(m \times m; \mathbb{R}), B \in M(m \times n; \mathbb{R}), C \in M(n \times m; \mathbb{R}), D \in M(n \times n; \mathbb{R})$ and the matrix

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

the **Schur complement** of matrix A with respect to M is

$$M|A = D - CA^+B$$
.

Schur Complement (continued)

Proposition

A positive symmetric semidefinite matrix

$$M = \begin{bmatrix} A & B^{\mathsf{T}} \\ B & C \end{bmatrix},$$

is conjugate to the matrix $\operatorname{diag}(A,M|A)$, where $M|A=C-BA^+B^{\mathsf{T}}$.

Proof.

$$\begin{bmatrix} I & 0 \\ BA^{+} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & M|A \end{bmatrix} \begin{bmatrix} I & A^{+}B^{T} \\ 0 & I \end{bmatrix} =$$

$$= \begin{bmatrix} A & 0 \\ BA^{+}A & M|A \end{bmatrix} \begin{bmatrix} I & A^{+}B^{T} \\ 0 & I \end{bmatrix} =$$

$$= \begin{bmatrix} A & AA^{+}B^{T} \\ BA^{+}A & BA^{+}AA^{+}B^{T} + M|A \end{bmatrix} = \begin{bmatrix} A & AA^{+}B^{T} \\ BA^{+}A & C \end{bmatrix} = M.$$

Schur Complement (continued)

Corollary

If a symmetric matrix

$$M = \begin{bmatrix} A & B^{\mathsf{T}} \\ B & C \end{bmatrix},$$

is positive semidefinite then matrix A is positive semidefinite and the Schur complement M|A is postive semidefinite. If matrix A is positive semidefinite and the Schur complement M|A is postive semidefinite for symmetric matrix M and $BA^+A = B$ (for example when A is invertible) then M is positive semidefinite. Similar theorem is true for positive definite matrices.

Quiz (continued)

Is it possible to find $n\geqslant 1$ and $\mathbf{x}_0,\mathbf{x}_2,\ldots,\mathbf{x}_5\in\mathbb{R}^n$ such that (addition modulo 6)

$$\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 1}\| = 1,$$

 $\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 2}\| = \sqrt{3},$
 $\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 3}\| = 2?$

Quiz (continued)

Is it possible to find $n \ge 1$ and $\mathbf{x}_0, \mathbf{x}_2, \dots, \mathbf{x}_5 \in \mathbb{R}^n$ such that (addition modulo 6)

$$\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 1}\| = 1,$$

 $\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 2}\| = \sqrt{3},$
 $\|\mathbf{x}_{i} - \mathbf{x}_{i\pm 3}\| = 2?$

Yes, it is. Those are vertices of a regular hexagon with sides of length 1 and n = 2.

Multidimensional Scaling

Definition

A symmetric non–negative matrix $D = [d_{ij}] \in M(n \times n; \mathbb{R}_{\geq 0})$ is called **Euclidean distance matrix** if there exist $m \geq 1$ and

$$\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^m,$$

such that

$$d_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|.$$

Definition

Let

$$H = I - n\mathbb{1}\mathbb{1}^{\mathsf{T}} \in M(n \times n; \mathbb{R}),$$

be the centering matrix.

⁰based on K. V. Mardia, J. T. Kent, J. M. Bibby *Mulitvariate Analysis*

Multidimensional Scaling

Proposition

Let $D = [a_{ij}] \in M(n \times n; \mathbb{R}_{\geqslant 0})$ be a non–negative symmetric matrix. Let $A = [a_{ij}] \in M(n \times n; \mathbb{R})$ be a matrix given by the condition

$$a_{ij}=-\frac{1}{2}d_{ij}^2.$$

Let

$$B = HAH$$
.

Multidimensional Scaling (continued)

Proposition

Then D is an Euclidean distance matrix if and only if matrix B is postive semidefinite. Moreover, in this case, let

$$\lambda_1 \geqslant \ldots \geqslant \lambda_m > 0,$$

denote (all) positive eigenvalues of B (i.e., eigenvalue of multiplicity k appear exactly k times) with corresponding pairwise orthogonal eigenvectors w_1, \ldots, w_m such that for $i = 1, \ldots, m$

$$w_i \cdot w_i = \lambda_i$$
.

Then $\mathbf{x}_i \in \mathbb{R}^m$ and \mathbf{x}_i lie in the rows of the matrix $\begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix}$. Moreover the barycenter of v_1, \dots, v_m is $\mathbf{0}$ and B is the Gram matrix of vectors v_1, \dots, v_m , i.e. $b_{ij} = v_i \cdot v_j$.

Example 1

Let

$$D = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & -\frac{1}{2} & -\frac{9}{2} \\ -\frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{9}{2} & -\frac{1}{2} & 0 \end{bmatrix}.$$

Then

$$B = HAH = \frac{1}{18} \begin{bmatrix} 38 & 5 & -43 \\ 5 & -10 & 5 \\ -43 & 5 & 38 \end{bmatrix},$$

which has eigenvalues $\lambda=-\frac{5}{6}$ or $\lambda=0$ or $\lambda=\frac{9}{2}$, i.e. it is not positive semidefinite.

Example 2

Let

$$D = \begin{bmatrix} 0 & 1 & \sqrt{3} & 2 & \sqrt{3} & 1\\ 1 & 0 & 1 & \sqrt{3} & 2 & \sqrt{3}\\ \sqrt{3} & 1 & 0 & 1 & \sqrt{3} & 2\\ 2 & \sqrt{3} & 1 & 0 & 1 & \sqrt{3}\\ \sqrt{3} & 2 & \sqrt{3} & 1 & 0 & 1\\ 1 & \sqrt{3} & 2 & \sqrt{3} & 1 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 0 & -\frac{1}{2} & -\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2}\\ -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} & -2 & -\frac{3}{2}\\ -\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2} & -2\\ -2 & -\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{3}{2}\\ -\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2} & 0 & -\frac{1}{2}\\ -\frac{3}{2} & -\frac{3}{2} & -2 & -\frac{3}{2} & -\frac{1}{2} & 0 \end{bmatrix}.$$

Example 2 (continued)

Then

$$B = HAH = \frac{1}{2} \begin{bmatrix} 2 & 1 & -1 & -2 & -1 & 1 \\ 1 & 2 & 1 & -1 & -2 & -1 \\ -1 & 1 & 2 & 1 & -1 & -2 \\ -2 & -1 & 1 & 2 & 1 & -1 \\ -1 & -2 & -1 & 1 & 2 & 1 \\ 1 & -1 & -2 & -1 & 1 & 2 \end{bmatrix},$$

which has eigenvalues $\lambda=0$ (of multiplicity 4) and $\lambda=3$ (of multiplicity 2), i.e. it is positive semidefinite.

Example 2 (continued)

Moreover

$$V_{(3)} = \text{lin}((1,0,-1,-1,0,1),(0,1,1,0,-1,-1)),\\$$

which, after Gram-Schmidt process gives orthogonal basis

$$V_{(3)} = \mathsf{lin}((1,0,-1,-1,0,1),(1,2,1,-1,-2,-1)).$$

Let

$$w_1 = \frac{\sqrt{3}}{2}(1, 0, -1, -1, 0, 1),$$

$$w_2 = \frac{1}{2}(1, 2, 1, -1, -2, -1).$$

Then $w_1 \cdot w_2 = 0$ and $w_1 \cdot w_1 = w_2 \cdot w_2 = 3$.

Example 2 (continued)

Vectors $\mathbf{x}_0, \dots, \mathbf{x}_5 \in \mathbb{R}^2$ can be read from the rows of the matrix

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 1 & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

Those are exactly the (complex) sixth roots of unity (clockwise).