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Simplex Method

Simplex method is an algorithm solving linear programming
problems presented in a standard form. It was invented by George
Dantzig in 1947.



Simplex Method

Simplex method is an algorithm solving linear programming
problems presented in a standard form. It was invented by George
Dantzig in 1947.

A linear programming problem in a standard form is a task of
minimizing the objective function

f ppx1, . . . , xnqq “ c1x1 ` . . . ` cnxn ÝÑ min

under the constraints
$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` . . . ` a1nxn “ b1

a21x1 ` a22x2 ` . . . ` a2nxn “ b2

...
...

. . .
...

...
am1x1 ` am2x2 ` . . . ` amnxn “ bm

, x1, . . . , xn ě 0
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»
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a11 ¨ ¨ ¨ a1n
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. . .

...
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fi

ffi

fl
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»

—

–
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...
xn
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ffi

fl
, b “

»

—

–

b1

...
bm

fi

ffi

fl

We assume that rpAq “ m.
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We assume that rpAq “ m.
Let X Ă R

n be a convex polytope defined by the conditions
Ax “ b, x ě 0. Recall that if there is an optimal solution to the
problem (i.e. a point x P X in which f admits its minimum over X )
then it can be chosen to be a vertex of X .

Vertices of X correspond to basic feasible solutions of the problem.
They are given by basic feasible sets B Ă t1, . . . , nu of m “ rpAq
elements, such that the system of linear equations
Ax “ b, xi “ 0 for i R B has a unique non-negative solution.



Simplex Method

Simplex method starts from a basic feasible solutions. Then one
moves to another basic feasible solution by replacing one element
in the basic set B in order to decrease the value of the objective
function f .
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Maximize the value x1 ` 2x2 under the constraints

$

’

’

&

’

’

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

Express this problem in a standard form

´x1 ´ 2x2 ÝÑ min

"

2x1 ` x2 ` x3 “ 8
´x1 ` 3x2 ` x4 “ 3

and x1, x2, x3, x4 ě 0.
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Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q

maximize x1 ` 2x2

$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

x1 ` 2x2 “ 7

optimal solution is p3, 2q
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We start from the basic feasible set B1 “ t3, 4u. The basic
variables are x3, x4 and the non-basic ones are x1, x2.
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by setting x1 “ x2 “ 0.



Example

We start from the basic feasible set B1 “ t3, 4u. The basic
variables are x3, x4 and the non-basic ones are x1, x2. The feasible
basic solution is xB1

“ p0, 0, 8, 3q which be computed directly from

"

2x1 ` x2 ` x3 “ 8
´x1 ` 3x2 ` x4 “ 3

by setting x1 “ x2 “ 0.
Since f pxq “ ´x1 ´ 2x2 therefore f pxB1

q “ 0. We could decrease
it by making either x1 or x2 non-zero. By a heuristic rule we
choose x2 since the coefficient ´2 is smaller than ´1. Assume
s “ 2 will enter the new basic (feasible) set B2.
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Since s “ 2 enters the basic set we need to decide whether 3 or 4
leaves.
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2x1 ` x2 ` x3 “ 8
´x1 ` 3x2 ` x4 “ 3

Divide the second equation by 3 to get coefficient at x2 equal to 1

"

2x1 ` x2 ` x3 “ 8
´1

3
x1 ` x2 ` 1

3
x4 “ 1

Subtract the first equation from the second to make x2, x4 basic
variables. This means 3 leaves the basic set B1.

"

2x1 ` x2 ` x3 “ 8
´7

3
x1 ´ x3 ` 1

3
x4 “ ´7

and x t2,4u “ p0, 8, 0, ´21q.
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Example

"

2x1 ` x2 ` x3 “ 8
´1

3
x1 ` x2 ` 1

3
x4 “ 1

Subtract the second equation from the first one to make x2, x3

basic variables. This means 4 leaves the basic set B1.

#

7

3
x1 ` x3 ´ 1

3
x4 “ 7

´1

3
x1 ` x2 ` 1

3
x4 “ 1

and xt2,3u “ p0, 1, 7, 0q.

Both sets t2, 3u and t2, 4u are basic but only t2, 3u is feasible since
x t2,3u “ p0, 1, 7, 0q ě 0 and x t2,4u “ p0, 8, 0, ´21q ğ 0
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Observe 8

1
ě 3

3
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For B2 “ t2, 3u the general solution with x2, x3 as basic variables is
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3
x1 ` x3 ´ 1

3
x4 “ 7

Substitute x2 “ 1 ` 1

3
x1 ´ 1

3
x4 to f pxq

f pxq “ ´x1 ´ 2x2 “ ´2 ´
5

3
x1 `

2

3
x4.

Making x1 non-zero will decrease f , i.e. s “ 1 will enter the new
basic set B3.
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with x t1,3u “ p´3, 0, 14, 0q ğ 0. Therefore we need to choose the

smallest ratio among the positive ones.



Example

#

´1

3
x1 ` x2 ` 1

3
x4 “ 1

7

3
x1 ` x3 ´ 1

3
x4 “ 7

Multiply first row by ´3 and the second one by 3

7
.

"

x1 ´ 3x2 ´ x4 “ ´3
x1 ` 3

7
x3 ´ 1

7
x4 “ 3

Now 1

´1{3
ď 7

7{3
but unlike the previous case, subtracting the first

equation from the second one leads to an infeasible basic set t1, 3u
with x t1,3u “ p´3, 0, 14, 0q ğ 0. Therefore we need to choose the

smallest ratio among the positive ones. The only choice is 7

7{3
.

This corresponds to the second equation, i.e. the second element
from B2 “ t2, 3u leaves and s “ 1 enter the new basic set
B3 “ t1, 2u.



Example

"

x1 ´ 3x2 ´ x4 “ ´3
x1 ` 3

7
x3 ´ 1

7
x4 “ 3



Example

"

x1 ´ 3x2 ´ x4 “ ´3
x1 ` 3

7
x3 ´ 1

7
x4 “ 3
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x1 ´ 3x2 ´ x4 “ ´3
x1 ` 3

7
x3 ´ 1

7
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The new basic set is B3 “ t1, 2u. Subtract the second equation
from the first one

#

x1 ` 3

7
x3 ´ 1

7
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x2 ` 1

7
x3 ` 2

7
x4 “ 2

and substitute the result to f pxq “ ´x1 ´ 2x2

f pxq “ ´7 `
5

7
x3 `

3

7
x4.



Example

"

x1 ´ 3x2 ´ x4 “ ´3
x1 ` 3

7
x3 ´ 1

7
x4 “ 3

The new basic set is B3 “ t1, 2u. Subtract the second equation
from the first one

#

x1 ` 3

7
x3 ´ 1

7
x4 “ 3

x2 ` 1

7
x3 ` 2

7
x4 “ 2

and substitute the result to f pxq “ ´x1 ´ 2x2

f pxq “ ´7 `
5

7
x3 `

3

7
x4.

Making x3 or x4 a basic variable would increase the value of f .
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Therefore the basic set B3 “ t1, 2u corresponds to a vertex
x t1,2u “ p3, 2, 0, 0q in which function f attains minimum on the
feasible region, i.e. xt1,2u “ p3, 2, 0, 0q is an optimal solution.



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q

maximize x1 ` 2x2

$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q

maximize x1 ` 2x2

$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

B1 “ t3, 4u

B2 “ t2, 3u

B3 “ t1, 2u



Simplex Method

Given a linear programming problem in the standard form
f ppx1, . . . , xnqq “ c1x1 ` . . . ` cnxn ÝÑ min under the constraints
Ax “ b, x ě 0 where

A “

»

—

–

a11 a12 ¨ ¨ ¨ a1n

...
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

fi

ffi

fl
, x “

»

—

–

x1

...
xn

fi

ffi

fl
, b “

»

—

–

b1

...
bm

fi

ffi

fl

and rpAq “ m proceed as follows.
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will refer to the part above the horizontal line as the upper
part and to the other as the lower part,
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Simplex Method

1) build a simplex tableau

»

—

—

—

–

c1 c2 ¨ ¨ ¨ cn 0

a11 a12 ¨ ¨ ¨ a1n b1

...
...

. . .
...

am1 am2 ¨ ¨ ¨ amn bm

fi

ffi

ffi

ffi

fl

we

will refer to the part above the horizontal line as the upper
part and to the other as the lower part,

2) find some basic feasible set
B “ ti1, . . . , imu, i1 ă i2 ă . . . ă im,

3) using elementary row operations (adding or subtracting the
upper row from rows in the lower part is not allowed) bring
the simplex tableau to the form



Simplex Method

1 i1 i2 im´1 im n
»

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c 1
1 0 0 0 0 c 1

n c 1

a1
11

. . . 1 . . . 0 . . . . . . 0 . . . 0 . . . a1
1n b1

1

a1
21

. . . 0 . . . 1 . . . . . . 0 . . . 0 . . . a1
2n b1

2

a1
31

. . . 0 . . . 0 . . . . . . 0 . . . 0 . . . a1
3n b1

3

...
...

...
. . .

...
...

...
...

a1
pm´2q1 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . a1

pm´2qn b1
m´2

a1
pm´1q1 . . . 0 . . . 0 . . . . . . 1 . . . 0 . . . a1

pm´1qn b1
m´1

a1
m1

. . . 0 . . . 0 . . . . . . 0 . . . 1 . . . a1
mn b1

m

1Some authors say the tableau is in canonical form (with respect to B).



Simplex Method

1 i1 i2 im´1 im n
»

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c 1
1 0 0 0 0 c 1

n c 1

a1
11

. . . 1 . . . 0 . . . . . . 0 . . . 0 . . . a1
1n b1

1

a1
21

. . . 0 . . . 1 . . . . . . 0 . . . 0 . . . a1
2n b1

2

a1
31

. . . 0 . . . 0 . . . . . . 0 . . . 0 . . . a1
3n b1

3

...
...

...
. . .

...
...

...
...

a1
pm´2q1 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . a1

pm´2qn b1
m´2

a1
pm´1q1 . . . 0 . . . 0 . . . . . . 1 . . . 0 . . . a1

pm´1qn b1
m´1

a1
m1

. . . 0 . . . 0 . . . . . . 0 . . . 1 . . . a1
mn b1

m

i.e. the submatrix of the lower part of the simplex tableau
consisting of columns i1, . . . , im is the identity matrix and the
coefficients of the objective function corresponding to the basic
variables xi1 , . . . , xim are zero.1

1Some authors say the tableau is in canonical form (with respect to B).
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minimal value of the objective function and the optimal
solution is xB,
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s ě 0 (i.e. all c 1

i are non-negative) then STOP, ´c 1 is the
minimal value of the objective function and the optimal
solution is xB,

6) if the set ta1
is | a1

is ą 0, i “ 1, . . . , mu is empty, i.e. all entries
in the lower part of the s-th column of the simplex tableau are
non-positive then STOP, the objective function attains no
minimum on the feasible region,



Simplex Method

4) let s P t1, . . . , nu be such that c 1
s “ mintc 1

1
, c 1

2
, . . . , c 1

nu, i.e.
let s be the number of the column with the smallest

coefficient c 1
i ,

5) if c 1
s ě 0 (i.e. all c 1

i are non-negative) then STOP, ´c 1 is the
minimal value of the objective function and the optimal
solution is xB,

6) if the set ta1
is | a1

is ą 0, i “ 1, . . . , mu is empty, i.e. all entries
in the lower part of the s-th column of the simplex tableau are
non-positive then STOP, the objective function attains no
minimum on the feasible region,

7) let r P t1, . . . , mu be given by
b1

r

a1

rs
“ min

!

b1

i

a1

is

| a1
is ą 0, i “ 1, . . . , m

)

, i.e. let r be the

number of the equation in the simplex tableau with the

smallest non–negative ratio
b1

i

a1

is
,



Simplex Method

1 i1 s im´1 im n
»

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c 1
1

0 c 1
s 0 0 c 1

n c 1

a1
11

. . . 1 . . . a1
1s . . . . . . 0 . . . 0 . . . a1

1n b1
1

a1
21

. . . 0 . . . a1
2s . . . . . . 0 . . . 0 . . . a1

2n b1
2

a1
31

. . . 0 . . . a1
3s . . . . . . 0 . . . 0 . . . a1

3n b1
3

...
...

...
. . .

...
...

...
...

a1
pm´2q1 . . . 0 . . . a1

pm´2qs . . . . . . 0 . . . 0 . . . a1
pm´2qn b1

m´2

a1
pm´1q1 . . . 0 . . . a1

pm´1qs . . . . . . 1 . . . 0 . . . a1
pm´1qn b1

m´1

a1
m1

. . . 0 . . . a1
ms . . . . . . 0 . . . 1 . . . a1

mn b1
m

b1
r

a1
rs

“ min

"

b1
i

a1
is

| a1
is ą 0, i “ 1, . . . , m

*
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8) the r -th element of B (i.e. ir ) is removed and s enters the
basic set B,

9) go to step 3).
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Example

Now we can redo our first example using simplex tableau.
Recall

´x1 ´ 2x2 ÝÑ min
"

2x1 ` x2 ` x3 “ 8
´x1 ` 3x2 ` x4 “ 3

and x1, x2, x3, x4 ě 0.
Choose basic feasible set B “ t3, 4u and write the simplex tableau:

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1 3 0 1 3

It is already in the form from step 3) (i.e. in the upper row there
are zeroes in the 3-th and 4-th column and the submatrix of the
lower part consisting of columns 3, 4 is the identity matrix).



Example

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1 3 0 1 3

The smallest coefficient of the objective function is c 1
2

“ ´2 and
hence s “ 2.



Example

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1 3 0 1 3

The smallest coefficient of the objective function is c 1
2

“ ´2 and
hence s “ 2.
Compute ratios of the entries in the last column and in the second
one.

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1 3 0 1 3

b1
2

a1
s2

“
3

3
“ min

"

8

1
,

3

3

*



Example

b1
2

a1
s2

“
3

3
“ min

"

8

1
,

3

3

*

The smallest ratio is provided by the second row so r “ 2.
Therefore the second element of B “ t3, 4u leaves and s “ 2
enters the basic set.



Example

b1
2

a1
s2

“
3

3
“ min

"

8

1
,

3

3

*

The smallest ratio is provided by the second row so r “ 2.
Therefore the second element of B “ t3, 4u leaves and s “ 2
enters the basic set. For B “ t2, 3u bring the simplex tableau into
the form described in step 3).

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1 3 0 1 3

r2{3
ÝÑ

1 2 3 4
« ff´1 ´2 0 0 0

2 1 1 0 8
´1

3
1 0 1

3
1

r0`2r2

r1´r2ÝÑ

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

7

3
0 1 ´1

3
7

´1

3
1 0 1

3
1

r1Ør2ÝÑ

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

´1

3
1 0 1

3
1

7

3
0 1 ´1

3
7



Example

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

´1

3
1 0 1

3
1

7

3
0 1 ´1

3
7

Now c 1
1

“ ´5

3
ă c 1

4
“ 2

3
hence s “ 1.



Example

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

´1

3
1 0 1

3
1

7

3
0 1 ´1

3
7

Now c 1
1

“ ´5

3
ă c 1

4
“ 2

3
hence s “ 1.

In the first column only one number is positive, that is the smallest
ratio is 7

7{3
hence r “ 2. The second element from B “ t2, 3u

leaves and s “ 1 enters the basic set.



Example

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

´1

3
1 0 1

3
1

7

3
0 1 ´1

3
7

Now c 1
1

“ ´5

3
ă c 1

4
“ 2

3
hence s “ 1.

In the first column only one number is positive, that is the smallest
ratio is 7

7{3
hence r “ 2. The second element from B “ t2, 3u

leaves and s “ 1 enters the basic set.
Now B “ t1, 2u.

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

´1

3
1 0 1

3
1

7

3
0 1 ´1

3
7

3

7
r2

r1Ør2ÝÑ

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

1 0 3

7
´1

7
3

´1

3
1 0 1

3
1



Example

1 2 3 4
»

–

fi

fl

´5

3
0 0 2

3
2

1 0 3

7
´1

7
3

´1

3
1 0 1

3
1

r0` 5

3
r1

r2` 1

3
r1

ÝÑ

1 2 3 4
»

–

fi

fl

0 0 5

7

3

7
7

1 0 3

7
´1

7
3

0 1 1

7

2

7
2

Since c 1
i ě 0 for i “ 1, 2, 3, 4 we have arrived at an optimal

solution which is xt1,2u “ p3, 2, 0, 0q and the minimal value is ´7.
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iv) if all elements in the lower part of the s-th column are
non-positive (step 6q), we can increase arbitrarily the variable
xs staying in the feasible region while decreasing the objective
function,



Remarks

i) in step 2q one can guess a basic feasible set or solve an
auxiliary linear programming problem to find one,

ii) elementary row operations do not change basic sets, basic
feasible solutions, the feasible region and the value (up to a
uniform constant) of the objective function on the feasible set,

iii) in step 4q, choosing the smallest (negative) value of c 1
s implies

that we do not increase the objective function,

iv) if all elements in the lower part of the s-th column are
non-positive (step 6q), we can increase arbitrarily the variable
xs staying in the feasible region while decreasing the objective
function,

v) at any step the objective function is equal to

f ppx1, . . . , xnqq “ c 1
1x1 ` . . . ` c 1

nxn ´ c 1
,

where c 1
ij

“ 0 for j “ 1, . . . , m (i.e. c 1
i “ 0 for i P B).



Remarks

1 i1 s im´1 im n
»

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c 1
1

0 c 1
s 0 0 c 1

n c 1

a1
11

. . . 1 . . . a1
1s . . . . . . 0 . . . 0 . . . a1

1n b1
1

a1
21

. . . 0 . . . a1
2s . . . . . . 0 . . . 0 . . . a1

2n b1
2

a1
31

. . . 0 . . . a1
3s . . . . . . 0 . . . 0 . . . a1

3n b1
3

...
...

...
. . .

...
...

...
...

a1
pm´2q1 . . . 0 . . . a1

pm´2qs . . . . . . 0 . . . 0 . . . a1
pm´2qn b1

m´2

a1
pm´1q1 . . . 0 . . . a1

pm´1qs . . . . . . 1 . . . 0 . . . a1
pm´1qn b1

m´1

a1
m1

. . . 0 . . . a1
ms . . . . . . 0 . . . 1 . . . a1

mn b1
m

Move terms involving xs to the right hand side of all equations.
Set xi “ 0 for i R B Y tsu. For any positive value of xs the system
of linear equations in variables xi1 , . . . , xim has a non-negative
solution.



Remarks

1 i1 s im´1 im n
»

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c 1
1

0 c 1
s 0 0 c 1

n c 1

a1
11

. . . 1 . . . a1
1s . . . . . . 0 . . . 0 . . . a1

1n b1
1

a1
21

. . . 0 . . . a1
2s . . . . . . 0 . . . 0 . . . a1

2n b1
2

a1
31

. . . 0 . . . a1
3s . . . . . . 0 . . . 0 . . . a1

3n b1
3

...
...

...
. . .

...
...

...
...

a1
pm´2q1 . . . 0 . . . a1

pm´2qs . . . . . . 0 . . . 0 . . . a1
pm´2qn b1

m´2

a1
pm´1q1 . . . 0 . . . a1

pm´1qs . . . . . . 1 . . . 0 . . . a1
pm´1qn b1

m´1

a1
m1

. . . 0 . . . a1
ms . . . . . . 0 . . . 1 . . . a1

mn b1
m

Move terms involving xs to the right hand side of all equations.
Set xi “ 0 for i R B Y tsu. For any positive value of xs the system
of linear equations in variables xi1 , . . . , xim has a non-negative
solution. That is, by increasing xs we decrease the value of the
objective function.



Remarks – Global Minimum

If c 1
i ě 0 for i R B it is easy to see that ´c 1 is the global minimum

(attained at xB). If x “ px1, . . . , xnq P X is any other feasible
solution then

f pxq “ c 1⊺x ´ c 1 “
ÿ

iRB

c 1
i xi ´ c 1

,

while
f pxBq “ c 1⊺xB ´ c 1 “ ´c 1

.

Therefore, if for some i R B we have xi ą 0 then

f pxBq “ ´c 1 ď c 1⊺x ´ c 1 “ f pxq.

Otherwise, i.e. if xi “ 0 for all i R B then x “ xB.



Remarks – New Set is Basic

The determinant of square submatrix consisting of columns
s, i1, . . . , ir´1, rr`1, . . . , im is equal to ˘ars ‰ 0 (by definition
ars ą 0).
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Example

Maximize the value x1 ` 2x2 under the constraints

$

&

%

x1 ě 0
x2 ě 0

´x1 ` x2 ď 1

The standard form of this linear programming problem is
f px1, x2, x3q “ ´x1 ´ 2x2 ÝÑ min under the constraints

 

´x1 ` x2 ` x3 “ 1 , x1, x2, x3 ě 0

Build the simplex tableau

1 2 3
„ 

´1 ´2 0 0
´1 1 1 1
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´1

1

2

3

4

x1

x2

maximize x1 ` 2x2

#

x1 ě 0
x2 ě 0

´x1 ` x2 ď 1x1 ` 2x2 “ ´2

x1 ` 2x2 “ 1
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Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

maximize x1 ` 2x2

#

x1 ě 0
x2 ě 0

´x1 ` x2 ď 1x1 ` 2x2 “ ´2

x1 ` 2x2 “ 1

x1 ` 2x2 “ 4

x1 ` 2x2 “ 7

no optimal solution
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Example
Let B “ t3u be a basic feasible set.

1 2 3
„ 

´1 ´2 0 0
´1 1 1 1

Then s “ 2 since c 1
2

“ ´2 ă ´1 “ c 1
1
. In the second column, in

the lower part, there is only one positive element therefore r “ 1.
The new basic set is B “ t2u.

1 2 3
„ 

´1 ´2 0 0
´1 1 1 1

r0`2r1ÝÑ

1 2 3
„ 

´3 0 2 2
´1 1 1 1



Example
Let B “ t3u be a basic feasible set.

1 2 3
„ 

´1 ´2 0 0
´1 1 1 1

Then s “ 2 since c 1
2

“ ´2 ă ´1 “ c 1
1
. In the second column, in

the lower part, there is only one positive element therefore r “ 1.
The new basic set is B “ t2u.

1 2 3
„ 

´1 ´2 0 0
´1 1 1 1

r0`2r1ÝÑ

1 2 3
„ 

´3 0 2 2
´1 1 1 1

Then s “ 1 and in the first column, in the lower part, all entries
are non-positive. Therefore the objective function does not admit
its minimum over the feasible region. In other words, there is no
optimal solution.
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To see this, set xi “ 0 for i R B Y tsu “ t1, 2u, i.e. x3 “ 0. Then

x2 “ 1 ` x1,

where the objective function is of the form

f ppx1, x2, x3qq “ ´3x1 ` 2x3 ´ 2 “ ´3x1 ´ 2.



Example

To see this, set xi “ 0 for i R B Y tsu “ t1, 2u, i.e. x3 “ 0. Then

x2 “ 1 ` x1,

where the objective function is of the form

f ppx1, x2, x3qq “ ´3x1 ` 2x3 ´ 2 “ ´3x1 ´ 2.

When x1 grows to `8 the objective function decreases to ´8.



How to Find A Basic Feasible Set?
Given a linear programming problem in the standard form
f px1, . . . , xnq “ c1x1 ` . . . ` cnxn ÝÑ min under the constraints
Ax “ b, x ě 0 where

A “

»

—

–

a11 a12 ¨ ¨ ¨ a1n

...
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

fi

ffi

fl
, x “

»

—

–

x1

...
xn

fi

ffi

fl
, b “

»

—

–

b1

...
bm

fi

ffi

fl

with b ě 0 introduce auxiliary variables y1, . . . , ym and consider a
linear programming problem in R

n`m in the standard form



How to Find A Basic Feasible Set?
Given a linear programming problem in the standard form
f px1, . . . , xnq “ c1x1 ` . . . ` cnxn ÝÑ min under the constraints
Ax “ b, x ě 0 where

A “

»

—

–

a11 a12 ¨ ¨ ¨ a1n

...
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

fi

ffi

fl
, x “

»

—

–

x1

...
xn

fi

ffi

fl
, b “

»

—

–

b1

...
bm

fi

ffi

fl

with b ě 0 introduce auxiliary variables y1, . . . , ym and consider a
linear programming problem in R

n`m in the standard form
gppx1, . . . , xn, y1, . . . , ymqq “ y1 ` . . . ` ym ÝÑ min under the
constraints A1x 1 “ b, x 1 ě 0 where

A1 “ rA|Ims P Mpm ˆ pn ` mq;Rq and x 1 “

»

—

—

—

—

—

—

—

—

–

x1

...
xn

y1

...
ym

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,



How to Find A Basic Feasible Set?

where Im P Mpm ˆ m;Rq is m-by-m identity matrix.



How to Find A Basic Feasible Set?

where Im P Mpm ˆ m;Rq is m-by-m identity matrix.
Solve the auxiliary problem using simplex method starting from the
basic feasible set B “ tn ` 1, . . . , n ` mu.



How to Find A Basic Feasible Set?

where Im P Mpm ˆ m;Rq is m-by-m identity matrix.
Solve the auxiliary problem using simplex method starting from the
basic feasible set B “ tn ` 1, . . . , n ` mu. It has always an optimal
solution as the objective function is bounded from below.



How to Find A Basic Feasible Set?

where Im P Mpm ˆ m;Rq is m-by-m identity matrix.
Solve the auxiliary problem using simplex method starting from the
basic feasible set B “ tn ` 1, . . . , n ` mu. It has always an optimal
solution as the objective function is bounded from below.

If the minimum of the function g is non-zero then the feasible
region of the original problem is empty (there are no vertices).



How to Find A Basic Feasible Set?

where Im P Mpm ˆ m;Rq is m-by-m identity matrix.
Solve the auxiliary problem using simplex method starting from the
basic feasible set B “ tn ` 1, . . . , n ` mu. It has always an optimal
solution as the objective function is bounded from below.

If the minimum of the function g is non-zero then the feasible
region of the original problem is empty (there are no vertices).

Otherwise, the feasible region is non-empty and
y1 “ . . . “ ym “ 0. Let B be the basic feasible set corresponding
to an optimal solution of the auxiliary problem.



How to Find A Basic Feasible Set? (continued)

There are two separate cases:

i) B Ă t1, . . . , nu, i.e. the basic feasible set B is also a basic
feasible set of the original problem,
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There are two separate cases:

i) B Ă t1, . . . , nu, i.e. the basic feasible set B is also a basic
feasible set of the original problem,

ii) B Ć t1, . . . , nu that is im “ n ` l ě n ` 1, i.e. yl is a basic
variable, then there exists a1

lj ‰ 0 for some
j P t1, . . . , nu, j R B (where a1

ij refer to the terms of the
simplex tableau of the form from point 3) of the algorithm).
This implies that j R B, i.e. xj “ yl “ 0 in the basic solution,
and the set B1 “ pB Y tjuq ´ tn ` lu is also a basic feasible set
of the auxiliary problem with xB “ xB1 .
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There are two separate cases:

i) B Ă t1, . . . , nu, i.e. the basic feasible set B is also a basic
feasible set of the original problem,

ii) B Ć t1, . . . , nu that is im “ n ` l ě n ` 1, i.e. yl is a basic
variable, then there exists a1

lj ‰ 0 for some
j P t1, . . . , nu, j R B (where a1

ij refer to the terms of the
simplex tableau of the form from point 3) of the algorithm).
This implies that j R B, i.e. xj “ yl “ 0 in the basic solution,
and the set B1 “ pB Y tjuq ´ tn ` lu is also a basic feasible set
of the auxiliary problem with xB “ xB1 .

If a1
lj “ 0 for all j P t1, . . . , nu then rpAq ă m which contradicts

the assumption.
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There are two separate cases:

i) B Ă t1, . . . , nu, i.e. the basic feasible set B is also a basic
feasible set of the original problem,

ii) B Ć t1, . . . , nu that is im “ n ` l ě n ` 1, i.e. yl is a basic
variable, then there exists a1

lj ‰ 0 for some
j P t1, . . . , nu, j R B (where a1

ij refer to the terms of the
simplex tableau of the form from point 3) of the algorithm).
This implies that j R B, i.e. xj “ yl “ 0 in the basic solution,
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If a1
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the assumption.



How to Find A Basic Feasible Set? (continued)

There are two separate cases:

i) B Ă t1, . . . , nu, i.e. the basic feasible set B is also a basic
feasible set of the original problem,

ii) B Ć t1, . . . , nu that is im “ n ` l ě n ` 1, i.e. yl is a basic
variable, then there exists a1

lj ‰ 0 for some
j P t1, . . . , nu, j R B (where a1

ij refer to the terms of the
simplex tableau of the form from point 3) of the algorithm).
This implies that j R B, i.e. xj “ yl “ 0 in the basic solution,
and the set B1 “ pB Y tjuq ´ tn ` lu is also a basic feasible set
of the auxiliary problem with xB “ xB1 .

If a1
lj “ 0 for all j P t1, . . . , nu then rpAq ă m which contradicts

the assumption.

Repeating step iiq followed with point 3) of the algorithm one can
make all auxiliary variables non-basic.



Example
Find a basic feasible solution of the problem

$

&

%

x1 ` x2 ě 4
´3x1 ` 2x2 ě 8

x1 ´ x2 ď 0

After putting it into standard form we use the above method
starting from B “ t6, 7, 8u.

»

—

—

–

0 0 0 0 0 1 1 1 0

1 1 ´1 0 0 1 0 0 4
´3 2 0 ´1 0 0 1 0 8

1 ´1 0 0 1 0 0 1 0

fi

ffi

ffi

fl

ÝÑ

»

—

—

–

1 ´2 1 1 ´1 0 0 0 ´12

1 1 ´1 0 0 1 0 0 4
´3 2 0 ´1 0 0 1 0 8

1 ´1 0 0 1 0 0 1 0

fi

ffi

ffi

fl

ÝÑ

s “ 2, r “ 1, B “ t2, 7, 8u



Example (continued)

B “ t2, 7, 8u

»

—

—

–

3 0 ´1 1 ´1 2 0 0 ´4

1 1 ´1 0 0 1 0 0 4
´5 0 2 ´1 0 ´2 1 0 0

2 0 ´1 0 1 1 0 1 4

fi

ffi

ffi

fl

ÝÑ

s “ 3, r “ 2, B “ t2, 3, 8u

»

—

—

—

—

–

1

2
0 0 1

2
´1 1 1

2
0 ´4

´3

2
1 0 ´1

2
0 0 1

2
0 4

´5

2
0 1 ´1

2
0 ´1 1

2
0 0

´1

2
0 0 ´1

2
1 0 1

2
1 4

fi

ffi

ffi

ffi

ffi

fl

r0`r3ÝÑ

s “ 5, r “ 3, B “ t2, 3, 5u



Example (continued)

B “ t2, 3, 5u

»

—

—

—

—

–

0 0 0 0 0 1 1 1 0

´3

2
1 0 ´1

2
0 0 1

2
0 4

´5

2
0 1 ´1

2
0 ´1 1

2
0 0

´1

2
0 0 ´1

2
1 0 1

2
1 4

fi

ffi

ffi

ffi

ffi

fl

Since the minimum is equal to 0, the set B “ t2, 3, 5u is basic
feasible for the original problem too (and it corresponds to the
vertex xB “ p0, 4, 0, 0, 4q of the original problem and to the vertex
x 1

B
“ p0, 4, 0, 0, 4, 0, 0, 0q of the auxiliary problem). Note that for

the sake of brevity most elementary row operations were omitted.
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Degenerate Linear Programming Problem

Definition
A linear programming problem in the standard form is called
non–degenerate if for each basic feasible set B

xi ą 0 for i P B,

where
xB “ px1, . . . , xnq.

Otherwise, it is called degenerate.

Proposition

For a non–degenerate linear programming problem simplex metod
stops after a finite number of steps.

Proof.
There is a finite number of basic feasible solutions and with each
step of the algorithm the objective function strictly decreases.



Cycling
The following example comes from the MIT OpenCourseWare
Optimization Methods in Management Science/Operations
Research.

B1 “ t5, 6, 7u, s “ 1, r “ 1
»

—

—

—

—

–

´3

4
20 ´1

2
6 0 0 0 0

1

4
´8 ´1 9 1 0 0 0

1

2
´12 ´1

2
3 0 1 0 0

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ

B2 “ t1, 6, 7u, s “ 2, r “ 2
»

—

—

—

—

–

0 ´4 ´7

2
33 3 0 0 0

1 ´32 ´4 36 4 0 0 0

0 4 3

2
´15 ´2 1 0 0

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ



Cycling (continued)

B3 “ t1, 2, 7u, s “ 3, r “ 1

»

—

—

—

—

–

0 0 ´2 18 1 1 0 0

1 0 8 ´84 ´12 8 0 0

0 1 3

8
´15

4
´1

2

1

4
0 0

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ

B4 “ t2, 3, 7u, s “ 4, r “ 1

»

—

—

—

—

–

1

4
0 0 ´3 ´2 3 0 0

´ 3

64
1 0 3

16

1

16
´1

8
0 0

1

8
0 1 ´21

2
´3

2
1 0 0

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ



Cycling (continued)

B5 “ t3, 4, 7u, s “ 5, r “ 1

»

—

—

—

—

–

´1

2
16 0 0 ´1 1 0 0

´5

2
56 1 0 2 ´6 0 0

´1

4

16

3
0 1 1

3
´2

3
0 0

1

4
´16

3
0 0 ´1

3

2

3
1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ

B6 “ t4, 5, 7u, s “ 6, r “ 1

»

—

—

—

—

–

´7

4
44 1

2
0 0 ´2 0 0

1

6
´4 ´1

6
1 0 1

3
0 0

´5

4
28 1

2
0 1 ´3 0 0

´1

6
4 1

6
0 0 ´1

3
1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ



Cycling (continued)

B7 “ B1 “ t5, 6, 7u, s “ 1, r “ 1

»

—

—

—

—

–

´3

4
20 ´1

2
6 0 0 0 0

1

4
´8 ´1 9 1 0 0 0

1

2
´12 ´1

2
3 0 1 0 0

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ ¨ ¨ ¨

which is the same basic set we started with, i.e. cycling occurs.
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Bland’s Rule

Proposition (Bland’s rule)
With the following rules the simplex algorithm always stops.

i) s “ minti | c 1
i ă 0u (choose the leftmost column with negative entry

in the zeroth row),

ii) if
b1

t

a1

ts
“ min

!

b1

i

a1

is

| a1
is ą 0, i “ 1, . . . , m

)

then r “ min
!

i |
b1

t

a1

ts
“

b1

i

a1

is

)

(choose the topmost row with the smallest ratio).

Proof.
Assume on the contrary, with the Bland’s rule cycling occurs and there is
a sequence of basic feasible solutions

B1 Ñ B2 Ñ . . . Ñ Bl Ñ B1.

It follows that the objective function does not decrease and each entering
variable is equal to 0 (i.e. the basic feasible solution xBi

remain
constant).



Bland’s Rule (continued)

Proof.
We call a variable xi fickle if xi P Bj and xi R Bj1 for some 1 ď j, j 1 ď l .
Let xt will be the fickle variable with the largest possible t. Let 1 ď f ď l
be such number that

t “ ip P Bf “ ti1, . . . , imu, t R Bf `1,

that is xt leaves the basic set Bf (where by convention l ` 1 means 1).
Let c 1

j , c 1
, b1

i , a1
ij refer to the data of the simplex tableau from step 3) of

the simplex algorithm for the basic feasible set Bf . Let s P Bf `1zBf be
the entering variable in the step Bf Ñ Bf `1. Therefore

c 1
s ă 0, and s ă t.

Since t leaves Bf (and xt is fickle)

a1
ps ą 0, b1

p “ 0.

Since the p-th basic variable leaves, i.e. xip “ xt the p-th ratio is the
smallest one. As xt was fickle so b1

p “ 0.



Bland’s Rule (continued)
Proof.
At some step the variable xt reenters some basic feasible set. Let Bg be a
basic feasible set such that t P Bg`1zBg , i.e. xt is the entering variable in
the step Bg Ñ Bg`1. Let c˚

j , c˚
, b˚

i , a˚
ij refer to the data of the simplex

tableau from step 3) of the simplex algorithm for the basic feasible set
Bg . Therefore

c˚
t ă 0.

Consider a family of (possibly infeasible) solutions of the system Ax “ b

$

’

&

’

%

xs “ y ,

xi “ 0 for i R Bf Y tsu,

xik “ b1
k ´ a1

ksy for ik P Bf .



Bland’s Rule (continued)
Proof.
At some step the variable xt reenters some basic feasible set. Let Bg be a
basic feasible set such that t P Bg`1zBg , i.e. xt is the entering variable in
the step Bg Ñ Bg`1. Let c˚

j , c˚
, b˚

i , a˚
ij refer to the data of the simplex

tableau from step 3) of the simplex algorithm for the basic feasible set
Bg . Therefore

c˚
t ă 0.

Consider a family of (possibly infeasible) solutions of the system Ax “ b

$

’

&

’

%

xs “ y ,

xi “ 0 for i R Bf Y tsu,

xik “ b1
k ´ a1

ksy for ik P Bf .

Since two expressions for the objective function are the same on the set
of all solutions Ax “ b (without the assumption x ě 0), for any y P R

c 1
sy ´ c 1 “ c˚

s y `
ÿ

kRBg

k‰s

c˚
k xk ´ c˚ “ c˚

s y `
ÿ

ik PBf zBg

c˚
ik

pb1
k ´ a1

ksyq ´ c˚
,



Bland’s Rule (continued)
Proof.
By comparing the left hand side (objective function expressed with the
data for Bf ) with the right hand side (objective function expressed with
the data for Bg with values given by the family, in particular xi “ 0 for
i R Bf Y tsu)

c 1
sy ´ c 1 “ c˚

s y `
ÿ

ik PBf zBg

c˚
ik

pb1
k ´ a1

ksyq ´ c˚
,

and rearranging (c 1 “ c˚ as the value of the objective function does not
change in the cycle)

¨

˝c 1
s ´ c˚

s `
ÿ

ikPBf zBg

c˚
ik

a1
ks

˛

‚y “
ÿ

ik PBf zBg

c˚
ik

b1
k ,

we see that the right hand side does not depend on y hence the
coefficient at y on the left hand side is equal to 0, i.e.

c 1
s ´ c˚

s `
ÿ

ik PBf zBg

c˚
ik

a1
ks “ 0.



Bland’s Rule (continued)

Proof.
(note that t P Bf zBg ) which gives

c 1
s ´ c˚

s `
ÿ

ik PBf zBg

c˚
ik

a1
ks “ 0.



Bland’s Rule (continued)

Proof.
(note that t P Bf zBg ) which gives

c 1
s ´ c˚

s `
ÿ

ik PBf zBg

c˚
ik

a1
ks “ 0.

Since xs is not the entering variable in the step Bg Ñ Bg`1 and s ă t we
have c˚

s ě 0 (otherwise, by Bland’s rule, xs would enter the set Bg`1). It
was shown before that c 1

s ă 0, therefore for some iq P Bf zBg (i.e. xiq is
fickle)

c˚
iq

a1
qs ą 0.

This implies that c˚
iq

‰ 0. We have seen that for t “ ip

c˚
ip

ă 0 and a1
ps ą 0,

therefore iq ‰ ip “ t.



Bland’s Rule (continued)

Proof.
By the choice of t

iq ă t “ ip

and xiq is not the entering variable in the step Bg Ñ Bg`1 (as xt is),
hence c˚

iq
ą 0 (by the Bland’s rule) and q ă p (as iq ă ip). Variable xiq is

fickle and we have shown
c˚

iq
a1

qs ą 0,

which gives
a1

qs ą 0 and b1
q “ 0.



Bland’s Rule (continued)

Proof.
By the choice of t

iq ă t “ ip

and xiq is not the entering variable in the step Bg Ñ Bg`1 (as xt is),
hence c˚

iq
ą 0 (by the Bland’s rule) and q ă p (as iq ă ip). Variable xiq is

fickle and we have shown
c˚

iq
a1

qs ą 0,

which gives
a1

qs ą 0 and b1
q “ 0.

This leads to contradiction, as the ratios
b1

q

a1

qs
“

b1

p

a1

ps
“ 0 are the smallest,

therefore, in the step Bf Ñ Bf `1, the leaving variable should be xiq and
not xip “ xt .



Example with Cycling Revisited

Consider the previous example with cycling. Note that for the
steps B1 Ñ . . . Ñ B5 we have been using the Bland’s rule.



Example with Cycling Revisited

Consider the previous example with cycling. Note that for the
steps B1 Ñ . . . Ñ B5 we have been using the Bland’s rule.
B5 “ t3, 4, 7u, s “ 1, r “ 1

»

—

—

—

—

–

´1

2
16 0 0 ´1 1 0 0

´5

2
56 1 0 2 ´6 0 0

´1

4

16

3
0 1 1

3
´2

3
0 0

1

4
´16

3
0 0 ´1

3

2

3
1 1

fi

ffi

ffi

ffi

ffi

fl

ÝÑ

Now choose s “ 1 (Bland’s rule) instead of s “ 5.

»

—

—

—

—

–

0 16

3
0 0 ´5

3

7

3
2 2

1 ´64

3
0 0 ´4

3

8

3
4 4

0 8

3
1 0 ´4

3

2

3
10 10

0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

fl

.

The linear programming problem has no optimal solution.



Linear Programming Complexity/Klee–Minty Cube

The following linear programming problem may require 2n ´ 1
steps to finish (when starting from the basic feasible set
coresponding to the vertex p0, . . . , 0q)

n
ÿ

i“1

xi Ñ max

with constraints
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x1 ď 21 ´ 1,

2x1 ` x2 ď 22 ´ 1,

2x1 ` 2x2 ` x3 ď 23 ´ 1,

...
2x1 ` . . . ` 2xn´1 ` xn ď 2n ´ 1,

x1, . . . , xn ě 0.

This is a variant of so called Klee–Minty cube and comes from
T. Kitahara and S. Mizuno.



Klee–Minty Cube for n “ 3
B1 “ t4, 5, 6u, s “ 1, r “ 1

»

—

—

–

´1 ´1 ´1 0 0 0 0

1 0 0 1 0 0 1
2 1 0 0 1 0 3
2 2 1 0 0 1 7

fi

ffi

ffi

fl

ÝÑ

B2 “ t1, 5, 6u, s “ 2, r “ 2
»

—

—

–

0 ´1 ´1 1 0 0 1

1 0 0 1 0 0 1
0 1 0 ´2 1 0 1
0 2 1 ´2 0 1 5

fi

ffi

ffi

fl

ÝÑ

B3 “ t1, 2, 6u, s “ 4, r “ 1
»

—

—

–

0 0 ´1 ´1 1 0 2

1 0 0 1 0 0 1
0 1 0 ´2 1 0 1
0 0 1 2 ´2 1 3

fi

ffi

ffi

fl

ÝÑ



Klee–Minty Cube for n “ 3 (continued)
B4 “ t2, 4, 6u, s “ 3, r “ 3

»

—

—

–

1 0 ´1 0 1 0 3

2 1 0 0 1 0 3
1 0 0 1 0 0 1

´2 0 1 0 ´2 1 1

fi

ffi

ffi

fl

ÝÑ

B5 “ t2, 3, 4u, s “ 1, r “ 3
»

—

—

–

´1 0 0 0 ´1 1 4

2 1 0 0 1 0 3
´2 0 1 0 ´2 1 1

1 0 0 1 0 0 1

fi

ffi

ffi

fl

ÝÑ

B6 “ t1, 2, 3u, s “ 5, r “ 2
»

—

—

–

0 0 0 1 ´1 1 5

1 0 0 1 0 0 1
0 1 0 ´2 1 0 1
0 0 1 2 ´2 1 3

fi

ffi

ffi

fl

ÝÑ



Klee–Minty Cube for n “ 3 (continued)
B7 “ t1, 3, 5u, s “ 4, r “ 1

»

—

—

–

0 1 0 ´1 0 1 6

1 0 0 1 0 0 1
0 2 1 ´2 0 1 5
0 1 0 ´2 1 0 1

fi

ffi

ffi

fl

ÝÑ

B8 “ t3, 4, 5u

»

—

—

–

1 1 0 0 0 1 7

2 2 1 0 0 1 7
1 0 0 1 0 0 1
2 1 0 0 1 0 3

fi

ffi

ffi

fl

ÝÑ

the optimal solution is

xB8
“ p0, 0, 7, 1, 3, 0q,

and f pxB8
q “ 7.



Klee–Minty Cube for n “ 3 (no Bland’s rule)

Remark
Note that using the Bland’s rule the algorithm requires less steps,
i.e.

B1 Ñ B2 Ñ B6 Ñ B7 Ñ B8.

However, there are known examples of exponential complexity for
the Bland’s rule.



Better Methods

The interior–point method (or barrier method) can be slower for
small examples but for the big ones could be much faster than the
simplex method. However, the solution is approximate.


