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What is Linear Programming?

Example
Maximize the value x1 ` 2x2 under the constraints
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x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3
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#

x1 ě 0
x2 ě 0

´x1 ` x2 ď 1x1 ` 2x2 “ ´2

x1 ` 2x2 “ 1

x1 ` 2x2 “ 4

x1 ` 2x2 “ 7

no optimal solution
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Economy and Economical

The second meaning of ‘economy’ in the Oxford British and
World English Dictionary
Careful management of available resources.

The first meaning of ‘economical’ in the Oxford British and
World English Dictionary
Giving good value or return in relation to the money, time, or effort
expended.

from Greek
oikonomia=household management, housekeeping
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n described by a finite number of linear inequalities.



Linear Programming Problem

Definition
Linear programming problem is a task of maximizing or
minimizing a linear function (called an objective function) over a
set X Ă R

n described by a finite number of linear inequalities.

That is, we look for the maximal or the minimal value of the
function f ppx1, x2, . . . , xnqq “ c1x1 ` c2x ` . . . ` cnxn on the set
X Ă R

n of points satisfying the system of linear inequalities, i.e.
$

’

’
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a11x1 ` a12x2 ` . . . ` a1nxn ď b1
a21x1 ` a22x2 ` . . . ` a2nxn ď b2
...

...
...

...
...

am1x1 ` am2x2 ` . . . ` amnxn ď bm



Linear Programming Problem (continued)

Those conditions (also called constraints) can be written in a
concise form. Let

A “

»

—

–

a11 ¨ ¨ ¨ a1n
...

. . .
...

am1 ¨ ¨ ¨ amn

fi

ffi

fl
,

x “

»

—

–

x1
...
xn

fi

ffi

fl
, c “

»

—

–

c1
...
cn

fi

ffi

fl
, b “

»

—

–

b1
...
bm

fi

ffi

fl
.

This is an example of a global optimization problem with
(inequality) constraints
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The linear programming problem can be written in the form:
maximize (or minimize) the linear function f pxq “ c⊺x over the set
X Ă R

n given by
Ax ď b.
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Linear Programming Problem (continued)

The linear programming problem can be written in the form:
maximize (or minimize) the linear function f pxq “ c⊺x over the set
X Ă R

n given by
Ax ď b.

Equivalently, one can write f pxq ÝÑ max (resp. f pxq ÝÑ minq.

Remark
Since

a1x1 ` . . . ` anxn “ b ðñ

"

a1x1 ` . . . ` anxn ď b

´a1x1 ´ . . . ´ anxn ď ´b

a set given by a finite number of linear equations and finite number
of inequalities can be expressed by a finite number of inequalities.



Real Life Applications - Transportation Problem
A firm stores some goods at l supply centers and ships those goods
to k markets. The cost of transporting a unit of those goods from
the i -th supply center to the j-th market is aij . Each market
demands at least of bj units of those goods. Each supply center
produces at most wi units of goods.
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Real Life Applications - Transportation Problem
A firm stores some goods at l supply centers and ships those goods
to k markets. The cost of transporting a unit of those goods from
the i -th supply center to the j-th market is aij . Each market
demands at least of bj units of those goods. Each supply center
produces at most wi units of goods.
Introduce l ˆ k variables xij for i “ 1, . . . , l and j “ 1, . . . , k
denoting the amount of the transport from the i -th supply center
to the j-th market. We want to minimize the cost of transport and
to satisfy demands of all markets. We minimize the linear function
řl

i“1
řk

j“1 aijxij under the constraints
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’
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’

’

%

x11 ` x12 ` x13 ` . . . ` x1k ď w1
x21 ` x22 ` x23 ` . . . ` x2k ď w2

...
xl1 ` xl2 ` xl3 ` . . . ` xlk ď wl

i.e. no supply center cannot supply more than wi of goods and
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x11 ` x21 ` x31 ` . . . ` xl1 ě b1
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x1k ` x2k ` x3k ` . . . ` xlk ě bk

i.e. the demand of each market is satisfied.



Real Life Applications - Transportation Problem

$

’

’

’

&

’

’

’

%

x11 ` x21 ` x31 ` . . . ` xl1 ě b1
x12 ` x22 ` x32 ` . . . ` xl2 ě b2

...
x1k ` x2k ` x3k ` . . . ` xlk ě bk

i.e. the demand of each market is satisfied. We want to transport
from a supply center to a market so we assume

xij ě 0 for i “ 1, . . . , l and j “ 1, . . . , k .
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food is qj . Assume there are k nutrients and each serving of j-th
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Real Life Application - Diet Problem

Suppose there are n foods available. The cost of serving per j-th
food is qj . Assume there are k nutrients and each serving of j-th
type of food contains zij units of the i -th nutrient. We want to find
a healthy diet minimizing its cost. Let Ni denotes the minimal
amount of units of the i -th nutrient in a healthy diet. Introduce n

variables x1, . . . , xn, where xj stands for the amount of servings of
the j-th food. We minimize the function q1x1 ` q2x2 ` . . . ` qnxn
under the constraints x1, . . . , xn ě 0 and
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z11x1 ` z12x2 ` z13x3 ` . . . ` x1nxn ě N1
z21x1 ` z22x2 ` z23x3 ` . . . ` x2nxn ě N2

...
zk1x1 ` zk2x2 ` zk3x3 ` . . . ` xknxn ě Nk



Real Life Applications - Diet Problem

If needed one may add another constraints for the minimal or
maximal amount of servings of each type of food.



Real Life Applications - Diet Problem

If needed one may add another constraints for the minimal or
maximal amount of servings of each type of food. A similar problem
was considered in 1930s and 1940s in order to find an optimal diet
for the US soldiers.



Real Life Applications

And many more: portfolio optimization, network design, vehicle
routing.



Convex Set

Definition
For any p, q P R

n the line segment joining p and q is the set
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Convex Set

Definition
For any p, q P R

n the line segment joining p and q is the set

rp, qs “ ttp ` p1 ´ tqq P R
n | t P r0, 1su.

Definition
A set X Ă R

n is convex if

rp, qs Ă X for any p, q P X .



Open and Closed Ball

Definition
An open ball with center x P R

n and the radius r ą 0 is the set

Bpx , rq “ ty P R
n | ‖x ´ y‖ ă ru.

A closed ball with center x P R
n and the radius r ą 0 is the set

Bpx , rq “ ty P R
n | ‖x ´ y‖ ď ru.



Convex Set (continued)

Proposition
A ball is a convex set.



Convex Set (continued)

Proposition
A ball is a convex set.

Proof.
Let p, q P Bpx , rq. Then for any t P r0, 1s

‖x ´ ptp ` p1 ´ tqqq‖ “ ‖tpx ´ pq ` p1 ´ tqpx ´ qq‖ ď

ď t‖x ´ p‖ ` p1 ´ tq‖x ´ q‖ ă r ,

that is
rp, qs Ă Bpx , rq.



Convex Set (continued)

Proposition
A ball is a convex set.

Proof.
Let p, q P Bpx , rq. Then for any t P r0, 1s

‖x ´ ptp ` p1 ´ tqqq‖ “ ‖tpx ´ pq ` p1 ´ tqpx ´ qq‖ ď

ď t‖x ´ p‖ ` p1 ´ tq‖x ´ q‖ ă r ,

that is
rp, qs Ă Bpx , rq.

The same proof works for a closed ball.



Convex Set (continued)

Proposition
Intersection of a family of convex sets is a convex set. In particular,
if X1, . . . ,Xm Ă R

n are convex sets then

X1 X . . . X Xm “ tx P R
n | x P Xi for i “ 1, . . . ,mu,

is a convex set.
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n | a1x1 ` . . . ` anxn ď bu.
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Half-space

Definition
A half-space Hď Ă R

n is a set given by a single inequality, that is

Hď “ tpx1, . . . , xnq P R
n | a1x1 ` . . . ` anxn ď bu.

Proposition
A half-space is a convex set.

Proof.
Let p “ pp1, . . . , pnq, q “ pq1, . . . , qnq P Hď. Then for any t P r0, 1s

a1ptp1 ` p1 ´ tqq1q ` a2ptp2 ` p1 ´ tqq2q ` . . . ` anptpn ` p1 ´ tqqnq “

tpa1p1`a2p2`. . .`anpnq`p1´tqpa1q1`a2q2`. . .`anqnq ď tb`p1´tqb “ b,

i.e.
rp, qs Ă Hď.
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n is open if for every x P U there exists a radius r ą 0 such
that

Bpx , rq Ă U .
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Open Sets, Closed Sets

Definition
A set U Ă R

n is open if for every x P U there exists a radius r ą 0 such
that

Bpx , rq Ă U .

A set D Ă R
n is closed if the set RnzD is open.

Example
An open ball is an open set. A closed ball is a closed set. A half-space is
a closed set.

Proof.
It is enough to show that RnzHď is an open set. If x P R

nzHď let
r “ dpx ,Hq be the distance of x from H . Then

Bpx , rq Ă R
nzHď.



Open Sets, Closed Sets (continued)
Proposition
Let X1, . . . ,Xm Ă R

n be open sets. Then the sets

X1 Y . . . Y Xm Ă R
n,

and
X1 X . . . X Xm Ă R

n,

are open.



Open Sets, Closed Sets (continued)
Proposition
Let X1, . . . ,Xm Ă R

n be open sets. Then the sets

X1 Y . . . Y Xm Ă R
n,

and
X1 X . . . X Xm Ă R

n,

are open.

Proof.
Let x P X1 Y . . . Y Xm Ă R

n. Then x P Xi for some i . Since Xi is open
there exists r ą 0 such that

Bpx , rq Ă Xi Ă X1 Y . . . Y Xm.



Open Sets, Closed Sets (continued)
Proposition
Let X1, . . . ,Xm Ă R

n be open sets. Then the sets

X1 Y . . . Y Xm Ă R
n,

and
X1 X . . . X Xm Ă R

n,

are open.

Proof.
Let x P X1 Y . . . Y Xm Ă R

n. Then x P Xi for some i . Since Xi is open
there exists r ą 0 such that

Bpx , rq Ă Xi Ă X1 Y . . . Y Xm.

If x P Xi for i “ 1, . . . ,m, then there exist ri ą 0 such that Bpx , ri q Ă Xi

for i “ 1, . . . ,m. Let r “ mintr1, . . . , rmu. Then

Bpx , rq Ă X1 X . . . X Xm.



Open Sets, Closed Sets (continued)

Corollary
Let X1, . . . ,Xm Ă R

n be closed sets. Then the sets

X1 Y . . . Y Xm Ă R
n,

and
X1 X . . . X Xm Ă R

n,

are closed.

Proof.

R
nzpX1 Y . . . Y Xmq “ pRnzX1q X . . . X pRnzXmq,

R
nzpX1 X . . . X Xmq “ pRnzX1q Y . . . Y pRnzXmq,

where R
nzXi are open.



Open Sets, Closed Sets (continued)

Corollary
Let X1, . . . ,Xm Ă R

n be closed sets. Then the sets

X1 Y . . . Y Xm Ă R
n,

and
X1 X . . . X Xm Ă R

n,

are closed.

Proof.

R
nzpX1 Y . . . Y Xmq “ pRnzX1q X . . . X pRnzXmq,

R
nzpX1 X . . . X Xmq “ pRnzX1q Y . . . Y pRnzXmq,

where R
nzXi are open.

Remark
In general, the union of any family of open sets is an open set and the
intersection of any family of closed sets is a closed set.



Convex Polytopes

Definition
Convex polytope X Ă R

n is a non–empty set of solutions of a
system of linear inequalities, i.e.

X “ tpx1, . . . , xnq P R
n | Ax ď bu,

where A P Mpm ˆ n;Rq. Equivalently, it is a non–empty
intersection of finite number of half-spaces.
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Convex Polytopes

Definition
Convex polytope X Ă R

n is a non–empty set of solutions of a
system of linear inequalities, i.e.

X “ tpx1, . . . , xnq P R
n | Ax ď bu,

where A P Mpm ˆ n;Rq. Equivalently, it is a non–empty
intersection of finite number of half-spaces.

Proposition
Convex polytope is a closed convex set.

Proof.
It is an intersection of closed convex sets.



Polyhedra

Remark
Sometimes a different terminology is used: a polyhedron (or a
polyhedral set) is a set of solutions of a system Ax ď b and a
polytope is a bounded polyhedron.



Compact Set

Definition
Set X Ă R

n is bounded if there exists x P R
n and r ą 0 such that

X Ă Bpx , rq.

Definition
Set X Ă R

n is compact if it is closed and bounded.



Extreme Value Theorem

Theorem
Let X Ă R

n be a compact set and let

f : X Ñ R,

be a continuous function. Let

m “ inf
xPX

f pxq, M “ sup
xPX

f pxq.

Then there exist xm, xM P X such that

m “ f pxmq, M “ f pxMq.



Extreme Value Theorem

Theorem
Let X Ă R

n be a compact set and let

f : X Ñ R,

be a continuous function. Let

m “ inf
xPX

f pxq, M “ sup
xPX

f pxq.

Then there exist xm, xM P X such that

m “ f pxmq, M “ f pxMq.

Remark
Linear functions are continuous.



Convex Polytopes (continued)

Suppose we are given a linear programming problem with
constraints Ax ď b and the objective function f pxq “ c⊺x ÝÑ min.
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Suppose we are given a linear programming problem with
constraints Ax ď b and the objective function f pxq “ c⊺x ÝÑ min.

Definition
A feasible region (also a feasible set) is the set of all points
X Ă R

n satisfying the conditions Ax ď b. An optimal solution is
any point x P X such that f pxq ď f pxq for any x P X .



Convex Polytopes (continued)

Suppose we are given a linear programming problem with
constraints Ax ď b and the objective function f pxq “ c⊺x ÝÑ min.

Definition
A feasible region (also a feasible set) is the set of all points
X Ă R

n satisfying the conditions Ax ď b. An optimal solution is
any point x P X such that f pxq ď f pxq for any x P X .

Remark
A feasible region is a convex polytope.



Convex Polytopes (continued)

Suppose we are given a linear programming problem with
constraints Ax ď b and the objective function f pxq “ c⊺x ÝÑ min.

Definition
A feasible region (also a feasible set) is the set of all points
X Ă R

n satisfying the conditions Ax ď b. An optimal solution is
any point x P X such that f pxq ď f pxq for any x P X .

Remark
A feasible region is a convex polytope. If it is bounded (i.e.
contained in a ball) then there exists an optimal solution. An
optimal solution may not be unique.



Supporting Hyperplane

Definition
Let X Ă R

n be a convex closed set. A supporting hyperplane of
X is a hyperplane

H “ tpx1, . . . , xnq P R
n | a1x1 ` . . . ` anxn “ bu,

such that pa1, . . . , anq ‰ 0

H X X ‰ H and X Ă Hď.
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Supporting Hyperplane

Definition
Let X Ă R

n be a convex closed set. A supporting hyperplane of
X is a hyperplane

H “ tpx1, . . . , xnq P R
n | a1x1 ` . . . ` anxn “ bu,

such that pa1, . . . , anq ‰ 0

H X X ‰ H and X Ă Hď.

Definition
A face of a convex polytope X is the intersection of X with a
supporting hyperplane.

Remark
A face of a convex polytope is a convex polytope.
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0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3
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0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

bounded ñ optimal solution exists
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Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

vertices, i.e.

0´dimensional faces



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

1´dimensional faces



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

optimal solution is a vertex

x1 ` 2x2 “ 7

x “ p3, 2q

maximize x1 ` 2x2



Example

0 1 2 3 4´1
0

´1

1

2

3

4

x1

x2

p3, 2q
$

&

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

optimal solution may not be unique

2x1 ` x2 “ 8

maximize 2x1 ` x2



Extreme Points

Definition
Let X Ă R

n be a convex set. Point x P R
n is an extreme point of

X if for any p, q P X

if x P rp, qs then x “ p or x “ q.



Extreme Points of a Convex Polytope
Definition
Let X Ă R

n be a convex polytope given by Ax ď b, where
A P Mpm ˆ n;Rq, b P R

m. Let a1, . . . , am P R
n denote the rows of

matrix A. For any p P X denote by

Jppq “ ti P t1, . . . ,mu | a⊺i p “ biu

the set of active constraints. Let AJppq denote the submatrix of
matrix A consisting of rows of A indexed by the set Jppq, the same
for bJppq. In particular

AJppqp “ bJppq.



Extreme Points of a Convex Polytope
Definition
Let X Ă R

n be a convex polytope given by Ax ď b, where
A P Mpm ˆ n;Rq, b P R

m. Let a1, . . . , am P R
n denote the rows of

matrix A. For any p P X denote by

Jppq “ ti P t1, . . . ,mu | a⊺i p “ biu

the set of active constraints. Let AJppq denote the submatrix of
matrix A consisting of rows of A indexed by the set Jppq, the same
for bJppq. In particular

AJppqp “ bJppq.

Proposition
Let X Ă R

n be a convex polytope given by Ax ď b and let p P X

be a point. Then p is an extreme point of X if and only if
rpAJppqq “ n.



Extreme Points of a Convex Polytope (continued)

Proof.
Let p P X be an extreme point of X . Assume rpAJppqq ă n. Then,
by the Kronecker–Capelli theorem, there exists a non–zero solution
q P R

n, that is
AJppqq “ 0 and q ‰ 0.

Let a1, . . . , am P R
n denote the rows of matrix A. For sufficiently

small t P R, t ‰ 0
∣

∣tpa⊺i qq
∣

∣ ă bi ´ a
⊺

i p for any i R Jppq,

which gives p ˘ tq P X since a
⊺

i pp ˘ tqq “ bi for i P Jppq. Then
p ‰ p ˘ tq and p P rp ´ tq, p ` tqs because

p “
1
2

pp ´ tqq `
1
2

pp ` tqq,

which leads to a contradiction with p P X being an extreme point.1
1Proof based on N. Lauritzen, Lectures on Convex Sets.



Extreme Points of a Convex Polytope (continued)

Proof.
Assume that rpAJppqq “ n and let p “ tp1 ` p1 ´ tqp2 for some
t P p0, 1q, p1, p2 P X , where p1 ‰ p2. Then

bJppq “ AJppqp “ tAJppqp1 ` p1 ´ tqAJppqp2 ď bJppq,

which implies

AJppqp “ AJppqp1 “ AJppqp2 “ bJppq.



Extreme Points of a Convex Polytope (continued)

Proof.
Assume that rpAJppqq “ n and let p “ tp1 ` p1 ´ tqp2 for some
t P p0, 1q, p1, p2 P X , where p1 ‰ p2. Then

bJppq “ AJppqp “ tAJppqp1 ` p1 ´ tqAJppqp2 ď bJppq,

which implies

AJppqp “ AJppqp1 “ AJppqp2 “ bJppq.

Since rpAJppqq “ n the system of linear equations AJppqx “ bJppq

has a unique solution hence p “ p1 “ p2. By contradiction, either
t “ 0 or t “ 1.



Extreme Points of a Convex Polytope (continued)

Corollary
Let X Ă R

n be a convex polytope given by Ax ď b, where
A P Mpm ˆ n;Rq, b P R

m. Then if X ‰ H

X has no extreme points ðñ rpAq ă n.



Extreme Points of a Convex Polytope (continued)

Corollary
Let X Ă R

n be a convex polytope given by Ax ď b, where
A P Mpm ˆ n;Rq, b P R

m. Then if X ‰ H

X has no extreme points ðñ rpAq ă n.

Proof.
pðq follows from the previous proposition,



Extreme Points of a Convex Polytope (continued)

Corollary
Let X Ă R

n be a convex polytope given by Ax ď b, where
A P Mpm ˆ n;Rq, b P R

m. Then if X ‰ H

X has no extreme points ðñ rpAq ă n.

Proof.
pðq follows from the previous proposition,

pñq let p P X be some point, if Jppq “ t1, . . . ,mu then A “ AJppq

and rpAq ă n since p in not an extreme point. If Jppq Ł t1, . . . ,mu
then rpAJppqq ă n and there exist q P R

n, such that

AJppqq “ 0 and q ‰ 0.

If a⊺i q “ 0 for i R Jppq then Aq “ 0 and rpAq ă n. If a⊺i q ă 0 for
all i R Jppq then one can replace q with ´q.



Extreme Points of a Convex Polytope (continued)

Proof.
Let

t “ min

"

bi ´ a
⊺

i p

a
⊺

i q
P R | i R Jppq and a

⊺

i q ą 0
*

.

Then t ą 0, p ` tq P X and Jppq Ł Jpp ` tqq. Eventually, by
replacing p with p ` tq as above, one can find p P X such that
Jppq “ t1, . . . ,mu.2

Corollary
If m ă n then the convex polytope X given by

Ax ď b,

where A P Mpm ˆ n;Rq, has no extreme points.

2Proof based on N. Lauritzen, Lectures on Convex Sets.



Vertices of Convex Polytopes

Definition
Let X Ă R

n be a convex polytope. Point p P X is a vertex of X if
it is a face of X , i.e. there exists a half–space Hď Ă R

n such that

X Ă Hď and X X H “ tpu.

Proposition
Let X Ă R

n be a convex polytope given by the system of
inequalities Ax ď b. Let p P X . Then

p is an extreme point of X ðñ p is a vertex of X .



Vertices of Convex Polytopes (continued)

Proof.
pðq Let

H “ tpx1, . . . , xnq P R
n | a⊺m`1x “ bm`1u,

be the supporting hyperplane such that X X H “ tpu. Since X Ă Hď the
polytope X is given by the system of inequalities A1x ď b1 where

A1 “

„

A

am`1



, b1 “

„

b

bm`1



.

If rpA1
Jppqq ă n then, as in the previous proof, there exists q ‰ 0 such

that A1
Jppqq “ 0 and p ` tq P X for small t P R. Since m ` 1 P Jppq, that

is a⊺m`1q “ 0
p ` tq P X X H ,

which leads to a contradiction with X X H “ tpu.



Vertices of Convex Polytopes (continued)

Proof.
pñq Let X Ă R

n be given by Ax ď b and let p P X be an extreme point
of X . Let

am`1 “
ÿ

iPJ 1ppq

ai , bm`1 “
ÿ

iPJ 1ppq

bi ,

where
J 1ppq “ ti1, . . . , inu Ă Jppq,

and the n rows ai1 , . . . , ain P R
n of AJppq are linearly independent. Let

H “ tpx1, . . . , xnq P R
n | a⊺m`1x “ bm`1u.

By linear independence am`1 ‰ 0. Moreover, if q P X X H , then
a
⊺

ij
q “ bij for j “ 1, . . . , n (if sum is active then each summand is active

too) which implies q “ p. Therefore

X Ă Hď, X X H “ tpu.



Standard Form

Definition
A linear programming problem in R

n is in the standard form if the
constraints are given by a system of linear equations and all
variables are non–negative, i.e

Ax “ b, x1, . . . , xn ě 0,

and we look for the minimum of the objective function f pxq “ c⊺x .



Standard Form

Definition
A linear programming problem in R

n is in the standard form if the
constraints are given by a system of linear equations and all
variables are non–negative, i.e

Ax “ b, x1, . . . , xn ě 0,

and we look for the minimum of the objective function f pxq “ c⊺x .

Moreover, we assume that A P Mpm ˆ n;Rq and

rpAq “ rprA|bsq “ m.



Standard Form

Definition
A linear programming problem in R

n is in the standard form if the
constraints are given by a system of linear equations and all
variables are non–negative, i.e

Ax “ b, x1, . . . , xn ě 0,

and we look for the minimum of the objective function f pxq “ c⊺x .

Moreover, we assume that A P Mpm ˆ n;Rq and

rpAq “ rprA|bsq “ m.

Remark
If rpAq “ rprA|bsq ă m one can remove redundant equations. If
rpAq ‰ rprA|bsq then X “ H.



Standard Form (continued)

Theorem
Any linear programming problem can be brought to the standard
form.



Standard Form (continued)

Theorem
Any linear programming problem can be brought to the standard
form.

The following operations on the a linear programming data give an
equivalent problem:

i) the condition f pxq ÝÑ max can be replaced by

´f pxq ÝÑ min,



Standard Form (continued)

Theorem
Any linear programming problem can be brought to the standard
form.

The following operations on the a linear programming data give an
equivalent problem:

i) the condition f pxq ÝÑ max can be replaced by

´f pxq ÝÑ min,

ii) the inequality a1x1 ` . . . ` anxn ď b can replaced by
a1x1 ` . . . ` anxn ` xn`1 “ b and xn`1 ě 0, the inequality
a1x1 ` . . . ` anxn ě b can replaced by
a1x1 ` . . . ` anxn ´ xn`1 “ b and xn`1 ě 0, the newly
introduced variable xn`1 is called slack variable,



Standard Form (continued)

Theorem
Any linear programming problem can be brought to the standard
form.

The following operations on the a linear programming data give an
equivalent problem:

i) the condition f pxq ÝÑ max can be replaced by

´f pxq ÝÑ min,

ii) the inequality a1x1 ` . . . ` anxn ď b can replaced by
a1x1 ` . . . ` anxn ` xn`1 “ b and xn`1 ě 0, the inequality
a1x1 ` . . . ` anxn ě b can replaced by
a1x1 ` . . . ` anxn ´ xn`1 “ b and xn`1 ě 0, the newly
introduced variable xn`1 is called slack variable,

iii) the condition xi ď 0 can be replaced by x 1
i ě 0 and x 1

i “ ´xi ,



Standard Form (continued)

Theorem
Any linear programming problem can be brought to the standard
form.

The following operations on the a linear programming data give an
equivalent problem:

i) the condition f pxq ÝÑ max can be replaced by

´f pxq ÝÑ min,

ii) the inequality a1x1 ` . . . ` anxn ď b can replaced by
a1x1 ` . . . ` anxn ` xn`1 “ b and xn`1 ě 0, the inequality
a1x1 ` . . . ` anxn ě b can replaced by
a1x1 ` . . . ` anxn ´ xn`1 “ b and xn`1 ě 0, the newly
introduced variable xn`1 is called slack variable,

iii) the condition xi ď 0 can be replaced by x 1
i ě 0 and x 1

i “ ´xi ,
iv) if there are no constraints on the variable xi , one can introduce

two slack variables x´
i , x`

i ě 0 and set xi “ x`
i ´ x´

i .



Example

Bring to the standard form the following linear programming
problem:
x1 ` 2x2 ÝÑ max

$

’

’

&

’

’

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3



Example

Bring to the standard form the following linear programming
problem:
x1 ` 2x2 ÝÑ max

$

’

’

&

’

’

%

x1 ě 0
x2 ě 0
2x1 ` x2 ď 8
´x1 ` 3x2 ď 3

A standard form: ´x1 ´ 2x2 ÝÑ min

"

2x1 ` x2 ` x3 “ 8
´x1 ` 3x2 ` x4 “ 3

and x1, x2, x3, x4 ě 0.



Example (continued)

Equivalently, it can be written c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



, x “

»

—

—

–

x1
x2
x3
x4

fi

ffi

ffi

fl

, c “

»

—

—

–

´1
´2
0
0

fi

ffi

ffi

fl



Example (continued)

Equivalently, it can be written c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



, x “

»

—

—

–

x1
x2
x3
x4

fi

ffi

ffi

fl

, c “

»

—

—

–

´1
´2
0
0

fi

ffi

ffi

fl

The optimal solution is

x “

»

—

—

–

3
2
0
0

fi

ffi

ffi

fl

and c⊺x “ ´7



Optimal Solution and Vertices

Proposition
If the (non–empty) convex polytope X is given by Ax “ b, x ě 0,
where A P Mpm ˆ n;Rq, then it has a vertex.



Optimal Solution and Vertices

Proposition
If the (non–empty) convex polytope X is given by Ax “ b, x ě 0,
where A P Mpm ˆ n;Rq, then it has a vertex.

Proof.
It can be given by a system of inequalities

»

–

A

´A

´In

fi

fl x ď

»

–

b

´b

0

fi

fl

where the matrix of coefficients has rank n.



Optimal Solution and Vertices (continued)

Proposition
Let the convex polytope X be given by Ax “ b, x ě 0 where
A P Mpm ˆ n;Rq. If x P X is an optimal solution for the problem
f pxq “ c⊺x ÝÑ min, c ‰ 0 then there exists a vertex x 1 of X such
that

f px 1q “ f pxq.

That is, an optimal solution, if it exists, can be chosen to be a
vertex of the feasible set.



Optimal Solution and Vertices (continued)

Proof.
If x P X is an optimal solution then

H “ tx P R
n | c⊺x “ c⊺xu,

is a supporting hyperplane of X such that Y “ X X H is a face of
X and the function f is constant on Y . Therefore Y is a convex
polytope which can be described by

»

—

—

—

—

–

A

´A

´In
c

´c

fi

ffi

ffi

ffi

ffi

fl

x ď

»

—

—

—

—

–

b

´b

0
c⊺x

´c⊺x

fi

ffi

ffi

ffi

ffi

fl

.

It follows that Y has a vertex x 1 P Y .



Optimal Solution and Vertices (continued)

Proof.
The point x 1 P Y is also a vertex of X since the convex polytope X

can be described by matrix of rank n

»

—

—

–

A

´A

´In
´c

fi

ffi

ffi

fl

x ď

»

—

—

–

b

´b

0
´c⊺x

fi

ffi

ffi

fl

.

and the rank of the submatrix given by active inequalities for x 1 has
rank n (the same as for Y ).



Basic Set, Basic Variables

Consider a linear programming problem in the standard form
c⊺x ÝÑ min,Ax “ b, x ě 0 where

A “

»

—

–

a11 ¨ ¨ ¨ a1n
...

. . .
...

am1 ¨ ¨ ¨ amn

fi

ffi

fl
, b “

»

—

–

b1
...
bm

fi

ffi

fl

and rpAq “ rprA|bsq “ m.

Definition
A basic set B “ ti1, . . . , imu Ă t1, . . . , nu is a set of m elements
such that columns ci1 , . . . , cim of the matrix A are linearly
independent (or equivalently, the determinant of square submatrix
of A consisting of columns ci1 , . . . , cim is non–zero).



Basic Set, Basic Variables

Consider a linear programming problem in the standard form
c⊺x ÝÑ min,Ax “ b, x ě 0 where

A “

»

—

–

a11 ¨ ¨ ¨ a1n
...

. . .
...

am1 ¨ ¨ ¨ amn

fi

ffi

fl
, b “

»

—

–

b1
...
bm

fi

ffi

fl

and rpAq “ rprA|bsq “ m.

Definition
A basic set B “ ti1, . . . , imu Ă t1, . . . , nu is a set of m elements
such that columns ci1 , . . . , cim of the matrix A are linearly
independent (or equivalently, the determinant of square submatrix
of A consisting of columns ci1 , . . . , cim is non–zero). The variables
xi1 , . . . , xim are called basic variables. The other variables are
called non-basic.



Basic Solution and Basic Feasible Solution

Definition
Let B be a basic set. The unique solution xB P R

n of the system of
linear equations Ax “ b with xi “ 0 for i R B is called a basic
solution.



Basic Solution and Basic Feasible Solution

Definition
Let B be a basic set. The unique solution xB P R

n of the system of
linear equations Ax “ b with xi “ 0 for i R B is called a basic
solution. The basic set B such that xB ě 0 is called a feasible
basic set and the solution xB is called a feasible basic solution.



Basic Solution and Basic Feasible Solution

Definition
Let B be a basic set. The unique solution xB P R

n of the system of
linear equations Ax “ b with xi “ 0 for i R B is called a basic
solution. The basic set B such that xB ě 0 is called a feasible
basic set and the solution xB is called a feasible basic solution.
Otherwise the basic set B and the basic solution xB are called
infeasible.



Basic Solution and Basic Feasible Solution

Definition
Let B be a basic set. The unique solution xB P R

n of the system of
linear equations Ax “ b with xi “ 0 for i R B is called a basic
solution. The basic set B such that xB ě 0 is called a feasible
basic set and the solution xB is called a feasible basic solution.
Otherwise the basic set B and the basic solution xB are called
infeasible.



Example
Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



There are
`4
2

˘

“ 6 basic sets, i.e. every set of 2 elements is basic.

B1 “ t1, 2u, xB1 “ p3, 2, 0, 0q,

B2 “ t1, 3u, xB2 “ p´3, 0, 14, 0q,

B3 “ t1, 4u, xB3 “ p4, 0, 0, 7q,

B4 “ t2, 3u, xB4 “ p0, 1, 7, 0q,

B5 “ t2, 4u, xB5 “ p0, 8, 0,´21q,

B6 “ t3, 4u, xB6 “ p0, 0, 8, 3q,

The sets B1,B3,B4,B6 are basic feasible, the sets B2,B5 are basic
infeasible.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 ´6 1 0
´1 3 0 1



, b “

„

1
2



The set B “ t1, 2u is not basic because det

„

2 ´6
´1 3



“ 0.



Vertices and the Standard Form

Proposition
Let A P Mpm ˆ n;Rq be a matrix such that rpAq “ m and m ď n. Let
X Ă R

n be a convex polytope

X “ tx P R
n | Ax “ b, x1, . . . , xn ě 0u.

Let p P X . Then

p is a vertex of X ðñ there exists a basic feasible set B such that p “ xB.



Vertices and the Standard Form

Proposition
Let A P Mpm ˆ n;Rq be a matrix such that rpAq “ m and m ď n. Let
X Ă R

n be a convex polytope

X “ tx P R
n | Ax “ b, x1, . . . , xn ě 0u.

Let p P X . Then

p is a vertex of X ðñ there exists a basic feasible set B such that p “ xB.

Remark
This is not one–to–one correspondence. For example, different basic
feasible sets B “ t1, 4u, B1 “ t2, 4u

„

1 1 ´1 0
0 0 1 1



“

x1 x2 x3 x4
‰⊺

“

„

0
3



, x1, . . . , x4 ě 0

give the same vertex xB “ xB1 “ p0, 0, 0, 3q.



Vertices and the Standard Form (continued)

Proof.
pðq Let

Hď “ tpx1, . . . , xnq P R
n |

ÿ

iRB

´xi ď 0u.

Then
X Ă Hď,

and for p “ pp1, . . . , xnq P X

p P X X Hď ô pi “ 0 for i R B ô p “ xB.



Vertices and the Standard Form (continued)

Proof.
pñq Just a sketch. Let p “ pp1, . . . , pnq P X be an extreme point. Let

I “ ti P t1, . . . , nu | pi ą 0u.

Columns ci for i P I are linearly independent. Otherwise there exists a
q P R

n such that qi “ 0 for i R I such that p ` tq P X for small |t| ă ε.
It is now enough to observe that |I | ď m (exercise) and, if necessary, pick
additional m ´ |I | linearly independent columns.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3
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Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t3, 4u is basic. The corresponding basic solution
xB “

“

0 0 8 3
‰⊺ is feasible since xB ě 0.
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Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t3, 4u is basic. The corresponding basic solution
xB “

“

0 0 8 3
‰⊺ is feasible since xB ě 0. It corresponds to

the vertex p0, 0q of a polytope given by the original problem.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t3, 4u is basic. The corresponding basic solution
xB “

“

0 0 8 3
‰⊺ is feasible since xB ě 0. It corresponds to

the vertex p0, 0q of a polytope given by the original problem.

The set B “ t2, 4u is basic. The corresponding basic solution
xB “

“

0 8 0 ´21
‰⊺ is infeasible since xB ğ 0.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t3, 4u is basic. The corresponding basic solution
xB “

“

0 0 8 3
‰⊺ is feasible since xB ě 0. It corresponds to

the vertex p0, 0q of a polytope given by the original problem.

The set B “ t2, 4u is basic. The corresponding basic solution
xB “

“

0 8 0 ´21
‰⊺ is infeasible since xB ğ 0. The basic set

B “ t2, 4u is infeasible.



Basic Feasible Solution

Remark
Let B “ ti1, . . . , imu be a basic set. Let

rA|bs

elementary
row operations
ÝÝÝÝÝÝÝÝÑrA1|b1s,

where the columns i1, . . . , im of A1 are equal to
»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

0
1
...
0

fi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

–

0
0
...
1

fi

ffi

ffi

ffi

fl

,

respectively. Let xB “ px1, . . . , xnq. Then

xi “ 0 for i R B,

xij “ b1
j for j “ 1, . . . ,m,

and B is feasible if and only if b1 ě 0.
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Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„
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´1 3 0 1
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8
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Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “
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The set B “ t2, 4u is basic.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t2, 4u is basic. We compute the basic solution by
using elementary row operations on rA|bs to get the 2´nd column

equal to
„

1
0



and the 4´th column equal to
„

0
1



.



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t2, 4u is basic. We compute the basic solution by
using elementary row operations on rA|bs to get the 2´nd column

equal to
„

1
0



and the 4´th column equal to
„

0
1



.
„

2 1 1 0 8
´1 3 0 1 3



r2´3r1ÝÑ

„

2 1 1 0 8
´7 0 ´3 1 ´21





Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t2, 4u is basic. We compute the basic solution by
using elementary row operations on rA|bs to get the 2´nd column

equal to
„

1
0



and the 4´th column equal to
„

0
1



.
„

2 1 1 0 8
´1 3 0 1 3



r2´3r1ÝÑ

„

2 1 1 0 8
´7 0 ´3 1 ´21



Therefore if x1 “ x3 “ 0 (non-basic variables) then
x2 “ 8, x4 “ ´21 (basic variables).



Example

Consider a linear programming problem
c⊺x ÝÑ min, Ax “ b, x ě 0 where

A “

„

2 1 1 0
´1 3 0 1



, b “

„

8
3



The set B “ t2, 4u is basic. We compute the basic solution by
using elementary row operations on rA|bs to get the 2´nd column

equal to
„

1
0



and the 4´th column equal to
„

0
1



.
„

2 1 1 0 8
´1 3 0 1 3



r2´3r1ÝÑ

„

2 1 1 0 8
´7 0 ´3 1 ´21



Therefore if x1 “ x3 “ 0 (non-basic variables) then
x2 “ 8, x4 “ ´21 (basic variables). Since x4 ă 0 the basic solution
xB “

“

0 8 0 ´21
‰⊺ is infeasible.



Next Lecture - Simplex Method

We will learn an algorithm, called simplex method, for finding an
optimal solution.



Next Lecture - Simplex Method

We will learn an algorithm, called simplex method, for finding an
optimal solution. Simplex method starts from a basic feasible set
and with each turn moves to another basic feasible set decreasing
(possibly) the objective function.



Dual Linear Program

Definition
For given linear programming problem c⊺x Ñ max , Ax ď b the
dual linear program is

b⊺y Ñ min, A⊺y “ c , y ě 0.

The original problem is called primal and the latter dual.



Dual Linear Program

Definition
For given linear programming problem c⊺x Ñ max , Ax ď b the
dual linear program is

b⊺y Ñ min, A⊺y “ c , y ě 0.

The original problem is called primal and the latter dual.

Example
The linear programming problem dual to

„

2
1

⊺

x Ñ max ,

»

—

—

—

—

–

1 0
0 1
1 1

´1 0
0 ´1

fi

ffi

ffi

ffi

ffi

fl

x ď

»

—

—

—

—

–

2
2
3
0
0

fi

ffi

ffi

ffi

ffi

fl

,

is



Dual Linear Program (continued)

Example

»

—

—

—

—

–

2
2
3
0
0

fi

ffi

ffi

ffi

ffi

fl

⊺

y Ñ min,

„

1 0 1 ´1 0
0 1 1 0 ´1



y “

„

2
1



, y ě 0.



Dual Linear Program (continued)

Remark
Some authors give a different definition.

For given linear programming problem c⊺x Ñ max , Ax ď b, x ě 0
the dual linear program is

b⊺y Ñ min, A⊺y ě c , y ě 0.

It is easy to see the definitions are equivalent. For example, in the
above setting the primal is equivalent to

c⊺x Ñ max ,

„

A

´I



x ď

„

b

0



which is dual to
„

b

0

⊺ „

y

z



Ñ min,
“

A⊺ ´I
‰

„

y

z



“ c , y , z ě 0 which in

turn is equivalent to (z describes slack variables)
b⊺y Ñ min, Ay ě c , y ě 0.



Weak Duality Theorem

Proposition
For any feasible (not necessarily basic) solution x of the primal
problem and for any feasible (not necessarily basic) solution y of
the dual problem

c⊺x ď b⊺y .

Proof.
Note that since y ě 0 and b ´ Ax ě 0 then

0 ď y⊺pb ´ Axq “ y⊺b ´ pA⊺yq⊺x “ y⊺b ´ c⊺x .



Weak Duality Theorem (continued)

Corollary

the primal problem is feasible but
the objective function attains no maximum ùñ the dual problem is infeasible

the dual problem is feasible but
the objective function attains no minimum ùñ the primal problem is infeasible

Remark
The converse does not hold in general. For example when

A “

»

—

—

–

1 0
0 ´1

´1 0
0 ´1

fi

ffi

ffi

fl

, b “

»

—

—

–

´1
´1
0
0

fi

ffi

ffi

fl

, c “

„

1
1



,

both primal and dual problems, i.e. Ax ď b and A⊺y “ c , y ě 0,
are infeasible.



Strong Duality Theorem

Theorem

x˚ is an optimal solution
of the primal problem ùñ there exists y˚ an optimal solution

of the dual problem

Moreover
c⊺x˚ “ b⊺y˚.

Proof.
Omitted.



Strong Duality Theorem (continued)
The linear programming problem

„

2
1

⊺

x Ñ max ,

»

–

1 0
0 1
1 1

fi

fl x ď

»

–

2
2
3

fi

fl , x ě 0,

has the optimal solution x˚ “

„

2
1



, and c⊺x˚ “ 5. The dual problem

yields the tableaux
»

–

2 2 3 0 0 0
1 0 1 ´1 0 2
0 1 1 0 ´1 1

fi

fl

r0´2r1´2r2ÝÑ

»

–

0 0 ´1 2 2 ´6
1 0 1 ´1 0 2
0 1 1 0 ´1 1

fi

fl

For B “ t1, 2u we have s “ 3 and r “ 2 therefore

r0`r2
r1´r2ÝÑ

»

–

0 0 0 2 1 ´5
1 ´1 0 ´1 1 1
0 1 1 0 ´1 1

fi

fl



Strong Duality Theorem (continued)

The optimal solution of the dual problem is y˚ “

»

—

—

—

—

–

1
0
1
0
0

fi

ffi

ffi

ffi

ffi

fl

and

b⊺y˚ “ 5.



Hyperplane Separation Theorem (for cones)
It is relatively easy to prove the Strong Duality Theorem using the
Hyperplane Separation Theorem for a cone.

Theorem
For some v1, . . . , vk P R

n let

V “ conepv1, . . . , vkq “

#

k
ÿ

i“1

tivi | ti ě 0

+

.

Then v R V is and only if there exits d P R
n such that d⊺v ą 0 and

d⊺vi ď 0 for i “ 1, . . . , k ,

that is the hyperplane d⊺x “ 0 separates V (in particular the
vectors vi) from vector v .

Proof.
If v P V and such d exists then 0 ă d⊺v “

řk
i“1 ti pd⊺viq ď 0. We

omit the converse.



Strong Duality Theorem – Proof
Let x˚ P R

n be an optimal solution of the primal problem, in
particular Ax˚ ď b. Let I “ Jpx˚q be the set of all active
inequalities in Ax˚ ď b. Denote the rows of A P Mpm ˆ n;Rq by
a1, . . . , am P R

n. Let V “ cone pai qiPI . Then c P V . Otherwise, by
the hyperplane separation theorem, there exists d P R

n such that
d⊺c ą 0 and d⊺ai ď 0 for i P I . Then for sufficiently small ε ą 0
(active constraints are weakened and inactive still hold for
sufficiently small ε ą 0)

Apx˚ ` εdq ď b,

c⊺px˚ ` εdq ą c⊺x˚.

This contradicts optimality of x˚ hence c P V , i.e. for i P I there
exists yi ě 0 such that

c “
ÿ

iPI

yiai .

Let y˚ P R
m be given by the above y 1

i s where yi “ 0 for i R I . It
turns out that y˚ is an optimal solution of the dual problem.



Strong Duality Theorem – Proof (continued)

Obviously y˚ ě 0. Moreover

A⊺y˚ “
ÿ

iPI

yiai “ c .

That is y˚ is feasible. The set I indexes all active constraints of the
primal problem hence

b⊺y˚ “
ÿ

iPI

biyi “
ÿ

iPI

pa⊺i x
˚qyi “

˜

ÿ

iPI

yiai

¸

⊺

x˚ “ c⊺x˚.

By the Weak Duality, for any feasible y

c⊺x˚ ď b⊺y ,

i.e., y˚ is an optimal solution for the dual problem.



Complementary Slackness
Proposition
Let x , y be a feasible solutions of the primal and the dual problem
respectively, i.e.

"

c⊺x Ñ max ,

Ax ď b
and

$

&

%

b⊺y Ñ min,

A⊺y “ c ,

y ě 0

Then

x“x˚
,y“y˚

are optimal solutions ðñ yi “ 0 or aix “ bi for i “ 1, . . . ,m,

where A P Mpm ˆ n;Rq and ai denotes the i´th row of A.

Proof.
By the Weak Duality, for feasible x , y

c⊺x “ y⊺Ax ď y⊺b.

Both solutions are optimal if and only if y⊺Ax “ y⊺b. If yi ą 0 then
aix “ bi .



Primal–Dual Method

There exists a method for solving a linear programming problem
using any feasible solution of a primal to solve a smaller, related to
dual problem and use it to improve the original solution. This is
called the Primal–Dual Method.



Carathéodory’s Theorem

Theorem
For any v P conepv1, . . . , vkq there exist 1 ď i1 ă i2 ă . . . il ď k

such that,

i) vectors vi1 , . . . , vil are linearly independent,

ii) v P conepvi1 , . . . , vil q.



Carathéodory’s Theorem

Theorem
For any v P conepv1, . . . , vkq there exist 1 ď i1 ă i2 ă . . . il ď k

such that,

i) vectors vi1 , . . . , vil are linearly independent,

ii) v P conepvi1 , . . . , vil q.

Corollary
Finitely generated cone is a union of finite number of symplicial
cones.



Carathéodory’s Theorem – Proof
Let k be the smallest positive number such that3 (by changing the
indices if necessary)

v “ t1v1 ` . . . ` tkvk , for some t1, . . . , tk ą 0.

Assume that v1, . . . , vk are linearly dependent. Then there exist
α1, . . . , αk P R, not all equal to 0, such that

α1v1 ` . . . ` αkvk “ 0,

where αi ą 0 for some i (multiply sidewise by ´1 if necessary). Let

C “ min

"

ti

αi

| αi ą 0
*

.

Then
v “ pt1 ´ Cα1qv1 ` . . . ` ptk ´ Cαkqvk ,

where

ti ´ Cαi

#

ě ti if C ă ti
αi
, αi ‰ 0 or αi “ 0,

“ 0 if C “ ti
αi
, αi ą 0.

.

3This proof and the following ones based on N. Lauritzen, Lectures on
Convex Sets.



Carathéodory’s Theorem (continued)

Proposition
Let V “ conepv1, . . . , vkq Ă R

n be a finitely generated cone. Then
V is convex and closed.

Proof.
By Carathéodory’s Theorem it is enough to assume that V is
symplicial. Complete v1, . . . , vk to a basis v1, . . . , vn of Rn and
define linear homeomorphism ϕ : Rn Ñ R

n by the condition

ϕpεi q “ vi .

Then V “ ϕpRk
ě0 ˆ 0q is the image of a closed set.

Convexity is left as an exercise.



Point Separation
Proposition
Let X Ă R

n be a non–empty, convex, closed set such that 0 R X .
Then there exists a unique x0 P X such that

‖x0‖ “ inf
xPX

‖x‖.

Moreover x0 ‰ 0.



Point Separation
Proposition
Let X Ă R

n be a non–empty, convex, closed set such that 0 R X .
Then there exists a unique x0 P X such that

‖x0‖ “ inf
xPX

‖x‖.

Moreover x0 ‰ 0.

Proof.
Without loss of generality one can assume that X bounded
(exercise) hence compact. If a continuous function ‖¨‖ attains on
X minima at points x0, y0 P X then

∥

∥

∥

∥

1
2
x0 `

1
2
y0

∥

∥

∥

∥

ď
1
2
‖x0‖ `

1
2
‖y0‖ “ ‖x0‖,

and 1
2x0 ` 1

2y0 P X by convexity of X . Triangle inequality becomes
equality if and only if x0 “ ty0. As ‖x0‖ “ ‖y0‖ it follows that
t “ ˘1. Since 0 R X we have t “ 1.



Point Separation (continued)
Corollary
Let X Ă R

n be a non–empty, convex, closed set such that 0 R X .
Then there exists an affine hyperplane H Ă R

n separating (strictly)
0 from X , i.e. if H is given by the equation d⊺x “ c then

0 “ d⊺0 ă c and d⊺x ą c for any x P X .



Point Separation (continued)
Corollary
Let X Ă R

n be a non–empty, convex, closed set such that 0 R X .
Then there exists an affine hyperplane H Ă R

n separating (strictly)
0 from X , i.e. if H is given by the equation d⊺x “ c then

0 “ d⊺0 ă c and d⊺x ą c for any x P X .

Proof.
Let x0 P X be a point as above. It is enough to take d “ x0 and
c “

x
⊺

0 x0
2 , i.e. hyperplane H is given by the formula

x
⊺

0 x “
x
⊺

0 x0

2
.

Obviously 0 ă ‖x0‖
2

2 and for x “ x0 we have d⊺x ą c . Assume

there exists x P H X X , i.e. x⊺0 x “
x
⊺

0 x0
2 . Then the segment joining

x and x0 is contained in X .



Point Separation (continued)

Proof.
For t P r0, 1s

‖x0‖
2 ď ‖p1 ´ tqx0 ` tx‖2 “ p1´tq2‖x0‖

2`2tp1´tqx⊺0 x`t2‖x‖2 “

“ p1 ´ tq2‖x0‖
2 ` tp1 ´ tq‖x0‖

2 ` t2‖x‖2.

This is equivalent to

0 ď ´t‖x0‖
2 ` t2‖x‖.

For t P p0, 1s
‖x0‖ ď t‖x‖,

which contradicts that 0 R X (as 0 is not an accumulation point of
X ).



Point Separation (continued)

Corollary
For any non–empty, convex, closed set such that X Ă R

n and
v R X there exists an affine hyperplane H Ă R

n separating (strictly)
v from X , i.e. if H is given by the equation d⊺x “ c then

d⊺v ă c and d⊺x ą c for any x P X .

Proof.
Exercise. Consider the set 0 R X ´ v which is closed and convex
too.



Hyperplane Separation Theorem (for cones) – Proof
Let V “ conepv1, . . . , vkq Ă R

n and let v P R
n be a vector such

that v R V . The set V is closed and convex hence there exists a
hyperplane

H : d⊺x “ c ,

such that for any x P V

d⊺x ă c ,

and (if necessary replace d , c with ´d ,´c)

d⊺v ą c .

Since 0 P V we have 0 ă c . Since for any t ě 0

d⊺ptxq “ t pd⊺xq ă c ,

it follows that d⊺x ď 0, in particular, for i “ 1, . . . , k

d⊺x ď 0.

Moreover
d⊺v ą c ą 0.



Farkas’ Lemma

Corollary (Farkas’ Lemma)
For A P Mpm ˆ n;Rq, b P Mpn ˆ 1;Rq exactly one of the following
sentences is true

i) there exists x P R
n such that Ax “ b, x ě 0,

ii) there exists y P R
m such that A⊺y ď 0 and y⊺b ą 0.

Remark
This is essentially reformulation of the Hyperplane Separation
Theorem. Point i) says b lies in the cone V generated by columns
of A and point ii) says the hyperplane y⊺x “ 0 separates the cone
V from point b. There exist several equivalent variants of this
lemma, for example with inequalities reversed in point ii).



Remarks

The duality can be used in proofs of some results from
combinatorial optimization and other theoretical considerations.



Lagrange Duality
Consider the problem c⊺x Ñ max , Ax ď b where A P Mpm ˆ n;Rq
with an optimal solution x˚. For any λ P R

m, λ ě 0 define the
Lagrangian function

gpx , λq “ c⊺x ` λ⊺pb ´ Axq.

By definition, for any feasible x

gpx , λq ě c⊺x .

In particular gpx˚, λq ě c⊺x˚. Set (a function possibly attaining
infinity as a value)

gpλq “ sup
xPRn

gpx , λq.

Then
gpλq ě c⊺x˚,

is an upper bound for the optimal value. Moreover, the lowest
upper bound is

g˚ “ min
λě0

gpλq ě c⊺x˚.



Lagrange Duality (continued)

This is equivalent to

g˚ “ min
λě0

gpλq “ min
λě0

sup
xPRn

pc⊺x ` λ⊺pb ´ Axqq “

“ min
λě0

ˆ

λ⊺b ` sup
xPRn

pc⊺ ´ λ⊺Aq x

˙

.

If at least one entry of c⊺ ´ λ⊺A is non–zero then gpλq “ `8
which gives no finite upper bound. Hence one may restrict the
domain of gpλq (as it does not change the minimum) to λ1s such
that λ ě 0 and A⊺λ ´ c “ 0, i.e.

g˚ “ min
λě0

A⊺λ“c

b⊺λ.

This is exactly the dual problem and the Strong Duality Theorem
implies that g˚ “ c⊺x˚.



Maximum Matching/Minimum Cover

Let G “ pV ,E q be an undirected graph.

Definition
A set M Ă E is a matching in graph G if for any e1, e2 P M edges
e1, e2 are not adjacent. A set M Ă E is a maximum (cardinality)
matching if it is a matching in G and for any other matching E 1 in
G

∣

∣M 1
∣

∣ ď |M|.

Definition
A set C Ă V is a (vertex) cover in graph G if any edge e P E has
at least one of its vertices in C . A set C Ă V is a minimum
(cardinality) cover if it is a cover in G and for any other cover C 1

in G

|C | ď
∣

∣C 1
∣

∣.



Maximum Matching/Minimum Cover (continued)

Let G “ pV ,E q be an undirected graph, where
V “ tv1, . . . , vnu,E “ te1, . . . , emu. Let B “ BG P Mpn ˆ m;Rq be the
incidence matrix of G . For any subset C P V let vC P R

n denote a vector
with i´th coordinate equal to 1 if vi P C and equal to 0 otherwise. For
any subset M P E let eM P R

m denote a vector with i´th coordinate
equal to 1 if ei P M and equal to 0 otherwise.

Proposition
Set M Ă E is a matching if and only if e “ eM P t0, 1um and

Be ď 1n.

Proof.
Components of Be are degrees of vertices v1, . . . , vn in a subgraph formed
by edges from M . No two edges in a matching share a vertex.



Maximum Matching/Minimum Cover (continued)

Proposition
Set C Ă V is a cover if and only if v “ vC P t0, 1un and

B⊺v ě 1m.

Proof.
Components of B⊺v are equal to either 0, 1 or 2 (each row of B⊺

contains exactly two 11s), which counts how many times the
corresponding edge is covered by vertices from C . In a cover each edge
should be covered by at least one vertex.



Maximum Matching/Minimum Cover (continued)

Proposition
An optimal solution of the following problem

e “ eM P t0, 1um,

1
⊺

ne Ñ max ,

Be ď 1n,

is a maximum matching.

Proposition
An optimal solution of the following problem

v “ vC P t0, 1un,

1
⊺

nv Ñ min,

B⊺v ě 1m,

is a minimum cover.



Fractional Maximum Matching

Proposition
For any graph G both problems

$

&

%

e “ eM P t0, 1um,
1
⊺

me Ñ max

Be ď 1n.

and

$

&

%

e ě 0,
1
⊺

me Ñ max

Be ď 1n.

have the same optimal value, i.e. the cardinality of maximum matching.

Proof.
The second problem possibly attains a bigger optimal value as
A Ă B ùñ supA f ď supB f . Optimum value is attained at a vertex (of a
feasible set/polytope) of the second problem. That vertex has integral
components as it is a (unique) solution of a system of active inequalities
in Be ď 1 and B is a totally unimodular matrix. For any feasible solution
e “ pe1, . . . , enq of the second problem e1, . . . , en ď 1 and hence
e P t0, 1un. An optimal solution of the second problem corresponds to a
matching and therefore is also a solution of the first problem.



Fractional Minimum Cover

Proposition
If graph G has no isolated vertices then both problems

$

&

%

v “ vC P t0, 1un,
1
⊺

nv Ñ min

B⊺v ě 1m.

and

$

&

%

v ě 0,
1
⊺

nv Ñ min

B⊺v ě 1m.

have the same optimal value, i.e. the cardinality of minimum cover.

Proof.
The second problem possibly attains a smaller optimal value as
A Ă B ùñ infB f ď infAf . As above, components of an optimal solution
of the second problem are nonnegative integers. Assume that
v˚ “ pv˚

1 , . . . , v
˚
n q is an optimal solution of the second problem. If say

v˚
1 ě 2 then v 1 “ pv˚

1 ´ 1, . . . , v˚
n q ě 0 and B⊺v 1 ě 1 but 1⊺v 1 ă 1

⊺v˚

(double vertex is wasteful). Therefore optimal solution of the second
problem corresponds to a cover and therefore is also a solution of the first
problem.



König’s Theorem

Theorem
Let G be a bipartite (undirected) graph. Then the size of maximum
matching is equal to the size of minimum cover.

Proof.
By the Strong Duality Theorem both problems attain the same optimal
value

$

&

%

e ě 0,
1ne Ñ max ,

Be ď 1n.

$

&

%

v ě 0,
1mv Ñ min

B⊺v ě 1m.



Sample Maximal Matching

6

5

4

3

2

1

F

E

D

C

B

A

6 candidates applied for 6 jobs, first candidate applied for A,B, second
candidate for D,E etc. How to hire maximum number of candidates?



Scheduling
Say we have n activities, each activity starts at time pi , it finishes
at time qi and it brings profit ci when completed. How to pick
non–overlapping activities with maximal profit? Consider the
following problem

c⊺x Ñ max ,

xi ` xj ď 1, for each overlapping activities i , j ,

x P t0, 1un.

It has the same optimal solutions as the problem

c⊺x Ñ max ,

xi ` xj ď 1, for each overlapping activities i , j ,

x ě 0,

as the matrix is an incidence matrix of a bipartite graph (activities
i , j are joined by an edge if they overlap) hence totally unimodular.



Fourier–Motzkin Elimination

Theorem
Let P : Rn Ñ R

n be the orthogonal projection onto the subspace
spanned by the first n ´ 1 standard unit vectors, i.e.

Ppx1, . . . , xn´1, xnq “ px1, . . . , xn´1q.

Let X Ă R
n be a convex polyhedron. Then PpX q Ă R

n´1 is a
convex polyhedron.



Fourier–Motzkin Elimination

Theorem
Let P : Rn Ñ R

n be the orthogonal projection onto the subspace
spanned by the first n ´ 1 standard unit vectors, i.e.

Ppx1, . . . , xn´1, xnq “ px1, . . . , xn´1q.

Let X Ă R
n be a convex polyhedron. Then PpX q Ă R

n´1 is a
convex polyhedron.

Proof.
Assume X ‰ R

n is given by the system of inequalities
$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` . . . ` a1nxn ď b1
a21x1 ` a22x2 ` . . . ` a2nxn ď b2
...

...
. . .

...
...

am1x1 ` am2x2 ` . . . ` amnxn ď bm



Fourier–Motzkin Elimination (continued)
Proof.
Let Nă,N0,Ną be a partition of the set t1, . . . ,mu given by the
conditions

Nă “ t1 ď i ď m | ain ă 0u,N0 “ t1 ď i ď m | ain “ 0u,

Ną “ t1 ď i ď m | ain ą 0u.

Any px1, . . . , xn´1q P PpX q satisfies inequality a
⊺

i x ď bi for i P N0 and a
linear combination (with non–negative coefficients) of inequalities
i P Nă, j P Ną

ajn

˜

n
ÿ

k“1

aikxk

¸

´ ain

˜

n
ÿ

k“1

ajkxk

¸

ď ajnbi ´ ainbj ,

where xn is eliminated, i.e.,

ajn

˜

n´1
ÿ

k“1

aikxk

¸

´ ain

˜

n´1
ÿ

k“1

ajkxk

¸

ď ajnbi ´ ainbj .



Fourier–Motzkin Elimination (continued)

Proof.
After dividing by ´1{ainajn this can be rewritten as

´
1
ain

˜

n´1
ÿ

k“1

aikxk

¸

`
1
ajn

˜

n´1
ÿ

k“1

ajkxk

¸

ď ´
1
ain

bi `
1
ajn

bj ,

that is

´
1
ain

˜

n´1
ÿ

k“1

aikxk ´ bi

¸

ď ´
1
ajn

˜

n´1
ÿ

k“1

ajkxk ´ bj

¸

.

This implies that

max
iPNă

´
1
ain

˜

n´1
ÿ

k“1

aikxk ´ bi

¸

ď min
jPNą

´
1
ajn

˜

n´1
ÿ

k“1

ajkxk ´ bj

¸

.

Choosing xn between those numbers one can see that
px1, . . . , xnq P X .



Gale’s Theorem

Theorem
Let A P Mpm ˆ m;Rq, b P Mpm ˆ 1;Rq. Then the following
conditions are equivalent

i) the inequality Ax ď b has no solutions,

ii) there exists y P R
m, y ě 0 such that A⊺y “ 0, b⊺y ă 0.

Proof.
Use Fourier–Motzkin elimination to project convex polyhedron X

give by Ax ď b onto 0´dimensional subspace. The image of
projection is non–empty is and only if X is non–empty. Each
projection amount to multiplying the inequality Ax ď b by some
matrix y P Mpr ˆ m;Rq, y ě 0. The product of such y 1s gives
inequality y⊺A0 ď y⊺b. If X is empty one of the inequalities is
0 ď c where c ă 0.



Farkas’ Lemma Revisited

Corollary (Farkas’ Lemma)
For A P Mpm ˆ n;Rq, b P Mpn ˆ 1;Rq exactly one of the following
sentences is true

i) there exists x P R
n such that Ax “ b, x ě 0,

ii) there exists y P R
m such that A⊺y ď 0 and y⊺b ą 0.

Proof.
As in the previous proof, both conditions cannot be satisfied. If

Ax “ b, x ě 0 has a solution, then

»

–

A

´A

´I

fi

fl x ď

»

–

b

´b

0

fi

fl has a

solution.



Farkas’ Lemma Revisited (continued)

Proof.

By Gale’s Theorem for all y “

»

–

y1
y2
y3

fi

fl ě 0

A⊺y1 ´ A⊺y2 ´ y3 ‰ 0, or b⊺y1 ´ b⊺y2 ě 0.

With y “ y2 ´ y1 this can be rewritten as

A⊺y ‰ ´y3, or b⊺y ď 0,

for all y3 ě 0, i.e., for any y P R
m

A⊺y ď 0, or y⊺b ď 0,

which is exactly the opposite of the condition ii) of Farkas’ Lemma.

The converse can be proven in a similar way (exercise).



Certificate of Infeasibility

Remark
To prove that the problem Ax “ b, x ě 0 is infeasible it is enough
to find y P R

m such that A⊺y ď 0 and y⊺b ą 0. Therefore any
such y is called a certificate of infesibility.



Extremal Set Theory

Let S be a finite set and let A Ă PpSq be a family of subsets of the
set S . Let A be a matrix which rows are indicator vectors of
subsets in A. Then optimal solutions of the first problems
correspond to subsets of X Ă S of maximal cardinality such that
|X X A| ď 1 and the and optimal solutions of the second problem
to a subfamilies Y Ă A of minimal cardinality such that

Ť

Y “ S .
$

’

’

&

’

’

%

x P Z,

x ě 0,
1
⊺x Ñ max ,

Ax ď 1.

$

’

’

&

’

’

%

y P Z,

y ě 0,
1
⊺v Ñ min

A⊺y ě 1.



Extremal Set Theory (continued)

Optimal solutions of the first problems correspond to subsets of
X Ă S of minimal cardinality such that |X X A| ě 1 (that is X
intersects all subsets in the family A) and the and optimal solutions
of the second problem to a subfamilies Y Ă A of maximal
cardinality, containing pairwise disjoint sets.

$

’

’

&

’

’

%

x P Z,

x ě 0,
1
⊺x Ñ min,

Ax ě 1.

$

’

’

&

’

’

%

y P Z,

y ě 0,
1
⊺v Ñ max

A⊺y ď 1.

However, for some families A optimal values of these integral
linear programming problems may differ. For example let
A “ tt1, 2u, t1, 3u, t2, 3u and S “ t1, 2, 3u.



Modeling in Linear Programming4

Sometimes it is desirable to impose additional constraints on the
optimal solution. This can be achieved by introducing auxiliary
variables t, y1, . . . , yn (or t P R if needed)

t ě maxtx1, . . . , xnu ðñ t ě xi for i “ 1, . . . , n,

t ď mintx1, . . . , xnu ðñ t ď xi for i “ 1, . . . , n,

t ě maxta⊺i x`bi | i “ 1, . . . ,mu ðñ t ě a
⊺

i x`bi for i “ 1, . . . ,m,

in particular
t ě |xi | ðñ ´t ď xi ď t,

as |x | “ maxt´x , xu.

4based on https://docs.mosek.com/modeling-cookbook/index.html

https://docs.mosek.com/modeling-cookbook/index.html


Modeling in Linear Programming (continued)

|x1| ` . . . ` |xn| ď t ðñ |xi | ě yi for i “ 1, . . . , n,
n

ÿ

i“1

yi “ t ðñ

ðñ ´yi ď xi ď yi for i “ 1, . . . , n,
n

ÿ

i“1

yi “ t.

The above observation may be used to look (by a heuristic rule) for
a sparse solution of the system Ax “ b by solving a linear
programming problem

y1 ` . . . ` yn Ñ min,

with constraints

Ax “ b, y ě 0, ´yi ď xi ď yi , i “ 1, . . . , n.



Modeling in Linear Programming – Sum of m Maximal
Components

Proposition
Let X ĂP R

n be a section of an n-dimensional cube with a
hyperplane

řn
i“1 “ m where m P t0, 1, . . . , nu, i.e.,

X “ tpx1, . . . , xnq P R
n | 0 ď xi ď 1, x1 ` . . . ` xn “ mu.

Then vertices of polytope X are of the form

px1, . . . , xnq where xi P t0, 1u, x1 ` . . . ` xn “ m,

i.e., sums of m different vectors of the standard basis of Rn.



Modeling in Linear Programming – Sum of m Maximal
Components (continued)

Proof.
The constrainst can be rewritten as
ř

xi ď m,´
ř

xi ď ´m, x1 ď 1,´x1 ď 0, . . . , xn ď 1,´xn ď 0 It is
enough to consider submatrices of matrix,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ ¨ ¨ ¨ 1 1 1
´1 ´1 ´1 ¨ ¨ ¨ ¨ ¨ ¨ ´1 ´1 ´1
1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0

´1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0
0 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0
0 ´1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 0
...

...
...

. . .
. . .

...
...

...
0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 1
0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

consisting of rows corresponding to active inequalities of rank A. The
unique solution is exactly of the required form. Both first rows are always
active.



Modeling in Linear Programming – Sum of m Maximal
Components (continued)

Corollary
A solution of the linear programming program c⊺x Ñ max over X
is the sum of m maximal components of vector c .



Modeling in Linear Programming – Sum of m Maximal
Components (continued)

If you want to optimize the sum of m maximal components of a
point in polyhedron the objective function becomes quadratic. This
can by avoided by passing to a dual problem und using the strong
duality.

d⊺x Ñ min,Ax “ b, x ě 0 ðñ b⊺y Ñ max ,A⊺y ď d .

Take

b “

»

—

—

—

–

´m

´1
...

´1

fi

ffi

ffi

ffi

fl

, A “

»

—

—

—

–

´1
... ´I

´1
0 ´I

fi

ffi

ffi

ffi

fl

, d “

»

—

—

—

—

—

—

—

—

–

´c1
...

´cn
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.



Modeling in Linear Programming – Sum of m Maximal
Components (continued)

The dual problem becomes

mt `
n

ÿ

i“1

yi Ñ min,

under the constraints
yi ` t ě ci ,

yi ě 0,

for i “ 1, . . . , n.


