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Definition
An affine space E over a vector space V is any set E with a map

` : E ˆ V Ñ E ,

satisfying the following conditions

i) p ` 0 “ p for any p P E ,

ii) pp ` vq ` w “ p ` pv ` wq for any p P E , v ,w P V

(associativity),

iii) for any p, q P E there exits a unique vector ÝÑpq P V such that
p ` ÝÑpq “ q.
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Properties of Affine Space

Let E be an affine space over V .

Proposition
For any p, q, r P E

i) ÝÑpp “ 0,

ii) ÝÑpq ` ÝÑqr “ ÝÑpr ,
iii) ÝÑqp “ ´ÝÑpq.

Proof.
i) p ` 0 “ p,

ii) p ` pÝÑpq ` ÝÑqr q “ pp ` ÝÑpqq ` ÝÑqr “ q ` ÝÑqr “ r ,

iii) follows form i) and ii) for r “ p.
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Affine Space (continued)

Remark
Elements of the set E are called points and elements of vector
space V are called vectors. The point p ` v can be thought of as
point p translated by the vector v and ÝÑpq can be thought of as the
vector with the tail at p and the head at q. Note that there is no
distinguished point in an affine space.

Remark
For any p P E the map

V Q v ÞÑ p ` v P E ,

is a bijection.



Affine Space (continued)

Proof.
It is injective

pp ` v “ p ` w “ qq ñ pv “ w “ ÝÑpqq,

and surjective
q “ p ` ÝÑpq.
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Translation

Definition
For any v P V the translation by v is the map

tv : E Q p ÞÑ p ` v P E .

Proposition
For any v P V the translation tv is a bijection.

Proof.
It is injective

pp`v “ q`v “ rq ñ pv “ ÝÑpr “ ÝÑqr q ñ pp “ r`ÝÑrp “ r`ÝÑrq “ qq,

and surjective
tvpq ´ vq “ q.
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Affine Subspace
Definition
Let E be an affine space over V . For any p P E and any subspace
W of the vector space V the set

F “ p ` W “ tp ` w P E | w P W u,

is called an affine subspace of E . The subspace W is called the
direction of F and it is denoted by

ÝÑ
F “ W . The dimension of F

is defined to be the dimension of W , i.e. dim F “ dimW .

Remark
The 0-dimensional affine subspaces are called points, the
1-dimensional affine subspaces are called lines, the 2-dimensional
affine subspaces are planes.

Remark
The affine space F “ p ` W is invariant under translations tw for
any w P W , i.e.

tw pF q “ F .
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Proposition
Let F “ p ` W be an affine subspace of E . Then for any q P F

F “ p ` W “ q ` W .
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Proposition
Let F “ p ` W be an affine subspace of E . Then for any q P F

F “ p ` W “ q ` W .

Proof.
Since q P F then q “ p ` w for some w P W , i.e. ÝÑpq “ w .
Therefore

q ` W “ pp ` wq ` W “ p ` W .
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i.e. any vector joining two points of an affine subspace F belongs
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Affine Subspace (continued)

Proposition
For any q, r P F “ p ` W

ÝÑqr P W ,

i.e. any vector joining two points of an affine subspace F belongs
to its direction

ÝÑ
F “ W .

Proof.
Since q “ p ` ÝÑpq, r “ p ` ÝÑpr , both ÝÑpq,ÝÑpr P W and

ÝÑqr “ ÝÑqp ` ÝÑpr P W .

Remark
Note that any affine subspace F is an affine space over W “ ÝÑ

F

with the operation ` restricted to F ˆ W .



Affine Combination

Let E be an affine space over V .

Definition
Let p0, . . . , pk P E be points. For any ai P R such that

řk
i“0 ai “ 1

and any point p P E the point

kÿ

i“0

aipi “ p `
kÿ

i“0

ai
ÝÑppi

is called the affine combination of p0, . . . , pk .



Affine Combination

Let E be an affine space over V .

Definition
Let p0, . . . , pk P E be points. For any ai P R such that

řk
i“0 ai “ 1

and any point p P E the point

kÿ

i“0

aipi “ p `
kÿ

i“0

ai
ÝÑppi

is called the affine combination of p0, . . . , pk .

Proposition
For any p, q P E

p `
kÿ

i“0

ai
ÝÑppi “ q `

kÿ

i“0

ai
ÝÑqpi .



Affine Combination (continued)

Proof.

q `
kÿ

i“0

ai
ÝÑqpi “ q `

kÿ

i“0

aipÝÑqp ` ÝÑppiq “ p `
kÿ

i“0

ai
ÝÑppi .

Corollary
The affine combination of p0, . . . , pk does not depend on the point
p P E .



Affine Combination (continued)

Corollary
Let F “ p ` W be an affine subspace. Then any affine
combination of p0, . . . , pk P F belongs to F , i.e. any affine
subspace is closed under taking affine combinations.

Proof.
For any

řk
i“0 ai “ 1

kÿ

i“0

aipi “ p0 `
kÿ

i“0

ai
ÝÝÑp0pi P F ,

because ÝÝÑp0pi P W for i “ 0, . . . , k .
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The Main Example of Affine Space

Example
Any vector space V is an affine space over itself with the operation
` being the vector addition from V and

ÝÑpq “ q ´ p.

Remark
Any affine space can be obtained in this way.
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Affine Space Rn

Remark
From now on we will be dealing only with the affine space R

n

(as a vector space over itself) and its affine subspaces of the
form

E “ p ` V ,

where V Ă R
n is a subspace. In this case the operation ` is the

usual addition of n´tuples.

Example
Let p “ p1, 1, 1q, q “ p1, 2, 3q. Then ÝÑpq “ q ´ p “ p0, 1, 2q.

Example
Let p “ p1,´1q and V “ linpp2, 3qq Ă R

2. Then

E “ p ` V “ tp1 ` 2t,´1 ` 3tq P R
2 | t P Ru.



Affine Span

Definition
Let p0, . . . , pk P R

n. The affine span (or the affine hull) of
p0, . . . , pk is the set of all affine combinations of p0, . . . , pk , i.e.

affpp0, . . . , pkq “
#

kÿ

i“0

aipi P R
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+
.



Affine Span

Definition
Let p0, . . . , pk P R

n. The affine span (or the affine hull) of
p0, . . . , pk is the set of all affine combinations of p0, . . . , pk , i.e.

affpp0, . . . , pkq “
#

kÿ

i“0

aipi P R
n |

kÿ

i“0

ai “ 1

+
.

Proposition
Let p0, . . . , pk P R

n. Then

affpp0, . . . , pkq “ p0 ` linpÝÝÑp0p1, . . . ,
ÝÝÑp0pkq.



Affine Span (continued)

Proof.
Let

řk
i“0 ai “ 1. Then

kÿ

i“0

aipi “ p0 `
kÿ

i“0

ai
ÝÝÑp0pi P p0 ` linpÝÝÑp0p1, . . . ,

ÝÝÑp0pkq.



Affine Span (continued)

Proof.
Let

řk
i“0 ai “ 1. Then

kÿ

i“0

aipi “ p0 `
kÿ

i“0

ai
ÝÝÑp0pi P p0 ` linpÝÝÑp0p1, . . . ,

ÝÝÑp0pkq.

Assume p “ p0 ` řk
i“1 ai

ÝÝÑp0pk P p0 ` linpÝÝÑp0p1, . . . ,
ÝÝÑp0pkq for some

a1, . . . , ak P R. Then

p “ p1 ´
kÿ

i“1

aiqp0 `
kÿ

i“1

aipk .



Affine Span (continued)

Proof.
Let

řk
i“0 ai “ 1. Then

kÿ

i“0

aipi “ p0 `
kÿ

i“0

ai
ÝÝÑp0pi P p0 ` linpÝÝÑp0p1, . . . ,

ÝÝÑp0pkq.

Assume p “ p0 ` řk
i“1 ai

ÝÝÑp0pk P p0 ` linpÝÝÑp0p1, . . . ,
ÝÝÑp0pkq for some

a1, . . . , ak P R. Then

p “ p1 ´
kÿ

i“1

aiqp0 `
kÿ

i“1

aipk .

Corollary
The affine subpace affpp0, . . . , pkq is the smallest affine subspace of
R
n containing points p0, . . . , pk .
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Affine Span–Example

Let p0 “ p1, 1, 1q, p1 “ p1, 2, 3q, p2 “ p3, 2, 1q. Then

ÝÝÑp0p1 “ p0, 1, 2q,

ÝÝÑp0p2 “ p2, 1, 0q.

affpp1, 1, 1q, p1, 2, 3q, p3, 2, 1qq “ p1, 1, 1q ` linpp0, 1, 2q, p2, 1, 0qqq.



Parametrization
Definition
Let E “ p ` linpv1, . . . , vkq Ă R

n where vectors v1, . . . , vk are
linearly independent (i.e. v1, . . . , vk is a basis of

ÝÑ
E ). Then any

point q P E can be uniquely written as

q “ p `
kÿ

i“1

tivi .

Any such presentation of E is called a parametrization.



Parametrization
Definition
Let E “ p ` linpv1, . . . , vkq Ă R

n where vectors v1, . . . , vk are
linearly independent (i.e. v1, . . . , vk is a basis of

ÝÑ
E ). Then any

point q P E can be uniquely written as

q “ p `
kÿ

i“1

tivi .

Any such presentation of E is called a parametrization.

Example

E “ p1, 1, 1q ` linpp0, 1, 2q, p2, 1, 0qq “
“ p1, 2, 3q ` linpp0, 1, 2q, p1, 1, 1qq

that is p1 ` 2t2, 1 ` t1 ` t2, 1 ` 2t1q, t1, t2 P R and
p1 ` t2, 2 ` t1 ` t2, 3 ` 2t1 ` t2q, t1, t2 P R are two different
parametrizations of E .
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Parallel Affine Subspaces

Definition
Two affine subspaces E ,H of Rn are called parallel if

ÝÑ
E “ ÝÑ

H .

Proposition
Any affine subspace E of Rn is equal to a set of solutions of a
(possibly non–homogeneous) system of linear equations in n

variables.

Proof.
There exists a homogeneous system of linear equations describing
the vector subspace

ÝÑ
E

ÝÑ
E :

$
’’’&
’’’%

a11x1 ` a12x2 ` . . . ` a1nxn “ 0
a21x1 ` a22x2 ` . . . ` a2nxn “ 0
...

...
. . .

...
...

am1x1 ` am2x2 ` . . . ` amnxn “ 0



Proof.
Let E “ p ` ÝÑ

E . If p “ py1, . . . , ynq set

b1 “ a11y1 ` a12y2 ` . . . ` a1nyn
b2 “ a21y1 ` a22y2 ` . . . ` a2nyn
...

...
. . .

...
...

bm “ am1y1 ` am2y2 ` . . . ` amnyn



Proof.
Let E “ p ` ÝÑ

E . If p “ py1, . . . , ynq set

b1 “ a11y1 ` a12y2 ` . . . ` a1nyn
b2 “ a21y1 ` a22y2 ` . . . ` a2nyn
...

...
. . .

...
...

bm “ am1y1 ` am2y2 ` . . . ` amnyn

Then the affine subspace E is described by

E :

$
’’’&
’’’%

a11x1 ` a12x2 ` . . . ` a1nxn “ b1
a21x1 ` a22x2 ` . . . ` a2nxn “ b2
...

...
. . .

...
...

am1x1 ` am2x2 ` . . . ` amnxn “ bm



Proof.
Let E “ p ` ÝÑ

E . If p “ py1, . . . , ynq set

b1 “ a11y1 ` a12y2 ` . . . ` a1nyn
b2 “ a21y1 ` a22y2 ` . . . ` a2nyn
...

...
. . .

...
...

bm “ am1y1 ` am2y2 ` . . . ` amnyn

Then the affine subspace E is described by

E :

$
’’’&
’’’%

a11x1 ` a12x2 ` . . . ` a1nxn “ b1
a21x1 ` a22x2 ` . . . ` a2nxn “ b2
...

...
. . .

...
...

am1x1 ` am2x2 ` . . . ` amnxn “ bm

The constants b1, . . . , bm do not depend on the point p P E since
any two points in E differ by a vector from

ÝÑ
E .
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3 | x1 ` x2 ` x3 “ 0u passing through p “ p2, 3, 4q.
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Examples

Example
Describe by a system of linear equations an affine subspace E parallel to
V “ tpx1, x2, x3q P R

3 | x1 ` x2 ` x3 “ 0u passing through p “ p2, 3, 4q.

E : x1 ` x2 ` x3 “ 9.

Example
Describe by a system of linear equations the affine subspace E “ p ` V

in R
4 where

p “ p1, 1, 2, 1q, V “ linpp1, 1, 3, 0q, p1, 0, 1, 0q, p0, 1, 2, 0qq.

Vectors p1, 0, 1, 0q, p0, 1, 2, 0q form a basis of V . Therefore V is described
by the system of equations

V :

"
x1 ` 2x2 ´ x3 “ 0

x4 “ 0



Examples (continued)

Example
Recall E “ p1, 1, 2, 1q ` V . Therefore

E :

"
x1 ` 2x2 ´ x3 “ 1

x4 “ 1

Definition
For any p, q P R

n the distance between p and q is }ÝÑpq}. It is
denoted dpp, qq.
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Example
Recall E “ p1, 1, 2, 1q ` V . Therefore

E :

"
x1 ` 2x2 ´ x3 “ 1

x4 “ 1

Definition
For any p, q P R

n the distance between p and q is }ÝÑpq}. It is
denoted dpp, qq.
It has the following properties:

i) dpp, qq ě 0 and pdpp, qq “ 0 ðñ p “ qq,
ii) dpp, qq “ dpq, pq (symmetry),

iii) dpp, rq ď dpp, qq ` dpq, rq (triangle inequality).



Examples (continued)

Example
Recall E “ p1, 1, 2, 1q ` V . Therefore

E :

"
x1 ` 2x2 ´ x3 “ 1

x4 “ 1

Definition
For any p, q P R

n the distance between p and q is }ÝÑpq}. It is
denoted dpp, qq.
It has the following properties:

i) dpp, qq ě 0 and pdpp, qq “ 0 ðñ p “ qq,
ii) dpp, qq “ dpq, pq (symmetry),

iii) dpp, rq ď dpp, qq ` dpq, rq (triangle inequality).

The affine space R
n equipped with a function satisfying above

properties (called metric) becomes a metric space.
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E ,w P ÝÑ
H .
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Definition
Let E Ă R

n
,H Ă R

m be two affine subspaces. A function
f : E ÝÑ H satisfying the condition

f pp ` αq “ f ppq ` f 1pαq,
´
or equivalently

ÝÝÝÝÝÝÝÝÝÑ
f ppqf pp ` αq “ f 1pαq

¯
,

for some p P E , some linear transformation f 1 :
ÝÑ
E ÝÑ ÝÑ

H and any
α P ÝÑ

E is called an affine transformation.



Affine Transformation

Definition
Let E ,H Ă R

n be two affine subspaces. We say that E ,H are
orthogonal if v K w for every v P ÝÑ

E ,w P ÝÑ
H .

Definition
Let E Ă R

n
,H Ă R

m be two affine subspaces. A function
f : E ÝÑ H satisfying the condition

f pp ` αq “ f ppq ` f 1pαq,
´
or equivalently

ÝÝÝÝÝÝÝÝÝÑ
f ppqf pp ` αq “ f 1pαq

¯
,

for some p P E , some linear transformation f 1 :
ÝÑ
E ÝÑ ÝÑ

H and any
α P ÝÑ

E is called an affine transformation.
If q P E then f pq ` αq “ f pp ` ÝÑpq ` αq “ f ppq ` f 1pÝÑpqq ` f 1pαq “
“ f pqq ` f 1pαq therefore the condition in the definition holds for
any p P E .



Properties of Affine Transformation
Proposition
Let E ,H be two affine subspaces. Then f : E ÝÑ H is an affine
transformation if and only if

f

˜
kÿ

i“0

aipi

¸
“

kÿ

i“0

ai f ppi q,

for any pi P E and ai P R such that
řk

i“0 ai “ 1.



Properties of Affine Transformation
Proposition
Let E ,H be two affine subspaces. Then f : E ÝÑ H is an affine
transformation if and only if

f

˜
kÿ

i“0

aipi

¸
“

kÿ

i“0

ai f ppi q,

for any pi P E and ai P R such that
řk

i“0 ai “ 1.

Proof.
pñq Assume that f is an affine transformation. Then

f

˜
kÿ

i“0

aipi

¸
“ f

˜
p0 `

kÿ

i“0

ai
ÝÝÑp0pi

¸
“ f pp0q `

kÿ

i“0

ai f
1pÝÝÑp0pi q “

“ f pp0q `
kÿ

i“0

ai

´ÝÝÝÝÝÝÝÑ
f pp0qf ppi q

¯
“

kÿ

i“0

ai f ppi q.



Properties of Affine Transformation (continued)

Proof.
pðq Assume that function f satisfies the condition of the
Proposition for k “ 1. Let p0, p1 P E be any points and a P R, then

f pp1 ´ aqp0 ` ap1q “ f pp0 ` aÝÝÑp0p1q “ p1 ´ aqf pp0q ` af pp1q “

“ f pp0q ` a
ÝÝÝÝÝÝÝÑ
f pp0qf pp1q.



Properties of Affine Transformation (continued)

Proof.
pðq Assume that function f satisfies the condition of the
Proposition for k “ 1. Let p0, p1 P E be any points and a P R, then

f pp1 ´ aqp0 ` ap1q “ f pp0 ` aÝÝÑp0p1q “ p1 ´ aqf pp0q ` af pp1q “

“ f pp0q ` a
ÝÝÝÝÝÝÝÑ
f pp0qf pp1q.

It is enough to define

f 1pÝÝÑp0p1q “ ÝÝÝÝÝÝÝÑ
f pp0qf pp1q,

and check that f 1 is well–defined and linear.



Properties of Affine Transformation (continued)

Proof.
pðq Assume that function f satisfies the condition of the
Proposition for k “ 1. Let p0, p1 P E be any points and a P R, then

f pp1 ´ aqp0 ` ap1q “ f pp0 ` aÝÝÑp0p1q “ p1 ´ aqf pp0q ` af pp1q “

“ f pp0q ` a
ÝÝÝÝÝÝÝÑ
f pp0qf pp1q.

It is enough to define

f 1pÝÝÑp0p1q “ ÝÝÝÝÝÝÝÑ
f pp0qf pp1q,

and check that f 1 is well–defined and linear. We omit the details of
the proof.



Formula of an Affine Transformation
Remark
Any affine transformation f : Rn ÝÑ R

m is given by a formula

f ppx1, x2, . . . , xnqq “ pa11x1 ` a12x2 ` . . . ` a1nxn ` b1, . . . ,

am1x1 ` am2x2 ` . . . ` amnxn ` bmq,
where aij , bk P R. The linear transformation f 1 has matrix

Mpf 1qstst “

»
—–

a11 . . . a1n
...

. . .
...

am1 . . . amn

fi
ffifl

in standard bases (and it is equal to the total derivative of f at any
point p P R

n).



Formula of an Affine Transformation
Remark
Any affine transformation f : Rn ÝÑ R

m is given by a formula

f ppx1, x2, . . . , xnqq “ pa11x1 ` a12x2 ` . . . ` a1nxn ` b1, . . . ,

am1x1 ` am2x2 ` . . . ` amnxn ` bmq,
where aij , bk P R. The linear transformation f 1 has matrix

Mpf 1qstst “

»
—–

a11 . . . a1n
...

. . .
...

am1 . . . amn

fi
ffifl

in standard bases (and it is equal to the total derivative of f at any
point p P R

n).

Proof.
Choose p “ p0, . . . , 0q, α “ px1, . . . , xnq so
f ppx1, . . . , xnqq “ f pp0, . . . , 0qq ` f 1ppx1, . . . , xnqq.



Affine Orthogonal Projection and Reflection

Definition
Let E Ă R

n be an affine subspace and let p0 P E . The affine
transformation πE : Rn ÝÑ R

n defined by

πE ppq “ πE pp0 ` ÝÑp0pq “ p0 ` PÝÑ
E

pÝÑp0pq,

where PÝÑ
E

is the (linear) orthogonal projection on
ÝÑ
E , is called an

(affine) orthogonal projection on E .



Affine Orthogonal Projection and Reflection

Definition
Let E Ă R

n be an affine subspace and let p0 P E . The affine
transformation πE : Rn ÝÑ R

n defined by

πE ppq “ πE pp0 ` ÝÑp0pq “ p0 ` PÝÑ
E

pÝÑp0pq,

where PÝÑ
E

is the (linear) orthogonal projection on
ÝÑ
E , is called an

(affine) orthogonal projection on E .
The transformation σE : Rn ÝÑ R

n defined by

σE ppq “ σE pp0 ` ÝÑp0pq “ p0 ` SÝÑ
E

pÝÑp0pq,

where SÝÑ
E

is the (linear) orthogonal reflection about
ÝÑ
E , is called

an (affine) orthogonal reflection about E .



Orthogonal Projection

p0

p

ÝÑp0p

PÝÑ
E

pÝÑp0pq

PKÝÑ
E

pÝÑp0pq

p0 `
ÝÑ
E

K

E “ p0 `
ÝÑ
E

ÝÑp0p “ PÝÑ
E

pÝÑp0pq ` PK
ÝÑ
E

pÝÑp0pq



Orthogonal Projection

p0

p

ÝÑp0p

PÝÑ
E

pÝÑp0pq

PKÝÑ
E

pÝÑp0pq

p0 `
ÝÑ
E

K

E “ p0 `
ÝÑ
E

πE ppq

πE ppq“ p0`PÝÑ
E

pÝÑp0pq

ÝÑp0p “ PÝÑ
E

pÝÑp0pq ` PK
ÝÑ
E

pÝÑp0pq



Orthogonal Reflection

p0

p

ÝÑp0p

PÝÑ
E

pÝÑp0pq

PKÝÑ
E

pÝÑp0pq

p0 `
ÝÑ
E

K

E “ p0 `
ÝÑ
E

ÝÑp0p “ PÝÑ
E

pÝÑp0pq ` PK
ÝÑ
E

pÝÑp0pq



Orthogonal Reflection

SÝÑ
E

pÝÑp0pq“PÝÑ
E

pÝÑp0pq´PK
ÝÑ
E

pÝÑp0pq

SÝÑ
E

pÝÑp0pq´PKÝÑ
E

pÝÑp0pq

p0

p

ÝÑp0p

PÝÑ
E

pÝÑp0pq

PKÝÑ
E

pÝÑp0pq

p0 `
ÝÑ
E

K

E “ p0 `
ÝÑ
E

ÝÑp0p “ PÝÑ
E

pÝÑp0pq ` PK
ÝÑ
E

pÝÑp0pq



Orthogonal Reflection

SÝÑ
E

pÝÑp0pq“PÝÑ
E

pÝÑp0pq´PK
ÝÑ
E

pÝÑp0pq

SÝÑ
E

pÝÑp0pq´PKÝÑ
E

pÝÑp0pq

p0

p

ÝÑp0p

PÝÑ
E

pÝÑp0pq

PKÝÑ
E

pÝÑp0pq

p0 `
ÝÑ
E

K

E “ p0 `
ÝÑ
E

σE ppq
σE ppq“ p0`SÝÑ

E
pÝÑp0pq

ÝÑp0p “ PÝÑ
E

pÝÑp0pq ` PK
ÝÑ
E

pÝÑp0pq



Example

Let p0 “ p1, 1, 1q, p1 “ p1, 2, 3q. Let E “ affpp0, p1q be an affine
line. Compute orthogonal projection of p “ p2, 0, 1q on E .

ÝÑp0p “ p2, 0, 1q ´ p1, 1, 1q “ p1,´1, 0q, ÝÑ
E “ linpp0, 1, 2qq,

The linear projection of ÝÑp0p on
ÝÑ
E is

PÝÑ
E

pÝÑp0pq “ p1,´1, 0q ¨ p0, 1, 2q
02 ` 12 ` 22

p0, 1, 2q “ ´1
5

p0, 1, 2q.

Therefore πE ppq “ p1, 1, 1q ´ 1
5p0, 1, 2q “ 1

5p5, 4, 3q.



Intersection of Affine Subspaces

Proposition
Let E “ p ` V ,H “ q ` W Ă R

n be two affine subspaces. Then
either E X H “ H or p0 P E X H and

E X H “ p0 ` pV X W q.



Intersection of Affine Subspaces

Proposition
Let E “ p ` V ,H “ q ` W Ă R

n be two affine subspaces. Then
either E X H “ H or p0 P E X H and

E X H “ p0 ` pV X W q.

Proof.
If p0 P E X H then E “ p0 ` V and H “ p0 ` W .



Intersection of Affine Subspaces

Proposition
Let E “ p ` V ,H “ q ` W Ă R

n be two affine subspaces. Then
either E X H “ H or p0 P E X H and

E X H “ p0 ` pV X W q.

Proof.
If p0 P E X H then E “ p0 ` V and H “ p0 ` W .

Proposition
Let E “ p ` V ,H “ q ` W Ă R

n be two affine subspaces. Then
E X H ‰ H if and only if there exist v P V ,w P W such that

ÝÑpq “ v ` w .



Intersection of Affine Subspaces (continued)

Proof.
Assume ÝÑpq “ v ` w as above. Then q ´ w P H and
q ´ w “ p ` ÝÑpq ´ w “ p ` v P E .



Intersection of Affine Subspaces (continued)

Proof.
Assume ÝÑpq “ v ` w as above. Then q ´ w P H and
q ´ w “ p ` ÝÑpq ´ w “ p ` v P E . Assume that p0 P E X H. Then
ÝÑpq “ ÝÑpp0 ` ÝÑp0q where ÝÑpp0 P V and ÝÑp0q P W .



Projection as Intersection

Proposition
Let V Ă R

n be a vector subspace. For any p, q P R
n the affine

subspaces p ` V and q ` VK intersect in exactly one point.



Projection as Intersection

Proposition
Let V Ă R

n be a vector subspace. For any p, q P R
n the affine

subspaces p ` V and q ` VK intersect in exactly one point.

Proof.
By the previous lecture ÝÑpq “ PV pÝÑpqq ` PVKpÝÑpqq and
V X VK “ t0u.



Projection as Intersection

Proposition
Let V Ă R

n be a vector subspace. For any p, q P R
n the affine

subspaces p ` V and q ` VK intersect in exactly one point.

Proof.
By the previous lecture ÝÑpq “ PV pÝÑpqq ` PVKpÝÑpqq and
V X VK “ t0u.

Proposition
Let E Ă R

n be an affine subspace and let p0 P E . Then for any
p P R

n the affine subspaces p0 ` ÝÑ
E and p ` ÝÑ

E
K
intersect exactly

in the point πE ppq.



Projection as Intersection

Proposition
Let V Ă R

n be a vector subspace. For any p, q P R
n the affine

subspaces p ` V and q ` VK intersect in exactly one point.

Proof.
By the previous lecture ÝÑpq “ PV pÝÑpqq ` PVKpÝÑpqq and
V X VK “ t0u.

Proposition
Let E Ă R

n be an affine subspace and let p0 P E . Then for any
p P R

n the affine subspaces p0 ` ÝÑ
E and p ` ÝÑ

E
K
intersect exactly

in the point πE ppq.

Proof.
We know ÝÑp0p “ PV pÝÑp0pq ` PVKpÝÑp0pq. As in the previous proof the
only point of the intersection is equal to p0 ` PV pÝÑp0pq. This is
equal to πE ppq by definition.



Orthogonal Projection (again)

πE ppq“ p0`PV pÝÑp0pq

πE ppq

p0

p

PV pÝÑp0pq

E “ p0 ` V



Orthogonal Projection (again)

πE ppq“ p0`PV pÝÑp0pq

πE ppq

p0

p

PV pÝÑp0pq

E “ p0 ` V

πE ppq

πE ppq“ p0`PV pÝÑp0pq

pp0 ` V q X pp ` V Kq “ πE ppq

p ` V K



Example

Let p0 “ p1, 1, 1q, p1 “ p1, 2, 3q. Let E “ affpp0, p1q be an affine
line. Compute orthogonal projection of p “ p2, 0, 1q on E .



Example

Let p0 “ p1, 1, 1q, p1 “ p1, 2, 3q. Let E “ affpp0, p1q be an affine
line. Compute orthogonal projection of p “ p2, 0, 1q on E . We

compute the intersection of E “ p0 ` ÝÑ
E with p ` ÝÑ

E
K
. The line E

is parameterized as follows

E “ tp1, 1, 1q ` tp0, 1, 2q | t P Ru.



Example

Let p0 “ p1, 1, 1q, p1 “ p1, 2, 3q. Let E “ affpp0, p1q be an affine
line. Compute orthogonal projection of p “ p2, 0, 1q on E . We

compute the intersection of E “ p0 ` ÝÑ
E with p ` ÝÑ

E
K
. The line E

is parameterized as follows

E “ tp1, 1, 1q ` tp0, 1, 2q | t P Ru.

The orthogonal complement to
ÝÑ
E is two-dimensional hence given

by a single equation x2 ` 2x3 “ 0. The point p satisfies the
equation, therefore p ` ÝÑ

E
K
is described by x2 ` 2x3 “ 2. By

substituting the parametrization to the equation we get

p1 ` tq ` 2p1 ` 2tq “ 2 ùñ t “ ´1
5
.

Hence πE p2, 0, 1q “ p1, 1, 1q ´ 1
5p0, 1, 2q “ 1

5 p5, 4, 3q.



Example
Find a formula of an orthogonal projection onto the affine subspace
E “ affpp1, 1, 1, 1q, p1, 0, 1, 0q, p1, 1, 0, 0qq Ă R

4. The subspace E

can be written as E “ p1, 1, 1, 1q ` linpp0, 1, 0, 1q, p0, 0, 1, 1qq. We
need to find an orthogonal basis of

ÝÑ
E . Set

v1 “ p0, 1, 0, 1q, v2 “ p0, 0, 1, 1q. Then

w1 “ v1 “ p0, 1, 0, 1q,

w2 “ v2 ´ v2 ¨ w1

w1 ¨ w1
w1 “ p0, 0, 1, 1q ´ 1

2
p0, 1, 0, 1q “ 1

2
p0,´1, 2, 1q.



Example
Find a formula of an orthogonal projection onto the affine subspace
E “ affpp1, 1, 1, 1q, p1, 0, 1, 0q, p1, 1, 0, 0qq Ă R

4. The subspace E

can be written as E “ p1, 1, 1, 1q ` linpp0, 1, 0, 1q, p0, 0, 1, 1qq. We
need to find an orthogonal basis of

ÝÑ
E . Set

v1 “ p0, 1, 0, 1q, v2 “ p0, 0, 1, 1q. Then

w1 “ v1 “ p0, 1, 0, 1q,

w2 “ v2 ´ v2 ¨ w1

w1 ¨ w1
w1 “ p0, 0, 1, 1q ´ 1

2
p0, 1, 0, 1q “ 1

2
p0,´1, 2, 1q.

The vectors p0, 1, 0, 1q, p0,´1, 2, 1q form an orthogonal basis of
ÝÑ
E .

Recall πE ppq “ p0 ` PÝÑ
E

pÝÑp0pq therefore



Example
Find a formula of an orthogonal projection onto the affine subspace
E “ affpp1, 1, 1, 1q, p1, 0, 1, 0q, p1, 1, 0, 0qq Ă R

4. The subspace E

can be written as E “ p1, 1, 1, 1q ` linpp0, 1, 0, 1q, p0, 0, 1, 1qq. We
need to find an orthogonal basis of

ÝÑ
E . Set

v1 “ p0, 1, 0, 1q, v2 “ p0, 0, 1, 1q. Then

w1 “ v1 “ p0, 1, 0, 1q,

w2 “ v2 ´ v2 ¨ w1

w1 ¨ w1
w1 “ p0, 0, 1, 1q ´ 1

2
p0, 1, 0, 1q “ 1

2
p0,´1, 2, 1q.

The vectors p0, 1, 0, 1q, p0,´1, 2, 1q form an orthogonal basis of
ÝÑ
E .

Recall πE ppq “ p0 ` PÝÑ
E

pÝÑp0pq therefore

πE px1, x2, x3, x4q “ p1, 1, 1, 1q `PÝÑ
E

px1 ´1, x2 ´1, x3 ´1, x4 ´1q “

“ p1, 1, 1, 1q`x2 ` x4 ´ 2
2

p0, 1, 0, 1q`´x2 ` 2x3 ` x4 ´ 2
6

p0,´1, 2, 1q “



Example (continued)

πE px1, x2, x3, x4q “ p1, 1, 1, 1q `PÝÑ
E

px1 ´1, x2 ´1, x3 ´1, x4 ´1q “

“ p1, 1, 1, 1q`x2 ` x4 ´ 2
2

p0, 1, 0, 1q`´x2 ` 2x3 ` x4 ´ 2
6

p0,´1, 2, 1q “

“
ˆ
1,

2x2 ´ x3 ` x4 ` 1
3

,
´x2 ` 2x3 ` x4 ` 1

3
,

x2 ` x3 ` 2x4 ´ 1
3

˙
.



Example (continued)

Alternatively, by the definition π
1
E “ PÝÑ

E
, therefore if A “

»
——–

0 0
1 0
0 1
1 1

fi
ffiffifl, the

linear part of the affine projection πE is given by

MpPÝÑ
E

qstst “ ApA⊺Aq´1A⊺ “

»
———–

0 0 0 0
0 2

3 ´ 1
3

1
3

0 ´ 1
3

2
3

1
3

0 1
3

1
3

2
3

fi
ffiffiffifl .



Example (continued)

Alternatively, by the definition π
1
E “ PÝÑ

E
, therefore if A “

»
——–

0 0
1 0
0 1
1 1

fi
ffiffifl, the

linear part of the affine projection πE is given by

MpPÝÑ
E

qstst “ ApA⊺Aq´1A⊺ “

»
———–

0 0 0 0
0 2

3 ´ 1
3

1
3

0 ´ 1
3

2
3

1
3

0 1
3

1
3

2
3

fi
ffiffiffifl .

It follows that

πE px1, x2, x3, x4q “

»
———–

0 0 0 0
0 2

3 ´ 1
3

1
3

0 ´ 1
3

2
3

1
3

0 1
3

1
3

2
3

fi
ffiffiffifl

»
———–

x1

x2

x3

x4

fi
ffiffiffifl `

»
———–

1
1
3
1
3

´ 1
3

fi
ffiffiffifl ,

because πE p1, 1, 1, 1q “ p1, 1, 1, 1q.



Distance from an Affine Hyperplane

Proposition
Let E Ă R

n be an affine hyperplane given by the equation

E : a1x1 ` . . . ` anxn “ b,

equivalently
E : a⊺x “ b,

where a “ pa1, . . . , anq, x “ px1, . . . , xnq P R
n and b P R. Then the

signed distance (positive in the direction of vector a P R
n and

negative otherwise) of the point p P R
n from the affine hyperplane

E is equal to

dspp,E q “ a⊺p ´ b

‖a‖
.



Distance from an Affine Hyperplane (continued)

Proof.
The signed distance d “ dspp,E q is given by a system of equations

#
q “ p ´ d a

‖a‖ , i.e., ‖ÝÑqp‖ “
∥

∥

∥

d a
‖a‖

∥

∥

∥

“ |d |

a⊺q “ b, i.e., q belongs to E
,

where q P E is the image of point p under the affine orthogonal
projection onto E . The first equation multiplied by a⊺ on the left
gives

b “ a⊺q “ a⊺p ´ d‖a‖.



Distance from an Affine Hyperplane (continued)

Example
The signed distance of the point p “ p1, 2, 3, 4q P R

4 from the
affine hyperplane

E : x1 ´ x2 ` 2x3 ´ x4 “ 5,

is equal to

dspp,E q “ 1 ¨ 1 ` 2 ¨ p´1q ` 3 ¨ 2 ` 4 ¨ p´1q ´ 5a
12 ` p´1q2 ` 22 ` p´1q2

“ ´ 4?
7
.



Distance from an Affine Subspace

Corollary
Let E Ă R

n be an affine subspace of Rn given by the system of
linear equations $

’&
’%

a
⊺

1x “ b1
...

a
⊺

mx “ bm

,

where a1, . . . , am P R
n are pairwise orthogonal, i.e.,

ai ¨ aj “ a
⊺

i aj “ 0 for i ‰ j .

The distance of point p P R
n from the subspace E is equal to

dpp,E q “

gffe
mÿ

i“1

ˆ
a
⊺

i p ´ bi

‖ai‖

˙2

.



Distance of Parallel Affine Hyperplanes

Corollary
Let E ,H Ă R

n be two parallel affine hyperplanes given by the
equations

E : a1x1 ` . . . ` anxn “ b,

E 1 : a1x1 ` . . . ` anxn “ b1
,

equivalently
E : a⊺x “ b,

E 1 : a⊺x “ b1
,

where a “ pa1, . . . , anq, x “ px1, . . . , xnq P R
n and b, b1 P R. Then

distance between E and E 1 is equal to

dpE ,E 1q “ |b ´ b1|

‖a‖
.



Two Lines in R
n

Let L1, L2 Ă R
n be two lines in R

n. Then either

i) the lines intersect, i.e.

L1 X L2 ‰ H

a) ÝÑ
L 1 ‰ ÝÑ

L 2 (the lines intersect in exactly one point),
b) ÝÑ

L 1 “ ÝÑ
L 2 (the lines coincide).

ii) the lines are disjoint, i.e.

L1 X L2 “ H

a)
ÝÑ
L 1 ‰ ÝÑ

L 2 (the lines are skew),
b) ÝÑ

L 1 “ ÝÑ
L 2 (the lines are parallel).



Distance of Two Skew Lines in R
3

Proposition
Let

L1 “ p1 ` linpv1q,
L2 “ p2 ` linpv2q,

be two skew lines in R
3, that is pi P R

3 and vi P R
3 for i “ 1, 2. Then

the distance between line L1 and line L2 is equal to

dpL1, L2q “ |v⊺

3 pp1 ´ p2q|
‖v3‖

,

where
linpv3q “ linpv1, v2qK

.



Distance of Two Skew Lines in R
3

Proposition
Let

L1 “ p1 ` linpv1q,
L2 “ p2 ` linpv2q,

be two skew lines in R
3, that is pi P R

3 and vi P R
3 for i “ 1, 2. Then

the distance between line L1 and line L2 is equal to

dpL1, L2q “ |v⊺

3 pp1 ´ p2q|
‖v3‖

,

where
linpv3q “ linpv1, v2qK

.

Proof.
Use the formula for distance between two parallel planes containing
respectively L1 and L2. Alternatively, the distance is equal to length of
the image of the orthogonal projection of ÝÝÑp1p2 onto the subspace
linpv3q.



Distance Between Two Affine Subspaces in R
n

Proposition
Let E : Ax “ b, and H : Cx “ d , be two affine subspaces of Rn,
where A P Mps ˆ n,Rq and C P Mpt ˆ n,Rq. Assume that

i) the rows of matrix A are orthonormal,

ii) the rows of matrix C are linearly independent,

iii) the columns of matrix
„
A

C


are linearly independent.

Then the equation
„
A⊺A C⊺

C 0

 „
x

y


“

„
A⊺b

d



has a unique solution
„
x0
y0


and the distance between E and H is

equal to
dpE ,Hq “ ‖Ax0 ´ b‖.



Distance Between Two Affine Subspaces in R
n (continued)

Proof.
Let a1, . . . , as P R

n be the rows of matrix A. Then

dpp,E q “ min
xPH

gffe
sÿ

i“1

pa⊺i x ´ bi q2,

that is, we need to solve the following constrained least squares
problem:
minimize

‖Ax ´ b‖2,

under the constraints
Cx “ d .

I follow closely the proof which can be found in L. Vanderberghe’s
lecture1.

1see http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf,
slide 11.4

http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf


Distance Between Two Affine Subspaces in R
n (continued)

Proof.
Assume that Cx “ d . Then x0 is optimal since

‖Ax ´ b‖ “ ‖Apx ´ x0q ` pAx0 ´ bq‖2 “

“ ‖Apx ´ x0q‖2 ` ‖Ax0 ´ b‖2 ` 2px ´ x0q⊺A⊺pAx0 ´ bq “
(as A⊺Ax0 ` C⊺y0 “ A⊺bq

“ ‖Apx ´ x0q‖2 ` ‖Ax0 ´ b‖2 ´ 2px ´ x0q⊺C⊺y0 “

(as Cx “ Cx0 “ d , i.e., x , x0 P H)

“ ‖Apx ´ x0q‖2 ` ‖Ax0 ´ b‖2 ě ‖Ax0 ´ b‖2.



Distance Between Two Affine Subspaces in R
n (continued)

Proof.
Moreover, if x0, x 1

0 P H Ă R
n are optimal then C px0 ´ x 1

0q “ 0, and
by the first part of the proof, Apx ´ x0q “ 0, which by the condition
iiiq, gives x0 ´ x 1

0 “ 0. It can be also checked that
„
A⊺A C⊺

C 0

 „
x

y


“

„
0
0



implies that
x⊺pA⊺Ax ` C⊺yq “ 0, Cx “ 0,

Ax “ Cx “ 0,

that is x “ 0 by the condition iiiq. This implies that C⊺y “ 0,
which, by the condition iiq implies that y “ 0. Therefore, the
above matrix is non–singular.



Distance Between Two Affine Subspaces in R
n (continued)

Remark
The condition iiiq guarantees that the affine subspaces E ,H are
either disjoint or they intersect in an exactly one point.



Distance Between Two Affine Subspaces in R
n (continued)

Remark
The condition iiiq guarantees that the affine subspaces E ,H are
either disjoint or they intersect in an exactly one point.

In constrained least squares problem, that is:
minimize

‖Ax ´ b‖2,

under the constraints
Cx “ d ,

we need to assume only iiq and iiiq. Condition iq is needed to use
the formula for the distance between a point and an affine plane.



Linear Isometries

Definition
Linear transformation ϕ : Rn Ñ R

n is called a linear isometry if

‖ϕpvq‖ “ ‖v‖,

for any v P R
n.



Linear Isometries (continued)

Proposition
Let ϕ : Rn Ñ R

n be a linear transformation. The following conditions are
equivalent

i) ϕ is an isometry,

ii) for any v ,w P R
n

ϕpvq ¨ ϕpwq “ v ¨ w ,

iii) for any (or some) orthonormal basis A of Rn if A “ MpϕqA
A

then

A⊺A “ I ,

i.e. the matrix A is orthogonal.

Proof.
Exercise.



Orthogonal Group

Definition
The group

Opnq “ tϕ : Rn ÝÑ R
n | ϕ is a linear isometryu,

is called the orthogonal group.

Example
Any orthogonal linear symmetry is a linear isometry.



Affine Isometries

Definition
Affine transformation f : Rn Ñ R

n is called a linear isometry if

dpf ppq, f pqqq “ dpp, qq,

for any p, q P R
n.

Proposition
Let f : Rn Ñ R

n be an affine transformation. Then it is equal to an linear
isometry followed by a translation. In particular

ÝÑ
f P Opnq.

Proof.
Let f p0q “ q. Let

rf pqq “ f pqq ` ÝÑ
p0.

Then rf is a linear isometry, hence

f “ t
´

ÝÑ
p0 ˝ rf .



Affine Orthogonal Group

Definition
The group

AOpnq “ tf : Rn ÝÑ R
n | f is an affine isometryu,

is called the affine orthogonal group. The group

T pnq “ ttv : Rn ÝÑ R
n | v P R

nu,

is called the translation group.



Affine Orthogonal Group (continued)

Proposition
For any affine isometry ϕ : Rn ÝÑ R

n and any vector v P R
n

f ˝ tv ˝ f ´1 “ tf pvq.

Proof.
Exercise.



Affine Orthogonal Group

Corollary
The affine orthogonal group is a semidirect product of groups T pnq and
Opnq, i.e.

AOpnq “ T pnq ˙ Opnq,
in particular

i) OpnqT pnq “ AOpnq, Opnq X T pnq “ tidu, T pnq Ÿ AOpnq,
ii) for any f P AOpnq there exist unique ϕ P Opnq, v P R

n such that
f “ ϕ ˝ tv ,

iii) for any f P AOpnq there exist unique ϕ P Opnq, v P R
n such that

f “ tv ˝ ϕ,

iv) the sequence

1 Ñ T pnq Ñ AOpnq Ñ Opnq Ñ 1,

is exact.



Center of Mass

Let p1, . . . , pk P R
n be a points of mass m1, . . . ,mk P R such that

M “
řk

i“1mi ‰ 0 (negative mass is allowed).

Definition
The center of mass of points p1, . . . , pk is the affine combination

p “ 1
M

kÿ

i“1

mipi .

Proposition
When M ą 0 (resp. M ă 0) the center of mass minimizes (resp.
maximizes) the weighted sum of squared distances to points
p1, . . . , pk , i.e.

p “ argmin
pPRn

kÿ

i“1

mi‖p ´ pi‖
2
.



Center of Mass (continued)

Proof.
Assume M ą 0. Let

f ppq “ Mp⊺p ´ 2
kÿ

i“1

p⊺pi .

We need to show that
p “ argmin

pPRn

f ppq.

Note that

∇f ppq “ 2Mp ´ 2
kÿ

i“1

mipi ,

therefore
∇f ppq “ 0.



Center of Mass (continued)

Proof.
Moreover D2f “ I , and by the multivariate Taylor’s formula

f pp ` hq “ f ppq ` 2M
1
2!
h⊺h,

which proves that at p P R
n the function f attains its global

minimum.



Affine Independence

Proposition
Points p0, . . . , pk P R

n are affine dependent if and only if there
exist a0, . . . , ak P R not all equal to 0 such that

kÿ

i“0

aipi “ 0,
kÿ

i“0

ai “ 0.

Proof.
Easy exercise. If say a0 ‰ 0, dividing by a0 we see that p0 is an
affine combination of p1, . . . , pk . The converse is proven in a
similar way.

Corollary
Points p0, . . . , pk P R

n are affinely dependent if and only if vectors
pp0, 1q, . . . , ppk , 1q P R

n`1 are linearly dependent.



Affine Independence (continued)

Example
Points px1, y1q, px2, y2q, px3, y3q P R

2 are colinear if and only if

det

»
–
x1 y1 1
x2 y2 1
x3 y3 1

fi
fl “ 0.

Points px1, y1, z1q, px2, y2, z2q, px3, y3, z3q, px4, y4, z4q P R
3 are

coplanar if and only if

det

»
——–

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

fi
ffiffifl “ 0.


