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Affine Space

Definition
An affine space E over a vector space V is any set E with a map

+ ExV —E,

satisfying the following conditions
i) p+0=pforany peE,
i) (p+v)+w=p+(v+w)forany pe E,v,we V
(associativity),
iii) for any p, g € E there exits a unique vector pg € V such that
p+pg=aq.
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Properties of Affine Space

Let E be an affine space over V.

Proposition
For any p,q,re E
i) PP=0,
i) pg -+ at — B,
i) gp = —pa.
Proof.
i) p+0=np,

i) p+(PG+qF)=(p+p4) +qF =q+qfr =r,



Properties of Affine Space

Let E be an affine space over V.

Proposition
For any p,q,re E
i) PP=0,
i) pg -+ at — B,
i) gp = —pa.
Proof.
i) p+0=np,

i) p+(Pad+a) =(p+pd) +at =q+q =r,
iii) follows form i) and ii) for r = p.



Affine Space (continued)

Remark
Elements of the set E are called points and elements of vector
space V are called vectors.
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Remark

Elements of the set E are called points and elements of vector
space V are called vectors. The point p + v can be thought of as
point p translated by the vector v and p§ can be thought of as the
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Affine Space (continued)

Remark

Elements of the set E are called points and elements of vector
space V are called vectors. The point p + v can be thought of as
point p translated by the vector v and p§ can be thought of as the
vector with the tail at p and the head at q. Note that there is no
distinguished point in an affine space.

Remark
For any p € E the map

Vaove—p+veE,

is a bijection.



Affine Space (continued)

Proof.

It is injective
(p+tv=pt+w=gq)=(v=w=pjg),

and surjective
qg=p+pg.
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Definition
For any v € V the translation by v is the map

t,: Eap—p+vekE.
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Translation

Definition
For any v € V the translation by v is the map

t,: Eap—p+vekE.

Proposition
For any v € V the translation t, is a bijection.

Proof.

It is injective
(ptv=qtv=r)=(v=pl =qf)= (p=r+m =r+714 = q),

and surjective
t(g—v)=gq.
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Affine Subspace
Definition
Let E be an affine space over V. For any p € E and any subspace
W of the vector space V the set

F=p+W={p+weE|we W}

is called an affine subspace of E. 'Ille subspace W is called the
direction of F and it is denoted by F = W. The dimension of F
is defined to be the dimension of W, i.e. dim F = dim W.

Remark

The 0-dimensional affine subspaces are called points, the
1-dimensional affine subspaces are called lines, the 2-dimensional
affine subspaces are planes.

Remark
The affine space F = p + W is invariant under translations t,, for
anywe W, je.

tw(F) =F.



Affine Subspace (continued)

Proposition
Let F = p+ W be an affine subspace of E. Then for any g € F

F=p+W=qg+W.



Affine Subspace (continued)

Proposition
Let F = p+ W be an affine subspace of E. Then for any g € F

F=p+W=qg+W.

Proof.
Since g € F then g = p+ w for some we W, i.e. p§ = w.
Therefore

g+W=(p+w)+W=p+ W.
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Forany qre F=p+ W
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i.e. any vector joining two points of an affine subspace F belongs
to its direction F = W.
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Proposition
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i.e. any vector joining two points of an affine subspace F belongs
to its direction F = W.

Proof.
Since g = p+ pd,r = p + pF, both pg, pf € W and

qf =gp+pre W.



Affine Subspace (continued)

Proposition
Forany qre F=p+ W

qre W,

i.e. any vector joining two points of an affine subspace F belongs
to its direction F = W.

Proof.
Since g = p+ pd,r = p + pF, both pg, pf € W and

qf =gp+pre W.

Remark
Note that any affine subspace F is an affine space over W = F
with the operation + restricted to F x W.



Affine Combination

Let E be an affine space over V.

Definition
Let po, ..., pk € E be points. For any a; € R such that Z,I'(zo ai=1
and any point p € E the point

k k
ZaiPi =P+ZaiP_P7
i=0 i=0

is called the affine combination of pg, ..., pk.



Affine Combination

Let E be an affine space over V.

Definition
Let po, ..., pk € E be points. For any a; € R such that Z,I'(zo ai=1
and any point p € E the point

k k
ZaiPi =P+ZaiP_P7
i=0 i=0

is called the affine combination of pg, ..., pk.

Proposition
For any p,qe E

k k
p+ Y. aippi = q+ Y, 2P
i—0 i=0



Affine Combination (continued)

Proof.

k k k
q+ ) aqp = q+ ), a(@+pp) = p+ ), app:
i=0 i=0 i=0

Corollary
The affine combination of py, ..., px does not depend on the point
peE.



Affine Combination (continued)

Corollary
Let F = p+ W be an affine subspace. Then any affine
combination of py,...,px € F belongs to F, i.e. any affine
subspace is closed under taking affine combinations.
Proof.
For any Zf‘(zo ai=1

k k

D aipi=po+ Y, aipop; € F,

i=0 i=0

because pgp; € W for i = 0,..., k.
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The Main Example of Affine Space

Example
Any vector space V is an affine space over itself with the operation
+ being the vector addition from V and

P4 =q—p.

Remark
Any affine space can be obtained in this way.
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Affine Space R”

Remark
From now on we will be dealing only with the affine space R”
(as a vector space over itself) and its affine subspaces of the
form

E=p+V,

where V — R" is a subspace. In this case the operation + is the
usual addition of n—tuples.

Example
Let p = (17171)7q = (17273) Then p—q> =q—p= (07172)

Example
Let p = (1,—1) and V =1in((2,3)) = R2. Then

E=p+V={1+2t,—-1+3t)eR?|teR}.



Affine Span

Definition
Let po, ..., px € R". The affine span (or the affine hull) of
Po,-- -, Pk is the set of all affine combinations of pg,..., pk, i.e.

aff(po, ..., px) = {Za,p,e]R” Za,—l}



Affine Span

Definition
Let po, ..., px € R". The affine span (or the affine hull) of
Po,-- -, Pk is the set of all affine combinations of pg,..., pk, i.e.

aff(po,...,pk) = {Za,p,e]R”Za,—l}

Proposition
Let pg,...,px € R". Then

aff(po, ..., pk) = po + lin(Popi, - - . , PoPk)-



Affine Span (continued)

Proof.
Let 3% ya; = 1. Then

k k

Z ajpi = po + Z aipop; € po + lin(popi,
i=0 =0

<. POPK)-



Affine Span (continued)

Proof.
Let 3% ya; = 1. Then
k k
Z ajpi = po + Z aipop; € po + lin(popi, . . ., Popk)-
i=0 i=0
Assume p = pg + Zf-;l a;popk € po + lin(popi, - - -, Popk) for some
ai,...,ax € R. Then
k
p=(1- Z aj)po + Z a;Pk-
i=1 i=1



Affine Span (continued)

Proof.
Let 3% ya; = 1. Then

k k

Z ajpi = po + Z a;pop; € po + lin(popi, - -

i=0 i=0

k — s
Assume p = pg + >./_; aiPopPk € po + lin(popi, . ..

, POPk)-

, Popk) for some

ai,...,ax € R. Then
k
p=(1- Z aj)po + Z a;Pk-
i=1 i=1
O
Corollary
The affine subpace aff(py, . .., px) is the smallest affine subspace of

R" containing points po, ..., Pk-



Affine Span—Example

Let po = (17 1, 1)7P1 = (17273)7p2 = (3727 1) Then



Affine Span—Example

Let po = (17 1, 1)7P1 = (17273)7p2 = (3727 1) Then
pop1 = (0,1,2),

pop3 = (2,1,0).



Affine Span—Example

Let po = (17 1, 1)7P1 = (17273)7p2 = (3727 1) Then
pop1 = (0,1,2),

pop3 = (2,1,0).

aff((1,1,1),(1,2,3),(3,2,1)) = (1,1,1) + lin((0, 1,2), (2,1,0))).



Parametrization

Definition
Let E = p +lin(vy,...,vk) € R" where vectors vq, ..., v are
linearly independent (i.e. vq,..., vk is a basis of ?) Then any

point g € E can be uniquely written as

k

g=p+ Z tiv;.
i=1

Any such presentation of E is called a parametrization.



Parametrization

Definition
Let E = p +lin(vy,...,vk) € R" where vectors vq, ..., v are
linearly independent (i.e. vq,..., vk is a basis of ?) Then any

point g € E can be uniquely written as

k

g=p+ Z tiv;.
i=1

Any such presentation of E is called a parametrization.

Example

E =(1,1,1) +1in((0,1,2), (2,1,0))
= (1,2,3) +1in((0,1,2), (1,1,1))

that is (1 4+ 2tp,1 + t; + tp,1 + 2t1), t1,tp € R and
(1+ t, 24+ t; + tp,3 42t + t), t1,t2 € R are two different
parametrizations of E.
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Parallel Affine Subspaces

Definition
Two affine subspaces E, H of R” are called parallel if E =H.

Proposition

Any affine subspace E of R" is equal to a set of solutions of a
(possibly non—homogeneous) system of linear equations in n
variables.

Proof.
There exists a homogeneous system of linear equations describing
the vector subspace E

aitxy + ampxe + ... +  aipXn
ai1xy + axpXe + ... +  apXp

o O

E:

amX1 + ampxo + ... + ampxp =0



Proof.
Lethp—i—?. If p=(y1,...,yn) set

by = auyr + awy: + +  ainyn
by = axny1 + axny: + +  anyn
bm= amyr + amay2 + +  amnyn



Proof.
Lethp—i—?. If p=(y1,...,yn) set

by = auyi + a2y + ... + awyn
b= any1r + axny: + ... + auyn
bm= amyr + amy2 + ... + amnYn

Then the affine subspace E is described by

aiixy + apxe + ... 4+ aipxn =b;
axy + axxs + ... + amx, = b

amx1 + amex2 + ... + ampXp = bpm



Proof.
Lethp—i—?. If p=(y1,...,yn) set

by = auyi + a2y + ... + awyn
b= any1r + axny: + ... + auyn
bm= amyr + amy2 + ... + amnYn

Then the affine subspace E is described by

ajixy + apxe + ... + aipxn = b
axy + axxs + ... + amx, = b
amXxy + ameXe + ... + amnXn = bm

[l
The constants by, ..., b, do not depend on the point p € E since
any two points in E differ by a vector from E.
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Example

Describe by a system of linear equations an affine subspace E parallel to
V = {(x1,x,x3) € R®| x; + xo + x3 = 0} passing through p = (2,3,4).
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Example

Describe by a system of linear equations an affine subspace E parallel to
V = {(x1,x,x3) € R®| x; + xo + x3 = 0} passing through p = (2,3,4).

E:xi+x+x3=0.

Example

Describe by a system of linear equations the affine subspace E = p + V
in R* where

p=(1,1,2,1), V =1lin((1,1,3,0),(1,0,1,0),(0,1,2,0)).



Examples

Example

Describe by a system of linear equations an affine subspace E parallel to
V = {(x1,x,x3) € R®| x; + xo + x3 = 0} passing through p = (2,3,4).

E:xi+x+x3=0.

Example

Describe by a system of linear equations the affine subspace E = p + V
in R* where

p=(1,1,2,1), V =1lin((1,1,3,0),(1,0,1,0),(0,1,2,0)).

Vectors (1,0,1,0),(0,1,2,0) form a basis of V. Therefore V is described
by the system of equations

V- {Xl + 2% — X3 =0
X4 =0



Examples (continued)

Example
Recall E = (1,1,2,1) + V. Therefore

E- {Xl + 2x — X3 =1
X4 =1

Definition
For any p, g € R" the distance between p and q is |pg|. It is
denoted d(p, q).
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Example
Recall E = (1,1,2,1) + V. Therefore

E- {Xl + 2x — X3 =1
X4 =1

Definition
For any p, g € R" the distance between p and q is |pg|. It is
denoted d(p, q).

It has the following properties:
i) d(p,q) =0and (d(p,q) =0 <= p=q),
i) d(p,q) = d(q, p) (symmetry),
iii) d(p,r) <d(p,q)+ d(q,r) (triangle inequality).



Examples (continued)

Example
Recall E = (1,1,2,1) + V. Therefore

E- {Xl + 2x — X3 =1
X4 =1

Definition
For any p, g € R" the distance between p and q is |pg|. It is
denoted d(p, q).

It has the following properties:
i) d(p,q) =0and (d(p,q) =0 <= p=q),
i) d(p,q) = d(q, p) (symmetry),
iii) d(p,r) <d(p,q)+ d(q,r) (triangle inequality).
The affine space R"” equipped with a function satisfying above
properties (called metric) becomes a metric space.
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orthogonal if v L w for every v € E,we H.



Affine Transformation

Definition
Let E, H c R" be two affine subspaces. We say that E, H are
orthogonal if v L w for every v € E,we H.

Definition
Let E c R",H < R™ be two affine subspaces. A function
f: E —> H satisfying the condition

f(p+a)=f(p) +f(a),

(or equivalently f(p)f(p + a) = f/(a)) ,

. . —> —_—>
for some p € E, some linear transformation f': E — H and any
a € E is called an affine transformation.



Affine Transformation

Definition
Let E, H c R" be two affine subspaces. We say that E, H are
orthogonal if v L w for every v € E,we H.

Definition
Let E c R",H < R™ be two affine subspaces. A function
f: E —> H satisfying the condition

f(p+a)=f(p) +f(a),

(or equivalently f(p)f(p + a) = f/(a)) ,

for some p € E, some linear transformation f': F — H and any
a € E is called an affine transformation.

If ge E then f(g+a) = f(p+pd+a)=f(p)+f(pg) + f(a) =
= f(q) + f'(«) therefore the condition in the definition holds for
any pe E.



Properties of Affine Transformation

Proposition
Let E, H be two affine subspaces. Then f: E — H is an affine
transformation if and only if

K K
f (Z 3iPi> = > aif(pi),
i=0 i=0

for any p; € E and a; € R such that Zf'(:o ai = 1.



Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then f: E — H is an affine

transformation if and only if

K K
f (Z 3iPi> = > aif(pi),
i=0 i=0

for any p; € E and a; € R such that Zf'(:o aj=1.
Proof.

(=) Assume that f is an affine transformation. Then

i=0 i=0 i=0

k
= f(po) + Y a (f(po)f(Pi)) = D, aif(pi).
i=0

i=0

k k k
f <Z a,-p,-) =f <pg + Z a/iTP?) = f(po) + Z aif'(pop;)



Properties of Affine Transformation (continued)

Proof.
(<) Assume that function f satisfies the condition of the
Proposition for k = 1. Let pg, p1 € E be any points and a € R, then

f((1—a)po + ap1) = f(po + apopi) = (1 — a)f (po) + af (p1) =

= f(po) + af (po) f (p1).-



Properties of Affine Transformation (continued)

Proof.
(<) Assume that function f satisfies the condition of the
Proposition for k = 1. Let pg, p1 € E be any points and a € R, then

f((1—a)po + ap1) = f(po + apopi) = (1 — a)f (po) + af (p1) =

= f(po) + af (po) f (p1).-

It is enough to define

_—

f'(Pop1) = f(po)f(p1),

and check that f’ is well-defined and linear.



Properties of Affine Transformation (continued)

Proof.
(<) Assume that function f satisfies the condition of the
Proposition for k = 1. Let pg, p1 € E be any points and a € R, then

f((1—a)po + ap1) = f(po + apopi) = (1 — a)f (po) + af (p1) =

= f(po) + af (po)f (p1)-

It is enough to define
—_—

f'(Pop1) = f(po)f(p1),

and check that ' is well-defined and linear. We omit the details of
the proof. O



Formula of an Affine Transformation

Remark
Any affine transformation f: R" — R™ js given by a formula

f((Xl,Xz, - ,Xn)) = (311X1 + aioxo + ...+ aipXn + bl, ceey
amiX1 + ameXxo + ...+ @mnXn + bm)a

where ajj, b € R. The linear transformation f' has matrix

all ... din
/\st __
M(f)st_
dmi --- dmn

in standard bases (and it is equal to the total derivative of f at any
point p e R").



Formula of an Affine Transformation

Remark
Any affine transformation f: R" — R™ js given by a formula

f((Xl,Xz, - ,Xn)) = (311X1 + aioxo + ...+ aipXn + bl, ceey
amiX1 + ameXxo + ...+ @mnXn + bm)a

where ajj, b € R. The linear transformation f' has matrix

all ... din
/\st __
M(f)st_
dmi --- dmn

in standard bases (and it is equal to the total derivative of f at any
point p e R").

Proof.
Choose p = (0,...,0),a = (x1,...,X,) SO
fF((x1y..yxn)) = F((0,...,0)) + F((x1,.-.,%n))- O



Affine Orthogonal Projection and Reflection

Definition
Let E — R" be an affine subspace and let py € E. The affine
transformation g : R” — R” defined by

me(p) = me(po + Pob) = po + P2 (PoP);

where P? is the (linear) orthogonal projection on E, is called an

(affine) orthogonal projection on E.



Affine Orthogonal Projection and Reflection

Definition
Let E — R" be an affine subspace and let py € E. The affine
transformation g : R” — R” defined by

me(p) = me(po + Pob) = po + P2 (PoP);

where P? is the (linear) orthogonal projection on E, is called an

(affine) orthogonal projection on E.
The transformation og : R" — R" defined by

oe(p) = oe(po + Pop) = po + Sf(W?),

where 5—E> is the (linear) orthogonal reflection about E, is called

an (affine) orthogonal reflection about E.



Orthogonal Projection

—1

po+ E

P (pop) _, I
Pop = P?(POP) + P?(POP)

Po




Orthogonal Projection

—1

po+ E

P (Pop)

Po




Orthogonal Reflection

—1

po+ E

P (pop) _, I
Pop = P?(POP) + P?(POP)

Po




Orthogonal Reflection

—1

po+ E

P (Pop)

Po

—P= (pop)




Orthogonal Reflection

—1

po+ E

P (Pop)

- — 1l (=
Pop = P?(POP) + P?(POP)
Po

—

Sg (PoP)=Pg (Pop)~ Pz (PoP)

—P, (pop .
(PoP) 7¢(p)= pot S (Pep)




Example

Let po = (1,1,1),p1 = (1,2,3). Let E = aff(pp, p1) be an affine
line. Compute orthogonal projection of p = (2,0,1) on E.

pop = (2,0,1) — (1,1,1) = (1,-1,0), E = lin((0,1,2)),
The linear projection of pgp on Eis

(1,-1,0)-(0,1,2)

Prrrz OhY=

(0,1,2).

P2 (op) = -2

Therefore mg(p) = (1,1,1) — %(0, 1,2) = %(5,47 3).



Intersection of Affine Subspaces

Proposition

Let E=p+ V,H=q+ W < R" be two affine subspaces. Then
either EnH= & orpgpe En H and

EnH=py+ (VW)



Intersection of Affine Subspaces

Proposition
Let E=p+ V,H=q+ W < R" be two affine subspaces. Then
either EnH= & orpgpe En H and

EnH=py+ (VW)

Proof.
If poe En Hthen E=py+ V and H=py+ W.



Intersection of Affine Subspaces

Proposition
Let E=p+ V,H=q+ W < R" be two affine subspaces. Then
either EnH= & orpgpe En H and

EnH=py+ (VW)

Proof.
If poe En Hthen E=py+ V and H=py+ W.

Proposition
Let E=p+ V,H=q+ W < R" be two affine subspaces. Then
E n H # & if and only if there exist ve V,w e W such that

pd =v+w.



Intersection of Affine Subspaces (continued)

Proof.
Assume pg = v + w as above. Then g — w € H and
g—w=p+pj—w=p+veE.



Intersection of Affine Subspaces (continued)

Proof.
Assume pg = v + w as above. Then g — w € H and
g—w=p+pGg—w=p+veE. Assume that pg € E n H. Then

Pg = ppg + Pod where ppg € V and pog € W. O



Projection as Intersection

Proposition
Let V < R" be a vector subspace. For any p, q € R" the affine
subspaces p + V and q + V* intersect in exactly one point.
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Let V < R" be a vector subspace. For any p, q € R" the affine
subspaces p + V and q + V* intersect in exactly one point.

Proof.

By the previous lecture pg = Py(pg) + Py.(pg) and
VnVvt={o}.



Projection as Intersection

Proposition
Let V < R" be a vector subspace. For any p, q € R" the affine
subspaces p + V and q + V* intersect in exactly one point.

Proof.

By the previous lecture pg = Py(pg) + Py.(pg) and
VnVvt={o}. O

Proposition
Let E c R" be an affine subspace and let py € E. Then for any

. — —1 .
p € R" the affine subspaces py + E and p+ E  intersect exactly
in the point g (p).



Projection as Intersection

Proposition
Let V < R" be a vector subspace. For any p, q € R" the affine
subspaces p + V and q + V* intersect in exactly one point.

Proof.

By the previous lecture pg = Py(pg) + Py.(pg) and
VnVvt={o}. O

Proposition
Let E c R" be an affine subspace and let py € E. Then for any

. — —1 .
p € R" the affine subspaces py + E and p+ E  intersect exactly
in the point g (p).

Proof.

We know pop = Py (pop) + PyL(pop). As in the previous proof the
only point of the intersection is equal to py + Py (pop). This is
equal to mg(p) by definition. O



Orthogonal Projection (again)

viPoP 7e(p)= po+Pv(pop)




Orthogonal Projection (again)

p+ Vi

7e(p)= po+Pv(Pop)

(po+ V) (p+ V5 =7c(p)




Example

Let po = (1,1,1),p1 = (1,2,3). Let E = aff(py, p1) be an affine
line. Compute orthogonal projection of p = (2,0,1) on E.



Example

Let po = (1,1,1),p1 = (1,2,3). Let E = aff(py, p1) be an affine
line. Compute orthogonal projection of p = (2,0,1) on E. We

. . . L .
compute the intersection of E = pg + E with p+ E . The line E
is parameterized as follows

E=1{(1,1,1) + t(0,1,2) | t € R}.



Example

Let po = (1,1,1),p1 = (1,2,3). Let E = aff(py, p1) be an affine
line. Compute orthogonal projection of p = (2,0,1) on E. We
compute the intersection of E = pg + E with p+ ?l. The line E
is parameterized as follows

E=1{(1,1,1) + t(0,1,2) | t € R}.

The orthogonal complement to E is two-dimensional hence given
by a single equation x» + 2x3 = 0. The point p satisfies the

. 1. .
equation, therefore p + E is described by xo + 2x3 = 2. By
substituting the parametrization to the equation we get

(1+t)+2(1+2t)=2:>t=—§.

Hence mg(2,0,1) = (1,1,1) — £(0,1,2) = £(5,4,3).



Example

Find a formula of an orthogonal projection onto the affine subspace
E = aff((1,1,1,1),(1,0,1,0),(1,1,0,0)) = R*. The subspace E
can be written as E = (1,1,1,1) +1in((0,1,0,1),(0,0,1,1)). We
need to find an orthogonal basis of E. Set

vi = (0,1,0,1),v» = (0,0,1,1). Then

wp =vi = (0,1,0, 1)7

Vo - W1

Wy = v — W1=(0,0,1,1)—

1 1
-(0,1,0,1) = =(0,—-1,2,1).
Wy - wy 2(07 707 ) 2(07 P )



Example

Find a formula of an orthogonal projection onto the affine subspace
E = aff((1,1,1,1),(1,0,1,0),(1,1,0,0)) = R*. The subspace E
can be written as E = (1,1,1,1) +1in((0,1,0,1),(0,0,1,1)). We
need to find an orthogonal basis of E. Set

vi = (0,1,0,1),v» = (0,0,1,1). Then

wp =vi = (0,1,0, 1)7

Vo - W1

1
Wy = vy — wy = (0,0,1,1) — 5(0,1,0,1) = 2(0,~1,2,1).

1
wi - W1 2
The vectors (0,1,0,1), (0,—1,2,1) form an orthogonal basis of E.
Recall me(p) = po + P?(W) therefore



Example

Find a formula of an orthogonal projection onto the affine subspace
E = aff((1,1,1,1),(1,0,1,0),(1,1,0,0)) = R*. The subspace E
can be written as E = (1,1,1,1) +1in((0,1,0,1),(0,0,1,1)). We
need to find an orthogonal basis of E. Set

vi = (0,1,0,1),v» = (0,0,1,1). Then

wp =vi = (0,1,0, 1)7

Vo - W1

1
Wy = vy — wy = (0,0,1,1) — 5(0,1,0,1) = 2(0,~1,2,1).

1
wi - W1 2
The vectors (0,1,0,1), (0,—1,2,1) form an orthogonal basis of E.
Recall me(p) = po + P?(W) therefore

TE(X1, X2, X3, X4) = (1,1,1,1)+P?(X1 —1x—1x3—1,x—1) =

—xp +2x3 + x4 — 2
6

-2
_ (1’1,1’1)4_%

(0)17071)_‘_ (07_1)27 1) =




Example (continued)

7TE(X1,X2,X3,X4) = (1,1,1,1)+P?(X1 —1,X2—1,X3—1,X4—1) =

-2 - 2 -2

— (L1112 0,1,0,1)+ 2T S0 _1,01)
_ <1 2% —x3+ x4 +1 —x0+2x3+x4 +1
) 3 ) 3 )

X2+X3+2X4—1>
3 .



Example (continued)

00
Alternatively, by the definition 7 = PT:_>, therefore if A = é 2 , the
11
linear part of the affine projection g is given by
0 0 0 0
. o 2 _1 1
M(Pp)s = AATA AT = | TS
Lod
0 3 3 3



Example (continued)

0 O
Alternatively, by the definition 7 = PT:_>, therefore if A = é 2 , the
11
linear part of the affine projection g is given by
0 0 0 0
. 0 2 _1 1
M(Pp)E = AT AT | 3T
Dol
0 3 3 3
It follows that
0 0 0 0| |x 1
0 2 _1 1| 1
TE(X1, X2, X3, X4) = 0 _i 2 i x2 + i )
RN
0 3 3 35]lx —3
because m¢(1,1,1,1) = (1,1,1,1).



Distance from an Affine Hyperplane

Proposition
Let E — R" be an affine hyperplane given by the equation

E:aixq+...4+anx, = b,

equivalently
E:a'x = b,

where a = (a1,...,ap),x = (x1,...,%,) € R" and b e R. Then the
signed distance (positive in the direction of vector a € R" and
negative otherwise) of the point p € R" from the affine hyperplane
E is equal to

alp—>b

ds(pv E) = ||a||



Distance from an Affine Hyperplane (continued)

Proof.
The signed distance d = ds(p, E) is given by a system of equations
9 = p—dpy = gz = 1a
alg = b, i.e., g belongs to E

where g € E is the image of point p under the affine orthogonal
projection onto E. The first equation multiplied by aT on the left
gives

b=aTq=a'p—d|al.



Distance from an Affine Hyperplane (continued)

Example
The signed distance of the point p = (1,2,3,4) € R* from the

affine hyperplane
E:xy —x+2x3 — x4 =5,
is equal to

1-1+2-(— )+3~2+4-(—1)—5_ 4
V124 (-1)2 4224 (-1)2

ds(p, E) =

)



Distance from an Affine Subspace

Corollary

Let E — R" be an afhine subspace of R" given by the system of
linear equations

a{x = b1
: 9
allx = by
where a1, ...,am € R" are pairwise orthogonal, i.e.,

aj-aj=alaj=0 for i#].

The distance of point p € R" from the subspace E is equal to

- ()

2\ T




Distance of Parallel Affine Hyperplanes

Corollary

Let E,H c R" be two parallel affine hyperplanes given by the
equations
E:aixq+...4+anx, = b,

E':aixi+...4+apxp= b,

equivalently
E:a'x = b,

E':a'x=1",

where a = (a1,...,an), x = (x1,...,x,) € R" and b, b’ € R. Then
distance between E and E’ is equal to

b b
d(E.E) =g




Two Lines in R”

Let L1,L, < R" be two lines in R"”. Then either

i) the lines intersect, i.e.

Lnkb#g

a) T+ Ly (the lines intersect in exactly one point),

—

b) Tl = L, (the lines coincide).
i) the lines are disjoint, i.e.
Linbh=¢g

# 22 (the lines are skew),
= L, (the lines are parallel).



Distance of Two Skew Lines in R3

Proposition

Let
Ly =p1 + |in(V1),
Ly =pr + Iin(v2),

be two skew lines in R3, that is p; e R3 and v; e R3 for i = 1,2. Then
the distance between line Ly and line L, is equal to

vl (p1 —
d(Lla L2) = | 2 (|p]‘-/3| p2)|

where
|in(V3) = |in(V1, V2)L.



Distance of Two Skew Lines in R3

Proposition
Let
Ly =p1 + |in(V1)7

Ly =pr + Iin(v2),

be two skew lines in R3, that is p; e R3 and v; e R3 for i = 1,2. Then
the distance between line Ly and line L, is equal to

T —
d(Ly, Ly) = v (I|31V3| p2)|

where
|in(V3) = |in(V17 V2)L

Proof.

Use the formula for distance between two parallel planes containing
respectively L; and L,. Alternatively, the distance is equal to length of
the image of the orthogonal projection of p1p3 onto the subspace

lin(vs). O



Distance Between Two Affine Subspaces in R”

Proposition
Let E: Ax = b, and H: Cx = d, be two affine subspaces of R",
where A€ M(s x n,R) and C € M(t x n,R). Assume that

i) the rows of matrix A are orthonormal,

i) the rows of matrix C are linearly independent,

iii) the columns of matrix [?} are linearly independent.

e WS

;0] and the distance between E and H is
0

Then the equation

has a unique solution {

equal to
d(E, H) = || Axo — bl



Distance Between Two Affine Subspaces in R” (continued)

Proof.
Let ay,...,as € R" be the rows of matrix A. Then

that is, we need to solve the following constrained least squares

problem:
minimize
|Ax — b])?,
under the constraints
Cx =d.

| follow closely the proof which can be found in L. Vanderberghe's

lecture!.

'see http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf,
slide 11.4


http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf

Distance Between Two Affine Subspaces in R” (continued)

Proof.

Assume that Cx = d. Then xp is optimal since
IAx = Bl = [[A(x = x0) + (Axo — b)||* =

= [|A(x — x0) 1> + [[Axo — b]|* + 2(x — x0)TAT(Axo — b) =
(as ATAxg + CTyy = ATb)

= |JA(x — x0)||” + || Axo — b||* — 2(x — x0)TCTyp =
(as Cx = Cxp = d, i.e., x,xp € H)

= [|A(x — x0)||* + || Axo — b||* = [|Axo — b]|*.



Distance Between Two Affine Subspaces in R” (continued)

Proof.

Moreover, if xp,xy € H < R" are optimal then C(xg — x}) = 0, and
by the first part of the proof, A(x — xp) = 0, which by the condition
iii), gives xo — xy = 0. It can be also checked that

g |t

xT(ATAx + CTy) =0, Cx =0,
Ax =Cx =0,

implies that

that is x = 0 by the condition Jii). This implies that CTy = 0,
which, by the condition /i) implies that y = 0. Therefore, the
above matrix is non—singular. O



Distance Between Two Affine Subspaces in R” (continued)

Remark
The condition iii) guarantees that the affine subspaces E, H are
either disjoint or they intersect in an exactly one point.



Distance Between Two Affine Subspaces in R” (continued)

Remark
The condition iii) guarantees that the affine subspaces E, H are
either disjoint or they intersect in an exactly one point.

In constrained least squares problem, that is:
minimize
|IAx — b||?,
under the constraints
Cx =d,

we need to assume only ii) and iii). Condition i) is needed to use
the formula for the distance between a point and an affine plane.



Linear Isometries

Definition
Linear transformation ¢: R” — R" is called a linear isometry if

leW)Il = IIvIl,

for any v e R".



Linear Isometries (continued)

Proposition
Let ¢: R" — R" be a linear transformation. The following conditions are
equivalent

i) @ is an isometry,

ii) for any v,w e R"
p(v) - p(w) =v-w,

iii) for any (or some) orthonormal basis A of R" if A = M(y)% then
ATA = I,

i.e. the matrix A is orthogonal.

Proof.

Exercise. O



Orthogonal Group

Definition
The group

O(n) = {¢: R" — R" | v is a linear isometry},
is called the orthogonal group.

Example
Any orthogonal linear symmetry is a linear isometry.



Affine Isometries

Definition
Affine transformation f: R" — R" is called a linear isometry if

d(f(p),f(q)) =d(p,q),

for any p,q € R".

Proposition
Let f: R" — R" be an affine transformation. Then it is equal to an linear
isometry followed by a translation. In particular fe O(n).

Proof.
Let f(0) = g. Let

f(q) = f(q) + pO.

Then f is a linear isometry, hence

f:t_mof.



Affine Orthogonal Group

Definition
The group

AO(n) = {f: R" — R" | f is an affine isometry},
is called the affine orthogonal group. The group
T(n)={t,:R"—R"|veR"},

is called the translation group.



Affine Orthogonal Group (continued)

Proposition
For any affine isometry ¢: R" — R" and any vector v € R"

fOtvOf71 = tf(v)-

Proof.

Exercise.



Affine Orthogonal Group

Corollary

The affine orthogonal group is a semidirect product of groups T (n) and
O(n), ie.

in particular
i) O(n)T(n) =AO(n), O(n)n T(n)={id}, T(n)<AO(n),

ii) for any f € AO(n) there exist unique p € O(n), v € R" such that
f= @o ty,

iii) for any f € AO(n) there exist unique ¢ € O(n), v € R" such that
f=t,op,

iv) the sequence
1— T(n) - AO(n) — O(n) — 1,

is exact.



Center of Mass

Let p1,...,pk € R" be a points of mass my, ..., m, € R such that
M = Z/I'(:l m; # 0 (negative mass is allowed).
Definition
The center of mass of points p1, ..., px is the affine combination

K

_ 1
=V Z m;ip;.

i=1

Proposition

When M > 0 (resp. M < 0) the center of mass minimizes (resp.
maximizes) the weighted sum of squared distances to points

Pi,---, Pk, I€
k

p = argmin 3, milp — pi”.
peR”



Center of Mass (continued)

Proof.
Assume M > 0. Let

k
f(p) = MpTp—2> pTpi.

i=1

We need to show that
p = argminf(p).
peR"

Note that
K

Vif(p) =2Mp -2 Z m;p;,
-1

therefore
Vf(p)=0.



Center of Mass (continued)

Proof.

Moreover D?f = I, and by the multivariate Taylor's formula
1
f(p+h) =rf(p) + 2M§hTh7

which proves that at p € R" the function f attains its global
minimum.



Affine Independence
Proposition

Points py, ..., px € R" are affine dependent if and only if there
exist ag, ..., ax € R not all equal to 0 such that

K K
ZaiPi=0, ZQIZO-
i=0 i=0

Proof.

Easy exercise. If say ag # 0, dividing by ap we see that py is an
affine combination of py,..., px. The converse is proven in a
similar way. O
Corollary

Points py, ..., px € R" are affinely dependent if and only if vectors

(po,1),...,(pk,1) € R™1 are linearly dependent.



Affine Independence (continued)

Example
Points (x1,¥1), (x2,y2), (x3, y3) € R? are colinear if and only if

xg y1 1
det [xo y» 1] =0.
x3 y3 1

Points (leylvzl)v (X27y2,22), (X3,y3,23), (X4,y4,24) € R? are
coplanar if and only if

X1 y1 4
X2 Y2 22
X3 y3 Z3
X4 Y4 Za

det



