Linear Algebra Lecture 11 - Affine Space \mathbb{R}^n

Oskar Kędzierski

18 December 2023

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$+: E \times V \rightarrow E$$
,

satisfying the following conditions

i)
$$p + 0 = p$$
 for any $p \in E$,

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$+: E \times V \rightarrow E$$
,

satisfying the following conditions

- i) p + 0 = p for any $p \in E$,
- ii) (p + v) + w = p + (v + w) for any $p \in E, v, w \in V$ (associativity),

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$+: E \times V \rightarrow E$$
,

satisfying the following conditions

- i) p + 0 = p for any $p \in E$,
- ii) (p + v) + w = p + (v + w) for any $p \in E, v, w \in V$ (associativity),
- iii) for any $p, q \in E$ there exits a unique vector $\overrightarrow{pq} \in V$ such that $p + \overrightarrow{pq} = q$.

Let E be an affine space over V.

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

i)
$$\overrightarrow{pp} = 0$$
,

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,
- iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,
- iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,
- iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

i)
$$p + 0 = p$$
,

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,
- iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

- i) p + 0 = p,
- ii) $p + (\overrightarrow{pq} + \overrightarrow{qr}) = (p + \overrightarrow{pq}) + \overrightarrow{qr} = q + \overrightarrow{qr} = r$

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$

- i) $\overrightarrow{pp} = 0$,
- ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,
- iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

- i) p + 0 = p,
- ii) $p + (\overline{pq} + \overline{qr}) = (p + \overline{pq}) + \overline{qr} = q + \overline{qr} = r$
- iii) follows form i) and ii) for r = p.

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**.

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**. The point p+v can be thought of as point p translated by the vector v and \overrightarrow{pq} can be thought of as the vector with the tail at p and the head at q.

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**. The point p+v can be thought of as point p translated by the vector v and \overrightarrow{pq} can be thought of as the vector with the tail at p and the head at q. Note that there is no distinguished point in an affine space.

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**. The point p + v can be thought of as point p translated by the vector v and \overrightarrow{pq} can be thought of as the vector with the **tail** at p and the **head** at q. Note that there is no distinguished point in an affine space.

Remark

For any $p \in E$ the map

$$V \ni v \mapsto p + v \in E$$
,

is a bijection.

Proof.

It is injective

$$(p + v = p + w = q) \Rightarrow (v = w = \overrightarrow{pq}),$$

and surjective

$$q = p + \overrightarrow{pq}$$
.

Translation

Definition

For any $v \in V$ the **translation** by v is the map

$$t_v \colon E \ni p \mapsto p + v \in E$$
.

Translation

Definition

For any $v \in V$ the **translation** by v is the map

$$t_v \colon E \ni p \mapsto p + v \in E$$
.

Proposition

For any $v \in V$ the translation t_v is a bijection.

Translation

Definition

For any $v \in V$ the **translation** by v is the map

$$t_v : E \ni p \mapsto p + v \in E$$
.

Proposition

For any $v \in V$ the translation t_v is a bijection.

Proof.

It is injective

$$(p+v=q+v=r) \Rightarrow (v=\overrightarrow{pr}=\overrightarrow{qr}) \Rightarrow (p=r+\overrightarrow{rp}=r+\overrightarrow{rq}=q),$$

and surjective

$$t_{\nu}(q-\nu)=q.$$

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of E. The subspace W is called the **direction** of F and it is denoted by $\overrightarrow{F} = W$.

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of E. The subspace W is called the **direction** of F and it is denoted by $\overrightarrow{F} = W$. The dimension of F is defined to be the dimension of W, i.e. dim $F = \dim W$.

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of E. The subspace W is called the **direction** of F and it is denoted by $\overrightarrow{F} = W$. The dimension of F is defined to be the dimension of W, i.e. dim $F = \dim W$.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of E. The subspace W is called the **direction** of F and it is denoted by $\overrightarrow{F} = W$. The dimension of F is defined to be the dimension of W, i.e. dim $F = \dim W$.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Remark

The affine space F = p + W is invariant under translations t_w for any $w \in W$, i.e.

$$t_w(F) = F$$
.

Proposition

Let F = p + W be an affine subspace of E. Then for any $q \in F$

$$F = p + W = q + W.$$

Proposition

Let F = p + W be an affine subspace of E. Then for any $q \in F$

$$F = p + W = q + W.$$

Proof.

Since $q \in F$ then q = p + w for some $w \in W$, i.e. $\overrightarrow{pq} = w$.

Therefore

$$q + W = (p + w) + W = p + W.$$

Proposition

For any
$$q, r \in F = p + W$$

$$\overrightarrow{qr} \in W$$
,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\overrightarrow{F} = W$.

Proposition

For any
$$q, r \in F = p + W$$

$$\overrightarrow{qr} \in W$$
,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\overrightarrow{F} = W$.

Since
$$q = p + \overrightarrow{pq}, r = p + \overrightarrow{pr}, \text{ both } \overrightarrow{pq}, \overrightarrow{pr} \in W \text{ and}$$

$$\overrightarrow{qr} = \overrightarrow{qp} + \overrightarrow{pr} \in W.$$

Proposition

For any
$$q, r \in F = p + W$$

$$\overrightarrow{qr} \in W$$
,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\overrightarrow{F} = W$.

Proof.

Since
$$q=p+\overrightarrow{pq}, r=p+\overrightarrow{pr},$$
 both $\overrightarrow{pq}, \overrightarrow{pr}\in W$ and

$$\overrightarrow{qr} = \overrightarrow{qp} + \overrightarrow{pr} \in W.$$

Remark

Note that any affine subspace F is an affine space over $W = \overrightarrow{F}$ with the operation + restricted to $F \times W$.

Affine Combination

Let E be an affine space over V.

Definition

Let $p_0, \ldots, p_k \in E$ be points. For any $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$ and any point $p \in E$ the point

$$\sum_{i=0}^{k} a_i p_i = p + \sum_{i=0}^{k} a_i \overrightarrow{p} \overrightarrow{p_i}$$

is called the **affine combination** of p_0, \ldots, p_k .

Affine Combination

Let E be an affine space over V.

Definition

Let $p_0, \ldots, p_k \in E$ be points. For any $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$ and any point $p \in E$ the point

$$\sum_{i=0}^{k} a_i p_i = p + \sum_{i=0}^{k} a_i \overrightarrow{p} \overrightarrow{p_i}$$

is called the **affine combination** of p_0, \ldots, p_k .

Proposition

For any $p, q \in E$

$$p + \sum_{i=0}^{k} a_i \overline{pp_i} = q + \sum_{i=0}^{k} a_i \overline{qp_i}.$$

Affine Combination (continued)

Proof.

$$q + \sum_{i=0}^{k} a_i \overline{qp_i} = q + \sum_{i=0}^{k} a_i (\overline{qp} + \overline{pp_i}) = p + \sum_{i=0}^{k} a_i \overline{pp_i}.$$

Corollary

The affine combination of p_0, \ldots, p_k does not depend on the point $p \in E$.

Affine Combination (continued)

Corollary

Let F = p + W be an affine subspace. Then any affine combination of $p_0, \ldots, p_k \in F$ belongs to F, i.e. any affine subspace is closed under taking affine combinations.

Proof.

For any
$$\sum_{i=0}^{k} a_i = 1$$

$$\sum_{i=0}^k a_i p_i = p_0 + \sum_{i=0}^k a_i \overline{p_0 p_i} \in F,$$

because $\overrightarrow{p_0p_i} \in W$ for $i = 0, \dots, k$.

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$\overrightarrow{pq} = q - p$$
.

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$\overrightarrow{pq} = q - p$$
.

Remark

Any affine space can be obtained in this way.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$
,

where $V \subset \mathbb{R}^n$ is a subspace.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$

where $V \subset \mathbb{R}^n$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example

Let
$$p = (1, 1, 1), q = (1, 2, 3)$$
. Then $\vec{pq} = q - p = (0, 1, 2)$.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$
,

where $V \subset \mathbb{R}^n$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example

Let
$$p = (1, 1, 1), q = (1, 2, 3)$$
. Then $\overrightarrow{pq} = q - p = (0, 1, 2)$.

Example

Let
$$p=(1,-1)$$
 and $V=\mathsf{lin}((2,3))\subset\mathbb{R}^2$. Then

$$E = p + V = \{(1 + 2t, -1 + 3t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}.$$

Affine Span

Definition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. The **affine span** (or the **affine hull**) of p_0, \ldots, p_k is the set of all affine combinations of p_0, \ldots, p_k , i.e.

$$\operatorname{aff}(p_0,\ldots,p_k) = \left\{ \sum_{i=0}^k a_i p_i \in \mathbb{R}^n \mid \sum_{i=0}^k a_i = 1 \right\}.$$

Affine Span

Definition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. The **affine span** (or the **affine hull**) of p_0, \ldots, p_k is the set of all affine combinations of p_0, \ldots, p_k , i.e.

$$\operatorname{aff}(p_0,\ldots,p_k) = \left\{ \sum_{i=0}^k a_i p_i \in \mathbb{R}^n \mid \sum_{i=0}^k a_i = 1 \right\}.$$

Proposition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. Then

$$\mathsf{aff}(p_0,\ldots,p_k) = p_0 + \mathsf{lin}(\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_k}).$$

Affine Span (continued)

Proof. Let $\sum_{i=0}^{k} a_i = 1$. Then

$$\sum_{i=0}^k a_i p_i = p_0 + \sum_{i=0}^k a_i \overline{p_0} \overrightarrow{p_i} \in p_0 + \operatorname{lin}(\overline{p_0} \overrightarrow{p_1}, \dots, \overline{p_0} \overrightarrow{p_k}).$$

Affine Span (continued)

Proof.

Let $\sum_{i=0}^{k} a_i = 1$. Then

$$\sum_{i=0}^k a_i p_i = p_0 + \sum_{i=0}^k a_i \overline{p_0 p_i} \in p_0 + \operatorname{lin}(\overline{p_0 p_1}, \dots, \overline{p_0 p_k}).$$

Assume $p = p_0 + \sum_{i=1}^k a_i \overline{p_0 p_k} \in p_0 + \text{lin}(\overline{p_0 p_1}, \dots, \overline{p_0 p_k})$ for some $a_1, \dots, a_k \in \mathbb{R}$. Then

$$p = (1 - \sum_{i=1}^{k} a_i)p_0 + \sum_{i=1}^{k} a_i p_k.$$

Affine Span (continued)

Proof.

Let $\sum_{i=0}^k a_i = 1$. Then

$$\sum_{i=0}^k a_i p_i = p_0 + \sum_{i=0}^k a_i \overline{p_0 p_i} \in p_0 + \operatorname{lin}(\overline{p_0 p_1}, \dots, \overline{p_0 p_k}).$$

Assume $p = p_0 + \sum_{i=1}^k a_i \overline{p_0 p_k} \in p_0 + \text{lin}(\overline{p_0 p_1}, \dots, \overline{p_0 p_k})$ for some $a_1, \dots, a_k \in \mathbb{R}$. Then

$$p = (1 - \sum_{i=1}^{k} a_i)p_0 + \sum_{i=1}^{k} a_i p_k.$$

Corollary

The affine subpace $aff(p_0, ..., p_k)$ is the smallest affine subspace of \mathbb{R}^n containing points $p_0, ..., p_k$.

Affine Span-Example

Let
$$p_0 = (1, 1, 1), p_1 = (1, 2, 3), p_2 = (3, 2, 1)$$
. Then

Affine Span-Example

Let
$$p_0=(1,1,1), p_1=(1,2,3), p_2=(3,2,1).$$
 Then $\overline{p_0p_1}=(0,1,2),$ $\overline{p_0p_2}=(2,1,0).$

Affine Span-Example

Let
$$p_0=(1,1,1), p_1=(1,2,3), p_2=(3,2,1).$$
 Then
$$\overrightarrow{p_0p_1}=(0,1,2),$$

$$\overrightarrow{p_0p_2}=(2,1,0).$$

$$\mathsf{aff}((1,1,1),(1,2,3),(3,2,1)) = (1,1,1) + \mathsf{lin}((0,1,2),(2,1,0))).$$

Parametrization

Definition

Let $E=p+\operatorname{lin}(v_1,\ldots,v_k)\subset\mathbb{R}^n$ where vectors v_1,\ldots,v_k are linearly independent (i.e. v_1,\ldots,v_k is a basis of \overrightarrow{E}). Then any point $q\in E$ can be uniquely written as

$$q=p+\sum_{i=1}^k t_i v_i.$$

Any such presentation of E is called a **parametrization**.

Parametrization

Definition

Let $E=p+\operatorname{lin}(v_1,\ldots,v_k)\subset\mathbb{R}^n$ where vectors v_1,\ldots,v_k are linearly independent (i.e. v_1,\ldots,v_k is a basis of \overrightarrow{E}). Then any point $q\in E$ can be uniquely written as

$$q=p+\sum_{i=1}^k t_i v_i.$$

Any such presentation of E is called a **parametrization**.

Example

$$E = (1,1,1) + lin((0,1,2),(2,1,0)) =$$

$$= (1,2,3) + lin((0,1,2),(1,1,1))$$

that is $(1+2t_2, 1+t_1+t_2, 1+2t_1), t_1, t_2 \in \mathbb{R}$ and $(1+t_2, 2+t_1+t_2, 3+2t_1+t_2), t_1, t_2 \in \mathbb{R}$ are two different parametrizations of E.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\overrightarrow{E} = \overrightarrow{H}$.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\overrightarrow{E} = \overrightarrow{H}$.

Proposition

Any affine subspace E of \mathbb{R}^n is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\overrightarrow{E} = \overrightarrow{H}$.

Proposition

Any affine subspace E of \mathbb{R}^n is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Proof.

There exists a homogeneous system of linear equations describing the vector subspace \overrightarrow{E}

$$\overrightarrow{E}: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Proof.

Let
$$E = p + \overrightarrow{E}$$
. If $p = (y_1, \dots, y_n)$ set

Proof.

Let
$$E = p + \overrightarrow{E}$$
. If $p = (y_1, \dots, y_n)$ set
$$b_1 = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n$$

$$b_2 = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_m = a_{m1}y_1 + a_{m2}y_2 + \dots + a_{mn}y_n$$

Then the affine subspace E is described by

$$E: \begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = b_2 \\ \vdots & & \vdots & & \ddots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = b_m \end{cases}$$

Proof.

Let
$$E=p+\overrightarrow{E}$$
 . If $p=(y_1,\ldots,y_n)$ set

Then the affine subspace E is described by

$$E: \begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = b_2 \\ \vdots & & \vdots & & \ddots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = b_m \end{cases}$$

The constants b_1, \ldots, b_m do not depend on the point $p \in E$ since any two points in E differ by a vector from \overrightarrow{E} .

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations the affine subspace E=p+V in \mathbb{R}^4 where

$$p=(1,1,2,1),\ V=lin((1,1,3,0),(1,0,1,0),(0,1,2,0)).$$

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations the affine subspace E=p+V in \mathbb{R}^4 where

$$p=(1,1,2,1),\ V=\text{lin}((1,1,3,0),(1,0,1,0),(0,1,2,0)).$$

Vectors (1,0,1,0),(0,1,2,0) form a basis of V. Therefore V is described by the system of equations

$$V: \begin{cases} x_1 + 2x_2 - x_3 & = 0 \\ x_4 = 0 \end{cases}$$

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 & = 1 \\ & x_4 = 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 & = 1 \\ & x_4 = 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

It has the following properties:

i)
$$d(p,q)\geqslant 0$$
 and $(d(p,q)=0\iff p=q)$,

ii)
$$d(p,q) = d(q,p)$$
 (symmetry),

iii)
$$d(p,r) \leq d(p,q) + d(q,r)$$
 (triangle inequality).

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 & = 1 \\ & x_4 = 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

It has the following properties:

i)
$$d(p,q)\geqslant 0$$
 and $(d(p,q)=0\iff p=q)$,

ii)
$$d(p,q) = d(q,p)$$
 (symmetry),

iii)
$$d(p,r) \leq d(p,q) + d(q,r)$$
 (triangle inequality).

The affine space \mathbb{R}^n equipped with a function satisfying above properties (called metric) becomes a **metric space**.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \overrightarrow{E}, w \in \overrightarrow{H}$.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \overrightarrow{E}, w \in \overrightarrow{H}$.

Definition

Let $E \subset \mathbb{R}^n, H \subset \mathbb{R}^m$ be two affine subspaces. A function $f : E \longrightarrow H$ satisfying the condition

$$f(p+\alpha)=f(p)+f'(\alpha),$$
 (or equivalently $\overrightarrow{f(p)f(p+\alpha)}=f'(\alpha)$),

for some $p \in E$, some linear transformation $f' : \overrightarrow{E} \longrightarrow \overrightarrow{H}$ and any $\alpha \in \overrightarrow{E}$ is called an **affine transformation**.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \overrightarrow{E}, w \in \overrightarrow{H}$.

Definition

Let $E \subset \mathbb{R}^n, H \subset \mathbb{R}^m$ be two affine subspaces. A function $f \colon E \longrightarrow H$ satisfying the condition

$$f(p+\alpha)=f(p)+f'(\alpha),$$
 (or equivalently $\overrightarrow{f(p)f(p+\alpha)}=f'(\alpha)$),

for some $p \in E$, some linear transformation $f' : \overrightarrow{E} \longrightarrow \overrightarrow{H}$ and any $\alpha \in \overrightarrow{E}$ is called an **affine transformation**.

If $q \in E$ then $f(q + \alpha) = f(p + \overrightarrow{pq} + \alpha) = f(p) + f'(\overrightarrow{pq}) + f'(\alpha) = f(q) + f'(\alpha)$ therefore the condition in the definition holds for any $p \in E$.

Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then $f: E \longrightarrow H$ is an affine transformation if and only if

$$f\left(\sum_{i=0}^k a_i p_i\right) = \sum_{i=0}^k a_i f(p_i),$$

for any $p_i \in E$ and $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$.

Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then $f: E \longrightarrow H$ is an affine transformation if and only if

$$f\left(\sum_{i=0}^k a_i p_i\right) = \sum_{i=0}^k a_i f(p_i),$$

for any $p_i \in E$ and $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$.

Proof.

 (\Rightarrow) Assume that f is an affine transformation. Then

$$f\left(\sum_{i=0}^{k} a_i p_i\right) = f\left(p_0 + \sum_{i=0}^{k} a_i \overline{p_0 p_i}\right) = f(p_0) + \sum_{i=0}^{k} a_i f'(\overline{p_0 p_i}) =$$

$$= f(p_0) + \sum_{i=0}^{k} a_i \left(\overline{f(p_0) f(p_i)}\right) = \sum_{i=0}^{k} a_i f(p_i).$$

Properties of Affine Transformation (continued)

Proof.

 (\Leftarrow) Assume that function f satisfies the condition of the Proposition for k=1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$

= $f(p_0) + a\overline{f(p_0)f(p_1)}$.

Properties of Affine Transformation (continued)

Proof.

 (\Leftarrow) Assume that function f satisfies the condition of the Proposition for k=1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$

= $f(p_0) + a\overline{f(p_0)f(p_1)}$.

It is enough to define

$$f'(\overrightarrow{p_0p_1}) = \overrightarrow{f(p_0)f(p_1)},$$

and check that f' is well-defined and linear.

Properties of Affine Transformation (continued)

Proof.

 (\Leftarrow) Assume that function f satisfies the condition of the Proposition for k=1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$

= $f(p_0) + a\overline{f(p_0)f(p_1)}$.

It is enough to define

$$f'(\overrightarrow{p_0p_1}) = \overrightarrow{f(p_0)f(p_1)},$$

and check that f' is well-defined and linear. We omit the details of the proof.

Formula of an Affine Transformation

Remark

Any affine transformation $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a formula

$$f((x_1, x_2, \dots, x_n)) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_1, \dots, a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + b_m),$$

where $a_{ij},b_k\in\mathbb{R}$. The linear transformation f' has matrix

$$M(f')_{st}^{st} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^n$).

Formula of an Affine Transformation

Remark

Any affine transformation $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a formula

$$f((x_1, x_2, \dots, x_n)) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_1, \dots,$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + b_m),$$

where $a_{ij}, b_k \in \mathbb{R}$. The linear transformation f' has matrix

$$M(f')_{st}^{st} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^n$).

Proof.

Choose
$$p = (0, ..., 0), \alpha = (x_1, ..., x_n)$$
 so $f((x_1, ..., x_n)) = f((0, ..., 0)) + f'((x_1, ..., x_n))$.

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. The affine transformation $\pi_E : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\pi_{E}(p) = \pi_{E}(p_{0} + \overrightarrow{p_{0}p}) = p_{0} + P_{\overrightarrow{F}}(\overrightarrow{p_{0}p}),$$

where $P_{\overrightarrow{E}}$ is the (linear) orthogonal projection on \overrightarrow{E} , is called an (affine) orthogonal projection on E.

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. The affine transformation $\pi_E : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\pi_{E}(p) = \pi_{E}(p_{0} + \overrightarrow{p_{0}p}) = p_{0} + P_{\overrightarrow{F}}(\overrightarrow{p_{0}p}),$$

where $P_{\overrightarrow{E}}$ is the (linear) orthogonal projection on \overrightarrow{E} , is called an (affine) orthogonal projection on E.

The transformation $\sigma_E:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ defined by

$$\sigma_E(p) = \sigma_E(p_0 + \overrightarrow{p_0}\overrightarrow{p}) = p_0 + S_{\overrightarrow{F}}(\overrightarrow{p_0}\overrightarrow{p}),$$

where $S_{\overrightarrow{E}}$ is the (linear) orthogonal reflection about \overrightarrow{E} , is called an (affine) orthogonal reflection about E.

Orthogonal Projection

Orthogonal Projection

Orthogonal Reflection

Orthogonal Reflection

Orthogonal Reflection

Let $p_0 = (1,1,1), p_1 = (1,2,3)$. Let $E = \mathsf{aff}(p_0,p_1)$ be an affine line. Compute orthogonal projection of p = (2,0,1) on E.

$$\overrightarrow{p_0 \rho} = (2,0,1) - (1,1,1) = (1,-1,0), \quad \overrightarrow{E} = \text{lin}((0,1,2)),$$

The linear projection of $\overrightarrow{p_0p}$ on \overrightarrow{E} is

$$P_{\overrightarrow{E}}(\overrightarrow{p_0p}) = \frac{(1,-1,0)\cdot(0,1,2)}{0^2+1^2+2^2}(0,1,2) = -\frac{1}{5}(0,1,2).$$

Therefore $\pi_E(p)=(1,1,1)-\frac{1}{5}(0,1,2)=\frac{1}{5}(5,4,3)$.

Intersection of Affine Subspaces

Proposition

Let $E=p+V, H=q+W\subset\mathbb{R}^n$ be two affine subspaces. Then either $E\cap H=\varnothing$ or $p_0\in E\cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

Intersection of Affine Subspaces

Proposition

Let $E=p+V, H=q+W\subset\mathbb{R}^n$ be two affine subspaces. Then either $E\cap H=\varnothing$ or $p_0\in E\cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

Proof.

If
$$p_0 \in E \cap H$$
 then $E = p_0 + V$ and $H = p_0 + W$.

Intersection of Affine Subspaces

Proposition

Let $E=p+V, H=q+W\subset\mathbb{R}^n$ be two affine subspaces. Then either $E\cap H=\varnothing$ or $p_0\in E\cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

Proof.

If
$$p_0 \in E \cap H$$
 then $E = p_0 + V$ and $H = p_0 + W$.

Proposition

Let E = p + V, $H = q + W \subset \mathbb{R}^n$ be two affine subspaces. Then $E \cap H \neq \emptyset$ if and only if there exist $v \in V$, $w \in W$ such that

$$\overrightarrow{pq} = v + w$$
.

Intersection of Affine Subspaces (continued)

Proof.

Assume $\overrightarrow{pq} = v + w$ as above. Then $q - w \in H$ and $q - w = p + \overrightarrow{pq} - w = p + v \in E$.

Intersection of Affine Subspaces (continued)

Proof.

```
Assume \overrightarrow{pq} = v + w as above. Then q - w \in H and q - w = p + \overrightarrow{pq} - w = p + v \in E. Assume that p_0 \in E \cap H. Then \overrightarrow{pq} = \overrightarrow{pp_0} + \overrightarrow{p_0q} where \overrightarrow{pp_0} \in V and \overrightarrow{p_0q} \in W.
```

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proof.

By the previous lecture
$$\overline{pq}=P_V(\overline{pq})+P_{V^\perp}(\overline{pq})$$
 and $V\cap V^\perp=\{0\}.$

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proof.

By the previous lecture
$$\overrightarrow{pq}=P_V(\overrightarrow{pq})+P_{V^\perp}(\overrightarrow{pq})$$
 and $V\cap V^\perp=\{0\}.$

Proposition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. Then for any $p \in \mathbb{R}^n$ the affine subspaces $p_0 + \overrightarrow{E}$ and $p + \overrightarrow{E}^{\perp}$ intersect exactly in the point $\pi_E(p)$.

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proof.

By the previous lecture
$$\overrightarrow{pq}=P_V(\overrightarrow{pq})+P_{V^\perp}(\overrightarrow{pq})$$
 and $V\cap V^\perp=\{0\}.$

Proposition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. Then for any $p \in \mathbb{R}^n$ the affine subspaces $p_0 + \overrightarrow{E}$ and $p + \overrightarrow{E}^{\perp}$ intersect exactly in the point $\pi_E(p)$.

Proof.

We know $\overline{p_0}\overrightarrow{p}=P_V(\overline{p_0}\overrightarrow{p})+P_{V^\perp}(\overline{p_0}\overrightarrow{p})$. As in the previous proof the only point of the intersection is equal to $p_0+P_V(\overline{p_0}\overrightarrow{p})$. This is equal to $\pi_F(p)$ by definition.

Orthogonal Projection (again)

Orthogonal Projection (again)

Let $p_0 = (1, 1, 1), p_1 = (1, 2, 3)$. Let $E = \operatorname{aff}(p_0, p_1)$ be an affine line. Compute orthogonal projection of p = (2, 0, 1) on E.

Let $p_0=(1,1,1), p_1=(1,2,3)$. Let $E={\rm aff}(p_0,p_1)$ be an affine line. Compute orthogonal projection of p=(2,0,1) on E. We compute the intersection of $E=p_0+\overrightarrow{E}$ with $p+\overrightarrow{E}^\perp$. The line E is parameterized as follows

$$E = \{(1,1,1) + t(0,1,2) \mid t \in \mathbb{R}\}.$$

Let $p_0=(1,1,1), p_1=(1,2,3)$. Let $E={\rm aff}(p_0,p_1)$ be an affine line. Compute orthogonal projection of p=(2,0,1) on E. We compute the intersection of $E=p_0+\overrightarrow{E}$ with $p+\overrightarrow{E}^\perp$. The line E is parameterized as follows

$$E = \{(1,1,1) + t(0,1,2) \mid t \in \mathbb{R}\}.$$

The orthogonal complement to \overrightarrow{E} is two-dimensional hence given by a single equation $x_2+2x_3=0$. The point p satisfies the equation, therefore $p+\overrightarrow{E}^{\perp}$ is described by $x_2+2x_3=2$. By substituting the parametrization to the equation we get

$$(1+t)+2(1+2t)=2 \Longrightarrow t=-\frac{1}{5}.$$

Hence $\pi_E(2,0,1) = (1,1,1) - \frac{1}{5}(0,1,2) = \frac{1}{5}(5,4,3)$.

Find a formula of an orthogonal projection onto the affine subspace $E= \operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^4$. The subspace E can be written as $E=(1,1,1,1)+\lim((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1=(0,1,0,1),v_2=(0,0,1,1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2} (0, 1, 0, 1) = \frac{1}{2} (0, -1, 2, 1).$$

Find a formula of an orthogonal projection onto the affine subspace $E= \operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^4$. The subspace E can be written as $E=(1,1,1,1)+\lim((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1=(0,1,0,1), v_2=(0,0,1,1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2} (0, 1, 0, 1) = \frac{1}{2} (0, -1, 2, 1).$$

The vectors (0,1,0,1),(0,-1,2,1) form an orthogonal basis of \overrightarrow{E} . Recall $\pi_E(p)=p_0+P_{\overrightarrow{E}}(\overrightarrow{p_0p})$ therefore

Find a formula of an orthogonal projection onto the affine subspace $E= \operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^4$. The subspace E can be written as $E=(1,1,1,1)+\lim((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1=(0,1,0,1), v_2=(0,0,1,1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2} (0, 1, 0, 1) = \frac{1}{2} (0, -1, 2, 1).$$

The vectors (0,1,0,1),(0,-1,2,1) form an orthogonal basis of \overrightarrow{E} . Recall $\pi_E(p)=p_0+P_{\overrightarrow{F}}(\overrightarrow{p_0p})$ therefore

$$\pi_E(x_1, x_2, x_3, x_4) = (1, 1, 1, 1) + P_{\overrightarrow{E}}(x_1 - 1, x_2 - 1, x_3 - 1, x_4 - 1) =$$

$$=(1,1,1,1)+\frac{x_2+x_4-2}{2}(0,1,0,1)+\frac{-x_2+2x_3+x_4-2}{6}(0,-1,2,1)=$$

Example (continued)

$$\pi_{E}(x_{1}, x_{2}, x_{3}, x_{4}) = (1, 1, 1, 1) + P_{\overrightarrow{E}}(x_{1} - 1, x_{2} - 1, x_{3} - 1, x_{4} - 1) =$$

$$= (1, 1, 1, 1) + \frac{x_{2} + x_{4} - 2}{2}(0, 1, 0, 1) + \frac{-x_{2} + 2x_{3} + x_{4} - 2}{6}(0, -1, 2, 1) =$$

$$= \left(1, \frac{2x_{2} - x_{3} + x_{4} + 1}{3}, \frac{-x_{2} + 2x_{3} + x_{4} + 1}{3}, \frac{x_{2} + x_{3} + 2x_{4} - 1}{3}\right).$$

Example (continued)

Alternatively, by the definition $\pi'_E = P_{\overrightarrow{E}}$, therefore if $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, the

linear part of the affine projection π_E is given by

$$M(P_{\overrightarrow{E}})_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

Example (continued)

Alternatively, by the definition $\pi'_E = P_{\overrightarrow{E}}$, therefore if $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, the

linear part of the affine projection π_E is given by

$$M(P_{\overrightarrow{E}})_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

It follows that

$$\pi_{E}(x_{1}, x_{2}, x_{3}, x_{4}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 1 \\ \frac{1}{3} \\ \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix},$$

because $\pi_E(1,1,1,1) = (1,1,1,1)$.

Distance from an Affine Hyperplane

Proposition

Let $E \subset \mathbb{R}^n$ be an affine hyperplane given by the equation

$$E: a_1x_1 + \ldots + a_nx_n = b,$$

equivalently

$$E: a^{\mathsf{T}} x = b,$$

where $a=(a_1,\ldots,a_n), x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ and $b\in\mathbb{R}$. Then the signed distance (positive in the direction of vector $a\in\mathbb{R}^n$ and negative otherwise) of the point $p\in\mathbb{R}^n$ from the affine hyperplane E is equal to

$$d_s(p,E) = \frac{a^{\mathsf{T}}p - b}{\|a\|}.$$

Distance from an Affine Hyperplane (continued)

Proof.

The signed distance $d = d_s(p, E)$ is given by a system of equations

$$\left\{ \begin{array}{rcl} q & = & p - d\frac{a}{\|a\|}, & \text{i.e., } \|\overline{q}\overline{p}\| = \left\|d\frac{a}{\|a\|}\right\| = |d| \\ a^{\mathsf{T}}q & = & b, & \text{i.e., } q \text{ belongs to } E \end{array} \right. ,$$

where $q \in E$ is the image of point p under the affine orthogonal projection onto E. The first equation multiplied by a^{T} on the left gives

$$b = a^{\mathsf{T}}q = a^{\mathsf{T}}p - d\|a\|.$$

Distance from an Affine Hyperplane (continued)

Example

The signed distance of the point $p=(1,2,3,4)\in\mathbb{R}^4$ from the affine hyperplane

$$E: x_1 - x_2 + 2x_3 - x_4 = 5,$$

is equal to

$$d_s(p,E) = \frac{1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 2 + 4 \cdot (-1) - 5}{\sqrt{1^2 + (-1)^2 + 2^2 + (-1)^2}} = -\frac{4}{\sqrt{7}}.$$

Distance from an Affine Subspace

Corollary

Let $E \subset \mathbb{R}^n$ be an affine subspace of \mathbb{R}^n given by the system of linear equations

$$\begin{cases} a_1^\mathsf{T} x = b_1 \\ \vdots \\ a_m^\mathsf{T} x = b_m \end{cases}$$

where $a_1, \ldots, a_m \in \mathbb{R}^n$ are pairwise orthogonal, i.e.,

$$a_i \cdot a_j = a_i^\mathsf{T} a_j = 0$$
 for $i \neq j$.

The distance of point $p \in \mathbb{R}^n$ from the subspace E is equal to

$$d(p, E) = \sqrt{\sum_{i=1}^{m} \left(\frac{a_i^{\mathsf{T}} p - b_i}{\|a_i\|}\right)^2}.$$

Distance of Parallel Affine Hyperplanes

Corollary

Let $E, H \subset \mathbb{R}^n$ be two parallel affine hyperplanes given by the equations

$$E: a_1x_1 + \ldots + a_nx_n = b,$$

$$E'\colon a_1x_1+\ldots+a_nx_n=b',$$

equivalently

$$E: a^{\mathsf{T}}x = b,$$

$$E': a^{T}x = b',$$

where $a=(a_1,\ldots,a_n),\ x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ and $b,b'\in\mathbb{R}$. Then distance between E and E' is equal to

$$d(E,E')=\frac{|b-b'|}{\|a\|}.$$

Two Lines in \mathbb{R}^n

Let $L_1, L_2 \subset \mathbb{R}^n$ be two lines in \mathbb{R}^n . Then either

i) the lines intersect, i.e.

$$L_1 \cap L_2 \neq \emptyset$$

- a) $\overrightarrow{L}_1 \neq \overrightarrow{L}_2$ (the lines intersect in exactly one point), b) $\overrightarrow{L}_1 = \overrightarrow{L}_2$ (the lines coincide).
- ii) the lines are disjoint, i.e.

$$L_1 \cap L_2 = \emptyset$$

- a) $\overrightarrow{L}_1 \neq \overrightarrow{L}_2$ (the lines are skew), b) $\overrightarrow{L}_1 = \overrightarrow{L}_2$ (the lines are parallel).

Distance of Two Skew Lines in \mathbb{R}^3

Proposition

Let

$$L_1 = p_1 + lin(v_1),$$

 $L_2 = p_2 + lin(v_2),$

be two skew lines in \mathbb{R}^3 , that is $p_i \in \mathbb{R}^3$ and $v_i \in \mathbb{R}^3$ for i=1,2. Then the distance between line L_1 and line L_2 is equal to

$$d(L_1, L_2) = \frac{|v_3^{\mathsf{T}}(p_1 - p_2)|}{\|v_3\|},$$

where

$$\mathsf{lin}(v_3) = \mathsf{lin}(v_1, v_2)^{\perp}.$$

Distance of Two Skew Lines in \mathbb{R}^3

Proposition

Let

$$L_1 = p_1 + lin(v_1),$$

 $L_2 = p_2 + lin(v_2),$

be two skew lines in \mathbb{R}^3 , that is $p_i \in \mathbb{R}^3$ and $v_i \in \mathbb{R}^3$ for i = 1, 2. Then the distance between line L_1 and line L_2 is equal to

$$d(L_1, L_2) = \frac{|v_3^{\mathsf{T}}(p_1 - p_2)|}{\|v_3\|},$$

where

$$\mathsf{lin}(v_3) = \mathsf{lin}(v_1, v_2)^{\perp}.$$

Proof.

Use the formula for distance between two parallel planes containing respectively L_1 and L_2 . Alternatively, the distance is equal to length of the image of the orthogonal projection of $\overline{p_1p_2}$ onto the subspace $\text{lin}(v_3)$.

Distance Between Two Affine Subspaces in \mathbb{R}^n

Proposition

Let E: Ax = b, and H: Cx = d, be two affine subspaces of \mathbb{R}^n , where $A \in M(s \times n, \mathbb{R})$ and $C \in M(t \times n, \mathbb{R})$. Assume that

- i) the rows of matrix A are orthonormal,
- ii) the rows of matrix C are linearly independent,
- iii) the columns of matrix $\begin{bmatrix} A \\ C \end{bmatrix}$ are linearly independent.

Then the equation

$$\begin{bmatrix} A^{\mathsf{T}}A & C^{\mathsf{T}} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A^{\mathsf{T}}b \\ d \end{bmatrix}$$

has a unique solution $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ and the distance between E and H is equal to

$$d(E, H) = ||Ax_0 - b||.$$

Proof.

Let $a_1, \ldots, a_s \in \mathbb{R}^n$ be the rows of matrix A. Then

$$d(p, E) = \min_{x \in H} \sqrt{\sum_{i=1}^{s} (a_i^{\mathsf{T}} x - b_i)^2},$$

that is, we need to solve the following constrained least squares problem:

minimize

$$||Ax-b||^2$$

under the constraints

$$Cx = d$$
.

I follow closely the proof which can be found in L. Vanderberghe's lecture¹.

¹see http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf, slide 11.4

Proof.

Assume that Cx = d. Then x_0 is optimal since

$$||Ax - b|| = ||A(x - x_0) + (Ax_0 - b)||^2 =$$

$$= ||A(x - x_0)||^2 + ||Ax_0 - b||^2 + 2(x - x_0)^{\mathsf{T}} A^{\mathsf{T}} (Ax_0 - b) =$$

$$(as A^{\mathsf{T}} Ax_0 + C^{\mathsf{T}} y_0 = A^{\mathsf{T}} b)$$

$$= ||A(x - x_0)||^2 + ||Ax_0 - b||^2 - 2(x - x_0)^{\mathsf{T}} C^{\mathsf{T}} y_0 =$$

$$(as Cx = Cx_0 = d, i.e., x, x_0 \in H)$$

$$= ||A(x - x_0)||^2 + ||Ax_0 - b||^2 \ge ||Ax_0 - b||^2.$$

Proof.

Moreover, if $x_0, x_0' \in H \subset \mathbb{R}^n$ are optimal then $C(x_0 - x_0') = 0$, and by the first part of the proof, $A(x - x_0) = 0$, which by the condition iii), gives $x_0 - x_0' = 0$. It can be also checked that

$$\begin{bmatrix} A^{\mathsf{T}}A & C^{\mathsf{T}} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

implies that

$$x^{\mathsf{T}}(A^{\mathsf{T}}Ax + C^{\mathsf{T}}y) = 0, \quad Cx = 0,$$

 $Ax = Cx = 0,$

that is x = 0 by the condition iii). This implies that $C^{T}y = 0$, which, by the condition ii) implies that y = 0. Therefore, the above matrix is non-singular.

Remark

The condition iii) guarantees that the affine subspaces E,H are either disjoint or they intersect in an exactly one point.

Remark

The condition iii) guarantees that the affine subspaces E, H are either disjoint or they intersect in an exactly one point.

In constrained least squares problem, that is: minimize

$$||Ax-b||^2,$$

under the constraints

$$Cx = d$$
,

we need to assume only ii) and iii). Condition i) is needed to use the formula for the distance between a point and an affine plane.

Linear Isometries

Definition

Linear transformation $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ is called a linear isometry if

$$\|\varphi(\mathbf{v})\| = \|\mathbf{v}\|,$$

for any $v \in \mathbb{R}^n$.

Linear Isometries (continued)

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. The following conditions are equivalent

- i) φ is an isometry,
- ii) for any $v, w \in \mathbb{R}^n$

$$\varphi(\mathbf{v})\cdot\varphi(\mathbf{w})=\mathbf{v}\cdot\mathbf{w},$$

iii) for any (or some) orthonormal basis $\mathcal A$ of $\mathbb R^n$ if $A=M(\varphi)_{\mathcal A}^{\mathcal A}$ then

$$A^{\mathsf{T}}A = I$$
,

i.e. the matrix A is orthogonal.

Proof.

Exercise

Orthogonal Group

Definition

The group

$$O(n) = \{ \varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid \varphi \text{ is a linear isometry} \},$$

is called the orthogonal group.

Example

Any orthogonal linear symmetry is a linear isometry.

Affine Isometries

Definition

Affine transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ is called a linear isometry if

$$d(f(p), f(q)) = d(p, q),$$

for any $p, q \in \mathbb{R}^n$.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an affine transformation. Then it is equal to an linear isometry followed by a translation. In particular $\overrightarrow{f} \in O(n)$.

Proof.

Let f(0) = q. Let

$$\widetilde{f}(q) = f(q) + \overrightarrow{p0}.$$

Then \widetilde{f} is a linear isometry, hence

$$f = t_{-\overrightarrow{p0}} \circ \widetilde{f}$$
.

Affine Orthogonal Group

Definition

The group

$$AO(n) = \{f : \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid f \text{ is an affine isometry}\},$$

is called the **affine orthogonal group**. The group

$$T(n) = \{t_v \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid v \in \mathbb{R}^n\},\$$

is called the translation group.

Affine Orthogonal Group (continued)

Proposition

For any affine isometry $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and any vector $v \in \mathbb{R}^n$

$$f\circ t_{v}\circ f^{-1}=t_{f(v)}.$$

Proof.

Exercise.

Affine Orthogonal Group

Corollary

The affine orthogonal group is a semidirect product of groups T(n) and O(n), i.e.

$$AO(n) = T(n) \ltimes O(n),$$

in particular

- i) O(n)T(n) = AO(n), $O(n) \cap T(n) = \{id\}$, $T(n) \triangleleft AO(n)$,
- ii) for any $f \in AO(n)$ there exist unique $\varphi \in O(n), \ v \in \mathbb{R}^n$ such that $f = \varphi \circ t_v$,
- iii) for any $f \in AO(n)$ there exist unique $\varphi \in O(n), \ v \in \mathbb{R}^n$ such that $f = t_v \circ \varphi$,
- iv) the sequence

$$1 \to T(n) \to AO(n) \to O(n) \to 1$$
,

is exact.

Center of Mass

Let $p_1, \ldots, p_k \in \mathbb{R}^n$ be a points of mass $m_1, \ldots, m_k \in \mathbb{R}$ such that $M = \sum_{i=1}^k m_i \neq 0$ (negative mass is allowed).

Definition

The **center of mass** of points p_1, \ldots, p_k is the affine combination

$$\overline{p} = \frac{1}{M} \sum_{i=1}^{K} m_i p_i.$$

Proposition

When M>0 (resp. M<0) the center of mass minimizes (resp. maximizes) the weighted sum of squared distances to points p_1, \ldots, p_k , i.e.

$$\overline{p} = \underset{p \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^k m_i \|p - p_i\|^2.$$

Center of Mass (continued)

Proof.

Assume M > 0. Let

$$f(p) = Mp^{\mathsf{T}}p - 2\sum_{i=1}^{k} p^{\mathsf{T}}p_{i}.$$

We need to show that

$$\overline{p} = \operatorname*{argmin}_{p \in \mathbb{R}^n} f(p).$$

Note that

$$\nabla f(p) = 2Mp - 2\sum_{i=1}^k m_i p_i,$$

therefore

$$\nabla f(\overline{p}) = 0.$$

Center of Mass (continued)

Proof.

Moreover $D^2f = I$, and by the multivariate Taylor's formula

$$f(\overline{p}+h)=f(\overline{p})+2M\frac{1}{2!}h^{\mathsf{T}}h,$$

which proves that at $\overline{p} \in \mathbb{R}^n$ the function f attains its global minimum.

Affine Independence

Proposition

Points $p_0, \ldots, p_k \in \mathbb{R}^n$ are affine dependent if and only if there exist $a_0, \ldots, a_k \in \mathbb{R}$ not all equal to 0 such that

$$\sum_{i=0}^{k} a_i p_i = 0, \quad \sum_{i=0}^{k} a_i = 0.$$

Proof.

Easy exercise. If say $a_0 \neq 0$, dividing by a_0 we see that p_0 is an affine combination of p_1, \ldots, p_k . The converse is proven in a similar way.

Corollary

Points $p_0, \ldots, p_k \in \mathbb{R}^n$ are affinely dependent if and only if vectors $(p_0, 1), \ldots, (p_k, 1) \in \mathbb{R}^{n+1}$ are linearly dependent.

Affine Independence (continued)

Example

Points $(x_1,y_1),(x_2,y_2),(x_3,y_3)\in\mathbb{R}^2$ are colinear if and only if

$$\det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0.$$

Points $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4) \in \mathbb{R}^3$ are coplanar if and only if

$$\det\begin{bmatrix} x_1 & y_1 & z_1 & 1\\ x_2 & y_2 & z_2 & 1\\ x_3 & y_3 & z_3 & 1\\ x_4 & y_4 & z_4 & 1 \end{bmatrix} = 0.$$