Linear Algebra
 Lecture 11 - Affine Space \mathbb{R}^{n}

Oskar Kędzierski

18 December 2023

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$
+: E \times V \rightarrow E
$$

satisfying the following conditions
i) $p+0=p$ for any $p \in E$,

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$
+: E \times V \rightarrow E
$$

satisfying the following conditions
i) $p+0=p$ for any $p \in E$,
ii) $(p+v)+w=p+(v+w)$ for any $p \in E, v, w \in V$ (associativity),

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$
+: E \times V \rightarrow E
$$

satisfying the following conditions
i) $p+0=p$ for any $p \in E$,
ii) $(p+v)+w=p+(v+w)$ for any $p \in E, v, w \in V$ (associativity),
iii) for any $p, q \in E$ there exits a unique vector $\overrightarrow{p q} \in V$ such that $p+\overrightarrow{p q}=q$.

Properties of Affine Space

Let E be an affine space over V.

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,
iii) $\overrightarrow{q p}=-\vec{p} \vec{q}$.

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,
iii) $\overrightarrow{q p}=-\vec{p} \vec{q}$.

Proof.

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,
iii) $\overrightarrow{q p}=-\overrightarrow{p q}$.

Proof.
i) $p+0=p$,

Properties of Affine Space

Let E be an affine space over V.
Proposition
For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,
iii) $\overrightarrow{q p}=-\overrightarrow{p q}$.

Proof.
i) $p+0=p$,
ii) $p+(\overrightarrow{p q}+\overrightarrow{q r})=(p+\overrightarrow{p q})+\overrightarrow{q r}=q+\overrightarrow{q r}=r$,

Properties of Affine Space

Let E be an affine space over V.

Proposition

For any $p, q, r \in E$
i) $\overrightarrow{p p}=0$,
ii) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$,
iii) $\overrightarrow{q p}=-\overrightarrow{p q}$.

Proof.
i) $p+0=p$,
ii) $p+(\overrightarrow{p q}+\overrightarrow{q r})=(p+\overrightarrow{p q})+\overrightarrow{q r}=q+\overrightarrow{q r}=r$,
iii) follows form i) and ii) for $r=p$.

Affine Space (continued)

Remark
Elements of the set E are called points and elements of vector space V are called vectors.

Affine Space (continued)

Remark

Elements of the set E are called points and elements of vector space V are called vectors. The point $p+v$ can be thought of as point p translated by the vector v and $\overrightarrow{p q}$ can be thought of as the vector with the tail at p and the head at q.

Affine Space (continued)

Remark

Elements of the set E are called points and elements of vector space V are called vectors. The point $p+v$ can be thought of as point p translated by the vector v and $\overrightarrow{p q}$ can be thought of as the vector with the tail at p and the head at q. Note that there is no distinguished point in an affine space.

Affine Space (continued)

Remark

Elements of the set E are called points and elements of vector space V are called vectors. The point $p+v$ can be thought of as point p translated by the vector v and $\overrightarrow{p q}$ can be thought of as the vector with the tail at p and the head at q. Note that there is no distinguished point in an affine space.

Remark
For any $p \in E$ the map

$$
V \ni v \mapsto p+v \in E
$$

is a bijection.

Affine Space (continued)

Proof.
It is injective

$$
(p+v=p+w=q) \Rightarrow(v=w=\overrightarrow{p q})
$$

and surjective

$$
q=p+\overrightarrow{p q} .
$$

Translation

Definition
For any $v \in V$ the translation by v is the map

$$
t_{v}: E \ni p \mapsto p+v \in E .
$$

Translation

Definition
For any $v \in V$ the translation by v is the map

$$
t_{v}: E \ni p \mapsto p+v \in E .
$$

Proposition
For any $v \in V$ the translation t_{v} is a bijection.

Translation

Definition

For any $v \in V$ the translation by v is the map

$$
t_{v}: E \ni p \mapsto p+v \in E .
$$

Proposition

For any $v \in V$ the translation t_{v} is a bijection.
Proof.
It is injective
$(p+v=q+v=r) \Rightarrow(v=\overrightarrow{p r}=\overrightarrow{q r}) \Rightarrow(p=r+\overrightarrow{r p}=r+\overrightarrow{r q}=q)$,
and surjective

$$
t_{v}(q-v)=q .
$$

Affine Subspace

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$
F=p+W=\{p+w \in E \mid w \in W\}
$$

is called an affine subspace of E. The subspace W is called the direction of F and it is denoted by $\vec{F}=W$.

Affine Subspace

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$
F=p+W=\{p+w \in E \mid w \in W\}
$$

is called an affine subspace of E. The subspace W is called the direction of F and it is denoted by $\vec{F}=W$. The dimension of F is defined to be the dimension of W, i.e. $\operatorname{dim} F=\operatorname{dim} W$.

Affine Subspace

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$
F=p+W=\{p+w \in E \mid w \in W\}
$$

is called an affine subspace of E. The subspace W is called the direction of F and it is denoted by $\vec{F}=W$. The dimension of F is defined to be the dimension of W, i.e. $\operatorname{dim} F=\operatorname{dim} W$.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Affine Subspace

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$
F=p+W=\{p+w \in E \mid w \in W\}
$$

is called an affine subspace of E. The subspace W is called the direction of F and it is denoted by $\vec{F}=W$. The dimension of F is defined to be the dimension of W, i.e. $\operatorname{dim} F=\operatorname{dim} W$.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Remark

The affine space $F=p+W$ is invariant under translations t_{w} for any $w \in W$, i.e.

$$
t_{w}(F)=F
$$

Affine Subspace (continued)

Proposition

Let $F=p+W$ be an affine subspace of E. Then for any $q \in F$

$$
F=p+W=q+W
$$

Affine Subspace (continued)

Proposition

Let $F=p+W$ be an affine subspace of E. Then for any $q \in F$

$$
F=p+W=q+W
$$

Proof.
Since $q \in F$ then $q=p+w$ for some $w \in W$, i.e. $\overrightarrow{p q}=w$.
Therefore

$$
q+W=(p+w)+W=p+W
$$

Affine Subspace (continued)

Proposition
For any $q, r \in F=p+W$

$$
\overrightarrow{q r} \in W
$$

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F}=W$.

Affine Subspace (continued)

Proposition

For any $q, r \in F=p+W$

$$
\overrightarrow{q r} \in W,
$$

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F}=W$.

Proof.
Since $q=p+\overrightarrow{p q}, r=p+\overrightarrow{p r}$, both $\overrightarrow{p q}, \overrightarrow{p r} \in W$ and

$$
\overrightarrow{q r}=\overrightarrow{q p}+\overrightarrow{p r} \in W
$$

Affine Subspace (continued)

Proposition

For any $q, r \in F=p+W$

$$
\overrightarrow{q r} \in W,
$$

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F}=W$.

Proof.
Since $q=p+\overrightarrow{p q}, r=p+\overrightarrow{p r}$, both $\overrightarrow{p q}, \overrightarrow{p r} \in W$ and

$$
\overrightarrow{q r}=\overrightarrow{q p}+\overrightarrow{p r} \in W
$$

Remark
Note that any affine subspace F is an affine space over $W=\vec{F}$ with the operation + restricted to $F \times W$.

Affine Combination

Let E be an affine space over V.
Definition
Let $p_{0}, \ldots, p_{k} \in E$ be points. For any $a_{i} \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_{i}=1$ and any point $p \in E$ the point

$$
\sum_{i=0}^{k} a_{i} p_{i}=p+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{p}}
$$

is called the affine combination of p_{0}, \ldots, p_{k}.

Affine Combination

Let E be an affine space over V.
Definition
Let $p_{0}, \ldots, p_{k} \in E$ be points. For any $a_{i} \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_{i}=1$ and any point $p \in E$ the point

$$
\sum_{i=0}^{k} a_{i} p_{i}=p+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{p}}
$$

is called the affine combination of p_{0}, \ldots, p_{k}.
Proposition
For any $p, q \in E$

$$
p+\sum_{i=0}^{k} a_{i} \overrightarrow{p p}_{i}=q+\sum_{i=0}^{k} a_{i} \overrightarrow{q p_{i}} .
$$

Affine Combination (continued)

Proof.

$$
q+\sum_{i=0}^{k} a_{i} \overrightarrow{q p_{i}}=q+\sum_{i=0}^{k} a_{i}\left(\overrightarrow{q p}+\overrightarrow{p p_{i}}\right)=p+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{p}}
$$

Corollary
The affine combination of p_{0}, \ldots, p_{k} does not depend on the point $p \in E$.

Affine Combination (continued)

Corollary

Let $F=p+W$ be an affine subspace. Then any affine combination of $p_{0}, \ldots, p_{k} \in F$ belongs to F, i.e. any affine subspace is closed under taking affine combinations.

Proof.
For any $\sum_{i=0}^{k} a_{i}=1$

$$
\sum_{i=0}^{k} a_{i} p_{i}=p_{0}+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{0} p_{i}} \in F
$$

because $\overrightarrow{p_{0} p_{i}} \in W$ for $i=0, \ldots, k$.

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$
\overrightarrow{p q}=q-p
$$

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$
\overrightarrow{p q}=q-p
$$

Remark
Any affine space can be obtained in this way.

Affine Space \mathbb{R}^{n}

Remark

From now on we will be dealing only with the affine space \mathbb{R}^{n} (as a vector space over itself) and its affine subspaces of the form

$$
E=p+V
$$

where $V \subset \mathbb{R}^{n}$ is a subspace.

Affine Space \mathbb{R}^{n}

Remark

From now on we will be dealing only with the affine space \mathbb{R}^{n} (as a vector space over itself) and its affine subspaces of the form

$$
E=p+V
$$

where $V \subset \mathbb{R}^{n}$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example
Let $p=(1,1,1), q=(1,2,3)$. Then $\overrightarrow{p q}=q-p=(0,1,2)$.

Affine Space \mathbb{R}^{n}

Remark

From now on we will be dealing only with the affine space \mathbb{R}^{n} (as a vector space over itself) and its affine subspaces of the form

$$
E=p+V
$$

where $V \subset \mathbb{R}^{n}$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example
Let $p=(1,1,1), q=(1,2,3)$. Then $\overrightarrow{p q}=q-p=(0,1,2)$.
Example
Let $p=(1,-1)$ and $V=\operatorname{lin}((2,3)) \subset \mathbb{R}^{2}$. Then

$$
E=p+V=\left\{(1+2 t,-1+3 t) \in \mathbb{R}^{2} \mid t \in \mathbb{R}\right\}
$$

Affine Span

Definition

Let $p_{0}, \ldots, p_{k} \in \mathbb{R}^{n}$. The affine span (or the affine hull) of p_{0}, \ldots, p_{k} is the set of all affine combinations of p_{0}, \ldots, p_{k}, i.e.

$$
\operatorname{aff}\left(p_{0}, \ldots, p_{k}\right)=\left\{\sum_{i=0}^{k} a_{i} p_{i} \in \mathbb{R}^{n} \mid \sum_{i=0}^{k} a_{i}=1\right\}
$$

Affine Span

Definition

Let $p_{0}, \ldots, p_{k} \in \mathbb{R}^{n}$. The affine span (or the affine hull) of p_{0}, \ldots, p_{k} is the set of all affine combinations of p_{0}, \ldots, p_{k}, i.e.

$$
\operatorname{aff}\left(p_{0}, \ldots, p_{k}\right)=\left\{\sum_{i=0}^{k} a_{i} p_{i} \in \mathbb{R}^{n} \mid \sum_{i=0}^{k} a_{i}=1\right\}
$$

Proposition
Let $p_{0}, \ldots, p_{k} \in \mathbb{R}^{n}$. Then

$$
\operatorname{aff}\left(p_{0}, \ldots, p_{k}\right)=p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} p_{1}}, \ldots, \overrightarrow{p_{0} p_{k}}\right) .
$$

Affine Span (continued)

Proof.
Let $\sum_{i=0}^{k} a_{i}=1$. Then

$$
\sum_{i=0}^{k} a_{i} p_{i}=p_{0}+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{0} p_{i}} \in p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} \overrightarrow{p_{1}}}, \ldots, \overrightarrow{p_{0} \overrightarrow{p_{k}}}\right) .
$$

Affine Span (continued)

Proof.
Let $\sum_{i=0}^{k} a_{i}=1$. Then

$$
\sum_{i=0}^{k} a_{i} p_{i}=p_{0}+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{0} p_{i}} \in p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} p_{1}}, \ldots, \overrightarrow{p_{0} p_{k}}\right) .
$$

Assume $p=p_{0}+\sum_{i=1}^{k} a_{i} \overrightarrow{p_{0} p_{k}} \in p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} p_{1}}, \ldots, \overrightarrow{p_{0} p_{k}}\right)$ for some $a_{1}, \ldots, a_{k} \in \mathbb{R}$. Then

$$
p=\left(1-\sum_{i=1}^{k} a_{i}\right) p_{0}+\sum_{i=1}^{k} a_{i} p_{k} .
$$

Affine Span (continued)

Proof.
Let $\sum_{i=0}^{k} a_{i}=1$. Then

$$
\sum_{i=0}^{k} a_{i} p_{i}=p_{0}+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{0} p_{i}} \in p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} p_{1}}, \ldots, \overrightarrow{p_{0} p_{k}}\right) .
$$

Assume $p=p_{0}+\sum_{i=1}^{k} a_{i} \overrightarrow{p_{0} p_{k}} \in p_{0}+\operatorname{lin}\left(\overrightarrow{p_{0} p_{1}}, \ldots, \overrightarrow{p_{0} p_{k}}\right)$ for some $a_{1}, \ldots, a_{k} \in \mathbb{R}$. Then

$$
p=\left(1-\sum_{i=1}^{k} a_{i}\right) p_{0}+\sum_{i=1}^{k} a_{i} p_{k} .
$$

Corollary
The affine subpace aff $\left(p_{0}, \ldots, p_{k}\right)$ is the smallest affine subspace of \mathbb{R}^{n} containing points p_{0}, \ldots, p_{k}.

Affine Span-Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3), p_{2}=(3,2,1)$. Then

Affine Span-Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3), p_{2}=(3,2,1)$. Then

$$
\begin{aligned}
& \overrightarrow{p_{0} p_{1}}=(0,1,2), \\
& \overrightarrow{p_{0} p_{2}}=(2,1,0) .
\end{aligned}
$$

Affine Span-Example

$$
\begin{aligned}
& \text { Let } p_{0}=(1,1,1), p_{1}=(1,2,3), p_{2}=(3,2,1) \text {. Then } \\
& \qquad \begin{aligned}
\overrightarrow{p_{0} \overrightarrow{p_{1}}} & =(0,1,2), \\
\overrightarrow{p_{0} \overrightarrow{p_{2}}} & =(2,1,0) . \\
\operatorname{aff}((1,1,1),(1,2,3),(3,2,1)) & =(1,1,1)+\operatorname{lin}((0,1,2),(2,1,0))) .
\end{aligned}
\end{aligned}
$$

Parametrization

Definition

Let $E=p+\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ where vectors v_{1}, \ldots, v_{k} are linearly independent (i.e. v_{1}, \ldots, v_{k} is a basis of \vec{E}). Then any point $q \in E$ can be uniquely written as

$$
q=p+\sum_{i=1}^{k} t_{i} v_{i} .
$$

Any such presentation of E is called a parametrization.

Parametrization

Definition

Let $E=p+\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ where vectors v_{1}, \ldots, v_{k} are linearly independent (i.e. v_{1}, \ldots, v_{k} is a basis of \vec{E}). Then any point $q \in E$ can be uniquely written as

$$
q=p+\sum_{i=1}^{k} t_{i} v_{i} .
$$

Any such presentation of E is called a parametrization.
Example

$$
\begin{aligned}
E & =(1,1,1)+\operatorname{lin}((0,1,2),(2,1,0))= \\
& =(1,2,3)+\operatorname{lin}((0,1,2),(1,1,1))
\end{aligned}
$$

that is $\left(1+2 t_{2}, 1+t_{1}+t_{2}, 1+2 t_{1}\right), t_{1}, t_{2} \in \mathbb{R}$ and $\left(1+t_{2}, 2+t_{1}+t_{2}, 3+2 t_{1}+t_{2}\right), t_{1}, t_{2} \in \mathbb{R}$ are two different parametrizations of E.

Parallel Affine Subspaces

Definition
Two affine subspaces E, H of \mathbb{R}^{n} are called parallel if $\vec{E}=\vec{H}$.

Parallel Affine Subspaces

Definition
Two affine subspaces E, H of \mathbb{R}^{n} are called parallel if $\vec{E}=\vec{H}$.
Proposition
Any affine subspace E of \mathbb{R}^{n} is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^{n} are called parallel if $\vec{E}=\vec{H}$.

Proposition

Any affine subspace E of \mathbb{R}^{n} is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Proof.

There exists a homogeneous system of linear equations describing the vector subspace \vec{E}

Proof.

Let $E=p+\vec{E}$. If $p=\left(y_{1}, \ldots, y_{n}\right)$ set

$$
\begin{array}{cccccccc}
b_{1}= & a_{11} y_{1} & + & a_{12} y_{2} & + & \ldots & + & a_{1 n} y_{n} \\
b_{2} & = & a_{21} y_{1} & + & a_{22} y_{2} & + & \ldots & + \\
a_{2 n} y_{n} \\
\vdots & & \vdots & & \ddots & & \vdots & \vdots \\
b_{m}= & a_{m 1} y_{1} & + & a_{m 2} y_{2} & + & \ldots & + & a_{m n} y_{n}
\end{array}
$$

Proof.

Let $E=p+\vec{E}$. If $p=\left(y_{1}, \ldots, y_{n}\right)$ set

$$
\begin{array}{cccccccc}
b_{1} & =a_{11} y_{1} & + & a_{12} y_{2} & + & \ldots & + & a_{1 n} y_{n} \\
b_{2} & = & a_{21} y_{1} & + & a_{22} y_{2} & + & \ldots & + \\
a_{2 n} y_{n} \\
\vdots & & \vdots & & \ddots & & \vdots & \vdots \\
b_{m} & =a_{m 1} y_{1} & + & a_{m 2} y_{2} & + & \ldots & + & a_{m n} y_{n}
\end{array}
$$

Then the affine subspace E is described by

Proof.
Let $E=p+\vec{E}$. If $p=\left(y_{1}, \ldots, y_{n}\right)$ set

$$
\begin{array}{cccccccc}
b_{1} & =a_{11} y_{1} & + & a_{12} y_{2} & + & \ldots & + & a_{1 n} y_{n} \\
b_{2} & = & a_{21} y_{1} & + & a_{22} y_{2} & + & \ldots & + \\
a_{2 n} y_{n} \\
\vdots & & \vdots & & \ddots & & \vdots & \vdots \\
b_{m} & =a_{m 1} y_{1} & + & a_{m 2} y_{2} & + & \ldots & + & a_{m n} y_{n}
\end{array}
$$

Then the affine subspace E is described by

$$
E:\left\{\begin{array}{cccccccc}
a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & + & a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & + & a_{22} x_{2} & + & \ldots & + & a_{2 n} x_{n} & =b_{2} \\
\vdots & & \vdots & & \ddots & & \vdots & \vdots \\
a_{m 1} x_{1} & + & a_{m 2} x_{2} & + & \ldots & + & a_{m n} x_{n} & =b_{m}
\end{array}\right.
$$

The constants b_{1}, \ldots, b_{m} do not depend on the point $p \in E$ since any two points in E differ by a vector from \vec{E}.

Examples

Example

Describe by a system of linear equations an affine subspace E parallel to $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$ passing through $p=(2,3,4)$.

Examples

Example

Describe by a system of linear equations an affine subspace E parallel to $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$ passing through $p=(2,3,4)$.

$$
E: x_{1}+x_{2}+x_{3}=9
$$

Examples

Example

Describe by a system of linear equations an affine subspace E parallel to $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$ passing through $p=(2,3,4)$.

$$
E: x_{1}+x_{2}+x_{3}=9 .
$$

Example

Describe by a system of linear equations the affine subspace $E=p+V$ in \mathbb{R}^{4} where

$$
p=(1,1,2,1), \quad V=\operatorname{lin}((1,1,3,0),(1,0,1,0),(0,1,2,0)) .
$$

Examples

Example

Describe by a system of linear equations an affine subspace E parallel to $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$ passing through $p=(2,3,4)$.

$$
E: x_{1}+x_{2}+x_{3}=9
$$

Example

Describe by a system of linear equations the affine subspace $E=p+V$ in \mathbb{R}^{4} where

$$
p=(1,1,2,1), \quad V=\operatorname{lin}((1,1,3,0),(1,0,1,0),(0,1,2,0)) .
$$

Vectors $(1,0,1,0),(0,1,2,0)$ form a basis of V. Therefore V is described by the system of equations

$$
V:\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3} & \\
& =0 \\
x_{4} & =0
\end{aligned}\right.
$$

Examples (continued)

Example

Recall $E=(1,1,2,1)+V$. Therefore

$$
E:\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3} & \\
& =1 \\
x_{4} & =1
\end{aligned}\right.
$$

Definition
For any $p, q \in \mathbb{R}^{n}$ the distance between p and q is $\|\overrightarrow{p q}\|$. It is denoted $d(p, q)$.

Examples (continued)

Example

Recall $E=(1,1,2,1)+V$. Therefore

$$
E:\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3} & \\
& =1 \\
x_{4} & =1
\end{aligned}\right.
$$

Definition

For any $p, q \in \mathbb{R}^{n}$ the distance between p and q is $\|\vec{p}\|$. It is denoted $d(p, q)$.
It has the following properties:
i) $d(p, q) \geqslant 0$ and $(d(p, q)=0 \Longleftrightarrow p=q)$,
ii) $d(p, q)=d(q, p)$ (symmetry),
iii) $d(p, r) \leqslant d(p, q)+d(q, r)$ (triangle inequality).

Examples (continued)

Example
Recall $E=(1,1,2,1)+V$. Therefore

$$
E:\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3} & \\
& =1 \\
x_{4} & =1
\end{aligned}\right.
$$

Definition

For any $p, q \in \mathbb{R}^{n}$ the distance between p and q is $\|\vec{p}\|$. It is denoted $d(p, q)$.
It has the following properties:
i) $d(p, q) \geqslant 0$ and $(d(p, q)=0 \Longleftrightarrow p=q)$,
ii) $d(p, q)=d(q, p)$ (symmetry),
iii) $d(p, r) \leqslant d(p, q)+d(q, r)$ (triangle inequality).

The affine space \mathbb{R}^{n} equipped with a function satisfying above properties (called metric) becomes a metric space.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^{n}$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^{n}$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

Definition

Let $E \subset \mathbb{R}^{n}, H \subset \mathbb{R}^{m}$ be two affine subspaces. A function $f: E \longrightarrow H$ satisfying the condition

$$
\begin{gathered}
\qquad f(p+\alpha)=f(p)+f^{\prime}(\alpha) \\
\left(\text { or equivalently } \overrightarrow{f(p) f(p+\alpha)}=f^{\prime}(\alpha)\right)
\end{gathered}
$$

for some $p \in E$, some linear transformation $f^{\prime}: \vec{E} \longrightarrow \vec{H}$ and any $\alpha \in \vec{E}$ is called an affine transformation.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^{n}$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

Definition

Let $E \subset \mathbb{R}^{n}, H \subset \mathbb{R}^{m}$ be two affine subspaces. A function $f: E \longrightarrow H$ satisfying the condition

$$
\begin{gathered}
\qquad f(p+\alpha)=f(p)+f^{\prime}(\alpha) \\
\left(\text { or equivalently } \overrightarrow{f(p) f(p+\alpha)}=f^{\prime}(\alpha)\right)
\end{gathered}
$$

for some $p \in E$, some linear transformation $f^{\prime}: \vec{E} \longrightarrow \vec{H}$ and any $\alpha \in \vec{E}$ is called an affine transformation.
If $q \in E$ then $f(q+\alpha)=f(p+\overrightarrow{p q}+\alpha)=f(p)+f^{\prime}(\overrightarrow{p q})+f^{\prime}(\alpha)=$ $=f(q)+f^{\prime}(\alpha)$ therefore the condition in the definition holds for any $p \in E$.

Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then $f: E \longrightarrow H$ is an affine transformation if and only if

$$
f\left(\sum_{i=0}^{k} a_{i} p_{i}\right)=\sum_{i=0}^{k} a_{i} f\left(p_{i}\right)
$$

for any $p_{i} \in E$ and $a_{i} \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_{i}=1$.

Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then $f: E \longrightarrow H$ is an affine transformation if and only if

$$
f\left(\sum_{i=0}^{k} a_{i} p_{i}\right)=\sum_{i=0}^{k} a_{i} f\left(p_{i}\right)
$$

for any $p_{i} \in E$ and $a_{i} \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_{i}=1$.
Proof.
(\Rightarrow) Assume that f is an affine transformation. Then

$$
\begin{gathered}
f\left(\sum_{i=0}^{k} a_{i} p_{i}\right)=f\left(p_{0}+\sum_{i=0}^{k} a_{i} \overrightarrow{p_{0} p_{i}}\right)=f\left(p_{0}\right)+\sum_{i=0}^{k} a_{i} f^{\prime}\left(\overrightarrow{p_{0} p_{i}}\right)= \\
=f\left(p_{0}\right)+\sum_{i=0}^{k} a_{i}\left(\overrightarrow{f\left(p_{0}\right) f\left(p_{i}\right)}\right)=\sum_{i=0}^{k} a_{i} f\left(p_{i}\right)
\end{gathered}
$$

Properties of Affine Transformation (continued)

Proof.

(\Leftarrow) Assume that function f satisfies the condition of the
Proposition for $k=1$. Let $p_{0}, p_{1} \in E$ be any points and $a \in \mathbb{R}$, then

$$
\begin{aligned}
f\left((1-a) p_{0}+a p_{1}\right) & =f\left(p_{0}+a \overrightarrow{p_{0} p_{1}}\right)=(1-a) f\left(p_{0}\right)+a f\left(p_{1}\right)= \\
& =f\left(p_{0}\right)+a \overrightarrow{f\left(p_{0}\right) f\left(p_{1}\right)} .
\end{aligned}
$$

Properties of Affine Transformation (continued)

Proof.

(\Leftarrow) Assume that function f satisfies the condition of the
Proposition for $k=1$. Let $p_{0}, p_{1} \in E$ be any points and $a \in \mathbb{R}$, then

$$
\begin{aligned}
f\left((1-a) p_{0}+a p_{1}\right) & =f\left(p_{0}+a \overrightarrow{p_{0}} \overrightarrow{p_{1}}\right)=(1-a) f\left(p_{0}\right)+a f\left(p_{1}\right)= \\
& =f\left(p_{0}\right)+a \overrightarrow{f\left(p_{0}\right) f\left(p_{1}\right)} .
\end{aligned}
$$

It is enough to define

$$
f^{\prime}\left(\overrightarrow{p_{0} p_{1}}\right)=\overrightarrow{f\left(p_{0}\right) f\left(p_{1}\right)}
$$

and check that f^{\prime} is well-defined and linear.

Properties of Affine Transformation (continued)

Proof.

(\Leftarrow) Assume that function f satisfies the condition of the
Proposition for $k=1$. Let $p_{0}, p_{1} \in E$ be any points and $a \in \mathbb{R}$, then

$$
\begin{aligned}
f\left((1-a) p_{0}+a p_{1}\right) & =f\left(p_{0}+a \overrightarrow{p_{0}} \overrightarrow{p_{1}}\right)=(1-a) f\left(p_{0}\right)+a f\left(p_{1}\right)= \\
& =f\left(p_{0}\right)+a \overrightarrow{f\left(p_{0}\right) f\left(p_{1}\right)} .
\end{aligned}
$$

It is enough to define

$$
f^{\prime}\left(\overrightarrow{p_{0} p_{1}}\right)=\overrightarrow{f\left(p_{0}\right) f\left(p_{1}\right)}
$$

and check that f^{\prime} is well-defined and linear. We omit the details of the proof.

Formula of an Affine Transformation

Remark

Any affine transformation $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is given by a formula

$$
\begin{gathered}
f\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+b_{1}, \ldots,\right. \\
\left.a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+b_{m}\right),
\end{gathered}
$$

where $a_{i j}, b_{k} \in \mathbb{R}$. The linear transformation f^{\prime} has matrix

$$
M\left(f^{\prime}\right)_{s t}^{s t}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^{n}$).

Formula of an Affine Transformation

Remark

Any affine transformation $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is given by a formula

$$
\begin{gathered}
f\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+b_{1}, \ldots,\right. \\
\left.a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+b_{m}\right),
\end{gathered}
$$

where $a_{i j}, b_{k} \in \mathbb{R}$. The linear transformation f^{\prime} has matrix

$$
M\left(f^{\prime}\right)_{s t}^{s t}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^{n}$).
Proof.
Choose $p=(0, \ldots, 0), \alpha=\left(x_{1}, \ldots, x_{n}\right)$ so $f\left(\left(x_{1}, \ldots, x_{n}\right)\right)=f((0, \ldots, 0))+f^{\prime}\left(\left(x_{1}, \ldots, x_{n}\right)\right)$.

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^{n}$ be an affine subspace and let $p_{0} \in E$. The affine transformation $\pi_{E}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by

$$
\pi_{E}(p)=\pi_{E}\left(p_{0}+\overrightarrow{p_{0} P}\right)=p_{0}+P_{\vec{E}}\left(\overrightarrow{p_{0} P}\right)
$$

where $P_{\vec{E}}$ is the (linear) orthogonal projection on \vec{E}, is called an (affine) orthogonal projection on E.

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^{n}$ be an affine subspace and let $p_{0} \in E$. The affine transformation $\pi_{E}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by

$$
\pi_{E}(p)=\pi_{E}\left(p_{0}+\overrightarrow{p_{0} p}\right)=p_{0}+P_{\vec{E}}\left(\overrightarrow{p_{0} P}\right)
$$

where $P_{\vec{E}}$ is the (linear) orthogonal projection on \vec{E}, is called an (affine) orthogonal projection on E.
The transformation $\sigma_{E}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by

$$
\sigma_{E}(p)=\sigma_{E}\left(p_{0}+\overrightarrow{p_{0} p}\right)=p_{0}+S_{\vec{E}}\left(\overrightarrow{p_{0} p}\right)
$$

where $S_{\vec{E}}$ is the (linear) orthogonal reflection about \vec{E}, is called an (affine) orthogonal reflection about E.

Orthogonal Projection

Orthogonal Projection

Orthogonal Reflection

Orthogonal Reflection

Orthogonal Reflection

Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3)$. Let $E=\operatorname{aff}\left(p_{0}, p_{1}\right)$ be an affine line. Compute orthogonal projection of $p=(2,0,1)$ on E.

$$
\overrightarrow{p_{0} P}=(2,0,1)-(1,1,1)=(1,-1,0), \quad \vec{E}=\operatorname{lin}((0,1,2))
$$

The linear projection of $\overrightarrow{p_{0} P}$ on \vec{E} is

$$
P_{\vec{E}}\left(\overrightarrow{p_{0} P}\right)=\frac{(1,-1,0) \cdot(0,1,2)}{0^{2}+1^{2}+2^{2}}(0,1,2)=-\frac{1}{5}(0,1,2)
$$

Therefore $\pi_{E}(p)=(1,1,1)-\frac{1}{5}(0,1,2)=\frac{1}{5}(5,4,3)$.

Intersection of Affine Subspaces

Proposition
Let $E=p+V, H=q+W \subset \mathbb{R}^{n}$ be two affine subspaces. Then either $E \cap H=\varnothing$ or $p_{0} \in E \cap H$ and

$$
E \cap H=p_{0}+(V \cap W) .
$$

Intersection of Affine Subspaces

Proposition
Let $E=p+V, H=q+W \subset \mathbb{R}^{n}$ be two affine subspaces. Then either $E \cap H=\varnothing$ or $p_{0} \in E \cap H$ and

$$
E \cap H=p_{0}+(V \cap W) .
$$

Proof.
If $p_{0} \in E \cap H$ then $E=p_{0}+V$ and $H=p_{0}+W$.

Intersection of Affine Subspaces

Proposition

Let $E=p+V, H=q+W \subset \mathbb{R}^{n}$ be two affine subspaces. Then either $E \cap H=\varnothing$ or $p_{0} \in E \cap H$ and

$$
E \cap H=p_{0}+(V \cap W) .
$$

Proof.
If $p_{0} \in E \cap H$ then $E=p_{0}+V$ and $H=p_{0}+W$.
Proposition
Let $E=p+V, H=q+W \subset \mathbb{R}^{n}$ be two affine subspaces. Then $E \cap H \neq \varnothing$ if and only if there exist $v \in V, w \in W$ such that

$$
\overrightarrow{p q}=v+w .
$$

Intersection of Affine Subspaces (continued)

Proof.

Assume $\overrightarrow{p q}=v+w$ as above. Then $q-w \in H$ and $q-w=p+\overrightarrow{p q}-w=p+v \in E$.

Intersection of Affine Subspaces (continued)

Proof.

Assume $\overrightarrow{p q}=v+w$ as above. Then $q-w \in H$ and $q-w=p+\overrightarrow{p q}-w=p+v \in E$. Assume that $p_{0} \in E \cap H$. Then $\overrightarrow{p q}=\overrightarrow{p p_{0}}+\overrightarrow{p_{0} q}$ where $\overrightarrow{p_{0}} \in V$ and $\overrightarrow{p_{0} q} \in W$.

Projection as Intersection

Proposition
Let $V \subset \mathbb{R}^{n}$ be a vector subspace. For any $p, q \in \mathbb{R}^{n}$ the affine subspaces $p+V$ and $q+V^{\perp}$ intersect in exactly one point.

Projection as Intersection

Proposition

Let $V \subset \mathbb{R}^{n}$ be a vector subspace. For any $p, q \in \mathbb{R}^{n}$ the affine subspaces $p+V$ and $q+V^{\perp}$ intersect in exactly one point.

Proof.
By the previous lecture $\overrightarrow{p q}=P_{V}(\overrightarrow{p q})+P_{V \perp}(\overrightarrow{p q})$ and $V \cap V^{\perp}=\{0\}$.

Projection as Intersection

Proposition

Let $V \subset \mathbb{R}^{n}$ be a vector subspace. For any $p, q \in \mathbb{R}^{n}$ the affine subspaces $p+V$ and $q+V^{\perp}$ intersect in exactly one point.

Proof.
By the previous lecture $\overrightarrow{p q}=P_{V}(\overrightarrow{p q})+P_{V} \perp(\overrightarrow{p q})$ and $V \cap V^{\perp}=\{0\}$.

Proposition

Let $E \subset \mathbb{R}^{n}$ be an affine subspace and let $p_{0} \in E$. Then for any $p \in \mathbb{R}^{n}$ the affine subspaces $p_{0}+\vec{E}$ and $p+\vec{E}^{\perp}$ intersect exactly in the point $\pi_{E}(p)$.

Projection as Intersection

Proposition

Let $V \subset \mathbb{R}^{n}$ be a vector subspace. For any $p, q \in \mathbb{R}^{n}$ the affine subspaces $p+V$ and $q+V^{\perp}$ intersect in exactly one point.

Proof.
By the previous lecture $\overrightarrow{p q}=P_{V}(\overrightarrow{p q})+P_{V \perp}(\overrightarrow{p q})$ and $V \cap V^{\perp}=\{0\}$.

Proposition

Let $E \subset \mathbb{R}^{n}$ be an affine subspace and let $p_{0} \in E$. Then for any $p \in \mathbb{R}^{n}$ the affine subspaces $p_{0}+\vec{E}$ and $p+\vec{E}^{\perp}$ intersect exactly in the point $\pi_{E}(p)$.

Proof.
We know $\overrightarrow{p_{0} P}=P_{V}\left(\overrightarrow{p_{0} P}\right)+P_{V} \perp\left(\overrightarrow{p_{0} P}\right)$. As in the previous proof the only point of the intersection is equal to $p_{0}+P_{V}\left(\overrightarrow{p_{0} P}\right)$. This is equal to $\pi_{E}(p)$ by definition.

Orthogonal Projection (again)

Orthogonal Projection (again)

Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3)$. Let $E=\operatorname{aff}\left(p_{0}, p_{1}\right)$ be an affine line. Compute orthogonal projection of $p=(2,0,1)$ on E.

Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3)$. Let $E=\operatorname{aff}\left(p_{0}, p_{1}\right)$ be an affine line. Compute orthogonal projection of $p=(2,0,1)$ on E. We compute the intersection of $E=p_{0}+\vec{E}$ with $p+\vec{E}^{\perp}$. The line E is parameterized as follows

$$
E=\{(1,1,1)+t(0,1,2) \mid t \in \mathbb{R}\}
$$

Example

Let $p_{0}=(1,1,1), p_{1}=(1,2,3)$. Let $E=\operatorname{aff}\left(p_{0}, p_{1}\right)$ be an affine line. Compute orthogonal projection of $p=(2,0,1)$ on E. We compute the intersection of $E=p_{0}+\vec{E}$ with $p+\vec{E}^{\perp}$. The line E is parameterized as follows

$$
E=\{(1,1,1)+t(0,1,2) \mid t \in \mathbb{R}\} .
$$

The orthogonal complement to \vec{E} is two-dimensional hence given by a single equation $x_{2}+2 x_{3}=0$. The point p satisfies the equation, therefore $p+\vec{E}^{\perp}$ is described by $x_{2}+2 x_{3}=2$. By substituting the parametrization to the equation we get

$$
(1+t)+2(1+2 t)=2 \Longrightarrow t=-\frac{1}{5}
$$

Hence $\pi_{E}(2,0,1)=(1,1,1)-\frac{1}{5}(0,1,2)=\frac{1}{5}(5,4,3)$.

Example

Find a formula of an orthogonal projection onto the affine subspace $E=\operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^{4}$. The subspace E can be written as $E=(1,1,1,1)+\operatorname{lin}((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \vec{E}. Set $v_{1}=(0,1,0,1), v_{2}=(0,0,1,1)$. Then

$$
w_{1}=v_{1}=(0,1,0,1)
$$

$$
w_{2}=v_{2}-\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=(0,0,1,1)-\frac{1}{2}(0,1,0,1)=\frac{1}{2}(0,-1,2,1) .
$$

Example

Find a formula of an orthogonal projection onto the affine subspace $E=\operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^{4}$. The subspace E can be written as $E=(1,1,1,1)+\operatorname{lin}((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \vec{E}. Set $v_{1}=(0,1,0,1), v_{2}=(0,0,1,1)$. Then

$$
w_{1}=v_{1}=(0,1,0,1),
$$

$$
w_{2}=v_{2}-\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=(0,0,1,1)-\frac{1}{2}(0,1,0,1)=\frac{1}{2}(0,-1,2,1)
$$

The vectors $(0,1,0,1),(0,-1,2,1)$ form an orthogonal basis of \vec{E}. Recall $\pi_{E}(p)=p_{0}+P_{\vec{E}}\left(\overrightarrow{p_{0} P}\right)$ therefore

Example

Find a formula of an orthogonal projection onto the affine subspace $E=\operatorname{aff}((1,1,1,1),(1,0,1,0),(1,1,0,0)) \subset \mathbb{R}^{4}$. The subspace E can be written as $E=(1,1,1,1)+\operatorname{lin}((0,1,0,1),(0,0,1,1))$. We need to find an orthogonal basis of \vec{E}. Set $v_{1}=(0,1,0,1), v_{2}=(0,0,1,1)$. Then

$$
\begin{gathered}
w_{1}=v_{1}=(0,1,0,1) \\
w_{2}=v_{2}-\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=(0,0,1,1)-\frac{1}{2}(0,1,0,1)=\frac{1}{2}(0,-1,2,1) .
\end{gathered}
$$

The vectors $(0,1,0,1),(0,-1,2,1)$ form an orthogonal basis of \vec{E}. Recall $\pi_{E}(p)=p_{0}+P_{\vec{E}}\left(\overrightarrow{p_{0} P}\right)$ therefore
$\pi_{E}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,1,1)+P_{\vec{E}}\left(x_{1}-1, x_{2}-1, x_{3}-1, x_{4}-1\right)=$
$=(1,1,1,1)+\frac{x_{2}+x_{4}-2}{2}(0,1,0,1)+\frac{-x_{2}+2 x_{3}+x_{4}-2}{6}(0,-1,2,1)=$

Example (continued)

$$
\begin{aligned}
& \pi_{E}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,1,1)+P_{\vec{E}}\left(x_{1}-1, x_{2}-1, x_{3}-1, x_{4}-1\right)= \\
& =(1,1,1,1)+\frac{x_{2}+x_{4}-2}{2}(0,1,0,1)+\frac{-x_{2}+2 x_{3}+x_{4}-2}{6}(0,-1,2,1)= \\
& =\left(1, \frac{2 x_{2}-x_{3}+x_{4}+1}{3}, \frac{-x_{2}+2 x_{3}+x_{4}+1}{3}\right. \\
& \left.\frac{x_{2}+x_{3}+2 x_{4}-1}{3}\right)
\end{aligned}
$$

Example (continued)

Alternatively, by the definition $\pi_{E}^{\prime}=P_{\vec{E}}$, therefore if $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$, the linear part of the affine projection π_{E} is given by

$$
M\left(P_{\vec{E}}\right)_{s t}^{s t}=A\left(A^{\top} A\right)^{-1} A^{\top}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right] .
$$

Example (continued)

Alternatively, by the definition $\pi_{E}^{\prime}=P_{\vec{E}}$, therefore if $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$, the linear part of the affine projection π_{E} is given by

$$
M\left(P_{\vec{E}}\right)_{s t}^{s t}=A\left(A^{\top} A\right)^{-1} A^{\top}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right] .
$$

It follows that

$$
\pi_{E}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{r}
1 \\
\frac{1}{3} \\
\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right],
$$

because $\pi_{E}(1,1,1,1)=(1,1,1,1)$.

Distance from an Affine Hyperplane

Proposition

Let $E \subset \mathbb{R}^{n}$ be an affine hyperplane given by the equation

$$
E: a_{1} x_{1}+\ldots+a_{n} x_{n}=b
$$

equivalently

$$
E: a^{\top} x=b
$$

where $a=\left(a_{1}, \ldots, a_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. Then the signed distance (positive in the direction of vector $a \in \mathbb{R}^{n}$ and negative otherwise) of the point $p \in \mathbb{R}^{n}$ from the affine hyperplane E is equal to

$$
d_{s}(p, E)=\frac{a^{\top} p-b}{\|a\|} .
$$

Distance from an Affine Hyperplane (continued)

Proof.
The signed distance $d=d_{s}(p, E)$ is given by a system of equations

$$
\left\{\begin{array}{rlrl}
q & =p-d \frac{a}{\|a\|}, & \text { i.e., }\|\overrightarrow{q p}\|=\left\|d \frac{a}{\|a\|}\right\|=|d| \\
a^{\top} q & =b, & & \text { i.e., } q \text { belongs to } E
\end{array}\right.
$$

where $q \in E$ is the image of point p under the affine orthogonal projection onto E. The first equation multiplied by a^{\top} on the left gives

$$
b=a^{\top} q=a^{\top} p-d\|a\| .
$$

Distance from an Affine Hyperplane (continued)

Example

The signed distance of the point $p=(1,2,3,4) \in \mathbb{R}^{4}$ from the affine hyperplane

$$
E: x_{1}-x_{2}+2 x_{3}-x_{4}=5,
$$

is equal to

$$
d_{s}(p, E)=\frac{1 \cdot 1+2 \cdot(-1)+3 \cdot 2+4 \cdot(-1)-5}{\sqrt{1^{2}+(-1)^{2}+2^{2}+(-1)^{2}}}=-\frac{4}{\sqrt{7}} .
$$

Distance from an Affine Subspace

Corollary
Let $E \subset \mathbb{R}^{n}$ be an affine subspace of \mathbb{R}^{n} given by the system of linear equations

$$
\left\{\begin{array}{c}
a_{1}^{\top} x=b_{1} \\
\vdots \\
a_{m}^{\top} x=b_{m}
\end{array}\right.
$$

where $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ are pairwise orthogonal, i.e.,

$$
a_{i} \cdot a_{j}=a_{i}^{\top} a_{j}=0 \quad \text { for } \quad i \neq j .
$$

The distance of point $p \in \mathbb{R}^{n}$ from the subspace E is equal to

$$
d(p, E)=\sqrt{\sum_{i=1}^{m}\left(\frac{a_{i}^{\top} p-b_{i}}{\left\|a_{i}\right\|}\right)^{2}}
$$

Distance of Parallel Affine Hyperplanes

Corollary

Let $E, H \subset \mathbb{R}^{n}$ be two parallel affine hyperplanes given by the equations

$$
\begin{array}{r}
E: a_{1} x_{1}+\ldots+a_{n} x_{n}=b, \\
E^{\prime}: a_{1} x_{1}+\ldots+a_{n} x_{n}=b^{\prime},
\end{array}
$$

equivalently

$$
\begin{gathered}
E: a^{\top} x=b, \\
E^{\prime}: a^{\top} x=b^{\prime},
\end{gathered}
$$

where $a=\left(a_{1}, \ldots, a_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $b, b^{\prime} \in \mathbb{R}$. Then distance between E and E^{\prime} is equal to

$$
d\left(E, E^{\prime}\right)=\frac{\left|b-b^{\prime}\right|}{\|a\|}
$$

Two Lines in \mathbb{R}^{n}

Let $L_{1}, L_{2} \subset \mathbb{R}^{n}$ be two lines in \mathbb{R}^{n}. Then either
i) the lines intersect, i.e.

$$
L_{1} \cap L_{2} \neq \varnothing
$$

a) $\vec{L}_{1} \neq \vec{L}_{2}$ (the lines intersect in exactly one point),
b) $\vec{L}_{1}=\vec{L}_{2}$ (the lines coincide).
ii) the lines are disjoint, i.e.

$$
L_{1} \cap L_{2}=\varnothing
$$

a) $\vec{L}_{1} \neq \vec{L}_{2}$ (the lines are skew),
b) $\vec{L}_{1}=\vec{L}_{2}$ (the lines are parallel).

Distance of Two Skew Lines in \mathbb{R}^{3}

Proposition
Let

$$
\begin{aligned}
& L_{1}=p_{1}+\operatorname{lin}\left(v_{1}\right), \\
& L_{2}=p_{2}+\operatorname{lin}\left(v_{2}\right),
\end{aligned}
$$

be two skew lines in \mathbb{R}^{3}, that is $p_{i} \in \mathbb{R}^{3}$ and $v_{i} \in \mathbb{R}^{3}$ for $i=1,2$. Then the distance between line L_{1} and line L_{2} is equal to

$$
d\left(L_{1}, L_{2}\right)=\frac{\left|v_{3}^{\top}\left(p_{1}-p_{2}\right)\right|}{\left\|v_{3}\right\|}
$$

where

$$
\operatorname{lin}\left(v_{3}\right)=\operatorname{lin}\left(v_{1}, v_{2}\right)^{\perp}
$$

Distance of Two Skew Lines in \mathbb{R}^{3}

Proposition

Let

$$
\begin{aligned}
& L_{1}=p_{1}+\operatorname{lin}\left(v_{1}\right), \\
& L_{2}=p_{2}+\operatorname{lin}\left(v_{2}\right),
\end{aligned}
$$

be two skew lines in \mathbb{R}^{3}, that is $p_{i} \in \mathbb{R}^{3}$ and $v_{i} \in \mathbb{R}^{3}$ for $i=1,2$. Then the distance between line L_{1} and line L_{2} is equal to

$$
d\left(L_{1}, L_{2}\right)=\frac{\left|v_{3}^{\top}\left(p_{1}-p_{2}\right)\right|}{\left\|v_{3}\right\|}
$$

where

$$
\operatorname{lin}\left(v_{3}\right)=\operatorname{lin}\left(v_{1}, v_{2}\right)^{\perp}
$$

Proof.

Use the formula for distance between two parallel planes containing respectively L_{1} and L_{2}. Alternatively, the distance is equal to length of the image of the orthogonal projection of $\overrightarrow{p_{1} p_{2}}$ onto the subspace $\operatorname{lin}\left(v_{3}\right)$.

Distance Between Two Affine Subspaces in \mathbb{R}^{n}

Proposition

Let $E: A x=b$, and $H: C x=d$, be two affine subspaces of \mathbb{R}^{n}, where $A \in M(s \times n, \mathbb{R})$ and $C \in M(t \times n, \mathbb{R})$. Assume that
i) the rows of matrix A are orthonormal,
ii) the rows of matrix C are linearly independent,
iii) the columns of matrix $\left[\begin{array}{l}A \\ C\end{array}\right]$ are linearly independent.

Then the equation

$$
\left[\begin{array}{cc}
A^{\top} A & C^{\top} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
A^{\top} b \\
d
\end{array}\right]
$$

has a unique solution $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ and the distance between E and H is equal to

$$
d(E, H)=\left\|A x_{0}-b\right\| .
$$

Distance Between Two Affine Subspaces in \mathbb{R}^{n} (continued)

Proof.

Let $a_{1}, \ldots, a_{s} \in \mathbb{R}^{n}$ be the rows of matrix A. Then

$$
d(p, E)=\min _{x \in H} \sqrt{\sum_{i=1}^{s}\left(a_{i}^{\top} x-b_{i}\right)^{2}}
$$

that is, we need to solve the following constrained least squares problem:
minimize

$$
\|A x-b\|^{2}
$$

under the constraints

$$
C x=d
$$

I follow closely the proof which can be found in L. Vanderberghe's lecture ${ }^{1}$.
${ }^{1}$ see http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf, slide 11.4

Distance Between Two Affine Subspaces in \mathbb{R}^{n} (continued)

Proof.

Assume that $C x=d$. Then x_{0} is optimal since

$$
\begin{gathered}
\|A x-b\|=\left\|A\left(x-x_{0}\right)+\left(A x_{0}-b\right)\right\|^{2}= \\
=\left\|A\left(x-x_{0}\right)\right\|^{2}+\left\|A x_{0}-b\right\|^{2}+2\left(x-x_{0}\right)^{\top} A^{\top}\left(A x_{0}-b\right)= \\
\left(\text { as } A^{\top} A x_{0}+C^{\top} y_{0}=A^{\top} b\right) \\
=\left\|A\left(x-x_{0}\right)\right\|^{2}+\left\|A x_{0}-b\right\|^{2}-2\left(x-x_{0}\right)^{\top} C^{\top} y_{0}= \\
\left(\text { as } C x=C x_{0}=d, \text { i.e., } x, x_{0} \in H\right) \\
=\left\|A\left(x-x_{0}\right)\right\|^{2}+\left\|A x_{0}-b\right\|^{2} \geqslant\left\|A x_{0}-b\right\|^{2} .
\end{gathered}
$$

Distance Between Two Affine Subspaces in \mathbb{R}^{n} (continued)

Proof.

Moreover, if $x_{0}, x_{0}^{\prime} \in H \subset \mathbb{R}^{n}$ are optimal then $C\left(x_{0}-x_{0}^{\prime}\right)=0$, and by the first part of the proof, $A\left(x-x_{0}\right)=0$, which by the condition iii), gives $x_{0}-x_{0}^{\prime}=0$. It can be also checked that

$$
\left[\begin{array}{cc}
A^{\top} A & C^{\top} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

implies that

$$
\begin{gathered}
x^{\top}\left(A^{\top} A x+C^{\top} y\right)=0, \quad C x=0 \\
A x=C x=0
\end{gathered}
$$

that is $x=0$ by the condition iii). This implies that $C^{\top} y=0$, which, by the condition ii) implies that $y=0$. Therefore, the above matrix is non-singular.

Distance Between Two Affine Subspaces in \mathbb{R}^{n} (continued)

Remark

The condition iii) guarantees that the affine subspaces E, H are either disjoint or they intersect in an exactly one point.

Distance Between Two Affine Subspaces in \mathbb{R}^{n} (continued)

Remark

The condition iii) guarantees that the affine subspaces E, H are either disjoint or they intersect in an exactly one point.

In constrained least squares problem, that is:
minimize

$$
\|A x-b\|^{2}
$$

under the constraints

$$
C x=d,
$$

we need to assume only ii) and iii). Condition i) is needed to use the formula for the distance between a point and an affine plane.

Linear Isometries

Definition

Linear transformation $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a linear isometry if

$$
\|\varphi(v)\|=\|v\|
$$

for any $v \in \mathbb{R}^{n}$.

Linear Isometries (continued)

Proposition

Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. The following conditions are equivalent
i) φ is an isometry,
ii) for any $v, w \in \mathbb{R}^{n}$

$$
\varphi(v) \cdot \varphi(w)=v \cdot w,
$$

iii) for any (or some) orthonormal basis \mathcal{A} of \mathbb{R}^{n} if $A=M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ then

$$
A^{\top} A=I,
$$

i.e. the matrix A is orthogonal.

Proof.
Exercise.

Orthogonal Group

Definition
The group

$$
O(n)=\left\{\varphi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \mid \varphi \text { is a linear isometry }\right\},
$$

is called the orthogonal group.

Example

Any orthogonal linear symmetry is a linear isometry.

Affine Isometries

Definition

Affine transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a linear isometry if

$$
d(f(p), f(q))=d(p, q)
$$

for any $p, q \in \mathbb{R}^{n}$.

Proposition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine transformation. Then it is equal to an linear isometry followed by a translation. In particular $\vec{f} \in O(n)$.

Proof.
Let $f(0)=q$. Let

$$
\tilde{f}(q)=f(q)+\overrightarrow{p 0} .
$$

Then \tilde{f} is a linear isometry, hence

$$
f=t_{-} \overrightarrow{p 0} \circ \tilde{f}
$$

Affine Orthogonal Group

Definition

The group

$$
A O(n)=\left\{f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \mid f \text { is an affine isometry }\right\},
$$

is called the affine orthogonal group. The group

$$
T(n)=\left\{t_{v}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \mid v \in \mathbb{R}^{n}\right\},
$$

is called the translation group.

Affine Orthogonal Group (continued)

Proposition

For any affine isometry $\varphi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ and any vector $v \in \mathbb{R}^{n}$

$$
f \circ t_{v} \circ f^{-1}=t_{f(v)} .
$$

Proof.
Exercise.

Affine Orthogonal Group

Corollary
The affine orthogonal group is a semidirect product of groups $T(n)$ and $O(n)$, i.e.

$$
A O(n)=T(n) \ltimes O(n),
$$

in particular
i) $O(n) T(n)=A O(n), \quad O(n) \cap T(n)=\{i d\}, \quad T(n) \triangleleft A O(n)$,
ii) for any $f \in A O(n)$ there exist unique $\varphi \in O(n), v \in \mathbb{R}^{n}$ such that $f=\varphi \circ t_{v}$,
iii) for any $f \in A O(n)$ there exist unique $\varphi \in O(n), v \in \mathbb{R}^{n}$ such that $f=t_{v} \circ \varphi$,
iv) the sequence

$$
1 \rightarrow T(n) \rightarrow A O(n) \rightarrow O(n) \rightarrow 1
$$

is exact.

Center of Mass

Let $p_{1}, \ldots, p_{k} \in \mathbb{R}^{n}$ be a points of mass $m_{1}, \ldots, m_{k} \in \mathbb{R}$ such that $M=\sum_{i=1}^{k} m_{i} \neq 0$ (negative mass is allowed).
Definition
The center of mass of points p_{1}, \ldots, p_{k} is the affine combination

$$
\bar{p}=\frac{1}{M} \sum_{i=1}^{k} m_{i} p_{i}
$$

Proposition

When $M>0$ (resp. $M<0$) the center of mass minimizes (resp. maximizes) the weighted sum of squared distances to points p_{1}, \ldots, p_{k}, i.e.

$$
\bar{p}=\underset{p \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{k} m_{i}\left\|p-p_{i}\right\|^{2}
$$

Center of Mass (continued)

Proof.

Assume $M>0$. Let

$$
f(p)=M p^{\top} p-2 \sum_{i=1}^{k} p^{\top} p_{i}
$$

We need to show that

$$
\bar{p}=\underset{p \in \mathbb{R}^{n}}{\operatorname{argmin}} f(p) .
$$

Note that

$$
\nabla f(p)=2 M p-2 \sum_{i=1}^{k} m_{i} p_{i}
$$

therefore

$$
\nabla f(\bar{p})=0 .
$$

Center of Mass (continued)

Proof.

Moreover $D^{2} f=I$, and by the multivariate Taylor's formula

$$
f(\bar{p}+h)=f(\bar{p})+2 M \frac{1}{2!} h^{\top} h,
$$

which proves that at $\bar{p} \in \mathbb{R}^{n}$ the function f attains its global minimum.

Affine Independence

Proposition

Points $p_{0}, \ldots, p_{k} \in \mathbb{R}^{n}$ are affine dependent if and only if there exist $a_{0}, \ldots, a_{k} \in \mathbb{R}$ not all equal to 0 such that

$$
\sum_{i=0}^{k} a_{i} p_{i}=0, \quad \sum_{i=0}^{k} a_{i}=0
$$

Proof.

Easy exercise. If say $a_{0} \neq 0$, dividing by a_{0} we see that p_{0} is an affine combination of p_{1}, \ldots, p_{k}. The converse is proven in a similar way.

Corollary

Points $p_{0}, \ldots, p_{k} \in \mathbb{R}^{n}$ are affinely dependent if and only if vectors $\left(p_{0}, 1\right), \ldots,\left(p_{k}, 1\right) \in \mathbb{R}^{n+1}$ are linearly dependent.

Affine Independence (continued)

Example

Points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2}$ are colinear if and only if

$$
\operatorname{det}\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]=0
$$

Points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right),\left(x_{4}, y_{4}, z_{4}\right) \in \mathbb{R}^{3}$ are coplanar if and only if

$$
\operatorname{det}\left[\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right]=0 .
$$

