Linear Algebra Lecture 11 - Affine Space \mathbb{R}^n

Oskar Kędzierski

9 January 2025

Affine Space

Definition An affine space E over a vector space V is any set E with a map

$$+: E \times V \to E,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

satisfying the following conditions i) p + 0 = p for any $p \in E$,

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$+\colon E\times V\to E,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

satisfying the following conditions

i)
$$p + 0 = p$$
 for any $p \in E$,
ii) $(p + v) + w = p + (v + w)$ for any $p \in E, v, w \in V$
(associativity),

Affine Space

Definition

An affine space E over a vector space V is any set E with a map

$$+: E \times V \rightarrow E,$$

satisfying the following conditions

i)
$$p + 0 = p$$
 for any $p \in E$,
ii) $(p + v) + w = p + (v + w)$ for any $p \in E, v, w \in V$
(associativity),

iii) for any $p, q \in E$ there exits a unique vector $\vec{pq} \in V$ such that $p + \vec{pq} = q$.

Let E be an affine space over V.

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$,

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$, iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$, iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Proof.

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$, iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Proof.

i)
$$p + 0 = p$$
,

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$, iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

Proof.

i) p + 0 = p, ii) $p + (\overrightarrow{pq} + \overrightarrow{qr}) = (p + \overrightarrow{pq}) + \overrightarrow{qr} = q + \overrightarrow{qr} = r$,

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let *E* be an affine space over *V*. Proposition For any $p, q, r \in E$ i) $\overrightarrow{pp} = 0$, ii) $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$, iii) $\overrightarrow{qp} = -\overrightarrow{pq}$.

Proof.

i)
$$p + 0 = p$$
,
ii) $p + (\overrightarrow{pq} + \overrightarrow{qr}) = (p + \overrightarrow{pq}) + \overrightarrow{qr} = q + \overrightarrow{qr} = r$,
iii) follows form i) and ii) for $r = p$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Remark

Elements of the set *E* are called **points** and elements of vector space *V* are called **vectors**. The point p + v can be thought of as point *p* translated by the vector *v* and \overrightarrow{pq} can be thought of as the vector with the **tail** at *p* and the **head** at *q*.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**. The point p + v can be thought of as point p translated by the vector v and \overrightarrow{pq} can be thought of as the vector with the **tail** at p and the **head** at q. Note that there is no distinguished point in an affine space.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Remark

Elements of the set E are called **points** and elements of vector space V are called **vectors**. The point p + v can be thought of as point p translated by the vector v and \overrightarrow{pq} can be thought of as the vector with the **tail** at p and the **head** at q. Note that there is no distinguished point in an affine space.

Remark

For any $p \in E$ the map

$$V \ni v \mapsto p + v \in E,$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

is a bijection.

Proof. It is injective

$$(p + v = p + w = q) \Rightarrow (v = w = \overrightarrow{pq}),$$

and surjective

$$q = p + \overrightarrow{pq}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Translation

Definition

For any $v \in V$ the **translation** by v is the map

$$t_v: E \ni p \mapsto p + v \in E$$
.

Translation

Definition For any $v \in V$ the **translation** by v is the map

 $t_v \colon E \ni p \mapsto p + v \in E.$

Proposition

For any $v \in V$ the translation t_v is a bijection.

Translation

Definition For any $v \in V$ the **translation** by v is the map

 $t_v \colon E \ni p \mapsto p + v \in E.$

Proposition

For any $v \in V$ the translation t_v is a bijection.

Proof.

It is injective

$$(p+v=q+v=r) \Rightarrow (v=\overrightarrow{pr}=\overrightarrow{qr}) \Rightarrow (p=r+\overrightarrow{rp}=r+\overrightarrow{rq}=q),$$

and surjective

$$t_v(q-v)=q.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of *E*. The subspace *W* is called the **direction** of *F* and it is denoted by $\vec{F} = W$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of *E*. The subspace *W* is called the **direction** of *F* and it is denoted by $\overrightarrow{F} = W$. The dimension of *F* is defined to be the dimension of *W*, i.e. dim *F* = dim *W*.

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of *E*. The subspace *W* is called the **direction** of *F* and it is denoted by $\overrightarrow{F} = W$. The dimension of *F* is defined to be the dimension of *W*, i.e. dim *F* = dim *W*.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Definition

Let E be an affine space over V. For any $p \in E$ and any subspace W of the vector space V the set

$$F = p + W = \{p + w \in E \mid w \in W\},\$$

is called an **affine subspace** of *E*. The subspace *W* is called the **direction** of *F* and it is denoted by $\overrightarrow{F} = W$. The dimension of *F* is defined to be the dimension of *W*, i.e. dim *F* = dim *W*.

Remark

The 0-dimensional affine subspaces are called points, the 1-dimensional affine subspaces are called lines, the 2-dimensional affine subspaces are planes.

Remark

The affine space F = p + W is invariant under translations t_w for any $w \in W$, i.e.

$$t_w(F)=F.$$

Proposition

Let F = p + W be an affine subspace of E. Then for any $q \in F$

$$F = p + W = q + W$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Proposition

Let F = p + W be an affine subspace of E. Then for any $q \in F$

$$F = p + W = q + W.$$

Proof.

Since $q \in F$ then q = p + w for some $w \in W$, i.e. $\overrightarrow{pq} = w$. Therefore

$$q+W=(p+w)+W=p+W.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proposition

For any $q, r \in F = p + W$

 $\overrightarrow{qr} \in W$,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F} = W$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proposition

For any $q, r \in F = p + W$

 $\overrightarrow{qr} \in W$,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F} = W$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proof. Since $q = p + \overrightarrow{pq}, r = p + \overrightarrow{pr}$, both $\overrightarrow{pq}, \overrightarrow{pr} \in W$ and $\overrightarrow{ar} = \overrightarrow{ap} + \overrightarrow{pr} \in W$.

Proposition

For any $q, r \in F = p + W$

 $\overrightarrow{qr} \in W$,

i.e. any vector joining two points of an affine subspace F belongs to its direction $\vec{F} = W$.

Proof. Since $q = p + \overrightarrow{pq}, r = p + \overrightarrow{pr}$, both $\overrightarrow{pq}, \overrightarrow{pr} \in W$ and $\overrightarrow{ar} = \overrightarrow{ap} + \overrightarrow{pr} \in W$.

Remark

Note that any affine subspace F is an affine space over $W = \vec{F}$ with the operation + restricted to $F \times W$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Affine Combination

Let E be an affine space over V.

Definition

Let $p_0, \ldots, p_k \in E$ be points. For any $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$ and any point $p \in E$ the point

$$\sum_{i=0}^{k} a_i p_i = p + \sum_{i=0}^{k} a_i \overrightarrow{pp_i}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

is called the **affine combination** of p_0, \ldots, p_k .

Affine Combination

Let E be an affine space over V.

Definition

Let $p_0, \ldots, p_k \in E$ be points. For any $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$ and any point $p \in E$ the point

$$\sum_{i=0}^{k} a_i p_i = p + \sum_{i=0}^{k} a_i \overrightarrow{pp_i}$$

is called the **affine combination** of p_0, \ldots, p_k .

Proposition

For any $p, q \in E$

$$p + \sum_{i=0}^{k} a_i \overrightarrow{p} \overrightarrow{p}_i = q + \sum_{i=0}^{k} a_i \overrightarrow{q} \overrightarrow{p}_i.$$

Affine Combination (continued)

Proof.

$$q + \sum_{i=0}^{k} a_i \overrightarrow{qp_i} = q + \sum_{i=0}^{k} a_i (\overrightarrow{qp} + \overrightarrow{pp_i}) = p + \sum_{i=0}^{k} a_i \overrightarrow{pp_i}.$$

Corollary

The affine combination of p_0, \ldots, p_k does not depend on the point $p \in E$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Affine Combination (continued)

Corollary

Let F = p + W be an affine subspace. Then any affine combination of $p_0, \ldots, p_k \in F$ belongs to F, i.e. any affine subspace is closed under taking affine combinations.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proof. For any $\sum_{i=0}^{k} a_i = 1$ $\sum_{i=0}^{k} a_i p_i = p_0 + \sum_{i=0}^{k} a_i \overrightarrow{p_0 p_i} \in F,$

because $\overrightarrow{p_0p_i} \in W$ for $i = 0, \ldots, k$.

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$\overrightarrow{pq} = q - p.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

The Main Example of Affine Space

Example

Any vector space V is an affine space over itself with the operation + being the vector addition from V and

$$\overrightarrow{pq} = q - p.$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Remark Any affine space can be obtained in this way.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$
,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

where $V \subset \mathbb{R}^n$ is a subspace.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$
,

where $V \subset \mathbb{R}^n$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example

Let p = (1, 1, 1), q = (1, 2, 3). Then $\overrightarrow{pq} = q - p = (0, 1, 2)$.

Affine Space \mathbb{R}^n

Remark

From now on we will be dealing only with the affine space \mathbb{R}^n (as a vector space over itself) and its affine subspaces of the form

$$E = p + V$$
,

where $V \subset \mathbb{R}^n$ is a subspace. In this case the operation + is the usual addition of n-tuples.

Example

Let
$$p = (1, 1, 1), q = (1, 2, 3)$$
. Then $\overrightarrow{pq} = q - p = (0, 1, 2)$.

1

Example

Let p=(1,-1) and $V={
m lin}((2,3))\subset \mathbb{R}^2.$ Then

$$E = p + V = \{(1 + 2t, -1 + 3t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}.$$

Affine Span

Definition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. The affine span (or the affine hull) of p_0, \ldots, p_k is the set of all affine combinations of p_0, \ldots, p_k , i.e.

$$\operatorname{aff}(p_0,\ldots,p_k) = \left\{ \sum_{i=0}^k a_i p_i \in \mathbb{R}^n \mid \sum_{i=0}^k a_i = 1 \right\}.$$

Affine Span

Definition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. The affine span (or the affine hull) of p_0, \ldots, p_k is the set of all affine combinations of p_0, \ldots, p_k , i.e.

$$\operatorname{aff}(p_0,\ldots,p_k) = \left\{\sum_{i=0}^k a_i p_i \in \mathbb{R}^n \mid \sum_{i=0}^k a_i = 1\right\}.$$

Proposition

Let $p_0, \ldots, p_k \in \mathbb{R}^n$. Then

$$\operatorname{aff}(p_0,\ldots,p_k)=p_0+\operatorname{lin}(\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_k}).$$

Affine Span (continued)

Proof.
Let
$$\sum_{i=0}^{k} a_i = 1$$
. Then
 $\sum_{i=0}^{k} a_i p_i = p_0 + \sum_{i=0}^{k} a_i \overline{p_0 p_i} \in p_0 + \ln(\overline{p_0 p_1}, \dots, \overline{p_0 p_k}).$

Affine Span (continued)

Proof.
Let
$$\sum_{i=0}^{k} a_i = 1$$
. Then
$$\sum_{i=0}^{k} a_i p_i = p_0 + \sum_{i=0}^{k} a_i \overline{p_0 p_i} \in p_0 + \lim(\overline{p_0 p_1}, \dots, \overline{p_0 p_k}).$$

Assume $p = p_0 + \sum_{i=1}^k a_i \overline{p_0 p_k} \in p_0 + \text{lin}(\overline{p_0 p_1}, \dots, \overline{p_0 p_k})$ for some $a_1, \dots, a_k \in \mathbb{R}$. Then

$$p = (1 - \sum_{i=1}^{k} a_i)p_0 + \sum_{i=1}^{k} a_i p_k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Affine Span (continued)

Proof.
Let
$$\sum_{i=0}^{k} a_i = 1$$
. Then
$$\sum_{i=0}^{k} a_i p_i = p_0 + \sum_{i=0}^{k} a_i \overline{p_0 p_i} \in p_0 + \ln(\overline{p_0 p_1}, \dots, \overline{p_0 p_k}).$$

Assume $p = p_0 + \sum_{i=1}^k a_i \overrightarrow{p_0 p_k} \in p_0 + \text{lin}(\overrightarrow{p_0 p_1}, \dots, \overrightarrow{p_0 p_k})$ for some $a_1, \dots, a_k \in \mathbb{R}$. Then

$$p = (1 - \sum_{i=1}^{k} a_i)p_0 + \sum_{i=1}^{k} a_i p_k.$$

Corollary

The affine subpace $aff(p_0, ..., p_k)$ is the smallest affine subspace of \mathbb{R}^n containing points $p_0, ..., p_k$.

Affine Span–Example

Let $p_0 = (1,1,1), p_1 = (1,2,3), p_2 = (3,2,1).$ Then

Affine Span–Example

Let
$$p_0 = (1, 1, 1), p_1 = (1, 2, 3), p_2 = (3, 2, 1)$$
. Then
 $\overrightarrow{p_0 p_1} = (0, 1, 2),$
 $\overrightarrow{p_0 p_2} = (2, 1, 0).$

Affine Span–Example

Let
$$p_0 = (1, 1, 1), p_1 = (1, 2, 3), p_2 = (3, 2, 1)$$
. Then
 $\overline{p_0 p_1} = (0, 1, 2),$
 $\overline{p_0 p_2} = (2, 1, 0).$

 $\mathsf{aff}((1,1,1),(1,2,3),(3,2,1)) = (1,1,1) + \mathsf{lin}((0,1,2),(2,1,0))).$

Parametrization

Definition

Let $E = p + \text{lin}(v_1, \ldots, v_k) \subset \mathbb{R}^n$ where vectors v_1, \ldots, v_k are linearly independent (i.e. v_1, \ldots, v_k is a basis of \vec{E}). Then any point $q \in E$ can be uniquely written as

$$q=p+\sum_{i=1}^k t_i v_i.$$

Any such presentation of E is called a **parametrization**.

Parametrization

Definition

Let $E = p + \text{lin}(v_1, \ldots, v_k) \subset \mathbb{R}^n$ where vectors v_1, \ldots, v_k are linearly independent (i.e. v_1, \ldots, v_k is a basis of \vec{E}). Then any point $q \in E$ can be uniquely written as

$$q=p+\sum_{i=1}^k t_i v_i.$$

Any such presentation of E is called a **parametrization**. Example

$$E = (1,1,1) + lin((0,1,2),(2,1,0)) =$$

= (1,2,3) + lin((0,1,2),(1,1,1))

that is $(1 + 2t_2, 1 + t_1 + t_2, 1 + 2t_1)$, $t_1, t_2 \in \mathbb{R}$ and $(1 + t_2, 2 + t_1 + t_2, 3 + 2t_1 + t_2)$, $t_1, t_2 \in \mathbb{R}$ are two different parametrizations of *E*.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\vec{E} = \vec{H}$.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\vec{E} = \vec{H}$.

Proposition

Any affine subspace E of \mathbb{R}^n is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Parallel Affine Subspaces

Definition

Two affine subspaces E, H of \mathbb{R}^n are called parallel if $\vec{E} = \vec{H}$.

Proposition

Any affine subspace E of \mathbb{R}^n is equal to a set of solutions of a (possibly non-homogeneous) system of linear equations in n variables.

Proof.

There exists a homogeneous system of linear equations describing the vector subspace \vec{E}

$$\vec{E}: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0\\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Proof. Let $\vec{E} = p + \vec{E}$. If $p = (y_1, \dots, y_n)$ set

$$b_1 = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n$$

$$b_2 = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_m = a_{m1}y_1 + a_{m2}y_2 + \dots + a_{mn}y_n$$

Proof. Let $E = p + \overrightarrow{E}$. If $p = (y_1, \dots, y_n)$ set

$$b_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$b_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_{m} = a_{m1}y_{1} + a_{m2}y_{2} + \dots + a_{mn}y_{n}$$

Then the affine subspace E is described by

$$E: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Proof. Let $E = p + \overrightarrow{E}$. If $p = (y_1, \dots, y_n)$ set

$$b_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$b_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_{m} = a_{m1}y_{1} + a_{m2}y_{2} + \dots + a_{mn}y_{n}$$

Then the affine subspace E is described by

$$E: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

The constants b_1, \ldots, b_m do not depend on the point $p \in E$ since any two points in E differ by a vector from \vec{E} .

▲ロト ▲御ト ▲ヨト ▲ヨト 三回 めんの

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations the affine subspace E=p+V in \mathbb{R}^4 where

$$p = (1, 1, 2, 1), V = lin((1, 1, 3, 0), (1, 0, 1, 0), (0, 1, 2, 0)).$$

Example

Describe by a system of linear equations an affine subspace E parallel to $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ passing through p = (2, 3, 4).

$$E: x_1 + x_2 + x_3 = 9.$$

Example

Describe by a system of linear equations the affine subspace E=p+V in \mathbb{R}^4 where

$$p = (1, 1, 2, 1), V = lin((1, 1, 3, 0), (1, 0, 1, 0), (0, 1, 2, 0)).$$

Vectors (1, 0, 1, 0), (0, 1, 2, 0) form a basis of V. Therefore V is described by the system of equations

$$V: \begin{cases} x_1 + 2x_2 - x_3 &= 0 \\ & x_4 = 0 \end{cases}$$

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 &= 1 \\ & x_4 &= 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 &= 1 \\ & x_4 &= 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

It has the following properties:

Examples (continued)

Example

Recall E = (1, 1, 2, 1) + V. Therefore

$$E: \begin{cases} x_1 + 2x_2 - x_3 &= 1 \\ & x_4 &= 1 \end{cases}$$

Definition

For any $p, q \in \mathbb{R}^n$ the **distance** between p and q is $\|\overrightarrow{pq}\|$. It is denoted d(p,q).

It has the following properties:

i)
$$d(p,q) \ge 0$$
 and $(d(p,q) = 0 \iff p = q)$,
ii) $d(p,q) = d(q,p)$ (symmetry),
iii) $d(p,r) \le d(p,q) + d(q,r)$ (triangle inequality).
The affine space \mathbb{R}^n equipped with a function satisfying above
properties (called metric) becomes a **metric space**.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

Definition

Let $E \subset \mathbb{R}^n, H \subset \mathbb{R}^m$ be two affine subspaces. A function $f: E \longrightarrow H$ satisfying the condition

$$f(\mathbf{p}+\alpha)=f(\mathbf{p})+f'(\alpha),$$

(or equivalently
$$\overline{f(p)f(p+\alpha)} = f'(\alpha)$$
),

for some $p \in E$, some linear transformation $f' : \vec{E} \longrightarrow \vec{H}$ and any $\alpha \in \vec{E}$ is called an **affine transformation**.

Affine Transformation

Definition

Let $E, H \subset \mathbb{R}^n$ be two affine subspaces. We say that E, H are orthogonal if $v \perp w$ for every $v \in \vec{E}, w \in \vec{H}$.

Definition

Let $E \subset \mathbb{R}^n, H \subset \mathbb{R}^m$ be two affine subspaces. A function $f: E \longrightarrow H$ satisfying the condition

$$f(p + \alpha) = f(p) + f'(\alpha),$$

(or equivalently $\overrightarrow{f(p)f(p + \alpha)} = f'(\alpha)$),

for some $p \in E$, some linear transformation $f' : \vec{E} \longrightarrow \vec{H}$ and any $\alpha \in \vec{E}$ is called an **affine transformation**.

If $q \in E$ then $f(q + \alpha) = f(p + \overrightarrow{pq} + \alpha) = f(p) + f'(\overrightarrow{pq}) + f'(\alpha) = f(q) + f'(\alpha)$ therefore the condition in the definition holds for any $p \in E$.

Properties of Affine Transformation

Proposition

Let E, H be two affine subspaces. Then $f: E \longrightarrow H$ is an affine transformation if and only if

$$f\left(\sum_{i=0}^k a_i p_i\right) = \sum_{i=0}^k a_i f(p_i),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

for any $p_i \in E$ and $a_i \in \mathbb{R}$ such that $\sum_{i=0}^k a_i = 1$.

Properties of Affine Transformation

Proposition

Let E,H be two affine subspaces. Then $f:E\longrightarrow H$ is an affine transformation if and only if

$$f\left(\sum_{i=0}^{k}a_{i}p_{i}\right)=\sum_{i=0}^{k}a_{i}f(p_{i}),$$

for any $p_i \in E$ and $a_i \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_i = 1$. Proof. (\Rightarrow) Assume that f is an affine transformation. Then

$$f\left(\sum_{i=0}^{k} a_{i}p_{i}\right) = f\left(p_{0} + \sum_{i=0}^{k} a_{i}\overline{p_{0}p_{i}}\right) = f(p_{0}) + \sum_{i=0}^{k} a_{i}f'(\overline{p_{0}p_{i}}) =$$
$$= f(p_{0}) + \sum_{i=0}^{k} a_{i}\left(\overline{f(p_{0})f(p_{i})}\right) = \sum_{i=0}^{k} a_{i}f(p_{i}).$$

Properties of Affine Transformation (continued)

Proof.

(\Leftarrow) Assume that function f satisfies the condition of the Proposition for k = 1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$
$$= f(p_0) + a\overline{f(p_0)f(p_1)}.$$

Properties of Affine Transformation (continued)

Proof.

 (\Leftarrow) Assume that function f satisfies the condition of the Proposition for k = 1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$
$$= f(p_0) + a\overline{f(p_0)f(p_1)}.$$

It is enough to define

$$f'(\overrightarrow{p_0p_1}) = \overrightarrow{f(p_0)f(p_1)},$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

and check that f' is well-defined and linear.

Properties of Affine Transformation (continued)

Proof.

(\Leftarrow) Assume that function f satisfies the condition of the Proposition for k = 1. Let $p_0, p_1 \in E$ be any points and $a \in \mathbb{R}$, then

$$f((1-a)p_0 + ap_1) = f(p_0 + a\overline{p_0p_1}) = (1-a)f(p_0) + af(p_1) =$$
$$= f(p_0) + a\overline{f(p_0)f(p_1)}.$$

It is enough to define

$$f'(\overrightarrow{p_0p_1}) = \overrightarrow{f(p_0)f(p_1)},$$

and check that f' is well-defined and linear. We omit the details of the proof.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Formula of an Affine Transformation

Remark

Any affine transformation $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a formula

$$f((x_1, x_2, \dots, x_n)) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_1, \dots,$$

$$a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n+b_m),$$

where $a_{ij}, b_k \in \mathbb{R}$. The linear transformation f' has matrix

$$\mathcal{M}(f')_{st}^{st} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^n$).

Formula of an Affine Transformation

Remark

Any affine transformation $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a formula

$$f((x_1, x_2, \dots, x_n)) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_1, \dots,$$

$$a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n+b_m),$$

where $a_{ij}, b_k \in \mathbb{R}$. The linear transformation f' has matrix

$$\mathcal{M}(f')_{st}^{st} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

in standard bases (and it is equal to the total derivative of f at any point $p \in \mathbb{R}^n$).

Proof.

Choose
$$p = (0, ..., 0), \alpha = (x_1, ..., x_n)$$
 so
 $f((x_1, ..., x_n)) = f((0, ..., 0)) + f'((x_1, ..., x_n)).$

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. The affine transformation $\pi_E : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\pi_{E}(p) = \pi_{E}(p_{0} + \overrightarrow{p_{0}\rho}) = p_{0} + P_{\overrightarrow{E}}(\overrightarrow{p_{0}\rho}),$$

where $P_{\overrightarrow{E}}$ is the (linear) orthogonal projection on \overrightarrow{E} , is called an (affine) orthogonal projection on E.

Affine Orthogonal Projection and Reflection

Definition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. The affine transformation $\pi_E : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\pi_{E}(p) = \pi_{E}(p_{0} + \overrightarrow{p_{0}\rho}) = p_{0} + P_{\overrightarrow{E}}(\overrightarrow{p_{0}\rho}),$$

where $P_{\overrightarrow{E}}$ is the (linear) orthogonal projection on \overrightarrow{E} , is called an **(affine) orthogonal projection** on *E*. The transformation $\sigma_E : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\sigma_{E}(p) = \sigma_{E}(p_{0} + \overrightarrow{p_{0}\rho}) = p_{0} + S_{\overrightarrow{E}}(\overrightarrow{p_{0}\rho}),$$

where $S_{\overrightarrow{E}}$ is the (linear) orthogonal reflection about \overrightarrow{E} , is called an **(affine) orthogonal reflection** about *E*.

Orthogonal Projection

▲ロト ▲御 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Orthogonal Projection

| ◆ □ ▶ ◆ 個 ▶ ◆ 国 ▶ ◆ 国 ▶ ◆ ④ ◆ ○ ◆

Orthogonal Reflection

Orthogonal Reflection

|▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - 釣�(0)

Orthogonal Reflection

▲□▶▲□▶▲□▶▲□▶ □ のへで

Let $p_0 = (1, 1, 1)$, $p_1 = (1, 2, 3)$. Let $E = aff(p_0, p_1)$ be an affine line. Compute orthogonal projection of p = (2, 0, 1) on E.

$$\overrightarrow{p_0 \rho} = (2,0,1) - (1,1,1) = (1,-1,0), \quad \overrightarrow{E} = \text{lin}((0,1,2)),$$

The linear projection of $\overrightarrow{p_0 p}$ on \overrightarrow{E} is

$$P_{\overrightarrow{E}}(\overrightarrow{p_0\rho}) = \frac{(1,-1,0)\cdot(0,1,2)}{0^2+1^2+2^2}(0,1,2) = -\frac{1}{5}(0,1,2).$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Therefore $\pi_E(p) = (1, 1, 1) - \frac{1}{5}(0, 1, 2) = \frac{1}{5}(5, 4, 3).$

Intersection of Affine Subspaces

Proposition Let E = p + V, $H = q + W \subset \mathbb{R}^n$ be two affine subspaces. Then either $E \cap H = \emptyset$ or $p_0 \in E \cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Intersection of Affine Subspaces

Proposition Let E = p + V, $H = q + W \subset \mathbb{R}^n$ be two affine subspaces. Then either $E \cap H = \emptyset$ or $p_0 \in E \cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Proof.
If
$$p_0 \in E \cap H$$
 then $E = p_0 + V$ and $H = p_0 + W$.

Intersection of Affine Subspaces

Proposition Let E = p + V, $H = q + W \subset \mathbb{R}^n$ be two affine subspaces. Then either $E \cap H = \emptyset$ or $p_0 \in E \cap H$ and

$$E \cap H = p_0 + (V \cap W).$$

Proof. If $p_0 \in E \cap H$ then $E = p_0 + V$ and $H = p_0 + W$.

Proposition

Let E = p + V, $H = q + W \subset \mathbb{R}^n$ be two affine subspaces. Then $E \cap H \neq \emptyset$ if and only if there exist $v \in V$, $w \in W$ such that

$$\overrightarrow{pq} = v + w.$$

Intersection of Affine Subspaces (continued)

Proof. Assume $\overline{pq} = v + w$ as above. Then $q - w \in H$ and $q - w = p + \overline{pq} - w = p + v \in E$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Intersection of Affine Subspaces (continued)

Proof. Assume $\overrightarrow{pq} = v + w$ as above. Then $q - w \in H$ and $q - w = p + \overrightarrow{pq} - w = p + v \in E$. Assume that $p_0 \in E \cap H$. Then $\overrightarrow{pq} = \overrightarrow{pp_0} + \overrightarrow{p_0q}$ where $\overrightarrow{pp_0} \in V$ and $\overrightarrow{p_0q} \in W$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Proof.

By the previous lecture $\overline{pq} = P_V(\overline{pq}) + P_{V^{\perp}}(\overline{pq})$ and $V \cap V^{\perp} = \{0\}.$

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proof.

By the previous lecture $\overline{pq} = P_V(\overline{pq}) + P_{V^{\perp}}(\overline{pq})$ and $V \cap V^{\perp} = \{0\}.$

Proposition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. Then for any $p \in \mathbb{R}^n$ the affine subspaces $p_0 + \vec{E}$ and $p + \vec{E}^{\perp}$ intersect exactly in the point $\pi_E(p)$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proposition

Let $V \subset \mathbb{R}^n$ be a vector subspace. For any $p, q \in \mathbb{R}^n$ the affine subspaces p + V and $q + V^{\perp}$ intersect in exactly one point.

Proof.

By the previous lecture $\overline{pq} = P_V(\overline{pq}) + P_{V^{\perp}}(\overline{pq})$ and $V \cap V^{\perp} = \{0\}.$

Proposition

Let $E \subset \mathbb{R}^n$ be an affine subspace and let $p_0 \in E$. Then for any $p \in \mathbb{R}^n$ the affine subspaces $p_0 + \vec{E}$ and $p + \vec{E}^{\perp}$ intersect exactly in the point $\pi_E(p)$.

Proof.

We know $\overrightarrow{p_0 \rho} = P_V(\overrightarrow{p_0 \rho}) + P_{V^{\perp}}(\overrightarrow{p_0 \rho})$. As in the previous proof the only point of the intersection is equal to $p_0 + P_V(\overrightarrow{p_0 \rho})$. This is equal to $\pi_E(\rho)$ by definition.

Orthogonal Projection (again)

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 ▶ → の へ ⊙

Orthogonal Projection (again)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $p_0 = (1, 1, 1), p_1 = (1, 2, 3)$. Let $E = aff(p_0, p_1)$ be an affine line. Compute orthogonal projection of p = (2, 0, 1) on E.

Let $p_0 = (1, 1, 1), p_1 = (1, 2, 3)$. Let $E = \operatorname{aff}(p_0, p_1)$ be an affine line. Compute orthogonal projection of p = (2, 0, 1) on E. We compute the intersection of $E = p_0 + \vec{E}$ with $p + \vec{E}^{\perp}$. The line Eis parameterized as follows

$$E = \{(1,1,1) + t(0,1,2) \mid t \in \mathbb{R}\}.$$

Let $p_0 = (1, 1, 1), p_1 = (1, 2, 3)$. Let $E = \operatorname{aff}(p_0, p_1)$ be an affine line. Compute orthogonal projection of p = (2, 0, 1) on E. We compute the intersection of $E = p_0 + \vec{E}$ with $p + \vec{E}^{\perp}$. The line Eis parameterized as follows

$$E = \{ (1,1,1) + t(0,1,2) \mid t \in \mathbb{R} \}.$$

The orthogonal complement to \vec{E} is two-dimensional hence given by a single equation $x_2 + 2x_3 = 0$. The point *p* satisfies the equation, therefore $p + \vec{E}^{\perp}$ is described by $x_2 + 2x_3 = 2$. By substituting the parametrization to the equation we get

$$(1+t)+2(1+2t)=2 \Longrightarrow t=-\frac{1}{5}$$

Hence $\pi_E(2,0,1) = (1,1,1) - \frac{1}{5}(0,1,2) = \frac{1}{5}(5,4,3).$

Find a formula of an orthogonal projection onto the affine subspace $E = \operatorname{aff}((1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)) \subset \mathbb{R}^4$. The subspace E can be written as $E = (1, 1, 1, 1) + \operatorname{lin}((0, 1, 0, 1), (0, 0, 1, 1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1 = (0, 1, 0, 1), v_2 = (0, 0, 1, 1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2}(0, 1, 0, 1) = \frac{1}{2}(0, -1, 2, 1).$$

Find a formula of an orthogonal projection onto the affine subspace $E = \operatorname{aff}((1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)) \subset \mathbb{R}^4$. The subspace E can be written as $E = (1, 1, 1, 1) + \operatorname{lin}((0, 1, 0, 1), (0, 0, 1, 1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1 = (0, 1, 0, 1), v_2 = (0, 0, 1, 1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2}(0, 1, 0, 1) = \frac{1}{2}(0, -1, 2, 1).$$

The vectors (0, 1, 0, 1), (0, -1, 2, 1) form an orthogonal basis of \vec{E} . Recall $\pi_E(p) = p_0 + P_{\overrightarrow{E}}(\overrightarrow{p_0 p})$ therefore

Find a formula of an orthogonal projection onto the affine subspace $E = \operatorname{aff}((1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)) \subset \mathbb{R}^4$. The subspace E can be written as $E = (1, 1, 1, 1) + \operatorname{lin}((0, 1, 0, 1), (0, 0, 1, 1))$. We need to find an orthogonal basis of \overrightarrow{E} . Set $v_1 = (0, 1, 0, 1), v_2 = (0, 0, 1, 1)$. Then

$$w_1 = v_1 = (0, 1, 0, 1),$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (0, 0, 1, 1) - \frac{1}{2}(0, 1, 0, 1) = \frac{1}{2}(0, -1, 2, 1).$$

The vectors (0, 1, 0, 1), (0, -1, 2, 1) form an orthogonal basis of \vec{E} . Recall $\pi_E(p) = p_0 + P_{\overrightarrow{E}}(\overrightarrow{p_0 p})$ therefore

$$\pi_{E}(x_{1}, x_{2}, x_{3}, x_{4}) = (1, 1, 1, 1) + P_{\overrightarrow{E}}(x_{1} - 1, x_{2} - 1, x_{3} - 1, x_{4} - 1) =$$

$$= (1,1,1,1) + \frac{x_2 + x_4 - 2}{2}(0,1,0,1) + \frac{-x_2 + 2x_3 + x_4 - 2}{6}(0,-1,2,1) =$$

Example (continued)

$$\begin{aligned} \pi_E(x_1, x_2, x_3, x_4) &= (1, 1, 1, 1) + P_{\overrightarrow{E}}(x_1 - 1, x_2 - 1, x_3 - 1, x_4 - 1) = \\ &= (1, 1, 1, 1) + \frac{x_2 + x_4 - 2}{2}(0, 1, 0, 1) + \frac{-x_2 + 2x_3 + x_4 - 2}{6}(0, -1, 2, 1) = \\ &= \left(1, \frac{2x_2 - x_3 + x_4 + 1}{3}, \frac{-x_2 + 2x_3 + x_4 + 1}{3}, \frac{x_2 + x_3 + 2x_4 - 1}{3}\right). \end{aligned}$$

Example (continued)

Alternatively, by the definition
$$\pi'_E = P_{\overrightarrow{E}}$$
, therefore if $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, the

linear part of the affine projection π_E is given by

$$M(P_{\overrightarrow{E}})_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3}\\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

٠

Example (continued)

Alternatively, by the definition
$$\pi'_E = P_{\overrightarrow{E}}$$
, therefore if $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, the

linear part of the affine projection π_E is given by

$$M(P_{\overrightarrow{E}})_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

It follows that

$$\pi_{E}(x_{1}, x_{2}, x_{3}, x_{4}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 1 \\ \frac{1}{3} \\ \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix},$$

because $\pi_{E}(1, 1, 1, 1) = (1, 1, 1, 1).$

Distance from an Affine Hyperplane

Proposition Let $E \subset \mathbb{R}^n$ be an affine hyperplane given by the equation

$$E: a_1x_1 + \ldots + a_nx_n = b,$$

equivalently

$$E: a^{\mathsf{T}}x = b,$$

where $a = (a_1, \ldots, a_n), x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then the signed distance (positive in the direction of vector $a \in \mathbb{R}^n$ and negative otherwise) of the point $p \in \mathbb{R}^n$ from the affine hyperplane E is equal to

$$d_{s}(p,E)=\frac{a^{\mathsf{T}}p-b}{\|a\|}.$$

A D N A B N A

Distance from an Affine Hyperplane (continued)

Proof.

The signed distance $d = d_s(p, E)$ is given by a system of equations

$$\begin{cases} q = p - d\frac{a}{\|a\|}, \text{ i.e., } \|\overline{qp}\| = \left\|d\frac{a}{\|a\|}\right\| = |d| \\ a^{\mathsf{T}}q = b, \text{ i.e., } q \text{ belongs to } E \end{cases}$$

where $q \in E$ is the image of point p under the affine orthogonal projection onto E. The first equation multiplied by a^{\intercal} on the left gives

$$b = a^{\mathsf{T}}q = a^{\mathsf{T}}p - d\|a\|.$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distance from an Affine Hyperplane (continued)

Example

The signed distance of the point $p = (1, 2, 3, 4) \in \mathbb{R}^4$ from the affine hyperplane

$$E: x_1 - x_2 + 2x_3 - x_4 = 5,$$

is equal to

$$d_{s}(p,E) = \frac{1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 2 + 4 \cdot (-1) - 5}{\sqrt{1^{2} + (-1)^{2} + 2^{2} + (-1)^{2}}} = -\frac{4}{\sqrt{7}}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Distance from an Affine Subspace

Corollary

Let $E \subset \mathbb{R}^n$ be an affine subspace of \mathbb{R}^n given by the system of linear equations

$$\begin{cases} a_1^{\mathsf{T}} x = b_1 \\ \vdots \\ a_m^{\mathsf{T}} x = b_m \end{cases},$$

where $a_1, \ldots, a_m \in \mathbb{R}^n$ are pairwise orthogonal, i.e.,

$$a_i \cdot a_j = a_i^{\mathsf{T}} a_j = 0$$
 for $i \neq j$.

The distance of point $p \in \mathbb{R}^n$ from the subspace E is equal to

$$d(p, E) = \sqrt{\sum_{i=1}^{m} \left(\frac{a_i^{\mathsf{T}} p - b_i}{\|a_i\|}\right)^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Distance of Parallel Affine Hyperplanes

Corollary Let $E, H \subset \mathbb{R}^n$ be two parallel affine hyperplanes given by the equations

$$E: a_1x_1 + \ldots + a_nx_n = b,$$

$$E': a_1x_1 + \ldots + a_nx_n = b',$$

equivalently

$$E: a^{\mathsf{T}}x = b,$$
$$E': a^{\mathsf{T}}x = b',$$

where $a = (a_1, \ldots, a_n)$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $b, b' \in \mathbb{R}$. Then distance between E and E' is equal to

$$d(E,E')=\frac{|b-b'|}{\|a\|}.$$

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへぐ

Two Lines in \mathbb{R}^n

Let $L_1, L_2 \subset \mathbb{R}^n$ be two lines in \mathbb{R}^n . Then either i) the lines intersect, i.e.

$$L_1 \cap L_2 \neq \emptyset$$

a) $\vec{L}_1 \neq \vec{L}_2$ (the lines intersect in exactly one point), b) $\vec{L}_1 = \vec{L}_2$ (the lines coincide).

ii) the lines are disjoint, i.e.

$$L_1 \cap L_2 = \emptyset$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

a)
$$\vec{L}_1 \neq \vec{L}_2$$
 (the lines are skew),
b) $\vec{L}_1 = \vec{L}_2$ (the lines are parallel).

Distance of Two Skew Lines in \mathbb{R}^3

Proposition

Let

$$L_1 = p_1 + \ln(v_1),$$

$$L_2 = p_2 + \ln(v_2),$$

be two skew lines in \mathbb{R}^3 , that is $p_i \in \mathbb{R}^3$ and $v_i \in \mathbb{R}^3$ for i = 1, 2. Then the distance between line L_1 and line L_2 is equal to

$$d(L_1, L_2) = \frac{|v_3^{\mathsf{T}}(p_1 - p_2)|}{\|v_3\|},$$

where

$$\operatorname{lin}(v_3) = \operatorname{lin}(v_1, v_2)^{\perp}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Distance of Two Skew Lines in \mathbb{R}^3

Proposition

Let

$$L_1 = p_1 + \ln(v_1),$$

$$L_2 = p_2 + \ln(v_2),$$

be two skew lines in \mathbb{R}^3 , that is $p_i \in \mathbb{R}^3$ and $v_i \in \mathbb{R}^3$ for i = 1, 2. Then the distance between line L_1 and line L_2 is equal to

$$d(L_1, L_2) = \frac{|v_3^{\mathsf{T}}(p_1 - p_2)|}{\|v_3\|},$$

where

$$\operatorname{lin}(v_3) = \operatorname{lin}(v_1, v_2)^{\perp}.$$

Proof.

Use the formula for distance between two parallel planes containing respectively L_1 and L_2 . Alternatively, the distance is equal to length of the image of the orthogonal projection of $\overline{p_1p_2}$ onto the subspace $lin(v_3)$.

Distance Between Two Affine Subspaces in \mathbb{R}^n

Proposition

Let E: Ax = b, and H: Cx = d, be two affine subspaces of \mathbb{R}^n , where $A \in M(s \times n, \mathbb{R})$ and $C \in M(t \times n, \mathbb{R})$. Assume that

- i) the rows of matrix A are orthonormal,
- ii) the rows of matrix C are linearly independent,
- iii) the columns of matrix $\begin{bmatrix} A \\ C \end{bmatrix}$ are linearly independent.

Then the equation

$$\begin{bmatrix} A^{\mathsf{T}}A & C^{\mathsf{T}} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A^{\mathsf{T}}b \\ d \end{bmatrix}$$

has a unique solution $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ and the distance between E and H is equal to $d(E, H) = ||Ax_0 - b||.$

Proof.

Let $a_1, \ldots, a_s \in \mathbb{R}^n$ be the rows of matrix A. Then

$$d(p, E) = \min_{x \in H} \sqrt{\sum_{i=1}^{s} (a_i^{\mathsf{T}} x - b_i)^2},$$

that is, we need to solve the following constrained least squares problem:

minimize

$$\|Ax-b\|^2,$$

under the constraints

$$Cx = d$$
.

I follow closely the proof which can be found in L. Vanderberghe's lecture¹.

¹see http://www.seas.ucla.edu/~vandenbe/133A/lectures/cls.pdf, slide 11.4

Proof.

Assume that Cx = d. Then x_0 is optimal since

$$\begin{split} \|Ax - b\| &= \|A(x - x_0) + (Ax_0 - b)\|^2 = \\ &= \|A(x - x_0)\|^2 + \|Ax_0 - b\|^2 + 2(x - x_0)^{\mathsf{T}}A^{\mathsf{T}}(Ax_0 - b) = \\ & (\text{as } A^{\mathsf{T}}Ax_0 + C^{\mathsf{T}}y_0 = A^{\mathsf{T}}b) \\ &= \|A(x - x_0)\|^2 + \|Ax_0 - b\|^2 - 2(x - x_0)^{\mathsf{T}}C^{\mathsf{T}}y_0 = \\ & (\text{as } Cx = Cx_0 = d, \text{ i.e., } x, x_0 \in H) \\ &= \|A(x - x_0)\|^2 + \|Ax_0 - b\|^2 \ge \|Ax_0 - b\|^2. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Proof.

Moreover, if $x_0, x'_0 \in H \subset \mathbb{R}^n$ are optimal then $C(x_0 - x'_0) = 0$, and by the first part of the proof, $A(x - x_0) = 0$, which by the condition *iii*), gives $x_0 - x'_0 = 0$. It can be also checked that

$$\begin{bmatrix} A^{\mathsf{T}}A & C^{\mathsf{T}} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

implies that

$$x^{\mathsf{T}}(A^{\mathsf{T}}Ax + C^{\mathsf{T}}y) = 0, \quad Cx = 0,$$

 $Ax = Cx = 0,$

that is x = 0 by the condition *iii*). This implies that $C^{\intercal}y = 0$, which, by the condition *ii*) implies that y = 0. Therefore, the above matrix is non-singular.

Remark

The condition iii) guarantees that the affine subspaces E, H are either disjoint or they intersect in an exactly one point.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Remark

The condition iii) guarantees that the affine subspaces E, H are either disjoint or they intersect in an exactly one point.

In constrained least squares problem, that is: minimize

$$\|Ax-b\|^2,$$

under the constraints

$$Cx = d$$
,

we need to assume only ii) and iii). Condition i) is needed to use the formula for the distance between a point and an affine plane.

Definition Linear transformation $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ is called a linear isometry if

$$\|\varphi(\mathbf{v})\| = \|\mathbf{v}\|,$$

for any $v \in \mathbb{R}^n$.

Linear lsometries (continued)

Proposition

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. The following conditions are equivalent

- i) φ is an isometry,
- ii) for any $v, w \in \mathbb{R}^n$

$$\varphi(\mathbf{v})\cdot\varphi(\mathbf{w})=\mathbf{v}\cdot\mathbf{w},$$

iii) for any (or some) orthonormal basis \mathcal{A} of \mathbb{R}^n if $A = M(\varphi)_{\mathcal{A}}^{\mathcal{A}}$ then

$$A^{\mathsf{T}}A = I$$
,

▲日▼▲□▼▲□▼▲□▼ □ ○○○

i.e. the matrix A is orthogonal.

Proof. Exercise Orthogonal Group

Definition

The group

$$O(n) = \{ \varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid \varphi \text{ is a linear isometry} \},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

is called the orthogonal group.

Example

Any orthogonal linear symmetry is a linear isometry.

Affine Isometries

Definition

Affine transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called a linear isometry if

d(f(p),f(q))=d(p,q),

for any $p, q \in \mathbb{R}^n$.

Proposition

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be an affine transformation. Then it is equal to an linear isometry followed by a translation. In particular $\vec{f} \in O(n)$.

Proof. Let f(0) = q. Let $\widetilde{f}(q) = f(q) + \overrightarrow{p0}$.

Then \widetilde{f} is a linear isometry, hence

$$f = t_{-\overrightarrow{p0}} \circ \widetilde{f}.$$

Affine Orthogonal Group

Definition The group

$$AO(n) = \{f : \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid f \text{ is an affine isometry}\},\$$

is called the affine orthogonal group. The group

$$T(n) = \{t_v \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n \mid v \in \mathbb{R}^n\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is called the translation group.

Affine Orthogonal Group (continued)

Proposition

For any affine isometry $\varphi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and any vector $v \in \mathbb{R}^n$

$$f \circ t_v \circ f^{-1} = t_{f(v)}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Proof. Exercise

Affine Orthogonal Group

Corollary

The affine orthogonal group is a semidirect product of groups T(n) and O(n), i.e.

$$AO(n) = T(n) \ltimes O(n),$$

in particular

- i) O(n)T(n) = AO(n), $O(n) \cap T(n) = \{id\}$, $T(n) \lhd AO(n)$,
- ii) for any $f \in AO(n)$ there exist unique $\varphi \in O(n)$, $v \in \mathbb{R}^n$ such that $f = \varphi \circ t_v$,
- iii) for any $f \in AO(n)$ there exist unique $\varphi \in O(n)$, $v \in \mathbb{R}^n$ such that $f = t_v \circ \varphi$,

iv) the sequence

$$1 \to T(n) \to AO(n) \to O(n) \to 1,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

is exact.

Center of Mass

Let $p_1, \ldots, p_k \in \mathbb{R}^n$ be a points of mass $m_1, \ldots, m_k \in \mathbb{R}$ such that $M = \sum_{i=1}^k m_i \neq 0$ (negative mass is allowed).

Definition

The center of mass of points p_1, \ldots, p_k is the affine combination

$$\overline{p} = \frac{1}{M} \sum_{i=1}^{k} m_i p_i.$$

Proposition

When M > 0 (resp. M < 0) the center of mass minimizes (resp. maximizes) the weighted sum of squared distances to points p_1, \ldots, p_k , i.e.

$$\overline{p} = \operatorname*{argmin}_{p \in \mathbb{R}^n} \sum_{i=1}^{\kappa} m_i \|p - p_i\|^2.$$

Center of Mass (continued)

Proof. Assume M > 0. Let

$$f(p) = Mp^{\mathsf{T}}p - 2\sum_{i=1}^{k} p^{\mathsf{T}}p_i.$$

We need to show that

$$\overline{p} = \operatorname*{argmin}_{p \in \mathbb{R}^n} f(p).$$

Note that

$$\boldsymbol{\nabla}f(\boldsymbol{p})=2\boldsymbol{M}\boldsymbol{p}-2\sum_{i=1}^{k}m_{i}\boldsymbol{p}_{i},$$

therefore

$$\nabla f(\overline{p}) = 0.$$

Center of Mass (continued)

Proof.

Moreover $D^2 f = I$, and by the multivariate Taylor's formula

$$f(\overline{p}+h) = f(\overline{p}) + 2M\frac{1}{2!}h^{\mathsf{T}}h,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

which proves that at $\overline{p} \in \mathbb{R}^n$ the function f attains its global minimum.

Affine Independence

Proposition

Points $p_0, \ldots, p_k \in \mathbb{R}^n$ are affine dependent if and only if there exist $a_0, \ldots, a_k \in \mathbb{R}$ not all equal to 0 such that

$$\sum_{i=0}^{k} a_i p_i = 0, \quad \sum_{i=0}^{k} a_i = 0.$$

Proof.

Easy exercise. If say $a_0 \neq 0$, dividing by a_0 we see that p_0 is an affine combination of p_1, \ldots, p_k . The converse is proven in a similar way.

Corollary

Points $p_0, \ldots, p_k \in \mathbb{R}^n$ are affinely dependent if and only if vectors $(p_0, 1), \ldots, (p_k, 1) \in \mathbb{R}^{n+1}$ are linearly dependent.

Affine Independence (continued)

Example

Points $(x_1,y_1),(x_2,y_2),(x_3,y_3)\in\mathbb{R}^2$ are colinear if and only if

$$\det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0.$$

Points $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4) \in \mathbb{R}^3$ are coplanar if and only if

$$\det \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{bmatrix} = 0.$$

▲日▼▲□▼▲□▼▲□▼ □ ○○○