Linear Algebra Lecture 10 - Scalar Product

Oskar Kędzierski

11 December 2023

Scalar Product

Definition

A (standard) scalar product of two vectors $v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in\mathbb{R}^n$ is the real number

$$v \cdot w = \sum_{i=1}^{n} v_i w_i.$$

Scalar Product

Definition

A (standard) scalar product of two vectors $v=(v_1,\ldots,v_n),\,w=(w_1,\ldots,w_n)\in\mathbb{R}^n$ is the real number

$$v\cdot w=\sum_{i=1}^n v_iw_i.$$

Example

Let
$$v=(1,0,-2,3), w=(0,2,2,1)\in\mathbb{R}^4.$$
 Then $v\cdot w=1\cdot 0+0\cdot 2-2\cdot 2+3\cdot 1=-1.$

i)
$$v \cdot w = w \cdot v$$
,

- i) $v \cdot w = w \cdot v$,
- ii) $(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{v} \cdot \mathbf{w}),$

- i) $v \cdot w = w \cdot v$,
- ii) $(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{v} \cdot \mathbf{w}),$
- iii) $(v + v') \cdot w = v \cdot w + v' \cdot w$, $v \cdot (w + w') = v \cdot w + v \cdot w'$,

- i) $v \cdot w = w \cdot v$,
- ii) $(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{v} \cdot \mathbf{w}),$
- iii) $(v + v') \cdot w = v \cdot w + v' \cdot w$, $v \cdot (w + w') = v \cdot w + v \cdot w'$,
- iv) $v \cdot v > 0$ for $v \neq 0$.

Definition

The length of a vector $v=(v_1,\ldots,v_n)\in\mathbb{R}^n$ is the number

$$\|v\| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Definition

The length of a vector $v=(v_1,\ldots,v_n)\in\mathbb{R}^n$ is the number

$$\|v\| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Obviously $||v|| \ge 0$ and

$$||v|| = 0 \iff v = 0.$$

Note that if $\alpha \in \mathbb{R}$ then $\|\alpha v\| = |\alpha| \|v\|$.

Definition

The length of a vector $v=(v_1,\ldots,v_n)\in\mathbb{R}^n$ is the number

$$\|v\| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Obviously $||v|| \ge 0$ and

$$||v|| = 0 \iff v = 0.$$

Note that if $\alpha \in \mathbb{R}$ then $\|\alpha v\| = |\alpha| \|v\|$. In particular, if $v \neq 0$ then $\left\|\frac{v}{\|v\|}\right\| = 1$. The vector $\frac{v}{\|v\|}$ is called the **normalized vector** of v.

Definition

The length of a vector $v=(v_1,\ldots,v_n)\in\mathbb{R}^n$ is the number

$$\|v\| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Obviously $||v|| \ge 0$ and

$$||v|| = 0 \iff v = 0.$$

Note that if $\alpha \in \mathbb{R}$ then $\|\alpha v\| = |\alpha| \|v\|$. In particular, if $v \neq 0$ then $\left\|\frac{v}{\|v\|}\right\| = 1$. The vector $\frac{v}{\|v\|}$ is called the **normalized vector** of v.

Definition

Two vectors $v, w \in \mathbb{R}^n$ are said to be **orthogonal** (or perpendicular) if $v \cdot w = 0$. We write $v \perp w$.

Geometric Interpretation and the Law of Cosines

Proposition

For any $v, w \in \mathbb{R}^n$

$$v \cdot w = ||v|| ||w|| \cos \angle (v, w),$$

where $\angle(v, w)$ is the angle between v and w.

Geometric Interpretation and the Law of Cosines

Proposition

For any $v, w \in \mathbb{R}^n$

$$v \cdot w = ||v|| ||w|| \cos \angle (v, w),$$

where $\angle(v, w)$ is the angle between v and w.

Proof.

From the law of cosines

$$||v - w||^2 = (v - w) \cdot (v - w) = ||v||^2 + ||w||^2 - 2(v \cdot w) =$$
$$= ||v||^2 + ||w||^2 - 2||v|| ||w|| \cos \angle (v, w).$$

Cauchy-Schwarz Inequality

Corollary (Cauchy-Schwarz inequality)

For any $v, w \in \mathbb{R}^n$

$$||v|||w|| \geqslant |v \cdot w|,$$

and the equality holds if and only if v, w are linearly dependent.

Cauchy-Schwarz Inequality

Corollary (Cauchy-Schwarz inequality)

For any $v, w \in \mathbb{R}^n$

$$||v|||w|| \geqslant |v \cdot w|,$$

and the equality holds if and only if v, w are linearly dependent.

Proof.

In general

$$|\cos \angle (v, w)| \leq 1$$
,

and

$$|\cos \angle(v, w)| = 1 \iff \angle(v, w) \in \{0, \pi\}.$$

Pythagorean Theorem

Example

Let v=(3,0,4), w=(0,1,0), u=(1,1,1). Then $\|v\|=\sqrt{3^2+0^2+4^2}=\sqrt{9+16}=5$. The normalized vector of v is $\frac{1}{5}(3,0,4)$. Since $v\cdot w=3\cdot 0+0\cdot 1+4\cdot 0=0$ then $v\perp w$ but w is not orthogonal to u because $w\cdot u=1$.

Pythagorean Theorem

Example

Let
$$v=(3,0,4), w=(0,1,0), u=(1,1,1)$$
. Then $\|v\|=\sqrt{3^2+0^2+4^2}=\sqrt{9+16}=5$. The normalized vector of v is $\frac{1}{5}(3,0,4)$. Since $v\cdot w=3\cdot 0+0\cdot 1+4\cdot 0=0$ then $v\perp w$ but w is not orthogonal to u because $w\cdot u=1$.

Theorem (Pythagoras)

If
$$v \perp w$$
 then $||v + w||^2 = ||v||^2 + ||w||^2$.

Pythagorean Theorem

Example

Let
$$v=(3,0,4), w=(0,1,0), u=(1,1,1)$$
. Then $\|v\|=\sqrt{3^2+0^2+4^2}=\sqrt{9+16}=5$. The normalized vector of v is $\frac{1}{5}(3,0,4)$. Since $v\cdot w=3\cdot 0+0\cdot 1+4\cdot 0=0$ then $v\perp w$ but w is not orthogonal to u because $w\cdot u=1$.

Theorem (Pythagoras)

If
$$v \perp w$$
 then $||v + w||^2 = ||v||^2 + ||w||^2$.

Proof.

$$\|v + w\|^2 = (v + w) \cdot (v + w) = v \cdot v + v \cdot w + w \cdot v + w \cdot w = \|v\|^2 + \|w\|^2.$$

Let $A \subset \mathbb{R}^n$ be any set. Let

$$A^{\perp} = \{ w \in \mathbb{R}^n \mid w \cdot v = 0 \text{ for all } v \in A \}.$$

Let $A \subset \mathbb{R}^n$ be any set. Let

$$A^{\perp} = \{ w \in \mathbb{R}^n \mid w \cdot v = 0 \text{ for all } v \in A \}.$$

The set A^{\perp} is a subspace of \mathbb{R}^n .

Let $A \subset \mathbb{R}^n$ be any set. Let

$$A^{\perp} = \{ w \in \mathbb{R}^n \mid w \cdot v = 0 \text{ for all } v \in A \}.$$

The set A^{\perp} is a subspace of \mathbb{R}^n .

Definition

Let $V \subset \mathbb{R}^n$ be a subspace. The **orthogonal complement** of V in \mathbb{R}^n is V^{\perp} .

Let $A \subset \mathbb{R}^n$ be any set. Let

$$A^{\perp} = \{ w \in \mathbb{R}^n \mid w \cdot v = 0 \text{ for all } v \in A \}.$$

The set A^{\perp} is a subspace of \mathbb{R}^n .

Definition

Let $V \subset \mathbb{R}^n$ be a subspace. The **orthogonal complement** of V in \mathbb{R}^n is V^{\perp} .

Example

Let
$$V = \text{lin}((1,2)) \subset \mathbb{R}^2$$
. Then $V^{\perp} = \text{lin}((2,-1))$.

Properties

Proposition

Let
$$v_1, \ldots, v_k \in \mathbb{R}^n$$
. Then

$$(\operatorname{lin}(v_1,\ldots,v_k))^{\perp}=\{v_1,\ldots,v_k\}^{\perp}.$$

Properties

Proposition

Let $v_1, \ldots, v_k \in \mathbb{R}^n$. Then

$$(\mathsf{lin}(v_1,\ldots,v_k))^{\perp}=\{v_1,\ldots,v_k\}^{\perp}.$$

Proof.

Set $V = \text{lin}(v_1, \dots, v_k)$. Assume $w \in V^{\perp}$. Then, in particular, $w \cdot v_i = 0$, hence $V^{\perp} \subset \{v_1, \dots, v_k\}^{\perp}$.

Properties

Proposition

Let $v_1, \ldots, v_k \in \mathbb{R}^n$. Then

$$(\operatorname{lin}(v_1,\ldots,v_k))^{\perp}=\{v_1,\ldots,v_k\}^{\perp}.$$

Proof.

Set
$$V = \text{lin}(v_1, \ldots, v_k)$$
. Assume $w \in V^{\perp}$. Then, in particular, $w \cdot v_i = 0$, hence $V^{\perp} \subset \{v_1, \ldots, v_k\}^{\perp}$. If $w \cdot v_i = 0$ for $i = 1, \ldots, k$ then for any $\alpha_i \in \mathbb{R}, \ i = 1, \ldots, k$ $w \cdot (\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k) = \alpha_1 (w \cdot v_1) + \alpha_2 (w \cdot v_2) + \ldots + \alpha_k (w \cdot v_k) = 0$.

Let

$$V = lin((1,2,3,1), (1,3,2,2), (2,5,5,3)) \subset \mathbb{R}^4.$$

Then

$$V^{\perp} : \begin{cases} x_1 + 2x_2 + 3x_3 + x_4 = 0 \\ x_1 + 3x_2 + 2x_3 + 2x_4 = 0 \\ 2x_1 + 5x_2 + 5x_3 + 3x_4 = 0 \end{cases}$$

The solution of that system is equal to

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 2 & 2 \\ 2 & 5 & 5 & 3 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$$

that is,

$$V^{\perp} = \text{lin}((-5, 1, 1, 0), (1, -1, 0, 1)).$$

Proposition

Let $V \subset \mathbb{R}^n$, dim V = k. Then dim $V^{\perp} = n - k$ and $V \cap V^{\perp} = \{0\}$.

Proposition

Let $V \subset \mathbb{R}^n$, dim V = k. Then dim $V^{\perp} = n - k$ and $V \cap V^{\perp} = \{0\}$.

Proof.

Let $v_1, \ldots v_k$ be a basis of V, where $v_i = (a_{i1}, a_{i2}, \ldots, a_{in})$. By the above Proposition $(x_1, \ldots, x_n) \in V^{\perp}$ if and only if it is a solution of the system of linear equations

$$V^{\perp} : \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Proof.

The rank of the matrix $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kn} \end{bmatrix}$ is equal to k, hence by

the Kronecker-Capelli theorem the dimension of the set of solutions is n-k.

Proof.

The rank of the matrix $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kn} \end{bmatrix}$ is equal to k, hence by

the Kronecker-Capelli theorem the dimension of the set of solutions is n-k. Moreover, if $w \in V \cap V^{\perp}$ then $w \cdot w = 0$ hence w = 0.

Proof.

The rank of the matrix
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kn} \end{bmatrix}$$
 is equal to k , hence by

the Kronecker-Capelli theorem the dimension of the set of solutions is n-k. Moreover, if $w \in V \cap V^{\perp}$ then $w \cdot w = 0$ hence w = 0.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then $(V^{\perp})^{\perp} = V$.

Proof.

The rank of the matrix
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kn} \end{bmatrix}$$
 is equal to k , hence by

the Kronecker-Capelli theorem the dimension of the set of solutions is n-k. Moreover, if $w \in V \cap V^{\perp}$ then $w \cdot w = 0$ hence w = 0.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then $(V^{\perp})^{\perp} = V$.

Proof.

By the above $\dim(V^{\perp})^{\perp}=n-\dim V^{\perp}=n-(n-\dim V)$. Since $V\subset (V^{\perp})^{\perp}$ and both have the same dimension they are equal. \square

Let $V \subset \mathbb{R}^2$ be subspace given by the linear equation $2x_1+3x_2=0$. Then V=lin((-3,2)) and $V^\perp=\text{lin}((2,3))$.

Let $V \subset \mathbb{R}^2$ be subspace given by the linear equation $2x_1 + 3x_2 = 0$. Then V = lin((-3,2)) and $V^{\perp} = \text{lin}((2,3))$.

This can be generalized to

Proposition

Let $V \subset \mathbb{R}^n$ be equal to the set of solutions of the system of linear equations

$$V: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Let $V \subset \mathbb{R}^2$ be subspace given by the linear equation $2x_1+3x_2=0$. Then V=lin((-3,2)) and $V^\perp=\text{lin}((2,3))$.

This can be generalized to

Proposition

Let $V \subset \mathbb{R}^n$ be equal to the set of solutions of the system of linear equations

$$V: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Then

$$V^{\perp} = \text{lin}((a_{11}, a_{12}, \dots, a_{1n}), \dots, (a_{k1}, a_{k2}, \dots, a_{kn})).$$

Let
$$v_i = (a_{i1}, a_{i2}, \ldots, a_{in})$$
 for $i = 1, \ldots, k$. Then

$$V = \{v_1, v_2, \ldots, v_k\}^{\perp}.$$

Let
$$v_i = (a_{i1}, a_{i2}, \dots, a_{in})$$
 for $i = 1, \dots, k$. Then

$$V = \{v_1, v_2, \ldots, v_k\}^{\perp}.$$

Hence

$$V^{\perp} = (\{v_1, v_2, \dots, v_k\}^{\perp})^{\perp} = ((\ln(v_1, v_2, \dots, v_k))^{\perp})^{\perp} =$$

$$= \ln(v_1, v_2, \dots, v_k).$$

Let $v_i = (a_{i1}, a_{i2}, ..., a_{in})$ for i = 1, ..., k. Then

$$V = \{v_1, v_2, \ldots, v_k\}^{\perp}.$$

Hence

$$V^{\perp} = (\{v_1, v_2, \dots, v_k\}^{\perp})^{\perp} = ((\ln(v_1, v_2, \dots, v_k))^{\perp})^{\perp} =$$

$$= \ln(v_1, v_2, \dots, v_k).$$

Example

Let $V \subset \mathbb{R}^4$ be equal to the set of solutions of the system $\begin{cases} 2x_1 + 3x_2 + 4x_3 + 6x_4 = 0 \\ x_1 - 2x_2 + 5x_3 = 0 \end{cases}$

Let
$$v_i = (a_{i1}, a_{i2}, ..., a_{in})$$
 for $i = 1, ..., k$. Then

$$V = \{v_1, v_2, \ldots, v_k\}^{\perp}.$$

Hence

$$V^{\perp} = (\{v_1, v_2, \dots, v_k\}^{\perp})^{\perp} = ((\ln(v_1, v_2, \dots, v_k))^{\perp})^{\perp} =$$

$$= \ln(v_1, v_2, \dots, v_k).$$

Example

Let $V \subset \mathbb{R}^4$ be equal to the set of solutions of the system $\begin{cases} 2x_1 + 3x_2 + 4x_3 + 6x_4 = 0 \\ x_1 - 2x_2 + 5x_3 = 0 \end{cases}$ Then $V^{\perp} = \text{lin}((2,3,4,6),(1,-2,5,0)).$

Let $V \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n .

Definition

Let $\mathcal{A}=(v_1,\ldots,v_k)$ be a basis of subspace V. The basis \mathcal{A} is said to be **orthogonal** if $v_i\perp v_j$ for $i\neq j$ and $i,j=1,\ldots,k$. The basis \mathcal{A} is said to be **orthonormal** if it is orthogonal and $\|v_i\|=1$ for $i=1,\ldots,k$, i.e. each vector is of length 1.

Let $V \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n .

Definition

Let $\mathcal{A}=(v_1,\ldots,v_k)$ be a basis of subspace V. The basis \mathcal{A} is said to be **orthogonal** if $v_i\perp v_j$ for $i\neq j$ and $i,j=1,\ldots,k$. The basis \mathcal{A} is said to be **orthonormal** if it is orthogonal and $\|v_i\|=1$ for $i=1,\ldots,k$, i.e. each vector is of length 1.

Examples

i) the standard basis $\varepsilon_1=(1,0,0,\ldots,0), \varepsilon_2=(0,1,0,\ldots,0),\ldots,\varepsilon_n=(0,0,0,\ldots,1)$ of \mathbb{R}^n is orthonormal,

Let $V \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n .

Definition

Let $\mathcal{A}=(v_1,\ldots,v_k)$ be a basis of subspace V. The basis \mathcal{A} is said to be **orthogonal** if $v_i\perp v_j$ for $i\neq j$ and $i,j=1,\ldots,k$. The basis \mathcal{A} is said to be **orthonormal** if it is orthogonal and $\|v_i\|=1$ for $i=1,\ldots,k$, i.e. each vector is of length 1.

Examples

- i) the standard basis $\varepsilon_1=(1,0,0,\ldots,0), \varepsilon_2=(0,1,0,\ldots,0),\ldots,\varepsilon_n=(0,0,0,\ldots,1)$ of \mathbb{R}^n is orthonormal,
- ii) the basis (-1,2,2),(2,-1,2),(2,2,-1) is an orthogonal basis of \mathbb{R}^3 (but not orthonormal),

Let $V \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n .

Definition

Let $\mathcal{A}=(v_1,\ldots,v_k)$ be a basis of subspace V. The basis \mathcal{A} is said to be **orthogonal** if $v_i\perp v_j$ for $i\neq j$ and $i,j=1,\ldots,k$. The basis \mathcal{A} is said to be **orthonormal** if it is orthogonal and $\|v_i\|=1$ for $i=1,\ldots,k$, i.e. each vector is of length 1.

Examples

- i) the standard basis $\varepsilon_1=(1,0,0,\ldots,0), \varepsilon_2=(0,1,0,\ldots,0),\ldots,\varepsilon_n=(0,0,0,\ldots,1)$ of \mathbb{R}^n is orthonormal,
- ii) the basis (-1,2,2),(2,-1,2),(2,2,-1) is an orthogonal basis of \mathbb{R}^3 (but not orthonormal),
- iii) the basis $(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}), (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}), (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})$ is an orthonormal basis of \mathbb{R}^3 .

Coordinates Relative to Orthogonal Basis

Proposition

Let v_1, \ldots, v_k be an orthogonal basis of the subspace $V \subset \mathbb{R}^n$. For any $v \in V$

$$v = \frac{v \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{v \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{v \cdot v_k}{v_k \cdot v_k} v_k.$$

Coordinates Relative to Orthogonal Basis

Proposition

Let v_1, \ldots, v_k be an orthogonal basis of the subspace $V \subset \mathbb{R}^n$. For any $v \in V$

$$v = \frac{v \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{v \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{v \cdot v_k}{v_k \cdot v_k} v_k.$$

Proof.

There exist unique $\alpha_i \in \mathbb{R}$ such that $v = \alpha_1 v_1 + \ldots + \alpha_k v_k$. Therefore

$$\mathbf{v}\cdot\mathbf{v}_i=\alpha_1(\mathbf{v}_1\cdot\mathbf{v}_i)+\ldots+\alpha_i(\mathbf{v}_i\cdot\mathbf{v}_i)+\ldots+\alpha_k(\mathbf{v}_k\cdot\mathbf{v}_i)=\alpha_i(\mathbf{v}_i\cdot\mathbf{v}_i),$$

since
$$v_i \cdot v_j = 0$$
 for $i \neq j$.



Coordinates Relative to Orthogonal Basis

Proposition

Let v_1, \ldots, v_k be an orthogonal basis of the subspace $V \subset \mathbb{R}^n$. For any $v \in V$

$$v = \frac{v \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{v \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{v \cdot v_k}{v_k \cdot v_k} v_k.$$

Proof.

There exist unique $\alpha_i \in \mathbb{R}$ such that $v = \alpha_1 v_1 + \ldots + \alpha_k v_k$. Therefore

$$\mathbf{v} \cdot \mathbf{v}_i = \alpha_1(\mathbf{v}_1 \cdot \mathbf{v}_i) + \ldots + \alpha_i(\mathbf{v}_i \cdot \mathbf{v}_i) + \ldots + \alpha_k(\mathbf{v}_k \cdot \mathbf{v}_i) = \alpha_i(\mathbf{v}_i \cdot \mathbf{v}_i),$$

since
$$v_i \cdot v_j = 0$$
 for $i \neq j$

Corollary

If vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are pairwise orthogonal and $v_i \neq 0$ for $i=1,\ldots,k$ then they are linearly independent.

Existence of Orthogonal Basis

Example

The coordinates of the vector (1,1,1) relative to the orthogonal basis (-1,2,2), (2,-1,2), (2,2,-1) of \mathbb{R}^3 are $\frac{1}{3},\frac{1}{3},\frac{1}{3}$ since $\frac{(1,1,1)\cdot(-1,2,2)}{(-1,2,2)\cdot(-1,2,2)}=\frac{1}{3}, \frac{(1,1,1)\cdot(2,-1,2)}{(2,-1,2)\cdot(2,-1,2)}=\frac{1}{3}, \frac{(1,1,1)\cdot(2,2,-1)}{(2,2,-1)\cdot(2,2,-1)}=\frac{1}{3},$ i.e. $(1,1,1)=\frac{1}{3}(-1,2,2)+\frac{1}{3}(2,-1,2)+\frac{1}{3}(2,2,-1).$

Existence of Orthogonal Basis

Example

The coordinates of the vector (1, 1, 1) relative to the orthogonal basis (-1,2,2), (2,-1,2), (2,2,-1) of \mathbb{R}^3 are $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ since $\frac{(1,1,1)\cdot(-1,2,2)}{(-1,2,2)\cdot(-1,2,2)} = \frac{1}{3}, \frac{(1,1,1)\cdot(2,-1,2)}{(2,-1,2)\cdot(2,-1,2)} = \frac{1}{3}, \frac{(1,1,1)\cdot(2,2,-1)}{(2,2,-1)\cdot(2,2,-1)} = \frac{1}{3}$, i.e. $(1,1,1) = \frac{1}{3}(-1,2,2) + \frac{1}{3}(2,-1,2) + \frac{1}{3}(2,2,-1).$

$$(1,1,1) = \frac{1}{3}(-1,2,2) + \frac{1}{3}(2,-1,2) + \frac{1}{3}(2,2,-1).$$

Proposition

Any subspace $V \subset \mathbb{R}^n$ has an orthogonal basis.

Existence of Orthogonal Basis

Example

The coordinates of the vector (1,1,1) relative to the orthogonal basis (-1,2,2), (2,-1,2), (2,2,-1) of \mathbb{R}^3 are $\frac{1}{3},\frac{1}{3},\frac{1}{3}$ since $\frac{(1,1,1)\cdot(-1,2,2)}{(-1,2,2)\cdot(-1,2,2)}=\frac{1}{3}, \frac{(1,1,1)\cdot(2,2,-1)}{(2,2,1)\cdot(2,2,-1)}=\frac{1}{3}, \text{ i.e.}$

$$(1,1,1) = \frac{1}{3}(-1,2,2) + \frac{1}{3}(2,-1,2) + \frac{1}{3}(2,2,-1).$$

Proposition

Any subspace $V \subset \mathbb{R}^n$ has an orthogonal basis.

Proof.

A proof will be given later.

Example

Example

Let $V \subset \mathbb{R}^3$ be given by the equation $x_1 + x_2 + x_3 = 0$. We compute inductively an orthogonal basis of V by choosing vectors orthogonal to the previously chosen ones. Let $v_1 = (1,0,-1)$. To find $v_2 \in V$ such that $v_1 \perp v_2$ solve

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_3 = 0 \end{cases} \iff \begin{cases} 2x_1 + x_2 = 0 \\ x_1 - x_3 = 0 \end{cases}$$

Example

Example

Let $V \subset \mathbb{R}^3$ be given by the equation $x_1+x_2+x_3=0$. We compute inductively an orthogonal basis of V by choosing vectors orthogonal to the previously chosen ones. Let $v_1=(1,0,-1)$. To find $v_2 \in V$ such that $v_1 \perp v_2$ solve

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_3 = 0 \end{cases} \iff \begin{cases} 2x_1 + x_2 = 0 \\ x_1 - x_3 = 0 \end{cases}$$

 \iff $x_2=-2x_1, \ x_3=x_1.$ For example $v_2=(1,-2,1).$ Since dim V=2 vectors v_1,v_2 form an orthogonal basis of V. By taking normalized vectors we get an orthonormal basis $\frac{1}{\sqrt{2}}(1,0,-1),\frac{1}{\sqrt{6}}(1,-2,1)$ of V.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then any vector $w \in \mathbb{R}^n$ can be written uniquely as

$$w = v + v^{\perp}$$
 where $v \in V$, $v^{\perp} \in V^{\perp}$.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then any vector $w \in \mathbb{R}^n$ can be written uniquely as

$$w = v + v^{\perp}$$
 where $v \in V$, $v^{\perp} \in V^{\perp}$.

Proof.

Let v_1, \ldots, v_k be a basis of V and let v_{k+1}, \ldots, v_n be a basis of V^{\perp} .

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then any vector $w \in \mathbb{R}^n$ can be written uniquely as

$$w = v + v^{\perp}$$
 where $v \in V$, $v^{\perp} \in V^{\perp}$.

Proof.

Let v_1,\ldots,v_k be a basis of V and let v_{k+1},\ldots,v_n be a basis of V^\perp . Then

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 \iff \begin{cases} \alpha_1 v_1 + \ldots + \alpha_k v_k = 0 \\ \alpha_{k+1} v_{k+1} + \ldots + \alpha_n v_n = 0 \end{cases} \iff \alpha_1 = \ldots = \alpha_n = 0,$$

hence $\mathcal{B} = (v_1, \dots, v_n)$ is a basis of \mathbb{R}^n .

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then any vector $w \in \mathbb{R}^n$ can be written uniquely as

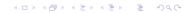
$$w = v + v^{\perp}$$
 where $v \in V$, $v^{\perp} \in V^{\perp}$.

Proof.

Let v_1,\ldots,v_k be a basis of V and let v_{k+1},\ldots,v_n be a basis of V^\perp . Then

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 \iff \begin{cases} \alpha_1 v_1 + \ldots + \alpha_k v_k = 0 \\ \alpha_{k+1} v_{k+1} + \ldots + \alpha_n v_n = 0 \end{cases} \iff \alpha_1 = \ldots = \alpha_n = 0,$$

hence $\mathcal{B} = (v_1, \dots, v_n)$ is a basis of \mathbb{R}^n . This proves the existence of a decomposition.



Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then any vector $w \in \mathbb{R}^n$ can be written uniquely as

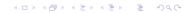
$$w = v + v^{\perp}$$
 where $v \in V$, $v^{\perp} \in V^{\perp}$.

Proof.

Let v_1,\ldots,v_k be a basis of V and let v_{k+1},\ldots,v_n be a basis of V^\perp . Then

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 \iff \begin{cases} \alpha_1 v_1 + \ldots + \alpha_k v_k = 0 \\ \alpha_{k+1} v_{k+1} + \ldots + \alpha_n v_n = 0 \end{cases} \iff \alpha_1 = \ldots = \alpha_n = 0,$$

hence $\mathcal{B} = (v_1, \dots, v_n)$ is a basis of \mathbb{R}^n . This proves the existence of a decomposition.



Orthogonal Decomposition (continued)

Proof.

lf

$$w = v + v^{\perp} = u + u^{\perp},$$

where $v, u \in V, v^{\perp}, u^{\perp} \in V^{\perp}$, then

$$v - u = u^{\perp} - v^{\perp} \in V \cap V^{\perp} = \{0\}.$$

Orthogonal Decomposition (continued)

Proof.

lf

$$w = v + v^{\perp} = u + u^{\perp}$$

where $v, u \in V, v^{\perp}, u^{\perp} \in V^{\perp}$, then

$$v - u = u^{\perp} - v^{\perp} \in V \cap V^{\perp} = \{0\}.$$

Therefore

$$v = u$$
, $v^{\perp} = u^{\perp}$.

Orthogonal Projection and Reflection

Definition

For any subspace $V \subset \mathbb{R}^n$ and $w \in \mathbb{R}^n$ the function $P_V \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$P_V(w) = v$$
, where $w = v + v^{\perp}, v \in V, v^{\perp} \in V^{\perp}$,

is a linear transformation called **the orthogonal projection** on the subspace V.

Orthogonal Projection and Reflection

Definition

For any subspace $V \subset \mathbb{R}^n$ and $w \in \mathbb{R}^n$ the function $P_V \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$P_V(w) = v$$
, where $w = v + v^{\perp}, v \in V, v^{\perp} \in V^{\perp}$,

is a linear transformation called **the orthogonal projection** on the subspace V.

Note that with the above notation $P_{V^{\perp}}(w) = v^{\perp}$, that is $w = P_{V}(w) + P_{V^{\perp}}(w)$. The linearity of P_{V} follows from the uniqueness of the orthogonal decomposition.

Orthogonal Projection and Reflection (continued)

Definition

For any subspace $V \subset \mathbb{R}^n$ and $w \in \mathbb{R}^n$ the function $S_V \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$S_V(w) = v - v^{\perp}$$
, where $w = v + v^{\perp}, v \in V$, $v^{\perp} \in V^{\perp}$,

is a linear transformation called **the orthogonal reflection** across the subspace V.

Orthogonal Projection and Reflection (continued)

Definition

For any subspace $V \subset \mathbb{R}^n$ and $w \in \mathbb{R}^n$ the function $S_V \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$S_V(w) = v - v^{\perp}$$
, where $w = v + v^{\perp}, v \in V$, $v^{\perp} \in V^{\perp}$,

is a linear transformation called **the orthogonal reflection** across the subspace V.

Note that

$$S_V(w) = P_V(w) - P_{V^{\perp}}(w) = 2P_V(w) - w.$$

Example

Let V = lin(v). Then $P_V(w) = \frac{w \cdot v}{v \cdot v}v$.

Example

Let V = lin(v). Then $P_V(w) = \frac{w \cdot v}{v \cdot v} v$.

Proposition

i) $P_V(w) \in V$ and $(P_v(w) = w \iff w \in V)$,

Example

Let V = lin(v). Then $P_V(w) = \frac{w \cdot v}{v \cdot v} v$.

Proposition

- i) $P_V(w) \in V$ and $(P_v(w) = w \iff w \in V)$,
- ii) let $d(w, V) = \min\{\|w v\| \mid v \in V\}$ be the distance between the vector w and the subspace V. Then $P_V(w)$ is the unique vector in V such that $d(w, V) = \|w P_V(w)\|$,

Example

Let V = lin(v). Then $P_V(w) = \frac{w \cdot v}{v \cdot v} v$.

Proposition

- i) $P_V(w) \in V$ and $(P_v(w) = w \iff w \in V)$,
- ii) let $d(w, V) = \min\{\|w v\| \mid v \in V\}$ be the distance between the vector w and the subspace V. Then $P_V(w)$ is the unique vector in V such that $d(w, V) = \|w P_V(w)\|$,
- iii) if v_1, \ldots, v_k is an orthogonal basis of V then

$$P_V(w) = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k.$$

Proof.

ii) recall $w = P_V(w) + P_{V^{\perp}}(w)$, then for any $v \in V$, by the Pythagorean theorem $\|w - v\|^2 = \|(P_V(w) - v) + P_{V^{\perp}}(w)\|^2 = \|P_V(w) - v\|^2 + \|P_{V^{\perp}}(w)\|^2 \geqslant \|P_{V^{\perp}}(w)\|^2$ so the minimum is attained if $v = P_V(w)$.

Proof.

ii) recall
$$w=P_V(w)+P_{V^{\perp}}(w)$$
, then for any $v\in V$, by the Pythagorean theorem $\|w-v\|^2=\|(P_V(w)-v)+P_{V^{\perp}}(w)\|^2=\|P_V(w)-v\|^2+\|P_{V^{\perp}}(w)\|^2\geqslant \|P_{V^{\perp}}(w)\|^2$ so the minimum is attained if $v=P_V(w)$.

iii)
$$w - (\frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k) \in V^{\perp}$$
.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then

i)
$$P_V \circ P_V = P_V$$
,

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then

- i) $P_V \circ P_V = P_V$,
- $\mathsf{ii}) \; S_V \circ S_V = \mathsf{id}_{\mathbb{R}^n},$

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then

- i) $P_V \circ P_V = P_V$,
- ii) $S_V \circ S_V = \mathrm{id}_{\mathbb{R}^n}$,
- $\mathsf{iii}\big) \ P_V + P_{V^\perp} = \mathsf{id}_{\mathbb{R}^n},$

Properties (continued)

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then

- i) $P_V \circ P_V = P_V$,
- ii) $S_V \circ S_V = \mathrm{id}_{\mathbb{R}^n}$,
- iii) $P_V + P_{V^{\perp}} = \operatorname{id}_{\mathbb{R}^n}$,
- iv) $S_V = -S_{V^{\perp}}$.

Properties (continued)

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace. Then

- i) $P_V \circ P_V = P_V$,
- ii) $S_V \circ S_V = \mathrm{id}_{\mathbb{R}^n}$,
- iii) $P_V + P_{V^{\perp}} = \mathrm{id}_{\mathbb{R}^n}$,
- iv) $S_V = -S_{V^{\perp}}$.

Example

Let
$$V=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4\mid x_1-x_2+2x_3-2x_4=0\}$$
 and $w=(1,0,1,-1)$. Compute $P_V(w)$. By definition $V^\perp=\text{lin}((1,-1,2,-2))$. Then $P_{V^\perp}(w)=\frac{w\cdot(1,-1,2,-2)}{1^2+(-1)^2+2^2+(-2)^2}(1,-1,2,-2)=\frac{1}{2}(1,-1,2,-2).$ Hence $P_V(w)=w-P_{V^\perp}(w)=(\frac{1}{2},\frac{1}{2},0,0).$

Gram-Schmidt process

Let v_1, \ldots, v_k be a basis of the subspace $V \subset \mathbb{R}^n$. The **Gram-Schmidt process** is an inductive way of computing an orthogonal basis w_1, \ldots, w_k of V.

Gram-Schmidt process

Let v_1, \ldots, v_k be a basis of the subspace $V \subset \mathbb{R}^n$. The **Gram-Schmidt process** is an inductive way of computing an orthogonal basis w_1, \ldots, w_k of V.

By induction

i) for i = 1 set

$$w_1=v_1,\quad W_1=\operatorname{lin}(w_1),$$

Gram-Schmidt process

Let v_1, \ldots, v_k be a basis of the subspace $V \subset \mathbb{R}^n$. The **Gram-Schmidt process** is an inductive way of computing an orthogonal basis w_1, \ldots, w_k of V.

By induction

i) for i = 1 set

$$w_1=v_1,\quad W_1=\operatorname{lin}(w_1),$$

ii) for $1 < i \le k$ set

$$w_i = v_i - P_{W_{i-1}}(v_i),$$

$$W_i = \operatorname{lin}(w_1, \ldots, w_i).$$

```
Proposition (Gram-Schmidt)

With notation as above for i = 1, ..., k

i) w_1, ..., w_i is an orthogonal basis of W_i,
```

Proposition (Gram-Schmidt)

With notation as above for i = 1, ..., k

- i) w_1, \ldots, w_i is an orthogonal basis of W_i ,
- ii) $W_i = lin(v_1, \ldots, v_i)$.

Proposition (Gram-Schmidt)

With notation as above for i = 1, ..., k

- i) w_1, \ldots, w_i is an orthogonal basis of W_i ,
- ii) $W_i = lin(v_1, \ldots, v_i)$.

Proposition (Gram-Schmidt)

With notation as above for i = 1, ..., k

- i) w_1, \ldots, w_i is an orthogonal basis of W_i ,
- ii) $W_i = \operatorname{lin}(v_1, \ldots, v_i)$.

Since $W_k = V$ vectors w_1, \ldots, w_k form an orthogonal basis of V. The normalized vectors $\frac{w_1}{\|w_1\|}, \ldots, \frac{w_k}{\|w_k\|}$ form an orthonormal basis of V.

Let $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + 2x_3 - x_4 = 0\}$ and let $v_1 = (1, 0, 0, 1), v_2 = (1, 1, 0, 0), v_3 = (0, 1, 1, 1) \in \mathbb{R}^4$ be a basis of subspace V. Then $w_1 = v_1$, $W_1 = \text{lin}(w_1)$, $w_1 = (1, 0, 0, 1)$,

```
Let V=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4\mid x_1-x_2+2x_3-x_4=0\} and let v_1=(1,0,0,1), v_2=(1,1,0,0), v_3=(0,1,1,1)\in\mathbb{R}^4 be a basis of subspace V. Then w_1=v_1,\ W_1=\text{lin}(w_1),\ w_1=(1,0,0,1),\ w_2=v_2-P_{W_1}(v_2)=v_2-\frac{v_2\cdot w_1}{w_1\cdot w_1}w_1,\ w_2=(1,1,0,0)-\frac{1}{2}(1,0,0,1)=\frac{1}{2}(1,2,0,-1),\ W_2=\text{lin}(w_1,w_2)
```

```
Let V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + 2x_3 - x_4 = 0\} and let v_1 = (1, 0, 0, 1), v_2 = (1, 1, 0, 0), v_3 = (0, 1, 1, 1) \in \mathbb{R}^4 be a basis of subspace V. Then w_1 = v_1, W_1 = \text{lin}(w_1), w_1 = (1, 0, 0, 1), w_2 = v_2 - P_{W_1}(v_2) = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1, w_2 = (1, 1, 0, 0) - \frac{1}{2}(1, 0, 0, 1) = \frac{1}{2}(1, 2, 0, -1), W_2 = \text{lin}(w_1, w_2) w_3 = v_3 - P_{W_2}(v_3) = v_3 - \frac{v_3 \cdot w_1}{w_1 \cdot w_1} w_1 - \frac{v_3 \cdot w_2}{w_2 \cdot w_2} w_2, w_3 = (0, 1, 1, 1) - \frac{1}{2}(1, 0, 0, 1) - \frac{1}{6}(1, 2, 0, -1) = \frac{1}{3}(-2, 2, 3, 2), W_3 = \text{lin}(w_1, w_2, w_3).
```

Let
$$V=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4\mid x_1-x_2+2x_3-x_4=0\}$$
 and let $v_1=(1,0,0,1), v_2=(1,1,0,0), v_3=(0,1,1,1)\in\mathbb{R}^4$ be a basis of subspace V . Then $w_1=v_1,\ W_1=\text{lin}(w_1),\ w_1=(1,0,0,1),\ w_2=v_2-P_{W_1}(v_2)=v_2-\frac{v_2\cdot w_1}{w_1\cdot w_1}w_1,\ w_2=(1,1,0,0)-\frac{1}{2}(1,0,0,1)=\frac{1}{2}(1,2,0,-1),\ W_2=\text{lin}(w_1,w_2)$ $w_3=v_3-P_{W_2}(v_3)=v_3-\frac{v_3\cdot w_1}{w_1\cdot w_1}w_1-\frac{v_3\cdot w_2}{w_2\cdot w_2}w_2,\ w_3=(0,1,1,1)-\frac{1}{2}(1,0,0,1)-\frac{1}{6}(1,2,0,-1)=\frac{1}{3}(-2,2,3,2),\ W_3=\text{lin}(w_1,w_2,w_3).$ Therefore $(1,0,0,1),(1,2,0,-1),(-2,2,3,2)$ is an orthogonal basis of $V=\text{lin}(v_1,v_2,v_3)$. Moreover $\frac{1}{\sqrt{2}}(1,0,0,1),\frac{1}{\sqrt{6}}(1,2,0,-1),\frac{1}{\sqrt{21}}(-2,2,3,2)$ is an orthonormal basis of V .

Remark

Note that $\frac{w \cdot v}{v \cdot v}v = \frac{w \cdot (\alpha v)}{(\alpha v) \cdot (\alpha v)}(\alpha v)$.

Projection Matrix

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $w_1, \ldots, w_k \in V$ be an orthonormal basis of V. If $Q \in M(n \times k; \mathbb{R})$ is a matrix with columns equal to w_1, \ldots, w_k then

$$M(P_V)_{st}^{st} = QQ^{\mathsf{T}}.$$

Projection Matrix

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $w_1, \ldots, w_k \in V$ be an orthonormal basis of V. If $Q \in M(n \times k; \mathbb{R})$ is a matrix with columns equal to w_1, \ldots, w_k then

$$M(P_V)_{st}^{st} = QQ^{\mathsf{T}}.$$

Proof.

Follows from the formula

$$P_V(v) = (v \cdot w_1)w_1 + (v \cdot w_2)w_2 + \ldots + (v \cdot w_k)w_k.$$

Projection Matrix

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $w_1, \ldots, w_k \in V$ be an orthonormal basis of V. If $Q \in M(n \times k; \mathbb{R})$ is a matrix with columns equal to w_1, \ldots, w_k then

$$M(P_V)_{st}^{st} = QQ^{\mathsf{T}}.$$

Proof.

Follows from the formula

$$P_V(v) = (v \cdot w_1)w_1 + (v \cdot w_2)w_2 + \ldots + (v \cdot w_k)w_k.$$

Remark

Note that $Q^{\mathsf{T}}Q = I_k$.

QR Decomposition

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $v_1, \ldots, v_k \in V$ be a basis of V. Then there exists an orthonormal basis $w_1, \ldots, w_k \in V$ of V and an upper triangular matrix $R \in M(k \times k; \mathbb{R})$ with with positive entries on the diagonal (hence invertible), such that if $A \in M(n \times k; \mathbb{R})$ is a matrix with columns v_1, \ldots, v_k and $Q \in M(n \times k; \mathbb{R})$ is a matrix with columns w_1, \ldots, w_k then

$$A = QR$$
.

In the previous example for

$$v_1 = (1,0,0,1), v_2 = (1,1,0,0), v_3 = (0,1,1,1),$$

by the Gram-Schmidt process we have

$$w_1 = v_1,$$

 $w_2 = v_2 - \frac{1}{2}w_1,$
 $w_3 = v_3 - \frac{1}{2}w_1 - \frac{1}{3}w_2.$

In the previous example for

$$v_1 = (1, 0, 0, 1), v_2 = (1, 1, 0, 0), v_3 = (0, 1, 1, 1),$$

by the Gram-Schmidt process we have

$$w_1 = v_1,$$

 $w_2 = v_2 - \frac{1}{2}w_1,$
 $w_3 = v_3 - \frac{1}{2}w_1 - \frac{1}{3}w_2.$

Therefore

$$v_1 = w_1,$$

 $v_2 = \frac{1}{2}w_1 + w_2,$
 $v_3 = \frac{1}{2}w_1 + \frac{1}{3}w_2 + w_3.$

Example (continued)

Since
$$w_1 = (1, 0, 0, 1), w_2 = \frac{1}{2}(1, 2, 0, -1), w_3 = \frac{1}{3}(-2, 2, 3, 2),$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & -\frac{2}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \\ 1 & -\frac{1}{2} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix}$$

Columns of the first matrix have to be normalized, i.e. divided respectively by $\sqrt{2}, \frac{\sqrt{6}}{2}, \frac{\sqrt{21}}{3}$ (and rows of the second matrix multiplied respectively by the same numbers), hence

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{21}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{2}{\sqrt{21}} \\ 0 & 0 & \frac{3}{\sqrt{21}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{21}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{6} \\ 0 & 0 & \frac{\sqrt{21}}{3} \end{bmatrix}$$

QR Decomposition (continued)

Proof.

Follows directly form the Gram-Schmidt process. In fact

$$R = \begin{bmatrix} \|w_1\| & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \|w_k\| \end{bmatrix} \cdot \begin{bmatrix} 1 & \frac{v_2 \cdot w_1}{w_1 \cdot w_1} & \frac{v_3 \cdot w_1}{w_1 \cdot w_1} & \cdots & \frac{v_k \cdot w_1}{w_3 \cdot w_1} \\ 0 & 1 & \frac{v_3 \cdot w_2}{w_2 \cdot w_2} & \cdots & \frac{v_k \cdot w_2}{w_2 \cdot w_2} \\ 0 & 0 & 1 & \cdots & \frac{v_k \cdot w_3}{w_3 \cdot w_3} \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix},$$

and

$$Q = \left[\frac{w_1^\mathsf{T}}{\|w_1\|} \cdots \frac{w_k^\mathsf{T}}{\|w_k\|}\right].$$

Uniqueness of QR Decomposition

Remark

For any matrix $A \in M(n \times k; \mathbb{R})$ with r(A) = k the matrices Q and R are unique if diagonal entries of R are positive. That is if A = QR = Q'R' where $Q, Q' \in M(n \times k; \mathbb{R})$ are orthogonal matrices and matrices $R, R' \in M(k \times k; \mathbb{R})$ are upper triangular matrices with positive entries on the diagonal then Q = Q', R = R'.

Uniqueness of QR Decomposition

Remark

For any matrix $A \in M(n \times k; \mathbb{R})$ with r(A) = k the matrices Q and R are unique if diagonal entries of R are positive. That is if A = QR = Q'R' where $Q, Q' \in M(n \times k; \mathbb{R})$ are orthogonal matrices and matrices $R, R' \in M(k \times k; \mathbb{R})$ are upper triangular matrices with positive entries on the diagonal then Q = Q', R = R'.

Proof.

Since $Q'^{\mathsf{T}}Q' = I_k$ from

$$QR = Q'R'$$

by multiplying by $Q^{\prime\mathsf{T}}$ on the left and by R^{-1} on the right we get

$$Q'^{\mathsf{T}}Q = R'R^{-1}.$$

The inverse and product of two upper triangular matrices is upper triangular and the matrix $Q^{\prime T}Q$ is orthogonal.

Uniqueness of QR Decomposition

Remark

For any matrix $A \in M(n \times k; \mathbb{R})$ with r(A) = k the matrices Q and R are unique if diagonal entries of R are positive. That is if A = QR = Q'R' where $Q, Q' \in M(n \times k; \mathbb{R})$ are orthogonal matrices and matrices $R, R' \in M(k \times k; \mathbb{R})$ are upper triangular matrices with positive entries on the diagonal then Q = Q', R = R'.

Proof.

Since $Q'^{\mathsf{T}}Q' = I_k$ from

$$QR = Q'R',$$

by multiplying by $Q^{\prime\mathsf{T}}$ on the left and by R^{-1} on the right we get

$$Q'^{\mathsf{T}}Q = R'R^{-1}.$$

The inverse and product of two upper triangular matrices is upper triangular and the matrix $Q'^{\mathsf{T}}Q$ is orthogonal. The only upper triangular and orthogonal matrix with positive diagonal entries is the unit matrix.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $v_1, \ldots, v_k \in V$ be a basis of V. If $A \in M(n \times k; \mathbb{R})$ is a matrix with columns v_1, \ldots, v_k then

$$M(P_V)_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}.$$

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $v_1, \ldots, v_k \in V$ be a basis of V. If $A \in M(n \times k; \mathbb{R})$ is a matrix with columns v_1, \ldots, v_k then

$$M(P_V)_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}.$$

In particular, the matrix $A^{T}A$ is invertible.

Proposition

Let $V \subset \mathbb{R}^n$ be a subspace and let $v_1, \ldots, v_k \in V$ be a basis of V. If $A \in M(n \times k; \mathbb{R})$ is a matrix with columns v_1, \ldots, v_k then

$$M(P_V)_{st}^{st} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}.$$

In particular, the matrix $A^{T}A$ is invertible.

Proof.

By the QR decomposition there exist matrices $Q \in M(n \times k; \mathbb{R})$ and $R \in M(k \times k; \mathbb{R})$ such that A = QR and

$$M(P_V)_{st}^{st} = QQ^{\mathsf{T}}$$

Proof.

Since A = QR the matrix

$$A^{\mathsf{T}}A = (R^{\mathsf{T}}Q^{\mathsf{T}})(QR) = R^{\mathsf{T}}R,$$

is invertible. Moreover

$$Q = AR^{-1}, \quad Q^{\mathsf{T}} = (R^{-1})^{\mathsf{T}}A^{\mathsf{T}},$$

Proof.

Since A = QR the matrix

$$A^{\mathsf{T}}A = (R^{\mathsf{T}}Q^{\mathsf{T}})(QR) = R^{\mathsf{T}}R,$$

is invertible. Moreover

$$Q = AR^{-1}, \quad Q^{\mathsf{T}} = (R^{-1})^{\mathsf{T}}A^{\mathsf{T}},$$

and

$$M(P_V)_{st}^{st} = QQ^{\mathsf{T}} = (AR^{-1}) \left((R^{-1})^{\mathsf{T}} A^{\mathsf{T}} \right) = A(R^{\mathsf{T}} R)^{-1} A^{\mathsf{T}} =$$

= $A(A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}}$.

Let V = lin((1,1,1),(1,2,0)). Find the formula of the orthogonal projection onto V and the formula of the orthogonal reflection across V.

Let V = lin((1,1,1),(1,2,0)). Find the formula of the orthogonal projection onto V and the formula of the orthogonal reflection across V.

Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$$
, so $A^{\mathsf{T}}A = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$ and $(A^{\mathsf{T}}A)^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix}$.

Therefore

$$M(P_V)_{st}^{st} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix} \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & -1 \\ 2 & -1 & 5 \end{bmatrix}.$$

$$P_V((x_1, x_2, x_3)) = \left(\frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3, \frac{1}{3}x_1 + \frac{5}{6}x_2 - \frac{1}{6}x_3, \frac{1}{3}x_1 - \frac{1}{6}x_2 + \frac{5}{6}x_3\right).$$

Example (continued)

Moreover,

$$M(S_V)_{st}^{st} = 2M(P_V)_{st}^{st} - I = \frac{1}{3} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & -1 \\ 2 & -1 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

$$= \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{bmatrix}$$

and

$$S_V((x_1, x_2, x_3)) = \left(-\frac{1}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_3, \frac{2}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3, \frac{2}{3}x_1 - \frac{1}{3}x_2 + \frac{2}{3}x_3\right).$$

Corollary

If P_V is an orthogonal projection and S_V orthogonal reflection then the matrices $M(P_V)_{st}^{st}$, $M(S_V)_{st}^{st}$ are symmetric.

Corollary

If P_V is an orthogonal projection and S_V orthogonal reflection then the matrices $M(P_V)_{st}^{st}$, $M(S_V)_{st}^{st}$ are symmetric.

Proposition

If matrix A has linearly independent columns then A^TA is positive definite. If A is any matrix then A^TA is positive semidefinite.

Corollary

If P_V is an orthogonal projection and S_V orthogonal reflection then the matrices $M(P_V)_{st}^{st}$, $M(S_V)_{st}^{st}$ are symmetric.

Proposition

If matrix A has linearly independent columns then A^TA is positive definite. If A is any matrix then A^TA is positive semidefinite.

Proof.

For any vector $v \in \mathbb{R}^n$ we have $||Av||^2 = v^T A^T A v \ge 0$. When A has linearly independent columns then Av = 0 implies that v = 0.

Proposition

Matrix representing an oblique projection onto $\operatorname{im}(A)$ along $\operatorname{ker} B$ for any matrices $A \in M(n \times k; \mathbb{R}), \ B \in M(I \times n; \mathbb{R})$ such that $\operatorname{im}(A)$ and $\operatorname{ker} B$ give a direct sum decomposition is given by

$$P = A(B^{\mathsf{T}}A)^{+}B^{\mathsf{T}}.$$

Proof.

(sketch, cf. Lecture 14). The assumptions imply that rank $A = \operatorname{rank} B = \operatorname{rank}(B^\intercal A)$ as $\operatorname{im}(A) \cap \ker B = \{0\}$. It is well–known that with such assumptions the inverse law holds, i.e.,

$$(B^{\mathsf{T}}A)^{+} = A^{+}(B^{\mathsf{T}})^{+}.$$

Finally

$$P = \left(AA^{+}\right)\left(\left(B^{\intercal}\right)^{+}B^{\intercal}\right) = \left(AA^{+}\right)\left(BB^{+}\right),$$

and clearly $P^2 = P$ with im(P) = im(A) and ker P = ker B.

Projection onto Intersection of Subspaces

Proposition

Let $A, B \in M(n \times n; \mathbb{R})$ be symmetric and positive semidefinite matrices. Then

$$im(A + B) = im(A) + im(B).$$

Proof.

Obviously $\operatorname{im}(A+B) \subset \operatorname{im}(A) + \operatorname{im}(B)$. It is enough to prove that $\operatorname{im}(A) \subset \operatorname{im}(A+B)$ which is equivalent to

$$ker(A + B) \subset ker(A)$$
.

Let (A + B)x = 0. Then $x^TAX + x^TBx = 0$. Matrices A, B are positive semidefinite hence $x^TAx = 0$ which is equivalent to Ax = 0.

Projection onto Intersection of Subspaces (continued)

Lemma (Anderson, Duffin)

Let $P=AA^+$ and $Q=BB^+$ be matrices of orthogonal projections onto $\operatorname{im}(A)$ and $\operatorname{im}(B)$ with respect to the standard basis, respectively. Let $V=\operatorname{im}(A)\cap\operatorname{im}(B)$. Then

$$M(P_V)_{st}^{st} = 2P(P+Q)^+Q.$$

Proof.

In the proof we use repeatedly the fact that the for subspaces $V,W\subset\mathbb{R}^n$

$$(V+W)^{\perp}=V^{\perp}\cap W^{\perp}.$$

Let

$$T = M(P_V)_{st}^{st}$$

Projection onto Intersection of Subspaces (continued)

Proof.

Matrix T does not depend on the order of P and Q as

$$P(P+Q)^{+}Q = (P+Q-Q)(P+Q)^{+}(P+Q-P) =$$

$$= (P+Q)(P+Q)^{+}(P+Q) - Q(P+Q)^{+}(P+Q) -$$

$$-(P+Q)(P+Q)^{+}P + Q(P+Q)^{+}P =$$

$$= (I-(P+Q)(P+Q)^{+})P + Q(I-(P+Q)^{+}(P+Q)) + Q(P+Q)^{+}P =$$

$$= Q(P+Q)^{+}P.$$

First two terms are zero, $(P+Q)(P+Q)^+$ is a matrix of the orthogonal projection onto $\operatorname{im}(P)+\operatorname{im}(Q)$, similarly $(P+Q)^+(P+Q)$ is a matrix of the orthogonal projection onto $\operatorname{im}((P+Q)^{\mathsf{T}})=\operatorname{im}(P)+\operatorname{im}(Q)$ with kernel $(\operatorname{im}(P)+\operatorname{im}(Q))^{\mathsf{T}}=\ker(P)\cap\ker(Q)$.

Projection onto Intersection of Subspaces (continued)

Proof.

Therefore

$$\operatorname{im}(T) \subset \operatorname{im}(P) \cap \operatorname{im}(Q) = \operatorname{im}(A) \cap \operatorname{im}(B).$$

On the other hand let $x \in \operatorname{im}(P) \cap \operatorname{im}(Q)$. Then (note that $P^+ = P$ and Px = x, similarly for Q)

$$2P(P+Q)^{+}Qx = P(P+Q)^{+}Q(P^{+}+Q^{+})x =$$

$$= P(P+Q)^{+}QQ^{+}x + Q(P+Q)^{+}PP^{+}x =$$

$$= P(P+Q)^{+}x + Q(P+Q)^{+}x = (P+Q)(P+Q)^{+}x = x.$$

Since P,Q are symmetric T is symmetric too. By the above equation matrix T acts as identity on the subspace $\operatorname{im}(P) \cap \operatorname{im}(Q)$ and it zero on its orthogonal complement, i.e., $\ker(P) + \ker(Q)$. Therefore $T^2 = T$, i.e. T is a matrix of orthogonal projection. \square

Let AX = B be a system of n linear equations in k variables with $A \in M(n \times k; \mathbb{R})$ such that r(A) = k (therefore $n \ge k$).

Let AX = B be a system of n linear equations in k variables with $A \in M(n \times k; \mathbb{R})$ such that r(A) = k (therefore $n \ge k$). If r(A) = r([A|B]) the system has a unique solution. Otherwise one can ask what is **the best-fitting solution**, i.e. for X with $\|AX - B\|$ minimal.

Let AX = B be a system of n linear equations in k variables with $A \in M(n \times k; \mathbb{R})$ such that r(A) = k (therefore $n \ge k$). If r(A) = r([A|B]) the system has a unique solution. Otherwise one can ask what is **the best-fitting solution**, i.e. for X with $\|AX - B\|$ minimal. The least value is the distance of vector B from the subspace $V \subset \mathbb{R}^n$ spanned by the columns of A and it is realized by the orthogonal projection of B on V.

Let AX = B be a system of n linear equations in k variables with $A \in M(n \times k; \mathbb{R})$ such that r(A) = k (therefore $n \ge k$). If r(A) = r([A|B]) the system has a unique solution. Otherwise one can ask what is **the best-fitting solution**, i.e. for X with $\|AX - B\|$ minimal. The least value is the distance of vector B from the subspace $V \subset \mathbb{R}^n$ spanned by the columns of A and it is realized by the orthogonal projection of B on V.

By the previous formula

$$P_V(B) = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}B.$$

The unique solution of the equation $AX = A(A^{T}A)^{-1}A^{T}B$ is

$$X = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}B.$$

Linear Least Squares (continued)

The name (linear) last squares comes from the fact we look for $(x_1, \ldots, x_k) \in \mathbb{R}^k$ for which the value of

$$(a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k - b_1)^2 +$$

$$+ (a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k - b_2)^2 +$$

$$\vdots$$

$$+ (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nk}x_k - b_n)^2 =$$

$$= ||AX - B||^2,$$

is minimal.

Linear Least Squares (continued)

The name (linear) last squares comes from the fact we look for $(x_1, \ldots, x_k) \in \mathbb{R}^k$ for which the value of

$$(a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k - b_1)^2 +$$

$$+ (a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k - b_2)^2 +$$

$$\vdots$$

$$+ (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nk}x_k - b_n)^2 =$$

$$= ||AX - B||^2,$$

is minimal.

Remark

If columns of matrix A are not linearly independent any vector $X \in \mathbb{R}^k$ such that $AX = P_V(B)$, where $V = \operatorname{colsp}(A)$ gives the least ||AX - B|| (such X is not unique).

Example

Find the best-fitting solution of the (inconsistent) system of linear equations.

$$\begin{cases} x_1 + x_2 = 3 \\ 2x_1 + 3x_2 = 0 \\ x_1 + x_2 = -1 \end{cases}$$

Let

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$$

Then

$$A^{\mathsf{T}}A = \begin{bmatrix} 6 & 8 \\ 8 & 11 \end{bmatrix}, \quad (A^{\mathsf{T}}A)^{-1} = \begin{bmatrix} \frac{11}{2} & -4 \\ -4 & 3 \end{bmatrix}.$$

The best-fitting solution is equal to

$$X = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}B = \begin{bmatrix} \frac{11}{2} & -4 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix},$$

i.e.,
$$x_1 = 3$$
, $x_2 = -2$.

Cauchy-Schwarz Inequality and Gram Matrix

Proposition

For any $v, w \in \mathbb{R}^n$

$$||v|||w|| \geqslant |v \cdot w|,$$

and the equality holds if and only if v, w are linearly dependent.

Cauchy-Schwarz Inequality and Gram Matrix

Proposition

For any $v, w \in \mathbb{R}^n$

$$||v|||w|| \geqslant |v \cdot w|,$$

and the equality holds if and only if v, w are linearly dependent.

Proof.

Let
$$v=(x_1,\ldots,x_n), w=(y_1,\ldots,y_n)$$
 and

$$A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}.$$

Cauchy–Schwarz Inequality (continued)

Proof.

By the Cauch-Binet formula

$$\det(AA^{\mathsf{T}}) = \det \begin{bmatrix} \|v\|^2 & v \cdot w \\ w \cdot v & \|w\|^2 \end{bmatrix} =$$

$$= \|v\|^2 \|w\|^2 - (v \cdot w)^2 = \sum_{\substack{J \subset \{1, \dots, n\} \\ \#J = 2}} (\det A_{2;J})^2 \geqslant 0,$$

and the equality holds if and only if all order 2 minors of A vanish, i.e. the rank of A is either 0 or 1.

Minkowski Inequality

Proposition

For any $v, w \in \mathbb{R}^n$

$$||v + w|| \le ||v|| + ||w||,$$

and the equality holds if and only if there exist $\alpha \geqslant 0$ such that $v = \alpha w$ or w = 0.

Proof.

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2 + 2(v \cdot w) \le \|v\|^2 + \|w\|^2 + 2\|v\| \|w\| =$$

= $(\|v\| + \|w\|)^2$,

and the equality holds if and only if $v \cdot w = ||v|| ||w||$, i.e v and w are linearly dependent. If $v, w \neq 0$ this happens if and only if $\cos \angle (v, w) = 1$, that is $\angle (v, w) = 0$.

Covariance as Scalar Product

Let (Ω, \mathcal{F}, P) be a probability space. Let

$$V = \{X \colon \Omega \to \mathbb{R} \mid X \text{ is measurable}, \ \mathsf{E}(X) = 0, \ \mathsf{Var}(X) < \infty\} / \sim,$$

where for $X, Y: \Omega \to \mathbb{R}$

$$X \sim Y \iff P(\{\omega \in \Omega \mid X(\omega) = Y(\omega)\}) = 1,$$

(i.e. we identify random variables X and Y if they are equal with probability 1). Then V is a vector space and

$$X \cdot Y = Cov(X, Y) = E(XY),$$

is a scalar product. Under this definition $\|X\|$ is the standard deviation of X, X is perpendicular to Y if and only if X and Y are uncorrelated, and

$$\mathsf{Corr}(X,Y) = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\,\mathsf{Var}(Y)}},$$

is the cosine of the angle between X and Y

Centering Matrix

Let

$$\mathbb{1}=(1,\ldots,1).$$

For any vector $\mathbf{x} = (x_1, \dots, x_n)$ define

$$\overline{\mathbf{x}} = \frac{1}{n}(x_1 + \ldots + x_n)\mathbb{1} = \frac{1}{n}\mathbb{1}^{\mathsf{T}}\mathbf{x}\mathbb{1}.$$

The **centered** vector x is

$$x - \overline{x}$$
.

Observe that

$$\overline{x-\overline{x}}=0.$$

The centering matrix is

$$H = I - \frac{1}{n} \mathbb{1} \mathbb{1}^{\mathsf{T}}.$$

Sample Pearson Correlation Coefficient

Let

$$\mathbf{x} = (x_1, \dots, x_n),$$

 $\mathbf{v} = (v_1, \dots, v_n).$

The sample Pearson correlation coefficient is

$$r_{xy} = \frac{(\mathbf{x} - \overline{\mathbf{x}}) \cdot (\mathbf{y} - \overline{\mathbf{y}})}{\|\mathbf{x} - \overline{\mathbf{x}}\| \|\mathbf{y} - \overline{\mathbf{y}}\|},$$

that is a cosine between centered vectors x and y. Therefore

$$-1 \leqslant r_{xy} \leqslant 1$$
.

It is a measure of similarity between data of (centered) x and y.

Sample Covariance Matrix

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^m$. Let

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \end{bmatrix},$$

be a matrix whose columns consists of vectors x_i . The sample covariance matrix $K = [k_{ij}] \in M(n \times n; \mathbb{R})$ such that

$$k_{ij} = \frac{1}{n}(\mathbf{x}_i - \overline{\mathbf{x}_i}) \cdot (\mathbf{x}_j - \overline{\mathbf{x}_j}).$$

It is a symmetric matrix, given by the formula

$$K = \frac{1}{n} \mathbf{X}^{\mathsf{T}} H \mathbf{X}.$$

Sample Covariance Matrix (continued)

The matrix

$$\overline{\mathbf{X}} = \begin{bmatrix} \overline{\mathbf{x}}_1 & \cdots & \overline{\mathbf{x}}_n \end{bmatrix},$$

with centered columns is given by the formula

$$\overline{\mathbf{X}} = \mathbf{X} - \frac{1}{n} \mathbb{1} \mathbb{1}^{\mathsf{T}} \mathbf{X} = H \mathbf{X}.$$

Therefore

$$K = \frac{1}{n} \overline{X}^{\mathsf{T}} \overline{X} = \frac{1}{n} (HX)^{\mathsf{T}} (HX) =$$
$$= \frac{1}{n} X^{\mathsf{T}} H^{\mathsf{T}} HX = \frac{1}{n} X^{\mathsf{T}} HX,$$

as $H^{\mathsf{T}} = H$ and $H^2 = H$. It follows that the sample covariance matrix is positive semidefinite.

Sample Correlation Matrix

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \end{bmatrix},$$

be a matrix whose columns consists of vectors x_i . The sample correlation matrix $R = [r_{ij}] \in M(n \times n; \mathbb{R})$ such that

$$r_{ij} = \frac{(\boldsymbol{x}_i - \overline{\boldsymbol{x}_i}) \cdot (\boldsymbol{x}_j - \overline{\boldsymbol{x}_j})}{\|\boldsymbol{x}_i - \overline{\boldsymbol{x}_i}\| \|\boldsymbol{x}_j - \overline{\boldsymbol{x}_j}\|} = \frac{k_{ij}}{\sqrt{k_{ii}}\sqrt{k_{jj}}}.$$

It is a symmetric matrix containing all sample Pearson correlation coefficient of vectors x_1, \ldots, x_n . Let

$$D = \operatorname{diag}(k_1, \ldots, k_n),$$

where $k_i = \sqrt{k_{ii}}$. Then

$$K = D^{\mathsf{T}}RD$$
,

or equivalently

$$R = (D^{-1})^{\mathsf{T}} K D^{-1}.$$

