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Scalar Product

Definition
A (standard) scalar product of two vectors
v=(v,...,Vp),w = (wq,...,w,) € R"is the real number
n
V-w = Z ViWw;.
i=1
Example

Let v =(1,0,-2,3),w = (0,2,2,1) € R*. Then
v-w=1-040-2-2-24+3.1=—1.
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Properties of Scalar Product

Let v,v/,w,w’ € R" and let « € R. Then
) v-w=w-v,
(av) -w=alv-w),

v-v>0forv#D0.

i)
i) v+v) - w=v-w+v.-w,v-(wW+w)=v-w+v w,
iv)
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Length of a Vector

Definition
The length of a vector v = (v1,...,v,) € R" is the number

HVH=\/V‘V=\/V12+V22+...+V,%.

Obviously |v| = 0 and
[v[=0 < v=0.

Note that if & € R then |av| = ||| v|. In particular, if v # 0 then

v
v

= 1. The vector ”L

v]

is called the normalized vector of v.

Definition
Two vectors v, w € R" are said to be orthogonal (or
perpendicular) if v-w = 0. We write v L w.



Geometric Interpretation and the Law of Cosines

Proposition
For any v,w e R"

v-w = [|v][[jw]|cos Z(v,w),

where / (v, w) is the angle between v and w.



Geometric Interpretation and the Law of Cosines

Proposition
For any v,w e R"

v-w = [|v][[jw]|cos Z(v,w),

where / (v, w) is the angle between v and w.

Proof.

From the law of cosines
2 2 2
[v—wl"=(v—w) (v—w)=|v["+[w]”—2(v -w) =

2 2
= [IVII® + [lwl]” = 2[[v[[[w]l cos Z(v, w).



Cauchy-Schwarz Inequality

Corollary (Cauchy-Schwarz inequality)

For any v,w e R"
Ivilfwll = |v - wl,

and the equality holds if and only if v, w are linearly dependent.



Cauchy-Schwarz Inequality

Corollary (Cauchy-Schwarz inequality)
For any v,w e R"
Ivill[w]l = |v - wl,

and the equality holds if and only if v, w are linearly dependent.

Proof.

In general
|cos Z(v,w)| <1,

and
|cos Z(v,w)| =1 < Z(v,w) € {0,7}.



Pythagorean Theorem

Example

Let v=(3,0,4),w = (0,1,0),u = (1,1,1). Then

Iv|| = v/32 + 02 + 42 = /9 + 16 = 5. The normalized vector of v
is £(3,0,4). Since v-w =3-0+0-1+4-0=0then v L w but w
is not orthogonal to u because w - u = 1.
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Pythagorean Theorem

Example

Let v=(3,0,4),w = (0,1,0),u = (1,1,1). Then

Iv|| = v/32 + 02 + 42 = /9 + 16 = 5. The normalized vector of v
is £(3,0,4). Since v-w =3-0+0-1+4-0=0then v L w but w
is not orthogonal to u because w - u = 1.

Theorem (Pythagoras)
Ifv L w then |v+w|?=|v|?+|w|?

Proof.

lv+wll=(v+w) - V+w)=v-v+v-w+w-v+w-w=
2 2

[vI™ + llw*. O
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Orthogonal Complement

Let A< R” be any set. Let
Al = {weR"|w-v=0forall veA}.

The set Al is a subspace of R”.

Definition

Let V < R" be a subspace. The orthogonal complement of V in
R" is VL.

Example

Let V =lin((1,2)) = R?. Then V! =lin((2,-1)).
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Proposition
Let vi,...,vi € R". Then
(lin(v, .., vi )t = {va, ..., v}
Proof.
Set V = lin(v1,...,v). Assume w € VL. Then, in particular,
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Properties

Proposition
Let vi,...,vi € R". Then
(lin(v, .., vi )t = {va, ..., v}
Proof.
Set V =lin(vy,...,vk). Assume w e V+. Then, in particular,
w-v; =0, hence V* < {v,..., v}t Ifw-v; =0 for

i=1,...,kthenforany a;eR, i=1,... k
w-(aivi +apva + ..o+ agvk) =ar(w-vi) +aa(w-va) + ..+ ag(w - v) =0.

O



Example

Let
V =1in((1,2,3,1),(1,3,2,2),(2,5,5,3)) c R*.

Then
xx + 2% + 3x3 + x3 =0
VA x1 + 3x + 2x3 2x, =10
2x1 + bxo 4+ bx3 3x4 =0

+ +

The solution of that system is equal to
1 2 31 10 5 —1
1322 —..—| 1 | ]
2 55 3

that is,
v+t =lin((-5,1,1,0),(1,-1,0,1)).



Properties (continued)

Proposition
Let V< R", dimV = k. Thendim V+ = n— k and
V V= {0



Properties (continued)

Proposition

Let V < R", dim V = k. Then dim V+ = n— k and
VnVvi={0}.

Proof.
Let vq,... vk be a basis of V, where v; = (aj1, aj2,...,ain). By the
above Proposition (x1,...,x,) € V* if and only if it is a solution of

the system of linear equations

ailxy + awpxXe + ... + ainXp 0
\/i arxy + apxe + ... + ayx, =0
akix1 + akexe + ... 4+ amnxp =0



Properties (continued)

Proof.

dailr ... din
The rank of the matrix oo is equal to k, hence by
aklr ... dkn
the Kronecker-Capelli theorem the dimension of the set of solutions
is n— k.
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Proof.
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The rank of the matrix oo is equal to k, hence by
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Properties (continued)

Proof.

dailr ... din
The rank of the matrix oo is equal to k, hence by
aklr ... dkn
the Kronecker-Capelli theorem the dimension of the set of solutions
is n — k. Moreover, if we V n VL then w- w = 0 hence
w = 0. L]

Proposition
Let V < R" be a subspace. Then (V1)+ = V.

Proof.
By the above dim(V+)t = n—dim V+ = n— (n—dim V). Since
V < (V1)* and both have the same dimension they are equal. [



Example

Let V < R? be subspace given by the linear equation
2x1 +3xp = 0. Then V =lin((—3,2)) and V* = lin((2,3)).



Example

Let V < R? be subspace given by the linear equation

2x; + 3x = 0. Then V =1in((—3,2)) and V* =lin((2,3)).
This can be generalized to

Proposition

Let V < R" be equal to the set of solutions of the system of linear
equations

ailxy + aXe + ... + a3inXp
axy + axpxs + ... + apXp

akix1 + akexa + ... 4+ akpxn =0



Example

Let V < R? be subspace given by the linear equation

2x; + 3x = 0. Then V =1in((—3,2)) and V* =lin((2,3)).
This can be generalized to

Proposition

Let V < R" be equal to the set of solutions of the system of linear
equations

ailxy + aipXxXe + ... + 3d1pXp 0
aixy + apxe + ... + amgpxp, =0
akix1 + akexa + ... 4+ akpxn =0

Then

\/J' = Iin((all,alg, .. .,al,,), ceny (akl,akz, .. .,ak,,)).



Proof.

Let v; = (aj1,ai2,-..,ain) for i =1,... k. Then

V = {V1, V27...,Vk}J_.



Proof.

Let v; = (aj1,ai2,-..,ain) for i =1,... k. Then
V={wv,vw,..., vk}L.
Hence
VE = (v, va, o v D) = ((lin(vi, v, ) D)t =

= |in(V1, Vo, ..., Vk).



Proof.

Let v; = (aj1,ai2,-..,ain) for i =1,... k. Then

V = {V17 V27 R Vk}J_'
Hence
vt = ({Vl, Vo,..., Vk}J')J' = ((lin(Vh V2,.., Vk))L)J_ =
= Iin(vl, Vo, ..., Vk).
Example

Let V < R* be equal to the set of solutions of the system
2x1 + 3x + 4x3 + 6x4 =0
x1 — 2x» + bxg =0



Proof.

Let v; = (aj1,ai2,-..,ain) for i =1,... k. Then

V= {V1,V27--~,Vk}L-
Hence
VE = (v, vas v D)t = ((lin(ve, va, ., v ) D) =
= |in(V1, Vo, ..., Vk).
Example

Let V < R* be equal to the set of solutions of the system
2x1 + 3x + 4x3 + 6x4 =0

{ x1 — 2x» + bxg =0

Then V4 =1in((2,3,4,6),(1,-2,5,0)).



Orthogonal Basis

Let V < R" be a subspace of R".

Definition

Let A = (v1,...,vk) be a basis of subspace V. The basis A is said
to be orthogonal if v; L vj for i # jand i,j =1,... k. The basis
A is said to be orthonormal if it is orthogonal and ||v;| = 1 for
i=1,...,k, i.e. each vector is of length 1.
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Orthogonal Basis

Let V < R" be a subspace of R".

Definition

Let A = (v1,...,vk) be a basis of subspace V. The basis A is said
to be orthogonal if v; L vj for i # jand i,j =1,... k. The basis
A is said to be orthonormal if it is orthogonal and ||v;| = 1 for
i=1,...,k, i.e. each vector is of length 1.

Examples

i) the standard basis 1 = (1,0,0,...,0),e2 =
(0,1,0,...,0),...,e, = (0,0,0,...,1) of R" is orthonormal,

i) the basis (—1,2,2),(2,—1,2),(2,2,—1) is an orthogonal basis
of R® (but not orthonormal),

iii) the basis (—%,2,2),(3,-1,2),(3,%,—1) is an orthonormal

basis of R3.



Coordinates Relative to Orthogonal Basis

Proposition
Let vi,..., vk be an orthogonal basis of the subspace V < R". For
anyveV
VRV V- V-V
v = v + Vo + + u V-

vi v Vo - Vo T v vk



Coordinates Relative to Orthogonal Basis

Proposition
Let vi,..., vk be an orthogonal basis of the subspace V < R". For
anyveV

VRV V- V-V

v = v + o+ ...+ kvk.

ViV ZR%: Vk Vi
Proof.
There exist unique «; € R such that v =a3wv; + ... + axvk.
Therefore

vevi=oa(vi-vi) + o4 ai(vievi) + oo ar(viee vi) = ai(vievg),

since v; - v; = 0 for i # J. O



Coordinates Relative to Orthogonal Basis

Proposition
Let vi,..., vk be an orthogonal basis of the subspace V < R". For
anyveV

VRV V- V-V

v = v + o+ ...+ kvk.

ViV ZR%: Vk Vi
Proof.
There exist unique «; € R such that v =a3wv; + ... + axvk.
Therefore

vevi=oa(vi-vi) .o ai(vievi) + o4 ak(ve vi) = ai(vi- vi),

since v; - v; = 0 for i # J. O
Corollary
If vectors v1, ..., vk € R" are pairwise orthogonal and v; # O for

i=1,...,k then they are linearly independent.



Existence of Orthogonal Basis

Example

The coordinates of the vector (1,1, 1) relative to the orthogonal
basis (—1,2,2),(2,-1,2),(2,2,—1) of R? are %, %,% since
(17171)'(_17272) _ 1 (17131)'(27_172) _ 1 (1=171)'(2727_1) _ 1
(_17 ’2)'(_17272) -3 (27_172)'(27_172) 3 (2u27_1)'(2’27_1) -3 1€

1 1 1
(15 15 1) = g(_1a272) + 5(27 _172) + 5(272, _1)
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Any subspace V < R" has an orthogonal basis.



Existence of Orthogonal Basis

Example

The coordinates of the vector (1,1, 1) relative to the orthogonal
basis (—1,2,2),(2,-1,2),(2,2,—1) of R? are %, %,% since
(17171)'(_17272) _ 1 (17131)'(27_172) _ 1 (1=171)'(2727_1) _ 1
(_17 ’2)'(_17272) -3 (27_172)'(27_172) 3 (2u27_1)'(2’27_1) -3 1€

1 1 1
(15 15 1) = g(_1a272) + 5(27 _172) + 5(272, _1)

Proposition
Any subspace V < R" has an orthogonal basis.

Proof.

A proof will be given later.



Example

Example

Let V < R? be given by the equation x; + x> + x3 = 0. We
compute inductively an orthogonal basis of V' by choosing vectors
orthogonal to the previously chosen ones. Let vi = (1,0,—1). To
find v» € V such that v; L v, solve

{Xl + x + x3 =0 (:){2X1 + X2 =0

X1 — X3 =0 X1 — X3 =0



Example

Example

Let V < R? be given by the equation x; + x> + x3 = 0. We
compute inductively an orthogonal basis of V' by choosing vectors
orthogonal to the previously chosen ones. Let vi = (1,0,—1). To
find v» € V such that v; L v, solve

xx + x + x3 =0 2x1 + xo =0
X1 — x3 =0 X1 — x3 =0
<= xp = —2x1, x3 = x1. For example v, = (1,—2,1). Since

dim V = 2 vectors vy, v» form an orthogonal basis of V. By taking
normalized vectors we get an orthonormal basis

%(1,0,—1), %(1,—2,1) of V.
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written uniquely as

w=v+v- whereveV, vte VvVt
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Orthogonal Decomposition

Proposition
Let V < R" be a subspace. Then any vector w € R" can be
written uniquely as

w=v+v- whereveV, vte VvVt

Proof.
Let vq,..., vk be a basis of V and let vxy1,..., v, be a basis of
VL. Then

aivi + ...+ agve =0
aivi+...+apv, =0 —
QgyiViksel + ... +apvp =0

— a1 =...=a,=0,

hence B = (v1,...,Vv,) is a basis of R". This proves the existence
of a decomposition.



Orthogonal Decomposition (continued)

Proof.
If
W=v+vL=u+uL,

where v,ue V, vt ut e VI, then

v—u=ut—vieVnVvt={0}.



Orthogonal Decomposition (continued)

Proof.
If
W=v+vL=u+uL,

where v,ue V, vt ut e VI, then
v—u=ut—vieVnVvt={0}.

Therefore



Orthogonal Projection and Reflection

Definition
For any subspace V < R"” and w € R” the function Py : R" — R"
defined by

Py(w) = v, where w = v+ vt ve V, vte Vi

is a linear transformation called the orthogonal projection on the
subspace V.



Orthogonal Projection and Reflection

Definition
For any subspace V < R"” and w € R” the function Py : R" — R"
defined by

Py(w) = v, where w = v+ vt ve V, vte Vi

is a linear transformation called the orthogonal projection on the
subspace V.

Note that with the above notation P, . (w) = v+, that is

w = Py(w) + Pyi(w). The linearity of Py follows from the
uniqueness of the orthogonal decomposition.



Orthogonal Projection and Reflection (continued)

Definition
For any subspace V < R"” and w € R” the function Sy : R"” — R”
defined by

Sy(w)=v—vt wherew=v+vi veV, vtevt
14 ; ) ) )

is a linear transformation called the orthogonal reflection across
the subspace V.



Orthogonal Projection and Reflection (continued)

Definition
For any subspace V < R"” and w € R” the function Sy : R"” — R”
defined by

1

Sy(w)=v—vt wherew=v+viveV, vieVvt

is a linear transformation called the orthogonal reflection across
the subspace V.

Note that

Sy(w) = Py(w) — Pyi(w) =2Py(w) — w.



Properties

Example
Let V =lin(v). Then Py(w) =

:
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Properties

Example
Let V = lin(v). Then Py(w) = “Zv.
Proposition

i) Py(w)e Vand (P,(w) =w < weV),
ii) let d(w, V) =min{||w — v| | ve V} be the distance between

the vector w and the subspace V. Then P\ (w) is the unique
vector in V such that d(w, V) = |w — Py(w)

7



Properties

Example
Let V = lin(v). Then Py(w) = “Zv.
Proposition

i) Py(w)e Vand (P,(w) =w < weV),
ii) let d(w, V) =min{||w — v| | ve V} be the distance between
the vector w and the subspace V. Then P\ (w) is the unique
vector in V such that d(w, V) = |w — Py (w)

iii) ifvi,..., vk is an orthogonal basis of V' then

7

w - v w - Vo W - Vi
P\/(W>= vy + o+ ...+
Vi-wn %) Vi - Vi



Properties (continued)

Proof.

ii) recall w = Py(w) + Py1(w), then for any v € V, by the
Pythagorean theorem |w — v|? = ||(Py(w) — v) + Py (w)
IPy(w) — v|2 + |Pyr(w)|? = ||PyL(w)]? so the minimum is
attained if v = Py (w).

1 =



Properties (continued)

Proof.

ii) recall w = Py(w) + Py1(w), then for any v € V, by the
Pythagorean theorem |w — v|[2 = ||(Py(w) — v) + Py (w)|? =
IPy(w) — v|2 + |Pyr(w)|? = ||PyL(w)]? so the minimum is
attained if v = Py (w).

i) w— (YW%yy 4 W2y o WYy ) e VL

vi-vi %2 2%) Vi Vi




Properties (continued)

Proposition
Let V < R" be a subspace. Then
i) PvoPy =Py,



Properties (continued)

Proposition
Let V < R" be a subspace. Then
i) PvoPy =Py,

i) Sy oSy = idgn,



Properties (continued)

Proposition

Let V < R" be a subspace. Then
i) PyoPy =Py,
i) Sy oSy = idgn,

III) PV + P\/J_ = ian,



Properties (continued)

Proposition
Let V < R" be a subspace. Then
i) PvoPy =Py,

) SV e} SV = ian,
i) Py + Py. = idgn,
i ) SV = —5\/1_.

v



Properties (continued)

Proposition

Let V < R" be a subspace. Then
i) PvoPy =Py,
i) Sy oSy = idgn,

i) Py + Py. = idgn,

iv) Sy =—=5Sy1.

Example

Let V = {(x1,%2,x3,x3) € R* | xg — x2 + 2x3 — 2x4 = 0} and
w = (1,0,1,—1). Compute Py(w). By definition
V+ =lin((1,-1,2,-2)). Then

-(1,—-1,2,-2
PVL(W) = 12+V(V_(1)2+22+(12)2 (1 1727 2) = %(17 _1727 _2)

Hence Py(w) = w — Py (w) = (3, 3,0,0).
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Let vi,..., v, be a basis of the subspace V < R". The
Gram-Schmidt process is an inductive way of computing an
orthogonal basis wy, ..., wy of V.
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i) for i =1 set
wyp = vq, W1 = |in(W1),



Gram-Schmidt process

Let vq,..., vix be a basis of the subspace V < R". The
Gram-Schmidt process is an inductive way of computing an
orthogonal basis wy, ..., wy of V.
By induction
i) for i =1 set
wyp = vq, W1 = |in(W1),

i) for 1 < i< k set
wj = vi — Pw,_, (vi),

W; = lin(wa, ..., w;).



Gram-Schmidt process (continued)

Proposition (Gram-Schmidt)
With notation as above fori =1,...,k

i) wi,...,w; is an orthogonal basis of W;,
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Gram-Schmidt process (continued)

Proposition (Gram-Schmidt)

With notation as above fori =1,...,k
i) wi,...,w; is an orthogonal basis of W;,
i) Wi =lin(vg,...,v).

Since W) = V vectors wy, ..., w, form an orthogonal basis of V.
The normalized vectors ”"M‘;—iu, cel H"M'j—:” form an orthonormal basis of

V.



Example

Let V = {(x1,%2,x3,x4) € R* | x{ — x2 + 2x3 — x4 = 0} and let

vi = (1,0,0,1),v» = (1,1,0,0),v3 = (0,1,1,1) € R* be a basis of
subspace V. Then wg = vy, Wi = lin(wy),

wy = (1,0,0,1),
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Example

Let V = {(x1,%2,x3,x4) € R* | x{ — x2 + 2x3 — x4 = 0} and let

vi = (1,0,0,1),v» = (1,1,0,0),v3 = (0,1,1,1) € R* be a basis of
subspace V. Then wg = vy, Wi = lin(wy),

wy = (1707071):

we = v2 — Py (v2) = vo — (200w,

wy = (1,1,0,0) — 5(1,0,0,1) = 1(1,2,0,—1), Ws = lin(wy, wy)
ws = v3 — Py, (v3) = vz — 220wy — 352wy,

ws = (0,1,1,1) — %(},0,0, 1) — £(1,2,0,-1) =

§(_272’372)7 W3 = |In(W1, wo, W3).




Example

Let V = {(x1,%2,x3,x4) € R* | x{ — x2 + 2x3 — x4 = 0} and let
vi = (1,0,0,1),v» = (1,1,0,0),v3 = (0,1,1,1) € R* be a basis of
subspace V. Then wg = vy, Wi = lin(wy),

wy = (1,0,0,1),

we = v2 — Py (v2) = vo — (200w,

wy = (1,1,0,0) — 5(1,0,0,1) = 1(1,2,0,—1), Ws = lin(wy, wy)
ws = v3 — Py, (v3) = vz — 220wy — 352wy,

ws = (0,1,1,1) — 5(1,0,0,1) — £(1,2,0,—1) =
1(-2,2,3,2), W5 = lin(wy, wa, w3).

Therefore (1,0,0,1),(1,2,0,—-1),(—2,2,3,2) is an orthogonal
basis of V = lin(vy, va, v3). Moreover

%(1,0,0, 1), %(1,2,0,—1), \/%(—2,2,3,2) is an orthonormal
basis of V.

Remark

wv ., w(av)
Note that 7-"v =

@) (av) (OY)-




Projection Matrix

Proposition

Let V < R" be a subspace and let wy, ..., wy € V be an
orthonormal basis of V. If Q € M(n x k;R) is a matrix with
columns equal to wy, ..., wy then

M(Py)s = QQT.



Projection Matrix

Proposition

Let V < R" be a subspace and let wy, ..., wy € V be an
orthonormal basis of V. If Q € M(n x k;R) is a matrix with
columns equal to wy, ..., wy then

M(Py)s = QQT.

Proof.

Follows from the formula

Py(v) = (v-wi)wy + (v -wo)wa + ...+ (v - wy)wg.

O



Projection Matrix

Proposition

Let V < R" be a subspace and let wy, ..., wy € V be an
orthonormal basis of V. If Q € M(n x k;R) is a matrix with
columns equal to wy, ..., wy then

M(Py)s = QQT.

Proof.

Follows from the formula

Py(v) = (v-wi)wy + (v -wo)wa + ...+ (v - wy)wg.

Remark
Note that QTQ = .

O



QR Decomposition

Proposition
Let V  R" be a subspace and let vq,...,vi €V be a basis of V.
Then there exists an orthonormal basis wq,...,wx € V of V and

an upper triangular matrix R € M(k x k;R) with with positive
entries on the diagonal (hence invertible), such that if

A€ M(n x k;R) is a matrix with columns v1, ..., vk and

Q € M(n x k;R) is a matrix with columns wi, ..., wy then

A= QR.



Example
In the previous example for

Vi = (17070a1)> V2 = (1717070>> V3 = (0717171)7

by the Gram-Schmidt process we have

wp = v,
1
Wy = Vo — §W1>
1 1
W3 = V3 — W — - Wo.

2 3



Example
In the previous example for

Vi = (17070a1)> V2 = (1717070>> V3 = (0717171)7

by the Gram-Schmidt process we have

wy = vy,
1
W2=V2—§W1>
1 1
W3 =Vv3 — —W| — —W».
3 3 21 32
Therefore
Vi = wi,
L +
Vo = — W wo,
2 21 2
1 1
V3 = ~wy + Zwo + ws.

2 3



Example (continued)

Since wy = (1,0,0,1),wo = 5(1,2,0,—1), w3 = 3(—2,2,3,2),

H O O R
OO K
R R PO
= O O
|

O O =
O N
e L S

NI O = NI-
WIN = WINWIN

Columns of the first matrix have to be normalized, i.e. divided

respectively by 1/2, %, @ (and rows of the second matrix

multiplied respectively by the same numbers), hence

1 1 2
110 V2 N6 V2L 2 2
01 1 OLL\/E%%
_ Ve VAl g B 6
001 0 0\/% > 5
1 0 1 1 o1 Y |po 0 %
V2 Ve V2L



QR Decomposition (continued)

Proof.
Follows directly form the Gram—Schmidt process. In fact
_1 Vo Wy V3 Wy . Vi ws 7]
wy -wy wy-wy wy-wi
A T T T TR
R= 10 0 1 wiz-ws |,
0w ;
0 0 0 1

and




Uniqueness of QR Decomposition

Remark

For any matrix A€ M(n x k;R) with r(A) = k the matrices Q and
R are unique if diagonal entries of R are positive. That is if

A= QR = QR where Q, Q' € M(n x k;R) are orthogonal
matrices and matrices R, R' € M(k x k;R) are upper triangular
matrices with positive entries on the diagonal then Q = Q',R = R’.



Uniqueness of QR Decomposition

Remark

For any matrix A€ M(n x k;R) with r(A) = k the matrices Q and
R are unique if diagonal entries of R are positive. That is if

A= QR = QR where Q, Q' € M(n x k;R) are orthogonal
matrices and matrices R, R' € M(k x k;R) are upper triangular
matrices with positive entries on the diagonal then Q = Q',R = R’.

Proof.
Since Q'TQ’ = I, from
QR — Q/R/,

by multiplying by QT on the left and by R~ on the right we get
Q/TQ — R,R_l.

The inverse and product of two upper triangular matrices is upper
triangular and the matrix Q'TQ is orthogonal.



Uniqueness of QR Decomposition

Remark

For any matrix A€ M(n x k;R) with r(A) = k the matrices Q and
R are unique if diagonal entries of R are positive. That is if

A= QR = QR where Q, Q' € M(n x k;R) are orthogonal
matrices and matrices R, R' € M(k x k;R) are upper triangular
matrices with positive entries on the diagonal then Q = Q',R = R’.

Proof.
Since Q'TQ’ = I, from
QR — Q/R/,
by multiplying by QT on the left and by R~ on the right we get
Q/TQ — R,R_l.

The inverse and product of two upper triangular matrices is upper
triangular and the matrix QT Q is orthogonal. The only upper
triangular and orthogonal matrix with positive diagonal entries is
the unit matrix. O



Projection Matrix (continued)

Proposition
Let V  R" be a subspace and let vq,...,vi €V be a basis of V.
If Ae M(n x k;R) is a matrix with columns v, ..., vy then

M(Py)st = A(ATA)LAT,



Projection Matrix (continued)

Proposition
Let V  R" be a subspace and let vq,...,vi €V be a basis of V.
If Ae M(n x k;R) is a matrix with columns v, ..., vy then

M(Py)st = A(ATA)LAT,

In particular, the matrix ATA is invertible.



Projection Matrix (continued)

Proposition
Let V  R" be a subspace and let vq,...,vi €V be a basis of V.
If Ae M(n x k;R) is a matrix with columns v, ..., vy then

M(Py)st = A(ATA)LAT,
In particular, the matrix ATA is invertible.

Proof.
By the QR decomposition there exist matrices Q € M(n x k; R)
and R e M(k x k;R) such that A= QR and

M(Py)g = QQT



Projection Matrix (continued)

Proof.
Since A = QR the matrix

ATA=(RTQ")(QR) = R™R,
is invertible. Moreover

Q=ARt, QT =(RYHtAT,



Projection Matrix (continued)

Proof.
Since A = QR the matrix

ATA = (RTQT)(QR) = R™R,
is invertible. Moreover
Q=ARl, Q" =(RHIAT,
and
M(Pv)i = QQT = (AR™Y) ((R™1)TAT) = A(RTR) 1 AT =

= A(ATA) AT



Example

Let V =1in((1,1,1),(1,2,0)). Find the formula of the orthogonal
projection onto V and the formula of the orthogonal reflection
across V.



Example

Let V =1in((1,1,1),(1,2,0)). Find the formula of the orthogonal
projection onto V and the formula of the orthogonal reflection

across V.

11
Let A= |1 2],s0 ATA= {3 3] and (ATA)—l _ % [ 5 —3]_
10 -3 3

3 5
Therefore
11 2 9
1 5 =311 1 1 1
MPE = |1 2 [ H ]: > s 1
L ol6l-3 3l 20 Te|, ]

1 1 1 5

1 1
PV((X17X27X3)) = <3X1 + §X2 + §X37 §X1 + 6X2 - 6X37
1
3

1 5 )
X]— X0+ =X3 | .



Example (continued)

Moreover,
1 2 2 2 1 00
M(Sv)ﬁ:zM(Pv)ﬁ—/=§ 2 5 —-1[—-]0 10
2 -1 0 01
-1 2 2
=% 2 2 —1
2 -1

and

1 2 2 2 2 1
Sv((xa, x2,3)) = 3N + 3% + 3% 3X + 3%~ 3%

2 12
—X1 — 7 X —X .
371 T 3T 3



Projection Matrix (continued)

Corollary
If Py is an orthogonal projection and S\ orthogonal reflection then

the matrices M(Py )k, M(Sy )t are symmetric.
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Corollary
If Py is an orthogonal projection and S\ orthogonal reflection then

the matrices M(Py )k, M(Sy )t are symmetric.

Proposition
If matrix A has linearly independent columns then ATA is positive
definite. If A is any matrix then ATA is positive semidefinite.



Projection Matrix (continued)

Corollary
If Py is an orthogonal projection and S\ orthogonal reflection then

the matrices M(Py )k, M(Sy )t are symmetric.

Proposition

If matrix A has linearly independent columns then ATA is positive
definite. If A is any matrix then ATA is positive semidefinite.

Proof.
For any vector v € R” we have ||Av||> = vTATAv > 0. When A has
linearly independent columns then Av = 0 implies that v =0. [



Projection Matrix (continued)

Proposition

Matrix representing an oblique projection onto im(A) along ker B for any
matrices A€ M(n x k;R), B e M(l x n;R) such that im(A) and ker B
give a direct sum decomposition is given by

P =A(BTA)'BT.

Proof.
(sketch, cf. Lecture 14). The assumptions imply that

rank A = rank B = rank(BTA) as im(A) n ker B = {0}. It is well-known
that with such assumptions the inverse law holds, i.e.,

(BTA)" = AY(BT)™.

Finally
P = (Aa*)((BT)'BT) = (aa")(BBY),

and clearly P?> = P with im(P) = im(A) and ker P = ker B. O



Projection onto Intersection of Subspaces

Proposition
Let A, B e M(n x n;R) be symmetric and positive semidefinite
matrices. Then

im(A+ B) =im(A) +im(B).

Proof.
Obviously im(A + B) < im(A) + im(B). It is enough to prove that
im(A) < im(A 4+ B) which is equivalent to

ker(A + B) < ker(A).

Let (A4 B)x = 0. Then xTAX + xTBx = 0. Matrices A, B are
positive semidefinite hence xTAx = 0 which is equivalent to
Ax = 0. O



Projection onto Intersection of Subspaces (continued)

Lemma (Anderson,Duffin)

Let P = AAY and Q = BB™ be matrices of orthogonal projections
onto im(A) and im(B) with respect to the standard basis,
respectively. Let V =im(A) nim(B). Then

M(Pv)it =2P(P + Q)"Q.

Proof.
In the proof we use repeatedly the fact that the for subspaces
V,W c R”

(V+ W)t =vtawt

Let
T = M(Py)g.



Projection onto Intersection of Subspaces (continued)

Proof.
Matrix T does not depend on the order of P and Q as

PP+Q*Q=(P+Q-QP+Q*P+Q—P)=

=P+QP+Q)T(P+Q) - QP+QFP+Q)-
~(P+ Q)P+ Q) P+QP+Q)P=
= (I-(P+Q)(P+ QHP+QU—(P+ Q) (P+Q)+Q(P + Q)P
= Q(P+ Q)"P.

First two terms are zero, (P + Q)(P + @)™ is a matrix of the
orthogonal projection onto im(P) + im(Q), similarly

(P + Q)"(P + @) is a matrix of the orthogonal projection onto
im((P+ Q)T) =im(P) +im(Q) with kernel

(im(P) +im(Q))" = ker(P) n ker(Q).



Projection onto Intersection of Subspaces (continued)

Proof.

Therefore
im(T) cim(P) nim(Q) = im(A) nim(B).

On the other hand let x € im(P) nim(Q). Then (note that
Pt = P and Px = x, similarly for Q)

2P(P+Q)"Qx =P(P+ Q)"Q(PT+ Q")x =

= P(P+Q)"QQ"x+ Q(P + Q)*PP'x =
=PP+@)x+QP+Q)x=(P+Q)(P+Q)x=x

Since P, Q are symmetric T is symmetric too. By the above
equation matrix T acts as identity on the subspace im(P) nim(Q)
and it zero on its orthogonal complement, i.e., ker(P) + ker(Q).
Therefore T2 = T, i.e. T is a matrix of orthogonal projection. [



Linear Least Squares

Let AX = B be a system of n linear equations in k variables with
A€ M(n x k;R) such that r(A) = k (therefore n > k).
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A€ M(n x k;R) such that r(A) = k (therefore n > k). If

r(A) = r([A|B]) the system has a unique solution. Otherwise one
can ask what is the best—fitting solution, i.e. for X with
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realized by the orthogonal projection of B on V.



Linear Least Squares

Let AX = B be a system of n linear equations in k variables with
A€ M(n x k;R) such that r(A) = k (therefore n > k). If

r(A) = r([A|B]) the system has a unique solution. Otherwise one
can ask what is the best—fitting solution, i.e. for X with

||AX — BJ| minimal. The least value is the distance of vector B
from the subspace V < R" spanned by the columns of A and it is
realized by the orthogonal projection of B on V.

By the previous formula
Py(B) = A(ATA)1ATB.
The unique solution of the equation AX = A(ATA)"1ATB is

X = (ATA)"1ATB.



Linear Least Squares (continued)

The name (linear) last squares comes from the fact we look for
(x1,...,xk) € R¥ for which the value of

(311X1 + aoxo + ...+ a1xXk — b1)2 +

+ (321X1 + aooXo + ...+ AoXk — b2)2 +

+ (an1X1 4+ apXxo + ...+ apkXk — bn)2 =
2
= [|AX — B]",

is minimal.



Linear Least Squares (continued)

The name (linear) last squares comes from the fact we look for
(x1,...,xk) € R¥ for which the value of

(311X1 + aoxo + ...+ a1xXk — b1)2 +

+ (321X1 + aooXo + ...+ AoXk — b2)2 +

+ (an1X1 4+ apXxo + ...+ apkXk — bn)2 =
= |AX — B|,
is minimal.

Remark

If columns of matrix A are not linearly independent any vector
X € R¥ such that AX = P\/(B), where V = colsp(A) gives the
least ||AX — B|| (such X is not unique).



Example
Find the best—fitting solution of the (inconsistent) system of linear

equations.
X1 + Xo = 3
2x1 + 3x = 0
X1 + x = -1
Let
1 1 3
A=1[2 3|, B= 0
11 —1
Then

6 8 g [Y -4
ATA = AT A — 2
[8 11} - (ATA) {—4 3} ‘

The best—fitting solution is equal to

X = (ATA)1ATB = [_12: _g] B] - [—g] ’

i.e., X1 = 3, Xp = —2.



Cauchy-Schwarz Inequality and Gram Matrix

Proposition
For any v,w e R"
Ivilliwl] = [v - wl,

and the equality holds if and only if v, w are linearly dependent.



Cauchy-Schwarz Inequality and Gram Matrix

Proposition
For any v,w e R"
Ivilliwl] = [v - wl,

and the equality holds if and only if v, w are linearly dependent.

Proof.
Let v = (x1,..., %), w = (y1,.--,¥n) and

A:|:X1 X2 “ .. Xn:|.
Yo Y2 - Yn



Cauchy—Schwarz Inequality (continued)

Proof.
By the Cauch—Binet formula

2
det(AAT) = det {”"” v W]

2
wev v

= [VIPIwl? = (v-w)? = > (detAp ) =0,

Jc{1,...,n}
4 =2

and the equality holds if and only if all order 2 minors of A vanish,
i.e. the rank of A is either 0 or 1. Ol



Minkowski Inequality

Proposition
For any v,w e R"

v+ wil < IvI[ + [lw,

and the equality holds if and only if there exist o = 0 such that
v=aworw=0.

Proof.
2 2 2 2 2
v+ wll® = [IvI® + Iwll” +2(v - w) < [Iv]® + [[wll” + 2| vi[[[w] =
= (vl + llwl))?,
and the equality holds if and only if v-w = ||v||[|w]], i.e v and w

are linearly dependent. If v, w # 0 this happens if and only if
cos Z(v,w) =1, that is Z(v,w) = 0. O



Covariance as Scalar Product
Let (2, F, P) be a probability space. Let

V ={X:Q—R| X is measurable, E(X) =0, Var(X) < o}/ ~,
where for X, Y: Q - R
X~Y <« P{weQ| X(w) =Yw)}) =1,

(i.e. we identify random variables X and Y if they are equal with
probability 1). Then V is a vector space and

XY = Cov(X,Y) = E(XY),

is a scalar product. Under this definition ||X|| is the standard
deviation of X, X is perpendicular to Y if and only if X and Y are
uncorrelated, and

Cov(X,Y)

Var(X) Var(Y)’

Corr(X,Y) =

is the cosine of the angle between X and Y.



Centering Matrix

Let
1=(1,...,1).

For any vector x = (x1,...,x,) define

1 1
(x1 +...+xp)1 = -1Tx1.

X = - —
n n

The centered vector x is

X
|
x|

Observe that

The centering matrix is

H=1—--11T.
n



Sample Pearson Correlation Coefficient

Let

X =(X1,...,Xn),
y =01 Yn)
The sample Pearson correlation coefficient is

_x=%)-(y-y)
Ix = x]llly = yII’

Iy
that is a cosine between centered vectors x and y. Therefore
—-1<ry<1L

It is a measure of similarity between data of (centered) x and y.



Sample Covariance Matrix

Let x1,...,x, € R™. Let

X=[x1 xn],

be a matrix whose columns consists of vectors x;. The sample
covariance matrix K = [kjj] € M(n x n;R) such that

1

kij = —(xi =Xi) - (xj = X).

It is a symmetric matrix, given by the formula

K = %XTHX.



Sample Covariance Matrix (continued)

The matrix

X=[x - %

with centered columns is given by the formula
— 1

X=X—--11"X = HX.
n

Therefore ) )
K = 377 = ~(HX)T(HX) =

1 1
= —XTHTHX = —XTHX,
n n

as HT = H and H? = H. It follows that the sample covariance
matrix is positive semidefinite.



Sample Correlation Matrix

X=[x1 Xn],

be a matrix whose columns consists of vectors x;. The sample
correlation matrix R = [r;] € M(n x n;R) such that

_ =X (g =x) kg
Ixi =Xillllx; =Gl Vkiin/K;

It is a symmetric matrix containing all sample Pearson correlation
coefficient of vectors x1,...,x,. Let

rij

D = diag(ky,. .., kn),
where k; = \/ki;. Then

K = DTRD,

or equivalently
R=(D"Y)TKkD!.



