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Linear Equations

Linear equation ajx; + axxo + ...+ apx, = b in n unknowns
X1,...,X, with the coefficients aq,...,a, € R and the constant
term b € R.



System of Linear Equations

A system of m linear equations in n unknowns xi, ..., X,
aiixy + apxe + ... + amx, =b

ax1 + amxo 4+ ... + amxp = b

amix1 + amxe + ... 4+ amnXn = bm



System of Linear Equations

A system of m linear equations in n unknowns xi, ..., X,
aix1 + awpxe + ... + aXxa =b
anxy + apxo 4+ ... 4+ amx, =b
amix1 + amxe + ... 4+ amnXn = bm
with coefficients aj;, i =1,...,m, j=1,...,n and constant terms

bieRfori=1,...,m.



System of Linear Equations

A system of m linear equations in n unknowns xi, ..., X,

ainxy + apxe + ... 4+ aixpn =b

anxy + apxo 4+ ... 4+ amx, =b

amix1 + amxe + ... 4+ amnXn = bm
with coefficients aj;, i =1,...,m, j=1,...,n and constant terms
bieRfori=1,...,m If by =b,=...= by, =0 we call the

system homogeneous.
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Solutions of Systems of Linear Equations

Any n-tuple (x1,...,x,) € R" such that all equations in U are
satisfied is called a solution of the system U. For example, the
n-tuple (0,...,0) is a solution of a homogenous system of linear
equations.

A system with no solutions is called inconsistent. Two systems of
linear equations are called equivalent if they have the same sets of
solutions.
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Operations on Equations

Any equation a;x; + asxo + ... + apx, = b can be multiplied by a
non-zero constant ¢ € R — {0} in order to get the equation
caixi1 + caxxo + ...+ capx, = cb.

One can add any two equations
aix1+axxa+...+apxy=b, aixi+abxo+...+ax, = b and get
the equation (a1 + a))x1 + (a2 + a5)x2 + ...+ (an+ a,)x, = b+ b'.
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Equivalent System of Linear Equations

Theorem
The following operations on a system of linear equations do not
change the set of its solutions (i.e. they lead to an equivalent
system):

i) swapping the order of any two equations,

ii) multiplying any equation by a non-zero constant,

iii) adding an equation to the other.

Proof.
Any solution of the original system is a solution of the new system.
All above operations are reversible. U



A General Solution
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A general solution of the system of linear equation U is an
equivalent linear system U’ of the form:
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A General Solution

A general solution of the system of linear equation U is an
equivalent linear system U’ of the form:

X, =c1x1 + c2x2 + ... + CcinXp +di
, Xj, = C1X1 + CoX + ... + opxp +do
U : ) . .

Xj, = CkiX1 + Cox2 + ... + CunXp +dk
where {ji,...,jk} C{1,...,n}, j1 <jo <...<jk and ¢; =0 for
any i=1,...,k and j = ji,...,jk. Thatis, the unknowns
Xj,, .-, Xk, appear only on the left hand-side of each equation

exactly once.

The unknowns x;,, ..., x;, are called basic (or dependent)
variables. The other unknowns are called free variables or
parameters.
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Matrices

A m x n matrix D with entries in R is a rectangular array of real
numbers arranged in m rows and n columns, i.e.

do1 dp ... d2p
D= . . .
dml dm2 o dmn
where dj; € R. Sometimes we write D = [dj] for i =1,..., m,
j=1,...,n. The set of all m-by-n matrices with entries in R will

be denoted M(m x n; R).



Matrix of a System of Linear Equations

To each system of linear equations

ailxy + apxe + ... 4+ ainXp
aixy + axpxe + ... +  axyX
amXx1 + amexo + ... 4+  amnXn

we associate its m X (n + 1) matrix

a1l aio din b1
a1 ano ... anp b2

ami am2 --- amn | bm



Matrix of a System of Linear Equations

The submatrix

all d1o e dln
ani dno ... d2p
dmli dm2 --- Amn

is called the matrix of coefficients. The last column

consists of constant terms.
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Elementary Row Operations

There are three elementary row operations on a matrix of a linear
system:

i) swapping any two rows of the matrix,
i) multiplying any row by a non-zero constant c, i.e. replacing
the i-th row [aj1 a2 ... ajy] with the row [caj1 cajps. .. cain,
iii) adding any row to the other, i.e. replacing the i-th row
[a,-1 ap... a,-,,] with the row [3;1 +aj1 aip+aj2...an+ aj,,].
By the Theorem the elementary row operations lead to a matrix of
an equivalent linear system. The algorithm using the three

elementary row operations, leading to a general solution is called
the Gaussian elimination.
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The (Reduced) Echelon Form

The leading coefficient (or pivot) of a non-zero row is the
leftmost non-zero entry of the row.

A matrix is in an echelon form if:
i) all non-zero rows are above all zero rows,

ii) the leading coefficient of any row lies strictly to the right of
the leading coefficient of any upper row.

A matrix is in a reduced echelon form if it is in an echelon form,
all leading coefficients are equal to 1 and every leading coefficient
is the only non-zero element in its column.



Example

The following matrix is in an echelon form. The leading
coefficients are marked with circles.

0 ® 2 0 3 25
0 0 @21 00
0 0 00 @D 26
0 0 00 0 00O
0 0 0 0 0 00O

It is not in the reduced echelon form because in columns 3 and 5
there are leading coefficients and other non-zero entries.
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The Gaussian Elimination

Theorem
Any matrix can be brought into the reduced echelon form using
elementary row operations.

Proof.

Use induction on the number of columns to prove that every matrix
can be brought into an echelon form. Let A = [a;] € M(m x 1;R).

0
If A% || and, for example, a;; # 0 then
0
rQ—Z—irl
: an
ail E
S | 0



The Gaussian Elimination

Proof.
Let A= [a;] € M(m x n;R) and let n > 1.



The Gaussian Elimination

Proof.
Let A= [a;] € M(m x n;R) and let n > 1. Let k € N be the

number of first non-zero column, changing the order of rows one
can assume that ajx # 0.



The Gaussian Elimination

Proof.

Let A= [a;] € M(m x n;R) and let n > 1. Let k € N be the
number of first non-zero column, changing the order of rows one

can assume that ajx # 0. Then

rg—az—krl
ak

0 -+ 0 ay | aykey an :
o --- 0 ok 82(k+1) ann rm—Eg rn
0 --- 0 Amk am(k—i—l) amn

0 -+ 0 aik| ayks) a1n

0 -+ 0 0 | bykqy bap

o - 0 0 bm(k+1) bmn

for some bj; € R.



The Gaussian Elimination

Proof.
By the inductive assumption the matrix in the lower right corner,
i.e.

baky1) < bon

bm(k+1) o+ bmn

can be brought to an echelon form by elementary operations.



The Gaussian Elimination

Proof.
By the inductive assumption the matrix in the lower right corner,
i.e.

baky1) < bon

bm(k+1) o+ bmn

can be brought to an echelon form by elementary operations. The
same operations will bring matrix

0 -+ 0 aw| ayky1) -+ ain
0 - 0 0 |byry) - Dbo
0 . 0 : R

0 - 0 0 |bpuss) - b

to an echelon form.



The Gaussian Elimination

Proof.

Assume that matrix A = [a;] € M(m x n;R) is in echelon form
and the leading coefficients are ayj,, @z, ..., an; , where

1 <jp<...<jmandm <m, ie rowsm +1.m+2,....,mare

Zero.



The Gaussian Elimination

Proof.

Assume that matrix A = [a;] € M(m x n;R) is in echelon form
and the leading coefficients are ayj,, @z, ..., an; , where

1 <jp<...<jmandm <m, ie rowsm +1.m+2,....,mare
zero.

0 ay;, * * =%

0 0 agj, * * cee ok

0 0 0 0 asj; -k *

0 O 0 0 0 - 0 apw;, * ... x
0 0 0o 0 0 --- 0 0 0 0 O




The Gaussian Elimination

Proof.
The following elementary operations will bring the matrix A in an
echelon form into the reduced echelon form

ak .
rk——r,for/—2 m k=1,...,i—1,
Aiji

rijaj, for i=1,...,m.
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Proof.
The following elementary operations will bring the matrix A in an
echelon form into the reduced echelon form

ak .
rk——r,for/—2 m k=1,...,i—1,
aij;
rijaj, for i=1,...,m.
In short, in each of the column ji, j, ..., jv we use the leading

coefficient to make the entries above it zero and then we divide the
corresponding row to make the leading coefficient equal to 1.



The Gaussian Elimination

Proof.

The following elementary operations will bring the matrix A in an
echelon form into the reduced echelon form

ak .
rk——r,for/—2 m k=1,...,i—1,

aij;
ri/aj, fori=1,...,m.

In short, in each of the column ji, j, ..., jv we use the leading
coefficient to make the entries above it zero and then we divide the
corresponding row to make the leading coefficient equal to 1.

0 EITS EE cee ok * EE 01 % = = cee ok * * ok ok

0 0 ay * * - * * * ok ok 0 0 ay, * * - % * * kK

0 0 0 0 ag -+ * % % ... % 00 0 0 agp -~ % * * .. %

. . . . . . . . . . . . . . . . M
: : : : : oo : H . n/ay, : : : . : n=5, "
000 0 0 0 -+ 0 au, * ... * - 000 0 0 -+ 0 au, * ... * —
o0 0O0O0O -0 0 00O 00 0 00 -~ 0 0 00O



The Gaussian Elimination

Proof.
01 0 =*x =« * * * ok % 01 0 % = * * % ok %
0 0 ay * = * * * % % 00 1 % =« * * %k s
00 0 0 ag -~ * % % ... % 00 0 0 ag -+ % % % ... % |n"5tn
o nfay, |2 oo : N T
00 0 0 0 0 amy, * x| 000 0 0 awj, * S
00 0 0 O 0 0 0 00O0O0 O 0 0 0
00 0 0 O 0 0 0 0 O 00O0O0 O 0 0 0 0 0
010 % 0 - * 0 % k%
001 =0 - x* 0 % % %
000O0T1 x* 0 * *
“looo0o0 o0 01 # "
00O0O0TO O 000 0 O



The Gaussian Elimination

How to solve a system of linear equations?
Bring a matrix of a system of linear equation to the reduced
echelon form. If there is a pivot in the column of constant terms
the system if inconsistent. Otherwise, the general solution can be
read from the echelon form by choosing the basic variables as
those corresponding to columns with a pivot.



Example

: X1 — 20 + X3 — x4 = 2
Let's solve the system {2x1 — 4% + 3x3 + x4 = 0
) ) ) 1 -2 1 —-1|2
The matrix of this system is [ 5 _4 3 110

By the elementary row operation r» — 2r; we put the matrix in an
echelon form, i.e.

1 -2 1 -1 2

0 01 3|-4

The elementary operation r, — r, puts matrix in the reduced
echelon form, that is



Example (continued)

D@ -2 0 —-4| 6
0 0@ 3|-4
There is no leading coefficient in the constant term columnn so it

has solutions. The basic variables are x;, x3 and the free variables
are xp, X4.

x1 = 2x + 4xg + 6
X3 = — 3x4 — 4’
Every solution of this linear system is of the form

The general solution is X2, x4 € R.

(2x2 + 4xq + 6,x2, —3x4 — 4,x1), x2,x4 € R.
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Proposition

Let A€ M(m x n;R) be a matrix. If matrices B, C € M(m x n;R)
were obtained from A by a series of elementary row operations and
they are in the reduced echelon form then B = C.



The Uniqueness of the Reduced Echelon Form

Proposition

Let A€ M(m x n;R) be a matrix. If matrices B, C € M(m x n;R)
were obtained from A by a series of elementary row operations and
they are in the reduced echelon form then B = C.

Proof.

Let j be the number of the leftmost column where the matrices B
and C differ. Let

1<ji<jp<...<jk<]/

be the numbers of the columns with pivots in B and C smaller
than j. Let B’ and C’ be submatrices of matrices B and C,
respectively, consisting of columns ji,...,jk,j. Let Ug, Uc be
systems of linear equations which matrices are equal to B’ and C/,
respectively (the last column consists of constant terms).



The Uniqueness of the Reduced Echelon Form (continued)

Proof.

10 by 10 0| oy

01 by; 01 : Cj

: . : : o]

B=|0o0 - by |+ C=|00 - 1| ¢
b(k+1)j -0 C(k+1))

: : .0 :

bimj 00 - 0| cw

By the assumption, the systems Ug and Uc are equivalent, as their
matrices were obtained by a series of elementary row
transformations from the same submatrix of matrix A. The
following may happen for B and C: the (k + 1)-th pivot is in the
J-th column, behind the j-th column or it does not exist. Say, if for
matrix B the (k + 1)-th pivot is behind the j-th column or it does
not exist then bjj = 0 for i > k + 1. Analogously, if the same
happens for matrix C then ¢; =0 for i > k + 1.



The Uniqueness of the Reduced Echelon Form (continued)

Proof.

It is impossible that the (k + 1)-th pivot is in the j-th column
simultaneously in matrix B and in matrix C as this would mean the
j-th columns of B and C are the same. If one of the matrices B, C
has the (k + 1)-th pivot is in the j-th column and the other one
has the (k + 1)-th pivot behind the j-th column or it does not exist
then one of the systems Ug, Uc is inconsistent and the other is
consistent. This leads to a contradiction. If both matrices B, C
have the (k + 1)-th pivot behind the j-th column or it does not
exist then b; = c;j = 0 for i > k + 1. Therefore the system Ug has
a unique solution (byj, byj, . .., byj) and the system Uc has a
unique solution (cyj, ¢j, - . ., Ckj), which again leads to a
contradiction. O



The Uniqueness of the Reduced Echelon Form (continued)

Remark
Obviously, echelon form is not unique.

11 1pqgfl 11
121 010

11 1 nop(l 2 1) ppg [l 21
121 111 0 -1 0




The Uniqueness of the Reduced Echelon Form (continued)

Remark
Obviously, echelon form is not unique.

11 1pqgfl 11
121 010

11 1 nop(l 2 1) ppg [l 21
121 111 0 -1 0

111 1. 11 0 1
The reduced echelon form of matrix [1 5 1] is [0 1 O]'



The Uniqueness of the Reduced Echelon Form (continued)

Remark
One can read a general solution from a matrix which after a

permutation (i.e. change of the order) of columns is in the reduced
echelon form (by choosing basic variables as those corresponding
to columns which after the permutation contain a pivot).



The Uniqueness of the Reduced Echelon Form (continued)

Remark
One can read a general solution from a matrix which after a

permutation (i.e. change of the order) of columns is in the reduced
echelon form (by choosing basic variables as those corresponding
to columns which after the permutation contain a pivot).

A general solution of the system
2 ® 3 0 2
-1 05 @|-7

X = —2x9 — 3x3 +
R.
{X4 = xx1 — bx3 — T’ X1,X3 €



Reduced Echelon Form of a Square Matrix

Proposition
Let A€ M(n x n;R) be a square matrix (i.e. it has the n rows and

n columns). Then the reduced echelon form of A either has a zero
1 0

row or it is equal to I, = € M(n x m;R).



Reduced Echelon Form of a Square Matrix

Proposition
Let A€ M(n x n;R) be a square matrix (i.e. it has the n rows and

n columns). Then the reduced echelon form of A either has a zero
1 0

row or it is equal to I, = € M(n x m;R).

Proof.
By definition, the numbers of columns with pivots form a strictly
increasing sequence

1<ji<p<...<jx<n

Therefore k < n. If k < n then there are n — k zero rows (only k
rows contain a pivot).



Reduced Echelon Form of a Square Matrix

Proposition

Let A€ M(n x n;R) be a square matrix (i.e. it has the n rows and

n columns). Then the reduced echelon form of A either has a zero
1 0

row or it is equal to I, = € M(n x m;R).

Proof.
By definition, the numbers of columns with pivots form a strictly
increasing sequence

1<ji<p<...<jx<n

Therefore k < n. If k < n then there are n — k zero rows (only k
rows contain a pivot). The case k = n is possible only if
A=1jp=2,...,j, =n, ie. the reduced form of A is equal to

In. O



Generalized Inverse

Definition
Let A€ M(m x n;R) be a matrix. Matrix A8 € M(n x m;R) is
called a generalized inverse of matrix A if

A= AASA.

A generalized inverse always exists (the Moore-Penrose
pseudoinverse AT is a generalized inverse) but it is not unique. For
example any matrix is a generalized inverse of a zero matrix.

Proposition

Let Ae M(m x n;R), be M(m x 1;R). If A8b is a solution of
the system of linear equations Ax = b then all solutions of that
system are given by the formula

x =A8b+ (I — A%A)y,

where y € M(n x 1) is any vector.



Generalized Inverse (continued)

Proof.
Let x = A8b+ (I — A8A)y, where y is an arbitrary vector. Then

Ax = AASb + Ay — AAS Ay = AA8b = b.
Assume that Ax = b. Then
x =A8b+ (I — A5 A)x,

i.e., it is enough to take y = x.



