
Introduction to Bayesian Networks





Introduction to Bayesian Networks

Timo Koski,

Institutionen för matematik,

Kungliga Tekniska Högskolan,

10044 STOCKHOLM, Sweden

John M. Noble,

Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw,

ul. Banacha 2,

02-097 WARSZAWA, Poland



iv



Contents

Introduction 1

1 Conditional Independence and Graphical Models 3

1.1 Notational preliminaries: Graphical and Probabilistic . . . . . . . . . . . . . . . . . . . . . 3

1.2 Conditional Independence and Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Directed Acyclic Graphs and Probability Distributions . . . . . . . . . . . . . . . . 9

1.2.2 Connections in a Directed Acyclic Graph and Conditional Independence . . . . . 10

1.2.3 Bayes Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 D-Separation and Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 The Locally Directed Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Quick Medical Reference - Decision Theoretic: An Example . . . . . . . . . . . . . . . . . 18

1.5.1 Propositional Logic and Noisy Logic Gates . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 QMR - DT Data Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Markov models and Markov equivalence 29

2.1 I-maps and Markov equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Properties of Conditional Expectation and D-Separation . . . . . . . . . . . . . . . 32

2.2 Characterisation of Markov Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Example 2.8 (Hidden Variables) Revisited . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Markov Equivalence and the Essential Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Intervention Calculus 45

3.1 Causal Models and Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Conditioning by Observation and by Intervention . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The Intervention Calculus for a Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Establishing a Causal Model via a Controlled Experiment . . . . . . . . . . . . . . 51

3.5 Properties of Intervention Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



3.6 Confounding, The `Sure Thing' Principle and Simpson's Paradox . . . . . . . . . . . . . . 56

3.6.1 Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Simpson's Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 The Sure Thing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Identi�ability: Back-Door and Front-Door Criteria . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Back Door Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.2 Front Door Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.3 Non-Indenti�ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Inference Rules for Intervention Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Example: Front Door Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8.2 Causal Inference by Surrogate Experiments . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Measurement Bias and E�ect Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9.1 The Matrix Adjustment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9.2 E�ect Restoration Without External Studies . . . . . . . . . . . . . . . . . . . . . . 79

3.10 Identi�cation of Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.10.1 Counterfactual Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10.2 Joint Counterfactual Probabilities and Intervention . . . . . . . . . . . . . . . . . . 84

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.12 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 The Pioneering Work of Arthur Cayley 93

4.1 Cayley's Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Arthur Cayley and Judea Pearl's intervention calculus . . . . . . . . . . . . . . . . . . . . 97

4.3 Arthur Cayley: algebraic geometry and Bayesian networks . . . . . . . . . . . . . . . . . . 97

5 Moral Graph, Independence Graph, Chain Graphs 99

5.1 The Moral Graph and the Independence Graph . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Chain Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Factorisation along a Chain Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Separation Trees for Chain Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Evidence and Metrics 113

6.1 Probability Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Je�rey's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Virtual Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Measures of Divergence between Probability Distributions . . . . . . . . . . . . . . . . . . 120

6.5 The Chan - Darwiche Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Soft Evidence and Virtual Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Marginalisation, Triangulated Graphs and Junction Trees 141

7.1 Functions and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Marginalisation and Graphical Representations . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Decomposable Graphs and Node Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 Junction Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.5 Perfect Orders of Maximal Cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Junction trees and message passing 159

8.1 Factorisation along an Undirected Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Factorising along a Junction Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3 Flow of Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.1 First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.4 Local Computation on Junction Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.5 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.6 Local and Global Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.7 Using a Junction Tree with Virtual Evidence and Soft Evidence . . . . . . . . . . . . . . . 173

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.9 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9 Bayesian Networks in R 181

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2 Graphs in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.2.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.2.2 Directed Acyclic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.2.3 Mixed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3.1 Specifying the Conditional Probability Potentials . . . . . . . . . . . . . . . . . . . 189

9.3.2 Building the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.3.3 Compilation - Finding the Clique Potentials . . . . . . . . . . . . . . . . . . . . . . 190

9.3.4 Absorbing Evidence and Answering Queries . . . . . . . . . . . . . . . . . . . . . . 192

9.3.5 Building a Network from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.3.6 Simulation using a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.3.7 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.3.8 Buidling a Bayesian Network using bnlearn . . . . . . . . . . . . . . . . . . . . . . 197

9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vii



10 Conditional Gaussian variables 203

10.1 Conditional Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.1.1 Some Results on Marginalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.1.2 CG Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.2 The Junction Tree for Conditional Gaussian Distributions . . . . . . . . . . . . . . . . . . 208

10.3 Updating a CG distribution using a Junction Tree . . . . . . . . . . . . . . . . . . . . . . . 211

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11 Gaussian and Conditional Gaussian Graphical Models in R 217

11.1 Undirected Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.2 Decomposition of UGGMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

11.3 Directed Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11.4 Gaussian Chain Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.5 Conditional Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

12 Learning the Conditional Probability Functions 231

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.2 Gaussian and Conditional Gaussian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.3 Discrete Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.4 Maximum Likelihood for Discrete Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

12.4.1 Maximum Likelihood for Multinomial Sampling . . . . . . . . . . . . . . . . . . . . 233

12.4.2 MLE for a Probability Factorised along a DAG . . . . . . . . . . . . . . . . . . . . 236

12.5 The Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12.5.1 Independent Bernoulli trials and the Beta distribution . . . . . . . . . . . . . . . . 238

12.5.2 Multinomial Sampling and the Dirichlet Integral . . . . . . . . . . . . . . . . . . . . 241

12.5.3 Distribution for Conditional Probabilies of a Bayesian network . . . . . . . . . . . 242

12.6 Updating, Missing Data, Fractional Updating . . . . . . . . . . . . . . . . . . . . . . . . . . 244

12.7 Likelihood Function for the Graph Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12.8 Bayesian Su�cient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

12.9 Prediction Su�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

12.10Prediction Su�ciency for a Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

12.11Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

12.12Short Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

13 Parameters and Sensitivity 263

13.1 Parameter Changes to Satisfy Query Constraints . . . . . . . . . . . . . . . . . . . . . . . . 263

13.2 Proportional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

13.2.1 Query Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

13.2.2 Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

viii



13.3 The Sensitivity of Queries to Parameter Changes . . . . . . . . . . . . . . . . . . . . . . . . 272

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

13.5 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

14 Structure Learning 281

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

14.2 Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

14.2.1 Structural Hamming Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

14.2.2 Sensitivity and Speci�city . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

14.2.3 The Kullback Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

14.3 Search and Score Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

14.3.1 Score Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

14.3.2 Sparse Candidate Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

14.3.3 Greedy Search and Greedy Equivalence Search . . . . . . . . . . . . . . . . . . . . . 288

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

15 Data Storage, Product Approximations, Chow Liu Trees 295

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

15.2 Product Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

15.2.1 Existence of Extensions with Given Marginals . . . . . . . . . . . . . . . . . . . . . 295

15.2.2 Dependence Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

15.3 Reverse I-Projection and the Optimal Product Approximation . . . . . . . . . . . . . . . 300

15.4 The Optimal Chow-Liu Product Approximation . . . . . . . . . . . . . . . . . . . . . . . . 301

15.4.1 Chow Liu Tree with known P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

15.4.2 Chow-Liu Algorithm with Unknown P . . . . . . . . . . . . . . . . . . . . . . . . . . 303

15.4.3 The Log Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

15.4.4 The Chow-Liu Algorithm and Polytrees . . . . . . . . . . . . . . . . . . . . . . . . . 306

15.5 Asymptotic Consistency of the Maximum Likelihood Estimate . . . . . . . . . . . . . . . . 307

15.6 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

16 Constraint-Based Structure Learning Algorithms 311

16.1 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

16.2 Testing for Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

16.2.1 Gaussian variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

16.2.2 Discrete Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

16.2.3 Hypothesis Testing and Statistical Theory . . . . . . . . . . . . . . . . . . . . . . . 313

16.3 The K2 Structural Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

16.4 Three phase dependency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

16.5 Fast Adjacency Search (FAS) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

ix



16.6 PC and MMPC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

16.7 Recursive Autonomy Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

16.8 Incompatible Immoralities: EDGE-OPT Algorithm . . . . . . . . . . . . . . . . . . . . . . 324

16.9 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

16.9.1 The Maximum Minimum Hill Climbing Algorithm . . . . . . . . . . . . . . . . . . 324

16.9.2 L1-Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

16.9.3 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

16.10A Junction Tree Framework for Undirected Graphical Model Selection . . . . . . . . . . . 326

16.11The Xie-Geng Algorithm for Learning a DAG . . . . . . . . . . . . . . . . . . . . . . . . . . 329

16.11.1Description of the Xie-Geng Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 330

16.11.2Proofs of Theorems 16.5 and 16.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

16.12The Ma-Xie-Geng Algorithm for Learning Chain Graphs . . . . . . . . . . . . . . . . . . . 338

16.12.1Skeleton Recovery with a Separation Tree . . . . . . . . . . . . . . . . . . . . . . . . 338

16.12.2Recovering the Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

16.13Structure Learning and Faithfulness: an Evaluation . . . . . . . . . . . . . . . . . . . . . . 341

16.13.1Faithfulness and `real world' data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

16.13.2 Interaction e�ects without main e�ects . . . . . . . . . . . . . . . . . . . . . . . . . 343

16.13.3Hidden variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

16.13.4The scope of structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

16.13.5Application of FAS and RAI to �nancial data . . . . . . . . . . . . . . . . . . . . . 344

16.13.6Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

16.13.7The `Causal Discovery' Controversy . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

16.13.8Faithfulness and the great leap of faith . . . . . . . . . . . . . . . . . . . . . . . . . 347

16.13.9 Inferring non-causation and causation . . . . . . . . . . . . . . . . . . . . . . . . . . 349

16.13.10Summarising causal discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

16.14Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

16.15Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

17 Bayesian Networks in R: Structure and Parameter Learning 357

17.1 Bayesian Networks with bnlearn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

17.1.1 Creating and Manipulating Network Structures . . . . . . . . . . . . . . . . . . . . 358

17.1.2 Visualising Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

17.1.3 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

17.1.4 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

17.1.5 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

17.1.6 Latent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

17.1.7 Application to Gene Expression Data . . . . . . . . . . . . . . . . . . . . . . . . . . 368

17.1.8 Interventional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

17.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

x



18 Monte Carlo Algorithms for Graph Search 375

18.1 A Stochastic Optimisation Algorithm for Essential Graphs . . . . . . . . . . . . . . . . . . 375

18.2 Structure MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

18.3 Edge Reversal Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

18.4 Order MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

18.5 Partition MCMC for Directed Acyclic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 381

18.5.1 Scoring Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

18.5.2 Partition Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

18.5.3 Permutation Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

18.5.4 Combination with Edge Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

19 Dynamic Bayesian Networks 385

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

19.2 Multivariate Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

19.3 Lasso Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

19.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

19.4 simone: Statistical Inference for MOdular NEtworks . . . . . . . . . . . . . . . . . . . . . . 396

19.5 GeneNet, GIDBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

19.6 Inference for Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

19.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

20 Factor graphs and the sum product algorithm 403

20.1 Factorisation and Local Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

20.2 The Sum Product Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

20.3 The Sum Product Algorithm on General Graphs . . . . . . . . . . . . . . . . . . . . . . . . 411

20.4 Stochastic Probability Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

20.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

20.6 Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

21 Graphical Models and Exponential Families 419

21.1 Introduction to Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

21.2 Standard Examples of Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

21.3 Graphical Models and Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

21.4 Properties of the log Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

21.5 Fenchel Legendre Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

21.6 Kullback Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

21.7 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

21.8 Exercises: Graphical Models and Exponential Families . . . . . . . . . . . . . . . . . . . . 436

xi



22 Variational Methods for Parameter Estimation 439

22.1 Complete Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

22.1.1 Triangulated Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

22.1.2 Non-Triangulated Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

22.2 Partially Observed Models and Expectation-Maximisation . . . . . . . . . . . . . . . . . . 442

22.2.1 Exact EM Algorithm for Exponential Families . . . . . . . . . . . . . . . . . . . . . 442

22.2.2 Mean Field Approximate EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

22.3 Variational Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Literature Cited 449

INDEX 457

xii



Introduction

The models that were later to be called Bayesian networks were introduced into arti�cial intelligence by

J. Pearl in (1982) [103], a seminal article in the literature of that �eld. A Bayesian network is simply

a factorisation of a probability distribution and a corresponding directed acyclic graph (henceforth

written DAG), where the edges of the DAG correspond to direct associations between variables in the

factorisation.

The �rst Bayesian networks were connected with causal models, where the order of the variables

in the factorisation represented cause to e�ect, and the directed arrows in the DAG represented direct

causes. This is still one of the major uses of Bayesian networks. The leaf nodes of the network are the

observables. From observations of leaf variables, inference is made for hidden variables via Bayes rule,

hence the term Bayesian network. The terminology, therefore, derives from the probabilistic use of

Bayes rule; the statistical use of Bayes rule whereby uncertainty in the parameter value is expressed in

terms of a prior distribution which is then updated to a posterior distribution when data is considered,

is not in view here.

Graphical directed separation statements for the DAG imply corresponding conditional indepen-

dence statements for the probability distribution. For large and complex systems, graphical separation

algorithms provide a convenient and e�cient method to establish probabilistic conditional indepen-

dence statements.

The description `Bayesian networks' now covers a large �eld of problems and techniques of data

analysis and probabilistic reasoning, where data is collected on a large number of variables and the

aim is to factorise the distribution, represent it graphically and exploit the graphical representation.

Perhaps the earliest work that explicitly uses directed graphs to represent possible dependencies among

random variables is that by S. Wright (1921) [146], developed by the same author in 1934 [147].

Bayesian networks represent a small part of the wider �eld of graphical models. A Bayesian network

is a probability distribution factorised along a DAG. In many examples this is not the most e�cient

model for representing the independence structure and there is a wider �eld of graphical models.

Situations where Bayesian networks provide the natural tools for analysis are, for example: com-

puting the overall reliability of a system given the reliability of the individual components and how

they interact, system security where Bayesian networks are used as a tool for assessing intrusion evi-

dence and whether a network is under attack, forensic analysis. Further applications are, for example:

�nding the most likely message that was sent across a noisy channel, restoring a noisy image, mapping

genes onto a chromosome. One of the leading applications of techniques from the area is to establish-

1



2

ing genome pathways. Given DNA hybridisation arrays, which simultaneously measure the expression

levels for thousands of genes, a major challenge in computational biology is to uncover, from such mea-

surements, gene/protein interactions and key biological features of cellular systems. This is discussed,

for example, by Nir Friedman et. al. in [46] (2000).

DAGs have proved useful in a large number of situations where the graph is constructed along

causal principles; parent variables are considered to be direct causes. One �eld where causal networks

have proved particularly e�ective has been epidemiological research, where DAGs have provided a

framework for the problem of multiple confounding factors in genetic epidemiology, as discussed by

Greenland, Pearl and Robins (1999) [56]. Bayesian networks o�er an alternative to `naïve Bayes' models

of supervised classi�cation in machine learning, which enable more of the structure to be exploited.

One of the �rst examples of this was the Chow-Liu tree (1968) [28].



Chapter 1

Conditional Independence and Graphical

Models

A graphical model for a probability distribution over several variables is, quite simply, a graph, where

the random variables correspond to the node set of the graph and each graphical separation statement

implies the corresponding conditional independence statement for the random variables. The opposite

(that conditional independence implies graphical separation) in general does not hold. In a system with

a large numbers of variables, the task of determining graphical separation statements is, in general,

computationally far less demanding than the task of determining conditional independence, hence the

motivation for graphical models and applying graph theoretic results.

A Bayesian network is the representation of a probability distribution on a directed acyclic graph

(DAG). In this setting, the most useful notion of separation is D-separation (short for directed separa-

tion), which is de�ned later. If a probability distribution factorises along a DAG, then D-separation

statements in the DAG imply the corresponding conditional independence statements (although the

reverse implication is, in general, false).

In many problems, for example gene expression data where there are thousands of variables, it may

not be either possible or desirable to obtain a complete description of the dependence structure. The

aim for such problems is to learn a DAG which encodes the most important features of the dependence

structure. In classi�cation problems, a complete description of the dependence structure is usually

unnecessary; algorithms only locate the key features of the dependence structure to ensure accurate

classi�cation.

1.1 Notational preliminaries: Graphical and Probabilistic

Random Variables Let X = (X1, . . . ,Xd)′ denote a vector of random variables. The random

variables under consideration are of two types, discrete with �nite state space and continuous. Let Xj

denote the state space of variable j. If Xj is continuous, the state space is R. If Xj has a �nite state

space with kj elements, say (x(1)j , . . . , x
(kj)
j ), then Xj = {0, . . . , kj − 1} denotes the indexing set. The

state space of the random vector X is the product space X = ×dj=1Xj .

3



4 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

In the subject of Bayesian Networks, there are usually three situations in view: multinomial,

Gaussian and Conditional Gaussian. PX1,...,Xd
will be used to denote the probability distribution over

X1, . . . ,Xd. That is, for the multinomial case, this is simply the probability function; the quantity

PX1,...,Xd
(x1, . . . , xd) is simply the probability of obtaining a con�guration with indices (x1, . . . , xd) ∈

X . When X is a multivariate Gaussian random vector, PX1,...,Xd
refers to the probability density

function. When X is conditional Gaussian, the discrete variables are listed with lower index than

the continuous, so that X = (X1, . . . ,Xa,Xa+1, . . . ,Xd) where there are a discrete variables and d − a
continuous variables. Here PX1,...,Xa is the probability function for the discrete variables, while for each

con�guration (x1, . . . , xa) of the discrete variables, PXa+1,...,Xd∣X1,...,Xa
(.∣x1, . . . , xa) is a multivariate

Gaussian probability distribution over Rd−a for the variables a + 1, . . . , d.

If X = (X1, . . . ,Xd)′ and A ⊂ {1, . . . , d} where A = (a(1), . . . , a(m)) then XA ∶= (Xa(1), . . . ,Xa(m))′.

In this treatment, the discussion will be presented for discrete random variables, unless explicitly stated

otherwise.

Notations and De�nitions for Graphs

De�nition 1.1 (Graph, Simple Graph). A graph G = (V,E) consists of a �nite set of nodes V and

an edge set E, where each edge is contained in V × V . The edge set therefore consists of ordered pairs

of nodes, which we denote (α,β) or α → β.

Let V = {1, . . . , d}. A graph G = (V,E) is said to be simple if E does not contain any edges of the

form (α,α) (that is a loop from the node to itself) and any edge (α,β) ∈ E that appears in E does so

exactly once. That is, multiple edges are not permitted.

For any two distinct nodes α and β ∈ V , the ordered pair (α,β) ∈ E if and only if there is a directed

edge from α to β. An undirected edge will be denoted ⟨α,β⟩. In terms of directed edges,

⟨α,β⟩ ∈ E⇔ (α,β) ∈ E and (α,β) ∈ E.

For a simple graph that may contain both directed and undirected edges, the edge set E may be decom-

posed as E =D ∪U , where D ∩U = ∅, the empty set. The sets U and D are de�ned by

⟨α,β⟩ ∈ U ⇔ (α,β) ∈ E and (β,α) ∈ E.

(α,β) ∈D⇔ (α,β) ∈ E and (β,α) /∈ E.

If (α,β) ∈D, we may also denote this by α → β ∈D. If ⟨α,β⟩ ∈ U , we may also denote this by α−β ∈ U .
If either (α,β) ∈ D or (β,α) ∈ D or ⟨α,β ∈ U , but we do not specify which, we may denote this by

α ∼ β. For the de�nitions of `path', `trail' and `cycle', an undirected edge will be considered as a single

edge.

All the graphs considered in this treatment will be simple graphs and the term `graph' will be used to

mean `simple graph'. If (α,β) ∈ D, this is denoted by an arrow going from α to β. If ⟨α,β⟩ ∈ U , this
is denoted by an undirected edge between the two variables α and β.



1.1. NOTATIONAL PRELIMINARIES: GRAPHICAL AND PROBABILISTIC 5

De�nition 1.2 (Parent, Child, Directed and Undirected Neighbour, Family). Consider a graph G =
(V,E), where V = {1, . . . , d} and let E = D ∪ U , where D is the set of directed edges and U the set of

undirected edges. Let α,β ∈ V . If (α,β) ∈D, then β is referred to as a child of α and α as a parent of

β.

For any node α ⊆ V , the set of parents is de�ned as

Pa(α) = {β ∈ V ∣ (β,α) ∈D} (1.1)

and the set of children is de�ned as

Ch(α) = {β ∈ V ∣ (α,β) ∈D}. (1.2)

For any subset A ⊆ V , the set of parents of A is de�ned as

Pa(A) = ∪α∈A{β ∈ V /A ∣ (β,α) ∈D}. (1.3)

The set of directed neighbours of a node α is de�ned as

N(d)(α) = Pa(α) ∪Ch(α)

and the set of undirected neighbours of α as

N(u)(α) = {β ∈ V ∣ ⟨α,β⟩ ∈ U}. (1.4)

For any subset A ⊆ V , the set of undirected neighbours of A is de�ned as

N(u)(A) = ∪α∈A{β ∈ V /A ∣ ⟨α,β⟩ ∈ U}. (1.5)

For a node α, the set of neighbours N(α) is de�ned as

N(α) = N(u)(α) ∪N(d)(α).

The family of a node β is the set containing the node β together with its parents and undirected

neighbours. It is denoted:

F (β) = {β} ∪Pa(β) ∪N(u)(β) = {family of β}.

When G is undirected, this reduces to F (β) = {β} ∪N(β).

The notation α ∼ β will be used to denote that α ∈ N(β); namely, that α and β are neighbours. Note

that α ∈ N(β) Ô⇒ β ∈ N(α).

In this text, a directed edge (α,β) is indicated by a pointed arrow from α to β; that is, from the parent

to the child.



6 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

De�nition 1.3 (Directed, Undirected Graph). If all edges of a graph are undirected, then the graph G
is said to be undirected. If all edges are directed, then the graph is said to be directed. The undirected

version of a graph G, denoted by G̃, is obtained by replacing the directed edges of G by undirected edges.

De�nition 1.4 (Trail). Let G = (V,E) be a graph, where E =D∪U ; D∩U = ∅, D denotes the directed

edges and U the undirected edges. A trail τ between two nodes α ∈ V and β ∈ V is a collection of

nodes τ = (τ1, . . . , τm), where τi ∈ V for each i = 1, . . . ,m, τ1 = α and τm = β and such that for each

i = 1, . . . ,m − 1, τi ∼ τi+1. That is, for each i = 1, . . . ,m − 1, either (τi, τi+1) ∈ D or (τi+1, τi) ∈ D or

⟨τi, τi+1⟩ ∈ U .

De�nition 1.5 (Sub-graph, Induced Sub-graph). Let A ⊆ V and EA ⊆ E ∩A ×A. Then F = (A,EA)
is a sub graph of G.

If A ⊂ V and EA = E ∩A ×A, then GA = (A,EA) is the sub-graph induced by A.

Note that in general it is possible for a sub-graph to contain the same nodes, but fewer edges, but the

sub-graph induced by the same node set will have the same edges.

De�nition 1.6 (Connected Graph, Connected Component). A graph is said to be connected if between

any two nodes αj ∈ V and αk ∈ V there is a trail. A connected component of a graph G = (V,E) is
an induced sub-graph GA such that GA is connected and such that if A ≠ V , then for any two nodes

(α,β) ∈ V × V such that α ∈ A and β ∈ V /A, there is no trail between α and β.

De�nition 1.7 (Path, Directed Path). Let G = (V,E) denote a simple graph, where E =D ∪U . That
is, D ∩ U = ∅, D denotes the directed edges and U denotes the undirected edges. A path of length m

from a node α to a node β is a sequence of distinct nodes (τ0, . . . , τm) such that τ0 = α and τm = β
such that (τi−1, τi) ∈ E for each i = 1, . . . ,m. That is, for each i = 1, . . . ,m, either (τi−1, τi) ∈ D, or

⟨τi−1, τi⟩ ∈ U .
The path is a directed path if (τi−1, τi) ∈ D for each i = 1, . . . ,m. That is, there are no undirected

edges along the directed path.

It follows that a trail in G is a sequence of nodes that form a path in the undirected version G̃.
Unlike a trail, a directed path (τ0, . . . , τm) requires that the directed edge (τi, τi+1) ∈ D for all

i = 0, . . . ,m − 1.

De�nition 1.8 (Descendant, Ancestor). Let G = (V,E) be a graph. A node α is a descendant of a

node β if and only if there is a directed path from β to α. A node γ is an ancestor of a node α if and

only if there is a directed path from γ to α.

Let E = U ∪D, where U denotes the undirected edges and D denotes the directed edges. The set of

descendants D(α) of a node α is de�ned as

D(α) = {β ∈ V ∣ ∃τ = (τ0, . . . , τk) ∶ τ0 = α, τk = β, (τj , τj+1) ∈D, j = 0,1, . . . , k}. (1.6)

That is, nodes β such that there is a directed path from α to β.

The set of ancestors A(α) of a node α is de�ned as



1.2. CONDITIONAL INDEPENDENCE AND FACTORISATION 7

A(α) = {β ∈ V ∣ ∃τ = (τ0, . . . , τk) ∶ τ0 = β, τk = α, (τj , τj+1) ∈D, j = 0,1, . . . , k}. (1.7)

That is, nodes β such that there is a directed path from β to α.

In both cases, the paths are directed; they consist of directed edges only; they do not contain undirected

edges.

De�nition 1.9 (Cycle). Let G = (V,E) be a graph. An m-cycle in G is a sequence of distinct nodes

τ0, . . . , τm−1

such that τ0, . . . , τm−1, τ0 is a path (De�nition 1.7).

De�nition 1.10 (Directed Acyclic Graph (DAG)). A graph G = (V,E) is said to be a directed acyclic

graph if each edge is directed (that is, G is a simple graph such that for each pair (α,β) ∈ V × V ,
(α,β) ∈ E Ô⇒ (β,α) /∈ E) and for any node α ∈ V there does not exist any set of distinct nodes

τ1, . . . , τm such that α ≠ τi for all i = 1, . . . ,m and (α, τ1, . . . , τm, α) forms a directed path. That is,

there are no m-cycles in G for any m ≥ 1.

De�nition 1.11 (Tree, Leaf). A tree is a graph G = (V,E) that is connected and such that for any

node α ∈ V , there is no trail between α and α and for any two nodes α and β in V with α ≠ β, there
is a unique trail. A leaf of a tree is a node that is connected to exactly one other node.

1.2 Conditional Independence and Factorisation

De�nition 1.12 (Independence). Two random vectors X and Y are independent if their joint proba-

bility distribution factorises as

PX,Y = PXPY .

X and Y are conditionally independent given a random vector Z if

PX,Y,Z = PX ∣ZPY ∣ZPZ .

This is written X ⊥ Y ∣Z.

The following characterisations of conditional independence follow from the de�nition.

Theorem 1.13. The following are all equivalent to X ⊥ Y ∣Z: using XX , XY and XZ to denote the

state spaces of X, Y and Z respectively:

1. For all (x, y, z) ∈ XZ ×XY ×XZ such that PY ∣Z(y∣z) > 0 and PZ(z) > 0,

PX ∣Y,Z(x∣y, z) = PX ∣Z(x∣z).



8 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

2. There exists a function a ∶ XX ×XZ → [0,1] such that for all (x, y, z) ∈ XX ×XY ×XZ satisfying

PY,Z(y, z) > 0,

PX ∣Y,Z(x∣y, z) = a(x, z)

3. There exist functions a ∶ XX × XZ → R+ and b ∶ XY × XZ → R+ such that for all (x, y, z) ∈
XX ×XY ×XZ satisfying PZ(z) > 0,

PX,Y ∣Z(x, y∣z) = a(x, z)b(y, z)

4. For all (x, y, z) ∈ XX ×XY ×XZ such that PZ(z) > 0,

PX,Y,Z(x, y, z) =
PX,Z(x, z)PY,Z(y, z)

PZ(z)
.

5. There exist functions a ∶ XX ×XZ →R+ and b ∶ XY ×XZ →R+ such that

PX,Y,Z(x, y, z) = a(x, z)b(y, z).

Proof of Theorem 1.13 The proof is trivial and is therefore omitted.

Recall that for any collection of events A1, . . . ,An,

P(A1 ∩ . . . ∩An) = P(A1)P(A2∣A1) . . .P(An∣A1 ∩ . . . ∩An−1).

Clearly, any probability distribution PX1,...,Xd
over X may be factorised as

PX1,...,Xd
= PXσ(1)

d

∏
j=2

PXσ(j)∣Xσ(1),...,Xσ(j−1)

for any permutation σ of 1, . . . , d. Let Pa(σ)(j) ⊂ {σ(1), . . . , σ(j − 1)} satisfy

�

Xσ(j) ⊥ {Xσ(1), . . . ,Xσ(j−1)}/XPa(σ)(j)∣XPa(σ)(j)

�

Xσ(j) /⊥ {Xσ(1), . . . ,Xσ(j−1)}/XΘ(j)∣XΘ(j)

for any strict subset Θj ⊂ Pa(σ)j .

Then, by the �rst characterisation of conditional independence and setting PXσ(j)∣XPa(σ)(j)
= PXσ(j)

when Paσ(j) = ∅ the empty set,

PX1,...,Xd
=

d

∏
j=1

PXσ(j)∣XPa(σ)(j)
.



1.2. CONDITIONAL INDEPENDENCE AND FACTORISATION 9

De�nition 1.14 (Factorisation, Bayesian Network). A factorisation of a probability distribution is a

decomposition

PX1,...,Xd
=

d

∏
j=1

PXσ(j)∣XΞ(σ)(j)
(1.8)

such that for each j ∈ {1, . . . , d}, Ξ(σ)(j) ⊆ {σ(1), . . . , σ(j − 1)}.
A Bayesian Network is a factorisation of a probability distribution

PX1,...,Xd
=

d

∏
j=1

PXσ(j)∣XPa(σ)(j)
(1.9)

such that

1. Pa
(σ)
1 = ∅ (the empty set)

2. Pa
(σ)
j ⊆ {σ(1), . . . , σ(j − 1)}

3. Xσ(j) ⊥ {Xσ(1), . . . ,Xσ(j−1)}/XPa(σ)(j)∣XPa(σ)(j)

4. For any strict subset Θ(j) ⊂ Pa(σ)(j) of Pa(σ)(j),

Xσ(j) /⊥ {Xσ(1), . . . ,Xσ(j−1)}/XΘ(j)∣XΘ(j).

Unless otherwise stated, it will be assumed that the variables are labelled in such a way that σ = I,
the identity.

For Paj = {lj,1, . . . , lj,mj}, the state space of XPa(j) is Xlj,1 × . . . ×Xlj,mj
. For discrete variables, there

are qj =∏mj

a=1 klj,a con�gurations. These may be labelled (π(l)j )
qj
l=1 and the parameters required for the

probability distribution PX1,...,Xd
are

θjil = PXj ∣XPa(j)
(i∣π(l)j ) j = 1, . . . , d i = 0, . . . , kj − 1, l = 1, . . . , qj .

The factorisation of Equation (1.8) De�nition 1.14 may be represented by a Directed Acyclic Graph.

For example, if the probability distribution over X,Y,Z,W satis�es

PX,Y,Z,W = PXPY ∣XPZ∣XPW ∣Y,Z ,

the factorisation may be represented by the graph in Figure 1.1.

1.2.1 Directed Acyclic Graphs and Probability Distributions

Now consider a random vector X = (X1, . . . ,Xd).

De�nition 1.15 (Factorisation along a Directed Acyclic Graph). A decomposition of a probability

distribution over a random vector X = {X1, . . . ,Xd} which satis�es Equation (1.8) with respect to

an ordering σ is said to factorise according to a directed acyclic graph (V,D) if V = {1, . . . , d}, the
indexing set for the variables, is the node set of the graph and for each j = 1, . . . , d, Ξ(σ)(j) is the

parent set for node σ(j). The factorisation corresponds to a Bayesian network if Ξ(σ)(j) = Pa(σ)(j)
where Xσ(j) /⊥ {Xσ(1), . . . ,Xσ(j−1)}/XΘ(j)∣XΘ(j) for any strict subset Θ(j) ⊂ Pa(σ)(j).



10 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

X

  ~~

Y

  

Z

~~

W

Figure 1.1: DAG representing the factorisation of a probability distribution

α // β // γ

Figure 1.2: A Chain Connection

1.2.2 Connections in a Directed Acyclic Graph and Conditional Independence

De�nition 1.16 (Instantiated). When the state of variable is known, the variable is said to be instan-

tiated.

Within a directed acyclic graph, there are three basic ways in which two nodes α, γ such that (α, γ) /∈D
and (γ,α) /∈ D can be connected via a third node. They are the chain, fork and collider connections

respectively.

Chain Connections A chain connection between nodes α and γ is a connection via a node β such

that the graph contains directed edges α → β and β → γ, but no edge between α and γ.

Consider a probability distribution over (Xα,Xβ,Xγ) factorised according to the graph in Fig-

ure 1.2, as PXαPXβ ∣Xα
PXγ ∣Xβ

.

Clearly, Xα /⊥Xγ in general;

PXα,Xγ(x1, x3) = PXα(x1) ∑
x2∈X2

PXβ ∣Xα
(x2∣x1)PXγ ∣Xβ

(x3∣x2)

and, without further assumptions, this cannot be expressed in product form.

Conditioned on the instantiation Xβ = x2,

PXα,Xγ ∣Xβ
(., .∣x2) =

PXα,Xβ ,Xγ(., x2, .)
PXβ
(x2)

=
PXα(.)PXβ ∣Xα

(x2∣.)PXγ ∣Xβ
(.∣x2)

PXβ
(x2)

= (
PXα(.)PXβ ∣Xα

(x2∣.)
PXβ
(x2)

) (PXγ ∣Xβ
(.∣x2)) = (PXα∣Xβ

(.∣x2)) (PXγ ∣Xβ
(.∣x2))



1.2. CONDITIONAL INDEPENDENCE AND FACTORISATION 11

β

�� ��
α γ

Figure 1.3: A Fork Connection

where Bayes rule has been used and so, following characterisation 3 of conditional independence from

Theorem 1.13, Xα ⊥Xγ ∣Xβ .

Fork Connections A fork connection between two nodes Xα and Xγ is a situation where there is no

edge between Xα and Xγ , but there is a node Xβ such that the graph contains directed edges Xβ ↦Xα

and Xβ ↦Xγ . It is illustrated in Figure 1.3.

A distribution over the variables (Xα,Xβ,Xγ) that factorises according to the DAG in Figure 1.3

has factorisation

PXα,Xβ ,Xγ = PXβ
PXα∣Xβ

PXγ ∣Xβ
.

It is clear that Xα /⊥Xγ in general;

PXα,Xγ(x1, x3) = ∑
x2∈X2

PXβ
(x2)PXα∣Xβ

(x1∣x2)PXγ ∣Xβ
(x3∣x2)

and, without further assumptions, this cannot be expressed in product form. Conditioned on Xβ ,

though:

PXα,Xγ ∣Xβ
=
PXα,Xγ ,Xβ

PXβ

=
PXβ

PXα∣Xβ
PXγ ∣Xβ

PXβ

= PXα∣Xβ
PXγ ∣Xβ

.

It follows that Xα ⊥ Xγ ∣Xβ following characterisation 3) from the characterisations of conditional

independence listed in the statement of Theorem 1.13.

Collider Connections A collider connection between two nodes α and γ is a connection such that

the graph does not contain an edge between α and γ, but there is a node β such that the graph contains

directed edges α ↦ β and γ ↦ β. A collider connection is illustrated in Figure 1.4.

The factorisation of the distribution PXα,Xβ ,Xγ corresponding to the DAG for the collider is

PXα,Xβ ,Xγ = PXαPXγPXβ ∣Xα,Xγ
.



12 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

α

��

γ

��

β

Figure 1.4: A Collider Connection

In general, Xα /⊥Xγ ∣Xβ . But for each (x, z) ∈ Xα ×Xγ ,

PXα,Xγ(x, z) = ∑
y∈Xβ

PXα(x)PXγ(z)PXβ ∣Xα,Xγ
(y∣x, z)

= PXα(x)PXγ(z) ∑
y∈Xβ

PXα∣Xβ ,Xγ
(y∣x, z)

= PXα(x)PXγ(z).

so that Xα ⊥Xγ .

A Causal Interpretation So far, the discussion has considered sets of random variables where,

based on the ordering of the variables, the parent set of a variable is a subset of those of a lower

order. The representation of a probability distribution by factorising along a Directed Acyclic Graph

may be particularly useful if there are cause to e�ect relations between the variables, the ancestors

being the cause and the descendants the e�ect. For a causal model, the connections have the following

interpretations:

Fork Connection: Common cause For the fork connection, illustrated by Figure 1.2, Xβ may

be a cause that in�uences both Xα and Xγ which are e�ects. The variables are only related through

Xβ . The situation is illustrated by the following example, taken from a cartoon by Albert Engström;

`during a convivial discussion at the bar one evening, about the unhygienic nature of galoshes, one

of the participants pipes up, �you have a very good point there. Every time I wake up wearing my

galoshes, I have a sore head.�

Let Xα denote the state of the feet and Xγ the state of the head. These two variables are related;

Xα /⊥ Xβ . But there is a common cause; X2, which denotes the activities of the previous evening.

Once it is known that he has spent a convivial evening drinking, the state of the feet gives no further

information about the state of the head; Xα ⊥Xγ ∣Xβ .

Chain Connection This may similarly be understood as cause to e�ect. Xα in�uences Xβ , which

in turn in�uences Xγ , but there is no direct causal relationship between the values taken by Xα and

those taken by Xγ . If Xβ is unknown, then Xα /⊥Xγ , but once the state of Xβ is established, Xα and

Xγ give no further information about each other; Xα ⊥Xγ ∣Xβ .



1.2. CONDITIONAL INDEPENDENCE AND FACTORISATION 13

Collider Connection For the collider connection, Xα and Xβ are unrelated; Xα ⊥ Xγ . But they

both in�uence Xβ . For example, consider a burglar alarm (Xβ) that is activated if a burglary takes

place, but can also be activated if there is a minor earth tremor.

One day, somebody calls you while you are at work to say that your burglar alarm is activated.

You get into the car to go home. But on the way home, you hear on the radio that there has been an

earth tremor in the area. As a result, you return to work.

Once Xβ is instantiated, the information that there has been an earth tremor in�uences the likeli-

hood that a burglary has taken place; Xα /⊥Xγ ∣Xβ .

This is known as explaining away.

Attention is now turned to trails within a DAG, and characterisation of those along which information

can pass.

De�nition 1.17 (S-Active Trail). Let G = (V,D) be a directed acyclic graph. Let S ⊂ V and let

α,β ∈ V /S. A trail τ between the two variables α and β is said to be S-active if

1. Every collider node in τ is in S, or has a descendant (De�nition 1.8) in S.

2. Every other node is outside S.

De�nition 1.18 (Blocked Trail). A trail between α and β that is not S-active is said to be blocked

by S.

The following de�nition is basic; it will be seen that if a probability distribution factorises along a

DAG G and two nodes α and β are D-separated by S, then Xα ⊥Xβ ∣XS .

De�nition 1.19 (D-separation). Let G = (V,D) be a directed acyclic graph, where V = {1, . . . , d}. Let
S ⊂ V . Two distinct nodes α and β not in S are D-separated by S if all trails between α and β are

blocked by S.

Let A and B denote two sets of nodes. If every trail from any node in A to any node in B is blocked

by S, then the sets A and B are said to be D-separated by S. This is written

A á B ∥G S. (1.10)

The terminology D-separation is short for directed separation. The insertion of the letter `D' points

out that this is not the standard use of the term `separation' found in graph theory.

De�nition 1.20 (D-connected). If two nodes α and β are not D-separated, they are said to be D-

connected.

Notation The notation α /á β∥GS denotes that α and β are D-connected by S in the DAG G. Here
α and β may refer to individual nodes or sets of nodes.



14 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

Example 1.21.

Consider the chain connection α ↦ β ↦ γ in the DAG in Figure 1.2 and the fork connection of

Figure 1.3. For the chain connection of Figure 1.2, the D-separation statements are: α á γ∥Gβ
while α /á γ∥G∅ (∅ denotes the empty set). For the DAG in Figure 1.3, α á γ∥Gβ while α /á γ∥G∅.
These correspond to the conditional independence statements derived for probability distributions

that factorise along these graphs. For Figure 1.4, α á γ∥G∅ while α /á γ∥Gβ. Again, these statements

correspond to the conditional independence statements that may be derived from the fact that a

distribution factorises along the DAG of Figure 1.4.

Let MB(α) denote the set of nodes which are either parents of α or children of α or a node which

shares a common child with α. Then α is D-separated from the rest of the network by MB(α). This
set of nodes is known as the Markov blanket of the node α.

De�nition 1.22 (Markov Blanket). The Markov blanket of a node α in a DAG G = (V,D), denote
MB(α), is the set consisting of the parents of α, the children of α and the nodes sharing a common

child with α.

1.2.3 Bayes Ball

The Bayes ball provides a convenient method for deciding whether or not two nodes are D-separated

by a set S in a DAG G = (V,D). Variables are D-connected by a set S if the Bayes ball can be passed

between them employing the following rule. The nodes which are not in S are depicted as unshaded;

nodes in S as shaded.

De�nition 1.23 (Instantiated Nodes). Let G = (V,D) be a directed acyclic graph. When considering

statements α á β∥GS and α /á β∥GS, the nodes in S are referred to as instantiated.

Figure 1.5: Bayes Ball

Consider the three types of connection in a DAG; chain, collider and fork.



1.3. D-SEPARATION AND CONDITIONAL INDEPENDENCE 15

� For the chain connection illustrated in Figure 1.2, the Bayes ball algorithm indicates that if node

β is instantiated, then the ball does not move from α to γ through β. The communication in the

trail is blocked. If the node is not instantiated, then communication is possible.

� For the fork connection illustrated in Figure 1.3, the algorithm states that if node β is instantiated,

then again communication between α and γ is blocked. If the node is not instantiated, then

communication is possible.

� For the collider connection illustrated in Figure 1.4, the Bayes ball algorithm states that the ball

does move from α to γ if node α or any of its descendants is instantiated. If β or a descendant

is instantiated, this opens communication between the parents. If neither β nor any of its

descendants are instantiated, then there is no communication.

For a collider node β, instantiating any of the descendants of β also opens communication. If node β

is not instantiated, and none of its descendants are instantiated, then there is no communication.

A DAG G = (V,D) satis�es the following important property:

Theorem 1.24. A DAG G = (V,D) contains an edge between two nodes α,β ∈ V if and only if

α /á β∥GS for any S ⊆ V /{α,β}.

Proof The proof of this is straightforward and left as an exercise (Exercise 6 page 22).

1.3 D-Separation and Conditional Independence

The following key result shows that if a probability distribution factorises along a given DAG G,
then every D-separation statement for the DAG implies the corresponding conditional independence

statement for the distribution.

Theorem 1.25 (D-Separation Implies Conditional Independence). Let G = (V,D) be a directed acyclic
graph and let P be a probability distribution that factorises along G. Then for any three disjoint subsets

A,B,S ⊂ V , it holds that XA ⊥ XB ∣XS (XA and XB are independent given XS) if A á B∥GA (A and

B are D-separated by S).

Proof of Theorem 1.25 Let X = (X1, . . . ,Xd) be a random vector. Let V = {1, . . . , d} denote the
set of nodes of a Directed acyclic graph G(V,D) and suppose that PX factorises along G. Let A ⊂ V ,
B ⊂ V and S ⊂ V be three disjoint sets of nodes. Suppose that A á B∥GS. Let A, B and S denote also

the random vectors XA, XB and XS respectively and let XA, XB and XS denote their respective state

spaces. It is required to show that for all a ∈ XA, b ∈ XB and s ∈ XS ,

PA,B∣S(a, b∣s) = PA∣S(a∣s)PB∣S(b∣s).

Let R = V /(A ∪B ∪ S). Let

E1 = {α ∈ V ∣there is an S-active trail from A to α}



16 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

E2 = {α ∈ V ∣there is an S-active trail from B to α}

R1 = R ∩E1 ∩E2, R2 = R ∩E1 ∩Ec
2, R3 = R ∩E2 ∩Ec

1, R4 = R ∩ (Rc
1 ∪Rc

2 ∪Rc
3).

From Characterisation 5 of Theorem 1.13, it is required to show that there are two functions F and G

such that

PA,B,S(a, b, s) = F (a, s)G(b, s).

Let P(Xj ∣Paj) denote the conditional probability function of Xj given the parent variables XPa(j).

Then

P(X1, . . . ,Xd) =∏
j∈A

P(Xj ∣Paj)∏
j∈B

P(Xj ∣Paj)∏
j∈S

P(Xj ∣Paj)

× ∏
j∈R1

P(Xj ∣Paj) ∏
j∈R2

P(Xj ∣Paj) ∏
j∈R3

P(Xj ∣Paj) ∏
j∈R4

P(Xj ∣Paj).

Since all the nodes of R are uninstantiated and there is no S-active trail from A to B, it follows that

any node α ∈ R1 is either a collider which is not in S, nor does it have any descendants (De�nition 1.8)

in S or the descendant of such a collider. Furthermore, any descendant of a variable in R1 is also in

R1. Therefore, marginalising over the variables in R1 does not involve the parent variables of A, B or

S, nor does it involve the variables in R2 or R3 or their ancestors since ∑Xj
P(Xj ∣Paj) = 1.

There is no S-active trail from a variable in R4 to any variable in A or B. It follows that parents of

variables in R4 are either in R4 or in S (if the parent is not in S and there is an S-active trail between

the parent and a variable in either A or B, then there is an S-active trail from the variable itself; the

link between variable, its parent and the next variable on the trail is either an uninstantiated fork or

uninstantiated chain connection).

Now, using ∅ to denote the empty set, let S2 = {α ∈ S ∣ Pa(α) ∩R2 ≠ ∅} (there is an S-active trail
from A to a parent of α /∈ S but not from B to a parent of α /∈ S ), S3 = {α ∈ S ∣ Pa(α)∩R3 ≠ ∅} (there
is an S-active trail from B to a parent of α /∈ S but not from A to a parent of α /∈ S) and S4 = S∩Sc

2∩Sc
3

(nodes α ∈ S such that there is no S-active trail either from A to a parent of α /∈ S or from B to a

parent of α /∈ S). Then S2 ∩ S3 = ∅, the empty set, otherwise there would be a collider node in S that

would result in an active trail from A to B.

It is also clear that Pa(S4) ⊆ S ∪R4, where Pa(S4) denotes the parent variables of the variables in S4;
that is, Pa(S4) = {Y ∣(Y,X) ∈ E, X ∈ S4}. The sets S2, S3, S4 are disjoint. It follows that



1.4. THE LOCALLY DIRECTED MARKOV PROPERTY 17

P(A,B,S) = ∑
XR2

∑
XR3

∑
XR4

∑
XR1

⎛
⎝∏j∈R1

P(Xj ∣Paj) ∏
j∈R4

P(Xj ∣Paj)∏
j∈S4

P(Xj ∣Paj)
⎞
⎠

×
⎛
⎝∏j∈A

P(Xj ∣Paj)∏
j∈S2

P(Xj ∣Paj) ∏
j∈R2

P(Xj ∣Paj)
⎞
⎠

×
⎛
⎝∏j∈B

P(Xj ∣Paj)∏
j∈S3

P(Xj ∣Paj) ∏
j∈R3

P(Xj ∣Paj)
⎞
⎠
.

The sums are taken from right to left, starting with ∑XR1
. None of the variables in R1 are in A∪B∪S

or the parent sets of variables in A, B, S2, S3, R2 or R3. The parents of variables in R4 are either in

R4 or S, the parents of variables in S4 are either in S4 or R4. The parents of variables in R3 in R3∪B.
The parents of variables in R2 are in R2 ∪A. It follows that P(A,B,S) has a factorisation

P(A,B,S) = ψ1(S)ψ2(A,S)ψ3(B,S)

where the constructions of ψ1, ψ2 and ψ3 are clear from the context. This factorisation clearly satis�es

the required criteria. It follows that D-separation implies conditional independence.

Of course, the converse is not true in general; D-separation is a convenient way of locating some of

the independence structure of a distribution. It does not, in general, locate the entire independence

structure.

1.4 The Locally Directed Markov Property

This section introduces the local directed Markov condition, a necessary and su�cient condition so that

a probability function P over a set of variables V can be factorised along a graph G.

De�nition 1.26 (Local Directed Markov Condition, Locally G - Markovian). Let X = (X1, . . . ,Xd)
be a random vector. A probability function P over X satis�es the local directed Markov condi-

tion with respect to a DAG G = (V,D) with node set V = {1, . . . , d} or, equivalently, is said to

be locally G-Markovian if and only if there is an ordering of the variables σ such that Pa(σ)(j) ∈
{σ(1), . . . , σ(j − 1)} for each j ∈ {1, . . . , d} and such that Xσ(j) is conditionally independent, given

X
Pa(σ)(j)

of X
V /(V (σ)(j)∪Pa(σ))(j)

, where V (σ)(j) is the set of all descendants of σ(j) in G. That is,

V (σ)(j) = {β ∈ V ∣there is a directed path from σ(j)to β} (1.11)

and:

Xσ(j) ⊥XV /(V (σ)(j)∪Pa(σ)(j)∪{σ(j)})
∣X
Pa(σ)(j)

.

Proposition 1.27. Let P be a probability distribution over a random vector X = (X1, . . . ,Xd). Then
P satis�es the l.d.m.p. with respect to a graph G = (V,D) if and only if there is an ordering of the

variables σ such that P factorises along G.



18 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

Proof Firstly, assume that P is locally G-Markovian and assume that the variables are ordered

in such a way that for each j ∈ {1, . . . , d}, Xj ⊥ XV /(V (j)∪Pa(j))∣XPa(j) where V (j) is de�ned in

Equation (1.11). Let πj(x1, . . . , xj−1) denote the instantiation of XPa(j) when X is instantiated

as (x1, . . . , xd). By Characterisation 1) of Theorem 1.13, for all j = 1, . . . , d and any πj such that

PXPa(j)
(πj) > 0,

PXj ∣X1,...,Xj−1
(xj ∣x1, . . . , xj−1) = PXj ∣XPa(j)

(xj ∣πj)

with PXj ∣X1,...Xj−1
(xj ∣x1, . . . , xj−1) = PXj(xj) if Paj = ∅. It follows directly that

PX1,...,Xd
=

d

∏
j=1

PXj ∣XPa(j)

and hence, by de�nition, that P factorises along G.

Secondly, suppose that P factorises along a directed acyclic graph G = (V,D). Then it is clear (for

example by using the Bayes ball algorithm) that

Xj áXV /(V (j)∪Pa(j))∥GXPa(j)

where V (j) is the set of variables de�ned by Equation (1.11). If Pa(j) is instantiated, then any trail

from j to V /(Vj ∪Paj ∪ {Xj}) has to pass through a node in Paj , which will be either a chain or fork

connection. It follows from Theorem 1.25 that

Xj ⊥XV /(V (j)∪Pa(j)∪{j})∣XPa(j),

from which it follows that P is locally G-Markovian.

Once a probability distribution has been factorised according to a Bayesian Network, the next task is

to use it to answer queries.

De�nition 1.28 (Query). A query in probabilistic inference is simply a conditional probability distri-

bution, over the variables of interest (the query variables) conditioned on information received.

Discussion of the main algorithms for answering queries is the subject of chapters 7 and 8.

1.5 Quick Medical Reference - Decision Theoretic: An Example

In classi�cation problems, the aim is to infer the value of a class variable, given the values of the

observables. It is often unrealistic to hope to obtain a full pro�le of the probability distribution; the

aim is rather to exploit enough of the structure to obtain a good classi�er.

We now consider the noisy logic gate, which we express as a Bayesian Network and give the QMR -

DT (Quick Medical Reference - Decision Theoretic) data base of diseases and symptoms as an example.

A disease may result in a symptom, but this is not certain. The noisy logic gate approximation

may be used to construct a classi�er; given the symptoms exhibited, the problem is to diagnose the

illnesses.



1.5. QUICK MEDICAL REFERENCE - DECISION THEORETIC: AN EXAMPLE 19

1.5.1 Propositional Logic and Noisy Logic Gates

In logic, the `Or' disjunction of two propositions p and q is denoted by p∨q and is de�ned by the truth

table

p q p ∨ q
1 1 1

1 0 1

0 1 1

0 0 0

while the `And' disjunction of two propositions p and q, denoted by p ∧ q is de�ned by the truth table

p q p ∧ q
1 1 1

1 0 0

0 1 0

0 0 0

Here 1 = the proposition is true, 0 = the proposition is false.

Now consider the situation where p and q are independent causes of some e�ect, but that p and q

only cause the e�ect with some probability less than 1.

1.5.2 QMR - DT Data Base

The QMR - DT database is a large scale probabilistic data base that is intended to be used as a

diagnostic aid in the domain of internal medicine. It stores information on approximately 600 diseases

and approximately 4000 symptoms. The quantities PD (the joint probability function for the selection

of diseases that a randomly chosen individual may have) and PS∣D (the joint probability function that

the victim exhibits a selection of symptoms given a particular selection of diseases) are estimated

from the data bank. Consider the example of diseases and symptoms. Let q0j denote the probability

that symptom j is present in the absence of any disease and qij the probability that disease i induces

symptom j. Using S = (S1, . . . , Sn) to denote symptoms and D = (D1, . . . ,Dm) to denote diseases,

an instantiation s of S will be a n-vector where each entry is either 0 to denote that the symptom is

absent, or 1 to denote that it is present. Similarly, an instantiation d of D is an m-vector of 1's and

0's where 1 corresponds to presence and 0 to absence of the corresponding disease.

Under the modelling assumption, the probability that symptom j is absent, given a vector of

diseases d is

PSj ∣D(0∣d) = (1 − q0j)∏
i

(1 − qij)di .

Another simplifying assumption is that an individual contracts di�erent diseases independently of each

other. Under this assumption,



20 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS

PD =
m

∏
i=1

PDi .

For the problem of classi�cation, that is diagnosing diseases given a list of symptoms, these two

modelling assumptions come under the umbrella independence of competing risks. This is a simpli�ca-

tion, but nevertheless, can produce an e�ective classi�er.

Noisy `or' as a causal network Consider the DAG given in Figure 1.6 where B = A1∨A2∨ . . .∨An.

This is the logical `or' and there is no noise. The noise then enters, as in the DAG given in Figure 1.7,

by considering that if any of the variables Ai, i = 1, . . . , n is present, then B is present unless something

has inhibited it, the inhibitors on each variable acting independently of each other.

A1

!!

A2

��

. . . An

ww
B

Figure 1.6: A Logical `Or' Gate

Noisy `or': inhibitors Consider the DAG in �gure 1.7, where qi denotes the probability that the

impact of Ai is inhibited.

A1

1−q1
!!

A2

1−q2
��

. . . An

1−qn

ww
B

Figure 1.7: Noisy `Or' Junction

All variables are binary, and take value 1 if the cause, or e�ect, is present and 0 otherwise. In other

words, PB∣Ai
(0∣1) = qi. The assumption from the DAG is that all the inhibitors are independent. This

implies that

PB∣A1,...,An
(0∣a1, . . . , an) =∏

j∈Y
qj ,

where Y = {j ∈ {1, . . . , n}∣aj = 1}. This may be described by a noisy `or' gate.



1.5. QUICK MEDICAL REFERENCE - DECISION THEORETIC: AN EXAMPLE 21

Noisy `or' Gate The noisy `or' can be modelled directly, introducing the variables Bi i = 1, . . . , n,
where Bi takes the value 1 if the cause Ai is on and it is not inhibited and 0 otherwise. The corre-

sponding DAG is given in �gure 1.8

B1

1−q1
��

B2

1−q2
��

. . . Bn

1−qn
��

A1

!!

A2

��

. . . An

ww
B

Figure 1.8: Noisy `Or' Gate

where

PB∣B1,...,Bn
(1∣b1, . . . , bn) = b1 ∨ . . . ∨ bn.

The B1, . . . ,Bn are introduced as mutually independent inhibitors, and

PBi∣Ai
(0∣1) = qi,

giving the result given above.

Notes The models that were later to be called Bayesian networks were introduced into arti�cial in-

telligence by J. Pearl, in the article [103] (from 1982). Within the Arti�cial Intelligence literature, this

is a seminal article. Perhaps the earliest work that uses directed graphs to represent possible depen-

dencies among random variables is that by S. Wright (1921) [146]. An early article that considered the

notion of a factorisation of a probability distribution along a directed acyclic graph representing causal

dependencies is that by H. Kiiveri, T.P. Speed and J.B. Carlin (1984) [74], where a Markov property

for Bayesian networks was de�ned. This was developed by J. Pearl in [106] (from 1990). D-separation,

and the extent to which it characterises independence is discussed by J.Pearl and T. Verma in [112]

and by J.Pearl, D. Geiger and T. Verma in [111]. The Bayes ball is taken from R.D. Schachter [122].

The results for identifying independence in Bayesian networks are taken from D. Geiger, T. Verma and

J. Pearl [51].



1.6 Exercises

1. Let (X,Y,W,Z) be disjoint sets of random variables, each with a �nite state space. Prove that

the following logical relations hold:

(a) decomposition Prove that if X ⊥ Y ∪W ∣Z then X ⊥ Y ∣Z and X ⊥W ∣Z.

(b) contraction Prove that if X ⊥ Y ∣Z and X ⊥W ∣Y ∪Z then X ⊥W ∪ Y ∣Z.

(c) weak union Prove that if X ⊥ Y ∪Z ∣W then X ⊥ Y ∣Z ∪W .

(d) intersection Prove that if X ⊥ Y ∣W ∪Z and X ⊥W ∣Y ∪Z then X ⊥W ∪ Y ∣Z.

2. Let (X,Y,W,Z) be four sets of nodes in a DAG G = (V,D). Prove the following;

(a) decomposition Prove that if X á Y ∪W ∥GZ then X á Y ∥GZ and X áW ∥GZ.

(b) contraction Prove that if X á Y ∥GZ and X áW ∥GY ∪Z then X áW ∪ Y ∥GZ.

(c) weak union Prove that if X á Y ∪Z∥GW then X á Y ∥GZ ∪W .

(d) intersection Prove that if X á Y ∥GW ∪Z and X áW ∥GY ∪Z then X áW ∪ Y ∥GZ.

3. Let X denote the state space for (X,Y,W,Z) and assume that PX,Y,W,Z(x, y,w, z) > 0 for each

(x, y,w, z) ∈ X . Does it hold in general that if X ⊥ Y ∣ Z ∪W and X ⊥ W ∣ Z ∪ Y , then
X ⊥ Z ∣ Y ∪W? Either prove the result or illustrate why it is false.

4. Let V = A ∪B ∪ S where A,B and S are disjoint subsets and suppose that A ⊥ B∣S. Prove that
for any α ∈ A and γ ∈ B,

α ⊥ γ∣(A ∪ S)/{α, γ}⇔ α ⊥ γ∣(A ∪B ∪ S)/{α, γ}.

5. Let A be a variable in a DAG. Prove that if all the variables in the Markov blanket of A are

instantiated, then A is d-separated from the remaining uninstantiated variables.

6. Prove Theorem 1.24.

7. Let G = (V,D) denote a directed acyclic graph. Let X ⊆ V , Y ⊆ V and Z ⊆ V denote sets of

nodes and let α,β, γ, δ ∈ V /X ∪ Y ∪Z denote individual nodes.

(a) Prove that if X á Y ∥GZ and X á Y ∥GZ ∪ {γ} then either X á {γ}∥GZ or Y á {γ}∥GZ

(b) Prove that if α á β∥G{γ, δ} and γ á δ∥G{α,β} then either α á β∥G{γ} or α á β∥G{δ}.

8. The notation XA is used to denote the random (row) vector of all variables in set A. Let

V = {X1, . . . ,Xd} be the d variables of a Bayesian network and assume that XV /{Xi} = w. That
is, all the variables except Xi are instantiated. Assume that Xi is a binary variable, taking values

0 or 1. The odds of an event A given B is de�ned as:

OP(A∣B) =
P(A∣B)
P(Ac∣B)

22



where Ac denotes the complement of A. Consider the odds

OP ({Xi = 1} ∣ {XV ∖{Xi} = w}) ,

and show that this depends only on the variables in the Markov blanket (De�nition 1.22) of Xi.

23



1.7 Answers

1. (a) X ⊥ Y ∪W ∣Z means PW,X,Y,Z(w,x, y, z) = PX ∣Z(x∣z)PW,Y ∣Z(w,y∣z)PZ(z) Summing over W

gives PX,Y,Z(x, y, z) = PX ∣Z(x∣z)PY ∣Z(y∣z)PZ(z); equivalent to X ⊥ Y ∣Z.
Similarly, summing over Y gives PW,X,Z(w,x, z) = PX ∣Z(x∣z)PW ∣Z(w∣z)PZ(z), equivalent to
X ⊥W ∣Z.

(b) X ⊥ Y ∣Z implies PX,Y,Z(x, y, z) = PX ∣Z(x∣z)PY ∣Z(y∣z)PZ(z) and X ⊥ W ∣Y ∪ Z implies

PW,X,Y,Z(w,x, y, z) = PX ∣Y,Z(x∣y, z)PW ∣Y,Z(w∣y, z)PY,Z(y, z). The �rst statement implies

that for (x, y, z) such that PX,Y,Z(x, y, z) > 0, PX ∣Y,Z = PX ∣Z , so, using PY,Z = PY ∣ZpZ , it

follows that

PW,X,Y,Z(w,x, y, z) = PX ∣Z(x∣z)PW ∣Y,Z(w∣y, z)PY ∣Z(y∣z)PZ(z)
= PX ∣Z(x∣z)PW,Y ∣Z(w,y∣z)PZ(z),

so that X ⊥W ∪ Y ∣Z.

(c)

PXY ZW =
PXWPWY Z

PW
= aXW bY ZW

where aXW = PXW

PW
and bY ZW = PWY Z so that X ⊥ Y ∣Z ∪W from the characterisations of

independence.

(d)

PX,Y,W,Z =
PXWZPYWZ

PWZ
= PXY ZPWY Z

PY Z

PXWZ

PWZ
= PXY Z

PY Z

so that

PX ∣WZ = PX ∣Y Z = PX ∣Z

giving

PX,Y,W,Z =
PXZPYWZ

PZ

and hence

X ⊥ Y ∪W ∣Z.

2. (a) This is clear from the de�nition: Z blocks all trails between X and Y and all trails between

X and W .

(b) Consider α ∈ X and β ∈W . Any trail α↔ β has either an instantiated fork or chain node

in Y ∪Z or an uninstantiated collider that is not in Y ∪Z, neither any of its descendants. It

follows that such an uninstantiated collider is not in Z, neither are any of its descendants.

If it has an instantiated fork or chain node in Y , then the trail from α to the instantiated

fork or chain in Y is blocked by Z since X á Y ∥GZ. Hence X áW ∪ Y ∥GZ.

24



(c) Let α ∈X and β ∈ Y . Any trail is blocked by W . That is, it has either a fork or chain node

in W or a collider node that is not in W , neither are any of its descendants.

If it is blocked by a chain or fork in W , then the trail is also blocked by Z ∪W . Consider

the �rst collider on the trail, proceeding from α, not in W , with no descendants in W , that

is either in Z or has a descendant in Z. Then the trail between α and the node in Z is

blocked by W since X á Y ∪ Z∥GW . Since neither the collider nor any of its descendants

are in W , it follows that the trail between α and the collider node is blocked by W , from

which it follows that it has a chain or fork in W , from which it follows that X á Y ∥GZ ∪W .

(d) Let α ∈X and β ∈ Y . Any trail between them with no other nodes in X or Y is blocked by

W ∪Z. That is, it has either a fork or chain node in W ∪Z or a collider not in W ∪Z with

no descendants in W ∪ Z. Such a collider is therefore not in Z and has no descendants in

Z.

Assume that the trail blocked by W ∪ Z is not blocked by Z. Let γ be the �rst fork or

chain node along the trail that is in W . This trail is Z active, but is blocked by Y ∪ Z.
It therefore contains a fork or chain node in Y , contradicting the assertion that α was the

only node in X and β the only node in Y on the trail.

3. The result stated is false. Counterexample: any distribution that factorises as

PZPX ∣ZPW ∣ZPY ∣W,Z

clearly satis�es X ⊥ Y ∣Z ∪W and X ⊥W ∣Y ∪Z, but there are distributions with such a factori-

sation that do not satisfy X ⊥ Z ∣Y ∪W .

4. Since A ⊥ B∣S, it follows from the weak union result in Exercise 1 that α ⊥ B∣A ∪ S/{α}. This,
together with the condition α ⊥ γ∣A ∪ S/{α, γ} imply (using X = {α}, W = B, Z = A ∪ S/{α, γ},
Y = {γ} in the contraction statement Exercise 1) that

α ⊥ γ∣A ∪B ∪ S/{α, γ}.

as required.

Now suppose that α ⊥ γ∣(A ∪ B ∪ S)/{α, γ}. Since A ⊥ B∣S, it follows that α ⊥ B∣A ∪ S/{α}.
This, together with the condition, give (using X = {α}, Y = B, W = {γ} and Z = A∪S/{α, γ} in
the intersection statement of Exercise 1) that α ⊥ B ∪ {γ}∣A ∪ S/{α, γ} as required.

5. Recall de�nition of Markov blanket; parents of A, children of A and any variables sharing a child

with A. Consider the `Bayes Ball' algorithm, started at A. The ball cannot travel through an

instantiated chain or fork connection, nor can it travel through a collider, where none of the

descendants are instantiated. Otherwise, it can travel through a node along the graph.

Therefore: if all variables in the Markov blanket are instantiated, Bayes ball cannot pass through

any of the parents (by de�nition, the connection is necessarily chain or fork). It cannot pass

through a child to any o�spring of the child (the connection necessarily chain). If it passes

25



through an instantiated child to another parent of the instantiated child, it cannot pass further:

connection at the point of the instantiated parent of the instantiated child is either chain or fork.

6. Firstly, clearly if there is an edge between α and β, then α − β is an S-active trail for any

S ⊆ V /{α,β}. If there is no edge between α and β, then there are two cases. Firstly, if α /∈MB(β)
(where MB denotes Markov blanket), then α á β∥GMB(β). If α ∈MB(β), but there is no edge

between α and β, then α and β are parents of a common child. Let C denote the set of variables

that are common children of α and β. Let

VC = C ∪ {δ ∣ there is a directed path γ → δ some γ ∈ C}.

Let S = V /({α,β}∪VC), then α á β∥GS. Then any trail between α and β through a common child

is blocked by virtue of an uninstantiated collider where none of the descendants are instantiated.

Any trail with a common ancestor is blocked by virtue of an instantiated fork. On any trail

where α is an ancestor of β or β an ancestor of α, there is an instantiated chain connection.

7. (a) All trails between X and Y contain either a fork or chain node in Z, or collider not in Z

with no descendants in Z. When Z and γ are instantiated, there is no trail between X and

Y where all the colliders are either instantiated or have an instantiated descendant and all

chain and fork connections are uninstantiated.

Suppose that X /á {γ}∥GZ and Y /á {γ}∥GZ. Then for any x ∈ X and any y ∈ Y there is

a Z-active trail between x and γ and a Z-active trail between y and γ. Consider the trail

between x and y formed by joining the two. If γ is a chain or fork node, then the trail is

active when γ is not instantiated, contradicting X á Y ∥GZ.

(b) Assume the result is not true and that α /á β∥G{γ} and α /á β∣{δ} and that α á β∥G{γ, δ}.
Then there is a {γ}-active trail between α and β with δ as a fork or chain node. Assume

that there is a collider node on the trail with γ as a descendant, then there is a collider ρ

and a trail δ → ρ1 → . . . → ρn → ρ and hence a directed path from δ to γ that does not

contain α or β contradicting γ á δ∥G{α,β}. It follows that there is a trail between α and β

containing δ with only fork and chain connections. Similarly, there is a trail between α and

β containing δ with only forks and chains. Then there is a trail between δ and γ containing

α with at most one collider α and another trail between δ and γ containing β with at most

one collider {β}. If δ á γ∣{α,β} then neither of these are colliders and hence there is a

cycle, hence a contradiction.

8. This is a direct consequence of the de�nition. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) where
yj = xj = wj for j ≠ i, xi = 1, yi = 0. Let πj(x) denote the parent con�guration for variable j

when X = x. Then, since

OP({Xi = 1}∣{XV /{Xi} = w}) =
P({Xi = 1},{XV /{Xi} = w})
P({Xi = 0},{XV /{Xi} = w})

26



OP({Xi = 1}∣XV /{Xi} = w}) =
∏d

j=1 PXj ∣Paj
(xj ∣πj(x))

∏d
j=1 PXj ∣Paj

(yj ∣πj(y))

=
PXi∣Pai

(1∣πi(x))∏j∣Xi∈Paj
PXj ∣Paj

(xj ∣πj(x))
PXi∣Pai

(0∣πi(y))∏j∣Xi∈Paj
PXj ∣Paj

(yj ∣πj(y))

and, from the de�nition, this only involves the Markov blanket of Xi; PXi∣Pai
involves Xi and

the parents of Xi, the other conditional probabilities involve the children of Xi and their parents.

27



28 CHAPTER 1. CONDITIONAL INDEPENDENCE AND GRAPHICAL MODELS



Chapter 2

Markov models and Markov equivalence

2.1 I-maps and Markov equivalence

If a probability distribution factorises according to a directed acyclic graph, then any D-separation

statement in the graph implies the corresponding conditional independence statement for the distribu-

tion. If each D-separation statement for a DAG G implies the corresponding conditional independence

statement for a probability distribution P, then P is said to belong to the Markov model of G.

De�nition 2.1 (Markov Model). Let V = {1, . . . , d} and let G = (V,D) be a directed acyclic graph with

node set V and directed edge set D. Let V denote the entire set of subsets of V . The Markov Model

MG of G = (V,D) is the set of triples (A,B,S) ∈ V ×V ×V, A,B,S disjoint, such that the D-separation

statement A á B∥GS holds in the DAG. That is,

MG = {(A,B,S) ∈ V × V × V ∣ A,B,S disjoint A á B∥GS}. (2.1)

Let P be a probability distribution of a random vector X = (X1, . . . ,Xd), whose components are indexed

by V . Let I(P) denote the entire set of conditional independence statements associated with P;

I(P) = {(A,B,S) ∈ V × V × V ∣ A,B,S disjoint XA ⊥XB ∣XS} (2.2)

where, for any set C ⊆ V , XC denotes the sub-vector of random variables indexed by C. The convention

is that if S = ∅ (the empty set) then XA ⊥XB ∣XS means XA ⊥XB. A distribution P is said to belong

to the Markov Model of G, written P ∈ MG, if and only if MG ⊆ I(P). The Markov model is the

set of conditional independence relations satis�ed by all distributions that are locally G-Markovian

(De�nition 1.26).

If a distribution P factorises along a DAG G = (V,D), then the collection of triples MG de�ned in

Equation (2.1) De�nition 2.1 represents the entire set of conditional independence statements that it is

possible to infer from the DAG. Clearly, this collection does not, in general, represent the complete set

of conditional independence statements that hold for P. In fact, the probability distributions modelling

real world situations, corresponding to data sets, very rarely factorise along a DAG whose D-separation

29



30 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

statements encode the entire set of independence statments. When it does hold, the DAG is known as

a perfect I-map.

De�nition 2.2 (Perfect I-Map, Faithful). Let G = (V,D) be a DAG with node set V = {1, . . . , d} which
indexes a random vector X = (X1, . . . ,Xd). Let V denote the set of all subsets of V . The DAG G is

known as a perfect I-map for a probability function P over X if and only if I(P) =MG. A DAG G
such that I(P) =MG is said to be faithful to P.

A DAG G = (V,D) is consistent with I(P) de�ned by Equation (2.2) if and only if G is faithful to P,
if and only if G is a perfect I-map of P.

A DAG that is faithful to a probability distribution P, satis�es the following important property:

Theorem 2.3. Let G = (V,D) be faithful to a probability distribution P. Then the edge set D contains

an edge between two nodes α and β if and only if Xα /⊥Xβ ∣XS for any S ⊆ V /{α,β}.

Proof This is a straightforward consequence of Theorem 1.24, that the edge set D contains an edge

between α and β if and only if α /á β∥GS for any S ⊆ V /{α,β}.

A set of variables (X1, . . . ,Xd), may be ordered in d! ways. Each permutation σ of 1, . . . , d gives

an ordering (Xσ(1), . . . ,Xσ(d)) and for each permutation, the distribution may be factorised according

to a Bayesian network, represented by the corresponding directed acyclic graph.

The input for the construction of the directed acyclic graph consists of a list of d conditional

independence statements, one for each variable, all of the form Xσ(j) ⊥ Σσ
j ∣Paσj , where

Σσ
j = {Xσ(1), . . . ,Xσ(j−1)}/Paσ(j).

This is the set of σ-predecessors of Xσ(j), without Pa
σ(j).

For a given collection of variables V = {X1, . . . ,Xd}, there may be several di�erent DAGs, each

with exactly the same Markov modelM. Two DAGs which determine exactly the same Markov model

are said to be I-equivalent.

De�nition 2.4 (I-sub-map, I-map, I-equivalence, Markov Equivalence). Let G1 and G2 be two DAGs

with the same node set. The DAG G1 is said to be an I-sub-map of G2 if MG1 ⊆MG2. They are said

to be I-equivalent ifMG1 =MG2. I-equivalence is also known as Markov equivalence.

Example 2.5.

In the following example on three variables, all three factorisations give the same independence struc-

ture. Consider a probability distribution PX1,X2,X3 with factorisation

PX1,X2,X3 = PX1PX2∣X1
PX3∣X2

.

It follows that



2.1. I-MAPS AND MARKOV EQUIVALENCE 31

PX1,X2,X3 = PX2PX1∣X2
PX3∣X1,X2

= PX2PX1∣X2
PX3∣X2

,

using X1 ⊥X3∣X2. Also,

PX1,X2,X3 = PX3PX2∣X3
PX1∣X2,X3

= PX3PX2∣X3
PX1∣X2

,

since X1 ⊥ X3∣X2. For the �rst and last of these, X2 is a chain node, while in the second of these X2

is a fork node. The conditional independence structure associated with chains and forks is the same.

The three corresponding DAGs are given in Figure 2.1.

2

��

2

�� ��

2

��

1

@@

3 1 3 1 3

^^

Figure 2.1: Three DAGs, each with the same D-separation structure

In general, the factorisations resulting from di�erent orderings of the variables will not necessarily give

I-equivalent maps. This is illustrated by the following example on four variables.

Example 2.6.

Consider a probability distribution over four variables, which may be factorised as

PX1,X2,X3,X4 = PX1PX2PX3∣X1,X2
PX4∣X3

.

The DAG associated with the factorisation is the one on the left in Figure 2.2. Assume that the DAG

on the left in Figure 2.2 and PX1,X2,X3,X4 are faithful to each other. The factorisation obtained using

the ordering (X1,X4,X3,X2) is:

PX1,X2,X3,X4 = PX1PX4∣X1
PX3∣X1,X4

PX2∣X1,X3,X4
= PX1PX4∣X1

PX3∣X1,X4
PX2∣X1,X3

.

This is the factorisation corresponding to a Bayesian network since

� X1 /⊥X4,

� X3 /⊥ {X1,X4}/Θ∣Θ for any Θ ⊆ {X1,X4} and

� X2 ⊥X4∣{X1,X3}, but X2 /⊥ {X1,X3,X4}/Θ∣Θ for any strict subset Θ ⊂ {X1,X3}.



32 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

1

��

2

��

1

��

//

��

2

3

��

3

@@

4 4

OO

Figure 2.2: DAGs with di�erent D-separation properties, corresponding to di�erent factorisations of

the same distribution

The corresponding DAG (the graph on the right of Figure 2.2) gives less information on conditional

independence; X4 /á X1∥G2X3, using G2 to denote the DAG on the right in Figure 2.2. The two

corresponding DAGs are shown in Figure 2.2. The graph on the right is a strict I-sub-map of the

graph on the left.

This example illustrates that while D-separated variables are conditionally independent conditioned

on the separating set, it does not hold that conditionally independent variables are necessarily D-

separated.

2.1.1 Properties of Conditional Expectation and D-Separation

For a probability distribution P over a set of variables, the collection of conditional independence

statements I(P) satis�es the following: Let (X,Y,W,Z) be disjoint sets of random variables, then the

following relations hold:

1. decomposition If X ⊥ Y ∪W ∣Z then X ⊥ Y ∣Z and X ⊥W ∣Z.

2. contraction If X ⊥ Y ∣Z and X ⊥W ∣Y ∪Z then X ⊥W ∪ Y ∣Z.

3. weak union If X ⊥ Y ∪Z ∣W then X ⊥ Y ∣Z ∪W .

4. intersection If X ⊥ Y ∣W ∪Z and X ⊥W ∣Y ∪Z then X ⊥W ∪ Y ∣Z.

These relations are discussed by Pearl in [105] (1988). The proofs of these are quite straightforward

and have been left as exercises (Exercise 1 page 22).

The Markov model MG for a DAG G also satis�es the following: let (X,Y,W,Z) be four sets of

nodes in a DAG G = (V,D), then the following relations hold:

1. decomposition If X á Y ∪W ∥GZ then X á Y ∥GZ and X áW ∥GZ.

2. contraction If X á Y ∥GZ and X áW ∥GY ∪Z then X áW ∪ Y ∥GZ.

3. weak union If X á Y ∪Z∥GW then X á Y ∥GZ ∪W .



2.1. I-MAPS AND MARKOV EQUIVALENCE 33

4. intersection If X á Y ∥GW ∪Z and X áW ∥GY ∪Z then X áW ∪ Y ∥GZ.

These have been left as exercises (Exercise 2 page 22). A collection of triples (Xi, Yi, Si)i∈I , where I
denotes the indexing set and each (Xi, Yi, Si) ∈ V×V×V, Xi, Yi, Si mutually disjoint which satis�es these

four conditions has come to be known as a graphoid. These statements do not axiomatise conditional

independence; if a given set of triples satis�es these four conditions, there does not necessarily exist a

probability distribution P for which the set of conditional independence statements is I(P). Conditional
independence cannot be axiomatised; this was proved by Studen�y [130].

A collection of D-separation statements for a DAG also satis�es the composition property;

5 composition If both X á Y ∥GS and X á Z∥GS hold, then X á Y ∪Z∥GS.

A graphoid that also satis�es composition is known as a compositional graphoid. The Markov model

of a DAGMG is always a compositional graphoid; the collection of independence statements I(P) is
not necessarily a compositional graphoid.

A Markov modelMG also satis�es the following two properties, which are not necessarily satis�ed by

a collection of conditional independence statements I(P).

� Let V = A ∪B ∪ S where A,B and S are disjoint subsets and suppose that A á B∥GS. Then for

any α ∈ A and γ ∈ A ∪ S,

α á γ∥G(A ∪ S)/{α, γ}⇔ α á γ∥G(A ∪B ∪ S)/{α, γ}.

� Let G = (V,D) denote a directed acyclic graph. Let X ⊆ V , Y ⊆ V and Z ⊆ V denote sets of

nodes and let α,β, γ, δ ∈ V /X ∪ Y ∪Z denote individual nodes.

� If X á Y ∥GZ and X á Y ∥GZ ∪ {γ} then either X á {γ}∥GZ or Y á {γ}∥GZ

� If α á β∥G{γ, δ} and γ á δ∥G{α,β} then either α á β∥G{γ} or α á β∥G{δ}.

The proofs of these statements are left as exercises. They are included here simply as illustration of the

additional structure that is required for a Markov modelMG over and above the set of independence

statements I(P) for a probability distribution that factorises over G.

The following basic example illustrates a situation where composition does not hold for the probability

distribution and where there is no faithful DAG.

Example 2.7 (Tossing Three Coins).

Let Y1, Y2, Y3 be three independent identically distributed binary variables, with probability function

PY (0) = PY (1) = 1
2 . Let

X1 =
⎧⎪⎪⎨⎪⎪⎩

1 Y2 = Y3
0 Y2 ≠ Y3



34 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

X2 =
⎧⎪⎪⎨⎪⎪⎩

1 Y1 = Y3
0 Y1 ≠ Y3

X3 =
⎧⎪⎪⎨⎪⎪⎩

1 Y1 = Y2
0 Y1 ≠ Y2

Then X1,X2,X3 provide the classic example of three random variables that are pairwise independent,

but not jointly independent.

PX1,X2,X3(1,1,1) = P(Y1 = Y2 = Y3) = PY1,Y2,Y3(1,1,1) + PY1,Y2,Y3(0,0,0) =
1

4

PX1,X2,X3(1,1,0) = PX1,X2,X3(1,0,1) = PX1,X2,X3(0,1,1) = P(Y2 = Y3 = Y1, Y1 ≠ Y2) = 0

PX1,X2,X3(1,0,0) = PX1,X2,X3(0,1,0) = PX1,X2,X3(0,0,1) = P(Y2 = Y3, Y1 ≠ Y3, Y1 ≠ Y2)

= P(Y1 = 1, Y2 = Y3 = 0) + P(Y1 = 0, Y2 = Y3 = 1) =
1

4

PX1,X2,X3(0,0,0) = 0

It follows that

PX1,X2(1,1) = PX1,X2(1,0) = PX1,X2(0,1) = PX1,X2(0,0) =
1

4

so that PX1(1) = PX1(0) = 1
2 and in all cases

PX1,X2 = PX1PX2 .

But
1

4
= PX1,X2,X3(1,1,1) ≠ PX1(1)PX2(1)PX3(1) =

1

8
.

Since X1 ⊥ X2 but X3 /⊥ {X1,X2}, X3 /⊥ X1∣X2 and X3 /⊥ X2∣X1, it follows that the factorisation

obtained for the distribution PX1,X2,X3 is

PX1,X2,X3 = PX1PX2PX3∣X1,X2
.

In the corresponding DAG, X1 /áX2∥G∅, X1 /áX3∥G∅ and X2 /áX3∥G∅, even though the independence

statements X1 ⊥X3 and X2 ⊥X3 hold.

By considering other orderings of the variables, the other possible factorisations are

PX1,X2,X3 = PX1PX3PX2∣X1,X3
= PX2PX3PX1∣X2,X3

and in none of the cases do the D-separation statements of the DAG corresponding to the Bayesian

Network represent all the conditional independence statements of the distribution.

The type of situation described here, where the distribution does not satisfy a composition property,

can be summarised as follows: it is the situation where X1 tells you nothing about X3 and X2 tells you

nothing about X3, but X1 and X2 taken together tell you everything about X3. This is the principle on

which any good detective novel is based, as Edward Nelson puts it in his book `Radically Elementary

Probability Theory' [100].



2.1. I-MAPS AND MARKOV EQUIVALENCE 35

The argument shows that in experimental design situations where there are interaction e�ects, but

no main e�ects (e.g. each chemical taken separately does not produce an e�ect, but the interaction

between two chemicals causes an e�ect), composition will not hold and there will not exist a faithful

DAG.

There is a whole industry of structure learning algorithms, based on the principle of Theorem 2.3,

which deleted an edge as soon as a conditioning set is found such that X ⊥ Y ∣S. These algorithms are

elegant, cost-e�ective, e�cient, and return accurate results if the underlying distribution has a faithful

graph. They are discussed in chapter 16. Their draw-back is that they produce wildly inaccurate

results when there does not exist an underlying faithful graph. Note that if such a structure learning

algorithm were applied to the three-coin example above, where X1 ⊥ X2, X1 ⊥ X3 and X2 ⊥ X3, such

an algorithm would remove all the edges based on the results of conditioning on S = ∅ and return the

empty graph. The model delivered by the algorithm would then be the independence model, which

represents a disastrous failure.

Example 2.8 (Hidden Variables).

In many causal situations, the set of variables X may be split into observable variables Z and unobserv-

able variables, U . Usually, the observable variables are descendants of the unobservable; observations

are made on the observable and, from these observations, inferences made about the unobservable. For

example, the variables of Z could represent symptoms, while those of U could represent the diseases

that cause the symptoms.

Even if there is a faithful DAG corresponding to the full set of variables X = (U,V ), there is often
no faithful DAG corresponding to the observable variables Z. For example, consider a probability

distribution over the 5 variables {U,Z1, Z2, Z3, Z4} which factorises according to

PU,Z1,Z2,Z3,Z4 = PUPZ3PZ4∣Z3
PZ1∣U,Z3

PZ2∣U,Z4

and suppose the corresponding graph given by Figure 2.3 is faithful. In this example, there is no faithful

DAG for the distribution over (Z1, Z2, Z3, Z4); the set of D-separation statements for any DAG along

which the distribution can be factorised will be a strict subset of the set of conditional independence

statements. Two examples of factorisations are:

PZ1,Z2,Z3,Z4 = PZ1PZ2∣Z1
PZ3∣Z1,Z2

PZ4∣Z1,Z2,Z3

PZ1,Z3,Z4,Z2 = PZ1PZ3∣Z1
PZ4∣Z3

PZ2∣Z1,Z3,Z4

When all 24 permutations are considered, either an edge Z2 ∼ Z3 or an edge Z1 ∼ Z4 will be present,

even though Z2 ⊥ Z3∣Z4 and Z1 ⊥ Z4∣Z3. None of the DAGs corresponding to the Bayesian Networks

of all 24 possible orderings of the variables will represent all the CI statements.



36 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

U1

  

// Z2 Z4
oo

Z1 Z3
oo

OO

Figure 2.3: Faithful DAG, U1 hidden

2.2 Characterisation of Markov Equivalence

When trying to �t a graphical model to data, all the DAGs in a Markov equivalence class will �t

the data equally well and e�cient algorithms for �nding the structure will therefore only examine the

di�erent equivalence classes, rather than all the di�erent possible DAGs.

X2

X1

==

X3

aa

Figure 2.4: Not Markov Equivalent to the Graphs in Figure 2.1

Figure 2.1 shows three directed acyclic graphs, each with the same D-separation statements;

X1 á X3∥GX2 and the DAG does not admit any other D-separation statements. The D-separation

statements of the DAG in Figure 2.4 are di�erent from those for the DAGs in Figure 2.1.

The key result in this section characterising Markov equivalence is Theorem 2.11, which states

that the two features of a directed acyclic graph which are necessary and su�cient for determining its

Markov structure are its immoralities and its skeleton. These are de�ned below.

De�nition 2.9 (Immorality). Let G = (V,E) be a graph. Let E =D∪U , where D is the set of directed

edges, U is the set of undirected edges and D ∩ U = ∅. An immorality in a graph is a triple (α,β, γ)
such that (α,β) ∈D and (γ, β) ∈D, but (α, γ) /∈D, (γ,α) /∈D and ⟨α, γ⟩ /∈ U .

De�nition 2.10 (Skeleton). The skeleton of a graph G = (V,E) is the graph obtained by making the

graph undirected. That is, the skeleton of G is the graph G̃ = (V, Ẽ) where ⟨α,β⟩ ∈ Ẽ⇔ (α,β) ∈ D or

(β,α) ∈D or ⟨α,β⟩ ∈ U .

The characterisation is given by the following theorem.

Theorem 2.11. Two DAGs are Markov equivalent if and only if they have the same skeleton and the

same immoralities.



2.2. CHARACTERISATION OF MARKOV EQUIVALENCE 37

The key to establishing Theorem 2.11 will be to consider the active trails (De�nition 1.17) in the graph.

The following two de�nitions are also required.

De�nition 2.12 (S-active node). Let G = (V,E) be a Directed Acyclic Graph and let S ⊂ V . Recall

the de�nition of a trail (De�nition 1.4) and the de�nition of an active trail (De�nition 1.17). A node

α ∈ V is said to be S-active if either α ∈ S or there is a directed path from the node α to a node β ∈ S.

De�nition 2.13 (Minimal S- active trail). Let G = (V,E) be a Directed Acyclic Graph and let S ⊂ V .
An S-active trail τ in G between two nodes α and β is said to be a minimal S- active trail if it satis�es

the following two properties:

1. if k is the number of nodes in the trail, the �rst node is α and the kth node is β, then there does

not exist an S-active trail between α and β with fewer than k nodes and

2. there does not exist a di�erent S-active trail ρ between α and β with exactly k nodes such that

for all 1 < j < k either ρj = τj or ρj is a descendant of τj.

The proof of Theorem 2.11 follows directly from Lemma 2.14.

Lemma 2.14. Let G1 = (V,D1) and G2 = (V,D2) be two directed acyclic graphs with the same skeletons

and the same immoralities. Then for all S ⊂ V , a trail is a minimal S-active trail in G1 if and only if

it is a minimal S-active in G2.

Proof of Lemma 2.14 Recall the notation from De�nition 1.2; α ∼ β denotes that two nodes (α,β) ∈
V ×V are neighbours. For a directed graph G = (V,D), that is either (α,β) ∈D or (β,α) ∈D. Since G1
and G2 have the same skeletons, any trail τ in G1 is also a trail in G2. Let S ⊂ V . Assume that τ is a

minimal S-active trail in G1. It is now proved, by induction on the number of collider nodes along the

path, that τ is also an S-active trail in G2. By de�nition, a single node will be considered an S-active

trail, for any S ⊂ V . The proof is in three parts: Let τ be a minimal S-active trail in G1. Then

1. If τ contains no colliders in G1, then it is S-active in G2.

2. If τ contains at least one collider connection centred at node τj , then τ is S-active in G2 if and

only if τj is S-active in G2.

3. If τ contains at least one collider centred at node τj , then τj is an S-active node in G2.

Part 1 If τ is an S-active trail in G1 and does not contain any collider connections in G1, then none of

the nodes on τ are in S. This can be seen by considering the Bayes ball algorithm, which characterises

d-separation. It follows that the trail is S-active in G2 if and only if it does not contain a collider

connection in G2.
Let τ be a minimal S-active trail in G1 with k nodes and no collider connections in G1. Suppose

that a node τi is a collider node in G2, so that τi−1 and τi+1 are parents of τi in G2. Then, so that no

new immoralities are introduced, it follows that τi−1 ∼ τi+1. Since τi is either a chain or a fork in G1,
it follows that in G1, the connections between nodes τi−2, τi−1, τi, τi+1, τi+2 take one of the forms shown

in Figure 2.5 when τi a chain node or those in Figure 2.6 when τi a fork node.



38 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

τi−2 // τi−1

!!

// τi+1 // τi+2

τi

==

τi−2 τi−1

!!

//oo τi+1 // τi+2

τi

==

τi−2 τi−1oo τi+1oo

}}

// τi+2

τi

aa

τi−2 τi−1oo τi+1oo

}}

τi+2oo

τi

aa

Figure 2.5: Possible connections between the nodes when τi is chain node

It is clear from the �gure that the trail of length k−1 in G1, obtained by removing τi and using the

direct link from τi−1 to τi+1 is also an S-active trail in G1, contradicting the assumption that τ was a

minimal S-active trail. Hence τi is a chain node or a fork node in G2.
It follows that there are no collider connections along the trail τ taken in G2 and hence, since it

does not contain any nodes that are in S, it is an S- active trail in G2.

Part 2 Assume that any minimal S-active trail in G1 containing n collider connections is also S-active

in G2. This is true for n = 0 by part 1. Let τ be a trail with k nodes that is minimal S-active in G1
and with n + 1 collider connections in G1. Consider one of the collider connections centred at τj , with

parents τj−1 and τj+1. Let τ̃ (0,j−1) = (τ0, τ1, . . . , τj−2, τj−1) and let τ̃ (j+1,k) = (τj+1, . . . , τk). Both τ̃ (0,j−1)

and τ̃ (j+1,k) are minimal S-active in G1 and they both have a number of collider connections less than

or equal to n. By the inductive hypothesis, they are therefore both S-active in G2.
Because the trail τ is minimal S-active in G1, it follows that τj−1 /∼ τj+1. This is because both τj−1

and τj+1 are S- active nodes in G1 (they have a common descendant in S to make the trail active), and

neither is in S (neither is the centre of a collider along τ) it follows that if τj−1 ∼ τj+1, then the trail

on k − 1 nodes obtained by removing the node τj would be S-active in G1, for the following reason:

any chain or fork (τj−2, τj−1, τj+1) or (τj−1, τj+1, τj+2) would be active because both τj−1 and τj+1 are



2.2. CHARACTERISATION OF MARKOV EQUIVALENCE 39

τi−2 τi−1oo τi+1oo // τi+2

τi

==aa

τi−2 τi−1 //oo τi+1 // τi+2

τi

==aa

Figure 2.6: Possible connections between the nodes if τi is a fork node

uninstantiated. Any collider (τj−2, τj−1, τj+1) or (τj−1, τj+1, τj+2) would be active because both τj−1

and τj+1 have a descendant in S. It follows that τj−1 /∼ τj+1. This holds in both G1 and G2, since the
skeletons are the same.

Since τ̃ (1,i−1) and τ̃ (i+1,k) are both active, and τj−1 → τj ← τj+1 is a collider, the trail τ is active if and

only if τj is an active node. That is, it is either in S or has a descendant in S.

Part 3 Let τ be a minimal S-active trail in G1 and let τj ∈ τ be a collider node in G1. Since the trail
τ is a minimal S-active trail in G1, it follows either that τj ∈ S or τj , considered in G1, has a descendant
in S. That is, considered in G1, there is a directed path from τj to a node w ∈ S. Let ρ denote the

shortest such path. If τj ∈ S, then the length of the path is 0 and τj is also an S-active node in G2.
Assume there is a directed edge from τj to w ∈ S in G1. If there are links from τj−1 to w or τj+1

to w, then these links are τj−1 → w or τj+1 → w respectively, otherwise the DAG would have cycles. If

both are present, then the trail τ violates the second assumption of the minimality requirement. This

is seen by considering the trail formed by taking w instead of τj in τ . It follows that either τj−1 /∼ w
or τj+1 /∼ w or neither of the edges are present. Without loss of generality, assume τj−1 /∼ w (since the

argument proceeds in the same way if τj+1 /∼ w). The diagram in Figure 2.7 may be useful.

τj−1 // τj

��

τj+1oo

{{
w

Figure 2.7: Illustration where τj is an uninstantiated collider node

Since w is not a parent of τj in G1, it cannot be a parent of τj in G2, since both graphs have the

same immoralities and (τj−1, τj ,w) is not an immorality in G1.
Furthermore, τj−1 /∼ τj+1 (since they are both uninstantiated, and, in G1 both have a common



40 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

descendant in S, so that if τj−1 ∼ τj+1 then the trail with τj removed would be active whether the

connections at τj−1 and τj+1 are chain, fork or collider, contradicting the minimality assumption).

Since both graphs have the same immoralities and τj−1 /∼ τj+1, it follows that (τj−1, τj , τj+1) is an

immorality in both G1 and G2 and hence that τj−1 is a parent of τj in G2. Therefore, τj is a parent of

w in G2 and is therefore w is an S- active node in G2.
Assume that for the shortest directed path ρ from τj to w in G1, the �rst l links have the same

directed edges in G2. Now suppose that the shortest directed path is ρ, where τj = ρ0, . . . , ρl+p = w
and consider the links ρl ∼ ρl+1 and ρl+1 ∼ ρl+2. If ρl ∼ ρl+2, then in G1, the directed edge ρl → ρl+2
is present, otherwise there is a cycle. If the directed edge ρl → ρl+2 is present in G1, then the path

ρ is not minimal. Therefore, ρl /∼ ρl+2. This holds in both G1 and G2, because both graphs have the

same skeletons. By a similar argument, ρl−1 /∼ ρl+1. (there would be a cycle in G1 if (ρl+1, ρl−1) were
present; ρ would not be minimal in G1 if (ρl−1, ρl+1) were present. Since the skeletons are the same,

ρl−1 /∼ ρl+1 in either G1 or G2). Since ρl /∼ ρl+2, it follows that ρl and ρl+2 are not both parents of ρl+1 in

G2; otherwise G2 would contain an immorality not present in G1. Similarly, since ρl−1 /∼ ρl+1, the edge
ρl → ρl+1 is present in G2, otherwise G2 would have either the immorality (ρl−1, ρl, ρl+1), since the edge
(ρl−1, ρl) is present in G2 by assumption. It follows that the directed edges (ρl, ρl+1) and (ρl+1, ρl+2)
are both present in G2. By induction, therefore, the whole directed path ρ is also present in G2 and

hence τj is an S- active in both G1 and G2.

Proof of Theorem 2.11 This follows directly: let G1 and G2 denote two DAGs with the same

skeleton and the same immoralities. For any set S and any two nodes α and β, it follows from the

lemma, together with the de�nition of D- separation, that

α á β∥G1S⇔ α á β∥G2S; (2.3)

if there is an S-active trail between the two variables in one of the graphs, then there is a minimal

S-active trail in that graph and hence there is also a minimal S-active trail between the two variables

in the other. If there is no S-active trail between the two variables in one of the graphs then there is

no S active trail between the two variables in the other. By de�nition, two variables are D-separated

by a set of variables S if and only if there is no S-active trail between the two variables. Two graphs

are Markov equivalent, or I-equivalent (De�nition 2.4), if and only if Equation (2.3) holds for all

(α,β,S) ∈ V × V × V.

2.2.1 Example 2.8 (Hidden Variables) Revisited

Consider the situation where there is a faithful DAG for the variable set X = (U,Z) where U denotes

the set of hidden variables and Z the set of observable variables. In situations where there is no faithful

DAG for the variable set Z, it is possible using the principles of Theorem 2.3 and 5.5 to locate a set

of hidden variables Ũ such that a faithful graph can be constructed for (Ũ ,Z).
If the principle of Theorem 2.3 is applied to Z = (Z1, Z2, Z3, Z4) in Example 2.8, then there is an

edge Z1 ∼ Z2, Z2 ∼ Z4, Z3 ∼ Z4, Z1 ∼ Z3. The directions are yet to be speci�ed. No other edges will be



2.3. MARKOV EQUIVALENCE AND THE ESSENTIAL GRAPH 41

present, since Z2 ⊥ Z3∣Z4 and Z1 ⊥ Z4∣Z3. Since Z1 ⊥ Z4∣Z3, it follows that Z1 −Z3 −Z4 cannot be an

immorality. Since Z3 ⊥ Z2∣Z4, it follows that Z3 −Z4 −Z2 cannot be an immorality. Both Z1 −Z2 −Z4

and Z2 −Z1 −Z3 are required to be immoralities, which is not possible. Therefore, either Z1 −Z2 −Z4

is not an immorality, in which case the model returned contains the false independence statement

Z1 ⊥ Z4∣{Z2, Z3}, or else Z2 −Z1 −Z3 is not an immorality, in which case the model returned contains

the false independence statement Z2 ⊥ Z3∣{Z1, Z4}.
At the same time, the requirement that both Z1 − Z2 − Z4 and Z2 − Z1 − Z3 are immoralities can

be resolved by adding in a hidden variable U to obtain Figure 2.3.

2.3 Markov Equivalence and the Essential Graph

Consider the DAG in Figure 2.8. Using the characterisation given by Theorem 2.11, the DAG in

Figure 2.8 is equivalent to the DAGs in Figure 2.9.

α2

!!

α1

==

//

!!

α4

α3

==

Figure 2.8: A DAG on four nodes

α2

!!

α2

}} !!

α1

==

// α4 α1

!!

// α4

α3

==aa

α3

==

Figure 2.9: The equivalent DAGs

For the DAG in Figure 2.8, all the DAGs with the same skeleton can be enumerated, and it is

clear that those in Figure 2.9 are the only two that satisfy the criteria. To �nd the DAGs equivalent

to the one in Figure 2.8, the immorality (α2, α4, α3) has to be preserved and no new immoralities



42 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE

may be added. The directed edges (α1, α4), (α2, α4) and (α3, α4) are therefore essential; the directed
edges (α2, α4) and (α3, α4) to form the immorality, the directed edge (α1, α4) because the connection
(α2, α1, α3) is either a fork or chain, forcing (α1, α4) to prevent a cycle. These three directed edges

will be present in any equivalent DAG. The other three edges may be oriented in 23 di�erent ways, but

only 5 of these lead to DAGs (the other graphs contain cycles) and of these 5, only the three shown in

Figures 2.8 and 2.9 have the same immoralities.

A useful starting point for locating all the DAGs that are Markov equivalent to a given DAG is to

locate the essential graph, given in the following de�nition.

De�nition 2.15 (Essential Graph). Let G be a Directed Acyclic Graph. The essential graph G∗

associated with G is the graph with the same skeleton as G, but where an edge is directed in G∗ if and
only if it occurs as a directed edge with the same orientation in every DAG that is Markov equivalent

to G. The directed edges of G∗ are the essential edges of G.

The edges that are directed in an essential graph are the compelled edges.

De�nition 2.16 (Compelled Edge). Let G = (V,E) be a chain graph, where E = D ∪ U . A directed

edge (α,β) ∈D is said to be compelled if it occurs in at least one of the con�gurations in Figure 2.10.

γ1

��

β α

��

γ1

��

α

@@

β

γ1

  

α //

!!

β α // β

γ1

==

γ2

>>

Figure 2.10: The directed edge (α,β) is compelled (De�nition 2.16)

Lemma 2.17. In an essential graph, the directed edges are the compelled edges; all other edges are

undirected.

Proof From the de�nition, the directed edges are those that necessarily have the same direction in

every Markov equivalent DAG. The �gure in the top right shows the immoralities; these are necessarily



2.3. MARKOV EQUIVALENCE AND THE ESSENTIAL GRAPH 43

directed. The direction is forced in the �gure in the top left; otherwise the graph contains an additional

immorality. The direction is forced in the structure on the bottom left; otherwise there is a cycle. The

direction is forced in the structure in the bottom right; otherwise both (γ1, α) and (γ2, α) are forced
to prevent cycles appearing and (γ1, α, γ2) is an additional immorality.

To show that these are the only compelled edges: Consider two nodes α and β which are neighbours.

Firstly, suppose that α and β do not have any other common neighbours. If α does not have a neighbour

γ such that there is a directed edge (γ,α), then the direction (α,β) is not forced; no additional

immorality or cycle is created by either direction.

Now suppose that α and β have at least one common neighbour. Suppose that there are no

neighbours γ such that both (α, γ), (γ, β) in the directed edge set, then it is not necessary to force the

direction (α,β) to prevent a cycle.

Suppose, furthermore, that there is no pair of common neighbours γ1 and γ2, such that (γ1, β)
and (γ2, β) are both in the directed edge set and (γ1, α, γ2) is not an immorality. Then it is not

necessary to force the direction (α,β) to prevent either (γ1, α, γ2) becoming an immorality or else a

cycle appearing.

Notes The terminology Markov model corresponding to a Directed Acyclic Graph G = (V,E) was
introduced into the literature and may be found in Andersson, Madigan, Perlman and Triggs [2].The

results on Markov equivalence are taken from T. Verma and J. Pearl [140]. The rules for determining

compelled edges were formulated by Meek in [93]. A rigorous treatment covering chain graphs is [129]

(Studený). Exercise 7 page 352 is taken from [150], while Exercises 4 page 352 and 5 page 352 are

taken from Chickering [24].



44 CHAPTER 2. MARKOV MODELS AND MARKOV EQUIVALENCE



Chapter 3

Intervention Calculus

3.1 Causal Models and Bayesian Networks

In many applications, a Bayesian network is constructed as a causal model, where for each variable,

its parent variables are considered to be direct causes that in�uence the value taken by the variable.

For example, an earth tremor or a burglary can cause the burglar alarm to go o� and the arrows in

the associated collider DAG represent cause to e�ect relations. It is self evident, but nevertheless has to

be stated, that only associations can be inferred from an n×d data matrix x of instantiations; directions

of cause to e�ect cannot be inferred from data alone. When conditional independence statements are

learned from data, this can be interpreted as a Markov model and it may be possible to construct an

e�cient factorisation of the distribution using these conditional independence statements. Clearly, this

factorisation cannot be understood as a causal model, unless there are other modelling assumptions.

For example, consider a model containing observable variables A,B,C, where there are hidden

variables H1,H2 that are unknown to the experimenter. If the causal diagram representing the causal

relations between these variables is given by the DAG on the left in Figure 3.1, then the learned DAG,

along which the distribution of A,B,C can be factorised, is the DAG on the right of Figure 3.1.

This is the correct DAG, in that it preserves the D-connection properties between A,B, C, but the

collider connection cannot be interpreted as A and B having a causal e�ect on C; they are e�ects of

the latent common causes H1 and H2.

If a Bayesian network is to be interpreted as a causal model, then the possible directions of cause

H1

~~   

H2

~~   

A

��

B

��

A C B C

Figure 3.1: Hidden causes and the learned DAG

45



46 CHAPTER 3. INTERVENTION CALCULUS

to e�ect must be part of the modelling assumptions before the data is analysed, determined by other

considerations. The data analysis only determines which directed edges remain and which are removed.

From data, one can determine whether or not there is an association between earth tremors and alarms

triggered; it is not possible to determine from the data what causes what.

This is self evident, but surprisingly it turns out that it is necessary to state this. The purpose of

the article by Freedman and Humphreys [43] (1999) was to point out the obvious fact that causality

could not be inferred from data alone and was a necessary response to obvious errors in the literature;

the term `causal discovery' has been used in surprising ways, to describe learning a directed edge in

a DAG. even after it had been established, with simple concrete and obvious examples, that the idea

that such arrows learned from data alone actually represented causality, was ridiculous and long after

publication of [43] illustrating that it was ridiculous. The article by Freedman and Humphreys is a

good article; it is surprising that the literature had degenerated to such an extent that it was necessary

for the authors to write it.

To de�ne a causal network, an additional ingredient is needed; this is the concept of intervention,

introduced by Judea Pearl in the seminal article [107] from 1995.

3.2 Conditioning by Observation and by Intervention

Let X and Y be two random variables and suppose that X = x is observed. Then the conditional

probability of Y = y is de�ned as

PY ∣X(y∣x) =
PX,Y (x, y)
PX(x)

.

This formula describes the way that the probability distribution of the random variable Y changes

after X = x is observed. If, instead, the value X = x is forced by the observer, irrespective of other

considerations, the conditional probability statement is invalid.

If random variables are linked through a causal model, expressed by a directed acyclic graph,

where parent variables have a causal e�ect on their children, some attempt can be made to compute

the probability distribution over the remaining variables when the states of some variables are forced.

In a controlled experiment, a variable is forced to take a particular value, chosen at random,

irrespective of the other variables in the network. In terms of the directed acyclic graph, the variable

is instantiated with this value, the directed edges between the variable and its parents are removed

(because the parents no longer have in�uence on the state of the variable) and all other conditional

probabilities remain unaltered.

3.3 The Intervention Calculus for a Bayesian Network

Notations For any A = (i1, . . . , im) ⊂ V , let XA = (Xi1 , . . . ,Xim) and, for x = (x1, . . . , xd) ∈ X , let
xA = (xi1 , . . . , xim). The set di�erence, written V /A, is de�ned as all the indices in V which are not

included in A. A change of order of the variables will be employed for convenience, which should be

clear from the context:



3.3. THE INTERVENTION CALCULUS FOR A BAYESIAN NETWORK 47

x = xV = ×dv=1xv = (×v∈V /Axv).(×v∈Axv) = xV /A.xA.

Let ϕ be a function de�ned on X . Then the quantity ∑V /A ϕ is de�ned as

⎛
⎝∑V /A

ϕ
⎞
⎠
(xA) = ∑

xV /A

ϕ(xV /A.xA).

De�nition 3.1 (The Intervention Formula). The conditional probability of XV /A = xV /A, given that

the variables XA were forced to take the values xA independently of all else, is written

PV /A∥A(xV /A∣XA ← xA) or PV /A∥A(xV ∥xA)

and de�ned as

PV /A∥A(xV /A∣XA ← xA) = PV /A∥A(xV /A∥xA) = ∏
v∈V /A

Pv∣Pa(v)(xv ∣xPa(v)). (3.1)

Note that (3.1) is equivalent to:

PV /A∥A(xV /A∥xA) =
PV (xV )

∏v∈A Pv∣Pa(v)(xv ∣xPa(v))
. (3.2)

The last expression of Equation (3.1) is in terms of the required factorisation; instantiation of the

variables indexed by the set A and elimination of those edges in D which lead from the parents of the

nodes inA to the nodes in V /A. The terminology `local surgery' is used to describe such an elimination.

A local surgery is performed and the conditional probabilities on the remaining edges are multiplied.

This yields a factorisation along a mutilated graph where the direct causes of the manipulated variable

are put out of e�ect.

The intervention formula (3.1) is obtained by wiping out those factors from the factorisation which cor-

respond to the interventions. An explicit translation of intervention in terms of `wiping out' equations

was �rst proposed by Strotz and Wold [128] (1960).

The quantity PV /A∥A(.∥xA) from De�nition 3.1 de�nes a family of probability measures over XV /A,

which depends on the values xA, which may be considered as parameters. These are the values forced

on the variables indexed by A. This family includes original probability measure; if A = ∅, then
PV /A∥A(.∥xA) = PX(.). This family is known as the intervention measure. In addition, the expression

on the right hand side of (3.1) is called the intervention formula.

Intervention An `intervention' is an action taken to force a variable into a certain state, without

reference to its own current state, or the states of any of the other variables. It may be thought of as

choosing the values x∗A for the variables XA by using a random generator independent of the variables

X.



48 CHAPTER 3. INTERVENTION CALCULUS

Remark In the same style of notation, conditioning by observation is

PXV /A∣XA
(xV /A∣see(xA)) = PXV /A∣XA

(xV /A∣xA) (3.3)

where, by the standard de�nition of conditional probability,

PV /A∣A(xV /A∣xA) =
PV (x)
PX(xA)

. (3.4)

Example 3.2.

Consider the DAG given in Figure 3.2, for `X having causal e�ect on Y '.

X // Y

Figure 3.2: A DAG for X having causal e�ect on Y

The factorisation of PX,Y along the DAG in Figure 3.2 is

PX,Y (x, y) = PY ∣X(y∣x)PX(x)

and the intervention formula gives

PY ∥X(y∥x) = PY ∣X(y∣x).

Since X is a parent of Y , the intervention to force X = x produces exactly the same conditional

probability distribution over Y as observing X = x. But if instead Y is forced, the intervention formula

yields

PX∥Y (x∥y) = PX(x).

Clearly, PX∥Y (x∥y) ≠ PX ∣Y (x∣y) as functions unless X and Y are independent.

Example 3.3 (The DAG for a wet pavement).

The `wet pavement' example is a classic illustration, introduced by Judea Pearl. See, for example, page

15 of [109]. The DAG represents a causal model for a wet pavement and is given in Figure 3.3. The

season A has four states; spring, summer autumn, winter. Rain B has two states; yes / no. Sprinkler

C has two states; on / o�. Wet pavement D has two states; yes / no. Slippery pavement E has two

states; yes / no.

The joint probability distribution is factorised as

PA,B,C,D,E = PAPB∣APC∣APD∣B,CPE∣D.



3.4. CAUSAL MODELS 49

B

  

A

??

��

D // E

C

>>

Figure 3.3: DAG for wet pavement, no intervention

Suppose, without reference to the values of any of the other variables and without reference to the

current state of the sprinkler, `sprinkler on' is now enforced. This could be, for example, regular mainte-

nance work, which is carried out at regular intervals, irrespective of the season or other considerations.

Then

PA,B,D,E∥C(.∥C ← 1) = PA,B,C,D,E(., .,1, ., .)
PC∣A(1∣.)

= PAPB∣APD∣B,C(.∣.,1)PE∣D.

After observing that the sprinkler is on, it may be inferred that the season is dry and that it probably

did not rain and so on. If `sprinkler on' is enforced, without reference to the state of the system when

the action is taken, then no such inference should be drawn in evaluating the e�ects of the intervention.

The resulting DAG is given in Figure 3.4. It is the same as before, except that C = 1 is �xed and the

edge between C and A disappears. The deletion of the factor PC∣A represents the understanding that

whatever relationships existed between sprinklers and seasons prior to the action, found from

PA,B,D,E∣C(., ., ., .∣1)

are no longer in e�ect when the state of the variable is forced, as in a controlled experiment, without

reference to the state of the system.

After observing that the sprinkler is on, it may be inferred that the season is dry, that it probably

did not rain and so on. No such inferences may be drawn in evaluating the e�ects of the intervention

`ensure that the sprinkler is on'.

3.4 Causal Models

Having de�ned the family of intervention measures, the concept of causal model may now be de�ned.

De�nition 3.4 (Causal Model). Let X = (X1, . . . ,Xd) be a random vector and let V = {1, . . . , d}
denote the indexing set. A causal model consists of the following:



50 CHAPTER 3. INTERVENTION CALCULUS

B = 1

""

A

""

D // E

C

<<

Figure 3.4: Sprinkler `on' is forced

1. A Bayesian Network for PX , that is, an ordering σ of the indices V , a factorisation of the

probability distribution

PV =
d

∏
j=1

P
σ(j)∣Pa(σ)(j)

(3.5)

where Pa(σ)(j) ⊆ {σ(1), . . . , σ(j − 1)} and is the smallest such subset such that (3.5) holds.

2. The node set V consists of two types of nodes; VI and VN , where VI ∩ VN = ∅ and VI ∪ VN =
V . The nodes VI are the interventional nodes and VI are the non-interventional nodes, where

no intervention is possible. The intervention formula (3.1) holds for each subset A ⊆ VI of

interventional nodes and each xA ∈ XA.

The arrows α ↦ β of the DAG for either α or β (or both) in VI are causal arrows, indicating direct

cause to e�ect. The remaining arrows are non-causal; a cause to e�ect relation between nodes α and

β cannot be inferred from an arrow α ↦ β if both α,β ∈ VN .

In many cases, a model contains hidden variables, which cannot be observed. A special case of this is

the semi-Markov model, where the hidden variables are common causes and where none of the hidden

variables have observable anscestors.

De�nition 3.5 (Semi-Markov Model). A semi-Markov model is a causal model for a random vector

X with node set V = V ∪U, where V are the observable variables, VI ⊂ V (intervention can be made

on a subset of the observable nodes), VN = V/VI (observable nodes on which intervention cannot be

made) and VN =VN ∪U.

The nodes of VI correspond to interventional variables, U ⊂ VN are the hidden (latent) variables

and VN represent the observable variables on which no intervention can be made.

For a semi-Markov model, the requirement is that the variables of U have no ancestors in V.

Notation Throughout, if a variable is named U , or Ui (for some index i), it may be assumed that

the variable (or its index) belongs to U.



3.4. CAUSAL MODELS 51

3.4.1 Establishing a Causal Model via a Controlled Experiment

If su�cient data is available, a suitable Bayesian Network may be learned from the data. A causal

model cannot be established from data alone. Additional information is needed, which is obtained

through interventions on the interventional variables.

For example, the three graphs in Figure 3.5 are Markov equivalent; if the probability distribution

factorises along one of these graphs, it also factorises along the others. The chains α → γ → β and

α ← γ ← β and the fork α ← γ → β are all Markov equivalent, with D-separation structure α á β∥γ.
If any of these DAGs represents a causal network, then it is not possible to learn the causal network

from the data alone.

Suppose that it is possible to intervene by controlling the variable Xγ , then if one of these graphs is

the DAG for a causal network, it will be possible to establish which one through a controlled experiment.

Figure 3.6 shows the associated structural model when the control Xγ ← z has been applied, forcing

Xγ to be independent of its ancestors. A controlled experiment, where the direct causal links between

Xγ and its parent variables have been eliminated, will exhibit independence structure Xα ⊥ {Xβ,Xγ}
in the �rst case, Xα ⊥ Xβ ∣Xγ in the second {Xα,Xγ} ⊥ Xβ in the third. Once the associations

Xα ⊥ Xβ ∣Xγ , Xα /⊥ Xβ , Xα /⊥ Xγ , Xα /⊥ Xγ ∣Xβ , Xβ /⊥ Xγ and Xβ /⊥ Xγ ∣Xα have been established, an

additional controlled experiment, if it is possible to control the variable Xγ with interventions to force

all possible values of Xγ , will determine which graph within the equivalence class is appropriate.

γ

��

γ

��

γ

����
α

@@

β α β

^^

α β

Figure 3.5: Three Markov Equivalent Graphs

Xγ ← z

""

Xγ ← z

||

Xγ ← z

""||
α β α β α β

Figure 3.6: Graphs from Figure 3.5 with intervention Xγ ← z applied

If it is possible to control variables, then it is possible to learn whether or not a collider represents

independent causes with a common e�ect. If the DAG on the left hand side of Figure 3.1 represents

a causal structure, then an experiment where variable A is controlled will establish that it is not a



52 CHAPTER 3. INTERVENTION CALCULUS

H1

  

H2

~~   

A = a C B

Figure 3.7: Hidden causes H1 and H2; intervention A = a

direct cause of C, since an intervention on A leaves it separated from the rest of the network, as in

Figure 3.7.

3.5 Properties of Intervention Calculus

The following propositions summarise some basic properties of the intervention calculus.

Proposition 3.6. If Xi has no parents, then for all x ∈ X

PV /{i}∥i(xV /{i}∥xi) = PV /{i}∣i(xV /{i}∣xi).

Proof This is straightforward from the de�nition;

PV /{i}∥i(xV /{i}∥xi) =∏
j≠i

Pj∣Pa(j)(xj ∣πj)

while if Xi does not have any parents

PV /{i}∣i(xV /{i}∣xi) =
∏j Pj∣Pa(j)(xj ∣πj)

Pi(xi)
= Pi(xi)

∏j≠i Pj∣Pa(j)(xj ∣πj)
Pi(xi)

=∏
j≠i

Pj∣Pa(j)(xj ∣πj).

Proposition 3.7. For each j ∈ V , let Pa(j) denote the set of parents of node j and XPa(j) the state

space of XPa(j). For each (x,π) ∈ Xj ×XPa(j),

Pj∥Pa(j)(x∥π) = Pj∣Pa(j)(x∣π). (3.6)

For all j ∈ V and each S ⊆ V such that S∩({j}∪{Pa(j)}) = ∅, for each (xj , πj , xS) ∈ Xj ×XPa(j)×XS,

Pj∥Pa(j),S(xj∥πj , xS) = Pj∣Pa(j)(xj ∣πj). (3.7)



3.5. PROPERTIES OF INTERVENTION CALCULUS 53

Proof Equation (3.6) is established �rst. Pj∥Pa(j)(.∥πj) is a marginal distribution which depends on

the enforced value XPa(j) ← πj . For all (xj , πj) ∈ Xj ×XPa(j),

Pj∥Pa(j)(xj∥πj) = ∑
y
V /Pa(j)∣yj=xj

PV /Pa(j)∥Pa(j)(yV /Pa(j)∥πj).

An application of (3.1), the intervention formula, yields

Pj∥Pa(j)(x∥π) = ∑
x
V /Pa(j)∣xj=x

⎛
⎜
⎝
∏

v∈V /Pa(j)
Pv∣Pa(v)(xv ∣xPa(v))

⎞
⎟
⎠

RRRRRRRRRRRRR(xj ,xPa(j))=(x,π)

.

It follows, using

∑
x∈Xv

Pv∣Pa(v)(x∣πv) = 1

for any πv ∈ XPa(v) that

Pj∥Pa(j)(x∥π) = Pj∣Pa(j)(x∣π)

for all (x,π) ∈ Xj ×XPa(j) as required. The proof of Equation (3.7) is similar.

Once all the direct causes of a variable Xj are controlled, no other interventions will a�ect the condi-

tional probability distribution of Xj .

The following property is another straightforward consequence of the de�nition.

Proposition 3.8. For any (x,π) ∈ Xj ×XPa(j),

PPa(j)∥j(π∥x) = PPa(j)(π).

Proof By marginalisation, followed by an application of the intervention formula (3.1), for each

(x,π) ∈ Xj ×XPa(j),

PPa(j)∥j(π∥x) = ∑
x
V /({j}∪Pa(j))

PV /({j}∪Pa(j)),Pa(j)∥j(xV /({j}∪Pa(j)), π∥x)

= ∑
x
V /({j}∪Pa(j))

PV (xV )
PXj ∣Pa(j)(x∣π)

RRRRRRRRRRRRRR(xj ,xPa(j))=(x,π)

=
∑x

V /({j}∪Pa(j))
PV (xV )

Pj∣Pa(j)(x∣π)

RRRRRRRRRRRRR(xj ,xPa(j))=(x,π)

=
Pj,Pa(j)(x,π)
Pj∣Pa(j)(x∣π)

=
PPa(j)(π)Pj∣Pa(j)(x∣π)

Pj∣Pa(j)(x∣π)
= PPa(j)(π).



54 CHAPTER 3. INTERVENTION CALCULUS

The probability measure after intervention is factorised along the mutilated graph. The following

proposition determines the probabilities on the mutilated graph.

Proposition 3.9. Let A ⊂ V . For j /∈ A and any (y, xPa(j)/A, xA) ∈ Xj ×XPa(j) ×XA,

Pj∣Pa(j)/A∥A(y∣xPa(j)/A∥xA) = Pj∣Pa(j)(y∣xPa(j)),

where the conditioning is taken in the sense of: �rst the `do' conditioning XA ← xA is applied and then

the set of variables Pa(j)/A is observed.

Proof By de�nition of conditional probability,

Pj∣Pa(j)/A∥A(y∣xPa(j)/A∥xA) =
Pj,Pa(j)/A∥A(y, xPa(j)/A∥xA)
PPa(j)/A∥A(xPa(j)/A∥xA)

.

An application of the intervention formula to the numerator gives

Pj,Pa(j)/A∥A(y, xPa(j)/A∥xA) = ∑
X

V /({j}∪Pa(j)∪A)

∏
v/∈A

Pv∣Pa(v)(xv ∣xPa(v))

= Pj∣Pa(j)(y∣xPa(j)) ∑
X

V /({j}∪Pa(j)∪A)

∏
v/∈A

Pv∣Pa(v)(xv ∣xPa(v))

where xj = y and to the denominator gives

PPa(j)/A∥A(xPa(j)/A∥xA) =∑
Xj

Pj∣Pa(j)(xj ∣xPa(j)) ∑
X

V /({j}∪Pa(j)∪A)

∏
v∈Pa(j)/A

Pv∣Pa(v)(xv ∣xPa(v)).

Summing from right to left, the variables in V /(A ∪Pa(j) ∪ {j}) with j in their parent set have been

summed over so that

PPa(j)/A∥A(xPa(j)/A∥xA) = ∑
X

V /({j}∪Pa(j)∪A)

∏
v∈Pa(j)/A

Pv∣Pa(v)(xv ∣xPa(v)),

giving

Pj∣Pa(j)/A∥A(y∣xPa(j)/A∥xA) = Pj∣Pa(j)(y∣xPa(j))

as claimed. The proof is complete.

Example 3.10 (Wet Pavement Revisited).

Consider the conditional probability PD∣B∥C(.∣.∥1). Here B and C are parents of D, Pa(D)/B = C.
Plugging into the formula in the preceding proposition,

PD∣B∥C(.∣.∥1) = PD∣B,C(.∣.,1).



3.5. PROPERTIES OF INTERVENTION CALCULUS 55

The right hand side may be thought of as a pre-intervention probability, which can be estimated from

the data before the intervention C ← 1 is made. In this case, an estimate of the pre-intervention

probability PD∣B,C(.∣.,1) is also an estimate of the post-intervention probability PD∣B∥C(.∣.∥1).

Transformations of Probability The following proposition is almost a direct consequence of the

de�nition. It presents a simple rearrangement of the intervention formula in a special case.

Proposition 3.11.

PV /{j}∥j(xV /{j}∥y) = PV /({j}∪Pa(j))∣j,Pa(j)(xV /({j}∪Pa(j))∣y, xPa(j))PPa(j)(xPa(j))

Proof An application of the de�nition gives

PV /{j}∥j(xV /{j}∥y) = ∏
v∈V /{j}

Pv∣Pa(v)(xv ∣xPa(j)).

One term has been removed in the product, namely, Pj∣Pa(j)(y∣xPa(j)), so that (with xj = y)

∏
v∈V /{j}

Pv∣Pa(v)(xv ∣xPa(j)) =
PV (xV )

Pj∣Pa(j)(y∣xPa(j))

=
PV (x)PPa(j)(xPa(j))
Pj,Pa(j)(y, xPa(j))

= PV /({j}∪Pa(j))∣j,Pa(j)(xV /({j}∪Pa(j))∣y, xPa(j))PPa(j)(xPa(j))

as required.

Proposition 3.12 (Adjustment for Direct Causes ). Let G = (V,D) be a DAG and let B ⊂ V such

that ({j} ∪Pa(j)) ∩B = ∅ (the empty set). Then for any (x, y) ∈ Xj ×XB,

PB∥j(y∥x) = ∑
XPa(j)

PB∣j,Pa(j)(y∣x,xPa(j))PPa(j)(xPa(j)). (3.8)

Proof of Proposition 3.12 Firstly, with xj = y,

PB∥j(xB∥y) = ∑
XV /(B∪{j})

PV /{j}∥j(xV /{j}∥y).

By Proposition 3.11, this may be written as

PB∥j(xB∥y) = ∑
XV /(B∪{j})

PV /({j}∪Pa(j))∣{j}∪Pa(j)(xV /({j}∪Pa(j))∣y, xPa(j))PPa(j)(xPa(j)).

A marginalisation over XV /(B∪{j}) gives



56 CHAPTER 3. INTERVENTION CALCULUS

PB∣j(xB ∣y) = ∑
XPa(j)

PB∣j,Pa(j)(xB ∣y, xPa(j))PPa(j)(xPa(j))

as required. The proof is complete.

3.6 Confounding, The `Sure Thing' Principle and Simpson's Paradox

3.6.1 Confounding

Consider the DAG given in Figure 3.8. It corresponds to the factorisation:

C

����

A // B

Figure 3.8: Illustration for Confounding

C

��

A = a // B

Figure 3.9: Intervention on A

PA,B,C = PB∣A,CPA∣CPC .

Consider the conditional probability of B, when A is controlled; PB∥A(.∥a). The DAG illustrating the

intervention is shown in Figure 3.9. Note that

PB∥A(.∥a) = ∑
c∈XC

PB,C∥A(., c∥a).

and that

PB,C∥A(., .∥a) = PB∣C∥A(.∣.∥a)PC∥A(.∥a) = PB∣A,C(.∣a, .)PC ,

where in the second term, the do-conditioning of A ← a is applied �rst, and then C is observed. It

follows that



3.6. CONFOUNDING, THE `SURE THING' PRINCIPLE AND SIMPSON'S PARADOX 57

PB∥A(.∥a) = ∑
c∈XC

PB∣A,C(.∣a, c)PC(c).

This shows that to estimate PB∥A(.∥a) from data alone (i.e. without controlling A), it is necessary to

be able to estimate PB∣A,C and PC from data. If C is observable, then the e�ect on the probability

distribution of B of manipulating Amay be estimated. But if C is a hidden random variable (sometimes

the term latent is used) in the sense that no direct sample of the outcomes of C may be obtained, it

will not be possible to estimate the probabilities used on the right hand side and hence it will not be

possible to predict the e�ect on B of manipulating A. This is known as confounding.

3.6.2 Simpson's Paradox

Consider three binary variables, A,B and C. Simpson's paradox is the observation that there are

situations where

PB∣C,A(1∣1,1)/PB∣C,A(0∣1,1)
PB∣C,A(1∣1,0)/PB∣C,A(0∣1,0)

> 1 and
PB∣C,A(1∣0,1)/PB∣C,A(0∣0,1)
PB∣C,A(1∣0,0)/PB∣C,A(0∣0,0)

> 1,

but

PB∣A(1∣1)/PB∣A(0∣1)
PB∣A(1∣0)/PB∣A(0∣0)

< 1.

For example let A denote `treatment', B `recovery' and C `blood pressure'. Simpson's paradox states

that even if the `treatment' may improve the chances of recovery for those with high blood pressure

and those with low blood pressure, it may nevertheless be bad for the population as a whole. It could

be that although the treatment is comparatively good within the group where high blood pressure

is observed after treatment and also comparatively good within the group where low blood pressure

is observed after treatment, it may be bad for the population as a whole. This occurs if `treatment'

increases blood pressure and increased blood pressure reduces the chances of recovery.

This situation is illustrated by the DAG given in Figure 3.10, where A denotes treatment, B

recovery and C blood pressure. Suppose that C is a hidden variable. Even if the `treatment' variable

A can be controlled, an intervention on A does not remove any arrows from the causal diagram; there

is the possibility of a Simpson's paradox, even with a controlled experiment.

If A denotes `treatment' and B `recovery' and C denotes a common cause of both A and B, as in

Figure 3.8, Simpson's paradox may be resolved if A can be controlled, because controlling A breaks

the causal link between C and A. This is the sure thing principle, considered next, which states that if

the treatment improves the chances of recovery for each level of the `common cause' variable C, then

it is good for the population as a whole.

3.6.3 The Sure Thing Principle

Consider again the situation of Figure 3.8. Suppose that A is controlled; values for the variable A are

assigned at random, so the link C → A is broken and hence the e�ect on B of manipulating A is not



58 CHAPTER 3. INTERVENTION CALCULUS

C

��

A

??

// B

Figure 3.10: A=treatment / B=recovery / C=blood pressure

confounded by the e�ects of hidden variables. The following result is referred to as `The Sure Thing

Principle'. It states that when Figure 3.8 represents the causal structure and there is do-conditioning

on A, then Simpson's paradox does not hold.

Proposition 3.13. Consider three binary variables A, B, C with the network given in Figure 3.8.

If

PB∣C∥A(1∣1∥1) < PB∣C∥A(1∣1∥0)

and

PB∣C∥A(1∣0∥1) < PB∣C∥A(1∣0∥0)

then

PB∥A(1∥1) < PB∥A(1∥0).

The notation means: �rst A is forced, then C is observed.

Proof Firstly,

PB∥A(1∥1) = PB∣C∥A(1∣1∥1)PC∥A(1∥1) + PB∣C∥A(1∣0∥1)PC∥A(0∥1).

Since C is a parent of A,

PC∥A(.∥1) = PC(.).

It follows that

PB∥A(1∥1) =
1

∑
x=0

PB∣C∥A(1∣x∥1)PC∥A(x∥1) =
1

∑
x=0

PB∣C∥A(1∣x∥1)PC(x).

Similarly,

PB∥A(1∥0) =
1

∑
x=0

PB∣C∥A(1∣x∥0)PC(x).

It now follows directly from the assumptions that

PB∥A(1∥1) < PB∥A(1∥0),

which is the stated result.



3.7. IDENTIFIABILITY: BACK-DOOR AND FRONT-DOOR CRITERIA 59

3.7 Identi�ability: Back-Door and Front-Door Criteria

In a wide variety of situations, the aim is to compute the e�ects of an intervention, when it is not

possible to carry out a controlled experiment. The following example, quoted at the beginning of

Pearl's seminal article [107] illustrates the issues involved.

Example 3.14.

Consider an experiment in which soil fumigants X are to be used to increase oat crop yields Y ,

by controlling the eelworm population, Z. These may also have direct e�ects, both bene�cial and

adverse, on yields, besides the control of eelworms. We would like to assess the total e�ects of the

fumigants on yields when the study is complicated by several factors. First, controlled, randomised

experiments are infeasible: farmers insist on deciding for themselves which plots are to be fumigated.

Secondly, the farmers' choice of treatment depends on last year's eelworm population Z0. This is an

unknown quantity, but is strongly correlated with this year's population. This presents a classic case

of confounding bias, which interferes with the assessment of the treatment e�ects, regardless of sample

size. Fortunately, through laboratory analysis of soil samples, the eelworm populations before and

after treatment can be determined. Furthermore, since fumigants are only active for a short period,

they do not a�ect the growth of eelworms surviving the treatment; eelworm growth depends on the

population of bird and other predators. This, in turn, is correlated with last year's eelworm population

and hence with the treatment itself.

The situation may be represented by the causal diagram in Figure 3.11. The variables are:

� X fumigants,

� Y crop yields,

� Z0 last year's eelworm population,

� Z1 eelworm population before treatment,

� Z2 eelworm population after treatment,

� Z3 eelworm population at the end of the season,

� B population of birds and other predators.

In this example, the variables B and Z0 are hidden variables.

The issue is whether interventional probabilities PY ∥X(.∥X ← x)may be computed from information

on the observables (Z1, Z2, Z3,X,Y ). When they can, they are said to be identi�able.

De�nition 3.15 (Identi�able). The causal e�ect of X on Y is said to be identi�able if the quantity

PY ∥X can be computed uniquely from the probability distribution of the observable variables.



60 CHAPTER 3. INTERVENTION CALCULUS

X

��   

Z0

66

//

  

Z1
// Z2

//

��

Y

B // Z3

??

Figure 3.11: A causal diagram representing the e�ect of fumigants X on yields Y

In this section, two graphical conditions are described which ensure that causal e�ects can be

estimated consistently from observational data. The �rst of these is named back door criterion and is

equivalent to the ignorability condition of Rosenbaum and Rubin [119] (1983). The second of these is

the front-door criterion. This involves covariates which are a�ected by the treatment (in this example

Z2 and Z3).

3.7.1 Back Door Criterion

The back door criterion is de�ned as follows:

De�nition 3.16 (Back Door Criterion). A set of nodes C satis�es the back door criterion relative to

an ordered pair of nodes (X,Y ) ∈ V × V if

1. no node of C is a descendant of X and

2. C blocks every trail (in the sense of D-separation) between X and Y which contains an edge

pointing to X.

If A and B are two disjoint subsets of nodes, C is said to satisfy the back door criterion relative to

(A,B) if it satis�es the back door criterion relative to any pair (Xi,Xj) ∈ A ×B.

Example 3.17.

In Figure 3.11, the set C = {Z0} satis�es the back door criterion relative to (X,Y ). The node Z0 is

unobservable. The set C = {Z1, Z2, Z3} does block all trails between X and Y with an arrow pointing

into X, but clearly does not satisfy the back door criterion since both Z2 and Z3 are descendants of

X.

The name `back door criterion' re�ects the fact that the second condition requires that only trails with

nodes pointing at Xi be blocked. The remaining trails can be seen as entering Xi through a back door.

Example 3.18.



3.7. IDENTIFIABILITY: BACK-DOOR AND FRONT-DOOR CRITERIA 61

Consider the back door criterion DAG, given in Figure 3.12. The sets of variables C1 = {Z3, Z4}
and C2 = {Z4, Z5} satisfy the back door criterion relative to the ordered pair of nodes (X,Y ), whereas
C3 = {Z4} does not satisfy the criterion relative to the ordered pair of nodes (X,Y ); if Z4 is instantiated,

the Bayes ball may pass through the collider connection from Z1 to Z2.

Z1

  ~~

Z2

  ~~

Z3

  

Z4

  ~~

Z5

~~

X // Z6
// Y

Figure 3.12: Back Door Criterion

Identi�ability Consider a causal network and let A ⊆ V /{X,Y } be a subset of the variables which

satis�es the back door criterion with respect to an ordered pair (X,Y ). The aim is to show that the

set of variables A plays a similar role to the variable C in the discussion on confounding.

The quantity PY ∥X may be expressed as:

PY ∥X = (PY,A∥X)
↓A = (PY ∣A∥XPA∥X)

↓A

where the notation ↓ A means: marginalise over the variables in A.

The two terms in the sum may be expressed in terms of see-conditioning; PA∥X = PA and PY ∣A∥X =
PY ∣A,X . These may be seen as follows: �rstly, since no variables of A are descendants of X, it follows

that PA∥X = PA. This is seen as follows: the variables may be ordered as V = (Y1, . . . , Yn,X,Yn+1, . . . , Yn+m)
where the ordering is chosen such that Pa(Yj) ⊆ {Y1, . . . , Yj−1} for j ≤ n, Pa(X) ⊆ {Y1, . . . , Yn} and
Pa(Yj) ⊆ {Y1, . . . , Yn,X,Yn+1, . . . , Yj−1} for j ∈ {m + 1, . . . , n +m} and where A ⊆ {Y1, . . . , Yn}. From

the intervention formula,

PV /X∥X =
m+n
∏
j=1

PYj ∣Paj

while

PV = PX ∣Pa(X)(x∣πX)
m+n
∏
j=1

PYj ∣Paj
.

Now, marginalise over variables Yn+1, . . . , Yn+m in both expressions, then marginalise over X in the

second expression and �nally marginalise over all remaining variables not in A. The same answer



62 CHAPTER 3. INTERVENTION CALCULUS

obtains for both expressions, so that

PA∥X = PA.

Second, since A blocks all trails between Y and X that have an edge pointing towards X, it follows

that Y á (Pa(X)/A)∥GA. It follows, with notation that should be clear, using Proposition 3.12 that

PY ∣A∥X = (PY ∣A,Pa(X)∥XPPa(X)/A∥X)
↓Pa(X)/A

= (PY ∣A,Pa(X),XPPa(X)/A)
↓Pa(X)/A

= (PY ∣A,XPPa(X)/A)
↓Pa(X)/A

= PY ∣A,X .

To go from �rst to second line, do-conditioning on X does not alter the probabilities for ancestors of

X, hence PPa(X)/A∥X = PPa(X)/A Also, for conditional probabilities of Y , do-conditioning on ancestors

of Y is the same as see-conditioning on ancestors of Y , hence PY ∣A,Pa(X)∥X = PY ∣A,Pa(X),X .

To go from second to third line: once X is known, Pa(X) gives no further information.

Hence, if A ∩ (X ∪ Y ) = ∅, then (using PA∥X = PA and summing over A) gives:

PY ∥X = (PY ∣A,XPA)
↓A

(3.9)

If a set of variables A satisfying the back door criterion with respect to (X,Y ) can be chosen such

that PA and PY ∣A,X can be estimated from the observed data, then the distribution PY ∥X can also be

estimated from the observed data.

Lemma 3.19 (Identi�ability). If a set of variables Z satis�es the back door criterion relative to (X,Y ),
then the causal e�ect of X to Y is given by the formula

PY ∥X = (PY ∣X,ZPZ)
↓Z

(3.10)

and the intervention of X on Y is said to be identi�able.

Proof This follows directly from the de�nition of identi�able (De�nition 3.15) and the analysis

above.

Formula (3.10) is named adjustment for concomitants. The word identi�ability refers to the fact that the

concomitants Z satisfying the back door criterion are observable and hence it is possible to compute, or

identify the intervention probability PY ∥X(y∥x) using the `see' conditional probabilities (PXj ∣Paj
)dj=1.



3.7. IDENTIFIABILITY: BACK-DOOR AND FRONT-DOOR CRITERIA 63

3.7.2 Front Door Criterion

The front door criterion is de�ned as follows:

De�nition 3.20 (Front Door Criterion). A set of variables Z satis�es the front door criterion relative

to the ordered pair (X,Y ) if:

� Z intercepts all directed paths from X to Y ,

� there is no back-door path between X and Z,

� every back-door path between Z and Y is blocked by X.

The situation is illustrated in Figure 3.13. The variable U is a hidden (latent) variable. The variable

Z satis�es the front door criterion relative to (X,Y ).

U

��~~

X // Z // Y

Figure 3.13: Front Door Criterion

The result is the following:

Theorem 3.21 (Front Door Criterion). Let Z satisfy the front door criterion relative to the ordered

pair (X,Y ). Then the causal e�ect on Y of an intervention on X is:

PY ∥X = (PZ∣XPY ∣Z)
↓Z
.

This is self evident; note that PY ∣Z = (PY ∣Z,UPU)
↓U
. In other words, if the see-conditional PZ∣X and

PY ∣Z are available, then the intervention PY ∥X may be computed.

3.7.3 Non-Indenti�ability

There are various conditions for non-identi�ability of PY ∥X . These include:

1. A necessary condition is that there is an unblockable back-door path between X and Y ; that

is, a path ending with an arrow pointing into X which cannot be blocked by observable non-

descendants of X. This is not a su�cient condition, as Figure 3.13 illustrates. This shows a

situation where there is a non-blockable back-door path, yet PY ∥X is identi�able (front-door

criterion).

2. A su�cient condition for identi�ability of PY ∥X is existence of a confounding path between X

and any of its children on a path from X to Y ; two examples are given in Figure 3.14.



64 CHAPTER 3. INTERVENTION CALCULUS

U

��   

U

��

// Z

��

X // Z // Y X

>>

// Y

Figure 3.14: Su�cient condition for identi�ability

3. Local identi�ability is not a su�cient condition for global identi�ability. In Figure 3.15, PZ1∥X ,

PZ2∥X , PY ∥Z1
, PY ∥Z2

are all identi�able, but PY ∥X is not.

U1

~~ ((

U2

~~   

X // Z1
// Y Z2
oo

Figure 3.15: Su�cient condition for identi�ability

3.8 Inference Rules for Intervention Calculus

Let X,Y and Z be arbitrary disjoint sets of nodes in a DAG G = (V,D). GX denotes the graph obtained

from G by deleting all arrows {(α,β) ∈ D ∶ β ∈ X}, while GX denotes the graph obtained from G by

deleting all arrows {(α,β) ∶ (α,β) ∈D,α ∈X}. The notation GX,Z denotes the graph obtained from G
by deleting all arrows {(α,β) ∈ D ∶ β ∈ X or α ∈ Z}. The following theorem states three rules that

are valid for every interventional distribution compatible with G.

Theorem 3.22 (Rules for Intervention Calculus). Let G = (V,D) be a DAG associated with a causal

model and let P denote the probability distribution. For any disjoint subsets X,Y,Z,W of V , the

following rules hold:

1. (insertion / deletion of observations)

Y á Z∥G
X
X ∪W ⇒ PY ∣Z,W ∥X = PY ∣W ∥X (3.11)

2. (action / observation exchange)

Y á Z∥G
X,Z

X ∪W ⇒ PY ∣W ∥X,Z = PY ∣Z,W ∥X (3.12)

3. (insertion / deletion of actions)

Y á Z∥G
X,Z(W )

X ∪W ⇒ PY ∣W ∥X,Z = PY ∣W ∥X . (3.13)



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 65

where the set Z(W ) in the graph GX is the set of Z-nodes which are not ancestors of any W

node in GX .

Proof of Theorem 3.22

1. The interventional distribution PV /X∥X factorises along the graph GX . Since the variables of

X have no parents in GX , do- and see- conditioning on X are equivalent for distributions that

factorise along GX . The separation statement implies that, for the mutilated graph (where X

has been instantiated by intervention), Y is D-separated from Z by X ∪W . Equation (3.11)

follows because a D-separation statement implies the corresponding conditional independence

statement.

2. The interventional distribution PV /X∥X factorises along GX . TheD-separation statement of (3.12)

implies, furthermore, that all X ∪W -active trails in GX between Y and Z have an arrow from

a node in Z to one of its children, hence all back-door paths from Z to Y in GX are blocked by

X ∪W . It follows that the operations setting Z ← z or conditioning on Z = z have the same

e�ect on Y .

3. Assume that the D-separation condition holds, then all W ∪X - active trails between Y and Z

in GX have an edge γ ↦ β where β ∈ Z(W ) (since removing arrows into Z(W ) blocks the trail).
For such a node β, none of its descendants are in W . Therefore,

PY ∣W ∥X,Z(W ) = PY ∣W ∥X .

The D-separation statement implies that Y á Z/Z(W )∥G
X
X ∪W from which the result follows.

Corollary 3.23. Let P be a probability distribution which factorises according to a causal model (Def-

inition 3.4). An intervention probability q = PY ∥X(y∥x), where X and Y are disjoint subsets of V

where X ⊆V is identi�able if there is a �nite sequence of transformations, each conforming to one of

the inference rules in Theorem 3.22 which reduces q to a probability expression that only involves see

conditioning.

Proof Clear

The converse of Corollary 3.23 is also true. This will now be dealt with. Firstly, Tian and Pearl [135](2002)

developed systematic criteria for establishing the interventional statements that could be computed

from see-conditioning statements. Huang and Valtorta [64] (2006) then established that these criteria

could be obtained from the three rules of Theorem 3.22. The problem was also dealt with in Shpitser

and Pearl [124] (2006); graphical criteria are discussed in Tian and Shpister [136] (2010).

Only the interventional probability distributions over the observable nodes are of interest; the

following rather obvious lemma helps to simplify the problem.



66 CHAPTER 3. INTERVENTION CALCULUS

Lemma 3.24. If any of the three rules can be used on a model with graph G, it can also be used

on a model that is obtained by removing all hidden nodes U ∈ U that have no descendants among the

observable nodes V.

Proof Clear.

The following lemma establishes that only rules 2 and rules 3 need be considered for a completeness

theorem.

Lemma 3.25. Rule 1 follows from rule 2 and rule 3.

Proof Since all D-separation statements before removal of an edge remain true after the edge is

removed, the conditions for the application of rules 2 and 3 are satis�ed if the condition for rule 1

is satis�ed. The application of rule 1 can be replaced by the application of rule 2 followed by the

application of rule 3.

In detail: suppose the D-separation statement of (3.11) holds. Then the D-separation statements

of (3.12) and (3.13) both hold, so an application of rule 2 gives:

PY ∣W,Z∥X = PY ∣W ∥X,Z

and an application of rule 3 gives:

PY ∣W ∥X,Z = PY ∣W ∥X

from which implies that:

PY ∣Z,W ∥X = PY ∣W ∥X .

This is the statement of Rule 1.

At the heart of the systematic identi�cation of interventional statements that may be expressed in

terms of see-conditioning by Tian and Pearl [135] is the concept of c-components. All the c-factors are

computable from the probability distribution over the observed variables.

De�nition 3.26 (c-component). Recall that V =V ∪U, V ∩U = ∅, where V is the set of observable

nodes and U is the set of hidden nodes. Two nodes α,β ∈U are related under the c-component relation

(written α ∼c β) if and only if at least one of the following holds:

1. there is an edge between α and β

2. α and β are both parents of the same node γ ∈V

3. both α and β are in c-component relation with respect to another node δ ∈U.

A c-component of the node set V is either a set containing a single node from V if that node has no

parents in U or it consists of all the U nodes which are c-component related to each other, together

with all V nodes that have a parent in U which is a member of that c-component.



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 67

Let H denote all the nodes of a c-component and let H ′ = H ∩V (the observable nodes of a c-

component). Then a c-factor is simply PH′ , the probability distribution over the observable nodes of

the c-component.

The relation ∼c on U is re�exive, symmetric and transitive and hence de�nes a partition of U. Based

on this relation, U can be divided into disjoint and mutually exclusive c-component related parts.

Now suppose that P factorises according to a semi-Markov model (De�nition 3.5). Lemmas 3.27

and 3.28 form the basis of the characterisation of Tian and Pearl [135] of interventional statements

that can be expressed by see-conditioning statements. The proofs given here are from [64], which

demonstrate that they follow from Rules 2 and 3 of Theorem 3.22.

Lemma 3.27. If W ⊆ C ⊆V and W is an ancestral set in GC∪(Pa(C)∩U), then

(PC∥V/C)↓C/W = PW ∥V/W .

Furthermore, this statement is a consequence of Rule 3 from Theorem 3.22.

A set S ⊆ V in a graph G is called an ancestral set if for each α ∈ G, every ancestor of α is also in G.
The set an(α) denotes the ancestors of the node α; α /∈ an(α). A topological ordering of the nodes in a

graph G is an ordering σ of the nodes such that for each node β and each node γ ∈ an(β), σ(γ) < σ(β).

Proof Trivially,

(PC∥V/C)↓C/W = PW ∥V/C .

It has to be shown that this is equal to PW ∥V/W .

If W is an ancestral set in GC∪(Pa(C)∩U), it follows that none of the nodes of W have parents in

C ∪ (Pa(C) ∩U)/W , although they may have parents in Pa(C) ∩V.

Since W is an ancestral set in GC∪(Pa(C)∩U), there is a topological ordering of the nodes in

GC∪(Pa(C)∩U) that starts with all the nodes in W and continues with the other nodes.

The lemma may be proved by induction. IfW = V , the lemma is trivially true. Otherwise, consider

the �rst node, say α in the topological order just described that is in C, but not in W . By induction,

it is necessary and su�cient to prove that if W ⊂ V , α ∈ V /W , C =W ∪ {α} and W is an ancestral set

in GC∪(Pa(C)∩U), then

(PC∥V/C)↓C/W = PW ∥V/W .

Let the nodes of W be labelled: W = {1, . . . , k} and let Y =V/(W ∪ {α}). With obvious notation, the

identity to be established may be rewritten as:

(PW,α∥Y )↓C/W = PW ∥Y,α

Marginalising over the variable labelled α and using the fact that a probability distribution sums to 1

gives:



68 CHAPTER 3. INTERVENTION CALCULUS

(PW,α∥Y )↓α = (Pα∣W ∥Y )↓αPW ∥Y = PW ∥Y .

By construction,

W á {α}∥G
Y ,{α}

Y

This is because in graph G
Y ,{α}, if there is a Y -active trail between α and a node i ∈ {1, . . . , k}, the path

cannot include any nodes in Y , since Y nodes are instantiated fork nodes. Therefore, any Y -active

trail in G
Y ,{α} between α and i which does not contain any other nodes of W �rstly, cannot have an

arrow pointing into α, since the arrows between α and its parents have been removed. If the trail has

no collider connections, then it is of the form α ↦ . . . ↦ i, which is a contradiction since the nodes of

W are of a lower topological order than α. If it contains a collider which is either instantiated, or one

of its descendants is instantiated, then the links to the parents of the instantiated nodes have been

removed, hence such a connection does not exist. Therefore, such a trail does not exist.

Using rule 3,

PW ∥Y = PW ∥α,Y

and the result follows.

Lemma 3.28. Let H ⊆V and let H ′1, . . . ,H
′
n denote the c-components of the sub-graph GH∪(Pa(H)∩U).

Let Hi =H ′i ∩H. Then

1.

PH∥V/H =
n

∏
i=1

PHi∥V/Hi

2. Each PHi∥V/Hi
is computable from PH∥V/H in the following way. Let k be the number of variables

in H and let α1 < . . . < αk be a topological order of the variables of H in GH∪(Pa(H)∩U). Let

H(j) = {α1, . . . , αj} for j = 1, . . . , k and H(0) = ∅ (the empty set). Then each PHi∥V/Hi
∶ i =

1, . . . , n is given by:

PHi∥V/Hi
= ∏

j=∶αj∈Hi

PH(j)∥V/H(j)

PH(j−1)∥V/H(j−1)
.

Each PH(j)∥V/H(j) ∶ j = 0,1, . . . , k is given by the marginalisation:

PH(j)∥V/H(j) = (PH∥V/H)
↓H/H(j)

. (3.14)

Furthermore, the results of this lemma are a consequence of Rules 2 and 3 of Theorem 3.22.



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 69

Proof The �rst statement is proved �rst, then Equation (3.14) is established and �nally the second

statement is proved.

The proof is by induction. When H includes exactly one node from V, the result is clearly true,

from the de�nition.

Suppose that the two statements are true for H ∶ ∣H ∣ ≤ k for an integer k and consider an arbitrary

set E ⊂ V of size ∣E∣ = k + 1. Let H = {α1, . . . , αk} and E = H ∪ {αk+1}, where the indices correspond
to the topological order. Let H ′1, . . . ,H

′
n be the c-components of H ∪ (Pa(H) ∩U) in GH∪(Pa(H)∩U)

and let Hi =H ′i ∩H for 1 ≤ i ≤ n. Let Y =V/E.
Now consider the c-components of E ∪ (Pa(E) ∩U) in GE∪(Pa(E)∩U).
If Pa(αk+1)∩Pa(H)∩U = ∅, then the c-components are E′1, . . . ,E

′
n+1, where E

′
i =H ′i for i = 1, . . . , n

and E′n+1 = {αk+1}∪(Pa(αk+1)∩U). It follows that Ei ∶= E′i∩E =Hi for i = 1, . . . , n and En+1 = {αk+1}.
In this case, let m = n + 1.

If Pa(αk+1) ∩ Pa(H) ∩U ≠ ∅, then αk+1 shares at least one parent in U with a node in H. Let

E′1, . . . ,E
′
m denote the c-components of E ∪ (Pa(E) ∩U) in GE∪(Pa(E)∩U) and let Ei = E′i ∩ E. It

follows that, relabelling if necessary, Ei =Hi for i = 1, . . . ,m − 1 and Em = {αk+1} ∪⋃n
i=mHi.

By the inductive hypothesis,

PH∥V/H =
n

∏
i=1

PHi∥V/Hi
,

which may be rewritten as:

PH∥(V/E)∪{αk+1} =
n

∏
i=1

PHi∥(V/E)∪{αk+1}∪Hi−1
1 ∪Hn

i+1

where the notation Hj
i for i < j means: ∪jk=iHk. For the �rst statement, it is required to prove that:

PH,{αk+1}∥V/(H∪{αk+1}) = PHn
m,{αk+1}∥(V/E)∪Hm−1

1

m−1
∏
j=1

PHj∥(V/Hj).

A straightforward factorisation gives:

PH,{αk+1}∥(V/(H∪{αk+1})) = P{αk+1}∣H∥(V/(H∪{αk+1}))PH∥(V/(H∪{αk+1})). (3.15)

The notation Y = V /E will be used. The D-separation statement: H á {αk+1}∥GY ,αk+1
Y holds. This

is because any Y -active trail in GY ,α between αk+1 and a node in H does not include any node in Y

since nodes in Y are instantiated fork nodes. Since the arrows from parents of αk+1 have been removed

and the nodes of H are of a lower topological order, any active trail contains an instantiated collider

connection. But the instantiated nodes are in Y , hence links to their parents have been removed, hence

such a trail does not exist.

Using Rule 3, it follows that:

PH∥Y = PH∥αk+1,Y ,



70 CHAPTER 3. INTERVENTION CALCULUS

from which (3.15) gives:

PH,αk+1∥Y = Pαk+1∣H∥Y PH∥αk+1,Y = Pαk+1∣H∥Y
m−1
∏
j=1

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

×
n

∏
j=m

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

.

By the inductive hypothesis,

m−1
∏
j=1

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

= PHm−1
1 ∥Hn

m,Y,αk+1
.

As before,

Hm−1
1 ⊥ αk+1∥G

Y ,Hn
m,αk+1

Y ∪Hn
m.

This is because if there is a Y ∪Hn
m-active trail in GY,Hn

m,αk+1
between αk+1 and Hm−1

1 , the trail does

not contain any nodes of Y since all nodes of Y are instantiated forks. Since the links between αk+1
and its parents have been removed and since the nodes of Hm−1

1 are of lower topological order than

αk+1, the node must contain at least one collider which is either instantiated or has an instantiated

descendant. But all instantiated nodes have had links to their parents removed, hence no such path

exists.

It now follows from Rule 3 that:

PHm−1
1 ∥Hn

m,Y,αk+1
= PHm−1

1 ∥Hn
m,Y .

The next step is to show that

αk+1 ⊥Hn
m∥GY ,Hn

m
Y ∪Hm−1

1 .

If there is a Y ∪Hm−1
1 -active trail in GY ,Hn

m+1
between αk+1 and Hn

m, the path does not contain any

node of Y , since nodes in Y are instantiated forks. Furthermore, there are no arrows into a node of Hn
m

since links between Hn
m and its descendants have been removed. Consider the shortest Y ∪Hm−1

1 -active

trail between αk+1 and a node in Hn
m. Let the node be designated β. Except for the end points, the

trail contains no nodes in V, hence all are in U. Since the nodes of Hn
m are of a lower topological order

than αk+1, the trail contains at least one fork node. It follows from the de�nition of c-component that

αk+1 and β belong to the same c-component, which is a contradiction.

Using Rule 2, it therefore follows that:

Pαk+1∣H∥Y = Pαk+1∣Hm−1
1 ,Hn

m∥Y = Pαk+1∣Hm−1
1 ∥Hn

m,Y .

Putting these together, it follows that:



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 71

PH,αk+1∥Y = Pαk+1∣H∥Y
m−1
∏
j=1

P
Hj∥Hj−1

1 ,Hn
j+1,Y

n

∏
j=m

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

= Pαk+1∣Hm−1
1 ∥Hn

m,Y PHm−1
1 ∥Hn

m,Y

n

∏
j=m

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

= PHm−1
1 ,αk+1∣Hn

m,Y

n

∏
j=m

P
Hj∥Hj−1

1 ,Hn
j+1,Y,αk+1

.

This establishes the �rst statement, since PH,αk+1∥Y = PE∥V/E .

Now Equation (3.14) is established. From the �rst part,

(PH∥V/H)
↓H/H(j) =

n

∏
i=1
(PHi∥V/Hi

)↓Hi/H(j)
.

Now let H̃
(j)
i = (H(j) ∩Hi) ∪ (Pa(Hi) ∩U) and let H̃i = Hi ∪ (Pa(Hi) ∩U). Then, by construction,

H̃
(j)
i is an ancestral subset of Hi ∪ (Pa(Hi) ∩U) in GHi∪(Pa(Hi)∩U) and hence (by extending the set

V for a moment to include all the nodes of H̃
(j)
j ), it follows by Lemma 3.27 that:

P
H̃
(j)
i ∥V/H(j) = (PH̃i∥V/Hi

)
↓Hi/H(j)

.

Marginalising both sides over Pa(Hi) ∩U gives:

PH(j)∩Hi∥V/H(j) = (PHi∥V/Hi
)↓Hi/H(j)

.

It follows that

(PH∥V/H)
↓H/H(j) =

n

∏
i=1

PH(j)∩Hi∥V/H(j) .

Equation 3.14 now follows because do-conditioned on V/H(j), the node sets H(j) ∩Hi ∶ i = 1, . . . , n are

D-separated from each other.

It follows from 3.14 (by considering H(k) =H and H(k+1) = E) that

PH∥V/H = (PH,αk+1∥V/(H∪{α}))
↓{αk+1} = (PE∥V/E)↓{αk+1}. (3.16)

By the inductive hypothesis, H satis�es statement 2, so that:

PHi∥V/Hi
= ∏

j∣αj∈Hi

PH(j)∥V/H(j)

PH(j−1)∥V/H(j−1)
i = 1, . . . , n (3.17)

By construction, E(j) = H(j) for j = 1, . . . , k and E(k+1) = E = {α1, . . . , αk+1}. For j = 1, . . . , k, it

follows from (3.16) that the following are equal:

PE(j)∥V/E(j) = (PE∥V/E)
H∪{α}/H(j) = (PH∥V/H)

H/H(j) = PH(j)∥V/H(j) .



72 CHAPTER 3. INTERVENTION CALCULUS

From (3.15) (end of proof of Part 1), it follows that:

PE∥V/E = PE(k+1)∥V/E(k+1) = PHn
m,αk+1∥V/(Hn

m∪{αk+1})
m−1
∏
i=1

PHi∥V/Hi
.

From this, it follows from (3.17) that:

PEm∥V/Em
= PHn

m,αk+1∥V/(Hn
m∪{αk+1}) =

PE(k+1)∥V/E(k+1)

∏m−1
i=1 PHi∥V/Hi

.

Now,

PE(k+1)∥V/E(k+1) =
k

∏
j=0

PE(k+1)∥V/E(k+1)

PE(k)∥V/E(k)
=

m

∏
i=1
∏

j∶αj∈Ei

PE(j)∥V/E(j)

PE(j−1)∥V/E(j−1)

so that

PEm∥V/Em ∏
j∣αj∈Em

PE(j)∣V/E(j)

PE(j−1)∥V/E(j−1)

as required, and the lemma is proved.

Based on the �rst statement of Lemma 3.28, establishing the non-identi�ability of a statement may

be reduced to establishing the non-identi�ability of a statement within a c-component. The relevant

result is the following:

Theorem 3.29. Let G be a semi-Markovian model. If

1. G is itself a c-component,

2. S ⊂V in G and GS∪(Pa(S)∩U) has only one c-component,

3. all the nodes of V/S are ancestors of S in G,

then PS∥V/S is not identi�able in G.

Proof Non-identi�ability is established if it can be shown that there is a back-door path between a

node in S and a node in V/S. Assume there is no back-door path, then there does not exist a node

υ ∈ U which is an ancestor of both a node in S and a node in V/S. It follows that G is not itself a

c-component, which is a contradiction.

Lemmas 3.27 and 3.28 provide the basis of a complete identi�cation algorithm for computing do-

conditioning statements PS∥V/S for S ⊆ V in terms of see-conditioning statements, in the sense that

when it does not give an output fail, it returns the correct answer. Theorem 3.29 establishes that the

algorithm is complete, in the sense that it returns an output fail when and only when the statement

is not identi�able.



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 73

Algorithm 1 Algorithm: Compute PS∥V/S
INPUT: S ⊆V

OUTPUT: Expression for PS∥V/S or fail.

Let V1, . . . , Vn be a partition of V, where Vj = V ′j ∩V and V ′1 , . . . , V
′
n are the c-components of the

sub-graph GV∪Pa(V). Let S1, . . . , Sl be a partition of S where S′1, . . . , S
′
l are the c-components of the

sub-graph GS∪(Pa(S)∩U) and Sj = S
′
j ∩V for j = 1, . . . , l. The subsets are labelled such that Sj ⊆ Vj for

j = 1, . . . , l; this can clearly be done without loss of generality. Now

1. Compute each PVj∥V/Vj
with Lemma 3.28;

2. Compute each PSj∥V/Sj
using Algorithm 3.8 (identify (C,T ) below), with C = Sj , T = Vj and

Q = PVj∥V/Vj
.

3. If in part 2. Algorithm 3.8 gives the output fail for any of the Sj ∶ j = 1, . . . , l, then PS∥V/S is

not identi�able and the output given is fail. Otherwise, PS∥V/S is identi�able and is given by:

PS∥V/S =
l

∏
j=1

PSj∥V/Sj
.

This follows from Lemma 3.28



74 CHAPTER 3. INTERVENTION CALCULUS

Algorithm 2 Algorithm: Identify (C,T )
INPUT: C and T where C ⊆ T ⊆ V, where GC∪(Pa(C)∩U) and GT∪(Pa(T )∩U) are both composed of a

single c-component.

OUTPUT: Expression for PC∥V/C or fail.

Let A = (an(C) ∪C)G
T∪(Pa(T )∩U)

.

1. If A = C, then the output is PC∥V/C . By Lemma 3.27, this is given by:

PC∥V/C = (PT ∥V/T )
T /C

.

2. Else: if A = T (and T ≠ C) then output fail.

3. Else: (if C ⊂ A ⊂ T ).

(a) By Lemma 3.27, compute:

PA∥V/A = (PT ∥V/T )
↓T /A

.

(b) Assume that, in GA∪(Pa(A)∩U), C is contained in a c-component T ′1. Set T1 = T ′1 ∩A.

(c) Compute PT1∥V/T1
from PA∥V/A by Lemma 3.28.

(d) The output is the output of algorithm identify applied to (C,T1).



3.8. INFERENCE RULES FOR INTERVENTION CALCULUS 75

Algorithm 3.8 is therefore recursive, until either it �nds an expression for PC∥V/C or else returns the

output fail.

It now follows that if PV/T ∥T is identi�able, then so is PS∥T for any S ⊆V/T , by marginalisation:

PS∥T = (PV/T ∣T )
↓(V/T )/S

.

Algorithm 3.8 is based on the following consideration: let D = (S ∪ an(S))GV/T ∩V. Then D is an

ancestral set in V/T and hence

(PV/T ∥T )
↓V/(T∪D) = PD∥V/D.

It follows that:

PS∥T = ((PV/T ∥T )
↓V/(T∪D))

↓D/S
= (PD∥V/D)

↓D/S
.

Algorithm 3 Algorithm: Compute PS∥T
INPUT: Two disjoint observable variable sets S ⊆V and T ⊂V, where T is interventional.

OUTPUT: The expression for PS∥T or fail.

1. Let D = (S ∪ an(S))GV/T ∩V.

2. Use the algorithm: Computing PS∥V/S to compute PD∥V/D.

3. If the algorithm returns fail, then the output is fail.

4. Else, output

PS∥T = (PD∥V/D)
↓D/S

.

The converse of Corollary 3.23 can now be stated:

Theorem 3.30. The three inference rules of Theorem 3.22, together with standard probability manip-

ulations, are complete for determining the identi�ability of PH∥V/H for all H ⊂V.

Proof Lemmas 3.27 and 3.28 follow from the inference rules of Theorem 3.22 (as proved by Huang

and Valtorta [64]). These form the basis of Algorithms 3.8, 3.8 and 3.8. By Theorem 3.29, it follows

that the algorithms give the output fail if and only if the statement is not identi�able; by standard

probability manipulations, they give the correct answer otherwise.

3.8.1 Example: Front Door Criterion

Suppose that PU,X,Z,Y factorises according to the DAG in Figure 3.13 and that U is hidden.



76 CHAPTER 3. INTERVENTION CALCULUS

1. PZ∥X X á Z∥GX∅ and hence Rule 2 gives:

PZ∥X = PZ∣X . (3.18)

2. PY ∥Z : GZ contains a back-door path from Z to Y , which is: Z ← X ← U → Y . This path is

blocked if X is instantiated.

PY ∥Z = (PY ∣X∥ZPX∥Z)
↓X
.

Since Z áX∥G
Z
∅, it follows that Rule 3 may be applied:

PX∥Z = PX .

Since Z á Y ∥GZ∅, Rule 2 gives:

PY ∣X∥Z = PY ∣X,Z .

It follows that

PY ∥Z = (PY ∣X,ZPX)
↓X
. (3.19)

This is a special case of the back-door formula (3.10).

3. PY ∥X . Writing

PY ∥X = (PY ∣Z∥XPZ∥X)
↓Z

it follows from (3.18) that PZ∥X = PZ∣X . Rule 2 may be applied to give PY ∣Z∥X = PY ∥X,Z , since

Y áX∥G
X,Z

Z. Rule 3 may be applied, since Y áX∥G
X,Z

Z, to give:

PY ∣Z∥X = PY ∥Z ,

which was computed in terms of see-conditioning in (3.19). Putting all this together gives:

PY ∥X = (PZ∣X (PY ∣X,ZPX)
↓X)

↓Z
.

All the other causal e�ects (for example PY,Z∥X and PX,Z∥Y ) can be derived from the rules of Theo-

rem 3.22.



3.9. MEASUREMENT BIAS AND EFFECT RESTORATION 77

3.8.2 Causal Inference by Surrogate Experiments

Suppose that the causal e�ect of X on Y , PY ∥X is of interest, but it is not identi�able and the variable

X cannot be controlled via a randomised experiment. For example, if we are interested in assessing

the e�ect of cholestorol X on heart disease Y , it may be possible to exercise control over the subject's

diet Z rather than directly controlling the quantity of cholestorol in the subject's blood.

Formally, this problem amounts to transforming the problem PY ∥X into expressions where do-

conditioning is only on variables in Z. By Theorem 3.22, the following conditions are su�cient:

1. X intercepts all directed paths from Z to Y .

2. PY ∥X is identi�able in GZ .

If the �rst of these holds, it follows that Y á Z∥G
X,Z

X and hence PY ∥X = PY ∥X,Z . This represents

the causal e�ects of X on Y in a model that factorises along GZ which is identi�able by the second

condition. These conditions are satis�ed by the two models in Figure 3.16. Translated to the cholestorol

example, they require that there be no direct e�ect of diet on heart disease and no confounding e�ect

between cholestorol level and heart disease unless there is an intermediate variable between the two

which can be measured. For the �rst �gure, the conditions are clear. For the second �gure, PY ∥X is

identi�able in GZ because

PY ∥X,Z = (PU2PU3PU4PY ∣W,U3,U4
PW ∣X,U2

)↓W,U2,U3,U4 = (PY ∣WPW ∣X)
↓W

.

Z

  

U2
oo

��

U1

��   

U2

~~   

U3

vv   

U4

vv
��

U1
//

OO

X // Y Z // X // W // Y

Figure 3.16: Do-condition on surrogate variable Z

3.9 Measurement Bias and E�ect Restoration

Consider a situation where we would like to compute the causal e�ect of X on Y (namely PY ∥X), in the

situation where there is a su�cient confounder U . Confounder means that, as a result of its presence,

the e�ect PY ∥X is not identi�able; su�cient in this context means that PY ∥X could be computed if U

were observable. There are situations where an observable W may give su�cient information about U

to enable PY ∥X to be identi�ed from data.

The material for this section is taken from Kuroki and Pearl [77] (2014) and deals with two situa-

tions: �rstly, the situation where PW ∣U is known andW gives su�cient information about U to identify



78 CHAPTER 3. INTERVENTION CALCULUS

PY ∥X . Secondly, PW ∣U is unknown, but there are two observable variables (Z,W ) which together give

su�cient information to identify PY ∥X without bias.

Example 3.31.

The Head Start Program is discussed in Madgison [87] (1977). This was a government programme

within the United States of America aimed at giving assistance to children. Magidson's sample consists

of 148 children who received the programme and 155 control children.

Let X be an indicator variable, indicating whether or not the child received the programme. Y is

the outcome variable of the Metropolitan Readiness Test (a test which supposedly measures cognitive

ability). U represents socio-economic status. This is unobserved and may be considered, following the

discussion of Madgison, as a su�cient confounder. Figure 3.17 gives three possible situations; the �rst

where W is measured as a proxy variable for U , the second and third where W and Z (family income)

are measured as proxy variables of U .

U //

��   

W U

��

//

  ''

W U

��

//

  ''

W

X // Y Z X // Y Z // X // Y

Figure 3.17: U hidden; causal models with proxy variables on U . For (a), PW ∣U is required to identify

PY ∥X . For (b) and (c), under further assumptions on Z and W , the e�ect PY ∥X may be estimated

from data.

In Figure 3.17, U satis�es the back-door criterion relative to (X,Y ), but its proxy variables W and

Z do not. For each of the models,

PY ∥X = (PY ∣X,UPU)
↓U
.

If the conditional distribution PW ∣U is known (andW is observable) then, under additional assumptions

on PW ∣U , it is possible to construct an asymptotically unbiased estimator of PY ∥X .

3.9.1 The Matrix Adjustment Method

We now consider the model in Figure 3.17 (a), under the assumption that PW ∣U is known, and show

how to compute PY ∥X . The method is known as the matrix adjustment method.

Assume that U and W both have �nite state space, with k elements. Without loss of generality, let

U and W both have state space {1, . . . , k}. The main idea for recovering PX,Y,U from both PX,Y,W and

PW ∣U , the matrix adjustment method, found in Greenland and Lash [57] (2008) p. 360 and discussed

in Pearl [113] (2010). The discussion here is taken from Kuroki and Pearl [77] (2014).

PY,W ∣X = (PY,U ∣XPW ∣U)
↓U



3.9. MEASUREMENT BIAS AND EFFECT RESTORATION 79

Set

VU ∶Y ∣X(. ∶ y∣x) =
⎛
⎜⎜
⎝

PY,U ∣X(1, y∣x)
. . .

PY,U ∣X(k, y∣x)

⎞
⎟⎟
⎠
, VW ∶Y ∣X(. ∶ y∣x) =

⎛
⎜⎜
⎝

PY,W ∣X(1, y∣x)
. . .

PY,W ∣X(k, y∣x)

⎞
⎟⎟
⎠

and

MW ∣U =
⎛
⎜⎜
⎝

PW ∣U(1∣1) . . . PW ∣U(1∣k)
⋮ ⋱ ⋮

PW ∣U(k∣1) . . . PW ∣U(k∣k)

⎞
⎟⎟
⎠
.

If MW ∣U is invertible, then:

VU ∶Y ∣X(. ∶ y∣x) =M−1
W ∣UVW ∶Y ∣X(. ∶ y∣x)

Similarly, set VU ∶∣X = (VU ∶Y ∣X)
↓Y

so that VU ∶∣X(u∣x) = PU ∣X(u∣x) and similarly VW ∶∣X = (WW ∶Y ∣X)
↓Y
,

then

VU ∶∣X =M−1
W ∣UVW ∶∣X .

It follows that if PW ∣U is known, then the causal e�ect of manipulating X, i.e. PY ∥X , is estimable and

is given by:

PY ∥X = (
PY,U∥XPU

PU ∣X
)
↓U
=
⎛
⎜⎜
⎝

(M−1t
W,UPY,W ∣X (M−1t

W,UPW )
↓W )

↓W

(M−1t
W,UPW ∣X)

↓W

⎞
⎟⎟
⎠

↓U

.

where PW and PW ∣X(.∣x), for each x ∈ X , are taken as column k-vectors.

3.9.2 E�ect Restoration Without External Studies

Now consider the more di�cult problem of estimating causal e�ects without prior knowledge of PW ∣U .

This is not possible for the �rst of the models of Figure 3.17, but may be possible, under additional

assumptions for the second and third models in that �gure.

For each given (x, y), let σ be a permutation of 1, . . . , k such that

PY ∣X,U(y∣x,σ(1)) ≥ . . . ≥ PY ∣X,U(y∣x,σ(k)).

For the models under consideration, W á {X,Y,Z}∥GU and Y á {W,Z}∥G{U,X}.

PZ,W ∣X = (PZ,W,U ∣X)
↓U = (PW ∣Z,U,XPZ∣U,XPU ∣X)

↓U = (PW ∣UPZ∣UPU ∣X)
↓U
.

Similarly,

PY,W ∣X = (PW ∣UPY ∣X,UPU ∣X)
↓U



80 CHAPTER 3. INTERVENTION CALCULUS

PY,Z∣X = (PY ∣X,UPZ∣X,UPX ∣U)
↓U

PY,Z,W ∣X = (PW ∣UPZ∣X,UPY ∣X,UPU ∣X)
↓U

Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PZ,W =

⎛
⎜⎜⎜⎜⎜
⎝

1 PW ∣X(1∣x) . . . PW ∣X(k − 1∣x)
PZ∣X(1∣x) PZ,W ∣X(z1,w1∣x) . . . PZ,W ∣X(z1,wk−1∣x)

⋮ ⋮ ⋱ ⋮
PZ∣X(k − 1∣x) PZ,W ∣X(k − 1,1∣x) . . . PZ,W ∣X(zk−1,wk−1∣x)

⎞
⎟⎟⎟⎟⎟
⎠

.

QZ,W =

⎛
⎜⎜⎜⎜⎜
⎝

1 PY,W ∣X(y,1∣x) . . . PY,W ∣X(y, k − 1∣x)
PY,Z∣X(y,1∣x) PY,Z,W ∣X(y, z1,w1∣x) . . . PY,Z,W ∣X(y, z1,wk−1∣x)

⋮ ⋮ ⋱ ⋮
PY,Z∣X(y, k − 1∣x) PY,Z,W ∣X(y, k − 1,1∣x) . . . PY,Z,W ∣X(y, zk−1,wk−1∣x)

⎞
⎟⎟⎟⎟⎟
⎠

.

(3.20)

UW,U =
⎛
⎜⎜
⎝

1 PW ∣U(1∣σ(1)) . . . PW ∣U(k − 1∣σ(1))
⋮ ⋮ ⋱ ⋮
1 PW ∣U(1∣σ(k)) . . . PW ∣U(k − 1∣σ(k))

⎞
⎟⎟
⎠

RZ,U =
⎛
⎜⎜
⎝

1 PZ∣X,U(1∣x,σ(1)) . . . PZ∣X,U(k − 1∣x,σ(1))
⋮ ⋮ ⋱ ⋮
1 PZ∣X,U(1∣x,σ(k)) . . . PZ∣X,U(k − 1∣x,σ(k))

⎞
⎟⎟
⎠

∆U = diag(PY ∣X,U(y∣x,σ(1)), . . . ,PY ∣X,U(y∣x,σ(k))) (3.21)

MU = diag(PU ∣X(σ(1)∣x), . . . ,PU ∣X(σ(k)∣x)).

Note that P and Q can be written:

PZ,W =Rt
Z,UMUUW,U , QZ,W =Rt

Z,UMU∆UUW,U .

Provided both PZ,W is invertible, it follows that:

P−1Z,WQZ,W = UW,U∆UUW,U .

It follows that the recovery problem of PW ∣U from UW,U rests on the eigenvalue decomposition of

P−1Z,WQZ,W . Once PW ∣U is known, the matrix adjustment method may be used to evaluate the causal

e�ect on Y of manipulating X. This requires additionally that QZ,W be invertible and the probabilities

PY ∣X,U(y∣x,1), . . . ,PY ∣X,U(y∣x, k) take distinct values for given (x, y).
The result is presented in the following theorem:

Theorem 3.32. Suppose U is a su�cient confounder relative to (X,Y ) and suppose that



3.9. MEASUREMENT BIAS AND EFFECT RESTORATION 81

1. Two proxy variables of U that are conditionally independent of each other given U can be observed;

call them W and Z. Both W ⊥ {X,Y,Z}∣U and Y ⊥ {W,Z}∣{U,X} hold.

2. W,Z and the counfounder U are discrete variables, with a given �nite nuber of categories, k.

3. Both PZ,W and QZ,W de�ned by (3.20) are invertible.

4. The probabilities PY ∣X,U(y∣x,1), . . . ,PY ∣X,U(y∣x, k) take distinct values for given x and y,

then the causal e�ect PY ∥X of X on Y is identi�able.

Proof The proof is based on the following two-step procedure that recovers PX,Y,U from PX,Y,Z,W .

� Stage 1: Solve an eigenvalue problem of P−1Z,WQZ,W to recover PW ∣U from UW,U

� Recover PX,Y,U using the matrix adjustment method.

Step 1 First solve ∣P−1Z,WQZ,W − λIk∣ = 0, where Ik denotes the k × k identity matrix. The solutions

λ1, . . . , λk are the eigenvalues of P−1Z,WQZ,W . They satisfy:

∣P−1Z,WQZ,W − λIk∣ = ∣∆U − Ik∣ = 0

where ∆U is de�ned by (3.21). It follows that λi = PY ∣X,U(y∣x,σ(i)) and hence the elements of ∆U are

estimable.

To obtain the eigenvector ηi corresponding to λi, let H = (η1, . . . , ηk), then H satis�es:

P−1Z,WQZ,WH =H∆U .

By the condition that λi take di�erent values, it follows that η1, . . . , ηk are uniquely determined.

Let A = U−1W,UE where E = diag(α1, . . . , αk) for non-zero values of (α1, . . . , αk), then:

P−1Z,WQZ,WA = U−1W,U∆UE = U−1W,UE∆U = A∆U .

It follows that A is also a matrix of eigenvectors of P−1X,ZQX,Z and hence, with a particular choice of

α1, . . . , αk, A = U−1W,UE =H.

It follows that for the inverse H−1 of the estimable matrix H satis�es (using U−1W,UE =H):

UW,U =
⎛
⎜⎜
⎝

1 PW ∣U(1∣σ(1)) . . . PW ∣U(k − 1∣σ(1))
⋮ ⋮ ⋱ ⋮
1 PW ∣U(1∣σ(k)) . . . PW ∣U(1∣σ(k))

⎞
⎟⎟
⎠
= EH−1 =

⎛
⎜⎜
⎝

α1H
−1
11 . . . α1H

−1
1k

⋮ ⋱ ⋮
αkH

−1
k1 . . . αkH

−1
kk

⎞
⎟⎟
⎠

It follows, equating the �rst column, that αj = 1
H−1j1
∶ j = 1, . . . , k. This shows that UW,U is identi�able

from EH−1 since H−1 is estimable. It follows that every element PW ∣U of UW,U can be obtained.



82 CHAPTER 3. INTERVENTION CALCULUS

Step 2 Since

PX,Y,W = (PX,Y,UPW ∣U)
↓U

it now follows that

PY ∥X = (PY ∣X,UPU)
↓U = (PX,Y,U

PX,U
PU)

↓U

is identi�able.

3.10 Identi�cation of Counterfactuals

A counterfactual is simply a hypothetical statement that cannot be tested directly. For example,

following the network of Arthur Cayley (chapter 4), it is not possible to act to cause a storm-force

gale, nor to dissociate experimentally by an intervention the e�ects of wind and rain from their common

causes; such an intervention is not possible.

Another example of a counterfactual is the following: a given dose of treatment was administered

to a patient. The dose was decided upon as a result of standard diagnostic procedures. It failed to cure

the disease and the patient died. Would a stronger dose have cured the patient? Or would a stronger

dose have still failed to control the disease? Or would the patient have died of side e�ects from the

treatment?

Such questions, of course, have importance. One would like to know whether or not the wrong

treatment was administered for future reference; what to do in future cases that exhibit similar symp-

toms and whether there are possibilities of adjusting the treatment, once administered, if it does not

seem to be having the desired e�ect.

Let X denote `treatment', taking values in X and let x ∈ X denote a generic element. Let Y denote

the `e�ect'. This could be binary (0 or 1) if the only question of interest is whether or not the patient

was cured, or it could (for example) be a real valued random variable, denoting the quantity of an

enzyme after treatment.

To formulate the counterfactual query, Y should no longer be considered as a single random variable,

but rather as a stochastic process Y ′ indexed by X . A stochastic process, in its greatest generality, is

de�ned as follows:

De�nition 3.33 (Stochastic Process). Let X be a set and (E,E) a measurable space. A stochastic

process Y indexed by X with state space (E,E), indexed by a set X , is a family of measurable mappings

{Y (x) ∶ x ∈ X} from a probability space (Ω,F ,P) into (E,E). The space (E,E) is called the state space.

There is no requirement from the de�nition of `process' that the state space X should represent `time'.

In the counterfactual set-up, Y ′ has state space XY , the same state space as Y . Attention is

restricted to the situation where E = XY is either �nite, in which case E is simply the set of all possible

subsets, or else E = R, in which case E = B(R), the Borel σ-algebra over R, the smallest collection of

subsets necessary to de�ne integration (and hence a probability measure).



3.10. IDENTIFICATION OF COUNTERFACTUALS 83

Suppose that the state space of Y is Y = {0,1}, where 0 represents `death' and 1 represent `cure'.

Suppose that x1 was the dose administered and the outcome was `death'. Consider the counterfactual

query: `would the patient have survived if we had given a treatment dose x2?' In terms of the

counterfactual process, the quantity to be computed is therefore:

P(Y ′(x2) = 1∣Y ′(x1) = 0).

In some limited cases, with serious additional modelling assumptions, this quantity can be computed

from the one-dimensional marginal distributions. For example, suppose we assume that, for x1 < x2,
{Y ′(x1) = 1} ⊆ {Y ′(x2) = 1}. This means that we assume that if the patient survives a low dose of the

treatment, he will also survive a higher dose. The treatment does not have side e�ects which kill the

patient; increasing the treatment dose increases the chance of success.

Under this assumption,

P(Y ′(x2) = 0∣Y ′(x1) = 0) =
⎧⎪⎪⎨⎪⎪⎩

P(Y ′(x2)=0)
P(Y ′(x1)=0) x2 > x1
1 x2 ≤ x1.

Several types of counterfactual query can be considered; if X is a cause and Y an e�ect within a larger

network, x1 could either be observed, or forced by intervention; the query is then `we observed e�ect

Y = y when we observed X = x1. What would have happened if we had forced X ← x2 by intervention?'

To construct the appropriate counterfactual probability distribution, we add the counterfactual

process Y ′, indexed by X , which does not have X as a parent. At the same time, the original variable

Y , with parent X remains in the graph and the counterfactual query is to compute

P(Y ′(x2) = y∣Y = y,X = x1).

3.10.1 Counterfactual Graphs

A countefactual Bayesian Network is a Bayesian network that is obtained by extending the original

network in a way that can be used to answer the counterfactual query.

Firstly, it is important that the same `random' component is considered. In other words, if we

observe an instantiation of Y when we do X ← x1 and we are asking about the probability distribution,

conditional on this information, of the distribution of Y if we had done X ← x2 instead, we need a

network which contains both Y (x1) and Y (x2) and also assumes the same random in�uence.

Therefore, we start with a formulation of the DAG which involves functional equations. That is, if

Xj has parents Pa(j), then Xj = fj(Pa(j), Uj) where U1, . . . , Ud are i.i.d. U(0,1) random variables, the

functions fj ∶ j = 1, . . . , d are deterministic functions and the parents of Xj in the DAG are Pa(j)∪{Uj}.
We extend the DAG to answer the counterfactual query in the following way: If the query involves

(a) do-conditioning on a subset A ⊆V and (b) asking a counterfactual question about the causal e�ect

on a set of nodes Y , then for each node β on the causal path from A to Y



84 CHAPTER 3. INTERVENTION CALCULUS

1. add a c-process node β′. These are the counterfactual process nodes, corresponding to the coun-

terfactual process, enumerating the value taken by the variable for each x ∈ XA.

A c-process node β′ has all the parents of α except the nodes in A; there are no links from nodes

in A to c-process nodes.

2. For each α ∈ A and each β on the causal path between A and Y (including all the nodes in Y ),

add in an arrow α → β. If β and γ, where β, γ /∈ A are on the causal path between A and Y and

there is an arrow β → γ, add in a process arrow β′ ⇒ γ′.

3. Add in a process to variable arrow β′ ↠ β for each process node and its corresponding variable

node. This is shorthand for an arrow β′(x)→ β for each x ∈ XA.

4. Add in variable to process nodes γ ↣ β′ for each γ ∈ Pa(β)/A. This is shorthand for γ → β′(x)
for each x ∈ XA.

5. If there is an arrow β′ ⇒ γ′, then remove the arrow β → γ (if it exists).

Within a Process Node A process node α′ is shorthand for {α′(x) ∶ x ∈ XA}.

Between Process Nodes If α = f(β1, . . . , βk, v) in the original DAG, where Pa(α) = {β1, . . . , βk}
and v is the random e�ect, then

α′(j) = f(β′1(j), . . . , β′k(j), v)

for each j.

Example 3.34.

Suppose we are interested in how likely a patient would be to have a certain symptom Y (1 = yes,

0 = no), given a dose x of a drug X assuming we know that the patient took dose x′ of the drug

and exhibited the symptom. Suppose there is a mediating variable W , for example: blood pressure,

and that it is the blood pressure which is the cause of the symptom. Furthermore, we also know that

the patient took dose d of a drug D and we have measured a symptom Z = z. We know PZ∣D, the

conditional probability distribution for symptom Z given drug D.

The blood pressure / symptom (W,Y ) may therefore considered as a counterfactual process indexed

by the dose of drug. The random variable Y (x) indicates whether or not the patient exhibits the symp-

tom when dose x is administered. In this language, problem is therefore to compute PY (x)∣Y (x′),Z,D.

Figure 3.18 (a) shows the original DAG for the Bayesian Network; (b) shows the network in terms of

functional relations.

3.10.2 Joint Counterfactual Probabilities and Intervention

Notes The `do - calculus' is due to Judea Pearl in [109] and [107]. It enables conclusions to be

drawn about the e�ects of active interventions, based on passive observations. The other main sources



3.10. IDENTIFICATION OF COUNTERFACTUALS 85

D

��

X

��

U1

  

D

��

X

��

U2

~~

Z

  

W

��

Z

  

W

��

U3

~~

Y Y

Figure 3.18: (a) A DAG, (b) the graph expressed as a functional relations graph

U1

��

D

��

X

��

��

W

��~~~~

U2
oo

W Y

����

U3
oo

Z

77

Y

Figure 3.19: (c) the graph extended to answer a counterfactual query

for the presentation here are Edwards [40] (2000) chapter 9 and Lauritzen (2001) [82]. The idea of

deletion of connections (in terms of wiping out equations in a multivariate model) is found in Strotz

and Wold (1960) [128]. The intervention formula is due to J. Pearl, but is also given independently

in the �rst edition of Spirtes, Glymour and Scheines (2002) [127]. The designation semi-Markovian

model follows [134]. The paper [64] (2006) summarises the recent developments in the problem of

identi�ability and presents an algorithmic solution. The results by Y. Huang, M. Valtorta in [64] show

that the do-calculus rules of Pearl [107] and [108] (1995) are complete in the sense that if a causal

e�ect is identi�able, then the causal e�ects can be computed in terms of observational quantities. The

article [43] by Freedman and Humphreys makes the obvious point that causality cannot be learned

from data and is a necessary response to errors that inexplicably crept into the literature.



86 CHAPTER 3. INTERVENTION CALCULUS

U2

��yy %%

U1

��

D

��

X

��

��

W ′(x1)

��
||

W ′(x2)

��
uu

W ′(x3)

��
ss

W Y ′(x1)

��

Y ′(x2)

yy

Y ′(x3)

tt
Z

66 33 22

Y U3

OO 99ee

Figure 3.20: Graph of Figure 3.19 (b) with the process nodes written out



3.11 Exercises

1. The two parts of this exercise are very similar and straightforward, illustrating how d-separation

in the mutilated graph corresponds to conditional independence in the remaining variables after

do-conditioning.

(a) Let G be a Directed Acyclic Graph, and suppose that a probability distribution P may

be factorised along G. Let G−X denote the graph obtained by deleting from G all arrows

pointing towards X (that is, all links between X and its parents are deleted). Prove that if

Y and Z are d-separated in G−X by X, then

PY ∣Z∥X(.∣.∥x) = PY ∥X(.∥x),

where the conditioning is taken from right to left.

(b) Let A,B,C,W be disjoint sets of nodes in a Bayesian Network. Let G denote the Directed

Acyclic Graph describing the causal network, and let G−C denote the graph with all edges

between C and parents of C removed.

Prove that if A and B are d-separated by (C,W ) on the graph G−C , then

PA∣W,B∥C(xA∣xW , xB, ∥xC) = PA∣W ∥C(xA∣xW ∥xC),

where the conditioning is performed from right to left.

2. Suppose the causal relations between the variables (X1,X2,X3,X4,X5,X6, Y,Z) may be ex-

pressed by the DAG given in Figure 3.21. Which of the following sets satisfy the back door

criterion with respect to the ordered pair of nodes (Y,Z)? C1 = {X1,X2}, C2 = {X4,X5},
C3 = {X4}.

State all sets of nodes that satisfy the back door criterion with respect to the ordered set of nodes

(Z,Y ).

X1

!!}}

X2

!!}}

X3

!!

X4

!!}}

X5

}}

Y // X6
// Z

Figure 3.21: Causal Relations between Variables

87



88 CHAPTER 3. INTERVENTION CALCULUS

3. Let a set of variables C satisfy the back door criterion relative to (X,Y ). Prove that

PY ∥X(y∥x) =∑
c

PY ∣C,X(y∣c, x)PC(c).

4. Let C be a set of variables in a Bayesian Network and let X be a variable such that C contains

no descendants of X. Prove, from the de�nition, that

PC∥X(c∥x) = PC(c).

5. Let V = {X1, . . . ,Xd} denote a set of variables. Let V = Z ∪ U , where the variables in Z are

observable and the variables in U are unobservable. Assume that the probability distribution

over the variables in V may be factorised along a Directed Acyclic Graph G = (V,D), where
no variable in U is a descendant of any variable in Z. That is, the model is semi-Markovian.

Consider a single variable, say Xj ∈ Z. Assume that there is no trail between Xj and Xk for

Xk ∈ Z with only fork and chain connections which contains a variable Xi ∈ U . Show that

PZ/{Xj}∥Xj
(xZ̃/{j}∥xj) = PZ/({Xj}∪Paj)∣Xj ,Paj∩Z (xZ̃/({j}∪P̃aj)

∣xj , xP̃aj∩Z̃
)PPaj∩Z̃(xP̃aj∩Z̃

).



3.12 Answers

1. (a) Let P̃V /{X} = PV /{X}∥X(.∥x). Then P̃ factorises along G−XV /{X}, the subgraph of G−X over the

variables V /{X}. The probability tables are, for Y ≠ X and parent sets P̃aY = PaY /{X}
(P̃aY is the original parent set of PaY with X removed) P̃

Y ∣P̃aY
= PY ∣PaY

with the instan-

tiation X ← x for every appearance of X in PaY . If Y á Z∥G−XX, then all trails between Y

and Z in G−X have either X as a fork or chain node, or else have a collider node that is not

X and which does not have X as a descendant. It follows that all trails between Y and Z

in G−XV /{X} have at least one collider node and hence that Y á Z∥G−X
V /{X}

∅ (d separated when

none of the other variables are instantiated. It follows that, under probability distribution

P̃, Y ⊥ Z, so that

PY ∣Z∥X(.∣.∥x) = P̃Y ∣Z = P̃Y = PY ∥X(.∥x).

(b) Let V denote the variable set and let P̃V /C = PV /C∥C(.∥xC). Then P̃ factorises along the

graph G−CV /C (the subgraph of G−C with the nodes C removed) and, for X /∈ C, conditional
probability potentials P̃

X ∣P̃aX
= PX ∣PaX

where P̃aX = PaX/C, PaX denotes the original

neighbour set, and the variables in PaX ∩C instantiated with the appropriate values.

If A á B∥G−CC ∪W then any trail from A to B either has a fork or chain node in C ∪W or

a collider node that is not in C ∪W with no descendants in C ∪W . It follows that, on the

graph G−CV /C , any trail from A to B either has a fork or chain node in W or a collider node

that is not in W with no descendants in W ; edges are deleted, but not added, by taking the

subgraph restricted to the variables of V /C and hence no new trails are added by removing

the nodes in C. It follows that A á B∥G−C
V /C

W and hence that

PA∣W,B∥C(xA∣xW , xB∥xC) = P̃A∣W,B(xA∣xW , xB) = P̃A∣W (xA∣xW ) = PA∣W ∥C(xA∣xW ∥xC)

which is the result.

2. C1 = {X1,X2} does not satisfy the back door criterion; Y −X4 − Z is a trail between Y and Z

with an edge pointing to Y which is not blocked by C1.

C2 = {X4,X5} satis�es the back door criterion; trail Y −X6 −Z does not have an edge pointing

towards Y . The other trails pass throughX4. For the trails Y −X4−Z and Y −X3−X1−X4−Z, X4

is an instantiated fork or chain respectively, hence C2 blocks the trail. For Y −X1−X4−X2−X5−Z,
X5 is an instantiated chain and hence the trail is blocked. All trails between Y and Z have been

considered.

For the backdoor criterion with respect to (Z,Y ), the sets have to block all trails with an

arrow pointing towards Z. This means that any set that contains X6, X4 and any node from

{X3,X1,X2,X5} will satisfy the backdoor criterion with respect to (Z,Y ); any set that does not

will not.

89



90 CHAPTER 3. INTERVENTION CALCULUS

3. It is clear that

PY ∥X(y∥x) =∑
c

PY ∣C∥X(y∣c∥x)PC∥X(c∥x).

Since C blocks all trails between Y and X that have an edge pointing towards X, it follows that

Y á (PaX/C)∥GC. It follows, with notation that should be clear, using Proposition 3.12 that

PY ∣C∥X(y∣c∥x) = ∑
π/c

PY ∣C,PaX∥X(y∣c, π/c∥x)PPaX/C∥X(π/c∥x)

= ∑
π/c

PY ∣C,PaX ,X(y∣c, π/c, x)PPaX/C(π/c)

= ∑
π/c

PY ∣C,X(y∣c, x)PPaX/C(π/c)

= PY ∣C,X(y∣c, x).

Furthermore, since none of the variables in C are descendants of X, it follows (again, using

Proposition 3.12) that

PC∥X(c∥x) = PC(c)

and the result follows. The fact that PC∥X(c∥x) = PC(c),

PY ∣C,PaX∥X(y∣c, π/c∥x) = PY ∣C,PaX ,X(y∣c, π/c, x)

and PPaX/C∥X(π/c∥x) = PPaX/C(π/c) is clear by comparing the original DAG and the mutilated

graph. A formal algebraic proof that PC∥X(c∥x) = PC(c) is given in the next exercise.

4. The variables may be ordered as V = {Y1, . . . , Yn,X,Yn+1, . . . , Yn+m} where the ordering is chosen
such that Pa(Yj) ⊆ {Y1, . . . , Yj−1} for j ≤ n, Pa(X) ⊆ {Y1, . . . , Yn},

Pa(Yj) ⊆ {Y1, . . . , Yn,X,Yn+1, . . . , Yj−1}

for j ∈ {m + 1, . . . , n +m} and where C ⊆ {Y1, . . . , Yn}. From the intervention formula,

PV /X∥X(y1, . . . , ym+n∥x) =
m+n
∏
j=1

PYj ∣Paj
(yj ∣πj)

while

PV (y1, . . . , ym+n, x) = PX ∣Pa(X)(x∣πX)
m+n
∏
j=1

PYj ∣Paj
(yj ∣πj).

Now, sum over variables Yn+1, . . . , Yn+m in both expressions, then sum over X in the second

expression. Then sum over all remaining variables not in C. The same answer obtains for both

expressions, so that

PC∥X = PC .



3.12. ANSWERS 91

5. Firstly,

PV /{Xj}∥{Xj} = PV /({Xj}∪Paj)∣Xj ,Paj
PPaj

.

Now let PaU = Paj ∩ U , Ua denote ancestors of Xj in U , Ub ancestors of Z/({Xj} ∪ Paj) in U
and Uc = U/(PaU ∪Ua ∪Ub).

Sum over the variables in V /(Z ∪PaU), then, from the condition that there are no trails between

Xj and other variables in Z that contain only fork or chain connections, Z/{Xj} ∪ Paj is d-

separated from PaU by {Xj}. It follows that

PZ∪PaU /{Xj}∥{Xj} = PZ/({Xj}∪(Paj∩Z))∣Xj ,(Paj∩Z),PaU
PPaj

= PZ/({Xj}∪(Paj∩Z))∣Xj ,(Paj∩Z)PPaj

so that

PZ/{Xj}∥{Xj} = PZ/({Xj}∪(Paj∩Z)∪PaU )∣Xj ,(Paj∩Z)PPaj∩Z .



92 CHAPTER 3. INTERVENTION CALCULUS



Chapter 4

The Pioneering Work of Arthur Cayley

4.1 Cayley's Contribution

Arthur Cayley F.R.S. (16 August 1821 - 26 January 1895) was a British mathematician, known for

his work in pure mathematics. His contributions include the so-called Cayley-Hamilton theorem, that

every square matrix satis�es its own characteristic polynomial, which he veri�ed for matrices of order

2 and 3 (1858) [16]. He was the �rst to de�ne the concept of a group in the modern way, as a set with

a binary operation satisfying certain laws. From group theory, he is known for Cayley's theorem, which

states that every group G is isomorphic to a subgroup of the symmetric group acting on G (1854) [15].

In the context of Bayesian networks, attention is drawn to a short article by Arthur Cayley from

1853, where in an example that takes less than one page, he seems to develop several principles that

later formed the basis of the subject of Bayesian networks, in particular, the `noisy or' gate.

Here is the article in its entirety.

XXXVII. Note on a Question in the Theory of Probabilities.

By A. Cayley*.

The following question was suggested to me, either by some of Prof. Boole's memoirs on

the subject of probabilities, or in conversation with him, I forget which; it seems to me a

good instance of the class of questions to which it belongs.

Given the probability α that a cause A will act, and the probability p that A acting the

e�ect will happen; also the probability β that a cause B will act, and the probability q that

B acting the e�ect will happen; required the total probability of the e�ect.

As an instance of the precise case contemplated, take the following: say a day is called

windy if there is at least w of wind, and a day is called rainy if there is at least r of rain,

and a day is called stormy if there is at least W of wind, or if there is at least R of rain.

The day may therefore be stormy because of there being at least W of wind, or because

of there being at least R of rain, or on both accounts; but if there is less than W of wind

and less than R of rain, the day will not be stormy. Then α is the probability that a day

93



94 CHAPTER 4. THE PIONEERING WORK OF ARTHUR CAYLEY

chosen at random will be windy, p the probability that a windy day chosen at random will

be stormy, β the probability that a day chosen at random will be rainy, q the probability

that a rainy day chosen at random will be stormy. The quantities λ, µ introduced in the

solution of the question mean in this particular instance, λ the probability that a windy

day chosen at random will be stormy by reason of the quantity of wind, or in other words,

that there will be at least W of wind, µ the probability that a rainy day chosen at random

will be stormy by reason of the quantity of rain, or in other words, that there will be at

least R of rain.

The sense of the terms being clearly understood, the problem presents of course no di�culty.

Let λ be the probability that the cause A acting will act e�caciously; µ the probability

that the cause B acting will act e�caciously; then

p = λ + (1 − λ)µβ

q = µ + (1 − µ)αλ,

which determine λ, µ; and the total probability ρ of the e�ect is given by

ρ = λα + µβ − λµαβ,

suppose, for instance, α = 1, then

p = λ + (1 − λ)µβ, q = µ + λ − λµ, ρ = λ + µβ − λµβ,

that is, ρ = p, for p is in this case the probability that (acting as a cause which is certain to

act) the e�ect will happen, or what is the same thing, p is the probability that the e�ect

will happen.

Machynlleth, August 16, 1853.

*Communicated by the Author.

In this short note, Cayley gives a prototype example of a causal network; rain and wind both have

causal e�ects on the state of the day (stormy or not), which may be inhibited. He demonstrates the

key principle of modularity, taking a problem with several variables and splitting it into its simpler

component conditional probabilities, by considering the direct causal in�uences for each variable and

considering the natural factorisation of the probability distribution in this problem into these condi-

tional probabilities.

It should also be pointed out that Cayley was no stranger to graph theory; he proved Cayley's tree

formula, that there are nn−2 distinct labelled trees of order n (1889) [19] and established links between

graph theory and group theory, representing groups by graphs. The Cayley graph is named after him.

The variables here may be taken as

C =
⎧⎪⎪⎨⎪⎪⎩

1 wind

0 no wind
D =
⎧⎪⎪⎨⎪⎪⎩

1 rain

0 no rain



4.1. CAYLEY'S CONTRIBUTION 95

rain
µ

$$

storm

wind

λ

::

Figure 4.1: Rain and wind causing a storm

with

α = PC(1) β = PD(1).

Let Y be the variable denoting whether there is a storm;

Y =
⎧⎪⎪⎨⎪⎪⎩

1 storm

0 no storm

Then, in Cayley's notation, if there is rain, it causes a storm with probability µ; if there is wind,

it causes a storm with probability λ. The corresponding `network', on three variables, is seen in

Figure 4.1. The subscripts µ and λ on the arrows indicate the probability that the cause, if active, will

trigger the e�ect.

This is a noisy `or' gate, which can be expressed as a logical `or' gate by the addition of two

variables, R and W . The variable R denotes severe rain, that is that the `rain' variable reaches the

threshold to trigger a storm. This happens if the quantity of rain is above a threshold. TheW variable

denotes severe wind; that is, that the `wind' variable reaches the threshold to trigger a storm. This

happens if the strength of wind is above a threshold. The variables, to form the logical or gate have

conditional probability values given below; PW ∣C denotes the conditional probability function for the

variable W given C and PR∣D denotes the conditional probability function for the variable R given D.

PW ∣C =
C/W 1 0

1 λ 1 − λ
0 0 1

PR∣D =
D/R 1 0

1 µ 1 − µ
0 0 1

The network may now be expressed graphically according to Figure 4.2. This DAG is a represen-

tation of the factorisation that Cayley is using;

PC,D,R,W,Y = PCPDPR∣CPW ∣DPY ∣W,R

where PY ∣W,R denotes the CPP for the variable Y , given W and R. For Y = 1, these values are given
in the following table:



96 CHAPTER 4. THE PIONEERING WORK OF ARTHUR CAYLEY

rain // R

##

storm

wind // W

;;

Figure 4.2: Rain and wind: logical `or' gate

PY ∣W,R(1∣., .) =
W /R 1 0

1 1 1

0 1 0

.

From the factorisation,

PW (1) =∑
x

PW ∣C(1∣x)PC(x) = λα, PR(1) = µβ,

From Cayley, p is the probability that a windy day, chosen at random, will be stormy; P = PY ∣D(1∣1).

p = PY ∣D(1∣1) =∑
x1

PA(x1)∑
x2

PR∣C(x2∣x1)∑
x3

PY ∣R,W (1∣x2, x3)PW ∣D(x3∣1)

= βλµ + βµ(1 − λ) + β(1 − µ)λ + (1 − β)λ
= βµ − βλµ + λ = λ + (1 − λ)βµ.

Similarly, q, the probability that a rainy day, chosen at random, will be stormy; q = PY ∣C(1∣1), is given
by

q = µ + (1 − µ)αλ,

as computed by Cayley. Cayley is deriving the expression for the marginal probability of a stormy day,

ρ = PY (1);

PY (1) = ∑
x1

PC(x1)∑
x2

PD(x2)∑
x3

PR∣C(x3∣x1)∑
x4

PW ∣D(x4∣x2)PY ∣R,W (1∣x3, x4)

= ∑
x3

PR(x3)∑
x4

PW (x4)PY ∣R,W (1∣x3, x4)

= PR(1)PW (1) + PR(1)PW (0) + PR(0)PW (1)
= αλ + βµ − αβλµ.

This simple construction from 1853 possibly represents the �rst example of a causal network and the

�rst construction of a noisy-or gate, with the concept of an inhibitor.



4.2. ARTHUR CAYLEY AND JUDEA PEARL'S INTERVENTION CALCULUS 97

4.2 Arthur Cayley and Judea Pearl's intervention calculus

There is the cryptic remark towards the end of Arthur Cayley's paper, which indicates that he may

already have had the framework of Judea Pearl's intervention calculus in mind when considering causal

probabilistic models. The phrase ` .... acting a cause which is certain to act' may be a clumsy way of

expressing a brilliant insight into the intervention calculus, if by `acting' he means intervening to force

the state of the variable.

This reading may be somewhat strained; in Arthur Cayley's example, no human intervention is

possible to force the states of the wind or rain variables. Since `wind' and `rain' are both ancestor

variables, no links are removed from the DAG and in Pearl's framework, intervention conditioning

is the same as the standard conditioning on an observation. The wording suggests, though, that he

understood, from causal principles, that the two equations relating λ and µ to p and q remain valid if

the conditioning on an ancestor variable is forced by intervention, rather than simply observed, one of

the features of Pearl's intervention calculus.

4.3 Arthur Cayley: algebraic geometry and Bayesian networks

The emerging �eld of algebraic statistics (Pistone et al. (2001) [115], Drton et. al. (2009) [39])

advocates polynomial algebra as a tool in the statistical analysis of experiments and discrete data; the

connection between algebraic geometry and Bayesian networks is discussed by Garcia et. al. (2005)

in [50].

For a probability distribution over a set of variables, the conditional independence statements

for subsets X,Y,Z,W satisfy the logical relations of decomposition, contraction, weak union and

intersection, described on page 32 chapter 2.

A factorisation is equivalent to a set of conditional independence statements;

{Xσ(j) ⊥XΞσ(j)∣XPaσ(j) j = 1, . . . , d},

where Paσ(j) ⊂ {σ(1), . . . , σ(j − 1)} is the parent set of node σ(j) when ordering σ is employed and

Ξσ(j) = {σ(1), . . . , σ(j − 1)}/Paσ(j).
Let V = {1, . . . , d} denote the node set which indexes the variables, X = (X1, . . . ,Xd) the random

vector, let the indexing set for the state space for variable Xj be Xj = {0,1, . . . , kj −1} and the indexing

set for the state space for X be X = ×dj=1Xj . Let R(X ) the ring of polynomial functions on RX .
A conditional independence statement XA ⊥ XB ∣XC , where A,B and C are disjoint subsets of V ,

translates using proposition 8.1 from Sturmfels (2002) [130], into a set of homogeneous quadratic poly-

nomials on R(X ), and these polynomials generate an ideal. Let IA⊥B∣C denote the ideal generated by

the statement XA ⊥XB ∣XC . The ideal for a collection of independence statements, for example those

corresponding to a factorisation, is de�ned as the sum of the ideals; letM = {XAi ⊥ XBi ∣XCi i =
1, . . . ,m}, then

IM = IA1⊥B1∣C1
+ . . . + IAm⊥Bm∣Cm

.



98 CHAPTER 4. THE PIONEERING WORK OF ARTHUR CAYLEY

Cayley is using the expression of the conditional independence statements that de�ne the factorisation

in terms of polynomials to obtain the two polynomial equations

⎧⎪⎪⎨⎪⎪⎩

p = λ + (1 − λ)µβ
q = µ + (1 − µ)λα

(4.1)

and writes, `.... which determine λ and µ'. This amounts to �nding roots of the two polynomials in

λ,µ

⎧⎪⎪⎨⎪⎪⎩

f1(λ,µ) = λ + (1 − λ)µβ − p
f2(λ,µ) = µ + (1 − µ)λα − q

In terms of algebraic geometry, equation (4.1) de�nes the a�ne variety

V (f1, f2) = {(λ,µ) ∈ R2∣f1(λ,µ) = f2(λ,µ) = 0} .

In his brief note, Cayley has pointed out the connections between Bayesian networks and algebraic

geometry, a subject that he knew well. Cayley did much to clarify a large number of interrelated

theorems in algebraic geometry and is known for the Cayley surface (1869) [17].



Chapter 5

Moral Graph, Independence Graph,

Chain Graphs

The de�nition of a chain graph is given below and it is shown that an essential graph is a chain graph,

although not vice versa. The study of chain graphs will be developed in 5.2.

De�nition 5.1 (Chain Graph). A chain graph is a graph G = (V,E), where the edge set contains

both directed and undirected edges, E = D ∪ U , where D is the set of directed edges and U the set of

undirected edges. The node set V can be partitioned into n disjoint subsets V = V1 ∪ . . . ∪ Vn where the

sets V1, . . . , Vn are the node sets of the connected components of (V,U), the graph obtained by removing

all the directed edges.

1. GVj is an undirected graph for all j = 1, . . . , n

2. For any i ≠ j, and any α ∈ Vi, β ∈ Vj, there is no cycle in G = (V,E) (De�nition 1.9) containing

both α and β.

The chain graph consists of components where the edges are undirected, which are connected by

directed edges. The components with undirected edges are known as chain components, which are

de�ned below.

De�nition 5.2 (Chain Component). Let G = (V,E) be a chain graph, where E = D ∪U , D is the set

of directed edges. Let Ĝ = (V,U) denote the graph obtained by removing all the directed edges from E.

Each connected component of Ĝ is known as a chain component.

The chain components (Vj , Uj), j = 1, . . . , n of G therefore satisfy the following conditions:

1. Vj ⊆ V and Uj is the edge set obtained by retaining all undirected edges ⟨α,β⟩ ∈ E such that

α ∈ Vj and β ∈ Vj .

2. There is no undirected edge in E from any node in V /Vj to any node in Vj .

Theorem 5.3 states any essential graph is necessarily a chain graph and presents the additional features

required to ensure that a chain graph is an essential graph corresponding to a directed acyclic graph.

It gives a characterisation for essential graphs that is useful for structure learning algorithms.

99



100 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

γ

��

α γ α

��

γ α β

β

@@

β

@@

δ

@@

Figure 5.1: Forbidden subgraphs

Theorem 5.3. Let G = (V,E) be a graph, where E = D ∪ U . There exists a directed acyclic graph G∗

for which G is the corresponding essential graph if and only if G satis�es the following conditions:

1. G is a chain graph,

2. Each chain component of G is triangulated,

3. The con�gurations shown in Figure 5.1 do not occur in any induced sub-graph of a three variable

set {α,β, γ} ⊂ V for the �rst two con�gurations or a four variable set {α,β, γ, δ} for the third

con�guration.

4. Every directed edge (α1, α2) ∈D is compelled in G.

Proof Proof that an essential graph satis�es the conditions. To prove that it is a chain graph, the

�rst part of the de�nition is easily satis�ed and it is su�cient to show that there is no cycle in (V,E)
containing α ∈ Vi and β ∈ Vj for two distinct chain components Vi and Vj .

Recall that the edges of a cycle τ0, . . . , τn are either directed (τi, τi+1) or undirected ⟨τi, τi+1⟩. Let
(τ, γ) denote a directed edge in the cycle where γ ∈ Vj . Both connected components will have a node γ

with this property. If there is an undirected edge ⟨γ, γ1⟩ in the cycle, then there is also an undirected

edge ⟨τ, γ1⟩ in the graph. If there is a directed edge (τ, γ1) or (γ1, τ) then the edge between γ and γ1

is compelled contradicting the fact that it is undirected. If there is an undirected edge ⟨τ, γ1⟩, then
τ ∈ Vj . Proceeding inductively, it is clear that if there is a cycle, then there is an undirected edge

⟨τ1, τ2⟩ where τ1 ∈ Vi and τ2 ∈ Vj contradicting the fact that the two chain components are distinct. It

follows that an essential graph is a chain graph.

Secondly, if there is a cycle of length ≥ 4 of undirected edges without a chord, then the DAG will

have a directed cycle, otherwise additional immoralities will appear when the edges are directed, hence

the chain components are triangulated.

Thirdly, the con�guration stated cannot appear in an essential graph. The fourth requirement

follows from the de�nition of an essential graph.



5.1. THE MORAL GRAPH AND THE INDEPENDENCE GRAPH 101

For the other direction: suppose a graph satis�es the four conditions stated. All the directed edges

appear in con�gurations that are compelled and from the forbidden subgraphs, no undirected edges

appear in compelled con�gurations where there should be a directed edge. It remains to show that the

undirected edges may be oriented in a way that produces a directed acyclic graph.

For each chain component, orient the edges so that the chain component is a directed acyclic

triangulated graph. This can be done. Then, since the �rst structure is forbidden, this operation

does not produce additional immoralities in the whole graph. Furthermore, since there are no cycles

containing two nodes α and β with α ∈ Vj and β ∈ Vk for j ≠ k, this operation does not produce directed

cycles. The graph is therefore the essential graph of a DAG.

5.1 The Moral Graph and the Independence Graph

Let (P,G) be a Bayesian network; that is, a probability distribution P over a random vector X =
(X1, . . . ,Xd), such that P factorises along a directed acyclic graph G = (V,D), and this is no longer

true if any variable is eliminated from any of the parent sets.

De�nition 5.4 (Moral Graph). Let G = (V,D) be a directed acyclic graph. The moral graph G(m) =
(V,U) is the undirected graph such that for any α,β ∈ V , ⟨α,β⟩ ∈ U if and only if either (α,β) ∈ D
or (β,α) ∈ D or {α,β} ∈ Pa(γ) for some γ ∈ V . That is, the moral graph is the graph obtained by

�rstly for each node adding links between all the parent variables of the node and then undirecting all

the directed edges.

The moral graph satis�es the following property:

Theorem 5.5. Let G = (V,D) be a directed acyclic graph and let G(m) = (V,U) be its moral graph.

There is an edge ⟨α,β⟩ ∈ U if and only if α /á β∥GV /{α,β}. That is, the moral graph has an edge if

and only if α and β are not D-separated by the remaining variables.

Proof The proof of this is left as an exercise (Exercise 6 page 352).

The independence graph is de�ned as follows:

De�nition 5.6 (Independence Graph). Let X = (X1, . . . ,Xd) be a random vector. The independence

graph G = (V,U) is the undirected graph with vertex set V = {1, . . . , d} and where ⟨α,β⟩ ∈ U for α ≠ β
if and only if Xα /⊥Xβ ∣X−(α,β) where the notation X−(α,β) denotes X without components Xα and Xβ.

Recall the de�nition of separator (De�nition 7.15). The independence graph satis�es the following

property:

Theorem 5.7. Let X = (X1, . . . ,Xd) be a random vector, let V = {1, . . . , d} be the indexing set for X

and let G = (V,U) be the independence graph of X. Then for three disjoint sets A,B and S such that

V = A ∪B ∪ S, it holds that A ⊥ B∣S (A and B are conditionally independent given S) if and only if

A á B 8 S (A and B separated by S).



102 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

Proof Firstly, assume that for three disjoint sets A,B and S such that A ∪B ∪ S, A á B 8 S in the

independence graph. Then, for each α1, α2 ∈ A and β ∈ B, set C = V /{α1, α2, β}. From the de�nition

of the independence graph,

Xα1 ⊥Xβ ∣XC∪{α2} and Xα2 ⊥Xβ ∣XC∪{α1}.

It follows from the intersection property, which states that if X ⊥ Y ∣W ∪ Z and X ⊥W ∣Y ∪ Z then

X ⊥W ∪ Y ∣Z, that

(Xα1 ,Xα2) ⊥Xβ ∣XC .

By successive applications of the intersection property to each variable, it follows that

XA ⊥Xβ ∣X−(A∪{β}).

This holds for all β ∈ B. The intersection property gives:

XA ⊥Xβ1 ∣X−(A∪{β1}) and XA ⊥Xβ2 ∣X−(A∪{β2}) ⇒XA ⊥ (Xβ1 ,Xβ2)∣X−(A∪{β1,β2}).

Successive applications of the intersection property to the variables with indices in B give

XA ⊥XB ∣XS .

Now assume that XA ⊥XB ∣XS . Then, for each α ∈ A and β ∈ B, this may be rewritten as

(Xα,XA/{α}) ⊥ (Xβ,XB/β)∣XS .

Using the weak union result, that X ⊥ Y ∪Z ∣W ⇒X ⊥ Y ∣Z ∪W it follows that

Xα ⊥XB ∣XS∪A/{α}

and another application gives

Xα ⊥Xβ ∣X−(α,β).

Theorem 5.8. Let P be a probability distribution that factorises along a DAG G = (V,D). Let G(m) =
(V,U (m)) denote its moral graph and let G(i) = (V,U (i)) denote the independence graph of P. Then

U (i) ⊆ U (m). Furthermore, if (V,D) is faithful to P, then U (i) = U (m).



5.2. CHAIN GRAPHS 103

Proof From Theorem 5.5, the moral graph has an edge ⟨α,β⟩ if and only if α /á β∥GV /{α,β}; there
is no edge ⟨α,β⟩ if and only if α á β∥GV /{α,β}. Since D-separation implies conditional independence

(Theorem 1.25), it follows that the lack of an edge ⟨α,β⟩ imples Xα ⊥Xβ ∣X−(α,β). From this, it follows

directly that U (i) ⊆ U (m).
For a faithful DAG,D-separation and conditional independence are equivalent, from which it follows

that U (i) = U (m) when P and G = (V,D) are faithful.

If a distribution P does not have a faithful representation, then for any DAG U (i) ⊂ U (m).

The following corollary is an obvious consequence of the preceeding.

Corollary 5.9. Let X = (X1, . . . ,Xd) be a random vector and V = {1, . . . , d} be its indexing set. Let

G = (V,D) be a directed acyclic graph, along which P, the probability distribution of X, factorises and

let G(m) be the moral graph. Let V = A∪B ∪S where A,B and S are disjoint subsets. Then A á B 8S
(A and B separated by S in G(m)) implies XA ⊥XB ∣XS (A and B conditionally independent given S).

Proof A clear consequence of the preceeding arguments.

5.2 Chain Graphs

5.2.1 Motivation

Consider the problem of �nding a graphical model where each graphical separation statement implies

the corresponding conditional independence statement, and the aim is to locate a graph structure

which encodes as much of the conditional independence structure as possible. When there does not

exist a faithful DAG, a Bayesian Network cannot encode the complete set of conditional independence

statements. Chain graphs give a substantially broader class of graphical models which can encode

more of the conditional independence structure.

Example 5.10 (Chain Graph (1)).

Consider the situation where a probability distribution is constructed out of pairwise potentials:

PX1,X2,X3,X4(x1, x2, x3, x4) = C exp{−β12(x1 − x2) − β23(x2 − x3) − β34(x3 − x4) − β14(x1 − x4)} .

Consider a factorisation of this distribution

PX1,X2,X3,X4 = PX1PX2∣X1
PX3∣X1,X2

PX4∣X1,X2,X3
.

Note that

PX1,X2,X3 = C exp{−β12(x1 − x2) − β23(x2 − x3)}∑
x4

exp{−β34(x3 − x4) − β14(x1 − x4)} .



104 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

2

��

1

@@

��

// 3

��

4

Figure 5.2: DAG for 4 variable example

2

1 3

4

Figure 5.3: Moral graph for 4 variable example

It follows that the BN is given by the following factorisation:

PX1,X2,X3,X4 = PX1PX2∣X1
PX3∣X1,X2

PX4∣X1,X3
.

with DAG given by Figure 5.2. The moral graph of the DAG of Figure 5.2 is given in Figure 5.3.

Whatever ordering of the variables, the moral graph of the resulting Bayesian network will be

triangulated. The cliques of the moral graph are the parent/variable sets of factorisation.

More of the independence structure is revealed in this example by the factor graph shown in Figure 5.4,

which is a chain graph.

Example 5.11 (Chain Graph (2)).

Figure 5.5 gives an example of a chain graph which is not an essential graph, where the chain compo-

nents are nevertheless triangulated. Its chain components are shown in Figure 5.6.

Figure 5.5 is the chain graph of a probability distribution which has factorisation:

PX1,X2,X3,X4 = PX1PX2PX3,X4∣X1,X2
,

but where neither X1 ⊥X4∣X3 nor X2 ⊥X3∣X4 hold. Such a distribution could arise, for example, with

a probability distribution



5.2. CHAIN GRAPHS 105

2

1 3

4

Figure 5.4: Factor graph for 4 variable example

1

��

2

��

3 4

Figure 5.5: Chain Graph, Not an Essential Graph

1 2

3 4

Figure 5.6: Chain Components of Chain Graph, Figure 5.5



106 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

PU,X1,X2,X3,X4 = PUPX1PX2PX3∣X1,UPX4∣X2,U

where U is a hidden variable.

The additional �exibility available for modelling when chain graphs are used should be clear. Chain

graphs, however, still satisfy the composition property and therefore separation statements in a chain

graph do not characterise the independence structure; there does not exist a faithful chain graph for

Example 2.7, the three-coin example.

5.2.2 Factorisation along a Chain Graph

Let X = (X1, . . . ,Xd) be a random vector indexed by V = {1, . . . , d}. Let P denote the probability

distribution of X. The probability distribution is said to factorise along the chain graph G = (V,E) if
and only if there exist functions ∅C ∶ C ∈ C and it has a decomposition of the form:

PX1,...,Xd
=∏

j∈A
PXj ∣XPa(j)

∏
C∈C
∅C

where A = {j ∶ ∃k ∶ (k, j) ∈ D} and C denotes the collection of cliques of the chain components; clique

C is the domain of the function ∅C for each C ∈ C.

To generalise from DAGs to chain graphs, some additional de�nitions and machinery are necessary.

The approach taken here follows Ma-Xie-Geng (2008) [86].

A head-to-head section in a chain graph plays the same role as an immorality in a DAG.

De�nition 5.12 (Section, Terminal). The terminals of a trail ρ = (ρ0, . . . , ρk) are simply the nodes

at each end, ρ0 and ρk. A section of a trail ρ = (ρ0, . . . , ρk) is a maximal undirected subroute σ =
(ρi, . . . , ρj). In other words, either ρi = ρ0 or else i ≠ 0 and there is a directed edge ρi−1 ↦ ρi or

ρi ↦ ρi−1; similarly, either j = k or else there is a directed edge ρj ↦ ρj+1 or ρj+1 ↦ ρj.

The vertices ρi and ρj are called terminals. ρi (ρj) is a head terminal if i > 0 and G contains the

directed edge ρi−1 ↦ ρi (or j < k and G contains the edge ρj+1 ↦ ρj and a tail terminal if i > 0 and the

graph G contains the edge ρi ↦ ρi−1. (or j < k and the graph contains the edge ρj ↦ ρj+1).

A section σ of ρ is a head-to-head section if it has two head-terminals, otherwise it is a non

head-to-head section.

For a set of vertices S ⊂ V , a section σ is outside S if {ρi, . . . , ρj} ∩ S = ∅; otherwise we say that

σ is hit by S.

A complex within a trail in a chain graph plays a similar role to a collider node in a trail in a DAG.

De�nition 5.13 (Complex). A complex in G is a trail ρ = (ρ0, . . . , ρk) such that ρ0 ↦ ρ1 and ρk ↦ ρk−1
are in G and, for i = 1, . . . , k − 2 G contains the undirected edges ρi − ρi+1. The vertices ρ0 and ρk are

the parents of the complex and {ρ1, . . . , ρk−1} the region of the complex.



5.2. CHAIN GRAPHS 107

The pattern of a chain graph corresponds to taking the skeleton of a DAG and directing those edges

which belong to immoralities.

De�nition 5.14 (Complex Arrow, Pattern, Moral Graph). A directed edge in the chain graph is known

as a complex arrow if it belongs to a complex of G. The pattern of G, denoted G∗ is the graph obtained

by undirecting all directed edges which are not complex arrows. The moral graph G(m) of a chain graph

is the graph obtained by �rst, for each complex, adding an undirected edge between each pair of parents

of the complex, and then undirecting all the edges.

For a chain graph, the descendants of a node are those for which there is a trail where each edge is

either undirected or directed from the node to the descendant.

De�nition 5.15 (Descendant). A node β is a descendant of a node α if there is a path ρ = (ρ0, ρ1, . . . , ρk)
such that ρ0 = α, ρk = β and for i = 0, . . . , k − 1 either there is either an undirected edge ⟨ρi, ρi+1⟩ or a
directed edge (ρi, ρi+1) in G.

For a DAG, a connection is open if it is an uninstantiated fork or chain, or if it is a collider which

is either instantiated or has an instantiated descendant. In chain graphs, this has to be developed

slightly.

De�nition 5.16 (Intervented). A trail ρ in G is intervented by a subset S of V if and only if there

exists a section σ of ρ such that:

1. either σ is a head to head section with respect to ρ and σ and all its descendants are outside S,

or

2. σ is a non-head-to-head section with respect to ρ and σ is hit by S.

Note In [86], the requirement in 1. that the descendants are also outside S is not given. It is clear

that this is necessary, by considering the situation where the chain graph is a DAG.

The notion of C-separation for chain graphs corresponds to D-separation for DAGs.

De�nition 5.17 (C-Separation). Let A, B and S be three disjoint subsets of V of a chain graph G
such that A and B are non-empty. The sets A and B are C-separated by S, written A á B∥GS if and

only if every trail with one of its terminals in A and another in B is intervented by S. The set S is a

C-separator for A and B.

The de�nition of Markov equivalence is the same, with C-separation substituted for D-separation.

De�nition 5.18 (Markov Equivalence). Two chain graphs G1 and G2 are said to be Markov equivalent

if for any three disjoint subsets A,B and S with both A and B non-empty,

A á B∥G1S⇔ A á B∥G2S.

Having formulated the concepts for chain graphs that correspond to those for DAGs, the key result for

chain graphs corresponds directly to Theorem 2.11.

Theorem 5.19. Two chain graphs G1 and G2 are Markov equivalent if and only if they have the same

skeleton and the same complexes. That is, they have the same pattern.



108 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

Proof Frydenberg [48] (1990). It is similar to the proof of Theorem 2.11 for DAGs.

A distribution that factorises according to a chain graph is said to be Markovian with respect to the

chain graph.

De�nition 5.20 (Markovian). A distribution P is said to be Markovian with respect to a chain graph

G if C-separation statements imply the corresponding independence statements:

A á B∥GS ⇒XA ⊥XB ∣XS .

The de�nition of faithfulness for chain graphs is analogous to faithfulness for DAGs.

De�nition 5.21 (Chain Graph Faithfulness). A distribution P is said to be faithful with respect to a

chain graph G if C-separation statements and independence statements are equivalent;

A á B∥GS⇔XA ⊥XB ∣XS .

5.2.3 Separation Trees for Chain Graphs

A DAG can be moralised, the moral graph triangulated and the triangulated moral graph decomposed

into a junction tree. This is the basis of the Aalborg inference engine. The moral graph for a chain

graph is given by De�nition 5.14. In Ma-Xie-Geng [86], the separation tree is proposed as the analogous

object to the junction tree.

De�nition 5.22. Let G = (V,E) be a chain graph. Let C = {C1, . . . ,CH} be a collection of distinct sets

of variables such that V = ∪Hj=1Cj. Let T denote the graph (C,U) where U is a set of labelled undirected

edges. Uij ∈ U if and only if Ci ∩Cj ≠ ∅; the label is Ci ∩Cj and Uij is the separator.

T is said to be a tree if removal of the nodes of Uij for any pair i ≠ j splits T into two disjoint trees

Ti (with node set denoted Ci) and Tj (with node set denoted Cj). Let Vi = ∪C∈CiC and Vj = ∪C∈CjC.
A tree T with node set C is a separation tree for chain graph G if and only if:

1. ∪C∈CC = V and

2. For any separator S ∈ U , with V1 and V2 de�ned above by removing S,

V1/S á V2/S∥GS.

The separation tree has similarities to the junction tree, but it does not require that the collection

{C1, . . . ,CH} are cliques or that every separator is complete.

A separation tree can be constructed quite easily from the independence graph.

Theorem 5.23. Let X = (X1, . . . ,Xd) be a random vector and let G(i) denote the independence graph.
Any junction tree constructed from any triangulation of G(i) is a separation tree.



5.2. CHAIN GRAPHS 109

Proof This is obvious, since any separation statement in the independence graph implies the corre-

sponding C-separation statement in the chain graph.

Lemma 5.24. Let α and β be two adjacent nodes in a chain graph G, then any separation tree T for

G contains a tree-node C such that {α,β} ⊆ C.

Proof Assume not, then there exists a separator K on T such that α ∈ V1/K and β ∈ V2/K, where

Vi denotes the variable set of the subtree Ti obtained by removing the edge attached by separator K,

for i = 1,2. This implies that α á β∥GK, which is false.

The separation tree satis�es several properties which will be useful in 16.12 for learning a chain graph.

Some of them are collected in the following theorem.

Theorem 5.25. Let T be a separation tree for a chain graph G = (V,E). Nodes α and β are C-

separated by some set Sαβ ⊂ V in G if and only if one of the following conditions hold:

1. α and β are not both contained in the same node C for any C ∈ C.

2. α,β ∈ C for some C ∈ C, but for any separator S ⊂ C, {α,β} /⊂ S and there exists a set S′α,β ⊂ C
such that

α á β∥GS′αβ.

3. There is a C ∈ C such that {α,β} ⊆ C, there is a separator S ⊂ C such that {α,β} ⊆ S, but there
is a subset S′αβ of either ∪C ∶α∈CC or ∪C ∶β∈CC such that

α á β∥GS′αβ.

The following proposition shows that, similarly to the situation with DAGs, the parents for each

complex are all contained within the same tree node.

Proposition 5.26. Let G be a chain graph and T a separation tree of G. For any complex ρ in G,
there exists a tree-node C ∈ C such that Pa(ρ) ⊆ C.

The proofs of Theorem 5.25 and Proposition 5.26 are given after the following example.

Example 5.27 (Chain Graph, Moral Graph, Separation Tree).

Figure 5.7 (a) shows a chain graph, while (b) shows the moralised graph. Figure 5.8 shows a

separation tree. The vertex set for the separation tree here is:

C = {{A,B,C},{B,C,D},{C,D,E},{D,E,F},{E, I},{I, J},{D,F,G},{F,G,K,H}}.

In this case, the separation tree is the junction tree corresponding to a triangulation of the moral

graph, but a separation tree does not necessarily have to satisfy this property.

Lemma 5.28. Let G = (V,E) be a chain graph and let α,β ∈ V . There exists an edge α ∼ β in E if

and only if α /á β∥GS for any S ⊆ V /{α,β}.



110 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS

G

  

H G H

B D

>>

// F // K B D F K

A C // E // I // J A C E I J

Figure 5.7: Chain Graph, Moralised Graph

BCD

BC

CD

DEF

DE
E

DF

ABC CDE EI

I

DFG

GF

IJ FGKH

Figure 5.8: A Separation Tree for Figure 5.7



5.2. CHAIN GRAPHS 111

Proof If there is an edge α ∼ β, whether directed or undirected, then clearly α /á β∥S for any

S ⊆ V /{α,β}. Let Pa(α) = {γ ∶ (γ,α) ∈ E} ∪ {γ ∶ ⟨γ,α⟩ ∈ E}. In other words, the parents of a node α

are all nodes for which there is either a directed edge from the node to α or an undirected edge between

the node and α.

Suppose there is no edge α ∼ β, then α á β∥GPa(α) if β is an ancestor of α, α á β∥GPa(β) if α is

an ancestor of β and both statements are true if α is not an ancestor of β and β is not an ancestor of

α.

Proof of Theorem 5.25 Clearly, if any of the three conditions hold, then there is a C-sep-set Sαβ

such that α á β∥GSαβ .
Assume that, for a given separation tree T , none of the conditions hold. That is, there exists an

α,β and C such that α,β ∈ C, there is a separator S ⊂ C such that α,β ∈ S and for every subset S of

either ∪C ∶α∈CC or ∪C ∶β∈C , α /á β∥GS.
Note that, using the de�nitions from the proof of Lemma 5.28, if there is no edge α ∼ β, then

either α á β∥GPa(α) or α á β∥GPa(β) or both. Since Pa(α) ⊂ ∪C ∶α∈CC and Pa(β) ⊂ ∪C ∶β∈CC, this is
a contradiction, hence there is an edge α ∼ β in G, hence (by Lemma 5.28 there is no set R such that

α á β∥GR and the theorem is proved.

Proof of Proposition 5.26 Suppose that α and β are parents of a complex κ = (α, γ1, . . . , γk, β)
where k ≥ 1. Suppose that for every tree-node C ∈ C, {α,β} ∩ C /= {α,β}. Consider two tree-nodes

C1 and C2 such that α ∈ C1 and β ∈ C2. Let C1 − D1 − . . . ,Dn − C2 denote the path in the tree

from C1 to C2 and let S = C1 ∩D1. If S ∩ {α,β} = ∅, then {γ1, . . . , γk} ∩ S ≠ ∅. This implies that

α /á β∥S, since instantiation of any non-empty subset of the set {γ1, . . . , γk} opens the connection.

This contradicts the fact that S is a separator in the separation tree. It follows that either α ∈ S and

hence α ∈D1 or β ∈ S and hence β ∈D1; hence, inductively, it follows that there is a tree-node C such

that {α,β} ⊆ C.



112 CHAPTER 5. MORAL GRAPH, INDEPENDENCE GRAPH, CHAIN GRAPHS



Chapter 6

Evidence and Metrics

6.1 Probability Updates

Let V = {X1, . . . ,Xd} denote the set of random variables, Xj = (x(1)j , . . . , x
(kj)
j ) denote the state space

for variable Xj and let X = ×dj=1Xj denote the state space for the collection V . Let P ∶ X → [0,1]
denote the probability function of (X1, . . . ,Xd). Let x = (x(i1)1 , . . . , x

(id)
d ) denote an element of X . For

subsets A ⊆ X , P(A) will be used to denote

P(A) = ∑
x∈A

P(x).

The space X contains a �nite number of elements and the event algebra A is simply the set of all

possible subsets of X . If an event A ⊂ X is observed, then the probability P is updated to a probability

measure P∗ using the de�nition of conditional probability

P(B∣A) = P∗(B) = P(AB)
P(A)

to a probability function P∗ over X that satis�es

P∗(x) =
⎧⎪⎪⎨⎪⎪⎩

P(x)
P(A) x ∈ A
0 x /∈ A.

6.1.1 Je�rey's Rule

There may be evidence that is not expressed in the form that an event A ⊆ X has occurred. It often

happens in experimental settings that the probability space and event space are determined in advance

and then information is acquired that is not of the form that an event, as a subset of the original

probability space has occurred.

Je�rey's rule is for the particular situation where the additional information leads to a re-assessment

of the probabilities for a collection (Gj)rj=1 of mutually exclusive and exhaustive events from P(Gj) to
P∗(Gj) and where it may be assumed that the conditional probabilities P(A∣Gj) remain unaltered for

j = 1, . . . , r and all A ⊆ X .

113



114 CHAPTER 6. EVIDENCE AND METRICS

De�nition 6.1 (Je�rey's Update). The Je�rey's rule for computing the update of the probability for

any A ⊆ X is given by

P∗(A) =
r

∑
j=1

P∗(Gj)P(A∣Gj) (6.1)

Let P(Gj) = µj for j = 1, . . . , r and P∗(Gj) = λj for j = 1, . . . , r. Then, for x ∈ X ,

P∗(x) = λj
µj

P(x) x ∈ Gj , j = 1, . . . , r. (6.2)

The information leading to the update may be considered as an event Ξ such that Ξ /⊆ X . The

probability measure P is extended to acommodate the event Ξ in the following way: for the set of

mutually exclusive and exhaustive events G1, . . . ,Gr and any A ⊆ X , Ξ ⊥ A∣Gj for each j = 1, . . . , r.
The conditional probabilities of the events G1, . . . ,Gr given Ξ are speci�ed as P(Gj ∣Ξ) = λj . Then, for
any A ⊆ X , the probability update is

P̃(A) = P(A∣Ξ) =
r

∑
j=1

P(A∣Gj ,Ξ)P(Gj ∣Ξ) =
r

∑
j=1

λjP(A∣Gj).

Using P(A∣Gj) = P(A∩Gj)
P(Gj) and µj = P(Gj), this gives

P̃(x) = λj
µj

P(x) x ∈ Gj , j = 1, . . . , r.

Pearl's Update Pearl's update is a re-expression of Je�rey's update, where the information is pre-

sented in a slightly di�erent format. Information received is that an event Ξ /⊆ X has happened, where

Ξ ⊥ A∣Gj for each j = 1, . . . , r, where (Gj)rj=1 are a set of mutually exclusive and exhaustive events. The

information, though, is given in terms of likelihood ratios. Instead of λj = P(Gj ∣Ξ), the information

is expressed as a collection of likelihood ratios ρj = P(Ξ∣Gj)
P(Ξ∣G1) for j = 1, . . . , r, ratios of the likelihood of

Ξ given Gj compared with the likelihood of Ξ given G1. That is, λj represents the likelihood ratio

that the event A occurs given that Gj occurs, compared with G1. Note that λ1 = 1. Using the same

notation µj = P(Gj), for any A ⊆ X , an application of Bayes rule gives

P̃(A) = P(A∣Ξ) =
r

∑
j=1

P(A∣Gj)P(Gj ∣Ξ)

=
r

∑
j=1

P(A∣Gj)
P(Ξ∣Gj)P(Gj)

P(Ξ)

=
r

∑
j=1

P(A∣Gj)
P(Ξ∣Gj)P(Gj)

∑r
k=1 P(Ξ∣Gk)P(Gk)

=
r

∑
j=1

P(A∣Gj)
ρjµj

∑r
k=1 ρjµj

.

De�nition 6.2 (Pearl's update). Let P denote a probability distribution over X and let G1, . . . ,Gr be

a mutually exclusive (that is Gi∩Gj = ϕ for all i ≠ j) and exhaustive (that is ∪nj=1Gj = X ) events, where



6.1. PROBABILITY UPDATES 115

P(Gj) = µj. Let ρ1 = 1 and let ρj, j = 2, . . . , r denote a collection of numbers. Then, for each x ∈ X ,
the Pearl update P̃ is de�ned as

P̃(x) = P(x) ρj

∑r
j=1 ρjµj

x ∈ Gj , j = 1, . . . , r. (6.3)

This is clearly a well de�ned probability function over X . The numbers ρj are interpreted as likelihood

ratios where Ξ is an event Ξ /⊆ X and P is extended to include Ξ such that Ξ ⊥ A∣Gj for each j = 1, . . . , r,
A ⊆ X and ρj = P(Ξ∣Gj)

P(Ξ∣G1) .

Pearl's update and Je�rey's rule are equivalent. The original probability space has been extended;

information has been received of a form that cannot be expressed in terms of events, or subsets, of the

original probability space.

Example 6.3.

A piece of cloth is to be sold on the market. The colour C is either green (cg), blue (cb) or violet

(cv). Tomorrow, the piece of cloth will either be sold (s) or not (sc); this is denoted by the variable S.

Experience gives the following probability distribution over C,S

PC,S =
S/C cg cb cv

s 0.12 0.12 0.32

sc 0.18 0.18 0.08

The marginal distribution over C is

PC =
cg cb cv

0.3 0.3 0.4
.

The piece of cloth is inspected by candle light. From the inspection by candle light, the probability

over C is assessed as:

QC =
cg cb cv

0.7 0.25 0.05
.

This is a situation where Je�rey's rule may be used to update the probability.

QS,C = QCPS∣C =
QC

PC
PS,C .

This gives, for example,

QS,C(s, cg) =
λg

µg
P(s, cg) =

0.7

0.3
× 0.12 = 0.28.

Updating the whole distribution in this way gives

QC,S =
S/C cg cb cv

s 0.28 0.10 0.04

sc 0.42 0.15 0.01



116 CHAPTER 6. EVIDENCE AND METRICS

6.2 Evidence

For a Bayesian network, three di�erent types of evidence will be discussed; hard evidence, soft evidence

and virtual evidence. The de�nitions used are as follows:

De�nition 6.4 (Hard Evidence, Soft Evidence, Virtual Evidence). The de�nitions are:

� A hard �nding is an instantiation, {Xi = x(l)i } for a particular value of i ∈ {1, . . . , d} and a

particular value of l ∈ {1, . . . , ki}. This speci�es that variable Xi is in state x
(l)
i .

� Hard evidence is a collection of hard �ndings.

� A soft �nding on a variable Xj speci�es the probability distribution of the variable Xj. That is,

the conditional probability function PXj ∣Paj
is replaced by a probability function P∗Xj

with domain

Xj.

� Soft evidence is a collection of soft �ndings.

� A virtual �nding on variable Xj is a collection of values {L(x(m)j ), m = {1, . . . , kj}} such that

the updated conditional probability function for Xj ∣Paj = π(n)j is, for m = 1, . . . , kj,

P∗
Xj ∣Paj

(x(m)j ∣π(n)j ) =
1

∑kj
q=1 PXj ∣Paj

(x(q)j ∣π
(n)
j )L(x

(q)
j )

PXj ∣Paj
(x(m)j ∣π(n)j )L(x

(m)
j ). (6.4)

� Virtual evidence is a collection of virtual �ndings.

Soft evidence and virtual evidence are di�erent. When soft evidence is received on a variable, the links

between the variable and its parents are severed; if soft evidence is received on variable Xj , then the

conditional probability function PXj ∣Paj
is replaced by a new probability function P∗Xj

.

Soft evidence basically applies to the situation described in the discussion of intervention calculus;

it is assumed that the Bayesian network has been derived from causal principles, where the parents of

a variable are direct causes. The soft evidence gives a new distribution over the variable, where the

new distribution is not in�uenced by its parents. The state of the variable is forced, as in a controlled

experiment, without reference to the other variables, while the new distribution P∗Xj
describes the

probability of which state of Xj is enforced.

When virtual evidence is received, the links are preserved; the evidence is interpreted as an addi-

tional variable, which is instantiated.

6.3 Virtual Evidence

A virtual �nding on variable Xj a�ects the probability PXj ∣Paj
, without a�ecting any other conditional

probabilities. The following discussion shows how to incorporate virtual evidence by extended the

probability space by the addition of a virtual variable.



6.3. VIRTUAL EVIDENCE 117

Virtual Evidence and the DAG The following shows how, in general, virtual evidence can be

considered as an additional node E in the DAG. Consider a set of variables V = {X1, . . . ,Xd}, where
the joint probability distribution is factorised as

PX1,...,Xd
=

d

∏
j=1

PXj ∣Paj
.

Suppose that virtual evidence is received on variable Xj . This may be expressed as a variable E and,

by d-separation properties, the updated distribution PX1,...,Xd,E has a factorisation

PX1,...,Xd,E = (∏
k

PXk ∣Pak
)PE∣Xj

. (6.5)

The variable E is a `dummy variable', in the sense that its state space and distribution do not need

to be de�ned; the virtual evidence is interpreted as a particular instantiation {E = e} for this variable
and this is the only information that is needed. From Equation (6.5),

PX1,...,Xd∣E(., . . . , .∣e) = (∏
k

PXk ∣Pak
)
PE∣Xj

(e∣.)
PE(e)

.

From Equation (6.4),

L(x(m)j )

∑kj
i=1L(x

(i)
j )PXj ∣Paj

(x(i)j ∣π
(n)
j )

=
PE∣Xj

(e∣x(m)j )
PE(e)

m = 1, . . . , kj ,

so that for m1 and m2 in {1, . . . , kj},

L(x(m1)
j )

L(x(m2)
j )

=
PE∣Xj

(e∣x(m1)
j )

PE∣Xj
(e∣x(m2)

j )
.

When applying virtual evidence, create an extra node on the network, with conditional probabilities

PE∣Xj
(1∣x(m)j ) ∝ L(x(m)j ); any values satisfying 0 < PE∣Xj

(1∣x(m)j ) < 1 for L(x(m)j ) > 0 will su�ce

and PE∣Xj
(0∣x(m)j ) = 1 − PE∣Xj

(1∣x(m)j ). For a Bayesian networks programme, these values need to be

de�ned, although the only conditional probability values used are those for E = 1. Then update the

network with the hard evidence E = 1.

Equivalence with Pearl's Update Represented on a DAG, the virtual evidence node E satis�es

E á V /{Xj}∥GXj . The virtual evidence {E = e} may be expressed as Pearl's update with Ξ = {E = e}
and the partition events Gm = {Xj = x(m)j } for m = 1, . . . , kj . The collection (Gm)kjj=1 are mutually

exclusive and exhaustive events. Set ρ1 = 1 and ρm =
PE∣Xj

(e∣x(m)j )

PE∣Xj
(e∣x(1)j )

for m = 2, . . . , kj . Set

µm = PXj(x
(m)
j ) m = 1, . . . kj .

Then, after extending P to accommodate the new variable E, the probability distribution PX1,...,Xd

is updated to P̃X1,...,Xd
= PX1,...,Xd∣E(., . . . , .∣e) where

P̃X1,...,Xd
(x(i1)1 , . . . , x

(id)
d ) = PX1,...,Xd

(x(i1)1 , . . . , x
(id)
d )

ρij

∑kj
m=1 µmρm

.



118 CHAPTER 6. EVIDENCE AND METRICS

Example 6.5.

Consider a DAG on �ve variables, X1, X2, X3, X4 and X5, given in Figure 6.1. Suppose that a piece

of virtual evidence is received on the variable X3. This evidence may be modelled by a variable E,

that is inserted to the DAG giving the DAG in Figure 6.2. The state of X3 a�ects the virtual evidence

that is observed.

X1

  

X2

~~

X3

~~   

X4 X5

Figure 6.1: Before Virtual Evidence is Added

From Figure 6.2, it is clear that (X1,X2,X4,X5) á E∥GX3. The decomposition along the DAG gives

P(E∣X1,X2,X3,X4,X5) = P(E∣X3) and P(X1,X2,X4,X5∣X3,E) = P(X1,X2,X4,X5∣X3).

Example 6.6 (Burglary).

Suppose that on any given day, there is a burglary at any given house with probability 10−4. If there

is a burglary, then the alarm will go o� with probability 0.95; if there is no burglary, then it does not

go o�. One day, Professor Noddy receives a call from his neighbour Margarita, saying that she may

have heard Professor Noddy's burglar alarm going o�. Professor Noddy decides that it is four times

more likely that Margarita did hear the alarm going o� than that she was mistaken.

X1

  

X1

~~

X3

~~ ��   

X4 E X5

Figure 6.2: After the Virtual Evidence Node is Added



6.3. VIRTUAL EVIDENCE 119

Let A take value 1 to denote the alarm going o� and 0 otherwise, B = 1 to denote that a burglary

takes place and 0 otherwise and let E denote the variable `telephone call'; E = 1 is the evidence that

Noddy received the call from Jemima. This evidence can be interpreted by extending P to include the

variable E, where B ⊥ E∣A (the virtual evidence is received on A; B is the remainder of the network)

and the relevant quantity is

λ =
PE∣A(1∣1)
PE∣A(1∣0)

= 4.

Then, the update of PB,A requires PA. The conditional probabilities are

PB =
1 0

10−4 1 − 10−4
PA∣B =

B/A 1 0

1 0.95 0.05

0 0 1

Using PB,A = PBPA∣B, the joint probabilities are

PB,A =
B/A 1 0

1 0.95 × 10−4 0.05 × 10−4

0 0 1 − 10−4

so that

PA =
1 0

0.95 × 10−4 1 − 0.95 × 10−4

and hence, using Pearl's update,

P̃B,A(.,1) = PB,A∣E(.,1∣1) = PB,A(.,1)
4

4 × 0.95 × 10−4 + 1 − 0.95 × 10−4

P̃B,A(.,0) = PB,A∣E(.,0∣1) = PB,A(.,0)
1

4 × 0.95 × 10−4 + 1 − 0.95 × 10−4

Exactly the same thing may be computed directly; using λ0 = 1 and λ1 = 4,

P̃B,A = PB,A∣E(., .∣1) =
PB,A,E(., .,1)

PE(1)

=
PBPA∣BPE∣A(1∣.)

PE∣A(1∣1)PA(1) + PE∣A(1∣0)PA(0)
= PBPA∣B

λa
λ1PA(1) + λ0PA(0)

where a denotes the value taken by variable A.

It follows that

P̃B(1) = P̃B,A(1,1) + P̃B,A(1,0) = 10−4 × (
3.80 + 0.05

1 + 3.85 × 10−4) ≃ 3.85 × 10
−4.



120 CHAPTER 6. EVIDENCE AND METRICS

6.4 Measures of Divergence between Probability Distributions

A distance is a more speci�c measure of divergence, which satis�es the properties given in the following

de�nition.

De�nition 6.7 (Distance). A measure of divergence D between probability distributions is a distance

if it satis�es the following three properties: for any three probability distributions P1,P2 and P3 over

the same space X = (x1, . . . , xk),

� Positivity: D(P1,P2) ≥ 0. Furthermore, D(P1,P2) = 0⇔ P1 ≡ P2

� Symmetry: D(P1,P2) =D(P2,P1)

� Triangle Inequality: D(P1,P3) ≤D(P1,P2) +D(P2,P3).

Consider two common measures of divergence between probability distributions. Let P and Q be two

probability functions over the same �nite state space X = (x1, . . . , xk) and let pj = P(xj) and qj = Q(xj)
for j = 1, . . . , k.

De�nition 6.8 (Euclidean Distance). The quadratic or Euclidean distance is de�ned as

D2(P,Q) =

¿
ÁÁÁÀ

k

∑
j=1
(pj − qj)2.

De�nition 6.9 (Kullback Leibler Divergence). The Kullback Leibler divergence between two probability

distributions P and Q over the same state space X is de�ned as

DKL(P∥Q) =
k

∑
j=1

pj ln
pj

qj
.

The Kullback Leibler divergence is non negative (left as an exercise) and DKL(P∥Q) = 0⇔ P ≡ Q, but
it is not a distance in the sense of De�nition 6.7; it does not, in general, satisfyDKL(P∥Q) =DKL(Q∥P).

Example 6.10.

Let

P(1) = (0.02,0.98), Q(1) = (0.0364,0.9636), P(2) = (0.01,0.99), Q(2) = (0.00471,0.99529).

Then

D2(P(1),Q(1)) =
√
(0.02 − 0.0364)2 + (0.98 − 0.9636)2 = 0.0232

D2(P(2),Q(2)) =
√
(0.00471 − 0.01)2 + (0.99529 − 0.99)2 = 0.00748,

so the change represented by the second adjustment is less than one third of the change represented

by the �rst if the change is measured using the quadratic distance measure. For the Kullback-Leibler,



6.5. THE CHAN - DARWICHE DISTANCE MEASURE 121

DKL(P(1)∥Q(1)) = 0.02 ln
0.02

0.0364
+ 0.98 ln 0.98

0.9636
= 0.004562,

DKL(P(2)∥Q(2)) = 0.01 ln
0.01

0.00471
+ 0.99 ln 0.99

0.99529
= 0.00225,

so the change represented by the second adjustment is approximately one half of the change represented

by the �rst. Clearly, di�erent distance measures give di�erent impressions of the relative importance

of parameter changes.

6.5 The Chan - Darwiche Distance Measure

The problem with both the Kullback Leibler and the Quadratic distance measure is that they do not

emphasise the proportional di�erence between two probability values when they are close to zero. The

following distance measure was proposed by Chan and Darwiche. It will be seen that it is particularly

useful when comparison of odds ratios are in view.

De�nition 6.11 (Chan - Darwiche Distance). Let P and Q be two probability functions over a �nite

state space X . That is, P ∶ X → [0,1] and Q ∶ X → [0,1], ∑x∈X P(x) = 1 and ∑x∈X Q(x) = 1. The Chan
- Darwiche distance is de�ned as

DCD(P,Q) = lnmax
x∈X

Q(x)
P(x) − lnmin

x∈X

Q(x)
P(x) ,

where, by de�nition, 0
0 = 1.

Unlike the Kullback - Leibler divergence, the Chan - Darwiche distance is a distance; it satis�es the

three requirements of De�nition 6.7. This result is stated in Theorem 6.13.

The support of a probability function de�ned on a �nite state space; namely, those points where it is

strictly positive (relating to outcomes that can happen) is important when comparing two di�erent

probability functions over the same state space.

De�nition 6.12 (Support). Let P be a probability function over a countable state space X ; that is,
P ∶ X → [0,1] and ∑x∈X P(x) = 1. The support of P is de�ned as the subset SP ⊆ X such that

SP = {x ∈ X ∣P(x) > 0}. (6.6)

Theorem 6.13. The Chan - Darwiche distance measure is a distance measure, in the sense that for

any three probability functions P1, P2, P3 over a state space X , the following three properties hold:

� Positivity: DCD(P1,P2) ≥ 0 and DCD(P1,P2) = 0⇔ P1 ≡ P2.

� Symmetry: DCD(P1,P2) =DCD(P2,P1)

� Triangle Inequality: DCD(P1,P2) +DCD(P2,P3) ≥DCD(P1,P3).



122 CHAPTER 6. EVIDENCE AND METRICS

Proof Positivity and symmetry are clear and are left as exercises. It only remains to prove the

triangle inequality. Since the state space is discrete and �nite, it follows that there exist y, z ∈ X such

that

DCD(P1,P3) = lnmax
x∈X

P3(x)
P1(x)

− lnmin
x∈X

P3(x)
P1(x)

= ln P3(y)
P1(y)

− ln P3(z)
P1(z)

= ln
P3(y)
P2(y)

+ ln P2(y)
P1(y)

− ln P3(z)
P2(z)

− ln P2(z)
P1(z)

= (ln P3(y)
P2(y)

− ln P3(z)
P2(z)

) + (ln P2(y)
P1(y)

− ln P2(z)
P1(z)

)

≤ (lnmax
x∈X

P3(x)
P2(x)

− lnmin
x∈X

P3(x)
P2(x)

) + (lnmax
x∈X

P2(x)
P1(x)

− lnmin
x∈X

P2(x)
P1(x)

)

= DCD(P1,P2) +DCD(P2,P3).

This distance is relatively easy to compute. It has the advantage over the Kullback Leibler divergence

(which is not a true distance measure) that it may be used to obtain bounds on odds ratios.

De�nition 6.14 (Odds). Let P be a probability measure over X and let A ⊂ X and B ⊂ X . The odds

for A versus Ac given B is de�ned as

OP(A∣B) =
P(A∣B)
P(Ac∣B) .

Comparison with the Kullback Leibler Divergence and Euclidean Distance Consider two

probability distributions P = (p1, p2, p3) and Q = (q1, q2, q3) over {1,2,3} de�ned by

p1 = a, p2 = b − a, p3 = 1 − b

q1 = ka, q2 = b − ka, q3 = 1 − b

Then

DKL(P∥Q) = −a lnk − (b − a) ln
b − ka
b − a .

Consider the events A = {1}, B = {1,2}, then OP(A∣B) = a
b−a and OQ(A∣B) = ka

b−ka and the odds ratio

is given by

OQ(A∣B)
OP(A∣B)

= k(b − a)
b − ka .

As a→ 0, DKL(P∥Q)→ 0, while
OQ(A∣B)
OP(A∣B) → k. It is therefore not possible to �nd a bound on the odds

ratio in terms of the Kullback Leibler divergence.

Similarly, in this example, the Euclidean distance is

D2(P,Q) =
√
2a(1 − k) a→0Ð→ 0,



6.5. THE CHAN - DARWICHE DISTANCE MEASURE 123

while

DCD(P,Q) = lnmax(1
k
,
b − a
b − ka,1) − lnmin(1

k
,
b − a
b − ka,1)

a→0Ð→ lnk.

Neither the Kullback Leibler divergence nor the Euclidean distance can be used to provide uniform

bounds on the odds ratios; even if there is a large relative di�erence between pairs of probability values

for P and Q, they will be ignored if the absolute values of these probabilities are small.

The Chan Darwiche distance measure is useful, because it can be used to obtain sharp bounds on the

way that odds change as the probability distribution changes.

Theorem 6.15. Let P and Q be two probability distributions over the same �nite state space X and let

A and B be two subsets of X . Let Ac = X /A and Bc = X /B. Let OP(A∣B) = P(A∣B)
P(Ac∣B) and OQ(A∣B) =

Q(A∣B)
Q(Ac∣B) . Then

e−DCD(P,Q) ≤ OQ(A∣B)
OP(A∣B)

≤ eDCD(P,Q).

The bound is sharp in the sense that for any pair of distributions (P,Q) there are subsets A and B of

X such that

OQ(A∣B)
OP(A∣B)

= exp{DCD(P,Q)},
OQ(Ac∣B)
OP(Ac∣B) = exp{−DCD(P,Q)}.

Proof of Theorem 6.15 Without loss of generality, it may be assumed that P and Q have the same

support; that is, P(x) > 0 ⇔ Q(x) > 0. Otherwise DCD(P,Q) = +∞ and the statement is trivially

true; for any A,B ⊆ X , 0 ≤ OQ(A∣B)
OP(A∣B) ≤ +∞. For P and Q such that P and Q have the same support, let

r(x) = Q(x)
P(x) . For any two subsets A,B ⊆ X ,

OQ(A∣B)
OP(A∣B)

= Q(A∣B)
1 −Q(A∣B)

1 − P(A∣B)
P(A∣B) = Q(AB)

Q(AcB)
P(AcB)
P(AB) =

∑x∈AB Q(x)
∑x∈AcB Q(x)

∑x∈AcB P(x)
∑x∈AB P(x)

= ∑x∈AB r(x)P(x)
∑x∈AcB r(x)P(x)

∑x∈AcB P(x)
∑x∈AB P(x) ≤

maxz∈X r(z)∑x∈AB P(x)
minz∈X r(z)∑x∈AcB P(x)

∑x∈AcB P(x)
∑x∈AB P(x)

= maxz∈X r(z)
minz∈X r(z)

.

Similarly,
OQ(A∣B)
OP(A∣B)

≥ minz∈X r(z)
maxz∈X r(z)

.

From the de�nition of DCD(P,Q), it follows directly that

eDCD(P,Q) = maxz∈X r(z)
minz∈X r(z)

,

hence

e−DCD(P,Q) ≤ OQ(A∣B)
OP(A∣B)

≤ eDCD(P,Q),

as required, thus proving the �rst part.



124 CHAPTER 6. EVIDENCE AND METRICS

To prove that the bound is tight, consider x such that r(x) = maxz∈X r(z) and y such that r(y) =
minz∈X r(z). Set A = {x} and B = {x, y}. Then

OQ(A∣B) =
r(x)P(x)
r(y)P(y) .

Since OP(A∣B) = P(x)
P(y) and e

DCD(P,Q) = maxz∈X r(z)
minz∈X r(z) , it follows that

OQ(A∣B)
OP(A∣B)

= eDCD(P,Q).

Similarly, let C = {y}, then
OQ(C ∣B)
OP(C ∣B)

= e−DCD(P,Q).

Theorem 6.15 may be used to obtain bounds on arbitrary queries Q(A∣B) for the measure Q in terms

of P(A∣B).

Corollary 6.16. Set d =DCD(P,Q), then

P(A∣B)e−d
1 + (e−d − 1)P(A∣B) ≤ Q(A∣B) ≤

P(A∣B)ed
1 + (ed − 1)P(A∣B) . (6.7)

Proof Equation (6.7) is a straight forward consequence of Theorem 6.15. The computation is left as

an exercise.

6.5.1 Soft Evidence and Virtual Evidence

Je�rey's Rule Let P denote a probability distribution over a �nite state space X and let Q denote

the distribution obtained by updating according to Je�rey's rule. The following formula may be

established.

Theorem 6.17. Let P be a probability distribution over a countable state space X and let G1, . . . ,Gn

be a collection of mutually exclusive and exhaustive events. Let λj = P(Gj) for j = 1, . . . , n. Let Q
denote the probability distribution such that Q(Gj) = µj for j = 1, . . . , n and such that for all x ∈ X

Q(x) = µj
λj

P(x) x ∈ Gj .

In other words, Q is the Je�rey's update of P, de�ned by Q(Gj) = µj, j = 1, . . . , n. Then

DCD(P,Q) = lnmax
j

λj

µj
− lnmin

j

λj

µj
.



6.5. THE CHAN - DARWICHE DISTANCE MEASURE 125

Proof This follows directly and is left as an exercise.

This immediately gives the following bound.

Corollary 6.18. Let OP and OQ denote the odds function before and after applying Je�reys rule. Let

d = lnmax
j

λj

µj
− lnmin

j

λj

µj
.

Then for any two events A and B,

e−d ≤ OP(A∣B)
OQ(A∣B)

≤ ed.

Proof This follows directly.

Under the Chan - Darwiche distance measure, Je�rey's rule may be considered optimal, in the following

sense.

Theorem 6.19. Let P denote a probability distribution over X and let G1, . . . ,Gr denote a collection of

mutually exclusive and exhaustive events. Let µj = P(Gj), let λ1, . . . , λr be a collection of non negative

numbers such that ∑r
j=1 λj = 1 and let Q be the probability distribution over X de�ned by

Q(x) = λj
µj

P(x) x ∈ Gj .

Then DCD(P,Q) minimises DCD(P,R) subject to the constraint that R is a probability distribution

over X such that R(Gi) = λi for i = 1, . . . , r.

Proof Let Q denote the distribution generated by Je�rey's rule and let R be any distribution that

satis�es the constraint R(Gj) = Q(Gj) = λj , j = 1, . . . ,R. If P and R do not have the same support

(De�nition 6.12), then +∞ =DCD(P,R) ≥DCD(P,Q). If they have the same support, let j denote the

value such that
λj

µj
= maxi

λi

µi
and let k denote the value such that λk

µk
= mini

λi

µi
. Let α = maxx∈X

R(x)
P(x) .

Then

αµj = α ∑
x∈Gj

P(x) ≥ ∑
x∈Gj

R(x)
P(x)P(x) = R(Gj) = λj ,

so that

α ≥ λj
µj
.

Set β =minx∈X
R(x)
P(x) , then a similar argument gives β ≤ λk

µk
. It follows that the distance between P and

R is

DCD(P,R) = lnmax
x∈X

R(x)
P(x) − lnmin

x∈X

R(x)
P(x) = lnα − lnβ

≥ ln
λj

µj
− ln λj

µj
= lnmax

i

λi
µi
− lnmin

i

λi
µi
=DCD(P,Q).

Therefore Q gives the smallest distance.



126 CHAPTER 6. EVIDENCE AND METRICS

Pearl's Method of Virtual Evidence Recall Pearl's Method of Virtual Evidence. The CD distance

between the original distribution and the updated distribution has a convenient expression.

Theorem 6.20. Let P be a probability distribution over a �nite state space X and let λ1 = 1 and

λ2, . . . , λr be positive numbers. Let G1, . . . ,Gr be a collection of mutually exclusive and exhaustive

subsets of X . Let µj = ∑x∈Gj
P(x) for j = 1, . . . , r. Let Q be de�ned as

Q(x) = P(x) λj

∑r
k=1 µkλk

x ∈ Gj .

Then Q is a probability distribution over X and

DCD(P,Q) = lnmax
i
λi − lnmin

i
λi.

Proof Firstly, it is clear from the construction that ∑x∈X Q(x) = 1 and that Q(x) ≥ 0 for all x ∈ X ,
so that Q is a probability function. From the de�nition,

Q(x)
P(x) =

λj

∑k µkλk
x ∈ Gj .

It follows that

DCD(P,Q) = lnmax
x∈X

Q(x)
P(x) − lnmin

x∈X

Q(x)
P(x)

= lnmax
j

λj

∑k µkλk
− lnmin

j

λj

∑k µkλk
= lnmax

j
λj − lnmin

j
λj

as required.

This immediately gives the following bound.

Corollary 6.21. Let OQ and OP denote the odds functions associated with the probability measures

de�ned in Theorem 6.20 and let

d =DCD(P,Q) = lnmax
i
λi − lnmin

i
λi.

Then for any events A,B ⊆ X ,

e−d ≤ OQ(A∣B)
OP(A∣B)

≤ ed.

Proof This follows directly and is left as an exercise.

Example 6.22.



6.5. THE CHAN - DARWICHE DISTANCE MEASURE 127

The `Burglary' example may be developed to illustrate these results. Let A denote the event that the

alarm goes o�, B the event that a burglary takes place and let E denote the evidence of the telephone

call from Jemima. According to Pearl's method, this evidence can be interpreted as

λ =
PE∣A(1∣1)
PE∣A(1∣0)

= 4.

Therefore, the distance between the original distribution P and the update Q(.) = P(.∣E = 1) derived
according to Pearl's method is DCD(P,Q) = ln 4 ≃ 1.386. This distance may be used to bound QB(1),
the probability of a Burglary, after the update to incorporate the evidence. Using the bound stated in

the corollary,

PB(1)e−d
1 + (e−d − 1)PB(1)

≤ QB(1) ≤
PB(1)ed

1 + (ed − 1)PB(1)
,

so that 2.50 × 10−5 ≤ QB(1) ≤ 4.00 × 10−4. An application of Pearl's virtual evidence rule gives

QB(1) = 3.85 × 10−4.

Notes The article [37] discusses probability updates when the information received does not �t into

the framework of the standard de�nition. The Chan Darwiche distance measure is proposed in [20].

The article [22] by Chan and Darwiche discusses the application of Je�rey's update rule and Pearl's

method to virtual evidence. These two articles provide the basis for the chapter.



6.6 Exercises

1. Je�rey's Rule In a certain country, people use only two car models, Volvo and Saab, which come

in two colours, red and blue. The sales statistics suggest P(Volvo) = P(Saab) = 1/2. Furthermore,

P(red∣Volvo) = 0.7 and P(red∣Saab) = 0.2. You are on holiday in this region and you are standing

outside a large underground garage, which you may not enter. The attendant of the garage

communicates his impression that 40% of the cars in the garage are red. What is the probability

that the �rst car leaving the garage is a Volvo?

2. Pearl's Method The two parts of this question are virtually identical.

(a) Let A denote an event that gives uncertain information (or virtual / soft evidence) about

the partition (that is a collection of mutually exclusive and exhaustive events) {Gj}nj=1.
Suppose that A satis�es

P (A ∣ Gj ,B) = P (A ∣ Gj) , j = 1,2, . . . , n

for every event B. This is an assumption of conditional independence; the event A is

independent of all other events given the partition Gj . Set λj = P(A∣Gj) and show that for

any event B,

P (B ∣ A) =
∑n

j=1 λjP (B ∩Gj)
∑n

j=1 λjP (Gj)
.

Check that P(.∣A) satis�es the de�nition of the Pearl update (De�nition 6.2).

(b) Let P denote a probability distribution before evidence is obtained and suppose that a piece

of evidence Ξ gives uncertain information about the partition (that is, the collection of

mutually exclusive and exhaustive events) {Gj}nj=1. Suppose that Ξ is not in the original

event space and that for any event A in the original event space, Ξ ⊥ A∣Gj for each j =
1, . . . , n. Suppose that this evidence is speci�ed by the posterior probabilities

P∗ (Gj) = P(Gj ∣Ξ) = qj , j = 1,2, . . . , n.

Let

ρj =
P(Ξ∣Gj)
P(Ξ∣G1)

j = 1,2, . . . , n

and

λj =
qj

P (Gj)
, j = 1,2, . . . , n.

For any event C, compute the probability P (C ∣Ξ) obtained by Pearl's method of virtual

evidence and show that this gives the same result as Je�rey's rule of update.

128



6.6. EXERCISES 129

3. Let X1,X2,X3 be three binary random variables, each taking values in {0,1}, such that

PX1,X2,X3 (x1, x2, x3) =
1

8
,

for (x1, x2, x3) ∈ {0,1}3.

Now let V be an additional binary random variable and let E = {V = 1}. Here V stands for

virtual information. Suppose that the conditional probability function of V given X3 satis�es

PV ∣X3
(1 ∣ 1) = λPV ∣X3

(1 ∣ 0) .

Let G1 and G2 be the two events

G1 = {(x1, x2, x3) ∈ {0,1}3 ∣ x3 = 0}

and

G2 = {(x1, x2, x3) ∈ {0,1}3 ∣ x3 = 1} .

The events G1 and G2 are mutually exclusive and exhaustive. Use Pearl's method of virtual

evidence to obtain the updated probability distribution

P̃X1,X2,X3 (x1, x2, x3) = PX1,X2,X3∣V (x1, x2, x3∣1) (x1, x2, x3) ∈ {0,1}3.

4. Let G = (V,E) be a Directed Acyclic Graph, where V = (X1, . . . ,Xd), and let P and Q be two

probability distribution factorised along G. Let

θjil = PXj ∣Paj
(x(i)j ∣π

(l)
j ).

Suppose that the conditional probabilities for P and Q are the same except for one single (j, l)
variable / parent con�guration, where PXj ∣Paj

(.∣π(l)j ) is given by θj.l and QXj ∣Paj
(.∣π(l)j ) is given

by θ̃j.l. Let DKL denote the Kullback Leibler distance. Show that

DKL(P∥Q) = P({Paj = π(l)j })dKL(θj.l, θ̃j.l).

5. Let DCD denote the Chan Darwiche distance. Prove the remaining two statements of Theo-

rem 6.13; that for any P and Q,

DCD(P,Q) ≥ 0 DCD(P,Q) = 0⇒ P = Q

and

DCD(P,Q) =DCD(Q,P).



130 CHAPTER 6. EVIDENCE AND METRICS

6. Let P be a probability distribution over a countable state space X and let G1, . . . ,Gn be a

collection of mutually exclusive and exhaustive events. Let λj = P(Gj) for j = 1, . . . , n. Let Q
denote the probability distribution such that Q(Gj) = µj for j = 1, . . . , n and such that for any

other event A,

Q(A) =
n

∑
j=1

µjP(A∣Gj).

In other words, Q is the Je�rey's update of P, de�ned by Q(Gj) = µj , j = 1, . . . , n. Prove that

DCD(P,Q) = lnmax
j

λj

µj
− lnmin

j

λj

µj
,

where DCD denotes the Chan Darwiche distance.

7. (a) Find a calibration of the Chan-Darwiche distance in terms of the distance between two

Bernoulli trials. That is, let P = (p0, p1) and Q = (q0, q1). Find the number cd(k) such that

if q0 = 1 − cd(k) and q1 = cd(k) and p0 = p1 = 1
2 , then

DCD(P,Q) = k.

You should obtain

cd(k) = e±k

1 + e±k .

(b) Find a calibration of the Kullback Leibler distance; that is, the number KL(k) such that if

q0 = 1 −KL(k), q1 =KL(k) and p0 = p1 = 1
2 , then DKL(P∥Q) = k. You should obtain

KL(k) = 1

2
± 1

2

√
1 − e−2k.

8. Jensen's inequality Let ϕ(x) be a convex function and X �nite discrete real valued random

variable, de�ned on a �nite space X . Prove, by induction, that

E [ϕ (X)] ≥ ϕ (E [X])

Hence prove that DKL(P∥Q) ≥ 0 with equality if and only if P = Q.

9. The Chan-Darwiche Distance between Two Multivariate Bernoulli Distributions Con-

sider d independent Bernoulli trials, X = (X1, . . . ,Xd), where the `success' probabilities for each
trial may di�er. The distribution of the random vectorX is known as amultivariate Bernoulli dis-

tribution. This example considers the distance between two multivariate Bernoulli distributions

where the `success' probabilities for the two distributions are given by the vectors p = (p1, . . . , pd)
and q = (q1, . . . , qd) respectively.

Let X be the binary hypercube; that is, X = {0,1}d and let x ∈ X denote an element in X . Then
x = (xi)di=1, where xi ∈ {0,1}. Let Q and P be two multivariate Bernoulli probability functions

over X . That is, Q ∶ X → [0,1] and P ∶ X → [0,1] are de�ned such that each x ∈ X ,



6.6. EXERCISES 131

Q (x) =
d

∏
i=1
qxi
i (1 − qi)

1−xi

and

P (x) =
d

∏
i=1
pxi
i (1 − pi)

1−xi

where, for this example, it is assumed that 0 < qi < 1 and 0 < pi < 1 (i.e. the inequalities are

strict) for all i ∈ {1, . . . , d}.

(a) Show that

DCD(P,Q) =
d

∑
i=1

lnmax(Oq,i

Op,i
,
Op,i

Oq,i
) . (6.8)

where Op,i = pi
1−pi and Oq,i = qi

1−qi .

(b) Let qi = q and pi = p for all i, and 0 < q < 1 and 0 < p < 1. Show that, in this case,

DDC(P,Q) = d lnmax(OQ

OP
,
OP

OQ
) , (6.9)

10. A piece of cloth is to be sold on the market. The colour C is either green (cg), blue (cb) or

violet (cv). Tomorrow, the piece of cloth will either be sold (s) or not (sc); this is denoted by the

variable S. Experience gives the following probability distribution over C,S

PC,S =
S/C cg cb cv

s 0.12 0.12 0.32

sc 0.18 0.18 0.08

The marginal distribution over C is

PC =
cg cb cv

0.3 0.3 0.4
.

The piece of cloth is inspected by candle light. Since it cannot be seen perfectly, this only gives

soft evidence. From the inspection by candle light, the probability over C is assessed as:

QC =
cg cb cv

0.7 0.25 0.05
.

The Je�rey's update gives QS,C = QCPS∣C = QC

PC
PS,C which is

QS,C =
S/C cg cb cv

s 0.28 0.10 0.04

sc 0.42 0.15 0.01

.



132 CHAPTER 6. EVIDENCE AND METRICS

(a) Compute DCD(P,Q), the Chan-Darwiche distance between the original and updated dis-

tributions.

(b) Compute the bounds on the odds ratios given by Corollary 6.18 in this example. Compare

with
OQ(cg ∣s)
OP(cg ∣s) .

(c) Suppse that Q∗C = (0.25,0.25,0.50). Compute DCD(P,Q∗) and the bounds on the odds

ratios given by Corollary 6.18. Again, compare with
OQ∗(cg ∣s)
OP(cg ∣s)

The distribution Q∗ is closer to P than Q and hence the bounds are tighter.

(d) Now consider the following problem: the probability that the piece of cloth is green, given

that it is sold tomorrow is, before updating, 0.214. What evidence would satisfy the con-

straint that the updated probability that the cloth is green, given that it is sold tomorrow,

does not exceed 0.3?



6.7 Answers

1. Let A denote car type and C colour. Events to be updated: P∗C(red) = 0.4, P∗C(blue) = 0.6

Original joint probability function:

PA,C =
car/colour R B

V 0.35 0.15

S 0.1 0.4

so

PC(red) = 0.45 PC(blue) = 0.55

and

PA∣C =
car/colour R B

V 7/9 3/11
S 2/9 8/11

Je�rey's rule:

P∗A,C = PA∣CP∗C =
car/colour R B

V 14/45 9/55
S 4/45 24/55

P∗(volvo) = 47

99

2. (a) A ⊥ B∣Gj for eachGj , j = 1, . . . n so P(A∣Gj ,B) = P(A∣Gj). It follows, using P(B∣Gj)P(Gj) =
P(BGj) and λj = P(A∣Gj) that

P(B∣A) =∑
j

P(B∣A,Gj)P(Gj ∣A) =∑
j

P(B∣Gj)
P(A∣Gj)P(Gj)

P(A) = ∑j λjP(B ∩Gj)
∑j λjP(Gj)

.

For an outcome x,

P(x∣A) = P(x) λj

∑k λkP(Gk)
= P(x) ρj

∑k ρkP(Gk)
x ∈ Gj , j = 1, . . . , n

where ρk = λk

λ1
= P(A∣Gk)

P(A∣G1)
which is the de�nition of the Pearl update.

(b) The Je�rey's rule is valid for a piece of information Ξ that alters the probabilities on the

partition events G1, . . . ,Gn and such that P(Ξ∣Gj ,B) = P(Ξ∣Gj) for any event B. Let

P∗(C) = P(C ∣Ξ), the updated probability for an event C. Then the update under Je�rey's

rule is, for any outcome x,

P∗(x) =
n

∑
j=1

P(x∣Gj)P∗(Gj) =
n

∑
j=1

qjP(x∣Gj) = qkP(x∣Gk) x ∈ Gk,

Pearl's method for updating given a piece of information A and a partition G1, . . . ,Gn is to

set

133



134 CHAPTER 6. EVIDENCE AND METRICS

ρj =
P(Ξ∣Gj)
P(Ξ∣G1)

j = 1, . . . , n

The Pearl update is de�ned by

P∗(x) = P(x∣Ξ) = P(x) ρj

∑n
k=1 ρkP(Gk)

x ∈ Gj .

Using P(Ξ∣G) = P(G∣Ξ)P(Ξ)
P(G) ,

ρj =
P(Gj ∣Ξ)
P(Gj)

P(G1)
P(G1∣Ξ)

= λj
λ1

so that

P∗(x) = P(x) λj

∑n
k=1 λkP(Gk)

x ∈ Gj ,

which gives an expression for Pearl's update in terms of the λj = qj
P(Gj) =

P∗(Gj)
P(Gj) =

P(Gj ∣A)
P(Gj) .

To show that it is the same as Je�rey's rule, for x ∈ Gj ,

P∗(x) = P(x)P(Ξ∣Gj)
P(Ξ) = P(x ∩Gj)

P(Gj)
P(Ξ∣Gj)P(Gj)

P(Ξ) = P(x∣Gj)P(Gj ∣Ξ) = qjP(x∣Gj),

which is the Je�rey's update.

3. In this example,X1,X2,X3 are mutually independent; PX1,X2,X3 = PX1PX2PX3 , PXj(1) = PXj(0) =
1
2 for j = 1,2,3. Virtual evidence on X3 is treated as a node with a single parent X3, so (using

PX3(1) = PX3(0) = 1
2),

P̃X3(1) = PX3(1)
PV ∣X3

(1∣1)
PV ∣X3

(1∣1)PX3(1) + PV ∣X3
(1∣0)PX3(0)

= PX3(1)
2λ

λ + 1 =
λ

λ + 1

so

P̃X1,X2,X3(x1, x2,1) = PX1(x1)PX2(x2)P̃X3(1) =
λ

8(λ + 1)

P̃X1,X2,X3(x1, x2,0) = PX1(x1)PX2(x2)P̃X3(x3) =
1

8(λ + 1)

for each value of (x1, x2) ∈ {(0,0), (0,1), (1,0), (1,1)}.

4. Assume that the variables are ordered so that Paj ⊆ {X1, . . . ,Xj−1}. Then



6.7. ANSWERS 135

DKL(P,Q) = ∑
x

P(x) ln P(x)
Q(x)

= ∑
x=(x(i1)1 ,...,x

(id)

d
)

d

∏
k=1

PXk ∣Pak
(x(ik)k ∣πk(x)) ln

∏d
k=1 PXk ∣Pak

(x(ik)k ∣πk(x))

∏d
k=1QXk ∣Pak

(x(ik)k ∣πk(x))

= ∑
x∣πj(x)=πl

j

d

∏
k=1

PXk ∣Pak
(x(ik)k ∣πk(x)) ln

θjij l

θ̃jij l

= ∑
ij

θjij l ln
θjij l

θ̃jij l
∑

(x(i1)1 ,...,x
(ij−1)

j−1 )∣πj(x)=πl
j

j−1
∏
k=1

PXk ∣Pak
(x(ik)k ∣πk(x)

= dKL(θj.l, θ̃j.l)PPaj
(πlj).

5.

DCD(P,Q) =max
x

ln
P(x)
Q(x) −min

x
ln

P(x)
Q(x) .

Clearly, for any function f ,maxx f(x) ≥minx f(x) so the distance is non negative. IfDCD(P,Q) =
0, it follows that

P(x)
Q(x) = α, a constant, for all x ∈ X . It follows that P(x) = αQ(x) so that

1 =∑
x

P(x) = α∑
x

Q(x) = α

and hence α = 1, so that P(x) = Q(x) for all x ∈ X .

For the second point, if P(x) > 0 for a point where Q(x) = 0, or P(x) = 0 for a point where

Q(x) > 0, then DCD(P,Q) = +∞.

Now consider P(x) > 0⇔ Q(x) > 0. For a strictly positive function f , maxx f(x) = 1
minx(1/f(x))

since the point where the maximum of f(x) is attained is the point where the minimum of 1/f(x)
is attained. It follows that

DCD(P,Q) = max ln
P(x)
Q(x) −min ln

P(x)
Q(x)

= ln
1

minx
Q(x)
P(x)

− ln 1

maxx
Q(x)
P(x)

= −min
x

ln
Q(x)
P(x) +max

x
ln
Q(x)
P(x)

= DCD(P,Q).

6. Take any point x ∈ X , then x ∈ Gj for exactly one j. It follows that Q(x) = µjP(x∣Gj) = µj P(x)λj

for j such that x ∈ Gj . Therefore

DCD(P,Q) = max
x

ln
P(x)
Q(x) −min

x
ln

P(x)
Q(x)

= max
j

ln
λj

µj
−min

j
ln
λj

µj

as required.



136 CHAPTER 6. EVIDENCE AND METRICS

7. (a) Let P = (p0, p1) be a Bernoulli trial with success probability p1 = 1
2 and Q a Bernoulli trial

with success probability q1 = θ > 1
2 . Then

DCD(Q,P) = ln 2θ − ln 2(1 − θ) = ln
θ

1 − θ .

Hence, let θ(k) denote the value of θ such that DCD(Q,P) = k, then

ek = θ

1 − θ
giving

θ(k) = ek

1 + ek .

Considering 0 ≤ θ ≤ 1
2 gives, for a Chan Darwiche distance k,

θ(k) = e−k

1 + e−k .

(b)

DCD(Q,P) =
1

2
ln

1

2θ(k) +
1

2
ln

1

2θ(k) = k

θ(1 − θ) = 1

4
e−2k

(θ − 1

2
)
2

= 1

4
(1 − e−2k)

θ(k) = 1

2
± 1

2

√
1 − e−2k.

8. De�nition of convexity for a function ϕ: for any λ ∈ [0,1] and any (x, y),

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y).

Proof of result by induction: if X = {x1, x2}, set p1 = λ, p2 = 1 − λ, then µ = E[X] = p1x1 + p2x2
so de�nition of convexity gives

ϕ(µ) ≤ p1ϕ(x1) + p2ϕ(x2) = E[ϕ(X)],

with equality if and only if ϕ(x) = a + bx for x ∈ {x1, x2, µ}.

Assume result is true for any probability distribution over {x1, . . . , xn}. Consider a probability

distribution (p1, . . . , pn+1) over (x1, . . . , xn+1). Then

ϕ(µ) = ϕ
⎛
⎝
n+1
∑
j=1

pjxj
⎞
⎠
≤ pn+1ϕ(xn+1) + (1 − pn+1)ϕ

⎛
⎝

n

∑
j=1

pj

1 − pn+1
xj
⎞
⎠

and, by the inductive hypothesis (since ∑n
j=1

pj
1−pn+1 = 1) ,

ϕ
⎛
⎝

n

∑
j=1

pj

1 − pn+1
xj
⎞
⎠
≤

n

∑
j=1

pj

1 − pn+1
ϕ(xj)



6.7. ANSWERS 137

so that

ϕ(µ) ≤
n+1
∑
j=1

ϕ(xj)pj

with equality if and only if ϕ(x) = ax + b for x ∈ {µ,x1, . . . , xn} as required.

It follows that

DKL(P∥Q) = −∑
j

pj ln
qj

pj
≥ − ln∑

j

pj
qj

pj
= − ln∑

j

qj = − ln 1 = 0

with equality if and only if p = q.

9. (a) The likelihood ratio between Q and P is well de�ned and is given by

LR (x) = Q (x)
P (x) =

d

∏
i=1
( qi
pi
)
xi

(1 − qi
1 − pi

)
1−xi

.

For each i ∈ {1, . . . , d}, let mi be de�ned as

mi =
⎧⎪⎪⎨⎪⎪⎩

1 if qi
pi
≥ 1−qi

1−pi
0 otherwise.

(6.10)

Then m = (mi)di=1 ∈ X and, by construction, it follows that for all x ∈ X ,

LR (x) ≤ LR (m) =
d

∏
i=1

max( qi
pi
,
1 − qi
1 − pi

) . (6.11)

Next let m̄ be the binary complement of m de�ned by Equation (6.10). That is, for each

i ∈ {1, . . . , d}, m̄i = 1 −mi, giving m̄i = 0, if mi = 1 and m̄i = 1 if mi = 0. Then it holds that

LR (x) ≥ LR (m) =
d

∏
i=1

min( qi
pi
,
1 − qi
1 − pi

) . (6.12)

It now follows from the de�nition of the Chan - Darwiche distance measure (De�nition 6.11)

that

DDC(p, q) = lnLR (m) − lnLR (m̃)

=
d

∑
i=1

ln
max ( qipi ,

1−qi
1−pi )

min ( qipi ,
1−qi
1−pi )

.

For i such that mi = 1 it clearly holds that

max ( qipi ,
1−qi
1−pi )

min ( qipi ,
1−qi
1−pi )

=
qi
pi

1−qi
1−pi
= Oq,i

Op,i
,

where O denotes the odds;

Oq,i =
qi

1 − qi
,Op,i =

pi
1 − pi

.



138 CHAPTER 6. EVIDENCE AND METRICS

Similarly for i such that mi = 0 it holds that

max ( qipi ,
1−qi
1−pi )

min ( qipi ,
1−qi
1−pi )

= Op,i

Oq,i
,

from which the result follows.

(b) Let qi = q and pi = p for all i, and 0 < q < 1 and 0 < p < 1.

Q (x) = qk (1 − q)d−k , P (x) = pk (1 − p)d−k ,

where k is the number of digital ones in x. It follows that

DDC(P,Q) = d lnmax(OQ

OP
,
OP
OQ
) .

If, say,
OQ
OP
> OP

OQ
, then

DDC(P,Q) = d (lnOQ − lnOP) ,

10. (a) Theorem 6.17 gives

DCD(P,Q) = lnmax
i

λi
µi
− lnmin

i

λi
µi
= ln 0.7

0.3
− ln 0.05

0.4
= 2.93,

(b) Corollary 6.18 gives

0.05 ≤ OQ(cg ∣s)
OP(cg ∣s)

≤ 18.73.

This suggests that the distributions have changed dramatically. Note that PC∣S(cg ∣s) =
0.12
0.56 = 0.214, while QC∣S(cg ∣s) = 0.28

0.42 = 0.667.

OQ(cg ∣s)
OP(cg ∣s)

= 0.667/0.333
0.214/0.786 = 7.34.

(c) If the new distribution over colour is Q∗C = (0.25,0.25,0.50), then DCD(P,Q∗) = 0.406 and

0.513 ≤ OQ∗(cg ∣s)
OP(cg ∣s)

≤ 1.946

The evidence is weaker and the bounds are therefore tighter. In this case,

OQ∗(cg ∣s)
OP(cg ∣s)

= Q∗(cg ∣s)
Q∗(cg ∣sc)

P(cg ∣sc)
P(cg ∣s)

= Q∗(cg, s)
Q∗(s)

Q∗(sc)
Q∗(cg, sc)

P(cg, sc)
P(sc)

P(s)
P(cg, s)

= Q∗(cg)P(s∣cg) (Q∗(cg)P(sc∣cg) +Q∗(cv)p(sc∣cv) +Q∗(cb)P(sc∣cb))
(Q∗(cg)P(s∣cg) +Q∗(cv)P(s∣cv) +Q∗(cb)P(s∣cb))Q∗(cg)P(sc∣cg)

P(cg, sc)
P(sc)

P(s)
P(cg, s)

= 1.756



6.7. ANSWERS 139

(d) Inequality (6.7) gives

0.214e−d

1 + (e−d − 1) × 0.214 ≤ Q(cg ∣s) ≤
0.214ed

1 + (ed − 1) × 0.214 .

The constraint QC∣S(cg ∣s) ≤ 0.3 is satis�ed if

0.214ed

1 + (ed − 1) × 0.214 ≤ 0.3

giving d ≤ 0.454. The current distribution over colour is (µg, µb, µv) = (0.3,0.3,0.4). The

problem now reduces to �nding (λg, λb, λv) such that QC∣S(cg ∣s) = 0.3 and

lnmax( λg
0.3

,
λb
0.3

,
λv
0.4
) − lnmin( λg

0.3
,
λb
0.3

,
λv
0.4
) = 0.454.

Since

QC,S(cj , s) =
λj

µj
PC,S(cj , s), j = g, b, v

it follows that

QC∣S(cg ∣s) =
0.4λg

0.4λg + 0.4λb + 0.4λv
.

With PC∣S(cg ∣s) = 0.3,
0.28λg − 0.12λb − 0.24λv = 0,

with constraint λg + λb + λv = 1, so that 10λg − 3λv = 3.
If the maximum and minimum are then given by λg and λv respectively, then

0.454 = ln λg

0.3
− ln 10λg − 3

1.2

giving

λg =
3e0.454

10e0.454 − 4 = 0.402

λv = 0.34, λb = 0.258.

Finally, to check that the solution is valid, 0.4
λv
= 0.4

0.34 = 1.176 > 1.163 =
0.3

0.258 =
0.3
λb
. Similarly,

λg

0.3 clearly gives the maximum in the �rst term.



140 CHAPTER 6. EVIDENCE AND METRICS



Chapter 7

Marginalisation, Triangulated Graphs and

Junction Trees

7.1 Functions and Domains

Notation Let V = {X1, . . . ,Xd} denote the set of random variables, where variable Xj has state

space Xj = (x(1)j , . . . , x
(kj)
j ) for j = 1, . . . , d. Let X = ×dj=1Xj denote the state space for the random

vector X = (X1, . . . ,Xd). Let Ṽ = {1, . . . , d} denote the indexing set for the variables. For D ⊂ Ṽ ,
where D = {j1, . . . , jm}, let XD = ×j∈DXj and let XD = (Xj1 , . . . ,Xjm). Let x ∈ X denote a generic

element of X and let xD = (xj1 , . . . , xjm) ∈ XD, when x = (x1, . . . , xd) ∈ X . The notation

xD = ×v∈Dxv

is used to denote a con�guration (or a collection of outcomes) on the nodes in D. Furthermore, for

any set W ⊂ V , let W̃ denote the indexing set for W . The notation XW will also be used to denote

XW̃ , XW to denote XW̃ and xW to denote xW̃ . Suppose D ⊆ W ⊆ Ṽ and that xW ∈ XW . That is,

xW = ×v∈Wxv. Then, ordering the variables of W so that XW = XD ×XW /D, the projection of xW onto

D is de�ned as the variable xD that satis�es

xW = (xD, xW /D),

where the meaning of the notation `(, )' is clear from the context. Here A/B denotes the set di�erence;

i.e. the elements in the set A not included in B.

De�nition 7.1 (Function, Domain). Consider a function ϕ ∶ XD → R+. The space XD is known as the

domain of the function. If the domain is the state space of a random vector XD, then XD may also

be referred to as the domain of the function.

In this setting, a function over a domain XD has ∏j∈D kj entries. For W ⊂ V , the domain of a function

XW may also be denoted by the collection of random variables W .

141



142 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

Addition, Multiplication, Division For functions de�ned on the same domain, addition, multi-

plication and division are de�ned pointwise where, by de�nition,

a(x) = 0, b(x) = 0 Ô⇒ a(x)
b(x) = 0.

Functions over di�erent domains If function ϕ1 is de�ned over domain XD1 and function ϕ2

is de�ned over domain XD2 , then multiplication and division of functions may be de�ned by �rst

extending both functions to the domain XD1∪D2 .

De�nition 7.2 (Extending the Domain). Let the function ϕ be de�ned on a domain XD, where D ⊂
W̃ ⊆ Ṽ . Then ϕ, de�ned over a domain XD, is extended to the domain XW̃ in the following way. For

each xW̃ ∈ XW̃ ,

ϕ(xW̃ ) = ϕ(xD),

where xD is the projection of xW̃ onto XD, using the de�nition of xD (and hence xW̃ ) from the beginning

of the section, page 141. In other words, the extended function depends on xW̃ only through xD.

Addition, Multiplication and Division of Functions over Di�erent Domains Addition, mul-

tiplication and division of functions over di�erent domains is de�ned as �rst, extending the domains

of de�nition using De�nition 7.2 so that they are de�ned over the same domain, followed by standard

pointwise addition, multiplication or division.

Multiplication of functions may be expressed in the following terms: the product ϕ1.ϕ2 of functions ϕ1

and ϕ2, de�ned over domains XD1 and XD2 is de�ned as

(ϕ1.ϕ2)(xD1∪D2
) = ϕ1(xD1∪D2

)ϕ2(xD1∪D2
),

where ϕ1 and ϕ2 have �rst been extended to XD1∪D2 .

Let Dϕ denote the index set for the domain variables of a function ϕ. Then for two functions ϕ1

and ϕ2, Dϕ1.ϕ2 =Dϕ1 ∪Dϕ2 .

Marginalisation The operation of marginalisation is now considered more generally. Let U ⊆W ⊆ V
and let ϕ be a function de�ned over XW . The expression ∑XW /U

ϕ denotes the margin (or the sum

margin) of ϕ over XU and is de�ned for xU ∈ XU by

⎛
⎝ ∑W /U

ϕ
⎞
⎠
(xU) = ∑

z∈XW /XU

ϕ(z, xU),

where the arguments have been rearranged so that those corresponding to W /U appear �rst, z ∈ XW /U
is the projection of (z, xU) ∈ XW onto XW /U and xU ∈ XU the projection of (z, xU) ∈ XW onto XU .

The following notation is also used for marginalising a function with domain XW .



7.1. FUNCTIONS AND DOMAINS 143

ϕ↓U =
⎛
⎝ ∑W /U

ϕ
⎞
⎠
.

The marginalisation operation obeys the following rules:

1. The Commutative Law: for any two sets of variables U ⊂ V and W ⊂ V ,

(ϕ↓U)↓W = (ϕ↓W )↓U .

2. The Distributive Law:

If XD1 is the domain of ϕ1 and D1 ⊆ Ṽ , then (ϕ1ϕ2)↓D1 = ϕ1(ϕ2)↓D1 .

De�nition 7.3 (Charge, Contraction). A charge

Φ = {ϕ1, . . . , ϕm}

is de�ned as a set of functions on X .
A contraction of a charge, or set of functions is an operation of multiplication of functions, after

extending them to X , that returns the function

Φ(x) =
m

∏
j=1

ϕj(x).

The same notation is often used to denote the contraction of a charge and of the set of functions (the

charge). The context makes it clear which is intended.

Probability function factorised along a DAG The joint probability function pX1,...,Xd
is itself

a function, with domain X . If the joint probability function may be factorised according to a DAG

G = (V,D), the decomposition is written as

pX1,...,Xd
=

d

∏
j=1

pXj ∣Πj
.

Then for each j = 1, . . . , d, ϕj de�ned by ϕj = pXj ∣Πj
is a function with domain XDj = Xj × XΠ̃j

and

Dj = {j} ∪ Π̃j .

Example 7.4.

Consider a probability function over six variables that may be factorised along the directed acyclic

graph in Figure 7.1. The functions corresponding to the conditional probabilities are

ϕ1 = pX1 , ϕ2 = pX2∣X1
, ϕ3 = pX3∣X1

,

ϕ4 = pX4∣X2
, ϕ5 = pX5∣X2,X3

, ϕ6 = pX6∣X3
.

The corresponding domains are



144 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

XD1 = X1, XD2 = X2 ×X1, XD3 = X3 ×X1

XD4 = X4 ×X2, XD5 = X5 ×X2 ×X3, XD6 = X6 ×X3.

X1

!!}}

X2

!!}}

X3

!!}}

X4 X5 X6

Figure 7.1: A Bayesian Network on 6 variables

De�nition 7.5 (Domain Graph). The domain graph for the set of functions in Φ is an undirected

graph with the variables as nodes and the links between any pair of variables which are members of the

same domain.

Figure 7.2 illustrates the domain graph associated with DAG of Figure 7.1. The domain graph of a

DAG is the moral graph, De�nition 5.4. The maximal cliques of the moral graph are illustrated in

Figure 7.3.

X1

X2 X3

X4 X5 X6

Figure 7.2: Domain graph of Bayesian Network in Figure 7.1

It is clear that the domain graph of a Bayesian network is the moral graph, since by de�nition all the

parents are connected to each other and to the variable.

7.2 Marginalisation and Graphical Representations

Let ϕ1 be a function with domain XD1 and let ϕ2 be a function with domain XD2 . Suppose that

A ⊂D1 ∪D2 and their product ϕ1ϕ2 is to be marginalised over XA. If A∩D1 = ϕ (the empty set), then



7.2. MARGINALISATION AND GRAPHICAL REPRESENTATIONS 145

X2 X1 X2 X3 X3

X4 X2 X3 X5 X6

Figure 7.3: Maximal Cliques of the Graph in Figure 7.2

∑
XA

ϕ1ϕ2 = ϕ1∑
XA

ϕ2.

In coordinates, let ϕ1 have domain XD1∪D3 and ϕ2 domain XD2∪D3∪D4 , where D1, D2, D3 and D4 are

disjoint. By the distributive law, the marginalisation may be written as

∑
x2∈XD2

ϕ1(x1, x3)ϕ2(x2, x3, x4) = ϕ1(x1, x3) ∑
x2∈XD2

ϕ2(x2, x3, x4).

The function over XD1 × XD3 × XD4 is �rst marginalised down to a function over XD3 × XD4 . The

function is transmitted to the function over XD2 ×XD3 , to which it is multiplied. The domains of the

two functions to be multiplied have to be extended to XD1 ×XD3 ×XD4 . Using X1,X2,X3,X4 to denote

the associated domains XD1 ,XD2 ,XD3 and XD4 , the domains under consideration for the operations

are illustrated in Figure 7.4. First, the function ϕ2, de�ned over (X2,X3,X4) is considered. This is

marginalised to a function over (X3,X4) and is then extended, by multiplying with ϕ1, to a function

over (X1,X3,X4).

(X2,X3,X4) (X3,X4)
(X1,X3,X4)

Figure 7.4: The Distributive Law

Example 7.6 (Example of a Marginalisation).

Consider the computation for marginalising a contraction of a charge Φ de�ned over a state space

X = X1 ×X2 ×X3 ×X4 ×X5 where

Φ(x) = ϕ1(x1, x3, x5)ϕ2(x1, x2)ϕ3(x3, x4)ϕ4(x5, x6).

More particularly, consider the computation of

Φ↓0 = ∑
x∈X

Φ(x),



146 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

where the notation Φ↓U is de�ned on page 142. With the order of summation: x2, x4, x6, x5, x3 ,x1,

the sum may be written (taking sums from right to left) as

∑
x1∈X1

∑
x3∈X3

∑
x5∈X5

ϕ1(x1, x3, x5) ∑
x6∈X6

ϕ4(x5, x6) ∑
x4∈X4

ϕ3(x3, x4) ∑
x2∈X2

ϕ2(x1, x2).

The computation, carried out in this order (right to left), may be represented by the graph in Figure 7.5;

a computational tree, according to the distributive law, is given in Figure 7.6.

X2 X6

X1 X5

X3

X4

Figure 7.5: Associations of Variables

(X1,X2)

X1
&&

(X5,X6)
X6

xx

(X1,X3,X5)

(X3,X4)

X4

OO

Figure 7.6: A Computational Tree for the Marginalisation

Recall (page 142) that the operation Φ↓U(x) means marginalising Φ over all variables not in the set U .

De�nition 7.7 (Elimination of a Variable). The variable Xv, with index v ∈ W̃ = Ṽ /Ũ is eliminated

from ∑xV /U ∈XV /U
Φ(xV /U , xU) by the following procedure, where contraction means multiplying together

all the functions in the charge.



7.3. DECOMPOSABLE GRAPHS AND NODE ELIMINATION 147

1. Let Φv (or ΦXv) denote the contraction of the functions in Φ that have Xv in their domain; that

is,

Φv = ∏
j∣v∈Dj

ϕj .

2. Let ϕ(v) (or ϕ(Xv)) denote the function ∑xv∈Xv
Φv.

3. Find a new set of functions Φ−v (or Φ−Xv) by setting

Φ−v = (Φ ∪ {ϕ(v)})/Φv.

This is the de�nition of Φ−v, also denoted by Φ−Xv .

Those functions that do not contain Xv in their domain have been retained; the others have been

multiplied together and then marginalised over Xv (thus eliminating the variable) to give ϕ(v). This

function has been added to the collection, and all those containing Xv (other than ϕ(v)) have been

removed.

(Note that the notation Φ−Xv has two meanings: it is used to the collection of functions, and it is

also used to denote the contraction of the charge obtained by multiplying together the functions in the

collection. The meaning is determined by the context.) Having removed Xv, it remains to compute

∑
xW /{Xv}

Φ−Xv(xU , xW /{Xv}).

The quantity

Φ↓U(xU) = ∑
xW /U ∈XW /U

Φ(xW /U , xU)

can be computed through successive elimination of the variables Xv ∈W /U . The task, of course, is to
�nd a sequence for marginalising the variables such that, at each stage, the variable is to be eliminated

from as small a domain as possible. The procedure outlined above may be considered graphically in

terms of undirected graphs and their triangulations.

7.3 Decomposable Graphs and Node Elimination

Recall the de�nition of an induced sub graph (De�nition 1.5); a subgraph induced by a subset A ⊂ V is

the graph GA = (A,EA) where EA = E ∩A ×A. The following de�nitions are necessary.

De�nition 7.8 (Complete Graph, Complete Subset). A graph G is complete (or a clique) if every

pair of nodes is joined by an undirected edge. That is, for each (α,β) ∈ V × V with α ≠ β, (α,β) ∈ E
and (β,α) ∈ E. In other words, ⟨α,β⟩ ∈ U , where U denotes the set of undirected edges. A subset of

nodes is called complete if it induces a complete sub graph.

De�nition 7.9 (Maximal Clique). A maximal clique is a complete sub graph that is maximal with

respect to ⊆. In other words, a maximal clique is not a sub graph of any other complete graph.



148 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

De�nition 7.10 (Simplicial Node). Recall the de�nition of family, found in De�nition 1.2. For an

undirected graph, the family of a node β is F (β) = {β}∪N(β), where N(β) denotes the set of neighbours
of β. A node β in an undirected graph is called simplicial if its family F (β) is a maximal clique.

This means that, in an undirected graph, a node β is simplicial if all its neigbours are neighbours of

each other.

De�nition 7.11 (Connectedness, Strong Components). Let G = (V,E) be a simple graph, where

E = U ∪D. That is, E may contain both directed and undirected edges. Let α → β denote that there

is a path (De�nition 1.7) from α to β. If there is both α → β and β → α then α and β are said to be

connected. This is written:

α↔ β.

This is clearly an equivalence relation. The equivalence class for α is denoted by [α]. In other words,

β ∈ [α] if and only if β ↔ α. These equivalence classes are called strong components of G.

Note that a graph is connected if between any two nodes there exists a trail (De�nition 1.6), but any

two nodes α and β are only said to be connected if there is path from α to β and a path from β to α,

where the de�nition of a `path' is given in De�nition 1.7.

De�nition 7.12 (Chord). Let G = (V,E) be a graph. Let σ be an n cycle in G. A chord of this cycle

is a pair (αi, αj) of non consecutive nodes in σ such that αi ∼ αj in G.

De�nition 7.13 (Triangulated). An undirected graph is said to be triangulated if every cycle of length

≥ 4 has a chord.

Lemma 7.14. If G = (V,E) is triangulated, then the induced graph GA is also triangulated.

Proof Consider any cycle of length ≥ 4 in the restricted graph. All the edges connecting these

nodes remain. If the cycle possessed a chord in the original graph, the chord remains in the restricted

graph.

De�nition 7.15 (Separator). Let G = (V,E) be a graph. Let α,β ∈ V be two nodes. A subset S ∈ V is

called an α,β separator if every trail between α and β has at least one node in S. Let A ⊂ V , B ⊂ V .
A set S ⊂ V separates A and B if it is an α,β separator for each (α,β) ∈ A ×B. A and B are said to

be separated by S. The notation used in this text is A á B 8 S.

De�nition 7.16 (Minimal Separator). Let A ⊆ V , B ⊆ V and S ⊆ V be three disjoint subsets of V .

Let S separate A and B. The separator S is said to be a minimal separator of A and B if no proper

subset of S is itself a separator of A and B.

De�nition 7.17 (Decomposition, Weak Decomposition). Let G = (V,U) be an undirected graph. A

triple (A,B,S) of disjoint subsets of the node set V of an undirected graph is said to form a decom-

position of G or to decompose G if



7.3. DECOMPOSABLE GRAPHS AND NODE ELIMINATION 149

V = A ∪B ∪ S

and

� S separates A from B,

� S is a complete subset of V ,

� Both GA∪S and GB∪S are decomposable.

A, B or S may be the empty set. If both A and B are non empty, then the decomposition is proper.

A triple (A,B,S) of disjoint subsets of the node set V of an undirected graph is said to form a weak

decomposition of G or to weakly decompose G if V = A ∪B ∪ S, S separates A from B and both GA∪S
and GB∪S are weakly decomposable.

A weak decomposition di�ers from a decomposition in that the separator set S is not necessarily

complete. Clearly, every graph can be decomposed to its connected components (De�nition 1.6). If

the graph is undirected, then the connected components are the strong components (De�nition 7.11).

De�nition 7.18 (Decomposable Graph). An undirected graph G is decomposable if either

1. it is complete, or

2. it possesses a proper decomposition (A,B,S) such that both sub graphs GA∪S and GB∪S are de-

composable.

This is a recursive de�nition, which is permissible, since the decomposition (A,B,S) is required to be

proper, so that GA∪S and GB∪S have fewer nodes than the original graph G.

Example 7.19 (Decomposable Graph).

Consider the graph in Figure 7.7. In the �rst stage, set S = {α3}, with A = {α1, α2} and B =
{α4, α5, α6}. Then S is a maximal clique and S separates A from B. Then A ∪ S = {α1, α2, α3}
and GA∪S is a maximal clique. B ∪ S = {α3, α4, α5, α6}. The graph GB∪S is decomposable; take

S2 = {α3, α5}, A2 = {α4} and B2 = {α6}. Then GA2∪S2 and GB2∪S2 are maximal cliques.

Theorem 7.20. Let G = (V,U) be an undirected graph. The following conditions 1), 2) and 3) are

equivalent.

1. G is decomposable.

2. G is triangulated.

3. For every pair of nodes (α,β) ∈ V × V , their minimal separator is complete.



150 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

α1 α2

α3 α6

α4 α5

Figure 7.7: Example of a Decomposable Graph

Proof of Theorem 7.20: 1) Ô⇒ 2) Inductive hypothesis: All undirected decomposable graphs

with n nodes or less are triangulated. This is true for one node.

Let G be a decomposable graph with n + 1 nodes. There are two alternatives:

Either G is complete, in which case it is triangulated,

Or: by the de�nition of decomposable, there are three disjoint subsets A,B,S such that S is a

complete subset, S separates A from B, V = A ∪B ∪ S and GA∪S and GB∪S are decomposable. The

decomposition is proper, hence GA∪S and GB∪S have less than or equal to n nodes. Therefore, by

the inductive hypothesis GA∪S and GB∪S are triangulated. Therefore, a cycle of length ≥ 4 without a

chord, will be a cycle from A which passes through B. By decomposability, S separates A from B

and therefore any such cycle must pass S at least twice. But then this cycle has a chord, since S is a

complete subset.

Proof of Theorem 7.20: 2) Ô⇒ 3) Assume that G = (V,U) is an undirected, triangulated graph.

Let S be a minimal separator for two nodes α and β. Let A denote the set such that α ∈ A and GA is

the largest connected sub-graph of GV /S such that α is in the node set. Let B = V /(A ∪ S). For every
node γ ∈ S, there is a node τ ∈ A such that ⟨γ, τ⟩ ∈ U and there is a node σ ∈ B such that ⟨γ, σ⟩ ∈ U .
Otherwise S/{γ} would be a separator for α and β, contradicting the minimality of S. Hence, for any

pair (γ, δ) ∈ S ×S, there exist paths γ, τ1, . . . , τm, δ and γ, σ1, . . . , σn, δ where all the nodes {τ1, . . . , τm}
are in A and all the nodes {σ1, . . . σn} are in B. Then γ, τ1, . . . , τm, δ, σn, . . . , σ1, γ is a cycle of length

≥ 4 and therefore has a chord. Assume that τ1, . . . , τm and σ1, . . . , σn have been chosen so that the

paths are as short as possible (that is, there is no shorter path from γ to δ with all intervening nodes

in A and no shorter path from γ to δ with all intervening nodes in B).

The chord cannot be of the form ⟨τi, τj⟩ for some (i, j) or ⟨σk, σl⟩ for any (k, l) because of the

minimality of the lengths of the chosen paths. Therefore, ⟨γ, δ⟩ ∈ U . Therefore, γ and δ are adjacent

for every pair (γ, δ) ∈ S × S. It follows that S is complete.

Proof of Theorem 7.20: 3) Ô⇒ 1) If G is complete, then the result is clear. If G is not complete,

then choose two distinct nodes (α,β) ∈ V × V that are not adjacent. Let S ⊆ V /{α,β} denote the

minimal separator for the pair (α,β). Let A denote the node set of the maximal connected component



7.3. DECOMPOSABLE GRAPHS AND NODE ELIMINATION 151

of GV /S and let B = V /(A ∪ S). Then (A,B,S) provides three disjoint subsets, where S is complete.

We have to show that GA∪S and GB∪S are decomposable. The procedure can be repeated on both GA∪S
and GB∪S and repeated recursively, stopping when GA′∪S′ is complete for a set A′ and corresponding

separator S′, hence the graph is decomposable.

De�nition 7.21 (Perfect Node Elimination Sequence). Let V = {α1, . . . , αd} denote the node set

of a graph G. A perfect node elimination sequence of a graph G is an ordering of the node set

{α1, . . . , αd} such that for each j in 1 ≤ j ≤ d − 1, αj is a simplicial node of the sub graph of G
induced by {αj , αj+1, . . . , αd}

Lemma 7.22. Every triangulated graph G has a simplicial node. Moreover, if G is not complete, then

it has two non adjacent simplicial nodes.

Proof The lemma is trivial if either G is complete, or else G has two or three nodes. Assume that G
is not complete. Suppose the result is true for all graphs with fewer nodes than G. Consider two non

adjacent nodes α and β. Let S denote the minimal separator of α and β. Let GA denote the largest

connected component of GV /S such that α ∈ A and let B = V /(A ∪ S), so that β ∈ B.
By induction, either GA∪S is complete, or else it has two non adjacent simplicial nodes. Since GS

is complete, it follows that at least one of the two simplicial nodes is in A. Such a node is therefore

also simplicial in G, because none of its neighbours is in B.
If GA∪S is complete, then any node of A is a simplicial node of G.
In all cases, there is a simplicial node of G in A. Similarly, there is a simplicial node in B. These

two nodes are then non adjacent simplicial nodes of G.

Theorem 7.23. A graph G is triangulated if and only if it has a perfect node elimination sequence.

Proof Suppose that G is triangulated. Assume that every triangulated graph with fewer nodes than

G has a perfect elimination sequence. By the previous lemma, G has a simplicial node α. Removing

α returns a triangulated graph. (Consider any cycle of length ≥ 4 with a chord. If the cycle remains

after the node is removed, then the chord is not removed). By proceeding inductively, it follows that

G has a perfect elimination sequence.

Conversely, assume that G has a perfect sequence, say {α1, . . . , αd}. Consider any cycle of length

≥ 4. Let j be the �rst index such that αj is in the cycle. Let V (C) denote the node set of the cycle
and let Vj = {αj , . . . , αd}. Then V (C) ∈ Vj . Since αj is simplicial in GVj+1 , the neighbours of αj in the

cycle are adjacent, hence the cycle has a chord. Therefore G is triangulated.

De�nition 7.24 (Eliminating a Node). Let G = (V,E) be an undirected graph. A node α is eliminated

from an undirected graph G in the following way:

1. For all pairs of neighbours (β, γ) of α add a link if G does not already contain one. The added

links are called �ll ins.

2. Remove α.



152 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

The resulting graph is denoted by G−α.

For example, consider the graph in Figure 7.8. This graph is already triangulated. But suppose one

did not notice this and one decided to eliminate node α3 from the graph in Figure 7.8. The resulting

graph is given in Figure 7.9.

α1

α2 α3

α4 α5 α6

Figure 7.8: Example for Eliminating a Node

α1

α2

α4 α5 α6

Figure 7.9: Graph 7.8 with α3 Eliminated

De�nition 7.25 (Elimination Sequence). An elimination sequence of G is a linear ordering of its

nodes.

Let σ be an elimination sequence and let Λ denote the �ll ins produced by eliminating a node of G in

the order σ. Denote by Gσ the graph G extended by Λ.

Example 7.26.

Consider the graph in Figure 7.8. Suppose the elimination sequence α3, α2, α4, α5, α6 is employed. Then

the �ll ins, for each stage, will be ⟨α1, α6⟩, ⟨α1, α5⟩, ⟨α2, α6⟩, ⟨α5, α6⟩ for α3, then ⟨α1, α4⟩, ⟨α4, α6⟩ for
α2. No further �ll ins are required. The graph Gσ is given in Figure 7.10.

De�nition 7.27 (Elimination sequence, elimination domains). An elimination sequence σ is a linear

ordering of the set of nodes V = {α1, . . . , αd} where for each α ∈ {1, . . . , d}, σ(α) denotes the number

assigned to variable Xα. A node β is said to be of higher elimination order than α if σ(β) > σ(α). The
elimination domain of a node α is the set of neighbours of α of higher elimination order.



7.3. DECOMPOSABLE GRAPHS AND NODE ELIMINATION 153

α1

α2 α3

α5 α6

α4

Figure 7.10: Gσ. Elimination sequence (α3, α2, α4, α1, α5, α6)

In Gσ, any node α together with its neighbours of higher elimination order form a complete subset. The

neighbours of α of higher elimination order are denoted by Nσ(α). The sets Nσ(α) are the elimination

domains corresponding to the elimination sequence σ.

An e�cient algorithm clearly tries to minimise the number of �ll ins. If possible, one should �nd an

elimination sequence that does not introduce �ll ins.

Proposition 7.28. All maximal cliques in a Gσ are a Nσ(α) for some α ∈ V .

Proof Let C be a maximal clique in Gσ and let α be a variable in C of the lowest elimination order.

Then C = Nσ(α).

An e�cient algorithm ought to �nd an elimination sequence for the domain graph that yields maximal

cliques of minimal total size.

The following proposition is clear.

Proposition 7.29. Any Gσ is a triangulation of G.

Proof By construction, the elimination sequence σ for graph Gσ does not require any �ll-ins.

Recall that a graph is triangulated if and only if it has an elimination sequence without �ll ins. This

is equivalent to the statement that an undirected graph is triangulated if and only if all nodes can be

eliminated by successively eliminating a node α such that the family Fα = {α}∪Nα is complete. From

the de�nition, such a node α is a simplicial node.

Marginalisation and triangulation of graphs Let G = (V,U) be an undirected graph, where

V = {X1, . . . ,Xd}. Recall the de�nition of the domain graph (De�nition 7.5) and note that the maximal



154 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

cliques of the domain graph are the domains of the functions of the charge. Recall De�nition 7.7, which

describes the procedure for eliminating a variable in a marginalisation. When a node Xv is eliminated

from the graph G, the resulting graph is denoted by G−Xv . Graphically, the procedure described in

De�nition 7.7 is the same as De�nition 7.24, eliminating a node. If G is the domain graph for a set

of functions Φ, then it is clear from De�nition 7.24 that the graph G−Xv is the domain graph for the

set of functions Φ−Xv . Therefore, if the domain graph is triangulated, there is a perfect elimination

sequence; there is an order for eliminating the variables that, at each stage, the elimination domain

corresponds to a maximal clique in the current domain graph.

7.4 Junction Trees

Decomposable graphs provide the basis for one of the key methods for updating a probability distri-

bution described in terms of a Bayesian network. The DAG is moralised and then triangulated using

the most e�cient triangulation algorithms available. The triangulated graph is then decomposed and

organised to form a junction tree, which supports a e�ective algorithms. The purpose of this section

is to de�ne junction trees and to show how to construct them. They provide a key tool for updating

a Bayesian network.

De�nition 7.30 (Junction Trees). Let C be a collection of subsets of a �nite set V and T be a tree

with C as its node set. Then T is said to be a junction tree (or join tree) if any intersection C1 ∩C2

of a pair C1, C2 of sets in C is contained in every node on the unique path in T between C1 and C2.

Let G be an undirected graph and C the family of its maximal cliques. If T is a junction tree with C as

its node set, then T is known as junction tree for the graph G.

Theorem 7.31. There exists a junction tree T of maximal cliques for the graph G if and only if G is

decomposable.

Proof Firstly, we prove that if the graph is decomposable, then there exists a junction tree of the

maximal cliques. The proof is by construction; a sequence is established in the following way. Firstly,

a simplicial node α is chosen; Fα is therefore a maximal clique. The algorithm continues by choosing

nodes from Fα that only have neighbours in Fα. The set of nodes Fα is labelled C1 and the set of those

nodes in Fα that have neighbours not in Fα is labelled S1. This set is a separator.

Now remove the nodes in Fα that do not have neighbours outside Fα and name the new graph G′.
Choose a new node α in the graph G′ such that Fα is a maximal clique. Repeat the process, with the

index j, where j is the previous index, plus 1.

When the parts have been established (as indicated in the diagram below), each separator Si is

then connected to a maximal clique Sj with j > i and such that Si ⊂ Cj . This is always possible,

because Si is a complete set and, in the elimination sequence described above, the �rst point of Si is

eliminated when dealing with a maximal clique of index greater than i.

It is necessary to prove that the structure constructed is a tree and that it has the junction tree

property.



7.4. JUNCTION TREES 155

Firstly, each maximal clique has at most one parent, so there are not multiple paths. The structure

is therefore a tree.

To prove the junction tree condition, consider two maximal cliques, Ci and Cj with i > j and let α

be a member of both. There is a unique path between Ci and Cj .

Because α is not eliminated when dealing with Cj , it is a member of Sj . By construction, it is also

a member of the child of Cj , say Ck. Arguing similarly, it is also a member of the child of Ck and, by

induction it is also a member of Ci and, of course, all the separators in between.

The converse is trivial; if the maximal cliques can be arranged as a junction tree, then we can construct

a perfect elimination sequence by: take a simplicial node from a maximal clique which is a leaf of the

junction tree and remove the node. If this is not the only simplicial node in the chosen maximal clique,

the maximal clique remains as a leaf of the junction tree, otherwise the maximal clique is removed

from the junction tree; the resulting maximal clique tree is a junction tree. Hence there is a perfect

elimination sequence, hence the graph is triangulated (and decomposable).

Example 7.32.

Consider the directed acyclic graph in Figure 7.11. The corresponding moral graph is given in Fig-

ure 7.12.

α1

!!}}
α2

��

α3 //

��

α4

�� !!
α5

!!

α6 //

}}

α7 // α8

α9

Figure 7.11: A Directed Acyclic Graph

An appropriate elimination sequence for this moral graph is

(α8, α7, α4, α9, α2, α3, α1, α5, α6).

There are two �ll-ins; these are ⟨α1, α5⟩ corresponding to the elimination of α2 and ⟨α1, α6⟩, corre-
sponding to the elimination of α3. The corresponding triangulated graph is given in Figure 7.13.

The junction tree construction may be applied. The maximal cliques and separators, with the labels

resulting from the diagram, are shown in Figure 7.14 and put together to form the junction tree, or

join tree, shown in Figure 7.15.

Later, when using the algorithm for updating, it will be useful to designate one node as the root.



156 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

α1

α2 α3 α4

α5 α6 α7 α8

α9

Figure 7.12: Moral Graph corresponding to Figure 7.11

α1

α2 α3 α4

α5 α6 α7 α8

α9

Figure 7.13: The triangulated graph corresponding to Figure 7.12

De�nition 7.33 (Rooted Tree). A rooted tree T is a tree graph with a designated node ρ called the

root. A leaf of a tree is a node that is joined to at most one other node.

7.5 Perfect Orders of Maximal Cliques

Closely associated with the concept of a Junction Tree is the concept of running intersection property

and perfect order of maximal cliques. Let C = {C1, . . . ,Cn} denote a collection of maximal cliques.

De�nition 7.34 (Running Intersection Property). C is said to have running intersection property

(r.i.p.) if there is an order σ of {1, . . . , n} such that for each j ≥ 2 there is an l such that σ(l) < σ(j)
and

Cσ(j) ∩ (∪j−1i=1Cσ(i)) ⊆ Cσ(j) ∩Cσ(l). (7.1)

An order of the maximal cliques that satis�es r.i.p. is said to be a perfect order of the maximal cliques.



7.5. PERFECT ORDERS OF MAXIMAL CLIQUES 157

{α4,α7,α8}
C1

{α4,α7}
S1

{α4,α6,α7}
C2

{α4,α6}
S2

{α3,α4,α6}
C3

{α3,α6}
S3

{α5,α6,α9}
C4

{α5,α6}
S4

{α1,α2,α5}
C5

{α1,α5}
S5

{α1,α3,α6}
C6

{α1,α6}
S6

{α1,α5,α6}
C7

Figure 7.14: The Maximal Cliques and Separators from Figure 7.13

Theorem 7.35. For an undirected graph G = (V,U) with maximal cliques C = {C1, . . . ,Cn}, there
exists a perfect order of the maximal cliques if and only if G is triangulated. Furthermore, for any

order such that (7.2) holds, the tree constructed by adding the edge σ(j) ∼ σ(l(j)), where for each j ≥ 2
a single l(j) ∈ {1, . . . , j − 1} is chosen such that

Cσ(j) ∩ (∪j−1i=1Cσ(i)) ⊆ Cσ(j) ∩Cσ(l(j)) (7.2)

is a junction tree.

Proof The graph is triangulated if and only if the maximal cliques can be arranged as a junction tree.

If there is a perfect order of the maximal cliques, then clearly the method described for constructing a

tree from these maximal cliques (edge between Cσ(j) and maximal clique Cσ(l(j)) such that (7.2) holds)

gives the junction tree property; namely, that for any two cliques Cα,Cβ , Cα ∩Cβ is contained in each

separator on the unique path Cα ↔ Cβ on the tree. On the other hand, if there is a junction tree,

then we may choose arbitrarily one node as root, call it σ(1) and then proceed by choosing σ(j) as
any neighbour of σ(1), . . . , σ(j − 1) that has not yet appeared in the order. This order of the maximal

cliques satis�es r.i.p..



158 CHAPTER 7. MARGINALISATION, TRIANGULATED GRAPHS AND JUNCTION TREES

C1 S1
C2 S2

C3

S3

C6

S6

C5 S5
C7

S4

C4

Figure 7.15: A Junction Tree (or join tree) constructed from the triangulated graph in Figure 7.13

root

!!}}

γ

!!~~

δ

��

leaf leaf leaf

Figure 7.16: Illustration of a Rooted Tree

Notes The material is standard from algorithmic graph theory. See, for example, [55]. The proof of

Theorem 7.20 follows the lines of Cowell, Dawid, Lauritzen and Spiegelhalter in [32].



Chapter 8

Junction trees and message passing

The task is to describe a scheme of message passing (propagation) between the maximal cliques of a

junction tree to compute the marginal distribution over a set of variables A ⊂ V /E, given hard evidence

on a set of variables E; {XE = xE};

PV /E∣E(xV /E ∣xE)↓A =
⎛
⎜
⎝

∑
xV /(A∪E)∈XV /A

PV /E∣E(xA, xṼ /(A∪E)∣xE)
⎞
⎟
⎠
.

The message passing algorithm described here is the one used by the R packages gRain and bnlearn

and also many other software programmes that deal with Bayesian Networks; the algorithm is based

on representing joint distribution of a Bayesian network using the so - called Aalborg formula

PX(x1, . . . , xn) =
∏C∈C ϕC(xC)
∏S∈S ϕS(xS)

,

(which will be established later in this section), where

C =maximal cliques of the triangulated moral graph

and

S = separators of the junction tree

and each ϕC and ϕS is the function over the respective maximal clique C and separator S. The prop-

agation presented is the approach of Lauritzen and Spiegelhalter, discussed in [83]; the technicalities

may di�er slightly in the various implementations available.

8.1 Factorisation along an Undirected Graph

Let G = (V,U) be an undirected graph, where V = {X1, . . .Xd} is a set of discrete variables.

De�nition 8.1. A joint probability PX over a random vector X = (X1, . . . ,Xd) is said to be factorised

according to G if there exist functions or factors, ϕA de�ned on ×v∈ÃXv where A is a complete set of

nodes in G such that

159



160 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

PX(x) =∏
A

ϕA(xA)

where the notation is clear (see section 7.1, page 141); the product is over all the functions.

Recall De�nition 7.15 of a separator and De�nition 7.17 of a decomposition. In the de�nition, A, B

or S may be the empty set, ϕ.

Proposition 8.2. Let G be a decomposable undirected graph and let (A,B,S) decompose G. Then the

following two statements are equivalent:

1. P factorises along G and

2. both PA∪S and PB∪S factorise along GA∪S and GB∪S respectively and

P(x) = PA∪S(xA∪S)PB∪S(xB∪S)
PS(xS)

.

Proof of 1) Ô⇒ 2) Since the graph is decomposable, its maximal cliques can be organised as a

junction tree. Hence, without loss of generality, the factorisation can be taken to be of the form

P(x) = ∏
C∈C

ϕC(xC),

where the product is over the maximal cliques of G. Since (A,B,S) decomposes G, any maximal clique

of G can either be taken as a subset of A∪S or as a subset of B ∪S. Furthermore, S is a strict subset

of any maximal clique of A ∪ S containing S and S is a strict subset of any maximal clique of B ∪ S
containing S. Letting C denote a maximal clique, it follows that

P(x) = ∏
C⊆A∪S

ϕC(xC) ∏
C⊆B∪S

ϕC(xC).

Since S is itself complete, it is a subset of any maximal clique containing S, so that no maximal clique

in the decomposition will appear in both A ∪ S and B ∪ S. Set

h(xA∪S) = ∏
C⊆A∪S

ϕC(xC), k(xB∪S) = ∏
C⊆B∪S

ϕC(xC).

Then

P(x) = h(xA∪S)k(xB∪S)

and the marginal distribution is given by

PA∪S(xA∪S) = h(xA∪S)∑
XB

k(xB∪S) = h(xA∪S)kS(xS)

and



8.2. FACTORISING ALONG A JUNCTION TREE 161

PB∪S(xB∪S) = k(xB∪S)hS(xS),

where kS is de�ned as kS(xS) = ∑XB
k(xB∪S) and hS(xS) = ∑XA

h(xA∪S). It follows that

P(x) = h(xA∪S)k(xB∪S) =
P(xA∪S)P(xB∪S)
k(xS)h(xS)

.

Since

PS(xS) =∑
XA

h(xA∪S)∑
XB

k(xB∪S) = h(xS)k(xS),

it follows that

P(x) = PA∪S(xA∪S)PB∪S(xB∪S)
PS(xS)

.

Since PA∪S(xA∪S) = ∏C⊂A∪S ϕC(xC) and PB∪S(xB∪S) = ∏C⊂B∪S ϕC(xC), it follows that PA∪S and

PB∪S factorise along the corresponding graphs. This establishes the proof of 1) Ô⇒ 2).

Proof of 2) Ô⇒ 1) If both PA∪S and PB∪S factorise along GA∪S and GB∪S respectively and the

given formula holds, then

P(x) = 1

PS(xS)
∏

C⊂A∪S
ϕC(xC) ∏

C⊂B∪S
ϕC(xC). (8.1)

For the maximal clique C that satis�es C ⊂ A ∪ S such that C ∩ S ≠ ϕ and set ψC = ϕC

pS
. For all other

C, set ψC = ϕC , then
P(x) = ∏

C⊂V
ψC(xC),

so that P factorises along G.

Since PA∪S =∏C⊂A∪S ϕC and PB∪S =∏C⊂B∪S ϕC in Equation (8.1), it follows by a recursive application

of the proposition that

P(x) = ∏C∈C PC(xC)
∏S∈S PS(xS)

,

where C denotes the set of maximal cliques and S denotes the set of separators.

8.2 Factorising along a Junction Tree

Let P be a probability distribution that factorises along a directed acyclic graph G = (V,E). The

factorisation is given by

PX(x) =
d

∏
v=1

PXv ∣Πv
(xv ∣πv(x)),



162 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

where πv(x) denotes the parent set of Xv for an instantiation x. It is clear that this may be expressed

as a factorisation according to the moralised graph Gmor, which is undirected:

PX(x) =
d

∏
v=1

ϕAv(xAv
)

where Av = {Xv} ∪Πv and

ϕAv(xAv
) = PXv ∣Πv

(xv ∣πv(x)).

Hence a probability distribution factorised along the DAG is also factorised along the moral graph Gmor.

For implementing algorithms, the problem is that it may not be possible to represent the sets (Av)dv=1
on a tree. To enable this, Gmor is triangulated to give (Gmor)t. Recall that (Gmor)t is decomposable

and its maximal cliques can be organised into a junction tree T . The probability distribution can

clearly be factorised as

PX(x) = ∏
C∈C

ϕC(xC),

where ϕC(xC) is the product of all those P(xv ∣xΠ̃v
), all of whose arguments belong to C. This

factorisation is not necessarily unique. It corresponds to a triangulation of the moral graph, where C

are the maximal cliques. It follows that

PX(x) =
∏C∈C PC(xC)
∏S∈S PS(xS)

, (8.2)

where C denotes the set of maximal cliques and S denotes the set of separators of (Gmor)t, which may

be organised according to a junction tree. This is the de�nition of a factorisation along a junction tree.

De�nition 8.3 (Factorisation along a Junction Tree, Marginal Charge). Let PX be a probability dis-

tribution over a random vector X = (X1, . . . ,Xd). Suppose that the variables can be organised as a

junction tree, with maximal cliques C and separators S such that PX has representation given in Equa-

tion (8.2), where PC and PS denote the marginal probability functions over the maximal clique variables

C ∈ C and separator variables S ∈ S respectively. The representation in Equation (8.2) is known as the

factorisation along the junction tree, and the charge

Φ = {PS ∶ S ∈ S, PC ∶ C ∈ C}

is known as the marginal charge.

From the foregoing discussion, it is clear that De�nition 8.3 is a special case of De�nition 8.1, with

appropriate choice of functions in De�nition 8.1.

Entering Evidence Equation (8.2) expresses the probability distribution in terms of functions over

the maximal cliques and separators of (Gmor)t, or the junction tree. Suppose that hard evidence is

obtained on the variables U ; namely, that for U ⊆ V , {XU = yU} and the probability over the variables

V /U has to be updated accordingly.



8.3. FLOW OF MESSAGES 163

The algorithm described below describes a procedure such that for any function f ∶ X → R+ (not

necessarily a probability function) that is expressed as

f(x) = ∏C∈C ϕC(xC)
∏S∈S ϕS(xS)

, (8.3)

for a collection of functions Φ = {ϕC , C ∈ C, ϕS , S ∈ S where C and S are the maximal cliques and

separators of a junction tree, the algorithm updates Φ to a collection of functions Φ∗ = {fC , C ∈
C, fS , S ∈ S that satisfy

fC(xC) = ∑
z∈XV /C

f(z, xC)

and

fS(xS) = ∑
z∈XV /S

f(z, xS)

for each C ∈ C and each S ∈ S. It follows that if the algorithm is applied using

ϕC(xC) =
⎧⎪⎪⎨⎪⎪⎩

PC(xC) xC∩U = yC∩U
0 xC∩U ≠ yC∩U

and

ϕS(xS) =
⎧⎪⎪⎨⎪⎪⎩

PS(xS) xS∩U = yS∩U
0 xS∩U ≠ yS∩U

then

PXU
(y

U
) = ∑

z∈XC/(U∩C)

fC(z, yU∩C) = ∑
z∈XS/(U∩S)

fS(z, yU∩S)

for all S ∈ S and all C ∈ C. This quantity may therefore be computed by marginalising the maximal

clique or separator with the smallest domain; dividing fC and fS by this quantity will give PC∣U(.∣yU)
and PS∣U(.∣yU) respectively and hence a representation of the conditional distribution in terms of

marginal distributions over the maximal cliques and separators.

8.3 Flow of Messages

8.3.1 First Example

Consider a non-negative function with domain X × Y ×Z, F ∶X × Y ×Z → R+, which may be written

as

F (x, y, z) = f(x, z)g(y, z)
h(z) , (8.4)

for non negative functions f ∶X ×Z → R+, g ∶ Y ×Z → R+ and h ∶ Z → R+.
Decomposition (8.4) for the function F is of the form given in Equation (8.3), with maximal cliques

C1 = {X,Z}, C2 = {Z,Y } and separator S = {Z} arranged according to the junction tree in Figure 8.1.



164 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

X Z Y

Figure 8.1: Undirected Graph for the Three Variables

XZ
Z

Y Z

Figure 8.2: Junction Tree for message passing

The following procedure returns a representation F (x, y, z) = F1(x,z)F2(y,z)
F3(z) , where

F1(x, z) = ∑
y∈Y

F (x, y, z), F2(y, z) = ∑
x∈X

F (x, y, z), F3(z) = ∑
(x,y)∈X×Y

F (x, y, z).

Firstly,

F1(x, z) = ∑
y∈Y

F (x, y, z) =∑
y

f(x, z)g(y, z)
h(z) = f(x, z)

h(z) ∑y∈Y
g(y, z).

De�ne the auxiliary function h∗(z) = ∑y g(y, z), and the update f∗(x, y) = f(x, y)h
∗(z)
h(z) , then clearly

f∗(x, z) = f(x, z)h
∗(z)
h(z) = F1(x, z).

The calculation of the marginal function F1(x, z) by means of the auxiliary function h∗(z) may be

described as passing a local message �ow from ZY to XZ through their separator Z. The factor

h∗(z)
h(z)

is called the update ratio. It follows that

F (x, y, z) = f(x, z)g(y, z)
h(z) = f(x, z)g(y, z)h

∗(z)
h∗(z)h(z) = F1(x, z)

1

h∗(z)g(y, z).

The passage of the �ow has resulted in a new representation of F (x, y, z) similar to the original, but

where one of the factors is a marginal function.

Similarly, a message can be passed in the other direction, i.e. from XZ to ZY Using the same

procedure, set

h̃(z) = ∑
x∈X

F1(x, z) = ∑
(x,y)∈X×Y

F (x, y, z) = F3(z).

Next, set



8.4. LOCAL COMPUTATION ON JUNCTION TREES 165

g̃(y, z) = g(y, z) h̃(z)
h∗(z) .

It then follows that g̃(y, z) = F2(y, z), because

F (x, y, z) = F1(x, z)
1

h̃(z)
g̃(y, z) = F1(x, z)

1

F3(z)
g̃(y, z)

and hence, since F3(z) = ∑x∈X F1(x, z), that

F2(y, z) = ∑
x∈X

F (x, y, z) = g̃(y, z) ∑
x∈X

F1(x, z)
1

F3(z)
= g̃(y, z).

Passing messages in both directions results in a new overall representation of the function F (x, y, z); .

F (x, y, z) = f∗(x, z) 1

h∗(z)g(y, z) = f
∗(x, z) 1

h∗(z)
h∗(z)
h̃(z)

g̃(y, z)

= f∗(x, z) 1

h̃(z)
g̃(y, z)

= F1(x, z)
1

F3(z)
F2(y, z).

The original representation using functions has been transformed into a new representation where all

the functions are marginal functions.

This idea is now extended to arbitrary non negative functions represented on junction trees.

8.4 Local Computation on Junction Trees

Consider a junction tree T with nodes C and separators S and let Φ be a charge

Φ = {ϕC ∶ C ∈ C, ϕS ∶ S ∈ S} (8.5)

be a charge; that is, a collection of non negative functions such that ϕC ∶ XC → R+ and ϕS ∶ XS → R+
for each C ∈ C and each S ∈ S.

De�nition 8.4 (Contraction of a Charge on a Junction Tree). The contraction of a charge (8.5) over

a junction tree is de�ned as

f(x) = ∏C∈C ϕC(xC)
∏S∈S ϕS(xS)

. (8.6)



166 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

Local Message Passing Let C1 and C2 be two adjacent neighbouring nodes in T separated by S.

Set

ϕ∗S(xS) = ∑
z∈XC1/S

ϕC1(z, xS) (8.7)

and set

λS =
ϕ∗S
ϕS

(8.8)

where, by de�nition, 0
0 = 0 is used in division of functions. λS is known as the update ratio. The

`message passing' is de�ned as the operation of updating ϕS to ϕ∗S and ϕC2 to

ϕ∗C2
= λSϕC2 . (8.9)

All other functions remain unchanged. The scheme of local message passing is illustrated in Figure 8.3.

C1 S
C2

Ð→

λS ϕ∗C2
= λSϕC2

Figure 8.3: Flow from C1 to C2

Lemma 8.5. Let f ∶ X → R+ be the contraction of a charge Φ = {ϕS , S ∈ S, ϕC , C ∈ C} on a junction

tree (De�nition 8.4) where C is the collection of maximal cliques and S the collection of separators. A

�ow does not change the contraction of the charge.

Proof The initial contraction is given by

f(x) = ∏C∈C ϕC(xC)
∏S∈S ϕS(xS)

. (8.10)

Let the contraction after the �ow be denoted by f∗ and the charge, after the �ow from C1 to C2

denoted by

Φ∗ = {ϕ∗C ∶ C ∈ C, ϕ∗S ∶ S ∈ S}

Then

f∗(x) =
ϕ∗C2
(xC2
)∏C∈C,C≠C2

ϕC(xC)
ϕ∗S(xS)∏T ∈S,T≠S ϕS(xT )

. (8.11)

There are three cases to consider.



8.5. SCHEDULES 167

� For x such that ϕS(xS) > 0 and ϕ∗S(xS) > 0,

ϕ∗C2

ϕ∗S
= ϕC2λS

ϕ∗S
=
ϕC2 (

ϕ∗S
ϕS
)

ϕ∗S
= ϕC2

ϕS

and the result is proved.

� For x such that ϕS(xS) = 0: it follows that f(x) = 0 and hence that ϕC1(xC1
) = 0 and that

λS(xS) = 0. It therefore follows from the de�nition of ϕ∗C2
, that ϕ∗C2

= 0 and hence that f∗(x) = 0,
so that 0 = f∗(x) = f(x).

� For x such that ϕS(xS) > 0, but ϕ∗S(xS) = 0, it follows directly that λS(xS) = 0, so that that

f∗(x) = 0. It remains to show that f(x) = 0. From the de�nition,

0 = ϕ∗S(xS) = ∑
z∈XC1/S

ϕC1(z, xS).

Since ϕC1(xC1
) ≥ 0 for all xC1

∈ XC1 , it follows that ϕC1(z, xS) = 0 for all z ∈ XC1/S . Since

f(x) = ϕC1(xC1
)
ϕC2(xC2

)
ϕS(xS)

∏C∈C,C≠C1,C2
ϕC(xC)

∏S∈S,S≠S ϕS(xS)
,

it follows directly from the facts that the domains of the maximal cliques other than C1 and C2

and separators other than S do not include XS , and that
ϕC2
(xC2

)
ϕS(xS)

< +∞ that f(x) = 0, hence

f(x) = f∗(x).

In all cases, it follows that a �ow does not change the contraction of a charge.

8.5 Schedules

The aim of this section is to describe how to construct a series of transmissions between the various

maximal cliques of a junction tree, to update a set of functions to a set of functions that have the same

contraction as the original and which are the marginals of the contraction over the maximal cliques

and separators. First, some de�nitions and notations are established.

De�nition 8.6 (Sub-tree, Neighbouring Clique). A sub-tree T ′ of a junction tree T is a connected

set of nodes of T together with the edges in T between them.

A maximal clique C of a junction tree T is a neighbour of a sub-tree T ′ if the corresponding node

of T is not a node of T ′ but is connected to T ′ by an edge of T .

The following de�nition gives the technical terms that will be used.

De�nition 8.7 (Schedule, Active Flow, Fully Active Schedule). A schedule is an ordered list of directed

edges of T specifying which �ows are to be passed and in which order.

A �ow is said to be active relative to a schedule if before it is sent the source has already received

active �ows from all its neighbours in T , with the exception of the sink; namely, the node to which it



168 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

is sending its �ow. A schedule is full if it contains an active �ow in each direction along every edge of

the tree T . A schedule is active if it contains only active �ows. It is fully active if it is both full and

active.

It follows from this de�nition that the �rst active �ow must originate in a leaf of T .

Example 8.8 (Fully active schedule).

Figure 8.4 shows a DAG and 8.5 a corresponding junction tree. An example of a fully active schedule

for the junction tree given in Figure 8.5, where the maximal clique BEL is chosen as the root, would

be:

AT → ELT,BLS → BEL,BDE → BEL,EK → ELT,ELT → BEL

BEL→ ELT,ELT → EK,ELT → AT,BEL→ BLS,BEL→ BDE.

A

��

S

��
��

T // E

''~~

Loo B

��

K D

Figure 8.4: Example of a DAG

AT
T

ELT
E

EL

EK

BLS
BL

BEL
BE

BDE

Figure 8.5: Corresponding Junction Tree

Proposition 8.9. For any tree T , there exists a fully active schedule.



8.5. SCHEDULES 169

Proof If there is only one maximal clique, the proposition is clear; no transmissions are necessary.

Assume that there is more than one maximal clique. Let C0 denote a leaf in T . Let T0 be a sub-tree

of T obtained by removing C0 and the corresponding edge S0. Assume that the proposition is true for

T0. Adding the edge

C0 → S0 → T0

to the beginning of the schedule and

C0 ← S0 ← T0

to the end of the schedule provides a fully active schedule for T .

The aim is to show that after the passage of a fully active schedule of �ows over a junction tree, the

resulting charge is the marginal charge. That is, all the functions of the charge are the marginal of

the contraction of the charge over the respective maximal cliques and separators. Furthermore, there

is global consistency after the passage of a fully active schedule of �ows over a junction tree. This will

be de�ned later, but loosely speaking, it means that if there are several apparent ways to compute a

probability distribution over a set of variables using the functions of the marginal charge, they will all

give the same answer.

De�nition 8.10 (The Base of a Sub-tree, Restriction of a Charge, Live Sub-tree). Let T ′ be a sub-tree

of T , with nodes C′ ⊆ C and edges S ′ ⊆ S. The base of T ′ is de�ned as the set of variables

U ′ ∶= ∪C∈C′C.

Let

Φ = {ϕC ∶ C ∈ C, ϕS ∶ S ∈ S}

be a charge for T . Its restriction to T ′ is de�ned as

ΦT ′ = {ϕC ∶ C ∈ C′, ϕS ∈ S ′}.

Recall De�nition 8.4. The contraction of ΦT ′ is de�ned as

∏C∈C′ ϕC(xC)
∏S∈S′ ϕS(xS)

.

A sub-tree T ′ is said to be live with respect to the schedule of �ows if it has already received active �ows

from all its neighbours.

Proposition 8.11. Let

Φ0 = {ϕ0C ∶ C ∈ C, ϕ0S ∶ S ∈ S}

denote an initial charge for a function f that has factorisation

f(x) = ∏C∈C ϕ
0
C(xC)

∏S∈S ϕ
0
S(xS)



170 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

where C and S are the sets of maximal cliques and separators for a junction tree T . Suppose that Φ0 is

modi�ed by a sequence of �ows according to some schedule. Then, whenever T ′ is live, the contraction
of the charge for T ′ is the margin of the contraction f of the charge for T on U ′.

Proof Assume that T ′ ⊂ T and that T ′ is live. Let C∗ denote that last neighbour to have passed a

�ow into T ′. Let T ∗ be the sub-tree obtained by adding C∗ and the associated edge S∗ to T ′. Let

C∗,S∗ and U∗ be the maximal cliques, separators and the base of T ∗. By the junction tree property

of T , the separator associated with the edge S∗ joining C∗ to T ′ is

S∗ = C∗ ∩U ′.

Also,

C∗ = C′ ∪ {C∗} and S∗ = S ′ ∪ {S∗}.

and the set of base variables for T ∗ is

U∗ = U ′ ∪C∗.

The induction hypothesis: The assertion holds for the contraction of the charge on T ∗. That is,

using

fU∗(xU∗) = ∑
U/U∗

f(x),

Let

Φ = {ϕC ∶ C ∈ C, ϕS ∶ S ∈ S}

denote the charge just before the last �ow from C∗ into T ′. It follows that

fU∗(xU∗) =
∏C∈C∗ ϕC(xC)
∏S∈S∗ ϕS(xS)

= ϕC
∗(xC∗)

ϕS∗(xS∗)
∏C∈C′ ϕC(xC)
∏S∈S′ ϕS(xS)

. (8.12)

Lemma 8.5 states that a �ow does not change the contraction of a charge. Let {ϕ∗C , C ∈ C′, ϕ∗S , S ∈ S ′}
are the updated functions over the maximal cliques and separators after the �ow.

The aim is to �nd the marginal fU ′ = ∑U/U ′ f of f on U ′ and to show that after the �ow,

fU ′(xU ′) =
∏C∈C′ ϕ

∗
C(xC)

∏S∈S′ ϕ
∗
S(xS)

.

Note that ϕC∗ = ϕ∗C∗ and that ϕ∗S∗ = ∑C∗/S∗ ϕC∗ . It follows that

fU ′ = ∑
U∗/U ′

fU∗ = (
∑C∗/S∗ ϕC∗(xC∗)

ϕ∗S∗(xS∗)
)∏C∈C′ ϕ

∗
C(xC)

∏S∈S′ ϕ
∗
S(xS)

= ∏C∈C′ ϕ
∗
C(xC)

∏S∈S′ ϕ
∗
S(xS)

and the proof is complete.



8.6. LOCAL AND GLOBAL CONSISTENCY 171

Corollary 8.12. Let {ϕC ,C ∈ C, ϕS , S ∈ S} denote the current functions over the maximal cliques and

separators. For any set A ⊆ V , let fA = ∑XV /A
f ; the marginal over A. Whenever a maximal clique C

is live, its corresponding function is ϕC = fC = ∑XV /C
f .

Proof A single maximal clique is a sub-tree. The result is immediate from the theorem.

Corollary 8.13. Using the notation of Corollary 8.12, whenever active �ows have passed in both

directions across an edge in T , the function for the associated separator is ϕS = fS = ∑XV /S
f .

Proof The function ϕS for the associated separator is, by de�nition of the update,

ϕS = ∑
XC/S

ϕC ,

so that

∑
XC/S

ϕC = ∑
XC/S

fC = fS ,

because ϕC is fC by the previous corollary.

Proposition 8.14 (The Main Result). After passage of a fully active schedule of �ows, the resulting

charge is the marginal charge Φ and its contraction represents f . In other words, the following formula,

known as the Aalborg formula holds;

f(x) = ∏C∈C fC(xC)
∏S∈S fS(xS)

.

Proof This follows from the previous two corollaries and Lemma 8.5, stating that the contraction is

unaltered by the �ows.

8.6 Local and Global Consistency

Recall that T denotes the junction tree, the set of maximal cliques which form the nodes of T is

denoted C and the intersection of neighbours in the tree T are the separators, denoted by S. Recall

that the functions associated with C ∈ C and S ∈ S are denoted by ϕC and ϕS respectively, and that

the charge on T , Φ is de�ned as:

Φ = {ϕC ∶ C ∈ C, ϕS ∶ S ∈ S}.

De�nition 8.15 (Local Consistency). A junction tree T is said to be locally consistent if whenever

C1 ∈ C and C2 ∈ C are two neighbours with separator S = C1 ∩C2, then

∑
XC1/(C1∩C2)

ϕC1 = ϕS = ∑
XC2/(C1∩C2)

ϕC2 .



172 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

De�nition 8.16 (Global Consistency). A junction tree T (or its charge) is said to be globally consis-

tent if for every C1 ∈ C and C2 ∈ C it holds that

∑
XC1/(C1∩C2)

ϕC1 = ∑
XC2/(C1∩C2)

ϕC2 .

Global consistency means that the marginalisation to C1 ∩ C2 of ϕC1 and ϕC2 coincide for every C1

and C2 in C. The following results show that, for a junction tree, local consistency implies global

consistency.

Proposition 8.17. After a passage of a fully active schedule of �ows, a junction tree T is locally

consistent.

Proof The two corollaries of the main result give that for any two neighbouring C1 and C2,

∑
C1/S

fC1 = fS = ∑
C2/S

fC2 .

An equilibrium, or �xed point has been reached, in the sense that any new �ows passed after passage

of a fully active schedule do not alter the functions. The update ratio for another message from C1 to

C2 becomes

λS =
∑C1/S fC1

fS
= 1.

Global Consistency of Junction Trees In this paragraph, it is shown that for junction trees, local

consistency implies global consistency.

By de�nition, a junction tree is a tree such that the intersection C1 ∩C2 of any pair C1 and C2 in C is
contained in every node on the unique trail in T between C1 and C2. The set C1 ∩C2 can be empty

and, in this case it is therefore (by convention) a subset of every other set.

Proposition 8.18. A locally consistent junction tree is globally consistent.

Proof In a junction tree the intersection C1∩C2 of any pair C1 and C2 in C is contained in every node

on the unique path in T between C1 and C2. Assume that C1 ∩C2 is non empty. Consider the unique

path from C1 to C2. Let the nodes on the path be denoted by {C(i)}ni=0 with C(0) = C1 and C
(n) = C2,

so that C(i) and C(i+1) are neighbours. Denote the separator between C(i) and C(i+1) by

S(i) = C(i) ∩C(i+1).

Then, for all i,

C1 ∩C2 ⊆ S(i).



8.7. USING A JUNCTION TREE WITH VIRTUAL EVIDENCE AND SOFT EVIDENCE 173

For a set of variables C, let ∑C denote ∑XC
. The assumption of local consistency means that for any

two neighbours

∑
C(i)/S(i)

ϕC(i) = ∑
C(i)/(C(i+1)∩C(i))

ϕC(i) = ∑
C(i+1)/(C(i)∩C(i+1))

ϕC(i+1) = ∑
C(i+1)/S(i)

ϕC(i+1) = ϕS(i) .

Starting with the leftmost marginalisation,

∑
C(i)/(C1∩C2∩C(i))

ϕC(i) = ∑
S(i)/(C1∩C2∩S(i))

∑
C(i)/S(i)

ϕC(i)

= ∑
S(i)/(C1∩C2∩S(i))

⎛
⎝ ∑
C(i+1)/S(i)

ϕC(i+1)
⎞
⎠
= ∑

C(i+1)/(C1∩C2∩C(i+1))
ϕC(i+1) .

The marginalisation of ϕC1 and ϕC(1) coincide. The procedure is continued along the path until the

node C2 is reached. The result is proved.

Corollary 8.19. After the passage of a fully active schedule of �ows, a junction tree is globally con-

sistent.

Proof This follows from the proposition stating that after passage of a fully active schedule of �ows a

junction tree T is locally consistent, together with Proposition 8.9.

The algorithm for updating considered the maximal cliques of a junction tree, which sent and received

messages locally; the global update is performed entirely by a series of local computations. By organ-

ising the variables into maximal cliques and separators on a junction tree and determining a schedule,

there is no need for global computations in the inference problem; the global update is achieved en-

tirely by passing messages between neighbours in the tree according to a schedule and the algorithm

terminates automatically when the update is completed.

8.7 Using a Junction Tree with Virtual Evidence and Soft Evidence

The junction tree may be extended to the problem of updating in the light of virtual evidence and soft

evidence.

Dealing with virtual evidence is straightforward; for each virtual �nding, one adds in a virtual node

as illustrated in Figure 6.2, which will be instantiated according to the virtual �nding. This simply

adds the virtual �nding node to the maximal clique containing the variable for which there is a virtual

�nding.

If virtual evidence is given on a variable X with state space (x1, . . . , xn), and the evidence is given

in the form

ρ1 = 1, ρj =
PE∣X(1∣xj)
PE∣X(1∣x1)

j = 2, . . . , n

the conditional probabilities



174 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING

PE∣X(1∣.) =
x1 x2 . . . xn

a aρ2 . . . aρn

may be used, for some a > 0 such that 0 ≤ PE∣X(1∣xj) ≤ 1 for each j = 1, . . . , n.

To absorb soft evidence, remove the links from each variable Y1, . . . , Ym to which soft evidence is

applied. Provided the nodes on which the soft evidence is received are d-separated from each other

and d-separated from the nodes on which hard evidence is received after surgery, simply replace the

conditional probabilities PYj ∣Π(Yj) with P∗Yj
; the independence ensures that the marginal probabilities

for these variables after updating will remain as P∗Yj
.

The Lazy big maximal clique algorithm If soft evidence and hard evidence are received on

variables that are d-connected after sugery, then incorporating soft evidence cannot be carried out

in such a straightforward manner. The problem is that the approach outline above inserts P∗Yj
, the

marginal probability after updating, in the place of the a-priori assessment PYj ∣Πj
, without reference to

other pieces of evidence. The updated distribution should have P∗Yj
as the marginal distribution over

Yj .

One method for incorporating soft evidence is discussed in [138]. The input is a Bayesian network

with a collection of soft and hard �ndings. The method returns a joint probability distribution with

two properties:

1. The �ndings are the marginal distributions for the updated distribution.

2. The updated distribution is the closest to the original distribution (where the Kullback Leibler

divergence is used) that satis�es this constraint (that the �ndings are the marginals of the updated

distribution).

The junction tree is modi�ed to incorporate soft evidence in the following way.

1. After surgery, construct a junction tree, in which all the variables that have soft evidence are in

the same maximal clique - the big maximal clique C1.

2. Let C1 (the big maximal clique) be the root node, apply the hard evidence and run the �rst half

of the fully active schedule; that is, propagating from the leafs to the root node.

3. Once the big maximal clique C1 has been updated with the information from all the other

maximal cliques, absorb all the soft evidence into C1. This is described below.

4. Distribute the evidence according to the method described in Section 8.5, the second part; sending

the messages from the updated root out to the leaves.

If the big maximal clique is updated to provide a probability function (namely a non negative function

that sums to 1, then the distribution of evidence will update the functions over the maximal cliques

and separators to probability distributions over the respective maximal cliques and separators.



8.7. USING A JUNCTION TREE WITH VIRTUAL EVIDENCE AND SOFT EVIDENCE 175

Absorbing the Soft Evidence Suppose the big maximal clique C1 has soft evidence on the vari-

ables (Y1, . . . , Yk). Suppose soft evidence is received that Y1, . . . , Yk have distributions QY1 , . . . ,QYk

respectively. Let QC1 denote the probability function over the variables in C1 after the soft evidence

has been absorbed. Then it is required that, for each j ∈ {1, . . . , k}, QYj = ∑XC1/{Yk
QC1 . That is, the

marginal of QC1 over all variables other than Yk is QYk
.

The important feature of soft evidence (De�nition 6.4) is that after soft evidence has been received,

the variable has no parent variables. The Iterative Proportional Fitting Procedure (IPFP), therefore,

may be employed. It goes in cycles of length k. Firstly, normalise the function over C1 (after the hard

evidence has been received) so that it is a probability distribution PC1 . Then

P(0)C1
= PC1

for j = 1, . . . , k, set P(mk+j−1)
Yj

= ∑XC1/{Yj}
P(mk+j−1)
C1

, and

P(mk+j)
C1

=
P(mk+j−1)
C1

QYj

P(mk+j−1)
Yj

.

This is repeated until the desired accuracy is obtained. It has been well established that, for discrete

distributions with �nite state space, the IPFP algorithm converges to the distribution that minimises

the Kullback Leibler distance from the original distribution (see, for example, [10] (1959).

Notes The original paper describing the use of junction trees for updating a Bayesian network is by

S.L. Lauritzen and D.J. Spiegelhalter [80]. The propagation presented is the approach of Lauritzen and

Spiegelhalter, discussed in [83]; the technicalities di�er slightly between implementations in software.

The proofs or the main results for the message passing algorithm were originally presented in [33]. The

Iterative Proportion Fitting Procedure dating back to Deming and Stephan (1940) [35]. This is the

basis for updating a junction tree in the light of soft evidence. The basic technique is taken from M.

Valtorta, Y.G. Kim, J. Vomlel (2002) [138].



8.8 Exercises

1. Let PX1,X2,X3,X4,X5 be a probability distribution over �ve variables that has factorisation

PX1,X2,X3,X4,X5 =
PX1,X2PX2,X3,X4PX4,X5

PX2PX4

.

Suppose hard evidence X3 = a is received. Let

fX1,X2,X3,X4,X5(x1, x2, a, x4, x5) =
⎧⎪⎪⎨⎪⎪⎩

pX1,X2,X3,X4,X5(x1, x2, a, x4, x5) x3 = a
0 x3 ≠ a

Work through the stages of the message passing algorithm to obtain functions ψX1,X2 , ψX2 ,

ψX2,X3,X4(., a, .), ψX4 , ψX4,X5 such that such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψX1,X2 = ∑x4,x5
fX1,...,X5(., ., a, x4, x5),

ψX2 = ∑x1,x4,x5
fX1,...,X5(x1, ., a, x4, x5),

ψX2,X3,X4 = ∑x1,x5
fX1,...,X5(x1, ., a, ., x5),

ψX4 = ∑x1,x2,x5
fX1,X2,X3,X4,X5(x1, x2, a, ., x5),

ψX4,X5 = ∑x1,x2
fX1,...,X5(x1, x2, a, ., .)

and

fX1,...,X5 =
ψX1,X2ψX2,X3,X4ψX4,X5

ψX2ψX4

.

2. (a) Prove that Kruskal's algorithm returns a tree of maximal weight: Consider d nodes, labelled

(α1, . . . , αd) and a weight bij corresponding to each pair of nodes {αi, αj}. The tree of

maximal weight is the tree with nodes {α1, . . . , αd} such that the score ∑e∈T be, where the

sum is taken over all edges e included in the tree, is greater than or equal to the score for

any other tree.

Krusal's algorithm proceeds as follows:

i. The d variables yield d(d − 1)/2 edges. The edges are indexed in decreasing order,

according to their weights b1, b2, . . . , bd(d−1)/2.

ii. The edges b1 and b2 are selected. Then the edge b3 is selected if it does not form a

cycle.

iii. This is repeated through b4, . . . , bd(d−1)/2, in that order, adding edges if they do not

form a cycle and discarding them if they form a cycle.

This may be proved by induction.

(b) Prove that Prim's algorithm returns a tree of maximal weight. This proceeds by �rst

choosing the edge of maximal weight and then subsequently choosing additional edges to

add to the tree where the additional link has maximal weight.

3. Let C denote the set of maximal cliques from a triangulated graph. A pre-I-tree is a tree over C
with separators S = C1 ∩C2 for adjacent maximal cliques C1 and C2. The weight of a pre-I-tree

is the sum of the number of variables in the separators.

176



8.8. EXERCISES 177

(a) Prove that a junction tree is a pre-I-tree of maximal weight.

(b) Prove that any pre-I-tree of maximal weight is a junction tree.

4. A polytree is a DAG whose skeleton is a tree.

(a) Prove that the moral graph of a polytree is triangulated.

(b) Prove that the separators in a junction tree for a polytree consist of exactly one variable.



8.9 Answers

1. UsingX2X3X4 as root,X1X2 →X2X3X4 - trivial message is passed. h∗X2
(x2) = ∑x1

PX1X2(x1, x2) =
PX2(x2), so update ratio is λ(x2) =

PX2
(x2)

PX2
(x2) = 1; PX2(x2) updated to PX2(x2) and PX2,X3,X4 up-

dated to ⎧⎪⎪⎨⎪⎪⎩

PY ZW (x2, a, x4) x3 = a
0 otherwise

X4X5 → X2X3X4 - again trivial message is passed, h∗X4
(x4) = pX4(x4), update ratio is 1. After

this message is passed, the maximal clique X2X3X4 is live, with potential

ψX2,X3,X4(x2, x3, x4) =
⎧⎪⎪⎨⎪⎪⎩

PY ZW (x2, a, x4) x3 = a
0 otherwise

X2X3X4 →X1X2

ψX2(x2) =∑
x4

ψX2X3X4(x2, a, x4) =∑
x4

pX2,X3,X4(x2, a, x4) = pX2,X3(x2, a)

update ratio is λ(x2) =
PX2,X3

(x2,a)
PX2
(x2) and

ψX1X2(x1, x2) =
PX2,X3(x2, a)

PX2(x2)
PX1,X2(x1, x2)

ψX4(x4) = PX3,X4(a, x4)

ψX4,X5(x4, x5) =
PX3,X4(a, x4)

PX4(x4)
PX4,X5(x4, x5)

2. See Lemma 15.12 page 305.

3. (a) Let T be any non - maximal spanning tree. Let T1 ⊂ T2 ⊂ . . . ⊂ T ′ denote a sequence of

maximal trees constructed through Prim's algorithm. Let the construction be so that a link

from T is chosen whenever possible. Let m be the �rst stage where this is not possible and

let C1 −C2 with separator S be the link actually chosen (C1 ∈ Tm,C2 /∈ Tm; the separator S
C1 −C2 has maximal weight of those not used). In T , there is a path between C1 and C2.

The path contains a link C3−C4 with separator S′ such that C3 ∈ Tm, C4 /∈ Tm. Possibly C2

is C4. Since C3 −C4 could not be chosen, it follows that ∣S′∣ < ∣S∣ and therefore S contains

variables not in S′. Therefore, T does not satisfy the junction tree condition.

(b) Consider the tree of maximal weight constructed by Prim's algorithm and let T1, . . . , Tn = T
denote the successive trees. Assume that T is not a junction tree, then at some stage m,

Tm can be extended to a junction tree T ′ while Tm+1 cannot. Let C1 −C2 with separator S

be the link chosen at this stage; C2 ∈ Tm+1. Since Tm+1 cannot be extended to a junction

tree, the link C1−C2 is not in T
′, so there is a path in T ′ between C1 and C2 not containing

the link C1−C2. This path contains a link C3−C4 with separator S′ such that C3 ∈ Tm and

C4 /∈ Tm. Since T ′ is a junction tree, it follows that S ⊆ S′ and since S was chosen through

178



8.9. ANSWERS 179

Prim's algorithm, it follows that ∣S∣ ≥ ∣S′∣ so that S = S′. Now remove the link C3 −C4 from

T ′ and add the link C1 − C2. The result is a junction tree extending Tm+1, contradicting

the assumption that it cannot be extended to a junction tree.

4. (a) Consider any cycle length n ≥ 4 in the moral graph. If an edge in the cycle is removed

that was added at the moralisation stage, there will be a cycle of length n+ 1. Successively
removing edges from the cycle that were added at the moralisation stage, the graph will

still have a cycle, containing the vee structure from the original graph instead of the parent-

parent edge. Hence, if the moral graph is not triangulated, the skeleton of the original graph

is not a tree, hence the original graph is not singly connected.

(b) The maximal cliques of the moral graph are the variable/parent con�gurations. Suppose

that there are two variables U and V in a separator. If U−V is a parent - parent con�guration

in both maximal cliques being separated, then there is a cycle in the original graph, hence

contradiction. If U − V represents a parent-child con�guration in both maximal cliques

that it is separating, then there is a contradiction; both maximal cliques taken together

form a single complete subset, contradicting the fact that there are two maximal cliques.

If U − V represents a parent-parent con�guration in one maximal clique and a parent-child

con�guration in another, then there is a cycle in the skeleton of the original graph, hence a

contradiction.



180 CHAPTER 8. JUNCTION TREES AND MESSAGE PASSING



Chapter 9

Bayesian Networks in R

9.1 Introduction

It has become clear that R is now the most e�ective and dominant language of statistical computing.

There are excellent packages available in R for Bayesian Networks, for inference using a given Bayesian

Network and for learning the structure of a Bayesian Network. This chapter introduces some of the

software in R available for Bayesian Networks and discusses graphs in R and inference using networks

that have already been de�ned. Parameter learning and structure learning are considered later.

The packages considered are gRain by Søren Højsgaard and bnlearn.

Having installed R and a suitable editor (for example Rstudio), the relevant packages have to be

installed.

gRain and related packages Information for gRain is available on the author's web page:

http://people.math.aau.dk/~sorenh/software/gR/

The package, along with all the supporting packages, has to be installed. As pointed out on the web

page, under `4 Installation', the package uses the packages graph, RBGL and Rgraphviz. These

packages are not on CRAN, but on `bioconductor'. To install these packages, execute

> source("http://bioconductor.org/biocLite.R"); biocLite(c("graph","RBGL","Rgraphviz"))

Warning This can take a long time. Furthermore, there may be some interactive questions requiring

yes/no answers.

After this, gRain may be installed from CRAN in the usual way:

> install.packages("gRain")

The package bnlearn also has some useful inference functions, although its main consideration is

learning. Install it in the usual way:

> install.packages("bnlearn")

181



182 CHAPTER 9. BAYESIAN NETWORKS IN R

9.2 Graphs in R

This section considers the various graphs that appear in graphical modelling and how to render them

in R. In addition to the packages mentioned so far, the package ggm, has some useful functions for

graphical Markov models.

>install.packages("ggm")

Another useful graphics package is igraph

>install.packages("igraph")

These packages should be activated:

> library("bnlearn")

> library("gRain")

> library("ggm")

> library("igraph")

> library(RBGL)

> library("gRbase")

9.2.1 Undirected Graphs

An undirected graph can be created using the ug() function. For example:

> ugraph <- ug(c("a","b"),c("b","c","d"),"e")

> ugraph

A graphNEL graph with undirected edges

Number of Nodes = 5

Number of Edges = 4

(the gRbase package contains the function ug(). It is automatically activated if gRain is activated).

Plotting the graph requires the package Rgraphviz

> library(Rgraphviz)

> plot(ugraph)

The default output of ug() retuns a graphNEL object. The commands result = �igraph� or result

= �matrix� return an igraph or adjacency matrix instead. There is a plot method for igraph objects

in the igraph package.

> uigraph <- ug(~a:b+b:c:d+e, result="igraph")

>library("igraph")

> plot(uigraph,layout=layout.spring)



9.2. GRAPHS IN R 183

a

b

c

d

e

Figure 9.1: Undirected Graph

Edges can be added or deleted quite easily using the addEdge() and removeEdge() commands:

> ugrapha <- addEdge("a","c",ugraph)

> ugraphb <- removeEdge("c","d",ugraph)

The nodes and edges can be recovered quite easily:

> nodes(ugraph)

[1] "a" "b" "c" "d" "e"

> str(edgeList(ugraph))

List of 4

$ : chr [1:2] "a" "b"

$ : chr [1:2] "b" "c"

$ : chr [1:2] "b" "d"

$ : chr [1:2] "c" "d"

The function maxClique() returns the cliques of the graph:

> maxClique(ugraph)

$maxCliques

$maxCliques[[1]]

[1] "b" "c" "d"

$maxCliques[[2]]

[1] "b" "a"

$maxCliques[[3]]

[1] "e"



184 CHAPTER 9. BAYESIAN NETWORKS IN R

ugraph is not complete; this can be seen using the is.complete command:

> is.complete(ugraph)

[1] FALSE

The command separates from the RBGL package, indicates whether or not there is graphical sepa-

ration:

> separates("a","d",c("b","c"),ugraph)

[1] TRUE

This shows that {b, c} separates a and d.

Subgraphs can be obtained by: subGraph. For example:

> usub <- subGraph(c("b","c","d","e"),ugraph)

> plot(usub)

The boundary bd(α) of a vertex α is the set of vertices adjacent to α, adj(α) which is equal (for

an undirected graph) to the set of neighbours. The closure is the boundary together with the node:

cl(α) = bd(α) ∪ {α}.

> adj(ugraph,"c")

$c

[1] "d" "b"

> closure("c",ugraph)

[1] "c" "d" "b"

We can also establish whether or not nodes are simplicial, if the graph is triangulated, and obtain the

connected components.

> is.simplicial("b",ugraph)

[1] FALSE

> simplicialNodes(ugraph)

[1] "a" "c" "d" "e"

> connComp(ugraph)

[[1]]

[1] "a" "b" "c" "d"

[[2]]

[1] "e"

> is.triangulated(ugraph)

[1] TRUE



9.2. GRAPHS IN R 185

If we want to establish if (A,B,S) forms a decomposition where S is complete and separates A and B,

the function is is.decomposition

> is.decomposition("a","d",c("b","c"),ugraph)

[1] FALSE

A perfect elimination sequence can be obtained by mcs (maximum cardinality search):

> mcs(ugraph)

[1] "a" "b" "c" "d" "e"

We can have some control over the ordering:

> mcs(ugraph,root=c("d","c","a"))

[1] "d" "c" "b" "a" "e"

It is convenient if the cliques satisfy running intersection property Cj ∩ (C1 ∪ . . . ∪Cj−1) ⊆ Ci for some

i < j. De�ne Sj = Cj ∩ (C1 ∪ . . .∪Cj−1) and Rj = Cj/Sj with S1 = ϕ. Any clique Ci where Sj ⊂ Ci with

i < j is a possible parent of Ci. The rip function returns such a list if the graph is triangulated.

> rip(ugraph)

cliques

1 : b a

2 : b c d

3 : e

separators

1 :

2 : b

3 :

parents

1 : 0

2 : 1

3 : 0

Graphs may be triangulated using the triangulate function:

> uguntriang <- ug(~a:b:c+c:d+d:e+a:e)

> is.triangulated(uguntriang)

[1] FALSE

> plot(uguntriang)

> utriang <- triangulate(uguntriang)

> is.triangulated(utriang)

[1] TRUE

> plot(utriang)



186 CHAPTER 9. BAYESIAN NETWORKS IN R

9.2.2 Directed Acyclic Graphs

A DAG may be created using the dag() function. It can be used in several ways. For example:

> dgraph <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)

> plot(dgraph)

a

b
c

d

e

g
f

Figure 9.2: Directed Acyclic Graph

Nodes and edges may be listed as follows:

> nodes(dgraph)

[1] "a" "b" "c" "d" "e" "g" "f"

> str(edges(dgraph))

List of 7

$ a: chr [1:3] "b" "c" "e"

$ b: chr "c"

$ c: chr "d"

$ d: chr(0)

$ e: chr "d"

$ g: chr(0)

$ f: chr "g"

edges gives a list of the children for each node. Alternatively, the edges are listed by:

> str(edgeList(dgraph))

List of 7

$ : chr [1:2] "a" "b"

$ : chr [1:2] "a" "c"

$ : chr [1:2] "a" "e"



9.2. GRAPHS IN R 187

$ : chr [1:2] "b" "c"

$ : chr [1:2] "c" "d"

$ : chr [1:2] "e" "d"

$ : chr [1:2] "f" "g"

The vpar() function returns a list with an element for each node together with its parents.

> vpardgraph <- vpar(dgraph)

> vpardgraph$c

[1] "c" "a" "b"

The parents, chilren, ancestral set an(A) of a set A together with all its ancestors can be obtained by:

> parents("d",dgraph)

[1] "c" "e"

> children("c",dgraph)

[1] "d"

> ancestralSet(c("b","e"),dgraph)

[1] "a" "b" "e"

> ag <- ancestralGraph(c("b","e"),dgraph)

> plot(ag)

a

b e

Figure 9.3: Directed Acyclic Graph

The moralize function moralises the graph:

> moral <- moralize(dgraph)

> plot(moral)

D-separation can be obtained by the dSep function from the ggm package.

> dSep(as(dgraph,"matrix"),"c","e","a")

[1] TRUE



188 CHAPTER 9. BAYESIAN NETWORKS IN R

a
b

c
d

e

g

f

Figure 9.4: Moralised Graph

9.2.3 Mixed Graphs

Chain graphs, of which essential graphs are a subset, are mixed. They are represented in the graph

and igraph package as directed graphs with multiple edges. A convenient way of de�ning them is to

use adjacency matrices.

> adjm<-matrix(c(0,1,1,0,1,0,0,1,1,0,0,0,1,1,1,0),nrow=4)

> rownames(adjm)<-colnames(adjm)<-letters[1:4]

> adjm

a b c d

a 0 1 1 1

b 1 0 0 1

c 1 0 0 1

d 0 1 0 0

This matrix can be used to create a graphNEL object:

> gG<-as(adjm,"graphNEL")

> plot(gG,"neato")

The graph is shown in Figure 9.5.

Note that Rgraphviz interprets symmetric entries as double-headed arrows. It does not distinguish

between bi-directed and undirected edges. The same is true if the graph is treated as an igraph object.

The graph from igraph is obtained as follows:

> gG1<-as(adjm,"igraph")

> plot(gG1,layout=layout.spring)



9.3. BAYESIAN NETWORKS 189

a
b

c

d

Figure 9.5: Mixed Graph

Is it a Chain Graph? The is.chaingraph() function from the lcd package determines whether a

mixed graph is a chain graph. The input is an adjacency matrix.

> install.packages("lcd")

> library(lcd)

> is.chaingraph(as(gG1,"matrix"))

$result

[1] FALSE

$vert.order

NULL

$chain.size

NULL

The graph is not a chain graph; a and d are in the same chain component and therefore there should

not be a directed edge a↦ d.

9.3 Bayesian Networks

9.3.1 Specifying the Conditional Probability Potentials

Consider the `Asia' example of Lauritzen et. al. The conditional probability potentials may be speci�ed

as follows:

> library("gRain", lib.loc="~/R/x86_64-redhat-linux-gnu-library/3.1")

Loading required package: gRbase

> yn <- c("yes","no")



190 CHAPTER 9. BAYESIAN NETWORKS IN R

> a<-cptable(~asia, values=c(1,99),levels=yn)

> t.a<-cptable(~tub+asia,values=c(5,95,1,99),levels=yn)

> s<-cptable(~smoke, values=c(5,5),levels=yn)

> l.s<-cptable(~lung+smoke,values=c(1,9,1,99),levels=yn)

> b.s<-cptable(~bronc+smoke,values=c(6,4,3,7),levels=yn)

> e.lt<-cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)

> x.e<-cptable(~xray+either,values=c(98,2,5,95),levels=yn)

> d.be<-cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels = yn)

The + operator could be considered slightly misleading. There are other ways to enter the conditional

probability potentials:

> t.a<-cptable(~tub|asia,values=c(5,95,1,99),levels=yn)

> t.a<-cptable(c("tub","asia"),values=c(5,95,1,99),levels=yn)

There are also special functions ortable() and andtable. For example, e.lt() could be entered by:

> e.lt <-ortable(~either+lung+tub, levels=yn)

9.3.2 Building the Network

A network is created with the function grain(), which returns an object of class grain:

> plist<-compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

> grn1<-grain(plist)

> summary(grn1)

Independence network: Compiled: FALSE Propagated: FALSE

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

> plot(grn1)

The plot is shown in Figure 9.6. The �ctitious situation being modelled is the following: you return

from a visit to Asia and �nd that you have a cough. A visit to Asia increases the chances of catching

tuberculosis. Meanwhile, smoking causes both lung cancer and bronchitis. Tuberculosis and Lung

cancer both give the same results for an x-ray. Bronchitis causes dyspnoea (shortness of breath); both

lung cancer and tuberculosis have equal chances of causing dyspnoea.

9.3.3 Compilation - Finding the Clique Potentials

The network has to be compiled and propagated before queries can be made.

> grn1c<-compile(grn1)

> summary(grn1c)

Independence network: Compiled: TRUE Propagated: FALSE



9.3. BAYESIAN NETWORKS 191

asia

tub

smoke

lung

bronceither

xray dysp

Figure 9.6: Asia Network

Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...

Number of cliques: 6

Maximal clique size: 3

Maximal state space in cliques: 8

The various steps of compile can be carried out separately;

> g<-grn1$dag

> mg<-moralize(g)

> tmg<-triangulate(mg)

> rip(tmg)

cliques

1 : asia tub

2 : either lung tub

3 : either lung bronc

4 : smoke lung bronc

5 : either dysp bronc

6 : either xray

separators

1 :

2 : tub

3 : either lung

4 : lung bronc

5 : either bronc

6 : either

parents

1 : 0



192 CHAPTER 9. BAYESIAN NETWORKS IN R

2 : 1

3 : 2

4 : 3

5 : 3

6 : 5

> junctree<-rip(tmg)

> plot(junctree)

The plot is shown in Figure 9.7.

1
2
3

4 5
6

Figure 9.7: Junction Tree for Asia Network

9.3.4 Absorbing Evidence and Answering Queries

Evidence may be entered as follows: for example, suppose we have evidence that someone has visited

asia and has dyspnoea. This is entered as follows:

> grn1c.ev<-

+ setFinding(grn1c,nodes=c("asia","dysp"),states=c("yes","yes"))

This creates a new grain object. The grain objects with (grn1c.ev) and without (gran1c) can be

queried to give marginal probabilities:

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="marginal")

$lung

lung

yes no

0.09952515 0.90047485



9.3. BAYESIAN NETWORKS 193

$bronc

bronc

yes no

0.8114021 0.1885979

> querygrain(grn1c,nodes=c("lung","bronc"),type="marginal")

$lung

lung

yes no

0.055 0.945

$bronc

bronc

yes no

0.45 0.55

The evidence in a grain object can be retrieved with the getFinding() function, while the probability

of observing the evidence is obtained using the pFinding() function:

> getFinding(grn1c.ev)

Finding:

asia: yes

dysp: yes

Pr(Finding)= 0.004501375

> pFinding(grn1c.ev)

[1] 0.004501375

Joint and conditional distributions may be computed as follows:

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="joint")

bronc

lung yes no

yes 0.06298076 0.03654439

no 0.74842132 0.15205354

> querygrain(grn1c.ev,nodes=c("lung","bronc"),type="conditional")

bronc

lung yes no

yes 0.07761966 0.1937688

no 0.92238034 0.8062312

These are both conditioned on the evidence; the former the joint distribution of lung and bronc

conditioned on the evidence, while the latter is the conditional distribution of lung given bronc and

the evidence.



194 CHAPTER 9. BAYESIAN NETWORKS IN R

If it is known beforehand that a speci�c subset U of the variables will be of interest, it is computa-

tionally faster to ensure that they are in the same clique. Consider the grain objects grn1c2, where

variables of interest are forced into the root clique:

> grn1c2<-compile(grn1,root=c("lung","bronc","tub"),propagate=TRUE)

> grn1c2.ev<-setFinding(grn1c2,nodes=c("asia","dysp"),states=c("yes","yes"))

and now compare the computing times:

> system.time({for (i in 1:50)

+ querygrain(grn1c.ev,nodes=c("lung","bronc","tub"),type="joint")})

user system elapsed

1.275 0.004 1.279

> system.time({for (i in 1:50)

+ querygrain(grn1c2.ev,nodes=c("lung","bronc","tub"),type="joint")})

user system elapsed

0.012 0.000 0.013

The second method is much faster.

Evidence can be entered incrementally by calling setFinding() repeatedly. Set propagate=FALSE

while evidence is being entered and call propagate() at the end:

> grn1c.ev<-setFinding(grn1c,nodes="asia",states="yes",propagate="FALSE")

> grn1c.ev<-setFinding(grn1c.ev,nodes="dysp",states="yes",propagate="FALSE")

> grn1c.ev<-propagate(grn1c.ev)

Evidence can be retracted (removed) using the retractFinding() function:

> grn1c.ev<-retractFinding(grn1c.ev,nodes="asia")

> getFinding(grn1c.ev)

Finding:

dysp: yes

Pr(Finding)= 0.4359706

Omitting nodes implies that all the evidence is retracted:

> grn1c.ev<-retractFinding(grn1c.ev)

> getFinding(grn1c.ev)

NULL



9.3. BAYESIAN NETWORKS 195

9.3.5 Building a Network from Data

For an n × d data matrix x which represents n independent instantiations of d variables (X1, . . . ,Xd),
the conditional probability potentials can be estimated. Recall that g is the DAG for the `Asia' network.

The input is: a data frame and a DAG where the nodes are the names of the variables. To avoid 0s

in the CPPs, a small smoothing number is added to all the frequencies (which are then normalised to

ensure that they are probabilities). This can be, for example, 0.1.

> plot(g)

> simdagchest<-grain(g,data=chestSim500)

extractCPT - data.frame

> simdagchest<-compile(simdagchest,propagate=TRUE,smooth=0.1)

> querygrain(simdagchest,nodes=c("lung","bronc"),type="marginal")

$lung

lung

yes no

0.046 0.954

$bronc

bronc

yes no

0.454 0.546

Alternatively, a grain object may be built from an undirected triangulated graph. Recall that tmg is

g which has been moralised and then triangulated. Then

> simugchest<-grain(tmg,data=chestSim500,smooth=0.1)

extractCPT - data.frame

> simugchest<-compile(simugchest,propagate=TRUE)

> plot(simugchest)

9.3.6 Simulation using a Network

To simulate data from the Asia network, with the evidence that a person has visited Asia and has

returned with dyspnoea, the function simulate() may be used:

> simulate(grn1c.ev,nsim=5)

asia tub smoke lung bronc either xray dysp

1 yes yes no no no yes yes yes

2 yes no yes no yes no no yes

3 yes no yes no yes no no yes

4 yes no yes no yes no no yes

5 yes no yes no yes no no yes



196 CHAPTER 9. BAYESIAN NETWORKS IN R

The xtabs() function may be used to obtain (approximately) the joint distribution of lung and bronc

conditioned on the �nding:

> xtabs(~lung+bronc, data=simulate(grn1c.ev,nsim=1000))/1000

bronc

lung yes no

yes 0.064 0.028

no 0.757 0.151

9.3.7 Prediction

The predict() function is used for prediction. The default is type = �class�, which gives the class

with the highest probability, given the observed values of the predictors. Firstly, we generate some

data:

> mydata<-simulate(grn1c.ev,nsim=5)

> mydata

asia tub smoke lung bronc either xray dysp

1 yes no yes no yes no no yes

2 yes no no no yes no no yes

3 yes no no no yes no no yes

4 yes no yes no yes no no yes

5 yes no no no no no no yes

then we try to predict the most probable con�guration of lung and the most probable con�guration

of bronc, given all the others.

> predict(grn1c,response=c("lung","bronc"),newdata=mydata,

+ predictors=c("smoke","asia","tub","dysp","xray"),type="class")

$pred

$pred$lung

[1] "no" "no" "no" "no" "no"

$pred$bronc

[1] "yes" "yes" "yes" "yes" "yes"

$pFinding

[1] 0.002123915 0.001388412 0.001388412 0.002123915 0.001388412

These are read as follows: the variables lung and bronc are treated individually; this does not give the

joint most probable con�guration. The entire conditional distribution of lung and bronc is obtained

as follows:



9.3. BAYESIAN NETWORKS 197

> predict(grn1c,response=c("lung","bronc"),newdata=mydata,

+ predictors=c("smoke","asia","tub","dysp","xray"),type="dist")

$pred

$pred$lung

yes no

[1,] 0.0036677551 0.9963322

[2,] 0.0005200187 0.9994800

[3,] 0.0005200187 0.9994800

[4,] 0.0036677551 0.9963322

[5,] 0.0005200187 0.9994800

$pred$bronc

yes no

[1,] 0.9221067 0.07789335

[2,] 0.7739757 0.22602430

[3,] 0.7739757 0.22602430

[4,] 0.9221067 0.07789335

[5,] 0.7739757 0.22602430

$pFinding

[1] 0.002123915 0.001388412 0.001388412 0.002123915 0.001388412

9.3.8 Buidling a Bayesian Network using bnlearn

Inference may also be carried out using the bnlearn package. For illustration, consider the gene

expression analysis from the paper by Sachs et. al.

Sachs K.; Perez, O.; Pe'er, D.; Lau�enburger, D.A.; Nolan, G.P. (2005) Causal Protein-Signalling

Networks derived from Multi-parameter Single-cell Data Science 308 (5721): 523-529

The relevant data is found in sachs.interventional.txt in the data directory of the course web

page:

http://www.mimuw.edu.pl/~noble/courses/BayesianNetworks/data/

Copy the �le onto your local directory, then load it into R.

>library(bnlearn)

>library(gRain)

> sachs.interventional <- read.table("~/data/sachs.interventional.txt", header=TRUE,

colClasses = "factor")

> isachs<-sachs.interventional

It is important to have colClasses = �factor�. The Bayesian Network is constructed as follows:



198 CHAPTER 9. BAYESIAN NETWORKS IN R

> val.str=paste("[PKC][PKA|PKC][praf|PKC:PKA]",

+ "[pmek|PKC:PKA:praf][p44.42|pmek:PKA]",

+ "[pakts473|p44.42:PKA][P38|PKC:PKA]",

+ "[pjnk|PKC:PKA][plcg][PIP3|plcg]",

+ "[PIP2|plcg:PIP3]")

> val=model2network(val.str)

> isachs=isachs[, 1:11]

> for(i in names(isachs))

+ levels(isachs[, i]) = c("LOW","AVERAGE","HIGH")

> fitted = bn.fit(val, isachs, method = "bayes")

The variable val contains the DAG for the Bayesian network. Given the structure, bn.fit estimates

the conditional probabilities. There are several methods for doing this, but the Conditional Probability

Potentials simply contain the estimates from data.

Once the BN (DAG and CPPs) has been speci�ed, we construct a junction tree for inference. The

junction tree algorithm is provided by the gRain package.

> jtree <- compile(as.grain(fitted))

Now suppose that we have hard evidence or a �nding that node p44.42 is in state �LOW�. Then this is

inserted quite simply by:

> jprop <- setFinding(jtree, nodes = "p44.42",

+ states="LOW")

Let us now check the marginal distribution of the node pakts473 with and without the evidence.

> querygrain(jtree, nodes="pakts473")$pakts473

pakts473

LOW AVERAGE HIGH

0.60893407 0.31041282 0.08065311

The conditional probability, conditioned on the evidence is:

> querygrain(jprop, nodes="pakts473")$pakts473

pakts473

LOW AVERAGE HIGH

0.665161776 0.333333333 0.001504891

The maximum a posteriori states may be found by �nding the largest element of the target distribution:

> names(which.max(querygrain(jprop,nodes=c("PKA"))$PKA))

[1] "LOW"



9.3. BAYESIAN NETWORKS 199

The cpdist and cpquery commands from bnlearn do the same thing:

> particles <- cpdist(fitted, nodes="pakts473",evidence=(p44.42=="LOW"))

> prop.table(table(particles))

particles

LOW AVERAGE HIGH

0.669962 0.330038 0.000000

The cpquery command returns to probability of a speci�c event which is described by another logical

expression. For example:

> cpquery(fitted,event=(pakts473=="LOW")&(PKA != "HIGH"),

+ evidence = (p44.42 == "LOW")|(praf=="LOW"))

[1] 0.5696073



200 CHAPTER 9. BAYESIAN NETWORKS IN R

9.4 Exercises

1. Professor Noddy is in his o�ce when he reeives the news that the burglar alarm in his home has

gone o�. Convinced that a burglar has broken in, he starts to drive home. But, on his way, he

hears on the radio that there has been a minor earth tremor in the area. Since an earth tremor

can set o� a burglar alarm, he therefore returns to his o�ce.

(a) Construct the Bayesian network associated with the situation.

(b) Suppose that the variables are listed as R for the radio broad ast (y/n), A for the alarm

(y/n), B for the burglary (y/n) and E for the earthquake (y/n), where y stands for `yes'

and n stands for `no'. Suppose that the conditional probability potentials associated with

the Bayesian Network are

PR∣E =
E/R y n

y 0.99 0.01

n 0.05 0.95

PA∣B,E(y∣., .) =
E/B y n

y 0.98 0.95

n 0.95 0.03

PB =
y n

0.01 0.99

PE =
y n

0.001 0.999

Find

PB∣A(y∣y), PB∣A(y∣y), PB∣A,R(y∣y, y)

2. You have two CPPs from a Bayesian Network:

PB∣A =
A/B b1 b2 b3 b4

a1 0.6 0.1 0.2 0.1

a2 0.2 0.5 0.1 0.2

and

PC∣B =

B/C c1 c2

b1 0.8 0.2

b2 0.8 0.2

b3 0.2 0.8

b4 0.2 0.8

Establish whether or not A ⊥ C.



9.4. EXERCISES 201

C

����

G

tt
�� ��

F T S

Figure 9.8: Sore throat model

3. Consider the Bayesian Network in Figure 9.8. You have a sore throat (T). There are two possible

causes; either you have a cold (C), or else you have Green Monkey Disease (G). A symptom of

GMD is spots (S).

The conditional probabilities are:

PF ∣C,G(y∣., .) =
G/C y n

y 0.990 0.700

n 0.800 0.200

PT ∣C,G(y∣., .) =
G/C y n

y 0.999 0.900

n 0.800 0.300

PS∣G(y∣.) =
y n

0.010 0.001
PC(y) = 0.20 PG(y) = 0.10

(a) Let E = (F,T,S) and enter the evidence e = (n,n, y). That is, {F = n,T = n,S = y}.

(b) Compute the updated joint probability distribution of C,G given the evidence, PC,G∣E(., .∣e).

(c) Compute the most probable explanation of the evidence e. This is the con�guration of the

remaining variables V /E that gives the largest value for PE∣V /E . It therefore also maximises

PV /E∣E(.∣e).

(d) Consider a vector of evidence variables E = (E1, . . . ,Em), instantiated as e = (e1, . . . , em).
The con�ict measure of the evidence is de�ned as:

conf(e) = log2
∏m

j=1 PEj(ej)
PE(e)

.

If the evidence variables are independent of each other, then the con�ict measure will clearly

be zero. If the pieces of evidence corroborate each other; for example PE1∣E2
(e1∣e2) > PE1(e1)

so that given E2 = e2, the event E1 = e1 is more likely than the unconditional event, the

con�ict ratio will be negative. If the pieces of evidence con�ict, then the con�ict measure

will be positive.

Compute the con�ict measure for the evidence in this example.



202 CHAPTER 9. BAYESIAN NETWORKS IN R

4. Now consider the sachs.interventional.txt data in the notes. Find the moral graph, trian-

gulate it and construct a junction tree.

For the network with the parameters given in the notes from the sachs.interventional.txt

data, note that PKA is a parent of all the nodes in the praf -> pmek -> p44.42 -> pakts473

chain. Use the junction tree algorithm to update the probabilities over these nodes when we have

evidence that PKA is �LOW� and PKA is �HIGH�.

Use any other techniques discussed on this network.



Chapter 10

Conditional Gaussian variables

10.1 Conditional Gaussian Distributions

One very important family of distributions, that is accommodated by standard Bayesian network

software is the family of conditional Gaussian distributions.

Let X = (X∆,XΓ) where X∆ is a discrete random vector and XΓ is a continuous random vector.

Let ∆ denote the indexing set for X∆ and Γ the indexing set for XΓ variables. Let ∣∆∣ denote the

number of variables in ∆ and ∣Γ∣ denote the number of variables in Γ. Random vectors will be taken

as row vectors. The state space is

X = X1 × . . . ×X∣∆∣ ×X∣∆∣+1 × . . . ×X∣∆∣+∣Γ∣,

where Xj denotes the state space for variables j. The following notation will also be used;

X∆ = X1 × . . . ×X∣∆∣, XΓ = X∣∆∣+1 × . . . ×X∣∆∣+∣Γ∣,

X = X∆ ×XΓ.

Attention is restricted to the case where the continuous variables, conditioned on the discrete variables,

have Gaussian distribution, so XΓ = R∣Γ∣. For the discrete variables,

Xj = {i(1)j , . . . , i
(kj)
j }.

A particular con�guration i ∈ X∆ is called a cell.

The following notation will be used to indicate that a random vector X1 conditioned on X2 = x2 has

distribution F :

X1 ∣X2 = x2 ∼ F.

The moment generating function is a useful for the de�nition of a multivariate normal distribution.

203



204 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

De�nition 10.1 (Moment Generating Function). Let X = (X1, . . . ,Xd) be a random vector. Its

moment generating function is the function MX ∶ Rd → R is de�ned as

MX(p1, . . . , pd) = E
⎡⎢⎢⎢⎢⎣
exp

⎧⎪⎪⎨⎪⎪⎩

d

∑
j=1

pjXj

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
.

The moment generating function is useful, because it uniquely determines the distribution of a ran-

dom vector X. That is, a joint probability determines a unique moment generating function, and

the moment generating function uniquely determines a corresponding joint probability. The moment

generating function is essentially a Laplace transform.

A multivariate normal distribution is de�ned as follows:

De�nition 10.2 (Multivariate Normal Distribution). A random vector X = (X1, . . . ,Xd) is said to

have a multivariate normal distribution, written X ∼ N(µ,C), if its moment generating function is of

the form

ϕ(p1, . . . , pd) = exp
⎧⎪⎪⎨⎪⎪⎩

p

∑
j=1

pjµj +
1

2
∑
jk

pjpkCjk

⎫⎪⎪⎬⎪⎪⎭
, p ∈ Rd.

If a random vector X ∼ N(µ,C), then E[Xi] = µi for each i = 1, . . . , n and Cov(Xi,Xj) = Cij for each

(i, j). If C is positive de�nite, then the joint density function of X = (X1, . . . ,Xd) is given by

πX1,...,Xd
(x1, . . . , xd) =

1

(2π)d/2∣C ∣1/2
exp{−1

2
(x − µ)C−1(x − µ)} , x ∈ Rd,

where x = (x1, . . . , xd) and µ = (µ1, . . . , µd) are row vectors and ∣C ∣ denotes the determinant of C.

The conditional Gaussian distribution, or CG distribution may now be de�ned.

De�nition 10.3 (CG Distribution). A collection of random variables X = (X∆,XΓ) is said to follow

a CG distribution if for each i ∈ X∆,

XΓ∣{X∆ = i} ∼ N (µ(i),C(i)) . (10.1)

The notation for such a Conditional Gaussian distribution is

X ∼ CG(∣∆∣, ∣Γ∣).

If the numbers of discrete and continuous random variables are, respectively, ∣∆∣ = p and ∣Γ∣ = q, then
X ∼ CG(p, q).

If C−1 is well de�ned, then the conditional density function of XΓ conditioned on X∆ = i is

πXΓ∣X∆
(x∣i) = 1

(2π)q/2
√
detC(i)

e−
1
2
(x−µ(i))C(i)−1(x−µ(i))t , (10.2)

for all i ∈ X∆ such that



10.1. CONDITIONAL GAUSSIAN DISTRIBUTIONS 205

PX∆
(i) > 0.

For this discussion, it is assumed that PX∆
(i) > 0 for each i ∈ X∆.

Directly from Equation (10.2),

PX∆
(i)πXΓ∣X∆

(x∣i) = χ(i)eg(i)+xh(i)−
1
2
xK(i)xt

(10.3)

where χ(i) = 1 if PX∆
(i) > 0 and 0 if PX∆

(i) = 0,

h(i) = C(i)−1µ(i)t (10.4)

K(i) = C(i)−1 (10.5)

and

g(i) = logPX∆
(i) + 1

2
(log detK(i) − ∣Γ∣ log 2π − µ(i)K(i)µ(i)t) . (10.6)

From Equation (10.2), it is clear that conditioning on the discrete variables gives a family of multivariate

normal distributions. The canonical parameters of the Gaussian distribution are de�ned as (h(i),K(i))
and the mean parameters as (µ(i),C(i)). Conditioned on X∆ = i,

E [XΓ∣X∆ = i] = µ(i)

and

E [(XΓ − µ(i)) (XΓ − µ(i))
t ∣X∆ = i] = C(i)

(where the random vectors are taken to be row vectors).

Parametrisation of the CG Distribution The canonical parameters for the joint distribution, de-

�ned by the pair of functions (PX∆
, πXΓ∣X∆

) are de�ned as (g, h,K), where the parameters (h(i),K(i))
are de�ned by Equations (10.4) and (10.5) respectively and g(i) is de�ned by Equation (10.6).

Similarly, the mean parameters are de�ned as (P, µ,C), where (µ(i),C(i)) are the mean parameters

of the conditional distribution and P(i) is the probability function over the discrete variables.

10.1.1 Some Results on Marginalization

The aim will be to factorise the CG distribution along an appropriate junction tree, so that evidence

can be inserted and propagated. The di�culty arises that if a CG distribution is marginalised over

some of its discrete variables, the resulting distribution is no longer CG. For e�cient computation

along a junction tree, it is desirable if the CG property can be preserved as far as possible for the

marginal distributions on the cliques and separators. The following results give properties that help

determine appropriate factorisations of the distribution.

Proposition 10.4. Let X have a CG distribution. Let V =∆ ∪ Γ denote the indexing set. Let A and

B be two disjoint sets such that V = A ∪B, then the conditional distribution of XA given XB = xB is

CG.



206 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

Proof The following calculation shows that XA∩Γ ∣ {XB = xB} ∪ {XA∩∆ = xA∩∆} has a multivariate

Gaussian distribution. Firstly, it is clear that

πXA∩Γ∣XA∩∆,XB
(xA∩Γ ∣ xA∩∆, xB) = πXA∩Γ∣X∆,XB∩Γ

(xA∩Γ ∣ x∆, xB∩Γ) .

The conditional density function on the right hand side is obtained by conditioning the distribution

of XA∩Γ ∣ X∆ = x∆ on XB∩Γ = xB∩Γ. Since (XA∩Γ,XB∩Γ) ∣ X∆ = x∆ has a multivariate Gaussian

distribution, and the conditional distribution of a multivariate Gaussian, conditioning on some of

its component variables is again multivariate Gaussian, it follows that the conditional distribution is

multivariate. The proof is complete.

If the variables to be marginalised are discrete, then complicated mixture distributions arise. The

following theorem gives a situation where the marginalisation yields a CG distribution.

Proposition 10.5. Let A ⊆ V denote a subset of the indexing set for the variables. If X is CG and

B = V ∖A (namely, B is the set of all indices in V that are not in A) and B ⊆∆ and

XB ⊥XΓ ∣X∆∖B,

then XA ∼ CG.

Proof Clearly, from the de�nition of a CG distribution, it is necessary and su�cient to show that

XA∩Γ ∣X∆∖B ∼ N∣A∩Γ∣.

(multivariate normal, with dimension ∣A∩Γ∣). The proof requires the following identity: If XB ⊥XΓ ∣
X∆∖B, then

πXΓ∣X∆
(xΓ∣x∆) = πXΓ∣XB ,X∆/B

(xΓ∣xB, x∆/B) = πXΓ∣X∆/B
(xΓ∣x∆/B).

This is a straightforward consequence of the de�nition of conditional independence. Recall that, from

the de�nition of a CG distribution, πXΓ∣X∆
(xΓ ∣ x∆) is a multivariate normal distribution. Therefore

the conditional distribution of XΓ conditioned on X∆/B is multivariate Gaussian, therefore the condi-

tional distribution of XΓ∩A conditioned on X∆/B is multivariate Gaussian. The proof is complete.

10.1.2 CG Regression

An important special case of CG distributions are those that follow CG regression. The requirement

here is that the continuous variables depend linearly on their continuous parents. This is the situation

that is treated by most softwares with a facility for CG distributions.

De�nition 10.6 (CG Regression). Let Z = (Z1, . . . , Zs) be a continuous random (row) vector and let

I be a discrete random (row) vector with probability function pI . Let I denote the state space for I. If

a random (row) vector Y = (Y1, . . . , Yr) has the property that

Y ∣ {I = i,Z = z} ∼ Nr (A(i) + zB(i),C(i)) ,



10.1. CONDITIONAL GAUSSIAN DISTRIBUTIONS 207

where for each i ∈ I

� A(i) is a 1 × r row vector for each i ∈ I,

� B(i) is an s × r matrix,

� C(i) is a positive semi-de�nite symmetric matrix,

then Y is said to follow a CG regression.

Let X denote a random vector, containing both discrete and continuous variables, which have been

ordered so that the probability distribution may be factorised along a Directed Acyclic Graph G =
(V,D). Let Xγ be a continuous variable, with parent set Π(γ). Suppose that X has a CG distribution

that satis�es the additional CG regression requirement. Then the conditional distribution for Xγ ,

conditioned on its parent nodes Π(γ) is the CG regression

Xγ ∣ {Πd (γ) = i,Πc (γ) = z} ∼ N (α(i) + zβ, σ2(i)) ,

where the discrete variables Πd(γ) of Π(γ) take values i and the continuous variables Πc(γ) of Π(γ)
take values z. Here α(i) is a number, σ2(i) = V(Xγ ∣Π(γ)) and β is a column vector with dimension

equal to the dimension of the continuous component z so that zβ is a well de�ned inner product. Thus,

the conditional density is Gaussian; ϕ(i, z, xγ), equal to

ϕ(i, z, xγ) =
1√

2πσ(i)
exp

⎧⎪⎪⎨⎪⎪⎩
−
(xγ − α(i) + zβ)2

2σ2(i)

⎫⎪⎪⎬⎪⎪⎭
. (10.7)

Example 10.7.

This example is taken from [84]. The emissions from a waste incinerator di�er because of compositional

di�erences in incoming waste. Another important factor is the way in which the waste is burnt, which

can be monitored by measuring the concentration of carbon dioxide in the emissions. The e�ciency

of the �lter depends on its technical state and also on the amount and composition of the waste. The

emission of heavy metals depends both on the concentration of metals in the incoming waste and the

emission of dust particles in general. The emission of dust is monitored by measuring the penetration

of light.

The situation may be modelled using a directed acyclic marked graph (DAMG) in Figure 10.1;

marked because there are two types of nodes. In this case, these are discrete and continuous. In

HUGIN, nodes with a double circle are continuous nodes. The categorical variables are F : �lter

state, W : waste type, B method of burning. The continuous variables are Min: metals in the waste,

Mout: metals emitted, E: �lter e�ciency, D: Dust emission, C: carbon dioxide concentration in

emission and L: light penetration. The set ∆ = {F,W,B} is the set of discrete variables, while

Γ = {C,D,E,L,Min,Mout} is the set of continuous variables.
If HUGIN is being used, then inserting the graph, using double circles to indicate `Gaussian' nodes,

the conditional probability distributions can be inserted. For a conditional Gaussian distribution, the



208 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

W //

�� !!

Min
// Mout

F // E // D

<<

##

B //

==

C L

Figure 10.1: Marked Graph

continuous nodes cannot have discrete nodes as descendants. For a continuous node, HUGIN requests

the mean and variance, the parameters to describe a CG regression.

10.2 The Junction Tree for Conditional Gaussian Distributions

When a CG distribution is arranged as a directed acyclic marked graph, it is done in such a way that

no continuous nodes have discrete children. The assumption is that for a continuous variable X, with

parents Π(X) = (Πd(X),Πc(X)), where Πd(X) are the discrete parents and Πc(X) are the continuous
parents,

X ∣{Πd(X) = y,Πc(X) = z) ∼ N(α(y) + (β(y), z), γ(y)}.

This section describes a junction tree approach due to Lauritzen [81] (1992), for �nding the updated

conditional Gaussian distribution when hard evidence is inserted on some of the nodes. The problem

here is that while marginalising a CG distribution over one of its continuous variables gives another CG

distribution, marginalising a CG distribution over one of its discrete variables does not necessarily give

a CG distribution. Therefore, care has to be taken in the construction of the junction tree. Ideally, the

junction tree should be constructed so that the marginal distributions over the cliques and separators

are CG distributions, to enable appropriate marginalisations to be made. This requires some additional

restrictions on the construction of the cliques and separators.

De�nition 10.8 (Marked Graph). A marked graph is a graph where there are several types of nodes;

the type of the node is the mark.

In the context of directed acyclic graphs for conditional Gaussian distributions, there are two markings;

discrete and continuous, for the types of variables represented by each type of node.

De�nition 10.9 (GG Decomposition). A triple (A,B,S) of disjoint subsets of the node set V of an

undirected marked graph G is said to form a CG decomposition of G if V = A∪B ∪S and the following

three conditions hold:



10.2. THE JUNCTION TREE FOR CONDITIONAL GAUSSIAN DISTRIBUTIONS 209

1. S separates A from B,

2. S is a complete subset of V ,

3. Either S ⊆∆, or B ⊆ Γ or both.

When this holds, (A,B,S) is said to CG-decompose G into the components GA∪S and GB∪S.

If only the �rst two conditions hold, then (A,B,S) is said to form a decomposition. Thus, a

decomposition ignores the markings of the graph, while a CG decomposition takes them into account.

The logic is as follows: if B contains only continuous nodes with multivariate Gaussian distribution,

then the marginal over the separator will again be multivariate Gaussian. If the separator contains

only discrete nodes and B both continuous and discrete, then marginalising �rst over all the Gaussian

nodes in B and then marginalising over the discrete nodes in B not in the separator gives the exact

probability distribution over the separator.

De�nition 10.10 (CG Decomposable). An undirected marked graph is said to be CG decomposable

if it is complete, or if there exists a CG decomposition (A,B,S), where both A and B are non empty,

into CG decomposable sub-graphs GA∪S , and GB∪S.

Decomposable unmarked graphs are triangulated; any cycle of length 4 or more has a chord. CG

decomposable marked graphs are further characterised by requiring that if there is a path between two

discrete variable containing only continuous variables, then there is an edge between the two discrete

variables.

Proposition 10.11. For an undirected marked graph G, the following are equivalent:

1. G is CG decomposable.

2. G is triangulated, and for any path (δ1, α1, . . . , αn, δ2) between two discrete nodes (δ1, δ2) where
(α1, . . . , αn) are all continuous, δ1 and δ2 are neighbours.

3. For any α and β in G, every minimal (α,β) separator is complete. If both α and β are discrete,

then their minimal separator contains only discrete nodes.

Proof of 1 ⇒ 2 The proof, as before for unmarked graphs, is by induction. The inductive hypothesis

is: All undirected CG decomposable graphs with n or fewer nodes are triangulated and satisfying the

conditions of statement 2.

This is clearly true for a graph on one node.

Let G be a CG decomposable graph on n + 1 nodes.

Either G is complete, in which case the properties of 2 clearly follow,

Or There exist sets A, B, S, where V = A ∪B ∪ S, where either B ⊆ Γ or S ⊆ ∆ or both, and such

that GA∪S and GB∪S are CG decomposable. Then any cycle of length 4 without a chord must pass

through both A and B. By decomposability, S separates A from B. Therefore the cycle must pass

through S at least twice. Since S is complete, the cycle will therefore have a chord. Since GA∪S and



210 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

GB∪S are triangulated, it follows that G is also triangulated. If the nodes of S are discrete, it follows

that any path between two discrete variable passing through S satis�es the condition of statement 2.

If B ⊆ Γ, then since all paths in GA∪S and all paths in GB∪S satisfy the condition of statement 2, it is

clear that all paths passing through S will also satisfy the condition of statement 2. It follows that G
is CG decomposable.

Proof of 2⇒ 3 Assume that G is triangulated, with the additional property in statement 2. Consider

two nodes α and β and let S be their minimal separator. Let A denote the set of all nodes that may

be connected to α by a trail that does not contain nodes in S and let B denote all nodes that may be

connected to β by a trail that does not contain nodes in S. Every node γ ∈ S must be adjacent to some

node in A and some node in B, otherwise GV /(S/{γ}) would not be connected. This would contradict

the minimality of S, since S/{γ} would separate α from β. Suppose that the condition in statement

2 holds and consider the minimal separator for two discrete nodes α, β, which are not neighbours.

The separator is complete. Denote the separator by S. Consider Ŝ, which is S with the continuous

nodes removed. Then Ŝ separates α and β on the sub graph induced by the discrete variables. But

the condition of statement 2 implies that α and β are also separated on G. Therefore, Ŝ separates α

and β. It follows that the minimal separator for two discrete nodes contains only discrete nodes.

Proof of 3 ⇒ 1 If G is complete, it follows that every node is discrete and the result is clear. Let α

and β be two discrete nodes that are not contained within their minimal separator. Let S denote their

minimal separator. Let A denote the maximal connected component of V /S and let B = V /(A ∪ S).
Then (A,B,S) provides a decomposition, with S ⊆ ∆. Suppose that two such discrete nodes cannot

be found. Let α and β be two nodes that are not contained within their minimal separator, where β

is continuous. Let S denote the minimal separator. Let B denote the largest connected component

of V /S containing β. Suppose that B contains a discrete node γ. Then S separates γ from α and

therefore consists entirely of discrete nodes. Therefore, either S ⊆∆, or B ⊆ Γ, as required.

The construction of the junction tree has to be modi�ed. Starting from the directed acyclic graph, the

graph is �rst moralised by adding in the links between all the parents of each variable and then making

all the edges undirected, as before. Then, su�cient edges are added in to ensure that the graph is CG

- decomposable.

Next, a junction tree is constructed. As before, this is an organisation of a collection of subsets of

the variables V into a tree, such that if A and B are two nodes on the junction tree, then the variables

in A ∩B appear in each node on the path between A and B.

De�nition 10.12 (CG Root). A node R on a junction tree is a CG root if any pair of neighbours A,

B, such that A lies on the path between R and B (so that A is closer to R than B) satis�es

B/A ⊆ Γ or B ∩A ⊆∆ or both.

This condition is equivalent to the statement that the triple (A/(A ∩ B),B/(A ∩ B),A ∩ B) forms

a CG decomposition of GA∪B. This means that when a separator between two neighbouring cliques



10.3. UPDATING A CG DISTRIBUTION USING A JUNCTION TREE 211

is not purely discrete, the clique furthest away from the root has only continuous nodes beyond the

separator.

Theorem 10.13. The cliques of a CG decomposable marked graph can be organised into a junction

tree with at least one CG root.

Proof As with the unmarked graph, choose simplicial nodes, one after the other. This is done in

such a way that either the separator (the nodes not removed) are all discrete, or else the nodes that

are removed are all continuous, until it is not possible to �nd any other such nodes.

The remaining graph is therefore a clique, by the following arguments: either all the remaining

discrete nodes are in the same clique, or else there is not a simplicial discrete node, since the minimal

separator between two discrete nodes consists entirely of discrete nodes. Assume there is not a simplicial

discrete node. If there are discrete nodes remaining, then the family of any simplicial continuous node

contains a discrete node that does not have neighbours outside the family and is therefore simplicial.

It follows that all the discrete nodes are in the same clique, the family of any remaining continuous

node.

The �nal clique, constructed in this way, clearly satis�es the properties of a CG root.

10.3 Updating a CG distribution using a Junction Tree

The random vectors are taken as row vectors when they are several attributes measured on a single

run of an experiment.

For each clique C on the CG junction tree, let ϕC = ∏X∈C/S PX ∣Π(X) where PX ∣Π(X) is a discrete

probability function if X is discrete and a conditional Gaussian if X is Gaussian, where S denotes

those variables in C that were not simplicial during the junction tree construction.

For each continuous variable X,

PX ∣Πc(X),Πd(X)(x∣z, y) =
1

(2πγ(y))1/2
exp

⎧⎪⎪⎨⎪⎪⎩
−
(x − α(y) − β(y)zt)2

2γ(y)

⎫⎪⎪⎬⎪⎪⎭
.

where Πc(X) denotes continuous parents and Πd(X) denotes discrete parents. Here, α is a function,

β is a (row) vector of the same length as z and γ is the conditional variance.

For the separators S, the initialisation is: ϕS ≡ 1 for each S ∈ S.
From this, expanding the parentheses, taking logarithms and identifying terms gives the canonical

parameters (gX , hX ,KX) for PX ∣Π(X). The log partition function is

gX(y) = −
α(y)2

2γ(y) −
1

2
log(2πγ(y)),

and the other parameters are given by

hX(y) =
α(y)
γ(y) ( 1 −β(y) )



212 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

and

KX(y) =
1

γ(y)
⎛
⎝

1 −β(y)
−β(y)t β(y)tβ(y)

⎞
⎠
.

Marginalisation: Continuous Variables Suppose ϕY ,X1,X2
is CG, where Y are discrete variables

and X1 and X2 are continuous variables. That is, ϕ is given by

ϕY ,X1,X2
(y, x1, x2) = χ(y) exp

⎧⎪⎪⎨⎪⎪⎩
g(y) + h1(y)xt1 + h2(y)xt2 −

1

2
(x1, x2)

⎛
⎝
K11 K12

Kt
12 K22

⎞
⎠
⎛
⎝
xt1
xt2

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

where

χ(y) =
⎧⎪⎪⎨⎪⎪⎩

1 PY (y) > 0
0 PY (y) = 0

K is symmetric and the triple (g, h,K) represent the canonical characteristics. Recall the standard

result that, taking z ∈ Rp as a row vector, and K a positive de�nite p × p symmetric matrix,

1

(2π)p/2 ∫Rp
exp{−1

2
zKzt}dz = 1√

det(K)
and hence that for a ∈ Rp and K a positive de�nite p × p symmetric matrix

∫
Rp

exp{(a, z) − 1

2
ztKz}dz = exp{1

2
atK−1a} (2π)

p/2
√
det(K)

.

From this, it follows, after some routine calculation, that if X1 is a random p-vector with positive

de�nite covariance matrix, then

∫
Rp
ϕY ,X1,X2

(y, x1, x2)dx1 = χ(y) exp{g̃(y) + h̃(y)xt2 −
1

2
x2K̃x

t
2} ,

where

g̃(y) = g(y) + 1

2
(p log(2π) − logdet(K11(y)) + h1(y)K11(y)−1h1(y)t) ,

h̃(y) = h2(y), K̃ = −K21(y)K11(y)−1K12(y).

Marginalisation: Discrete Variables Consider a CG function ϕY 1,Y 2,X
, where Y 1 and Y 2 denote

sets of discrete variables andX a set of continuous variables. Consider marginalisation over Y 2. Firstly,

if h(y
1
, y

2
) = h̃(y

1
) and K(y

1
y
2
) = K̃(y

1
) for some functions h̃ and K̃ (i.e. they do not depend on y

2
),

then ϕ̃, the marginal of ϕY 1,Y 2,X
is simply

ϕ̃(y
1
, x) = exp{h̃(y

1
)xt − 1

2
xK̃(y

1
)xt}∑

y
2

χ(y
1
, y

2
) exp{g(y

1
, y

2
)} .



10.3. UPDATING A CG DISTRIBUTION USING A JUNCTION TREE 213

The function ϕ̃ is therefore CG with canonical characteristics g̃(y
1
) = log∑y

2
exp{g(y

1
, y

2
)} and h̃, K̃

as before.

If either h or K depends on y
2
, then a marginalisation will not produce a CG distribution, so an

approximation is used. For this, it is convenient to consider the mean parameters, (P,C,µ), where
P(y

1
, y

2
) = P((Y 1, Y 2) = (y1, y2)) and

X ∣{(Y 1, Y 2) = (y1, y2)} = N(µ(y1, y2),C(y1, y2)).

The approximation is as following: ϕ̃ is de�ned as CG with mean parameters (P̃, C̃, µ̃) de�ned as:

P̃(y
1
) =∑

y
2

P(y
1
, y

2
),

µ̃(y
1
) = 1

P̃(y
1
)
∑
y
2

P(y
1
, y

2
)µ(y

1
, y

2
),

C̃(y
1
) = 1

P̃(y
1
)
∑
y
2

P(y
1
, y

2
) (C(y

1
, y

2
) + (µ(y

1
, y

2
) − µ̃(y

1
))t(µ(y

1
, y

2
) − µ̃(y

1
))) .

It is relatively straightforward to compute that this approximate marginalisation has the correct ex-

pected value and second moments.

Marginalising over both Discrete and Continuous When marginalising over both types of

variables, �rst the continuous variables are marginalised, and then the discrete.

Entering Evidence Two types of evidence can be entered; �rstly, evidence that a continuous variable

Y is instantiated as y for some y ∈ R. Suppose PX ∣Π(X) has canonical characteristics (g, h,K), where
either X = Y or Y ∈ Π(X). The vector (X,Π(X)) may be re-ordered so that Y appears last, so that

the canonical characteristics are written as

h(i) = ( h1(i) hY (i) ) , K(i) =
⎛
⎝
K11(i) K1Y (i)
KY 1(i) KY Y (i)

⎞
⎠
.

It is straightforward to show that when Y ← y is instantiated, PY ∣Π(Y ) is replaced by a function ψΠ(Y )
with canonical characteristics (g∗, h∗,K∗) given by

K∗(i) =K11(i)

h∗(i) = h1(i) − yK1Y (i)

g∗(i) = g(i) + hY (i)y −
1

2
y2KAA(i).

The algorithm accommodates evidence on discrete variables in the form of information that certain

states are impossible. If (X,Π(X)) contains discrete variables, then let Sd = ({X}∪Π(X))∩∆ where

∆ denotes the set of discrete variables. Then replace PX ∣Π(X) by a function



214 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

ψX,Π(X) = fSd
PX ∣Π(X)

where for each s ∈ XSd
,

fSd
(s) =

⎧⎪⎪⎨⎪⎪⎩

0 evidence states that s is impossible

1 otherwise

The Fully Active Schedule The fully active schedule may now be applied. Firstly, the evidence

is inserted. This is hard evidence, that certain states for discrete variables are excluded, or that the

continuous variables take certain �xed values. The information then has to be propagated. Start at

the leaves, send all messages to a CG root. A message from C to C ′ computes ϕ∗S = ∑C/S ϕC , where

the sum denotes an integral for a continuous variable and a sum for a discrete variable, updates ϕC′

to ϕ∗C′ =
ϕ∗S
ϕS
ϕC′ and updates ϕS to ϕS∗ .

Note that, when two functions are multiplied or divided, this simply involves �rstly: computing

the canonical characteristics (either exactly, or those for the approximating function) and then if ϕ1

has characteristics (g1, h1,K1) and ϕ2 has characteristics (g2, h2,K2) then ϕ1ϕ2 has characteristics

(g1 + g2, h1 + h2,K1 +K2) and ϕ1

ϕ2
has characteristics (g1 − g2, h1 − h2,K1 −K2).

When the root has received all messages, at this stage the potential over the root is normalised.

That is, it is multiplied by a suitable constant to make it a probability. All the messages propagated

to the CG root are proper marginalisations and therefore the distribution over the CG root, after the

evidence is received, is an exact CG distribution.

For the propagation back out to the leaves, it will not, in general, be possible to make exact

marginalinalisations. The same procedure is used; for a message C to C ′ separated by S, set ϕ∗S =
∑C/S ϕC and update ϕC′ to

ϕS∗

ϕS
ϕC′ and update ϕS to ϕ∗S .

Having inserted hard evidence and run the schedule, since the potential over the root has been

normalised, the resulting functions are probability distributions.

The approximate marginalisations give an approximate update, but by construction, since the tree

has a strong root, the tree will be consistent; by construction, the exact marginalision of a clique in

the direction of the strong root gives exactly the approximating distribution over the separator that is

produced from by the approximate marginalisation when computing away from the root.

The Termination Although the resulting algorithm has produced approximate distributions over

the cliques, which are conditional Gaussian, with the correct expectation vector and covariance struc-

ture, it should be clear from the algorithm that dividing the function over the clique by the function

over the adjacent separator in the direction of the root gives the exact conditional distribution of the

clique conditioned on the separator.

Notes The application of junction tree methods to conditional Gaussian distributions was taken from

Lauritzen [81].



10.4 Exercises

1. Let

X = (X∆,XΓ) ∼ CG(∣∆∣,1).

Let I denote the state space for X∆ and let P denote the probability function for the random

vector X∆. Prove that

E [XΓ] =∑
i∈I

P(i)µ(i)

and

V (XΓ) =∑
i∈I
p(i)σ(i)2 +∑

i∈I
P(i) (µ(i) −E [XΓ])2 .

2. Let X ∼ CG(2,2) and let I1 and I2 be binary variables. Find the canonical parameters for the

distribution.

3. Show that if a Conditional Gaussian Distribution is marginalised over a subset of the continuous

variables, the resulting distribution is again a CG distribution. Find the canonical characteristics

of the marginal distribution in terms of the original canonical characteristics, stating the standard

results about multivariate normal random variables that you are using.

4. Suppose that hard evidence is entered into a subset of the continuous variables of a CG distri-

bution. Show that the updated distribution is again a CG distribution and express the mean

parameters (conditional expectation vector and covariance matrix) of the updated distribution

in terms of the mean parameters of the original distribution.

5. This example is taken from Lauritzen [84]. It is a �ctitious problem connected with controlling

the emission of heavy metals from a waste incinerator. The type of incoming waste W a�ects

the metals in the waste Min, the dust emission D and the �lter e�ciency E. The quantity of

metals in the waste Min a�ects the metals emission Mout. Another important factor is the waste

burning regimen B, which is monitored via the carbon dioxide concentration in the emission C.

The burning regimen, the waste type and the �lter e�ciency E a�ect the dust emission D. The

dust emission a�ects the metals emission and it is monitored by recording the light penetration

L. The state of the �lter F (whether it is intact or defective) a�ects E.

The variables F ,W , B are qualitative variables with states (the �lter is either intact or defective,

the waste is either industrial or household, the burning regimen is either stable or unstable). The

variables E, C, D, L, Min and Mout are continuous. The directed acyclic marked graph is given

in Figure 10.1.

(a) � Moralise and triangulate the graph.

� Is it possible to construct a junction tree with a CG root?

215



216 CHAPTER 10. CONDITIONAL GAUSSIAN VARIABLES

(b) � Moralise the graph.

� By adding in as few links as possible, construct a CG decomposable graph.

� Construct a junction tree. What are the possible strong roots for the junction tree?

(c) (HUGIN exercise) Programme the model in HUGIN, with the following conditional proba-

bilities:

PB(1) = 0.85, PB(0) = 0.15 1 = stable 0 = unstable

PF (1) = 0.95 PF (0) = 0.05 1 = intact 0 = defect

PW (1) = 0.25 PW (0) = 0.75 1 = industrial 0 = household

E∣(F,W ) = (1,0) ∼ N(−3.2,0.00002) E∣(F,W ) = (0,0) ∼ N(−0.5,0.0001)

E∣(F,W ) = (1,1) ∼ N(−3.9,0.00002) E∣(F,W ) = (0,1) ∼ N(−0.4,0.0001)

D∣(B,W,E) = (1,1, x) ∼ N(6.5 + x,0.03) D∣(B,W,E) = (1,0, x) ∼ N(6.0 + x,0.04)

D∣(B,W,E) = (0,1, x) ∼ N(7.5 + x,0.1) D∣(B,W,E) = (0,0, x) ∼ N(7.0 + x,0.1)

C ∣B = 1 ∼ N(−2,0.1) C ∣B = 0 ∼ N(−1,0.3)

L∣D = x ∼ N(3 − 1

2
d,0.25)

Min∣W = 1 ∼ N(0.5,0.01) Min∣W = 0 ∼ N(−0.5,0.005)

Mout∣D = x,Min = y ∼ N(x + y,0.002)

The variable E, �lter e�ciency, is represented on a logarithmic scale. It is assumed that

dust out = dust in × ρ

and E = log ρ. The variable D, dust emission, is again on a logarithmic scale, as is C, the

CO2 concentration and L, the light penetrability. Light penetrability is roughly inversely

proportional to the square root of dust concentration. The metal in waste Min and metal

emission Mout variables are on logarithmic scales.

Suppose that the waste burned is of industrial type (W = 1), the light penetration variable

is measured as L = 1.1 and the CO2 concentration is measured as C = −0.9.
Find the updated probability distributions for B and F and the updated means and vari-

ances for Min, Mout and D.



Chapter 11

Gaussian and Conditional Gaussian

Graphical Models in R

The packages ggm, deal, glasso, gRc, pcalg, bnlearn, gRim are useful.

Consider X ∼ N(µ,Σ). The matrix K = Σ−1 is known as the concentration matrix. The partial

correlation between Xu and Xv given all the other variables may be derived from K as:

ρuv∣V /uv = −
Kuv√
KuuKvv

.

Thus, the independence graph does not have an edge u↔ v if and only if Kuv = 0.
Consider an illustrative example of `carcass' data:

> library(gRbase)

> data(carcass)

> head(carcass)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

1 17 51 12 51 12 61 56.52475

2 17 49 15 48 15 54 57.57958

3 14 38 11 34 11 40 55.88994

4 17 58 12 58 11 58 61.81719

5 14 51 12 48 13 54 62.95964

6 20 40 14 40 14 45 54.57870

The concentration matrix can be estimated as:

> S.carc = cov.wt(carcass,method="ML")$cov

> K.carc = solve(S.carc)

> round(100*K.carc)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

Fat11 44 3 -20 -7 -16 4 10

Meat11 3 16 -3 -6 -6 -6 -3

217



218 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

Fat12 -20 -3 54 6 -21 -5 9

Meat12 -7 -6 6 14 -1 -9 0

Fat13 -16 -6 -21 -1 56 3 7

Meat13 4 -6 -5 -9 3 16 -1

LeanMeat 10 -3 9 0 7 -1 26

The partial correlation is obtained using cov2pcor:

> PC.carc = cov2pcor(S.carc)

> round(100*PC.carc)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

Fat11 100 -11 41 30 32 -16 -29

Meat11 -11 100 9 41 19 35 16

Fat12 41 9 100 -24 38 18 -24

Meat12 30 41 -24 100 2 61 2

Fat13 32 19 38 2 100 -9 -18

Meat13 -16 35 18 61 -9 100 7

LeanMeat -29 16 -24 2 -18 7 100

Fat13 is conditionally independent of Meat12 and LeanMeat is also conditionally independent of Meat12.

A stepwise backward model selection procedure can be carried out as follows:

>library(gRim)

> sat.carc = cmod(~.^.,data=carcass)

> aic.carc = stepwise(sat.carc)

> library(Rgraphviz)

> plot(as(aic.carc,"graphNEL"),"fdp")

The BIC gives a higher penalty for complexity and also removes edges between Fat13 and Meat13.

> bic.carc = stepwise(sat.carc,k=log(nrow(carcass)))

> bic.carc

Model: A cModel with 7 variables

graphical : TRUE decomposable : TRUE

-2logL : 11376.07 mdim : 24 aic : 11424.07

ideviance : 2465.16 idf : 17 bic : 11516.25

deviance : 8.62 df : 4

plot(as(bic.carc,"graphNEL"),"fdp")

11.1 Undirected Gaussian Graphical Models

The model gen.carc for the carcass data speci�es a UGGM (undirected Gaussian graphical model)

with edges missing for all partial correlations less than or equal to 0.12.



11.1. UNDIRECTED GAUSSIAN GRAPHICAL MODELS 219

> gen.carc = cmod(~Fat11*Fat12*Meat12*Meat13

+ + Fat11*Fat12*Fat13*LeanMeat

+ +Meat11*Meat12*Meat13

+ +Meat11*Fat13*LeanMeat,data=carcass)

> gen.carc

Model: A cModel with 7 variables

graphical : TRUE decomposable : FALSE

-2logL : 11387.24 mdim : 22 aic : 11431.24

ideviance : 2453.99 idf : 15 bic : 11515.73

deviance : 19.79 df : 6

> plot(gen.carc,"neato")

Alternatively, the model could be speci�ed as follows:

> edge.carc=cmod(edgeList(as(gen.carc,"graphNEL")),data=carcass)

> edge.carc

Model: A cModel with 7 variables

graphical : TRUE decomposable : FALSE

-2logL : 11387.24 mdim : 22 aic : 11431.24

ideviance : 2453.99 idf : 15 bic : 11515.73

deviance : 19.79 df : 6

The matrix K is estimated by iterative proportion scaling. The point is that the estimate has to satisfy

the constraint that Kuv = 0 when there is no edge u↔ v.

> carcfit1 =

+ ggmfit(S.carc,n=nrow(carcass),edgeList(as(gen.carc,"graphNEL")))

> carcfit1[c("dev","df","iter")]

$dev

[1] 19.78537

$df

[1] 6

$iter

[1] 774

Hypothesis Testing A likelihood ratio test, to see whether modelM1 gives a better �t than model

M2 may be carried out as follows:

> comparemodels = function(m1,m2){}

> comparemodels=function(m1,m2){



220 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

+ lrt = m2$fitinfo$dev - m1$fitinfo$dev

+ dfdiff = m2$fitinfo$dimension[4]-m1$fitinfo$dimension[4]

+ names(dfdiff)=NULL

+ list('lrt'=lrt,'df'=dfdiff)

+ }

> comparemodels(aic.carc,bic.carc)

$lrt

[1] 8.372649

$df

[1] 2

This would indicate that the smaller model does not �t well.

The function ciTest_mvn() tests single conditional independence hypotheses. To test LeanMeat ⊥
Meat13∣remaining variables

> ciTest_mvn(list(cov=S.carc,n.obs=nrow(carcass)),

+ set=~LeanMeat+Meat13+Meat11+Meat12+Fat11+Fat12+Fat13)

Testing LeanMeat _|_ Meat13 | Meat11 Meat12 Fat11 Fat12 Fat13

Statistic (DEV): 1.687 df: 1 p-value: 0.1940 method: CHISQ

Gaussian conditional independence can be tested from the pcalg package as follows:

> library(pcalg)

> C.carc=cov2cor(S.carc)

> gaussCItest(7,2,c(1,3,4,5,6),list(C=C.carc,n=nrow(carcass)))

[1] 0.003077247

11.2 Decomposition of UGGMs

Consider the model with BIC penalisation. Let A = {Fat13,LeanMeat}, B = {Meat12, Meat13}
and S = {Fat11, Fat12, Meat11}. Then (A,B,S) is a decomposition of its independence graph.

Furthermore, bothMA∪S andMB∪S are saturated. It follows that K̂A∪S = S−1A∪S and K̂B∪S = S−1B∪S .
The MLE of K may therefore be found using:

K̂ = (K̂A∪S)A∪B∪S + (K̂B∪S)A∪B∪S − (S−1S )A∪B∪S

where the meanings of the terms are clear.

> K.hat = S.carc

> K.hat[]=0



11.2. DECOMPOSITION OF UGGMS 221

> AC=c("Fat11","Fat12","Fat13","Meat11","LeanMeat")

> BC=c("Meat11","Meat12","Meat13","Fat11","Fat12")

> C=c("Fat11","Fat12","Meat11")

> K.hat[AC,AC]=K.hat[AC,AC]+solve(S.carc[AC,AC])

> K.hat[BC,BC]=K.hat[BC,BC]+solve(S.carc[BC,BC])

> K.hat[C,C]=K.hat[C,C]-solve(S.carc[C,C])

> round(100*K.hat)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

Fat11 44 1 -20 -7 -16 6 10

Meat11 1 16 -4 -6 -4 -5 -5

Fat12 -20 -4 54 6 -20 -4 9

Meat12 -7 -6 6 14 0 -9 0

Fat13 -16 -4 -20 0 55 0 7

Meat13 6 -5 -4 -9 0 16 0

LeanMeat 10 -5 9 0 7 0 26

> Sigma.hat=solve(K.hat)

> round(Sigma.hat,2)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08

Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33

Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95

Meat12 2.06 35.94 0.31 51.79 2.45 41.47 5.41

Fat13 7.66 2.01 6.84 2.45 7.62 0.89 -6.93

Meat13 -0.76 31.97 -0.60 41.47 0.89 41.44 6.43

LeanMeat -9.08 5.33 -7.95 5.41 -6.93 6.43 12.90

> round(S.carc,2)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat

Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08

Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33

Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95

Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03

Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93

Meat13 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23

LeanMeat -9.08 5.33 -7.95 6.03 -6.93 7.23 12.90

Model Search using gRim Setting search = �headlong� causes edges to be searched in a random

order, which can make the search faster.

> ind.carc=cmod(~.^1,data=carcass)

> set.seed(123)



222 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

> forw.carc=stepwise(ind.carc,search="headlong",

+ direction="forward",k=log(nrow(carcass)),details=0)

> forw.carc

Model: A cModel with 7 variables

graphical : TRUE decomposable : TRUE

-2logL : 11393.53 mdim : 23 aic : 11439.53

ideviance : 2447.70 idf : 16 bic : 11527.87

deviance : 26.08 df : 5

> plot(forw.carc,"neato")

11.3 Directed Gaussian Graphical Models

A DAG may be constructed as follows: for example,

> gdag1=DAG(LeanMeat~Meat13:Fat11:Fat12, Meat13~Meat11:Meat12,

+ Fat12~Fat11,Fat13~Meat11:Meat12, Meat12~Meat11)

> plot(as(gdag1,"graphNEL"))

> fdag1=fitDag(gdag1,S.carc,nrow(carcass))

> fdag1$dev

[1] 552.2726

> fdag1$df

[1] 12

The function essentialGraph() from the ggm package returns the essential graph of a DAG. For

example:

> eG1 = as(essentialGraph(gdag1),"igraph")

> V(eG1)$size = 40

> E(eG1)$arrow.mode=2

> E(eG1)[is.mutual(eG1)]$arrow.mode = 0

> plot(eG1,layout=layout.kamada.kawai)

Model Selection A DAG may be established using the package pcalg package. The PC algorithm

may be used to �nd the skeleton. The pcalg::skeleton command ensures that the relevant version

of the command skeleton is used.

> library(pcalg)

> c.carc=cov2cor(S.carc)

> suffStat=list(C=c.carc,n=nrow(carcass))

> indepTest=gaussCItest

> skeleton.carc=pcalg::skeleton(suffStat,gaussCItest,p=ncol(carcass),alpha=0.05)



11.3. DIRECTED GAUSSIAN GRAPHICAL MODELS 223

> nodes(skeleton.carc@graph)=names(carcass)

> names(carcass)

[1] "Fat11" "Meat11" "Fat12" "Meat12" "Fat13" "Meat13"

[7] "LeanMeat"

> str(skeleton.carc@sepset[[1]])

List of 7

$ : NULL

$ : int(0)

$ : NULL

$ : int(0)

$ : NULL

$ : int(0)

$ : NULL

This is read as follows: The �rst variable Fat11 was marginally independent of variables Meat11,

Meat12 and Meat13. This is seen from the designation NULL. Similarly,

> str(skeleton.carc@sepset[[2]])

List of 7

$ : NULL

$ : NULL

$ : int(0)

$ : NULL

$ : int 4

$ : NULL

$ : int 6

This indicates that Meat11 (the second variable) is marginally independent of Fat12, conditionally

independent of Fat13 (5th variable on the list) given Meat12 (4th variable on the list) and conditionally

independent of LeanMeat given Meat13 etc.

In pcalg, there are several options for turning a skeleton together with sep-sets into a DAG. These

are:

� udag2pdag()

� udag2pdagRelaxed()

� udag2pdagSpecial()

Read the help functions to �nd out the di�erences. For example:

> pdag.carc=udag2pdagRelaxed(skeleton.carc,verbose=0)

> nodes(pdag.carc@graph)=names(carcass)

> plot(pdag.carc@graph,"neato")



224 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

Undirected edges are shown as double-arrowed edges. This graph is not an essential graph; the arrow

from Meat12 to Meat13 is not part of an immorality, neither is it a compelled edge.

Both steps (skeleton and edge orientation) can be called simultaneously using the function pc().

For example,

> cpdag.carc=pc(suffStat,gaussCItest,p=ncol(carcass),alpha=0.05)

> plot(cpdag.carcass@graph)

11.4 Gaussian Chain Graph Models

To build a chain graph model, �rstly an undirected graph, corresponding to the independence graph

is constructed.

The package lcd is useful. This uses a constraint-based algorithm due to Ma et. al. [86](2008).

A junction tree for the undirected graph is then derived. The algorithm then performs a series of

conditional independence tests following a scheme based on the junction tree. This may be applied to

the carcass data:

> library(lcd)

> ug<-naive.getug.norm(carcass,0.05)

> jtree<-ug.to.jtree(ug)

> cg<-learn.mec.norm(jtree,cov(carcass),nrow(carcass),0.01,"CG")

> icg<-as(cg,"igraph")

> E(icg)$arrow.mode<-2

> E(icg)[is.mutual(icg)]$arrow.mode<-0

> V(icg)$size<-40

> plot(icg,layout=layout.kamada.kawai)

11.5 Conditional Gaussian Models

Recall that, for a conditional Gaussian model, the covariance of the continuous variables, conditioned

on the discrete, is the same for each value of the discrete variables. That is, conditioned on the discrete

variables taking con�guration i, the Gaussian variables have distribution:

πΓ∣∆(y∣i) =
1

(2π)q/2∣Σ∣1/2
exp{−1

2
(y − µ(i))tΣ−1(y − µ(i))} .

For illustration, consider two data sets from gRbase; milkcomp1 and wine.

The CGstats() function calculates the number of observations and means of the continuous vari-

ables for each cell i, together (by default) with a common covariance matrix.

> data(milkcomp1,package='gRbase')

> head(milkcomp1)



11.5. CONDITIONAL GAUSSIAN MODELS 225

treat fat protein dm lactose

1 d 6.16 6.65 18.55 5.06

2 c 4.06 5.44 18.32 5.23

3 f 9.25 5.67 20.68 5.15

4 b 5.82 5.62 17.57 5.74

5 a 4.98 5.37 16.38 5.55

6 b 9.06 5.08 20.21 5.29

> library(gRim)

> SS = CGstats(milkcomp1,varnames=c("treat","fat","protein","lactose"))

> SS

$n.obs

treat

a b c d e f g

8 8 8 8 8 7 8

$center

a b c d e f g

fat 6.64125 8.01000 7.0525 7.40125 8.13375 7.518571 6.97375

protein 5.48750 5.28750 5.4750 5.81750 5.26250 5.295714 5.58000

lactose 5.49125 5.48875 5.4675 5.31375 5.40625 5.382857 5.41500

$cov

fat protein lactose

fat 2.31288338 0.19928422 -0.07028198

protein 0.19928422 0.12288675 -0.03035208

lactose -0.07028198 -0.03035208 0.04529896

$cont.names

[1] "fat" "protein" "lactose"

$disc.names

[1] "treat"

$disc.levels

[1] 7

The coe�cients of variation are:

> apply(SS$center,1,sd)/apply(SS$center,1,mean)

fat protein lactose

0.07415672 0.03656048 0.01186589



226 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

The corresponding canonical parameters are:

> can.parms=CGstats2mmodParms(SS,type="ghk")

> print(can.parms,simplify=FALSE)

$g

treat

a b c d e f g

-745.4933 -729.3707 -740.4563 -743.5508 -712.6533 -710.4957 -740.1503

$h

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.7869693 1.628323 0.9975735 0.873605 1.686407 1.343883 0.8641906

[2,] 88.2214588 85.006209 87.6318341 90.151087 84.137184 84.816560 88.5106553

[3,] 181.5552534 180.651093 180.9626426 179.064184 178.337697 177.745064 180.1855748

$K

[,1] [,2] [,3]

[1,] 0.5055681 -0.7503065 0.2816613

[2,] -0.7503065 10.8648914 6.1157915

[3,] 0.2816613 6.1157915 26.6103828

$gentype

[1] "mixed"

$gentype

[1] "mixed"

$cont.names

[1] "fat" "protein" "lactose"

$disc.names

[1] "treat"

$disc.levels

[1] 7

Let j denote the level of the treatment factor, then h(j) takes the form:

h(j) = (hfat(j), hprotein(j), hlactose(j))

The coe�cients for h are:



11.5. CONDITIONAL GAUSSIAN MODELS 227

> apply(can.parms$h,1,sd)/apply(can.parms$h,1,mean)

[1] 0.32484006 0.02614999 0.00793359

This suggests that hlactose is a constant function of j. In other words,

lactose ⊥ treat∣(fat, protein).

The partial correlation matrix is:

> conc2pcor(can.parms$K)

[,1] [,2] [,3]

[1,] 1.00000000 0.3201373 -0.07679125

[2,] 0.32013725 1.0000000 -0.35967845

[3,] -0.07679125 -0.3596784 1.00000000

This suggests that the partial correlation between fat and lactose is zero. Therefore,

lactose ⊥ fat∣(treat, protein).

The generators of the model are simply the cliques of the CG junction tree. The mmod() function from

gRim allowed CG models to be de�ned using model formulae. For example, to construct a model

with generators treat, fat, protein,protein,lactose,

> milkmod = mmod(~treat*fat*protein+protein*lactose, data=milkcomp1)

> milkmod

Model: A mModel with 4 variables

graphical : TRUE decomposable : TRUE

-2logL : 428.47 mdim : 26 aic : 480.47

ideviance : 18.97 idf : 15 bic : 532.66

deviance : 2.11 df : 7

Conditional Gaussian Models To construct a marked graph, the information on marking has to

be provided:

> uG1=ug(~a:b+b:c+c:d)

> uG2=ug(~a:b+a:d+c:d)

> mcsmarked(uG1,discrete=c("a","d"))

character(0)

> mcsmarked(uG2,discrete=c("a","d"))

[1] "a" "d" "b" "c"

> plot(uG1)

> plot(uG2)

For the �rst graph, both a and d have to be in the CG-root, hence the root contains all the variables;

the CG-Gaussian tree contains exactly one node. For the second one, the CG-root is the clique {a, d}.



228 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

Using gRim for CG-models The function mmod() enables CG models to be de�ned and �tted.

> glist = ~treat:fat:protein+protein:lactose

> milk=mmod(glist,data=milkcomp1)

> milk

Model: A mModel with 4 variables

graphical : TRUE decomposable : TRUE

-2logL : 428.47 mdim : 26 aic : 480.47

ideviance : 18.97 idf : 15 bic : 532.66

deviance : 2.11 df : 7

> summary(milk)

Mixed interaction model:

Generators:

:"treat" "fat" "protein"

:"protein" "lactose"

Discrete: 1 Continuous: 3

Is graphical: TRUE Is decomposable: TRUE

logL: -214.233011, iDeviance: 241.774364

The parameters are obtained using coef(). The parametrisation may be speci�ed as either canonical

or mean �eld. For canonical parameters:

> coef(milk,type="ghk")

$g

treat

a b c d e f g

-676.0550 -666.0859 -675.0546 -690.9918 -664.9730 -666.7805 -680.0217

$h

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -1.134727 -0.2838037 -0.9178505 -1.021725 -0.2012326 -0.5374842 -1.043008

[2,] 84.348819 81.3413696 83.8953921 86.850963 81.0040255 81.8196051 84.952805

[3,] 164.633541 164.6335413 164.6335413 164.633541 164.6335413 164.6335413 164.633541

$K

[,1] [,2] [,3]

[1,] 0.5025868 -0.815040 0.000000

[2,] -0.8150400 10.762254 5.666744

[3,] 0.0000000 5.666744 24.645834

$gentype



11.5. CONDITIONAL GAUSSIAN MODELS 229

[1] "mixed"

$cont.names

[1] "fat" "protein" "lactose"

$disc.names

[1] "treat"

$disc.levels

[1] 7

$N

[1] 55

$SSD

[,1] [,2] [,3]

[1,] 127.208586 10.960632 -3.865509

[2,] 10.960632 6.758771 -1.669364

[3,] -3.865509 -1.669364 2.491443

$SS

fat protein lactose

fat 3143.500 2227.141 2199.894

protein 2227.141 1648.827 1627.220

lactose 2199.894 1627.220 1620.993

Updating Models Models are updated using update(). A list with one or more components

add.edge, drop.edge, add.term, drop.term is speci�ed. The updates are made in the order given.

For example:

> milk2 = update(milk,list(add.edge=~fat:lactose,drop.edge=~treat:protein))

> milk2

Model: A mModel with 4 variables

graphical : TRUE decomposable : TRUE

-2logL : 446.17 mdim : 21 aic : 488.17

ideviance : 10.12 idf : 10 bic : 530.33

deviance : 10.96 df : 12

Inference Functions such as ciTest(), testInEdges(), testOutEdges() etc. have the same be-

haviour as with pure discrete and pure continuous networks. For example:



230 CHAPTER 11. GAUSSIAN AND CONDITIONAL GAUSSIAN GRAPHICAL MODELS IN R

> ciTest(milkcomp1)

Testing treat _|_ fat | protein dm lactose

Statistic (DEV): 8.742 df: 6 p-value: 0.1886 method: CHISQ

> testInEdges(milk,getInEdges(milk$glist))

statistic df p.value aic V1 V2 action

1 11.06071 6 0.086518199 -0.9392919 treat fat +

2 18.68943 6 0.004721598 6.6894264 treat protein -

3 8.27794 1 0.004012963 6.2779399 fat protein -

4 10.24527 1 0.001370352 8.2452747 protein lactose -

> testOutEdges(milk,getOutEdges(milk$glist))

statistic df p.value aic V1 V2 action

1 3.8928582 6 0.6911730 8.107142 treat lactose -

2 0.9827155 1 0.3215293 1.017285 fat lactose -

> milk3=update(milk,list(drop.edge=~treat:protein))

> compareModels(milk,milk3)

Large:

:"treat" "fat" "protein"

:"protein" "lactose"

Small:

:"protein" "lactose"

:"treat" "fat"

:"fat" "protein"

-2logL: 18.69 df: 6 AIC(k= 2.0): 6.69 p.value: 0.155100

> testdelete(milk,c("treat","protein"))

dev: 18.689 df: 6 p.value: 0.00472 AIC(k=2.0): 6.7 edge: treat:protein

Notice: Test perfomed by comparing likelihood ratios

> testadd(milk,c("treat","lactose"))

dev: 3.893 df: 6 p.value: 0.69117 AIC(k=2.0): 8.1 edge: treat:lactose

Notice: Test perfomed by comparing likelihood ratios

Stepwise Model Selection The stepwise() function in gRim implements stepwise selection. The

following starts from the saturated model and uses BIC criterion. This function can take a while to

produce the output.

> data(wine,package='gRbase')

> mm=mmod(~.^.,data=wine)

> mm2=stepwise(mm,k=log(nrow(wine)),details=0)

> plot(mm2)



Chapter 12

Learning the Conditional Probability

Functions

12.1 Introduction

Let X = (X1, . . . ,Xd) be a random vector, whose probability distribution factorises along a DAG

G = (V,D). This chapter considers the task of learning the conditional probability potentials, when

the DAG G is given, when presented with an n × d data matrix of instantiations

x =
⎛
⎜⎜
⎝

x(1)
⋮

x(n)

⎞
⎟⎟
⎠

which are the realisation of a random matrix

X =
⎛
⎜⎜
⎝

x(1)
⋮

X(n)

⎞
⎟⎟
⎠
.

Bayesian network analysis restricts itself to three settings:

� Gaussian

� Multinomial

� Conditional Gaussian.

12.2 Gaussian and Conditional Gaussian Networks

For Gaussian networks, X ∼ N(µ,Σ). The model is:

⎧⎪⎪⎨⎪⎪⎩

X = µ + ϵ ϵ ∼ N(0,Σ)
µj = βj0 +∑k∈Pa(j) βjkµk

231



232 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

where Pa(j) denotes the indices of the parent nodes of Xj and for di�erent instantiations, the ϵ are

i.i.d. Estimation of the parameters βkj ∶ k ∈ {0} ∪ Pa(j) is carried out simply by maximum likelihood

estimation, which is equivalent to least squares for Gaussian variables. That is, the parameters β are

estimated by minimising:

n

∑
i=1
(xij − β0j − ∑

k∈Paj

xikβkj)2.

We assume that the nodes have been ordered so that Paj ⊆ {1, . . . , j − 1}. Denote the estimator by β̂.

Then

µ̂j = β̂0j + ∑
k∈Paj

µ̂kβ̂kj .

The estimate of Σ is slightly harder than the estimate of µ, since we have to ensure that the conditional

independence constraints are satis�ed; the estimate Σ̂ has to correspond to the factorisation.

The estimate Σ̂11 is simply the m.l.e. variance estimate derived from the univariate sample x.1 from a

N(µ1,Σ11) distribution.

For j > 1, assume that the components of the j − 1 × j − 1 sub-matrix Σ(j−1), with entries Σab ∶ 1 ≤ a ≤
j − 1,1 ≤ b ≤ j − 1, have already been estimated. Then set (Σ̂(j)−1)ij = 0 for i /∈ Paj . Now let A denote

the j × j symmetric matrix obtained as the maximiser of:

∣A∣1/2
(2π)j/2

exp

⎧⎪⎪⎨⎪⎪⎩
−1
2

n

∑
i=1

j

∑
a=1

j

∑
b=1
(xia − µ̂a)(xib − µ̂b)Aab

⎫⎪⎪⎬⎪⎪⎭
.

subject to the constraint that Aij = 0 for i < j, i /∈ Paj . For i ∈ Paj ∪ {j}, set Σ̂ij = A−1ij .

Conditioned Gaussian Part of Conditional Gaussian Similarly, for Conditional Gaussian, the

parameters of the Gaussian variables, conditioned on the discrete, are estimated by maximum likelihood

in the standard way for multivariate Gaussian.

12.3 Discrete Variables

Let X = (X1, . . . ,Xd) be a random vector of discrete variables, with probability function PX1,...,Xd
over

state space X = ×dj=1Xj where Xj = (x(1)j , . . . , x
(kj)
j ) is the state space for Xj . Suppose that P factorises

according to a DAG G = (V,D). For x ∈ X , let πj(x) denote the parent con�guration for variable Xj

when X = x and let (π(l)j )
qj
l=1 denote a listing of the possible parent con�gurations for Xj . Let

θjil = PXj ∣Paj
(x(i)j ∣π

(l)
j ) j = 1, . . . , d, i = 1, . . . , kj , l = 1, . . . , qj (12.1)

Let be an n × d data matrix, representing n instantiations of X. The aim is to estimate the values of

(θjil)j,i,l based on the data matrix.

For discrete variables there are two approaches; the maximum likelihood method and the Bayesian

approach.



12.4. MAXIMUM LIKELIHOOD FOR DISCRETE VARIABLES 233

12.4 Maximum Likelihood for Discrete Variables

We describe maximum likelihood for multinomial sampling. The crucial point about a Bayesian network

is modularity; the components of the network are conditionally independent and each component can

be treated separately, as a multinomial.

12.4.1 Maximum Likelihood for Multinomial Sampling

Let X be a random variable with state space X = (x(1), . . . , x(k)) and θi = PX(x(i)), i = 1, . . . , k, where
θi ≥ 0 for i = 1, . . . , k and ∑k

i=1 θi = 1. Let X = (X1, . . . ,Xn)t be n independent identically distributed

copies of X and let x = (x(i1)1 , . . . , x
(in)
n )t be an instantiation of X.

Let

nl = number of times x(l) appears in x, l = 1, . . . , k

so that n = n1 + . . . + nk. The probability of x is:

PX(x∣θ) = θn1
1 . . . , θnk

k .

Maximum Likelihood Let

Θ =
⎧⎪⎪⎨⎪⎪⎩
(θ1, θ2, . . . , θk) ∣ θj ≥ 0, j = 1, . . . , k,

k

∑
j=1

θj = 1
⎫⎪⎪⎬⎪⎪⎭

denote the parameter space.

De�nition 12.1 (Likelihood function, Likelihood Estimate, Log Likelihood Function). The likelihood

function of the parameters θ is de�ned as

L(θ∣x) = PX(x∣θ).

The maximum likelihood estimate θ̂ME is de�ned as the value of θ that maximises L(θ∣x). The log

likelihood function is:

logL (θ1, θ2, . . . , θk) = logPX (x ∣ θ) ,

where log is used to denote the natural logarithm.

There is an elegant expression of the likelihood function in terms of the Shannon Entropy and Kullback

Leibler divergence given below.

De�nition 12.2 (Shannon Entropy). The Shannon Entropy, or Entropy of a probability distribution

θ = (θ1, . . . , θk), where θj ≥ 0, j = 1, . . . , k and θ1 + . . . + θk = 1 is de�ned as

H(θ) = −
k

∑
j=1

θj log θj .



234 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

In the de�nition of H(θ), the de�nition 0 log 0 = 0 is used, obtained by continuous extension of the

function x logx, x > 0.

Note that H(θ) ≥ 0. Recall the de�nition of Kullback Leibler divergence:

De�nition 12.3 (Kullback Leibler Divergence). The Kullback Leibler Divergence between two discrete

probability functions f and g with the same state space X is de�ned as

DKL(f ∣g) = ∑
x∈X

f(x) log f(x)
g(x) .

The Kullback Leibler divergence has the property that it is non negative, and for two probability

measures de�ned on the same �nite state space, DKL(f ∣g) = 0 if and only if f = g. This is a consequence
of Jensen's inequality and is now stated.

Lemma 12.4. For any two discrete probability distributions f and g, it holds that

DKL(f ∣g) ≥ 0

and DKL(f ∣g) = 0 if and only if f ≡ g.

Proof of Lemma 12.4 The proof uses Jensen's Inequality1 namely, that for any convex function ϕ,

E[ϕ(X)] ≥ ϕ(E[X]), with equality if and only if either ϕ(x) = ax + b or P(X = y) = 1 for some point

y. Note that f(x) ≥ 0 for all x ∈ X and that ∑x∈X f(x) = ∑x∈X g(x) = 1. Using this, together with the

fact that − log is convex, yields

DKL(f ∣g) = − ∑
x∈X

f(x) log( g(x)
f(x)) ≥ − log(∑x∈X

f(x) g(x)
f(x)) = − log 1 = 0

with equality if and only if f = g.

The likelihood function may be expressed in terms of the Shannon Entropy and the Kullback Leibler

divergence as follows:

Theorem 12.5. Let

Ln(θ∣x) = PX∣Θ(x∣θ) =
k

∏
i=1
θni
i

denote the likelihood function for the parameter vector θ = (θ1, . . . , θk), where the n-vector x denotes

the outcomes of n independent trials, each taking values in X = (x(1), . . . , x(k)) and ni denotes the

number of times x(i) appears in the list x. Let

θ̂ = (n1
n
, . . . ,

nk
n
) .

Then

− 1
n
logLn(θ∣x) =H(θ̂) +DKL(θ̂∣θ) (12.2)

1J.L. Jensen (1859 - 1925) published this in Acta Mathematica volume in the year 1906.



12.4. MAXIMUM LIKELIHOOD FOR DISCRETE VARIABLES 235

where H denotes the Shannon entropy, so that

H(θ̂) = −
k

∑
i=1
θ̂i log θ̂i = −

1

n
logPX∣Θ(x∣θ̂)

and DKL the Kullback Leibler divergence, so that

DKL(θ̂∣θ) =
k

∑
i=1
θ̂i log

θ̂i
θi
.

Proof of Theorem 12.5 Since PX (x(n) ∣ θ) =∏k
i=1 θ

ni
i it follows directly that

− 1
n
logPX (x ∣ θ̂) = −

1

n

k

∑
i=1
ni log θ̂i = −

k

∑
i=1
θ̂i log θ̂i =H(θ̂). (12.3)

This is the Shannon entropy for the empirical distribution, given by De�nition 12.2.

For arbitrary θ ∈ Θ, it therefore follows directly that

− 1
n
logLn(θ) ∶= −

1

n
logPX (x ∣ θ) = −

1

n
log

k

∏
i=1
θni
i = −

1

n

k

∑
i=1
ni log θi = −

k

∑
i=1
θ̂i log θi

= −
k

∑
i=1
θ̂i log θ̂i −

k

∑
i=1
θ̂i log

θ̂i
θi

= H (θ̂) +DKL (θ̂∣θ)

and Theorem 12.5 is proved.

Since the Kullback Leibler distance is non-negative, it now follows directly that the maximum likelihood

estimate θ̂MLE of θ is given by

θ̂MLE = (
n1
n
, . . . ,

nk
n
) .

Recall that, for parameter estimation in statistics, the same notation θ̂ is used for an estimate, esti-

mator, and estimating function for a parameter θ.

It is important to have, at least approximately, the distribution of the estimator. Let

Yj =
n

∑
k=1

1x(j)(Xk),

the number of times that x(j) appears in X. Then θ̂j = 1
nYj ,

E[Yj] = nθj

E[Y 2
j ] =

n

∑
k1=1

n

∑
k2=1

E[1x(j)(Xk1)1x(j)(Xk2)] = nθj + n(n − 1)θ2j



236 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

giving

V(Yj) = nθj(1 − θj)

and, for i ≠ j
E[YiYj] = n(n − 1)θiθj

so that

Cov(Yi, Yj) = −nθiθj .

Since θ = 1
nY , it follows that

E[θ̂ML] = θ, Cov(
√
n(θ̂ML − θ)) = C

where Cjj = θj(1 − θj) and Cij = −θiθj for i ≠ j. Furthermore, the following central limit is standard

from multivariate analysis: √
n(θ̂ML − θ)

n→+∞Ð→ N(0,C).

12.4.2 MLE for a Probability Factorised along a DAG

Let θ denote the entire collection of parameters (θjil) arranged as a vector and let Θ denote the

parameter space. Let

X =
⎛
⎜⎜
⎝

X(1)
⋮

X(n)

⎞
⎟⎟
⎠

denote the random matrix, where each row represents an independent copy of X and let

x =
⎛
⎜⎜
⎝

x(1)
⋮

x(n)

⎞
⎟⎟
⎠
,

the n × d data matrix, denote an instantiation of X.

Firstly, the probability function PX may be written as

PX =
d

∏
j=1

PXj ∣Paj
(12.4)

Setting

nk(x(i)j , π
(l)
j ) =

⎧⎪⎪⎨⎪⎪⎩

1 (xk)j = x
(i)
j , πj(x(k)) = πlj

0 otherwise

and

n(x(i)j , π
(l)
j ) =

n

∑
k=1

nk(x(i)j , π
(l)
j ),

The crucial point is that, using Equation 12.4, the likelihood function has product form:



12.5. THE BAYESIAN APPROACH 237

L(θ∣x) = PX∣Θ(x∣θ) =
n

∏
k=1

PX ∣Θ(xk∣θ) =
d

∏
j=1

qj

∏
l=1

kj

∏
i=1

n

∏
k=1

θ
nk(x(i)j ,π

(l)
j )

jil =
d

∏
j=1

qj

∏
l=1

⎛
⎝

kj

∏
i=1
θ
n(x(i)j ,π

(l)
j )

jil

⎞
⎠
. (12.5)

This is the product of likelihood functions; each (j, l) represents the likelihood function for the param-

eters (θjil)
kj
i=1 based on n(π(l)j ) independent observations where

n(π(l)j ) ∶=
kj

∑
i=1
n(x(i)j , π

(l)
j ).

It follows that the maximum likelihood estimate is

θ̂ML;jil =
n(x(i)j , π

(l)
j )

n(π(l)j )
=
frequency of (x(i)j , π

(l)
j ) con�guration

total frequency of π
(l)
j con�guration

.

Furthermore, the estimator satis�es; n(π(l)j )θ̂j.l ∼ Mult(n; θj1l, . . . , θjkj l), where the family of random

vectors ((θj,.,l)
kj
i=1) are independent and for each(j, l)

E[θ̂ML;jil] = θjil,

Cov(θ̂ML;ji1l, θ̂ML;ji2l) = C
(jl)
i1i2
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
n(πl

j)
θjil(1 − θjil) i1 = i2 = i

− 1
n(πl

j)
θji1lθji2l i1 ≠ i2,

and, asymptotically for each (j, l),

√
n(π(l)j )(θ̂ML;j.l − θj.l)

n(π(l)j )→+∞Ð→ N(0,C(jl)).

12.5 The Bayesian Approach

The classical approach to statistics starts by approximating a situation by constructing a probability

model with unknown parameters. Data is then obtained and the parameters estimated from the data.

The estimates are then plugged into the model and the estimated probability is then used to make

predictions. These predictions are considered to be approximate, where the approximation is from two

sources: 1) A probability model does not give a full description of the problem; 2) the true parameter

values are unknown and approximate values are used.

The Bayesian approach deals with the uncertainty in the parameter value by modelling the uncer-

tainty as a probability distribution, so that the parameter may be regarded as the outcome of a random

variable with this distribution. A probability model to approximate the situation is established that

has some unknown parameters and the uncertainty in the parameter values is modelled by placing

a probability distribution πΘ over the parameter space Θ. The distribution πΘ, which models the

uncertainty in the parameters before any data is gathered, is known as the prior distribution. When

data x, and instantiation of X is gathered, this assessment is updated to:



238 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

πΘ∣X(θ∣x) =
PX∣Θ(x∣θ)πΘ(θ)

PX(x)
=

PX∣Θ(x∣θ)πΘ(θ)
∫Θ PX∣Θ(x∣θ)πΘ(θ)dθ

.

This is then used to compute the predictive probability; of a random variable Y that is independent

of X once the parameter value is known; Y ⊥X∣Θ. This is computed as

PY ∣X(y∣x) = ∫
Θ
PY ∣X,Θ(y∣x, θ)πΘ∣x(θ∣x)dθ = ∫

Θ
PY ∣Θ(y∣θ)πΘ∣X(θ∣x)dθ.

To keep computations within a reasonable framework, it is important that the prior distribution is

from a conjugate family.

De�nition 12.6 (Conjugate Prior). A prior distribution from a family that is closed under sampling

is known as a conjugate prior

12.5.1 Independent Bernoulli trials and the Beta distribution

The following discussion motivates and explains the Bayesian approach, illustrating it by a basic

example.

If a thumb-tack is thrown in the air, it will come to rest either on its point (0) or on its head (1).

Suppose the thumb-tack is �ipped n times in identical conditions. Let x(n) denote the sequence of

outcomes

x(n) = (x1, . . . , xn)t.

Each trial is a Bernoulli trial with probability θ of success (obtaining a 1). This is denoted by

Xi ∼ Be(θ), i = 1, . . . , n.

Using the Bayesian approach, the parameter θ is be regarded as the outcome of a random variable,

which is denoted by Θ. The outcomes are conditionally independent, given θ. This is denoted by

Xi ⊥Xj ∣Θ, i ≠ j.

When Θ = θ is given, the random variables X1, . . . ,Xn are independent. Let X(n) = (X1, . . . ,Xn)t so
that

PX(n)∣Θ(x(n)∣θ) =
n

∏
l=1
θxl(1 − θ)1−xl = θk(1 − θ)n−k

where k = ∑n
l=1 xl.

The problem is use x(n) to make an assessment of θ and then use this to assess the probability function

for a further outcome Xn+1. The Bayesian approach is, starting with a prior density πΘ(.) over the
parameter space Θ̃ = [0,1], to �nd the posterior density πΘ∣X(n)(.∣x(n)).

πΘ∣X(n)(θ∣x(n)) =
PX(n)∣Θ(x(n)∣θ)πΘ(θ)

PX(n)(x(n))
=

PX(n)∣Θ(x(n)∣θ)πΘ(θ)

∫ PX(n)∣Θ(x(n)∣ϕ)πΘ(ϕ)dϕ
.



12.5. THE BAYESIAN APPROACH 239

Let πΘ be the uniform density on [0,1]. This represents no initial preference concerning θ; all values

are equally plausible2. The choice of prior may seem arbitrary, but following the computations below,

it should be clear that, from a large class of priors, the �nal answer does not depend much on the

choice of prior if the thumb-tack is thrown a large number of times.

With the uniform prior,

∫
1

0
PX(n)∣Θ(x(n)∣θ)πΘ(θ)dθ = ∫

1

0
θk(1 − θ)n−kdθ = k!(n − k)!(n + 1)! . (12.6)

The posterior distribution is a Beta density

πΘ∣X(n)(θ∣x
(n)) =

⎧⎪⎪⎨⎪⎪⎩

(n+1)!
k!(n−k)!θ

k(1 − θ)n−k 0 ≤ θ ≤ 1
0 otherwise.

(12.7)

The Beta distribution is not restricted to integer values; the Euler gamma function is necessary to

extend the de�nition to positive integers.

De�nition 12.7 (Euler Gamma Function). The Euler Gamma Function Γ(α) ∶ (0,+∞)→ (0,+∞) is
de�ned as

Γ(α) = ∫
∞

0
xα−1e−xdx. (12.8)

The Euler Gamma function satis�es the following properties.

Lemma 12.8. For all α > 0, Γ(α + 1) = αΓ(α). If n is an integer satisfying n ≥ 1, then

Γ(n) = (n − 1)!

Proof Note that Γ(1) = ∫ ∞0 e−xdx = 1. For all α > 0, integration by parts gives

Γ(α + 1) = ∫
∞

0
xαe−xdx = αΓ(α). (12.9)

The result follows directly.

For Bernoulli sampling, given a sequence x = (x1, . . . , xn) containing k 1's and n− k 0's, the likelihood

function is L(θ) = θk(1 − θ)n−k. Since

π(θ∣x)∝ L(θ∣x)π(θ)
2All statistical methods contain some ad-hoc element and in Bayesian statistics, this is contained in the choice of

prior distribution. The results obtained from any statistical analysis are only reliable if there is su�cient data so that

any inference will be robust under a rather general choice of prior.

There are well known di�culties with the statement that a uniform prior represents no preference concerning the value

of θ. If the prior density for Θ is uniform, then the prior density of Θ2 will not be uniform, so `no preference' for values

of Θ indicates that there is a distinct preference among possible initial values of Θ2. If π1(x) = 1 for 0 < x < 1 is the

density function for Θ and π2 is the density function for Θ2, then π2(x) =
1

2x1/2 for 0 < x < 1.



240 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

where π is the prior, it therefore follows that the prior should have the form

π(θ)∝ θa(1 − θ)b

for some values a and b to guarantee that both prior and posterior come from the same conjugate

family. In this case, the family of distributions is the family of Beta distributions, de�ned as follows:

De�nition 12.9 (Beta Density). The beta density Beta(α,β) with parameters α > 0 and β > 0 is

de�ned as the function

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

Γ(α+β)
Γ(α)Γ(β) t

α−1(1 − t)β−1 t ∈ [0,1]
0 t /∈ [0,1]

(12.10)

The Beta density is a probability density function for all real α > 0 and β > 0. It follows that, for

Binomial sampling, updating may be carried out very easily for any prior distribution within the Beta

family. Suppose the prior distribution π0 is the B(α,β) density function, n trials are observed, with k

taking the value 1 and n − k taking the value 0. Then

πΘ∣X(n)(θ∣x(n)) =
PX(n)∣Θ(x(n)∣θ)πΘ(θ)

PX(n)(x(n))

= Γ(α + β)
Γ(α)Γ(β)PX(n)(x(n))

θα+k−1(1 − θ)β+n−k−1 = cθα+k−1(1 − θ)β+n−k−1.

Since ∫ 1
0 πΘ∣X(n)(θ∣x(n))dθ = 1, therefore:

πΘ∣X(n)(θ∣x(n)) =
⎧⎪⎪⎨⎪⎪⎩

Γ(α+β+n)
Γ(α+k)Γ(β+n−k)θ

α+k−1(1 − θ)β+n−k−1 θ ∈ (0,1)
0 θ /∈ (0,1).

so that πΘ∣X(n)(θ∣x(n)) is a B(α + k, β + n − k) density.

De�nition 12.10 (Maximum Posterior Estimate). The maximum posterior estimate, θ̂MAP , is the

value of θ which maximises the posterior density πΘ∣X(n)(θ∣x(n)).

When the posterior density is B(k + α,n − k + β), an easy computation gives

θ̂MAP =
k + α − 1

n + α + β − 2 .

Note that when the prior density is uniform, as in the case above, the MAP and MLE are exactly the

same. The parameter, of course, is not an end in itself. The parameter ought to be regarded as a

means to computing the predictive probability. The posterior is used to compute this.



12.5. THE BAYESIAN APPROACH 241

The Predictive Probability for the Next Toss Suppose that πΘ∣Xn
(θ∣x(n)) has aB(α+k, β+n−k)

distribution.The predictive probability for the next toss, for a = 0 or 1, is given by

PXn+1∣X(n)(a∣x(n)) = ∫
1

0
PXn+1(a∣θ)πΘ∣X(n)(θ∣x(n))dθ.

Since PXn+1∣Θ(1∣θ) = θ, it follows (using Equation (12.9)) that

PXn+1∣X(n)(1∣x(n)) =
Γ(α + β + n)

Γ(α + k)Γ(β + n − k) ∫
1

0
θ(α+k)(1 − θ)β+n−k−1dθ

= Γ(α + β + n)
Γ(α + k)Γ(β + n − k)

Γ(α + k + 1)Γ(β + n − k)
Γ(α + β + n + 1)

= α + k
α + β + n.

In particular, note that the uniform prior, π0(θ) = 1 for θ ∈ (0,1), is the B(1,1) density function, so

that for binomial sampling with a uniform prior, the predictive probability is

PXn+1∣X(n)(1∣x(n)) =
k + 1
n + 2;

(12.11)

PXn+1∣X(n)(0∣x(n)) =
n + 1 − k
n + 2 .

This distribution, or more precisely k+1
n+2 , is known as the Laplace rule of succession.

12.5.2 Multinomial Sampling and the Dirichlet Integral

Consider the case of multinomial sampling, where there are k possible outcomes in the state space

X = (x(1), . . . , x(k)) and PX(x(j)) = θj , j = 1, . . . , k so that θ1 + . . . + θk = 1. Consider n independent

trials, X = (X1, . . . ,Xn)t with outcomes x = (x1, . . . , xn).
The likelihood function for θ, given x is:

L(θ∣x) = θn1
1 . . . θnk

k

where nj = ∑n
i=1 1x(j)(xi); i.e. the number of times outcome x(j) appears in the sequence x, for

j = 1, . . . , k. It follows that, to ensure that the prior and posterior are within the same conjugate

family, the prior has the form:

π(θ)∝ θα1
1 . . . θαk

k .

It follows that the only possible family of distributions to use is the Dirichlet family, de�ned as follows.

De�nition 12.11 (Dirichlet Density). The Dirichlet density Dir(a1, . . . , ak) is the function

π(θ1, . . . , θk) =
⎧⎪⎪⎨⎪⎪⎩

Γ(a1+...+ak)
∏k

j=1 Γ(ak)
(∏k

j=1 θ
aj−1
j ) θj ≥ 0,∑k

j=1 θj = 1,

0 otherwise,
(12.12)



242 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

where Γ denotes the Euler Gamma Function, given in De�nition 12.7. The parameters (a1, . . . , ak) are
all strictly positive and are known as hyper parameters.

This density, and integration with respect to this density function, are to be understood in the following

sense. Since θk = 1 −∑k−1
j=1 θj , it follows that π may be written as π(θ1, . . . , θk) = π̃(θ1, . . . , θk−1), where

π̃(θ1, . . . , θk−1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ(a1+...+ak)
∏k

j=1 Γ(ak)
(∏k−1

j=1 θ
aj−1
j ) (1 −∑k−1

j=1 θj)
ak−1

θj ≥ 0,∑k−1
j=1 θj ≤ 1,

0 otherwise.
(12.13)

Clearly, when k = 2, this reduces to the Beta density. The Dirichlet density is a probability density

function.

Properties of the Dirichlet Density The family of Dirichlet densities Dir(α1, . . . , αk) ∶ α1 >
0, . . . , αk > 0 is closed under sampling: Consider a prior distribution πΘ ∼ Dir(α1, . . . , αk) and suppose

that observations of n independent trials are made: x ∶= (x1, . . . , xn) where nj = ∑n
i=1 1x(j)(xi), i.e.

the number of appearances of x(j) in the sequence, for j = 1, . . . , n. Let πΘ∣X denote the posterior

distribution. Then

πΘ∣X(θ1, . . . , θk∣x) ∼ Dir(α1 + n1, . . . , αk + nk).

The Dirichlet density is usually written exclusively as a function of k variables, πΘ(θ1, . . . , θk), where
there are k − 1 independent variables and θk = 1 −∑k−1

j=1 θj .

Mean Posterior Estimate The mean posterior estimate is the expected value of the posterior dis-

tribution. Here,

θ̂i,MEP = ∫ θiπ(θ1, . . . , θk∣x, α)dθ1 . . . dθk =
ni + αi

∑k
j=1 nj +∑k

j=1 αj

.

This computation is left as an exercise.

12.5.3 Distribution for Conditional Probabilies of a Bayesian network

The notation θj.l = (θj1l, . . . , θjkj l) is used to denote the probability distribution over the states of Xj ,

given that π
(l)
j is the parent con�guration. The prior distribution over θj.l is taken to be

πΘjl ∼Dir(αj1l, . . . , αjkj l).

The prior distribution over the entire collection of parameters Θ is taken to be πΘ = ∏jl πΘjl . That

is, the distributions over (θj.l)(j,l) are mutually independent for di�erent (j, l). Suppose an n × d data

matrix is obtained, with n complete instantiations. Let n(x(i)j , π
(l)
j ) denote the number of times that

the con�guration (x(i)j , π
(l)
j ) appears in x. It follows that



12.5. THE BAYESIAN APPROACH 243

πΘ∣X(θ∣x) = πΘ(θ)
PX∣Θ(x∣θ)
PX(x)

.

Recall the expression for PX∣Θ(x∣θ) found in Equation (12.5). It follows that

πΘ∣X(θ∣x) =
1

PX(x)
d

∏
j=1

qj

∏
l=1

⎛
⎝
πΘjl(θjl)

kj

∏
i=1
θ
n(x(i)j ,π

(l)
j )

jil

⎞
⎠
.

From this, it follows directly that πΘ∣X =∏jl πΘjl∣X, where

πΘjl∣X(.∣x) ∼Dir(n(x
(1)
j , π

(1)
j ) + αj1l, . . . , n(x

(kj)
j , π

(1)
j ) + αjkj l).

The posterior distribution of θj.l depends only on counts of family con�gurations at node j and not on

con�gurations at any other node.

Predictive Distribution The predictive distribution of a new case x(n+1) may be computed us-

ing the posterior density; with an n × d data matrix x of n complete instantiations, θjil, de�ned in

Equation (12.1), will be estimated by:

θ̃jil = PXn+1,j ∣Paj ,X
(x(i)j ∣π

(l)
j ,x). (12.14)

This is the predictive conditional probability that variable Xn+1,j attains value x
(i)
j , given the parent

con�guration π
(l)
j and the cases stored in x. Let X denote the n × d matrix where each row Xk. is an

independent copy of X = (X1, . . . ,Xd). Recall that

πΘ∣X =
d

∏
j=1

qj

∏
l=1
πΘjl∣X.

Using Bayes rule,

πΘ∣Pan+1,j ,X
= πΘ∣X

PPan+1,j ∣Θ,X

PPan+1,j ∣X
= πΘ∣X

PPan+1,j ∣Θ

PPan+1,j ∣X
.

Note that PPan+1,j ∣Θ is an expression containing sums and products of (θail)a=1,...,j−1,i=1,...,ka,l=1,...,qa . It
follows that πΘ∣Pan+1,j ,X

may be expressed as a product

πΘ∣Pan+1,j ,X
= A((θ)a.l)a=1,...,j−1,l=1,...,qa)πΘjl∣X(θj.l∣x)

d

∏
a=j+1

qj

∏
l=1
πΘal∣X(θa.l∣x)

where A is a probability density over (θail)a=1,...,j−1,i=1,...,ka,l=1,...,qa . Then, by computations as before,

with θ̃jil de�ned by Equation (12.14),



244 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

θ̃jil = PXn+1,j ∣Pan+1,j ,X
(x(i)j ∣π

(l)
j ,x)

= ∫
S
PXn+1,j ∣Pan+1,j ,Θ,X(x

(i)
j ∣π

(l)
j , θ,x)πΘ∣Pan+1,j ,X

(θ∣π(l)j ,x)dθ

= ∫
Sjl

θjilπΘj.l∣X(θj.l∣x)dθj.l

= ∫
Sjl

θjil
Γ(n(π(l)j ) + αj.l)

∏kj
m=1 Γ(n(x

(m)
j , π

(l)
j ) + αjml)

kj

∏
i=1
θ
n(x(i)j ,π

(l)
j )+αjil

jil dθ

=
Γ(n(π(l)j ) + αj.l)

∏kj
m=1 Γ(n(x

(m)
j , π

(l)
j ) + αjml)

∫
Sjl

∏
m≠i

θ
n(x(m)j ,π

(l)
j )

jml θ
n(x(i)j ,π

(l)
j )+1

jil dθ

=
Γ(n(π(l)j ) + αj.l)

∏kj
m=1 Γ(n(x

(m)
j , π

(l)
j ) + αjml)

×
Γ(n(x(i)j ∣π

(l)
j ) + αjil + 1)∏m≠i Γ(n(x

(i)
j , π

(l)
j ) + αjil)

Γ(n(π(l)j ) + αj.l + 1)

=
n(x(i)j , π

(l)
j ) + αjil

n(π(l)j ) +∑
kj
i=1 αjil

,

where Sjl is de�ned as

Sjl =
⎧⎪⎪⎨⎪⎪⎩
(θjil)

kj
i=1∣θjil ≥ 0, i = 1, . . . , kj ,

kj

∑
i=1
θjil = 1

⎫⎪⎪⎬⎪⎪⎭
.

Comparing with θ̂i,MLE = ni

n , note that

lim
n→+∞

θ̂iMEP

θ̂iMLE

= 1.

12.6 Updating, Missing Data, Fractional Updating

Updating Suppose the cases x(1), . . . , x(n) are complete. Suppose next that x
(i)
j and π

(l)
j are observed

in x(n+1). Then, by Bayes rule,

θj.l∣(x(1), . . . , x(n), (x
(i)
n+1,j , π

(l)
n+1,j)) ∼Dir(n

∗(x(1)j ∣π
(l)
j ) + αj1l, . . . , n

∗(x(kj)j ∣π(l)j ) + αjkj l),

where

n∗(x(r)j , π
(l)
j ) =

⎧⎪⎪⎨⎪⎪⎩

n(x(r)j , π
(l)
j ) r ≠ i

n∗(x(i)j , π
(l)
j ) = n(x

(i)
j , π

(l)
j ) + 1 r = i.

The virtual sample size for π
(l)
j is updated as

s∗ = n(π(l)j ) + 1 +
kj

∑
i=1
αjil.



12.6. UPDATING, MISSING DATA, FRACTIONAL UPDATING 245

A Missing Instantiation Suppose the instantiation at node j is missing in the new case; the parent

con�guration π
(l)
j is present. Let

X =
⎛
⎜⎜
⎝

x(1)
⋮

x(n)

⎞
⎟⎟
⎠

denote the complete instantiations and let x(n+1) denote instantiation n + 1 where the value xn+1,j is

missing. The distribution of the random vector θj.l∣x, xn+1 is expressed as the mixture of distributions

kj

∑
i=1
wiDir(n(x(i)j ∣π

(l)
j ) + αj1l, . . . , n(x(i)j , π

(l)
j ) + 1 + αjil, . . . , n(x

(kj)
j , π

(l)
j ) + αjkj l),

where

wi = PXj,n+1∣Paj,n+1,X
(x(i)j ∣π

(l)
j ,x) = ∫ θjilπΘ∣X(θ∣x)dθ.

Updating: Parent Con�guration and the state at node j are missing Consider a new case

x(n+1) where both the state and the parent con�guration of node j are missing. Then the distribution

of θj.l∣x, xn+1 is given as the mixture of distributions

kj

∑
i=1
viDir(n(x(1)j , π

(l)
j ) + αj1l, . . . , n(x(i)j ∣π

(l)
j ) + 1 + αjil, . . . , n(x

(kj)
j , π

(l)
j ) + αjkj l)

+Dir(n(x(1)j , π
(l)
j ) + αj1l, . . . , n(x

(kj)
j , π

(l)
j ) + αjkj l)v∗,

where

vi = PXj ,Paj ∣X,Xn+1
(x(i)j , π

(l)
j ∣x, xn+1), i = 1, . . . , kj

and

v∗ = 1 − PPaj ∣X,Xn+1
(π(l)j ∣x, xn+1).

Fractional Updating The preceding shows that adding new cases with missing values results in

dealing with increasingly messy mixtures, with increasing numbers of components. The standard way

to deal with this is to use a Dirichlet integral that is an approximation of the true update, taking the

updated distribution as:

θj.l ∼ Dir (n∗(x
(1)
j , π

(l)
j ) + αj1l, . . . , n

∗(x(kj)j , π
(l)
j ) + αjkj l)

where

n∗(x(i)j , π
(l)
j ) = n(x

(i)
j , π

(l)
j ) + PXj ,Paj ∣X,Xn+1

(x(i)j , π
(l)
j ∣x, xn+1), i = 1, . . . , kj .

This is known as fractional updating.



246 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

Fading If the parameters change with time, then information learnt a long time ago may not be so

useful. A way to make the old cases less relevant is to have the sample size discounted by a fading

factor qF , a positive number less than one.

The fading update is as follows: using n(x(i)j , π
(l)
j ) in this section to denote n(x(i)j , π

(l)
j )+αjil previously,

if (x(i)j , π
(l)
j ) is observed in the next instantiation, then n is updated to n∗ where

n∗(x(r)j , π
(l)
j ) =

⎧⎪⎪⎨⎪⎪⎩

qFn(x(r)j , π
(l)
j ) r ≠ i

1 + qFn(x(i)j , π
(l)
j ) r = i.

If (π(l)j , x
(i)
j ) is observed for some i = 1, . . . , kj , the virtual sample size for parent con�guration π

(l)
j is

updated to

n∗(π(l)j ) = 1 + qFn(π
(l)
j )

and

n∗(π(a)j ) = qFn(π
(a)
j ) a ≠ l.

Consider the sequence of equations

sn = qF sn−1 + 1, s0 = s.

This may be solved as

sn = qnF s +
n

∑
i=0
qiF = qnF s +

1 − qn+1F

1 − qF
.

The limiting e�ective maximal sample size is therefore

s∗ =
1

1 − qF
.

12.7 Likelihood Function for the Graph Structure

The Bayesian approach to parameter learning leads to a straightforward and elegant approach to

computing a likelihood function for the graph structure, given data x. This was introduced by Cooper

and Herskovitz (1992) [31]. Let G = (V,D) denote a directed acyclic graph with edge set D. Let D
denote the collection of all possible edge sets over DAGs with node set V , where V is the collection of

random variables. Suppose that, for each D, we have a prior distribution πΘ∣D(θ∣D) for the parameters

θ when the edge set is D. The likelihood for the graph structure D given data x is:

PX∣D(x∣D) = ∫ PX∣Θ,D(x∣θ,D)πΘ∣D(θ∣D)dθ,

Since πΘ∣D(θ∣D) =∏d
j=1∏

qj
l=1 πΘj.l∣D(θj.l∣D), it follows that:



12.8. BAYESIAN SUFFICIENT STATISTICS 247

PX∣D(x∣D) = ∫
n

∏
k=1

PX ∣Θ,D(x(k)∣θ,D)
d

∏
j=1

qj

∏
l=1
ϕ(θj.l∣αj.l,D)dθj.l

where ϕ(θj.l∣αj.l) is a compact way of referring to the Dirichlet density Dir(αj1l, . . . , αjkj l).

Because PX ∣Θ,D(x∣θ,D) has a convenient product form, computing the Dirichlet integral is straight-

forward and gives

L(D∣x) ∶= PX∣D(x∣D) =
d

∏
j=1

qj

∏
l=1

Γ(∑kj
i=1 αjil)

Γ(n(πlj) +∑
kj
i=1 αjil)

kj

∏
i=1

Γ(n(xij ∣πlj) + αjil)
Γ(αjil)

. (12.15)

The computation is left as an exercise; this is the Cooper Herskovitz likelihood for the graph structure.

12.8 Bayesian Su�cient Statistics

Let X be an n× d random matrix, where each row is an independent copy of a discrete random vector

X = (X1, . . . ,Xd) and let θ be a continuous random vector of unknown parameters. Suppose that, for

a parameter vector θ, X has conditional probability function pX(.∣θ). Suppose that there is a prior

density πΘ (θ) over the parameter space and suppose that t is a function or a statistic of X,

t = t (X) .

De�nition 12.12 (Bayesian Su�ciency). A statistic T de�ned as T = t (X) such that for every prior

πΘ within the space of prior distributions under consideration, there is a function ϕ such that

πΘ∣X(θ∣x) =
pX(x∣θ)πΘ(θ)

pX(x)
= ϕ(θ, t(x)) (12.16)

is called a Bayesian su�cient statistic for θ.

This de�nition states that for learning about θ based on X, the statistic T contains all the relevant

information, since the posterior distribution depends on X only through T .

The following result shows that if the conditional distribution of X given t(X) does not depend on θ,

then t(X) is Bayesian su�cient for θ. If the families of probability measures have �nite dimensional

parameter spaces, then the converse is also true. If there are an in�nite number of parameters, counter

examples may be obtained to the converse statement.

Proposition 12.13. Let t denote a function and let T = t(X). If

X ⊥ θ∣T, (12.17)

where Equation (12.17) means that

pX∣T (x∣t, θ) = pX∣T (x∣t) independent of θ ∈ Θ (12.18)

then T = t(X) is a Bayesian su�cient statistic for θ.



248 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

Proof of Proposition 12.13 As usual, let T = t(X). An application of Bayes rule gives

πΘ∣X,T (θ∣x, t) =
pX,T ∣Θ(x, t∣θ)πΘ(θ)

pX,T (x, t)
=
pX∣T,Θ(x∣t, θ)pT ∣Θ(t∣θ)πΘ(θ)

pX,T (x, t)
, (12.19)

and Equation (12.19) with an application of (12.18) gives

πΘ∣X,T (θ∣x, t) =
pX∣T (x∣t)pT ∣Θ(t∣θ)πΘ(θ)

pX∣T (x∣t)pT (t)

=
pT ∣Θ(t∣θ)πΘ(θ)

pT (t)
= πΘ∣T (θ∣t). (12.20)

The proposition is proved by setting ϕ(θ, t(x)) = πΘ∣T (θ∣t(x)).

Example 12.14 (Tossing a Thumb-tack).

In the thumb-tack experiment described in section 12.5.1, there is a single parameter, θ. In this

paragraph, a Bayesian su�cient statistic is derived for θ, for a suitable class of prior distributions. Let

πΘ denote the prior density function for θ, and let Θ denote the random variable with this density

function. In this case, X is a n×1 matrix, a column vector, which will be written as X = (X1, . . . ,Xn)t,
a sequence of n independent Bernoulli trials, each with probability θ of success (that is Xj ∼ Be(θ),
j = 1, . . . , n and Xi ⊥Xj ∣θ for i ≠ j). The sequence of outcomes will be denoted by the vector

x = (x1, . . . , xn)t.

That is, for each j = 1, . . . , n, xj = 1 or 0. The statistic t is a function of n variables, de�ned as

t(x) =
n

∑
j=1

xj .

That is, when t is applied to a sequence of n 0's and 1's, it returns the number of 1's in the sequence.

Here, T = t(X) = ∑n
j=1Xj and therefore T has a binomial distribution with the parameters n and θ,

since it is the sum of independent Bernoulli trials. The probability function of T is given by

pT ∣Θ(k∣θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎝
n

k

⎞
⎠
θk(1 − θ)n−k k = 0,1, . . . , n

0 other k.

Since t is a function of x, it follows that

pX,T ∣Θ(x, k∣θ) =
⎧⎪⎪⎨⎪⎪⎩

θk(1 − θ)n−k k = 0,1, . . . , n
0 other k

from which

pX ∣T,Θ(x∣k, θ) =
pX,T ∣Θ(x, k∣θ)
pT ∣Θ(k∣θ)

= 1

⎛
⎝
n

k

⎞
⎠

.



12.9. PREDICTION SUFFICIENCY 249

The right hand side does not depend on θ, from which equation (12.18) holds and hence equation

(12.17) follows. Therefore, if x = (x1, . . . , xn) are n independent Bernoulli trials, each with parameter

θ, the function t such that t(x) = ∑n
l=1 xl is a Bayesian su�cient statistic for the parameter θ. In the

thumb-tack example, given in subsection 12.5.1, the posterior distribution, based on a uniform prior is

an explicit function of the data x only through the function t(x).

Now consider a random vector X and suppose now that t is a generic su�cient statistic. Since t is a

function of X (i.e. t = t(X)), it follows, using the rules of conditional probability and equation (12.18),

that

pX ∣Θ(x∣θ) = pX,T ∣Θ(x, t(x)∣θ) = pX ∣T,Θ(x∣t(x), θ)pT ∣Θ(t(x)∣θ) = pX ∣T (x∣t(x))pT ∣Θ(t(x)∣θ).

In other words, there is a factorisation of the form

pX ∣Θ(x∣θ) = g(t(x), θ)h(x), (12.21)

where

h(x) = pX ∣T (x∣t(x)) = pX ∣t(X)(x∣t(x)).

In statistical literature, t(X) is often de�ned to be a su�cient statistic if there is a factorisation of

the type given by equation (12.21). Equation (12.21) is in fact a characterisation of su�ciency in the

sense that the likelihood function for θ depends on data only through t; the aspects of data that do

not in�uence the value of t are not needed for inference about θ, as long as pX ∣Θ(x∣θ) is the object of
study. In the example above, and in many other cases, this o�ers a data reduction. That is, for any n,

a sample of size n can be reduced to a quantity of �xed dimension.

12.9 Prediction Su�ciency

Let X be a discrete random vector, Y a discrete random variable or vector, t a function and let

T = t(X). Let θ be a parameter vector. Suppose X,Y ,Θ and T satisfy

X ⊥ (Y , θ) ∣T. (12.22)

That is, once t(X) is given, there is no additional statistical information in X about Y or θ. The

problem is to predict Y statistically using a function of X.

Proposition 12.15. Let t denote a function and let T = t(X). If X,Y ,T, θ satisfy X ⊥ Y ∣∣(T, θ) and
X ⊥ θ∣T , then

πΘ∣Y ,X,T (θ ∣ y, x, t) = πΘ∣Y ,T (θ ∣ y, t). (12.23)



250 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

Proof Firstly, X ⊥ Y ∣(θ, T ) and X ⊥ θ∣T implies that X ⊥ Y ∣T . It follows that

pX,Y ∣T (x, y∣t) = ∫
Θ
pX,Y ∣θ,T (x, y∣θ, t)πΘ∣T (θ∣t)dθ

= ∫
Θ
pX ∣θ,T (x, y∣θ, t)pY ∣θ,T (y∣θ, t)πθ∣T (θ∣t)dθ

= pX ∣T (x∣t)∫
Θ
pY ∣θ,T (y∣θ, t)πθ∣T (θ∣t)dθ

= pX ∣T (x∣t)pY ∣T (y∣t).

It follows that

pY ∣X,T (y∣x, t) =
pX,Y ∣T (x, y∣t)
pX ∣T (x∣t)

= pY ∣T (y∣t). (12.24)

An application of Bayes rule gives

πΘ∣Y ,X,T (θ∣y, x, t) =
pY ,X,T ∣Θ(y, x, t∣θ)πΘ(θ)

pY ,X,T (y, x, t)
=
pY ,X ∣T,θ(y, x∣t, θ)pT ∣θ(t∣θ)πΘ(θ)

pY ,X,T (y, x, t)

=
pY ∣T,Θ(y∣t, θ)pX ∣T,θ(x∣t, θ)pT ∣θ(t∣θ)πΘ(θ)

pY ,X,T (y, x, t)
,

where the conditional independence X ⊥ Y ∣(θ, T ) was used. Then, since X ⊥ θ∣T , it follows that

pX ∣T,Θ(x∣t, θ) = pX ∣T (x∣t) and hence, using the identity (12.24), that

πΘ∣Y ,X,T (θ∣y, x, t) =
pY ∣T,Θ(y∣t, θ)pX ∣T (x∣t)pT ∣Θ(t∣θ)πΘ(θ)

pY ∣X,T (y ∣ x, t)pX ∣T (x ∣ t)pT (t)
=
pY ∣T,Θ(y∣t, θ)pT ∣Θ(t∣θ)πΘ(θ)

pY ∣T (y ∣ t)pT (t)
.

It follows that

πΘ∣Y ,X,T (θ∣y, x, t) =
pY ,T ∣Θ(y, t ∣ θ)πΘ(θ)

pY ∣T (y, t)
= πΘ∣Y ,T (θ∣y, t),

as claimed.

12.10 Prediction Su�ciency for a Bayesian Network

Let G = (V,E) denote a DAG with V = {X1, . . . ,Xd}, where the nodes are numbered, for convenience
such that for each j,

Πj ⊆ {X1, . . . ,Xj−1},

where Πj (as usual) denotes the parent set for Xj .

Using a fully Bayesian approach to the problem, the parameter vector θ is considered as an ob-

servation on a random vector Θ and for each j = 1 . . . , d the parameter vector θj an observation on a

random vector Θj .



12.10. PREDICTION SUFFICIENCY FOR A BAYESIAN NETWORK 251

De�nition 12.16 (Parameter Modularity). A set of parameters Θ for a Bayesian Network satis�es

parameter modularity if it may be decomposed into d distinct parameter sets Θ1, . . . ,Θd such that for

j = 1, . . . , d, the parameters in vector Θj are directly linked only to node Xj.

This de�nition was introduced by Heckerman, Geiger and Chickering (1995) [62].

Under the assumption of parameter modularity, the DAG may be expanded by adding the parameter

nodes as parent variables in the graph, and directed links from each node in the set Θj to the node Xj

giving an extended graph that is directed and acyclic, where pX1,...,Xd∣Θ has the decomposition

pX1,...,Xd∣Θ =
d

∏
j=1

pXj ∣Θj ,Πj
. (12.25)

Furthermore, under the assumption of modularity, Θ1, . . . ,Θd are independent random vectors and the

joint prior distribution is a product of individual priors; πΘ =∏d
j=1 πΘj

.

The following notation is useful:

X̃j ∶= ((X1,Θ1), . . . , (Xj−1,Θj−1)) , j = 1, . . . , d

and, for j = 1, . . . , d, tj is used to denote the function such that

tj(X̃j) = Πj .

It follows directly from equation (12.25) that

X̃j ⊥ (Xj ,Θj) ∣Πj .

In other words, the parent set Πj is a prediction su�cient statistic for (Xj ,Θj) in the sense that there

is no further information in ((X1,Θ1), . . . , (Xj−1,Θj−1)) relevant to uncertainty about either Θj or

Xj .

In a Bayesian network where the parameters satisfy the modularity assumption (De�nition 12.16),

(Πj ,Xj) are a Bayesian su�cient statistic for Θj . The modularity assumption is clearly satis�ed when

Equation (12.25) holds.

Notes The discussion of the thumb-tack and learning for DAGs is taken from D. Heckerman [61]

and [62]. Learning from incomplete data is discussed in [116]. Another treatment of learning is found

in [99] (Neapolitan). The Savage distribution is due to J.L. Savage [121]. The Dickey distribution is

due to J.M. Dickey [38].



12.11 Exercises

1. Suppose one has a data base C with n cases of con�gurations over a collection of variables V .

Let Sp(V ) denote the set of possible con�gurations over V and let #(v) denote the number of
cases of con�guration v. De�ne PC(v) = #(v)

n . Let PM denote a probability distribution over

Sp(V ). Assume that PC(v) = 0 if and only if PM(v) = 0 and discount these con�gurations.

De�ne SM(C) = −∑c∈C logPM(c).

Let DKL denote the Kullback Leibler distance. Show that

SM(C) − SC(C) = nDKL(PC ∣PM).

2. (a) Consider the thumb-tack experiment and the conditional independence model for the prob-

lem and the uniform prior density for θ. Let X denote the vector of n i.i.d. copies of the

random variable and let Xn+1 denote an additional copy, independent of X. Let x denote

an outcome of X What is PXn+1∣X (head∣x) ?

(b) Prove the Laplace Rule of Succession. Namely, let {X1, . . . ,Xn+1} be independent, identi-
cally distributed Bernoulli random variables, where PXi(1) = 1−PXi(0) = θ and θ ∼ U(0,1).
Then the Laplace Rule of Succession states that

PXn+1∣X1+...+Xn
(1∣s) = s + 1

n + 2 .

3. Let Θ ∼ Beta(α,β). Compute E[Θ] and V(Θ). You may use the fact that if Θ ∼ Beta(α,β)
then its density is given by

π(θ) = Γ(α + β)
Γ(α)Γ(β)θ

α−1(1 − θ)β−1 θ ∈ [0,1].

4. Let (X1, . . . ,Xn+1)t be a vector of independent identically distributed random variables, each with

probability distribution given by PX(x(i)) = θi, i = 1, . . . , k. Suppose that the prior distribution
over θ is Dir(αq1, . . . , αqk) where ∑k

i=1 qi = 1. Let X = (X1, . . . ,Xn) and let x be an n-vector of

outcomes where x(i) appears ni times, for i = 1, . . . , k and ∑k
i=1 ni = n. Show that

PXn+1∣X (x
(i) ∣ x) = ∫

SL

θiπ (θ1, . . . , θL∣x;αq)dθ1 . . . dθL =
ni + αqi
n + α . (12.26)

5. Let Θ = (Θ1, . . . ,ΘL) be a continuous random vector with Dir (α1, . . . , αL) distribution. Com-

pute V (Θi).

6. (a) Let V = (V1, . . . , VK) be a continuous random vector, with

V ∼ Dir (a1, . . . , aK) ,

and set

252



12.11. EXERCISES 253

Ui =
Vix

−1
i

∑K
i=1 Vix

−1
i

, , i = 1, . . . ,K,

where x = (x1, . . . , xK) is a vector of positive real numbers; that is, xi > 0 for each i =
1, . . . ,K. Show that U = (U1, . . . , UK) has density function

Γ (∑k
i=1 ai)

∏K
i=1 Γ(ai)

K

∏
i=1
uai−1i ( 1

∑K
i=1 uixi

)
∑K

i=1 ai K

∏
i=1
xaii .

This density is denoted

U ∼ S (a, x) .

This is due to J.L. Savage [121]. Note that the Dirichlet density is obtained as a special

case when xi = c for i = 1, . . . ,K.

The next two parts illustrate how the Savage distribution can arise in Bayesian analysis, for

updating an objective distribution over the subjective assessments of a probability distri-

bution by several di�erent researchers, faced with a common set of data.

(b) Consider several researchers studying an unknown quantity X, where X can take values in

{1,2, . . . ,K}. Each researcher has his own initial assessment of the probability distribution

V = (V1, . . . , VK) for the value that X takes. That is, for a particular researcher,

Vi = PX (i) , i = 1, . . . ,K.

It is assumed that

V ∼ Dir (a1, . . . , aK) .

Each researcher observes the same set of data with the common likelihood function

li = P (data∣{X = i}) , i = 1, . . . ,K.

The coherent posterior probability of a researcher is

Ui = P ({X = i} ∣ data) , i = 1,2, . . . ,K.

Let U = (U1, . . . , UK). Prove that

U ∼ S (a, l−1) ,

where a = (a1, . . . , aK) and l−1 = (l−11 , . . . , l−1K ). This is due to J.M. Dickey [38].



254 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

(c) Show that the family of distributions S (a, l−1) is closed under updating of the opinion

populations. In other words, if

V ∼ S (a, z) ,

before the data is considered, then

U ∼ S (a, z × l−1) ,

after the data update, where

z × l−1 = (z1l−11 , . . . , zK l
−1
K ) .

7. Consider a Bayesian Network over two binary variables A and B, where the Directed Acyclic

Graph is A → B and A and B each take the values 0 or 1. Let (Θa,Θb∣y,Θb∣n) denote three

independent random variables representing the unknown parameters. Let θa = PA∣Θa
(1∣θa), θb∣y =

PB∣A,Θb∣y
(1∣1, θb∣y), θb∣n = PB∣A,Θb∣n

(1∣0, θb∣n). Let the prior distributions over the parameters be

πa(θ) =
⎧⎪⎪⎨⎪⎪⎩

3θ2 0 ≤ θa ≤ 1
0 θ /∈ [0,1],

πb∣y(θ) =
⎧⎪⎪⎨⎪⎪⎩

12θ2(1 − θ) 0 ≤ θ ≤ 1
0 θ /∈ [0,1],

πb∣n(θ) =
⎧⎪⎪⎨⎪⎪⎩

12θ(1 − θ)2 0 ≤ θ ≤ 1
0 θ /∈ [0,1],

Suppose that there is a single instantiation, where B = 1 is observed, but A is unknown. Perform

the approximate updating.

8. Let the likelihood for θ = (θ1, . . . , θL) with data x be given by

L (θ;x) =
L

∏
j=1

θ
nj

j ,

where nj is the number of times the symbol xj (in a �nite alphabet with L symbols) is present

in x and ∑L
j=1 θj = 1. For the prior distribution over θ, a �nite Dirichlet mixture is taken, given

by

πΘ (θ) =
k

∑
i=1
λiDir (α(i)q(i)1 , . . . , α(i)q(i)L ) ,

where λi ≥ 0, ∑k
i=1 λi = 1 (the mixture distribution), α(i) > 0, q(i)j > 0, ∑L

i=1 q
(i)
j = 1 for every i.

Compute the mean posterior estimate θ̂j;MP for j = 1, . . . , L.



12.11. EXERCISES 255

9. Let ϕ(θj.l, αj.l) denote the Dirichlet density Dir(αj1l, . . . , αjkj l). By performing the required

integration, prove that the Likelihood function for the graph structure, de�ned by

PX∣D(x∣D) = ∫
n

∏
k=1

PX ∣Θ,D(x(k)∣θ,D)
d

∏
j=1

qj

∏
l=1
ϕ(θj.l, αj.l)dθj.l

is given by

PX∣D(x∣D) =
d

∏
j=1

qj

∏
l=1

Γ (∑kj
i=1 αjil)

Γ (n(πlj) +∑
kj
i=1 αjil)

kj

∏
i=1

Γ (n(xij , πlj) + αjil)
Γ (αjil)

.

You may use the identity:

∫
1

0
∫

1−θ1

0
. . .∫

1−(θ1+...+θn−2)

0

⎛
⎝
n−1
∏
j=1

θ
αj−1
j

⎞
⎠
⎛
⎝
1 −

n−1
∑
j=1

θj
⎞
⎠

αn−1

dθn−1 . . . dθ1 =
∏n

j=1 Γ(αj)
Γ(∑n

j=1 αj)
.

What parameters αj.l are used if a uniform prior is taken on every θj.l? You may use Γ(n) =
(n − 1)!.



12.12 Short Answers

1. Firstly, note that

SM(C) = −∑
c∈C

logPM(c) = − ∑
v∈Sp(v)

(#(v)) logPM(v) = − ∑
v∈Sp(v)

nPC(v) logPM(v).

This is true for all M ; in particular, take M = C, so that

SC(C) = − ∑
v∈Sp(v)

nPC(v) logPC(v)

giving

SM(C) − SC(C) = n ∑
v∈Sp(v)

PC(v) log P
C(v)

PM(v) = ndK(P
C ∣PM).

2. (a) Suppose x contains k heads. Then

PXn+1∣X(H ∣x) = ∫
1

0
PXn+1∣Θ,X(H ∣θ,x)πΘ∣X(θ∣x)dθ

= (n + 1)!
k!(n − k)! ∫

1

0
θk+1(1 − θ)n−kdθ

= (n + 1)!
k!(n − k)!

(k + 1)!(n − k)!
(n + 2)! = k + 1

n + 2 .

(b) Using the evaluation of the Beta integral,

PXn+1∣X1+...+Xn
(1∣s)

= ∫
1

0
PXn+1∣X1+...+Xn,Θ(1∣s, θ)πΘ∣X1+...+Xn

(θ∣s)dθ

= ∫
1

0
θ

PX1+...+Xn∣Θ(s∣θ)πΘ(θ)
∫ PX1+...+Xn∣Θ(s∣θ)πΘ(θ)dθ

dθ

=

⎛
⎝
n

s

⎞
⎠ ∫

1
0 θ

s+1(1 − θ)n−sdθ

⎛
⎝
n

s

⎞
⎠ ∫

1
0 θ

s(1 − θ)n−sdθ

=
n!

s!(n−s)!
(s+1)!(n−s)!
(n+2)!

n!
s!(n−s)!

s!(n−s)!
(n+1)!

= s + 1
n + 2

3.

E[Θ] = ∫
1

0
θπ(θ) = Γ(α + β)

Γ(α)Γ(β) ∫
1

0
θα(1 − θ)β−1dθ = Γ(α + β)

Γ(α)Γ(β)
Γ(α + 1)Γ(β)
Γ(α + β + 1) =

α

α + β

256



12.12. SHORT ANSWERS 257

using Γ(x + 1) = xΓ(x).

V(Θ) = E[Θ]2 −E[Θ]2.

E[Θ2] = ∫
1

0
θ2π(θ)dθ = Γ(α + β)

Γ(α)Γ(β)
Γ(α + 2)Γ(β)
Γ(α + β + 2) =

(α + 1)α
(α + β + 1)(α + β)

so

V(Θ) = (α + 1)α
(α + β + 1)(α + β) −

α2

(α + β)2

= (α + 1)α(α + β) − α2(α + β + 1)
(α + β + 1)(α + β)2 = αβ

(α + β + 1)(α + β)2 .

4.

PXn+1∣X(xi∣x) = ∫
S
PXn+1∣Θ,X(x(i)∣θ,x)πΘ∣X(θ∣x)dθ

= n + α
∏L

j=1 Γ(αqj + nj)
∫
S
(∏
j≠i
θ
nj+αqj−1
j )θni+αqi

i dθ

= Γ(n + α)
∏L

j=1 Γ(nj + αqj)
(∏j≠i Γ(nj + αqj))Γ(ni + 1 + αqi)

Γ(n + α + 1)

= Γ(ni + 1 + αqi)Γ(n + α)
Γ(ni + αqi)Γ(n + α + 1)

= ni + αqi
n + α .

5. Let α = α1 + . . . + αL. Then, taking dθ in the appropriate sense and using

Γ(α + 1) = αΓ(α),

E[Θi] = ∫ θiπΘ(θ)dθ

= Γ(α)
∏L

j=1 Γ(αj)
∫
⎛
⎝∏j≠i

θ
αj

j

⎞
⎠
θαi+1
i dθ

= Γ(α)
∏L

j=1 Γ(αj)
(∏j≠i Γ(αj))Γ(αi + 1)

Γ(α + 1) = Γ(α)Γ(αi + 1)
Γ(α + 1)Γ(αi)

= αi

α
.

Similarly,

E[Θ2
i ] =

Γ(α)Γ(αi + 2)
Γ(α + 2)Γαi)

= (αi + 1)αi

(α + 1)α .

This gives

V(Θi) =
αi(αi + 1)
α(α + 1) −

α2
i

α2
= αα

2
i + ααi − αα2

i − α2
i

α2(α + 1) = αi(α − αi)
α2(α + 1) .



258 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

6. (a) The free variables are (v1, . . . , vK−1) with the constraint vK = 1 −∑K−1
j=1 vj . Set

S =
K

∑
j=1

vj

xj
= 1

xK
+

K−1
∑
j=1

vj (
1

xj
− 1

xK
)

then

uj =
vj

xjS
j = 1, . . . ,K and uK = 1 −

K−1
∑
j=1

uj .

and, since ∑K
j=1 vj = 1, it follows that 1 = ∑K

j=1 vj = S∑K
j=1 xjuj so that

S = 1

xK +∑K−1
j=1 (xj − xK)uj

= 1

∑K
j=1 xjuj

The original density (in terms of the free variables) is

Γ (∑k
j=1 aj)

∏K
j=1 Γ(aj)

⎛
⎝
K−1
∏
j=1

v
aj−1
j

⎞
⎠
⎛
⎝
1 −

K−1
∑
j=1

vj
⎞
⎠

aK−1

.

The Jacobian determinant for v → u may be computed by noting that vj = ujxjS and using

∂S

∂uα
= −S2(xα − xK)

so that
∂vi
∂uα

=
⎧⎪⎪⎨⎪⎪⎩

−Suixi(xα − xK) α ≠ i
Sxi − Suixi(xi − xK) α = i

The matrix of which the determinant is to be computed is therefore SK−1∏K−1
i=1 xiM , where

M = I − S
⎛
⎜⎜
⎝

u1

⋮
uK−1

⎞
⎟⎟
⎠
(x1 − xK , . . . , xK−1 − xK).

Clearly 1 is an eigenvalue of multiplicity K − 2 for M . The remaining eigenvalue λ of M

may be computed by noting that the vector e that satis�es

(M − λ)e = 0

satis�es e = c
⎛
⎜⎜
⎝

u1

⋮
uK−1

⎞
⎟⎟
⎠
and therefore λ satis�es

1 − λ = S
K−1
∑
j=1

uj(xj − xK) = S(
K−1
∑
j=1

ujxj − xK + xKuK) = S(
1

S
− xK)

so that λ = SxK . It follows that the density in the new coordinates is

Γ (∑k
j=1 aj)

∏K
j=1 Γ(aj)

⎛
⎝
K−1
∏
j=1
(Sxjuj)aj−1

⎞
⎠
⎛
⎝
1 − S

K−1
∑
j=1

xjuj
⎞
⎠

aK−1

SK
K

∏
j=1

xj .



12.12. SHORT ANSWERS 259

Since SxKuK = 1 − S∑K−1
j=1 xjuj , it follows that

Γ (∑k
j=1 aj)

∏K
j=1 Γ(aj)

K

∏
j=1

x
aj
j

⎛
⎝

K

∏
j=1

u
aj−1
j

⎞
⎠
⎛
⎝

1

∑K
j=1 xjuj

⎞
⎠

∑K
j=1 aj

as required.

(b) The work was in the previous part, computing the distribution. This exercise is now a

straightforward application of Bayes rule.

Ui = P({X = i}∣data) =
PX(i)li
P(data) =

Vili

∑K
i=1 Vili

the denominator follows because ∑K
i=1Ui = 1. The distribution of U now satis�es the de�ni-

tion of the S(a, l−1) distribution of the previous exercise.

(c) Again, assume data is obtained and the likelihood is li = P(data∣X = i) and the prior

distribution is S(a, z). Then

Ui = P({X = i}∣data) =
Vili

P(data) =
Wiz

−1
i li

P(data)∑K
i=1Wiz−1i

,

where W ∼ Dir(a1, . . . , aK). Since ∑K
i=1Ui = 1, it follows that

Ui =
Wiz

−1
i li

∑K
i=1Wiz−1i li

so that the distribution of U satis�es the de�nition of a S(a, z × l−1) distribution.

7. With approximate updating, the independence structure of the distributions over (θj.l)
kj
i=1 is

retained (the distributions for each (j, l) are mutually independent). Let n(x(i)j π
(l)
j ) denote the

e�ective number of (x(i)j , π
(l)
j ) con�gurations upon which the prior distribution is based, then

Θj.l ∼ Dir(n(x(1)j , π
(l)
j ), . . . , n(x

(kj)
j , π

(l)
j ))

before the update. After a partially observed instantiation, this is updated to

Dir(n∗(x(1)j , π
(l)
j ), . . . , n

∗(x(kj)j , π
(l)
j ))

where

n∗(xij , πlj) = n(x
(i)
j , π

(l)
j ) + PXj ,Paj ∣E(x

(i)
j , π

(l)
j ∣e

∗)

where P is the probability computed using the prior and E = (Xi1 , . . . ,Xim), those variables that
are instantiated in the partial observation; e∗ denotes the values that these variables take in the

incomplete instantiation.

To update the distribution over Θa, the e�ective sample sizes on which the prior is based are

needed. Furthermore, for Xj = A, Paj = ϕ, so PXj ∣Paj ,E
= PA∣B(.∣1). For Xj = B, Paj = A, so

that PXj ∣Paj ,E
= PB∣A,B(.∣.,1).



260 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS

The computations of PA and PB∣A are straightforward; PA∣B is obtained using Bayes rule. Note

that

PA(1) = ∫
1

0
PA∣Θa

(1∣θ)πΘa(θ)dθ = 3∫
1

0
θ3dθ = 3

4

PA(0) =
1

4

PB∣A(1∣1) = ∫
1

0
PB∣A,Θb∣y

(1∣1, θ)πΘb∣y
(θ)dθ = 12∫

1

0
θ3(1 − θ)dθ = 3

5

PB∣A(0∣1) =
2

5

PB∣A(1∣0) = 12∫
1

0
θ2(1 − θ)2 = 2

5

PB∣A(0∣0) =
3

5

so

PB(1) =
2

5
× 1

4
+ 3

5
× 3

4
= 11

20

PB(0) =
9

20

PA∣E∗(1∣e∗) = PA∣B(1∣1) =
PA(1)PB∣A(1∣1)

PB(1)
= 9

11

PA∣E∗(0∣e∗) =
2

11

PA,B∣B((0,1)∣1) = PA∣B(0∣1) =
2

11

PA,B∣B((1,1)∣1) = PA∣B(1∣1) =
9

11

PA,B∣B((0,0)∣1) = PA,B∣B((1,0)∣1) = 0.

So updating is

πa∣e∗(θ) =
Γ(5)

Γ(3 + 9
11)Γ(1 +

2
11)

θ2+
9
11 (1 − θ)

2
11 , θ ∈ [0,1]

πb∣y,e∗(θ) =
Γ(5 + 9

11))
Γ(3 + 9

11)Γ(2)
θ2+

9
11 (1 − θ), θ ∈ [0,1]

πb∣n,e∗(θ) =
Γ(5 + 2

11))
Γ(2 + 2

11)Γ(3)
θ1+

2
11 (1 − θ)2, θ ∈ [0,1]

8. First note that



12.12. SHORT ANSWERS 261

πΘ∣X(θ∣x) = (const)πΘ(θ)PX∣Θ(x∣θ)
= (const)∑

i

λiDir(α(i)q(i)1 + n1, . . . , α
(i)q(i)L + nL)

= ∑λi
Γ(∑j α

(i)q(i)j + nj)

∏j Γ(α(i)q
(i)
j + nj)

L

∏
j=1

θ
α(i)q

(i)
j +nj−1

j .

By standard Dirichlet integral calculations,

E[θj] =∑
i

λi
α(i)q(i)j + nj + 1
n + α(i) + 1

where n is the total sample size.

9. (straightforward application of Dirichlet integrals)



262 CHAPTER 12. LEARNING THE CONDITIONAL PROBABILITY FUNCTIONS



Chapter 13

Parameters and Sensitivity

Notations As usual, for a variable Xj , let Paj denote the set of parent variables and let (π(i)j )
qj
i=1

denote the possible con�gurations for the parent set. Set

θjil = PXj ∣Paj
(x(i)j ∣π

(l)
j ),

so that ∑kj
i=1 θjil = 1 for each (j, l). The collection of θjil ∶ j = 1, . . . , d, i = 1, . . . , kj , l = 1, . . . , qj with

the constraint given above denotes the entire set of parameters for the network.

The functions PXj ∣Paj
will be referred to as potentials or CPPs (conditional probability potentials).

13.1 Parameter Changes to Satisfy Query Constraints

De�nition 13.1 (Query, Query Constraint). A query in probabilistic inference is simply a conditional

probability distribution, over the variables of interest (the query variables) conditioned on information

received. A query constraint is a restriction; for example, if it is known that two conditional probabilities

di�er by a certain amount, or if there is a restriction on the ratio between two conditional probabilities.

�re

|| ##

tamper

zz

smoke alarm

��

leaving // report

Figure 13.1: The DAG for the Bayesian Network `Fire'

263



264 CHAPTER 13. PARAMETERS AND SENSITIVITY

The problem considered in this section is to decide whether an individual parameter is relevant to

a given query constraint and, if it is, to compute the minimum amount of change needed to that

parameter to enforce the constraint. The constraints considered are in the form of hard evidence where

the collection E is instantiated as e, where E = (Xe1 , . . . ,Xem) is a subset of (X1, . . . ,Xd).

Example 13.2 (Fire).

Consider the Bayesian network called Fire.1 The model is shown in Figure 13.1. The network models

the scenario of whether or not there is a �re in the building. Let F denote `�re', T denote `tampering',

S `smoke', A `alarm', L `leaving' and R `report'. A �re may causes smoke to be seen; it may also

cause the alarm to go o�. Equally, if somebody tampers with the alarm, this could also cause it to

go o�, even without a �re. When people hear the alarm, they may leave the building and when a

large number of people leave the building at an unscheduled time, this may be reported to the �re

department.

Now consider the following evidence: {report = true, smoke = false}. That is, the �re department

receives a report that people are evacuating the building, but no smoke is observed. This evidence

should make it more likely that the �re alarm has been tampered with than that there is a real �re. Let

t denote `true' and f denote `false'. Suppose that the conditional probability values for this network

derived, perhaps, from experience, are

PF =
t f

0.01 0.99
, PT =

t f

0.02 0.98
,

PR∣L =
L/R t f

t 0.75 0.25

f 0.01 0.99

PS∣F =
F /S t f

t 0.9 0.1

f 0.01 0.99

, PL∣A =
A/L t f

T 0.88 0.12

f 0.001 0.999

PA∣F,T (t∣., .) =
F /T t f

t 0.5 0.99

f 0.85 0.0001.

The evidence is (R,S) = (t, f). The probability that someone has tampered with the alarm given this

evidence is

PT ∣R,S(t∣t, f) =
PT,R,S(t, t, f)
PR,S(t, f)

.

Using the notation XZ to denote the state space of a variable Z,

1This Bayesian network is distributed with the evaluation version of the commercial HUGIN Graphical User Interface,

by HUGIN Expert.



13.1. PARAMETER CHANGES TO SATISFY QUERY CONSTRAINTS 265

PT,R,S(t, t, f) = PT (t)∑
XL

pR∣L(t∣.)∑
XA

PL∣A∑
XF

PA∣T,F (.∣t, .)PS∣F (f ∣.)PF

and

PR,S(t, f) =∑
XT

PT∑
XL

PR∣L(t∣.)∑
XA

PL∣A∑
XF

PA∣T,FPS∣F (f ∣.)PF .

Similarly,

PF ∣R,S(t∣t, f) =
PF,R,S(t, t, f)
PR,S(t, f)

,

and

PF,R,S(t, t, f) = PF (t)PS∣F (f ∣t)∑
XT

PT ∑
XA

PA∣T,F (.∣., f)∑
XL

PL∣APR∣L(t∣.)

The computations are straightforward and give

PT ∣R,S(t∣t, f) = 0.501, PF ∣R,S(t∣t, f) = 0.0294.

Suppose that it is known from experience that the probability that the alarm has been tampered

with should be no less than 0.65 given this evidence. The network should therefore be adjusted to

accommodate. It is simplest to try changing only one network parameter. Suppose that the probability

function PT is to be adjusted. Let θ = PT (t). Let

α =∑
XL

PR∣L(t∣.)∑
XA

PL∣A∑
F

PA∣T,F (.∣t, .)PS∣F (f ∣.)PF

so that

PT,R,S(t, t, f) = θα

and

β =∑
XL

PR∣L(t∣.)∑
XA

PL∣A∑
XF

PA∣T,F (.∣f, .)PS∣F (f ∣.)P(.),

so that

PR,S(t, f) = θα + (1 − θ)β.

Then the computation of α and β is straightforward arithmetic and

PT ∣R,S(t∣t, f) =
PT,R,S(t, t, f)
PR,S(t, f)

= αθ

(α − β)θ + β .

The solution to the equation
αθ

(α − β)θ = 0.65



266 CHAPTER 13. PARAMETERS AND SENSITIVITY

is θ = 0.0364.

Similarly, let ψ = PR∣L(t∣f). Keeping all other potentials �xed, PT ∣R,S(t∣t, f) may be computed as a

function of ψ and the equation PT ∣R,S(t∣t, f)(ψ) = 0.65 has solution ψ = 0.00471.

For all other single parameter adjustments, the equation does not have a solution in the interval [0,1].
Therefore, if only one parameter is to be adjusted, the constraint PT ∣R,S(t∣t, f) = 0.65 can be dealt

with in either of the following two ways:

1. Increase PT (t) from 0.02 to greater than 0.0364, or

2. Decrease the probability of a false report, given that there is an evacuation, from 0.01 to less

than 0.00471.

It turns out for this example that it is not possible to enforce the desired constraint by adjusting a

single parameter in any of the CPPs of the variables �re, smoke, alarm and leaving.

13.2 Proportional Scaling

A network where each conditional probability distribution (θjil)
kj
i=1 has at most one variable parameter

t(jl) is said to satisfy the proportional scaling property.

De�nition 13.3 (Proportional Scaling Property). A Bayesian network satis�es the proportional scal-

ing property if for each conditional probability distribution θj.l, where θjil = pXj ∣Paj
(x(i)j ∣π

(l)
j ), there is

a parameter t(jl) such that

PXj ∣Paj
(.∣π(l)j ) = (αj1l + βj1lt(jl), . . . , αjkj l + βjkj lt(jl)),

where ∑kj
m=1 αjml = 1 and ∑kj

m=1 βjml = 0.

Theorem 13.4. Consider a Bayesian network over a collection of variables V = {X1, . . . ,Xd}. Sup-

pose that the network satis�es proportional scaling, where there is a single variable parameter t in a

conditional probability distribution θj.l. Then for any E = (Xi1 , . . . ,Xim) and e = (x
(c1)
i1

, . . . , x
(cm)
im
),

PE(e)(t) = at + b

for two constants a and b that depend on e.

Proof of Theorem 13.4 Let θjil = αjil + βjilt for i = 1, . . . , kj . Then

PE(e) = ∑
y∈X ∣(yi1 ,...,yim)=(x

(c1)
i1

,...,x
(cm)
im

)
PV (y1, . . . , yd)

= ∑
y∈X ∣(yi1 ,...,yim)=(x

(c1)
i1

,...,x
(cm)
im

)
PXj ∣Paj

(yj ∣πj(y))∏
k≠j

PXk ∣Pak
(yk∣πk(y)) (13.1)



13.2. PROPORTIONAL SCALING 267

and it is clear from the de�nition of proportional scaling, and from Equation (13.1), that t enters

linearly. It therefore follows that

PE(e)(t) = at + b.

It follows that for two disjoint sets of variables A and E, there are numbers a(e), b(e), c(x, e), d(x, e)
such that

PA∣E(x∣e)(t) =
PA,E(x, e)
PE(e)

= ct + d
at + b .

The Optimality of Proportional Scaling Consider one of the conditional probability distributions

(θj1l, . . . , θjkj l) and suppose that θj1l is to be altered to a di�erent value, denoted by θ̃jl1. Under

proportional scaling, the probabilities of the other states are given by

θ̃jil =
1 − θ̃j1l
1 − θj1l

θjil i = 2, . . . , kj .

This is clearly proportional scaling with

t(jl) = 1 − θ̃j1l
1 − θj1l

βjil = θjil i = 2, . . . , kj , βj1l = θj1l − 1

αjil = 0 i = 2, . . . , kj , αj1l = 1.

Proportional scaling turns out to be optimal under the Chan - Darwiche distance measure.

Theorem 13.5. Consider a probability distribution P factorised according to a DAG G. Suppose the

value θj1l is changed to θ̃j1l. Among the class of probability distributions Q factorised along G with

QXj ∣Paj
(x(1)j ∣π

(l)
j ) = θ̃j1l, minQ∈QDCD(P,Q) is obtained for Q such that θ̃a.b = θa.b for all (a, b) ≠ (j, l)

and

θ̃jil =
1 − θ̃j1l
1 − θj1l

θjil.

Under proportional scaling, the Chan - Darwiche distance is then given by

DCD(P,Q) = ∣ ln θ̃j1l − ln θj1l∣ + ∣ ln(1 − θ̃j1l) − ln(1 − θj1l)∣.

Proof Let P be a distribution that factorises along a DAG G, with conditional probabilities θaib =
PXa∣Paa

(x(i)a ∣π(b)a ). Let Q denote the distribution that factorises along G, with conditional probabilities

θ̃aib = QXa∣Paa
(x(i)a ∣π(b)a ),

where θ̃j1b is given,



268 CHAPTER 13. PARAMETERS AND SENSITIVITY

θ̃aib = θaib (a, b) ≠ (j, l)

and

θ̃jil =
1 − θ̃j1l
1 − θj1l

θjil i = 2, . . . , kj .

This is the distribution generated by the proportional scheme. Let R denote any other probability

belonging to class Q.

If θj1l = 1 and θ̃j1l < 1, then there is a θ̃jkl > 0 with θjkl = 0 and it follows thatDCD(P,Q) =DCD(P,R) =
+∞.

If θj1l = 0 and θ̃j1l > 0 then, similarly, it follows directly that DCD(P,Q) =DCD(P,R) = +∞.

Consider 0 < θj1l < 1. Firstly, consider θ̃j1l > θj1l. Then

max
x∈X

Q(x)
P(x) =max( θ̃j1l

θj1l
,
1 − θ̃j1l
1 − θj1l

) = θ̃j1l
θj1l

and

min
x∈X

Q(x)
P(x) =

1 − θ̃j1l
1 − θj1l

.

Similarly, if θ̃j1l < θj1l, then maxx∈X
Q(x)
P(x) =

1−θ̃j1b
1−θj1b and minx∈X

Q(x)
P(x) =

θ̃j1l
θj1l

, so

DCD(P,Q) = ∣ ln θ̃j1l − ln θj1l∣ + ∣ ln(1 − θ̃j1l) − ln(1 − θj1l)∣.

Let R denote any other distribution that factorises along G with RXj ∣Paj
(x(1)j ∣π

(l)
j ) = θ̃j1l. The next

task is to prove that DCD(P,R) ≥DCD(P,Q).

P and R may be expressed as PX,Y and RX,Y where (X,Y ) are two sets of variables. Using PX,Y =
PXPY ∣X and RX,Y = RXRY ∣X and (x∗, y∗) and (x∗, y∗) to denote the points where the maxima and

minima of the ratios are achieved, it follows that

DCD(PX,Y ,RX,Y ) = ln
PX,Y (x∗, y∗)
RX,Y (x∗, y∗)

− ln PX,Y (x∗, y∗)
RX,Y (x∗, y∗)

= ln
PX(x∗)
RX(x∗)

− ln PX(x∗)
RX(x∗)

+ ln
PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗)

− ln
PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗)

≥ DCD(PX ,RX) + ln
PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗)

− ln
PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗)

.

Now, because (x∗, y∗) maximises the ratio, it follows that y∗ maximises the ratio
PY ∣X(.∣x∗)
RY ∣X(.∣x∗) and hence

that ln
PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗) ≥ 1; similarly, ln

PY ∣X(y∗∣x∗)
RY ∣X(y∗∣x∗) ≤ 1, so that



13.2. PROPORTIONAL SCALING 269

DCD(PX,Y ,RX,Y ) ≥DCD(PX ,RX).

Now let X denote the set of variables (X1, . . . ,Xj) and Y the set of variables (Xj+1, . . . ,Xd). It follows
that

DCD(P,R) ≥DCD(PX1,...,Xj ,RX1,...,Xj)

where the notation is clear. Finally, for any z corresponding to parent con�guration π
(l)
j ,

DCD(PX1,...,Xj ,RX1,...,Xj) ≥ ln max
x∣(x1,...,xj−1)=z

PX1,...,Xj

RX1,...,Xj

− ln min
x∣(x1,...,xj−1)=z

PX1,...,Xj

RX1,...,Xj

= ln max
x∣(x1,...,xj−1)=z

PXj ∣Paj

RXj ∣Paj

− ln min
x∣(x1,...,xj−1)=z

PXj ∣Paj

RXj ∣Paj

= DCD(θj.l, θ̃j.l).

13.2.1 Query Constraints

Let Y,Z denote two random variables such that Y /∈ E and Z /∈ E. The query constraints considered

in this section are of the following type:

�

PY ∣E(y∣e) − PZ∣E(z∣e) ≥ ϵ, (13.2)

�

PY ∣E(y∣e)
PZ∣E(z∣e)

≥ ϵ. (13.3)

The notation will be abbreviated by writing: P(y∣e) when the abbreviation is clear from the context.

Let PX denote the probability function for a collection of variables X = (X1, . . . ,Xd), which may

be factorised along a graph G = (V,E) (where V = {X1, . . . ,Xd}), with given conditional probability

potentials, θjil = PXj ∣Paj
(x(i)j ∣π

(l)
j ). Then

PX(x) =
d

∏
j=1

qj

∏
l=1

kj

∏
i=1
θ
nj(i,l)
jil ,

where nj(i, l) = 1 if the child parent con�guration (x(i)j , π
(l)
j ) appears in x and 0 otherwise. Suppose

that the probabilities (θj1l, . . . , θj,kj ,l) are parametrised by (t(jl)1 , . . . , t
(jl)
mj ), where mj ≤ kj − 1. The

following result holds.



270 CHAPTER 13. PARAMETERS AND SENSITIVITY

Theorem 13.6. Let X = (X1, . . . ,Xd) denote a set of variables and let P be a probability distribution

that factorises along a DAG G with node set V = {X1, . . . ,Xd}. Let θjil = PXj ∣Paj
(x(i)j ∣π

(l)
j ). Suppose

that for each (j, l) the probabilities (θj1l, . . . , θj,kj ,l) are parametrised by (t(jl)1 , . . . , t
(jl)
mjl
) where mjl ≤

kj −1. Let E = (Xe1 , . . .Xem) denote a subset of X and let e = (x(i1)e1 , . . . , x
(im)
em ) denote an instantiation

of E. Then for all 1 ≤ k ≤mjl,

∂

∂t
(jl)
k

PE(e) =
kj

∑
i=1

PE,Xj ,Paj
(e, x(i)j , π

(l)
j )

θjil

∂

∂t
(jl)
k

θjil.

Proof Firstly,

PE(e) = ∑
il

PE∣Xj ,Paj
(e∣x(i)j , π

(l)
j )pXj ∣Paj

(x(i)j ∣π
(l)
j )PPaj

(π(l)j )

= ∑
il

PE∣Xj ,Paj
(e∣x(i)j , π

(l)
j )θjilPPaj

(π(l)j ).

It follows that

∂

∂t
(jl)
k

PE(e) =
kj

∑
i=1

PE∣Xj ,Paj
(e∣x(i)j , π

(l)
j )PPaj

(π(l)j )
∂θjil

∂t
(jl)
k

=
kj

∑
i=1

PXj ,Paj ∣E(x
(i)
j , π

(l)
j ∣e)PE(e)PPaj

(π(l)j )

PXj ,Paj
(x(i)j , π

(l)
j )

∂θjil

∂t
(jl)
k

=
kj

∑
i=1

PXj ,Paj ,E
(x(j)i , π

(j)
l , e)

PXj ∣Paj
(x(i)j ∣π

(l)
j )

∂θjil

∂t
(jl)
k

=
kj

∑
i=1

PXj ,Paj ,E
(x(i)j , π

(l)
j , e)

θjil

∂θjil

∂t
(jl)
k

as required.

Proportional Scaling Again, the complete set of variables is X = (X1, . . . ,Xd), with a joint proba-

bility distribution P that may be factorised along a Directed Acyclic Graph G. Evidence is received on

a subset of the variables E = (Xe1 , . . . ,Xem). Consider a proportional scaling scheme, where each condi-

tional probability distribution (θj1l, . . . , θjkj l) has exactly one parameter. Under proportional scaling,

this may be represented as θj1l = t(jl) and there are non negative numbers a
(jl)
2 , . . . , a

(jl)
kj

satisfying

∑kj
α=2 a

(jl)
α = 1, such that

θj1l = t(jl)

θjαl = a(jl)α (1 − t(jl)), α = 2, . . . , kj .

Then, an application of Theorem 13.6 in the simpli�ed setting of proportional scaling immediately

gives



13.2. PROPORTIONAL SCALING 271

∂

∂t(jl)
PE(e) =

PE,Xj ,Paj
(e, x(1)j , π

(l)
j )

θj1l
−

kj

∑
α=2

PE,Xj ,Paj
(e, x(α)j , π

(l)
j )

θjαl
a(jl)α . (13.4)

When a proportional scaling scheme is used, Theorem 13.4 gives

PE(e) = α + βt(jl),

where α and β do not depend on t(jl). It follows that for any t(jl), ∂
∂t(jl)

PE(e) = β, where β is constant

(i.e. it does not depend on t(jl)). This observation makes it straight forward, under proportional

scaling, to �nd the necessary change in a single parameter t(jl) (if such a parameter change is possible)

to enforce a query constraint.

13.2.2 Binary Variables

Assume that variable Xj is binary, with PXj ∣Paj
(x(1)j ∣π

(l)
j ) = t(jl) and PXj ∣Paj

(x(0)j ∣π
(l)
j ) = 1 − t(jl).

Then Equation (13.4) reduces to:

∂

∂t(jl)
PE(e) =

PE,Xj ,Paj
(e, x(1)j , π

(l)
j )

t(jl)
−
PE,Xj ,Paj

(e, x(0)j , π
(l)
j )

1 − t(jl)
. (13.5)

The statement Y = y,E = e may be treated as hard evidence. By Theorem 13.4, it follows that there

are real numbers λ, λy and λz such that

λ = ∂

∂t(jl)
PE(e) =

PE,Xj ,Paj
(e, x(1)j , π

(l)
j )

t(jl)
−
PE,Xj ,Paj

(e, x(0)j , π
(l)
j )

1 − t(jl)
,

λy =
∂

∂t(jl)
PY,E(y, e) =

PY,E,Xj ,Paj
(y, e, x(1)j , π

(l)
j )

t(jl)
−
PY,E,Xj ,Paj

(y, e, x(0)j , π
(l)
j )

1 − t(jl)
and

λz =
∂

∂t(jl)
PZ,E(z, e) =

PZ,E,Xj ,Paj
(z, e, x(1)j , π

(l)
j )

t(jl)
−
PZ,E,Xj ,Paj

(z, e, x(0)j , π
(l)
j )

1 − t(jl)
.

The following is a corollary of Theorem 13.6, which reduces to Equation (13.5) for the binary case.

Corollary 13.7. To satisfy the constraint given by Equation (13.2), the parameter t(jl) has to be

changed to t(jl) + δ,where δ satis�es

PY,E(y, e) − PZ,E(z, e) − ϵPE(e) ≥ δ(−λy + λz + ϵλ). (13.6)

To satisfy the constraint given by Equation (13.3), the parameter t(jl) has to be changed to t(jl) + δ,
where

PY,E(y, e) − ϵPZ,E(z, e) ≥ δ(−λy + ϵλz). (13.7)



272 CHAPTER 13. PARAMETERS AND SENSITIVITY

Proof Since PY ∣E(y∣e) =
PY,E(y,e)
PE(e) , it follows that PY ∣E(y∣e)−PZ∣E(z∣e) ≥ ϵ is equivalent to PY,E(y, e)−

PZ,E(z, e) ≥ ϵPE(e). A change in the constraint changes PY,E(y, e), PZ,E(z, e) and PE(e) to PY,E(y, e)+
δλy, PZ,E(z, e) + δλz and PE(e) + δλ respectively. To enforce the di�erence constraint, it follows that

δ satis�es

(PY,E(y, e) + λyδ) − (PZ,E(z, e) + λzδ) ≥ ϵ(PE(e) + λδ).

Equation (13.6) follows directly.

Similarly, to enforce the ratio constraint, the following inequality is required:

PY,E(y, e) + λyδ
PZ,E(z, e) + λzδ

≥ ϵ.

Equation (13.7) now follows directly and the proof is complete.

13.3 The Sensitivity of Queries to Parameter Changes

In line with the Chan - Darwiche distance measure, sensitivity is de�ned in the following way.

De�nition 13.8 (Sensitivity). Let P denote a parametrised family of probability distributions, over a

�nite, discrete state space X , parametrised by k parameters (θ1, . . . , θk) ∈ Θ̃, where Θ̃ ⊆Rk denotes the

parameter space. Let P(θ1,...,θk)(.) denote the probability function over X when the parameters are �xed

at θ1, . . . , θk. Then the sensitivity of P to parameter θj is de�ned as

Sj(P)(θ1, . . . , θk) =max
x∈X

∂

∂θj
lnP(θ1,...,θk)(x) −min

x∈X

∂

∂θj
lnP(θ1,...,θk)(x).

Example 13.9.

If P is a family of binary variables, with state space X = {x0, x1} and a single parameter θ, then

S(P)(θ) = ∣ ∂
∂θ

ln
P(θ)(x1)
P(θ)(x0)

∣ .

This section restricts attention to a single parameter model. Consider a network with d variables,

X = (X1, . . . ,Xd) where one particular variable Xj is a binary variable. The other variables may be

multivalued. Let

t(jl) = PXj ∣Paj
(x(1)j ∣π

(l)
j ).

Let Y denote a collection of variables, taken from (X1, . . . ,Xn) and let Y = y denote an instantiation

of these variables. Let y denote the event {Y = y} and let yc denote the event {Y ≠ y}. Similarly,

let e denote the event {E = e}, where E is a di�erent sub-collection of variables from X. From

De�nition 13.8, the sensitivity of a query P(y∣e) to the parameter t(jl) is de�ned as

∣ ∂

∂t(jl)
ln

P(y∣e)
P(yc∣e)∣ .

The following theorem provides a simple bound on the derivative in terms of P(y∣e) and t(jl) only.



13.3. THE SENSITIVITY OF QUERIES TO PARAMETER CHANGES 273

Theorem 13.10. Suppose Xj is a binary variable taking values x
(1)
j or x

(0)
j . Set

t(jl) = PXj ∣Paj
(x(1)j ∣π

(l)
j ).

Then

∣ ∂

∂t(jl)
P(y∣e)∣ ≤

P(y∣e)(1 − P(y∣e))
t(jl)(1 − t(jl))

. (13.8)

The example given after the proof shows that this bound is sharp; there are situations where the

derivative assumes the bound exactly.

Proof of Theorem 13.10 Firstly, P(y∣e) = P(y,e)
P(e) , so that

∂

∂t(jl)
P(y∣e) = 1

P(e)
∂

∂t(jl)
P(y, e) −

P(y, e)
P2(e)

∂

∂t(jl)
P(e).

Using this, Equation (13.5) gives

∂

∂t(jl)
P(y∣e)

=
{(1 − t(jl))P(y, x(1)j , π

(l)
j ∣e) − t(jl)P(y, x

(0)
j , π

(l)
j ∣e)}

t(jl)(1 − t(jl))
(13.9)

−
{(1 − t(jl))P(y∣e)PXj ,Paj ∣E(x

(1)
j π

(l)
j ∣e) − t(jl)P(y∣e)PXj ,Paj ∣E(x

(0)
j , π

(l)
j ∣e)}

t(jl)(t − t(jl))

=
(1 − t(jl))(PY ,Xj ,Paj ∣E(y, x

(1)
j , π

(l)
j ∣e) − P(y∣e)PXj ,Paj ∣E(x

(1)
j π

(l)
j ∣e))

t(jl)(1 − t(jl))

−
t(jl)(PY ,Xj ,Paj ∣E(y, x

(0)
j , π

(l)
j ∣e) − P(y∣e)PXj ,Paj ∣E(x

(0)
j π

(l)
j ∣e))

t(jl)(t − t(jl))
. (13.10)

With the shorthand notation yc to denote the event {Y ≠ y},

PXj ,Paj ,Y ∣E(x
(1)
j , π

(l)
j , y∣e) − P(y∣e)PXj ,Paj ∣E(x

(1)
j , π

(l)
j ∣e)

≤ PXj ,Paj ,Y ∣E(x
(1)
j , π

(l)
j , y∣e) − PY ∣E(y∣e)PXj ,Paj ,Y ∣E(x

(1)
j , π

(l)
j , y∣e)

= PXj ,Paj ,Y ∣E(x
(1)
j , π

(l)
j , y∣e)(1 − P(y∣e)

≤ P(y∣e)(1 − P(y∣e))



274 CHAPTER 13. PARAMETERS AND SENSITIVITY

and

P(y∣e)PXj ,Paj ∣E(x
(1)
j , π

(l)
j ∣e) − PXj ,Paj ,Y ∣E(x

(1)
j , π

(l)
j , y∣e)

= (1 − P(yc∣e))PXj ,Paj ∣E(x
(1)
j , π

(l)
j ∣e)

−PXj ,Paj ∣E(x
(1)
j , π

(l)
j ∣e) + PXj ,Paj ,Y ∣E(x

(1)
j , π

(l)
j , yc∣e)

= PXj ,Paj ,Y ∣E(x
(1)
j , π

(l)
j , yc∣e) − P(yc∣e)PXj ,Paj ∣E(x

(1)
j , π

(l)
j ∣e)

= PXj ,Paj ,Y ∣E(x
(1)
j , π

(l)
j , yc∣e)(1 − P(yc∣e))

≤ P(yc∣e)(1 − P(yc∣e))
= (1 − P(y∣e))P(y∣e)

From this, it follows directly from Equation (13.10) that

∣ ∂

∂t(jl)
P(y∣e)∣ ≤

P(y∣e)(1 − P(y∣e))
t(jl)(1 − t(jl))

.

The proof of Theorem 13.10 is complete.

Corollary 13.11. The sensitivity of P(y∣e) to the parameter t(jl) is bounded by

∣ ∂

∂t(jl)
ln

P(y∣e)
P(yc∣e)∣ ≤

1

t(jl)(1 − t(jl))
. (13.11)

Proof Immediate.

It is clear that the worst situation from a robustness point of view arises when the parameter value

t(jl) is close to either 0 or 1, while the query takes values that are close to neither 0 nor 1.

Example 13.12.

This example shows that the bounds given by inequalities (13.8) and (13.11) are sharp, in the sense

that there are examples where the bounds are attained. Consider the network given in Figure 13.2,

where X and Y are binary variables taking values from (x0, x1) and (y0, y1) respectively. PX(x0) = θx
and PY (y0) = θy. Suppose that E is a deterministic binary variable; that is, P({E = e}∣{X = Y }) = 1
and P({E = e}∣{X ≠ Y }) = 0.

X

  

Y

��

E

Figure 13.2: The Network Used in Example 13.12



13.3. THE SENSITIVITY OF QUERIES TO PARAMETER CHANGES 275

The probability potentials are

PX =
x0 x1

θx 1 − θx
PY =

y0 y1

θy 1 − θy

PE∣X,Y (e∣., .) =
X/Y y0 y1

x0 1 0

x1 0 1

from which it follows that

PY ∣E(y0∣e) =
PY,E(y0, e)

PE(e)
=
PY (y0)∑x PX(x)PE∣X,Y (e∣x, y0)
∑x,y PX(x)PY (y)PE∣X,Y (e∣x, y)

= θyθx

θyθx + (1 − θy)(1 − θx)

and
∂

∂θx
PY ∣E(y0∣e) =

θy(1 − θy)
(θxθy + (1 − θx)(1 − θy))2

while

PY ∣E(y0∣e)(1 − PY ∣E(y0∣e))
θx(1 − θx)

= θyθx(1 − θy)(1 − θx)
(θxθy + (1 − θx)(1 − θy))2θx(1 − θx)

= θy(1 − θy)
(θxθy + (1 − θx)(1 − θy))2

,

so that
∂

∂θx
PY ∣E(y0∣e) =

θy(1 − θy)
(θxθy + (1 − θx)(1 − θy))2

showing that the bound (13.8) is achieved.

For the bound (13.11), note from the above that

∂

∂θx
PY ∣E(y0∣e) =

PY ∣E(y0∣e)PY ∣E(y1∣e)
θx(1 − θx)

so that
∂

∂θx
lnPY ∣E(y0∣e) =

PY ∣E(y1∣e)
θx(1 − θx)

and, because PY ∣E(y0∣e) + PY ∣E(y1∣e) = 1,

∂

∂θx
PY ∣E(y1∣e) = −

∂

∂θx
PY ∣E(y0∣e) = −

PY ∣E(y0∣e)PY ∣E(y1∣e)
θx(1 − θx)

so that
∂

∂θx
ln

PY ∣E(y0∣e)
PY ∣E(y1∣e)

= 1

θx(1 − θx)
,

so that equality is achieved in bound (13.11).

The following results bound the odds.



276 CHAPTER 13. PARAMETERS AND SENSITIVITY

Theorem 13.13. Let P be a parametrised family of probability distributions, factorised along the same

DAG, with a single parameter θ. Let Xj be a binary variable and let θ = P(θ)
Xj ∣Paj

(x(0)j ∣π
(l)
j ); all the

other CPPs remain �xed and let Oθ = θ
1−θ . Consider a parameter change from θ = t to θ = s. Note that

Ot = t
1−t and Os = s

1−s . Let P(θ)(y∣e) denote the probability value of a query when θ is the parameter

value. Let Õθ(y∣e) =
P(θ)(y∣e)

1−P(θ)(y∣e) . Then

Ot

Os
≤
Õs(y∣e)
Õt(y∣e)

≤ Os

Ot
s ≥ t

Os

Ot
≤
Õs(y∣e)
Õt(y∣e)

≤ Ot

Os
t ≤ s.

This gives the bound

∣ln Õs(y∣e) − ln Õt(y∣e)∣ ≤ ∣lnOs − lnOt∣ .

Proof Let x denote the probability of the query P(y∣e) when the value of the parameter t(jl) is z.

Note that, for 0 < a ≤ b < 1,

∫
b

a

dx

x(1 − x) = ∫
b

a

dx

x
+ ∫

b

a

dx

1 − x = ln
b

a

1 − a
1 − b .

Then, for t(jl) ≤ s(jl), Equation (13.8) gives

−∫
s

t

dz

z(1 − z) ≤ ∫
Ps(y∣e)

Pt(y∣e)

dx

x(1 − x) ≤ ∫
s

t

dz

z(1 − z) ,

so that

− ln s
t

1 − t
1 − s ≤ ln

Ps(y∣e)
Pt(y∣e)

1 − Ps(y∣e)
1 − Pt(y∣e)

≤ ln s
t

1 − t
1 − s

giving immediately that

Ot

Os
≤
Õs(y∣e)
Õt(y∣e)

≤ Os

Ot
.

For s ≤ t the argument is similar and gives

Os

Ot
≤
Õs(y∣e)
Õt(y∣e)

≤ Ot

Os
.

In both cases

∣ln Õs(y∣e) − ln Õt(y∣e)∣ ≤ ∣lnOs − lnOt∣

and the result follows.

Notes The observation that the probability of evidence is a linear function of any single parameter

in the model and hence that the conditional probability is the ratio of two linear functions is due to

Castillo, Gutiérrez and Hadi (1997) [12] and [13]. The most signi�cant developments in sensitivity

analysis, which comprise practically the whole chapter, were introduced by Chan and Darwiche in the

article [21] (2002) and developed in the articles [20] (2005) and article [22].



13.4 Exercises

1. Consider a Bernoulli trial, with probability function PX(.∣t) de�ned by

PX(x∣t) = tx(1 − t)1−x, x = 0,1, t ∈ [0,1].

Recall the de�nition of sensitivity, De�nition 13.8. Compute the sensitivity with respect to the

parameter t.

2. Consider the `�re' example given in the text. Suppose that the evidence is (R,S) = (t, f). Let

PT (t) = θ be a variable parameter so that PT (f) = 1−θ and suppose that all the other probabilities
are �xed, according to the values given. From an initial value θ0 = 0.02, compute the lower bound

for the change δ required to satisfy the query constraint

PT ∣R,S(t∣t, f)
PF ∣R,S(t∣t, f)

≥ 10

corresponding to Corollary 13.7 and express the probabilities needed in terms of the conditional

probabilities given. This represents the constraint that, given the report without smoke, it is 10

times more likely that the alarm has been tampered with than that there is a real �re.

3. Consider a probability distribution

PX,Y,E = PXPY PE∣X,Y

where X,Y,E are all binary variables and

PX =
x0 x1

θx 1 − θx
PY =

y0 y1

θy 1 − θy

PE∣X,Y (e∣., .) =
X/Y y0 y1

x0 α β

x1 β α

and β < α.

(a) Compute ∂
∂θx

ln
PY ∣E(y0∣e)
PY ∣E(y1∣e) and compare the result with the bound from Corollary 13.11.

(b) Let Os(y0∣e) =
PY ∣E(y0∣e)
PY ∣E(y1∣e) when θx = s. Compute

Os(y0∣e)
Ot(y0∣e) and compare with the bounds given

by Theorem 13.13.

4. (a) On Odds and the Weight of Evidence Let P be a probability distribution over a space

X . The odds of an event A ⊆ X given B ⊆ X under P, denoted by OP (A ∣ B), is de�ned as

OP (A ∣ B) =
P (A ∣ B)
P (Ac ∣ B) . (13.12)

277



278 CHAPTER 13. PARAMETERS AND SENSITIVITY

The weight of evidence E in favour of an event A given B, denoted by W (A ∶ E ∣ B), is
de�ned as

W (A ∶ E ∣ B) = ln OP (A ∣ B ∩E)
OP (A ∣ B)

. (13.13)

Show that if P(E ∩Ac ∩B) > 0, then

W (A ∶ E ∣ B) = ln P (E ∣ A ∩B)
P (E ∣ Ac ∩B) . (13.14)

(b) On a generalised Odds and the Weight of Evidence Let P denote a probability

distribution over a space X and let H1 ⊆ X , H2 ⊆ X , G ⊆ X and E ⊆ X . The odds of H1

compared to H2 given G, denoted by OP (H1/H2 ∣ G), is de�ned as

OP (H1/H2 ∣ G) =
P (H1 ∣ G)
P (H2 ∣ G)

. (13.15)

The generalised weight of evidence is de�ned by

W (H1/H2 ∶ E ∣ G) = ln
OP (H1/H2 ∣ G ∩E)
OP (H1/H2 ∣ G)

. (13.16)

Show that if P(H1 ∩G ∩E) > 0 and P(H2 ∩G ∩E) > 0 then

W (H1/H2 ∶ E ∣ G) = ln
P (E ∣H1 ∩G)
P (E ∣H2 ∩G)

. (13.17)

This is clearly a loglikelihood ratio and these notions are another expression for

posterior odds = likelihood ratio × prior odds.



13.5 Answers

1.

S(P)(t) = max
x∈{0,1}

d

dt
lnPX(x∣t) − min

x∈{0,1}

d

dt
lnPX(x∣t)

= max
x∈{0,1}

(x d
dt

ln t + (1 − x) d
dt

ln(1 − t))

− min
x∈{0,1}

(x d
dt

ln t + (1 − x) d
dt

ln(1 − t))

= max
x∈{0,1}

(x
t
− 1 − x

1 − t ) − min
x∈{0,1}

(x
t
− 1 − x

1 − t )

= 1

t
+ 1

1 − t =
1

t(1 − t) .

2. The parameter is in the variable T , which has no parents; PaT = ϕ. According to the corollary,

it is required to choose δ such that

PT,R,S(t, t, f) − 10PF,R,S(t, t, f) ≥ δ(−λT + 10λF )

is required, where

λT =
PR,S,T (t, f, t)

θ0

since PR,S,T,R(t, f, t, f) = 0,

λF =
PF,R,S,T (t, t, f, t)

θ0
− PF,R,S,T (t, t, f, f)

1 − θ0
.

The probabilities are obtained by summation:

PR,S,T (t, f, t) = PT (t)∑
xf

PF (xf)PS∣F (f ∣xf)∑
xa

PA∣T,F (xa∣t, xf)∑
xl

PL∣A(xl∣xa)PR∣L(t∣xl).

PF,R,S(t, t, f) = PF (t)PS∣F (f ∣t)∑
xt

PT (xt)∑
xa

PA∣T,F (xa∣xt, t)∑
xl

PL∣A(xl∣xa)PR∣L(t∣xl)

PF,R,S,T (t, t, f, t) = θ0PF (t)PS∣F (f ∣t)∑
xa

PA∣F,T (xa∣t, t)∑
xl

PL∣A(xl∣xa)PR∣L(t∣xl)

PF,R,S,T (t, t, f, f) = (1 − θ0)PF (t)PS∣F (f ∣t)∑
xa

PA∣F,T (xa∣t, f)∑
xl

PL∣A(xl∣xa)PR∣L(t∣xl)

3. (a)

PY ∣E(y0∣e) =
PY,E(y0, e)

PE(e)
= PY (y0)

∑1
i=0 PX(xi)PX,Y ∣E(xi, y0∣e)

∑1
i,j=0 PY (yj)PX(xi)PX,Y ∣E(xi, yj ∣e)

PY ∣E(y0∣e) =
(α − β)θxθy + θyβ

2θxθy(α − β) + (β − α)(θx + θy) + α
.

PY ∣E(y1∣e) =
(α − β)θxθy + α + βθx − α(θx + θy)
2θxθy(α − β) + (β − α)(θx + θy) + α

.

279



280 CHAPTER 13. PARAMETERS AND SENSITIVITY

ln
PY ∣E(y0∣e)
PY ∣e(y1∣e)

= ln ((α − β)θxθy + θyβ) − ln ((α − β)θxθy + α + βθx − α(θx + θy))

∂

∂θx
ln

PY ∣E(y0∣e)
PY ∣E(y1∣e)

= (α − β)
(α − β)θx + β

+ (α − β)
α − (α − β)θx

= 1

θx + β
α−β
+ 1

α
α−β − θx

.

Set θ̃x = β
α−β + θx, then

∂

∂θx
ln

PY ∣E(y0∣e)
PY ∣E(y1∣e)

= 1

θ̃x
+ 1

1 + 2β
α−β − θ̃

.

Clearly, if α < 1 or β > 0,

∣ ∂
∂θx

ln
PY ∣E(y0∣e)
PY ∣E(y1∣e)

∣ < 1

θx(1 − θx)
.

(b)

Os(y0∣e) =
(α − β)sθy + θyβ

(α − β)sθy + α + βs − α(s + θy)
so that

Os(y0∣e)
Ot(y0∣e)

= ((α − β)s + β(α − β)t + β )(
(α − (α − β)t
(α − (α − β)s)

=
⎛
⎝
s + β

α−β

t + β
α+β

⎞
⎠
⎛
⎝

α
α−β − t
α

α−β − s
⎞
⎠
.

For s < t, clearly
1 ≥ Os(y0∣e)

Ot(y0∣e)
≥ (s

t
)( 1 − t

1 − s)

as required.

4. (a)

W (A ∶ E∣B) = ln
OP(A∣BE)
OP(A∣B)

= ln P(A∣BE)
P(Ac∣BE)

P(Ac∣B)
P(A∣B)

= ln
P(ABE)P(BE)
P(BE)P(AcBE)

P(AcB)P(B)
P(B)P(AB) = ln

P(ABE)P(AcB)
P(AcBE)P(AB) = ln

P(E∣AB)
P(E∣AcB)

(b)

W (H1/H2 ∶ E∣G) = ln
OP(H1/H2∣GE)
OP(H1/H2∣G)

= ln P(H1∣GE)P(H2∣G)
P(H2∣GE)P(H1∣G)

= ln
P(H1GE)P(GE)P(H2G)P(G)
P(GE)P(H2GE)P(G)P(H1G)

= ln P(E∣H1G)
P(E∣H2G)

.



Chapter 14

Structure Learning

14.1 Introduction

This chapter considers the problem of learning the structure of a DAG corresponding to a Bayesian

network for a random (row) vector X = (X1, . . . ,Xd) when presented with an n × d data matrix x,

considered as an instantiation of a random matrix

X =
⎛
⎜⎜
⎝

X1.

⋮
Xn.

⎞
⎟⎟
⎠

where X1., . . . ,Xn. is a collection of independent identically distributed random vectors, each with the

same distribution as X. The notation Xj. means (Xj1, . . . ,Xjd) for j = 1, . . . , n.
Methods available fall into two categories; search and score techniques, where a score function is

used and the algorithm attempts to �nd the structure that maximises the score function and constraint

based methods, where conditional independence tests are carried out and the independence relations

thus established provide constraints, limiting the edges that can be added.

Algorithms can, broadly speaking, be placed in one of three di�erent categories; search-and-score,

constraint based and hybrid. Hybrid algorithms use features from both constraint based and search

and score methods.

The aim of this chapter is to give a broad introduction and describe some of the search-and-score

algorithms. Constraint based algorithms will be dealt with in considerably more detail in Chapter 16,

while Markov chain Monte Carlo (MCMC), the most popular search-and-score approach, will be dealt

with in Chapter 18.

The straightforward approach of maximising the likelihood, or a posterior distribution, over graph

structures leads to a problem that, a �rst glance, may appear fairly straightforward. There is a �nite

number of di�erent possible DAGs G = (V,D) with d nodes. In general, though, testing all possible

structures is not computationally feasible. This is because the number of possible DAGs grows super

exponentially in the number of nodes. In [118], Robinson gave the following recursive function for

computing the number N(d) of acyclic directed graphs with d nodes:

281



282 CHAPTER 14. STRUCTURE LEARNING

N(d) =
d

∑
i=1
(−1)i+1

⎛
⎝
d

i

⎞
⎠
2i(d−1)N(d − i). (14.1)

For d = 5 it is 29000 and for d = 10 it is approximately 4.2 × 1018. Here N(d) is a very large number,

even for small values of d. Therefore, it is clearly not feasible to compute this sum, even for modest

values of d.

14.2 Distance Measures

When measuring distance, there are two criteria of interest: �rstly, the graph alone can be considered.

A distance measure between graphs will simply compare the numbers of edges and their orientations

between graphs. Secondly, the di�erences between the probability distributions, estimated from data,

factorised along the graph may be considered.

14.2.1 Structural Hamming Distance

This is a distance measure that simply measures the distance between graphs. In the context of �tting

a Bayesian network, structures that are Markov equivalent should be considered equal, since only the

Markov equivalence class can be obtained from data. The Structural Hamming distance between two

DAGs graphs is de�ned as follows

De�nition 14.1 (Structural Hamming Distance). The Structural Hamming Distance between two

DAGs graphs G1 = (V,D1) and G2 = (V,D2) is de�ned as

SHD(D1,D2) = (number of edges that have to be added to D1)
+ (number of edges that have to be deleted from D1)
+ (number of edges in D1 that have to have their direction changed )
to obtain D2

The structural Hamming Distance between two essential graphs G1 = (V,E1) and G2 = (V,E2) is de�ned
as

SHDess(E1,E2) = min
D1∈E1,D2∈E2

SHD(D1,D2)

where E1 is the set of DAGs within the Markov equivalence class of E1 and E2 is the set of DAGs within
the Markov equivalence class of E2. D1 and D2 are the edge sets for directed acyclic graphs chosen

from the equivalence classes E1 and E2 respectively.

The SHD is a distance measure, or metric, in the sense that it satis�es the de�nition of a distance

or metric. That is, it satis�es:

� SHD(E1,E2) ≥ 0 ∀E1,E2



14.2. DISTANCE MEASURES 283

B E C

��

A D // F

Figure 14.1: Essential graph G1

B // E C

��

oo

A D //

OO

F

Figure 14.2: Essential graph G2

� SHD(E1,E2) = 0⇔ E1 = E2

� SHD(E1,E2) = SHD(E2,E1) ∀E1,E2,

� SHD(E1,E3) ≤ SHD(E1,E2) + SHD(E2,E3) ∀E1,E2,E3.

The Structural Hamming Distance measures the distance between two essential graphs, but if com-

parison is being made between a `�tted' graph and a `true' graph, the SHD distance measure does not

distinguish between `false positives' (edges in the �tted graph that are not in the true graph) and `false

negatives' (edges not present in the �tted graph that are present in the true graph).

The distance thus de�ned between the two graphs in Figures 14.1 and 14.2 is 1, since there is a

valid orientation of the edges in 14.1 where all except C − E (which is not present) have the same

orientation as the edges in Figure 14.2.

14.2.2 Sensitivity and Speci�city

Rough measures of `goodness of �t', when comparing the skeletons of a �tted graph with a true graph,

are the sensitivity and speci�city. Sensitivity, True Positive Rate, is de�ned as follows:

TPR = number of edges correctly identi�ed

number of edges correctly identi�ed + number of edges falsely rejected
(14.2)

The speci�city, SPC is de�ned as

SPC = number of edges correctly rejected

number of edges correctly rejected + number of edges wrongly included
. (14.3)

The TPR measure is useful, but for the relatively sparse graphs in view for genetics data, where the

parent / child sets are limited, the SPC measure is not so useful, unless it is modi�ed. For d variables,

there are 2d possible edges to consider for the skeleton, exponential in the number of variables. For



284 CHAPTER 14. STRUCTURE LEARNING

sparse graphs, with a large number of nodes, the speci�city measure will always be approximately 1 for

an algorithm with a tendency to wrongly reject edges rather than wrongly include edges. The following

de�nitions for sensitivity and speci�city are therefore more convenient; the speci�city corresponding to

the usual de�nition, the sensitivity modi�ed. The following de�nitions are proposed for sparse graphs:

De�nition 14.2 (Sensitivity and Speci�city). For the construction of the skeleton, the sensitivity is

de�ned as

TPR = number of edges correctly identi�ed

number of edges correctly identi�ed + number falsely rejected
(14.4)

while the proposed de�nition for speci�city is

SPC = total number of edges in the skeleton

total number of edges in the skeleton + number of edges wrongly included
. (14.5)

Equation (14.5) is not the standard de�nition of speci�city, but if the value is close to 1, it implies

that the rate of wrong inclusion is insigni�cant, rather than that the graph is large and sparse, which

would lead to a value close to 1 using the de�nition in Equation (14.3) even if the number of edges

wrongly included is large compared with the total number of edges in the true graph.

14.2.3 The Kullback Leibler Divergence

The Kullback Leibler Divergence may be used as the basis of measuring the distance between two DAGs

over d variables, with respect to a data set. Recall the de�nition of the Kullback Leibler Divergence

between two probability functions p and q each de�ned over the same state space X :

DKL(p∥q) = ∑
x∈X

p(x) log p(x)
q(x) .

In view here is the divergence between the factorisation over a true directed acyclic graph G1 = (V,D1)
and a �tted directed acyclic graph G2 = (V,D2). Let p̂1 and p̂2 denote the �tted probability distributions
from the data, according to the factorisations along G1 and G2 respectively. The �tted distribution p̂

is the same for each directed acyclic graph within the Markov equivalence class of an essential graph.

14.3 Search and Score Algorithms

For a Bayesian network with a directed acyclic graph G = (V,D), the edge set D is often referred to as

the structure of the network. Let D̃ denote the set of all possible edge sets that give a directed acyclic

graph with node set V and suppose that D is unknown and has to be inferred only from the n×d data
matrix x.

For a given structure, the prior distribution over the parameter vectors θj.l are taken from the

family Dir(αj1l, . . . , αjkj l) for all nodes and parent con�gurations (j, l). There is a prior distribution

pD over the collection of possible structures D̃,which is the probability function for a random variable

D taking values in D̃.



14.3. SEARCH AND SCORE ALGORITHMS 285

The Prior Distribution for the Graph Structure There are several possible ways of constructing

a prior distribution pD. If it is known a priori that the graph structure lies within a subset A ⊆ D̃,
then an obvious choice is the uniform prior over A;

PD(D) =
⎧⎪⎪⎨⎪⎪⎩

1
∣A∣ if D ∈ A
0 otherwise

where ∣A∣ is the number of elements in a subset A ⊆ D̃.
The Bayesian selection rule for a graph G = (V,D) uses the graph which maximises the posterior

probability

PD∣X(D∣x) =
PX∣D(x∣D)PD(D)

PX(x)
, (14.6)

The task is then, for a given x, to �nd the D that maximises the Bayesian Dirichlet score function

S(D) = PX∣D(x∣D)PD(D). (14.7)

where PD is the prior probability over the space of edge sets. The prior odds ratio for two di�erent edge

sets D1 and D2 is de�ned as
PD(D1)
PD(D2) and the posterior odds ratio is de�ned as

PD∣X(D1∣x)
PD∣X(D2∣x) . Equation

(14.6) may then be expressed as

Posterior odds = Likelihood ratio ×Prior odds = S(D1)
S(D2)

.

Using factorisations along the relevant graphs, the computation of a ratio, rather than simply com-

puting each score function, is sometimes easier if the two graphs have some part of the structure in

common.

Computing the posterior distribution is an NP hard problem; Cooper [30] proves that the inference

problem is NP hard. That means, worse than an NP problem. This discussed in [26]. Koivisto and

Sood [75] (2004) constructed the �rst algorithm that had a complexity less than super exponential

for �nding the posterior probability of a network, at the expense of limiting the maximum number

of parents for each variable; the run time is O(d2d + dk+1C(n)) where d is the number of notes, k is

the maximum in-degree permitted and C(n) the cost of computing a single local marginal conditional

marginal likelihood for n instantiations.

Aside: P, NP and NP Hard Problems A problem is assigned to the NP (non-deterministic

polynomial time) class if it is veri�able in polynomial time by a non-deterministic Turing machine. (A

non-deterministic Turing machine is a `parallel' Turing machine which can take many computational

paths simultaneously, with the restriction that the parallel Turing machines cannot communicate.) A

P-problem (whose solution time is bounded by a polynomial) is always also NP. If a problem is known

to be NP, and a solution to the problem is somehow known, then demonstrating the correctness of the

solution can always be reduced to a single P (polynomial time) veri�cation. A problem is NP-hard if an

algorithm for solving it can be translated into one for solving any other NP-problem (non-deterministic



286 CHAPTER 14. STRUCTURE LEARNING

polynomial time) problem. NP-hard therefore means `at least as hard as any NP-problem' although it

might, in fact, be harder.

14.3.1 Score Functions

For a given data matrix x, one example of a score function is simply a function proportional to the

posterior probability given, for example, by Equation (14.7). It is often considered that this score

function gives too much preference to graphs with large number of edges.

AIC and BIC Score Functions One standard score function is the Akaike Information Criterion

(AIC) de�ned as:

AIC(D) = −2 logL(D∣x) + 2∣θ∣ (14.8)

where ∣θ∣ ∶= ∑d
j=1 qj(kj−1) denotes the number of parameters required to de�ne the network and L(D∣x)

is the Cooper Herskovitz likelihood given by Equation (12.15). The Bayesian Information Criterion is

similar, but uses log ∣θ∣;

BIC(D) = −2 logL(D∣x) + (logn)∣θ∣. (14.9)

The BDeu Score The BDeu score was introduced by Heckerman, Geiger and Chickering [62]. The

BD score is simply the score function given by Equation (14.7), the posterior probability over directed

acyclic graphs, assuming that the variables each have multinomial distribution. The BDeu score uses a

uniform prior over graph structures, so that the posterior distribution is proportional to the likelihood,

and then multiplies by a factor that penalises according to the number of edges where the graph di�ers

from some `target' graph, based on prior information. The BDeu score function for a directed acyclic

graph, based on the data is de�ned as follows

De�nition 14.3 (BD, BDeu Score Function).

S(D;x) = κδ(D)
d

∏
j=1

qj

∏
l=1

Γ(∑kj
i=1 αjil)

Γ (n(πlj) +∑
kj
i=1 αjil)

kj

∏
i=1

Γ(n(xij ∣πlj) + αjil)
Γ(αjil)

, (14.10)

where x denotes the n×d data matrix of n independent instantiations of the d variables in the variable

set V , D denotes the edge set for the directed acyclic graph G = (V,D), κ is a number 0 < κ ≤ 1, δ(D)
denotes the number of edges in D that di�er from those in a `target' graph, a graph that is a priori

considered most likely, based on prior information.

The BD score function is the BDeu score function with κ = 1.

When the aim is to construct a graph representing the dependence relations in the data, with as few

edges as possible, δ(D) simply counts the number of edges in the edge set D.

De�nition 14.4 (Prior Sample Size). The prior sample size is de�ned as the quantity

ñ =∑
jil

αjil.



14.3. SEARCH AND SCORE ALGORITHMS 287

The quantity ñ = ∑jil αjil is considered to be the weight attached to the prior assessment. Loosely

speaking it is the `number' of observations on which the prior is based.

For the BDeu score function, the value κ = 1
1+n+ñ is often chosen. Note that, with this choice of κ, the

BDeu and BIC are similar; the BIC penalty is the number of parameters, while the BDeu penalty is

the number of edges.

14.3.2 Sparse Candidate Algorithm

The discussion now moves onto a selection of search and score algorithms. The �rst of these is the

sparse candidate algorithm, which was developed by Friedman, Nachman and Pe'er (1999) [45] and

used for analysis of genetic expression data in Friedman et. al. (2000) [46]. The main idea of the

technique is to identify a relatively small number of candidate parents for each variable. This is based

on simple local statistics, such as correlation. Attention is then restricted to networks in which the

parent set is a subset of the candidate parent set.

The algorithm proceeds as follows: let Dn denote the DAG chosen at iteration n, let Pa
(n)
i denote

the parent set for variable Xi in Dn.

� For i = 1, . . . , d, choose the candidate set C(n)i = {Y1, . . . , Yk} of candidate variables for Pai, the
parent set for variable Xi. The set C

(n)
i is chosen as Pa

(n−1)
i together with children and parents

of children of Xi in Dn, and all those variables Y /∈MB(Xi) such that the score

∑
(x,y,z)∈XXi

×XY ×X
Pa(n−1)i

n
Xi,Y,Pa

(n−1)
i

(x, y, z) ln
n
Xi,Y,Pa

(n−1)
i

(x, y, z)n
Pa(n−1)i

(z)

n
Y,Pa(n−1)i

(y, z)n
Xi,Pa

(n−1)
i

(x, z)

is su�ciently high. HereMB denotes Markov blanket (parents, children and parents of children).

Also, for a set W , nW (w) denotes the number of appearances of con�guration w in the data

matrix x. If the test statistic is low, it supports Xi ⊥ Y ∣Pa(n−1)i and hence Y is not a candidate

parent.

There are other ways of determining the candidate parents; anything in the current Markov blan-

ket not d-separated from the variable by the Markov blanket should be included as a candidate

parent.

� Find a high scoring network Dn where PaDn
i ⊂ C(n)i for i = 1, . . . , d.

Optimal Reinsertion The optimal reinsertion algorithm, introduced by A. Moore and W-K. Wong

(2003) [96], is a search - and -score algorithm that works along the following lines: at each step a

target node is chosen, all edges entering or leaving the target are deleted, and the optimal combination

of in-edges and out-edges is found, the node is re-inserted with these edges. This involves searching

through the legal candidate parent sets and, for each candidate parent set, the legal child sets. The

optimal reinsertion may be combined with sparse candidate.



288 CHAPTER 14. STRUCTURE LEARNING

14.3.3 Greedy Search and Greedy Equivalence Search

The Greedy Search was introduced by Meek (1997) in his Ph.D. thesis and correctness was proved by

Chickering (2002) [25] under the assumption that there was a DAG faithful to the probability distri-

bution. It works along the following lines to produce a DAG, along which the probability distribution

factorises, starting from the graph with no edges:

� Forward phase Let E0 denote the graph with no edges. Let En denote the essential graph from

stage n of the forward phase. Consider all possible DAGs within the Markov equivalence class,

all possible DAGs obtained by adding exactly one edge to a DAG from this equivalence class and

consider the set of essential graphs corresponding to this collection of DAGs. Let En+1 denote

the essential graph with the highest score if it has a higher score than En and continue to forward

phase stage n + 1. Otherwise, terminate the forward phase, with output En.

� Backward phase Let Ẽ0 denote the output graph from the forward phase. Let Ẽn denote the

output graph from stage n of the backward phase. Consider all possible DAGs corresponding to

the equivalence class Ẽn, all possible DAGs formed by an edge deletion from these DAGs and

consider the set of essential graphs corresponding to this collection of DAGs. Let Ẽn+1 denote the

essential graph with the highest score if it is higher than that for Ẽn and continue to backward

phase stage n+1. Otherwise terminate; Ẽn is the output of the backward phase and of the greedy

equivalence search algorithm.

After the forward and backward phase, this algorithm is guaranteed to return an optimal structure

provided there exists a faithful DAG. The faithfulness assumption may be relaxed; the algorithm re-

turns a suitable structure provided the weaker composition condition holds (compositional graphoid,

Equation (2.1.1)). The compositional axiom is essential for the algorithm to return the correct graph.

The necessity of composition is clear from the three variable example, where Y1, Y2, Y3 are independent

binary variables P(Yi = 1) = P(Yi = 0) = 1
2 , X1 = 1(Y2 = Y3), X2 = 1(Y1 = Y3), X3 = 1(Y1 = Y2). Since

X1 ⊥ X2, X1 ⊥ X3 and X2 ⊥ X3, adding a single edge to the empty graph will not increase the score.

The algorithm will therefore terminate after the �rst step of the forward phase and return the empty

graph.

Notes The Cooper Herskovitz likelihood was introduced by Cooper and Herskovitz in [31]. In [30],

Cooper proves that the inference problem for structure learning is NP hard. In [26], Chickering

Heckerman and Meek prove, under some assumptions, that identifying high scoring structures in search

- and - score algorithms is NP - hard. Koivisto and Sood [75] [2004] constructed the �rst algorithm

that had a complexity less than super - exponential for �nding the posterior probability of a network.

The Chow - Liu tree is taken from [28] [1969]. The K2 algorithm is by Cooper and Herskovitz [31]

[1992]. The robotics example is due to E. Lazkano, B. Sierra, A. Astigarraga, and J.M. Martínez -

Otzeta [79] [2007] The maximum minimum hill climbing algorithm is found in [137]. The Markov chain

Monte Carlo model composition algorithm, known as MC3, and the augmented Markov chain Monte



14.3. SEARCH AND SCORE ALGORITHMS 289

Carlo model composition (AMC3) algorithm were introduced by Madigan and York [89] in 1995 and

Madigan, Andersson, Perlman and Volinsky [88] in 1997.



14.4 Exercises

These exercises should be carried out using R. The bnlearn package may be useful.

1. Chow - Liu Tree Generate three columns, c1, c2 and c3, each containing independent random

samples of 50 Be(1/2) observations. Here Be(1/2) means Bernoulli trials, returning 0 with

probability 1/2 and 1 with probability 1/2. Let c4 = c1 + c2 and let c5 = c3 + c4. Implement the

Kruskal algorithm on the variables c1, c2, c3, c4, c5 and see which edges are chosen.

2. Chow - Liu Tree Download the data set from the URL address

http://archive.ics.uci.edu/ml/machine-learning-databases/zoo/zoo.data

A description of the data is found at the address

http://archive.ics.uci.edu/ml/datasets/Zoo

The data set presents attributes of various animals; hair type, feather type, egg type, milk type,

whether it is airborne, aquatic, a predator, whether or not it has teeth, a backbone, whether

it breathes, or is venomous, has �ns, legs, tail, or domestic, or catsize. The last variable is a

classi�cation of the type of animal.

(a) Compute the estimated probability distribution for all the variables except for the `class'

variable, assuming that they are independent. What is the Kullback Leibler distance be-

tween the empirical distribution and the estimate using the independence model?

(b) Perform Kruskal's algorithm, to determine the optimal Chow - Liu tree. Use the data

from all the variables, except for the class variable, to construct a single Chow - Liu tree.

Calculate the estimated probability distribution, assuming that the distribution factorises

according to the Chow - Liu tree. Calculate the Kullback Leibler distance between this

estimate and the empirical probability distribution.

Note You have to specify a root for the Chow-Liu tree. This determines the directions of

the arrows. All possible Chow-Liu trees from the same skeleton are Markov equivalent.

(c) Classi�cation See how the Chow - Liu tree performs for classi�cation. Compute the

classi�er using the data and then use the classi�er to predict the classes of the same data

set. Such a procedure is not so satisfactory; di�erent data should be used for training and

classi�cation.

(d) Perform an MMPC algorithm on the zoo data, using a nominal signi�cance level of 0.05.

Compare it with the Chow-Liu tree with those edges that fail the signi�cance test at 0.05

level are removed.

The following R code solves the Chow-Liu tree problem. The `50 warnings' basically come from zero

divided by zero problems. The code should be modi�ed (by adding on a small value such as 0.01 to

each cell) to prevent this. The classi�er works reasonably well in any case.

> library("bnlearn")

> zoo <- read.csv("~/data/zoo.data", header=F)

290



14.4. EXERCISES 291

> colnames(zoo) <- c("animal name", "hair", "feathers", "eggs","milk","airborne","aquatic",

+ "predator","toothed","backbone","breathes","venomous","fins", "legs","tail","domestic","catsize","type")

> for(i in 2:ncol(zoo)) zoo[,i] <- factor(zoo[,i]) # conversion to factors

> s <- sample(100,70)

> trainingdata <- zoo[s,]

> testdata <- zoo[-s,]

> res <- chow.liu(trainingdata[,-c(1,18)]) # learning the structure

> print(res)

Bayesian network learned via Pairwise Mutual Information methods

model:

[undirected graph]

nodes: 16

arcs: 15

undirected arcs: 15

directed arcs: 0

average markov blanket size: 1.88

average neighbourhood size: 1.88

average branching factor: 0.00

learning algorithm: Chow-Liu

mutual information estimator: Maximum Likelihood (disc.)

training node:

tests used in the learning procedure: 120

> print(res$arcs)

from to

[1,] "hair" "milk"

[2,] "milk" "hair"

[3,] "feathers" "legs"

[4,] "legs" "feathers"

[5,] "eggs" "milk"

[6,] "milk" "eggs"

[7,] "eggs" "toothed"

[8,] "toothed" "eggs"

[9,] "milk" "catsize"

[10,] "catsize" "milk"

[11,] "airborne" "legs"

[12,] "legs" "airborne"

[13,] "aquatic" "breathes"



292 CHAPTER 14. STRUCTURE LEARNING

[14,] "breathes" "aquatic"

[15,] "predator" "legs"

[16,] "legs" "predator"

[17,] "predator" "domestic"

[18,] "domestic" "predator"

[19,] "toothed" "legs"

[20,] "legs" "toothed"

[21,] "backbone" "legs"

[22,] "legs" "backbone"

[23,] "backbone" "tail"

[24,] "tail" "backbone"

[25,] "breathes" "legs"

[26,] "legs" "breathes"

[27,] "venomous" "legs"

[28,] "legs" "venomous"

[29,] "fins" "legs"

[30,] "legs" "fins"

> plot(res)

> res2 <- pdag2dag(res, colnames(zoo)[c(2,5,4,14,17,3,6,9,10,11,12,15,7,8,13,16)]) # directing the edges.

> plot(res2)

> # parameters estimation for every class

> res3 <- list()

> for(i in 1:7){

+ res3[[i]] <- bn.fit(res2, trainingdata[trainingdata$type==i,-c(1,18)],method="bayes")

+ }

>

> lik <- array(dim=c(7,nrow(testdata))) # matrix of likelihoods

> for(i in 1:7) for (j in 1:nrow(testdata)){

+ lik[i,j] <- logLik(res3[[i]],testdata[j,-c(1,18)])

+ }

>

> pred <- apply(lik,2,which.max)

> table (pred, testdata$type)

pred 1 2 3 4 5 6 7

1 11 0 0 0 0 0 0

2 0 7 0 0 0 0 0

3 0 0 0 0 4 0 0

4 0 0 0 6 0 0 0

6 0 0 0 0 0 1 0



14.4. EXERCISES 293

7 0 0 0 0 0 0 2

> > resmmpc <- mmpc(zoo[,-c(1,18)])

> print(resmmpc$arcs)

from to

[1,] "hair" "aquatic"

[2,] "hair" "milk"

[3,] "eggs" "milk"

[4,] "milk" "catsize"

[5,] "milk" "eggs"

[6,] "milk" "hair"

[7,] "aquatic" "fins"

[8,] "aquatic" "predator"

[9,] "aquatic" "hair"

[10,] "predator" "domestic"

[11,] "predator" "aquatic"

[12,] "toothed" "backbone"

[13,] "backbone" "tail"

[14,] "backbone" "toothed"

[15,] "fins" "aquatic"

[16,] "tail" "backbone"

[17,] "domestic" "predator"

[18,] "catsize" "milk"



294 CHAPTER 14. STRUCTURE LEARNING



Chapter 15

Data Storage, Product Approximations,

Chow Liu Trees

15.1 Introduction

Let X = (X1, . . . ,Xd) denote a random vector with probability function PX1,...,Xd
. Let

Xj = (x(1)j , . . . , x
(kj)
j )

denote the state space of Xj , j = 1, . . . , d and let

X = ×dj=1Xj .

The number of elements in the state space is ∣X ∣ = (∏d
j=1 kj) and, without further assumptions on P,

∣X ∣ − 1 elements are required to store the entire distribution.

The problem of storing the entire probability distribution is one of many expressions of the `curse

of dimensionality'. The size of the problem is reduced if one instead stores lower dimensional marginals

and approximates the distribution by an appropriate product of lower dimensional marginals.

The topic of storing a high dimensional discrete probability distribution in a digital medium ap-

peared in the journal literature, probably for the �rst time, by J. Hartmanis (1959) [59] and P.M. Lewis

II (1959) [85]. The Chow - Liu tree by Chow and Liu (1969) [28], approximately 10 years later, provides

an in�uential and e�ective solution to the problem. Chow and Liu gave an algorithm for selecting �rst

order factors for the product approximation so that among all such �rst order approximations, the

constructed approximation has the minimum Kullback-Leibler distance to the actual distribution to

be stored.

15.2 Product Approximations

15.2.1 Existence of Extensions with Given Marginals

For a probability distribution PX1,...,Xd
over a set of random variables X = (X1, . . . ,Xd), there are

∑d−1
j=1 (dj) = 2d − 2 lower dimensional marginal distributions, which may be obtained by marginalising

295



296 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

the distribution. The classical marginal problem considers an `inverse problem'; given a family (PWi)si=1
of probability distributions, for s < 2d − 2 and Wi ⊂ V = {X1, . . . ,Xd}, the question is whether there

exists a probability distribution PV that satis�es the so-called collective compatibility condition given

by Equation (15.1).

PWi = (PV )↓Wi ∀i = 1, . . . , s (15.1)

Here the notation ↓ A means the marginalisation down to a set of variables A. This problem is of

importance in the following setting: if the full probability distribution cannot be estimated and stored,

it may be possible to estimate and store probability distributions over selected subsets of the variables.

These subsets should be chosen so that, formally, the collection of distributions over the subsets are

compatible. Some fundamental contributions to this problem are due to H.G. Kellerer [73] and others.

If the sets (Wi)si=1 are disjoint, satisfying ∪iWi = V , then the problem has an obvious trivial solution:

P(x) =
s

∏
i=1

PWi(xWi
)

where the product operation means �rst extending the probabilities PWi as functions, to functions P̃Wi

over the domain V where (using obvious notation) P̃Wi(xWi
.xV /Wi

) = PWi(xWi
) for each xWi

∈ XWi

and then multiplying. With the appropriate projections of x,

P(x) =
s

∏
j=1

PWj(xWj
).

If (Wj)sj=1 are not disjoint, then clearly the collection of probabilities (PWj)sj=1 should satisfy a pairwise

compatibility condition:

PCij = P
↓Cij

Wi
= P↓Cij

Wj
∀i, j ∈ {1, . . . , s}2.

The following example due to Vorobev (1962) [141] shows that pairwise compatibility does not imply

collective compatibility.

Example 15.1 (Vorobev's example).

Let V = {1,2,3}, W1 = {2,3}, W2 = {1,3}, W3 = {1,2}. Suppose that the following three pairwise joint
distributions are speci�ed:

PW1(x2, x3) =
x2/x3 0 1

0 1
2 0

1 0 1
2

PW2(x3, x1) =
x1/x3 0 1

0 0 1
2

1 1
2 0

PW3(x1, x2) =
x1/x2 0 1

0 1
2 0

1 0 1
2

These are pairwise compatible; W1 ∩W2 = {3} and

P↓{3}W1
(x3) = P↓{3}W2

(x3) =
0 1
1
2

1
2

.



15.2. PRODUCT APPROXIMATIONS 297

W1 ∩W3 = {2} and

P↓{2}W1
(x2) = P↓{2}W3

(x2) =
0 1
1
2

1
2

.

W2 ∩W3 = {1} and

P↓{1}W2
(x1) = P↓{1}W3

(x1) =
0 1
1
2

1
2

.

If a common extension P∗ existed, it would follow that (for example)

1

2
= PW1(0,0) = P∗(0,0,0) + P∗(1,0,0) ≤ PW2(0,0) + PW3(1,0) = 0,

which is a contradiction. The three marginals satisfy a pairwise compatibility condition, but not a

collective compatibility condition.

Without loss of generality, let V = ∪sj=1Wj . The condition to ensure that pairwise compatibility implies

collective compatibility is known as the acyclic condition.

De�nition 15.2 (Acyclic, Running Intersection Property). Suppose that there is an ordering of the

sets W1, . . . ,Ws such that for each j there is an l < j such that

Bj =Wj ∩ (∪j−1k=1Wk) ⊆Wj ∩Wl (15.2)

This property is known as the running intersection property. A set of subsets of W1, . . . ,Ws having the

running intersection property, given some ordering, is known as acyclic.

Remark In Example 15.1, if the ordering W1,W2,W3 is chosen, then

W3 ∩ (W1 ∪W2) = {1,2},

but {1,2} is not a subset of W1 or W2. It follows that Equation (15.2) does not hold for this ordering.

It is easy to check that there is no ordering that satis�es Equation (15.2), hence acyclicity does not

hold for Example 15.1.

The following important result is due to Beeri et. al. (1983) [5]

Theorem 15.3. Acyclicity is equivalent to `pairwise compatibility for all (i, j) implies collective com-

patibility'. Furthermore, under acyclicity, there is a unique product form extension,

P∗(x) =
∏s

l=1 P(xWl
)

∏s−1
h=1 P(xVh

)
(15.3)

where each Vh is the intersection of two or more Wl.



298 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

Proof Assume we have the acyclic / running intersection property. Consider the variables as nodes of

a graph, where the sets (Wi)si=1 are maximal cliques. The running intersection property is equivalent

to a perfect order of the maximal cliques, which implies that the maximal cliques W1, . . . ,Ws can

be arranged as a junction tree, where for each j ∈ {2, . . . , s}, we choose an l(j) < j from the set

{l ∶Wj ∩ (∪j−1k=1Wk) =Wj ∩Wl} and insert an edge j − l(j). In this way, we have a tree with s−1 edges.

For each edge ⟨j, l⟩, let V⟨j,l⟩ =Wj ∩Wl and let U denote the (undirected) edge set. Now consider any

collection (PWj)sj=1 which is pairwise compatible. Then we can de�ne a distribution P∗ by:

P∗(x) =
∏s

l=1 PWl
(xWl

)
∏⟨j,l⟩∈U PV⟨j,l⟩(xV⟨j,l⟩)

where PV⟨j,l = (PWl
)↓V⟨j,l⟩ = (PWj)↓V⟨j,l⟩ . Since the sets (Wi)si=1 are arranged on a junction tree, hence

any intersection Wα ∩Wβ is contained in Wγ ∩Wδ for any edge γ − δ on the unique path α↔ β in the

tree. Hence the acyclic property gives (pairwise compatibility implies collective compatibility).

Now suppose that pairwise compatibility implies collective compatibility forW1, . . . ,Ws and assume

that acyclicity is not possible. Taking W1, . . . ,Ws as the maximal cliques of an undirected graph, lack-

of-acyclicity is equivalent to existence of a cycle of length ≥ 4 in the graph without a chord. Let the

cycle be α1, . . . , αm. Then there are Wj1 , . . . ,Wjm such that {αi, αi+1} ⊆ Wji for i = 1, . . . ,m, using

αm+1 = α1. Furthermore, the lack-of-chord implies thatWja∩Wjb = ∅ for ∣a−b∣ ≥ 2, where we take a and
b mod m. We may therefore �nd (similar to Vorobev's example) distributions PWj1

, . . . ,PWjm
which

are pairwise compatible, but where the distributions P↓{αi,αi+1}
Wji

(using αm+1 ≡ α1) are not collectively

compatible.

Uniqueness of representation (15.3) requires that PWi(xWi
) > 0 for all xWi

and all i = 1, . . . , s.

15.2.2 Dependence Structures

Let W1, . . . ,Ws be sets of random variables, V = ∪sj=1Wj and suppose that W1, . . . ,Ws satisfy the

running intersection property of Equation (15.2). With this ordering, set B1 = ϕ and

Bj =Wj ∩ (∪j−1k=1Wk) , j = 2, . . . , k.

Let Aj =Wj/Bj so that Wj = Aj ∪Bj . It follows that A1, . . . ,As is a partition of V and that the sets

(Bj)sj=1 satisfy

Bj ⊂ Ai ∪Bi some i ∈ {1, . . . , j − 1}.

This leads to the de�nition of a dependence structure, the term used to describe collections (Aj ,Bj)sj=1
which satisfy this property.

De�nition 15.4 (Dependence Structure). Let (Ai)ki=1 be a partition of a set V and let S be a sequence

of pairs of subsets of V , S = (Ai,Bi)ki=1 satisfying

B1 = ϕ, Br ⊂ Ai ∪Bi 1 ≤ i ≤ r − 1 r = 2, . . . , k

Then S is a dependence structure.



15.2. PRODUCT APPROXIMATIONS 299

De�nition 15.5 (Product Approximation). Let S be a dependence structure. Then the probability

distribution de�ned by

P(S)(x) = PA1(xA1
)

k

∏
j=2

PAj ∣Bj
(xAj

∣xBj
)

is called the product approximation of the probability distribution P determined by S.

A product approximation is clearly a well de�ned probability distribution. Furthermore, it satis�ed the

following compatibility condition:

Lemma 15.6.

P(S)↓Aj∪Bj(xAj∪Bj
) = PAj∪Bj(xAj∪Bj

) ∀x ∈ X , j = 1, . . . , s.

Proof By marginalising over Aj+1 ∪ . . . ∪As,

P(S)↓A1∪...∪Aj(xA1∪...∪Aj
) = PA1(xA1

)
j

∏
k=2

PAk ∣Bk
(xAk

∣xBk
) j = 1, . . . , s

so that

P(S)↓Aj∪Bj(xAj∪Bj
) = PAj ∣Bj

(xAj
∣xBj
) ∑
A1∪...∪Aj−1/Bj

PA1(xA1
)
j−1
∏
k=2

PAk ∣Bk
(xAk

∣xBk
)

= PAj ∣Bj
(xAj

∣xBj
) ∑
A1∪...∪Aj−1/Bj

P(S)↓A1∪...∪Aj−1(xA1∪...∪Aj−1
)

= PAj ∣Bj
(xAj

∣xBj
)P(S)↓Bj(xBj

).

It remains to show that P(S)↓Bj(xBj
) = PBj(xBj

). This follows inductively; B1 = ϕ. Assume true for

all i = 1, . . . , j − 1. Then Bj ⊂ Ai ∪Bi for some i ∈ 1, . . . , j − 1. Assume that PAi∪Bi = P(S)↓(Ai∪Bi) for

1 = 1, . . . , j − 1, then P(S)↓Bj = PBj and the result follows by induction.

Note that if Wi = Ai ∪Bi for i = 1, . . . , s and PWi are given, then

P(S) = ∏
s
i=1 PWi

∏s
i=2 PBi

where Bi =Wi ∩ ∪i−1j=1Wj and the convention Pϕ ≡ 1 is used. In this situation, clearly

P(S)Wj = PWj .

It follows directly from this factorisation that

Aj ⊥ ∪j−1k=1Ak/Bj ∣P(S)Bj .



300 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

15.3 Reverse I-Projection and the Optimal Product Approximation

The relative entropy, or information divergence, or I-divergence, or Kullback Leibler distance, written

DKL(P∥P(S)), is de�ned by

DKL(P∥P(S)) = ∑
x∈X

P(x) ln P(x)
P(S)(x)

. (15.4)

The task of Optimal Product Representation of P is, for a given dependence structure S, to �nd a P∗S
such that D(P∥PS) is minimised. The solution P∗S is called a Reverse I-Projection of P onto the set of

all probability measures with S as a dependence structure.

De�nition 15.7 (Shannon Entropy). Let A ⊆ V . The Shannon entropy of the set of variables A for

a probability distribution P is de�ned as

HP(A) ∶= − ∑
xA∈XA

PA(xA) lnPA(xA)

where PA = P↓A.

With A = V , it follows that, for a probability distribution Q,

DKL(P∥Q) = ∑
x∈X

P(x) lnP(x) − ∑
x∈X

P(x) lnQ(x) = −HP(V ) − ∑
x∈X

P(x) lnQ(x).

For a dependence structure S = (Ai,Bi)si=1 and a probability distribution Q that factorises according

to: Q =∏s
i=1QAi∣Bi

, it is straightforward to compute that

DKL(P∥Q) = −HP(V ) − ∑
x∈X

P(x)
s

∑
i=1

lnQAi∣Bi
(xAi
∣xBi
)

= −HP(V ) −
s

∑
i=1
∑

xAi∪Bi

PAi∪Bi(xAi∪Bi
) lnQAi∣Bi

(xAi
∣xBi
)

= −HP(V ) −
s

∑
i=1
∑
xBi

PBi(xBi
)∑
xAi

PAi∣Bi
(xAi
∣xBi
) lnQAi∣Bi

(xAi
∣xBi
).

Now use Gibb's inequality; for any two probability distributions f and g over the same state space,

L

∑
j=1

fj ln fj ≥
L

∑
j=1

fj ln gj . (15.5)

This follows from the fact that

DKL(f∥g) =
L

∑
j=1

fj ln
fj

gj
≥ 0

with equality if and only if f = g. It follows that the reverse I-projection of P onto a dependency

structure S = (Ai,Bi)si=1 is

P(S) =
s

∏
i=1

PAi∣Bi



15.4. THE OPTIMAL CHOW-LIU PRODUCT APPROXIMATION 301

and

DKL(P∥P(S)) = −HP(V ) +
k

∑
i=1
(HP(Ai ∪Bi) −HP(Bi)) .

De�nition 15.8 (Mutual Information). The mutual information I(A,B) between two disjoint sets of

variables A and B is de�ned as

I(A,B) =H(A) +H(B) −H(A ∪B).

This may be written as

I(A,B) =∑PA∪B(xA∪B) ln
PA∪B(xA∪B)

PA(xA)PB(xB)
=DKL(PA∪B∥PAPB).

Note that I(A,B) = 0⇔XA ⊥XB.

If one is choosing a dependence structure S = (Ai,Bi)si=1, from within a class S of dependence structures
with the same storage properties, it follows that the dependence structure S = (Ai,Bi)si=1 is chosen to

maximise

Q(S) = −
k

∑
i=1
H(Ai) +

k

∑
i=1
I(Ai,Bi).

15.4 The Optimal Chow-Liu Product Approximation

For a Chow Liu tree, the dependence structure (Ai,Bi)ki=1 satis�es

∣Ai ∪Bi∣ ≤ 2 i = 1, . . . , k.

Let G = (V,U) denote an undirected graph, where V = {1, . . . , d} is the indexing set for the nodes and

U is the undirected edge set. An undirected graph G is complete if U = {⟨i, j⟩ ∶ 1 ≤ i < j ≤ d}. The

degree of a node i is de�ned as the number of distinct edges containing the node i.

A subgraph H of G is a graph (V1, U1) where V1 ⊆ V and U1 ⊆ U . A subgraph V1 is induced by

A ⊂ V if V1 = A and U1 = U ∩A ×A. A subgraph H is a spanning subgraph of G if it is connected and

V1 = V .
An undirected tree T is a connected undirected graph that has no cycles. It follows that there is

a unique path between any two nodes. A spanning tree of a graph is a spanning graph of G which is a

tree.

A labelled tree is a tree on d nodes where each node is labelled by one of the integers {1, . . . , d}. In
the sequel, labelled trees will be referred to as trees.

A weighted undirected graph is

G = ((V,U)∣w)

where w ∶ U → R+ (non negative real numbers). The weight of a tree is the sum of its edge weights.

The weight to be used by the Chow-Liu algorithm will be de�ned via the mutual information

w(i, j) ∶= I(j, k) =H(j) +H(k) −H(j ∪ k).



302 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

15.4.1 Chow Liu Tree with known P

De�nition 15.9 (Chow-Liu Dependence Structure). Let (ir)dr=1 be an arbitrary permutation of V =
{1, . . . , d}. The singleton sets Ar = {ir} r = 1, . . . , d are a partition of V . Let σ be a sequence of pairs

of singletons of V , σ = (ir, jr)dr=1, where

j1 = ϕ, jr ∈ {i1, . . . , ir−1} ⊆ V r = 2, . . . , d.

Then σ is a Chow-Liu dependence structure.

A Chow-Liu dependence structure will give a tree. Since the tree connects all the nodes, it is a spanning

tree. Arrows are directed from jr to ir. If jr = ϕ, there is no arrow pointing to the node ir. Any node

in a directed tree with jr = ϕ is called a root. By construction, i1 is the only root. A tree with exactly

one root is said to be proper.

Note that

ir ⊥P(S) {i1, . . . , ir−1}/{jr}∣jr.

For σ thus de�ned,

Q(σ) = −
d

∑
r=1

H(ir) +
d

∑
r=1

I(ir, jr).

The Chow-Liu dependence structure de�nes a product approximation of a known probability distribu-

tion P by

P(σ)(x) = Pi1(xi1)
d

∏
r=2

P(xir ∣xjr).

The following theorem is the �rst main result in Chow and Liu [28] (1968).

Theorem 15.10. Let P be a probability distribution over X . Let G = ((V,U)∣w) be a complete weighted

graph with w given by

w(j, k) = I(j, k) ⟨j, k⟩ ∈ U

where the I(j, k)s are computed using the Pj,ks. Then the maximum weight spanning tree of G de�nes

a Chow-Liu dependence structure σ, which maximises

Q(σ) = −
d

∑
r=1

H(ir) +
d

∑
r=2

I(ir, jr).

Proof Firstly, ∑d
r=1H(ir) = ∑d

i=1H(i) so that the �rst term in Q(σ) is independent of σ, hence the
problem is equivalent to the maximisation of ∑d

r=1 I(ir, jr).



15.4. THE OPTIMAL CHOW-LIU PRODUCT APPROXIMATION 303

15.4.2 Chow-Liu Algorithm with Unknown P

For P unknown, suppose there is an n × d data matrix x, where x =
⎛
⎜⎜
⎝

x(1)
⋮

x(n)

⎞
⎟⎟
⎠
. Each x(j) ∈ X for

j = 1, . . . , n.

Let P(X ) denote the space of all probability distributions over X ; that is

P(X ) = {P∣P = {P(x)}x∈X }

Let Td = (V,σ) be a spanning tree on V , where σ is a Chow-Liu dependence structure. Let Td denote

the set of all spanning trees, then

P(X ,Td) = {P(σ)}

is the set of all tree dependent probability distributions on X and P(X ,Td) ⊂ P(X ). The empirical

probability is de�ned as

P̂n(x) =
1

n

n

∑
k=1

1x(x(k)).

Lemma 15.11. The maximum likelihood estimate P̂(ML) is given by

P̂(ML) = arg min
P∈P(X ,Td)

DKL(P̂n∥P).

Proof

DKL(P̂n∥P) = −Ĥn(V ) − ∑
x∈X

P̂n(x) lnP(x),

where Ĥn(V ) = −∑x∈X P̂n(x) ln P̂n(x). Note that this does not depend on the tree structure. For the

other part,

∑
x∈X

P̂n(x) lnP(x) =
1

n

n

∑
j=1

lnP(x(j)),

which is the log likelihood function. Hence, the maximum likelihood estimate is equivalent to the

reverse I-projection of P̂n onto the set of tree dependent distributions P(X ,Td).

15.4.3 The Log Likelihood Function

When σ = (ir, jr)dr=1 is a Chow-Liu dependence structure, the parameter set P is the set of two

dimensional distributions given by

P = {Pi,j ∣(i, j) ∈ V × V, i ≠ j}.

The corresponding parametric probability is

P(σ)(x) = Pi1(xi1)
d

∏
r=2

Pir ∣jr(xir ∣xjr) =
d

∏
r=1

Pir(xir)
d

∏
r=2

Pir,jr(xir , xjr)
Pir(xir)Pjr(xjr)

x = (xj)dj=1 ∈ X .



304 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

The likelihood function is therefore

L(σ,P) =
n

∏
j=1

P(σ)(x(j)∣P)

and the log likelihood function, divided by n, is

L(σ,P) = 1

n

n

∑
j=1

lnP(x(j)∣σ,P).

which may be re-written as

L(σ,P) = 1

n
∑

x∈Xi1

N(x) lnPi1(x) +
1

n

d

∑
r=2

∑
(x,y)∈Xir×Xjr

N(x, y) lnPir,jr(x, y) −
1

n

d

∑
j=2
∑

x∈Xjr

N(x) lnPjr(x)

where N(x) denotes number of appearances of the appropriate con�guration x in the data matrix x.

This reduces to

L(σ,P) = ∑
x∈Xi1

P̂n;i1(x) lnPi1(x)+
d

∑
r=2

∑
(x,y)∈Xir×Xjr

P̂n;ir,jr(x, y) lnPir,jr(x, y)−
d

∑
j=2
∑

x∈Xjr

P̂n;jr(x) lnPjr(x).

Using the notation Pir ∣jr =
Pir,jr

Pjr
, this may be written as

L(σ,P) = ∑
x∈Xi1

P̂n;i1(x) lnPi1(x) +
d

∑
r=2
∑

y∈Xjr

P̂n;jr(y) ∑
x∈Xir

P̂n;ir ∣jr(x, y) lnPir ∣jr(x∣y). (15.6)

The log likelihood L(σ,P) is to be maximised. For a �xed structure σ, it therefore follows from Gibb's

inequality that the maximum likelihood estimates are:

P(ML)
i1

= P̂n;i1 P(ML)
ir ∣jr =

P̂n;ir,jr

P̂n;jr

r = 2, . . . , d.

from which

L(σ,P(ML)) = ∑
x∈Xi1

P̂i1(x) ln P̂n;i1(x) +
d

∑
r=2

∑
(x,y)∈Xir×Xjr

P̂n;ir,jr(x, y) ln
P̂n;ir,jr(x, y)
P̂n;jr(y)

=
d

∑
r=1
∑

x∈Xir

P̂n;ir(x) ln P̂n;ir(x) +
d

∑
r=2

∑
(x,y)∈Xir×Xjr

P̂n;ir,jr(x, y) ln
P̂n;ir,jr(x, y)

P̂n;ir(x)P̂n;jr(y)

=
d

∑
r=1
∑

x∈Xir

P̂n;ir(x) ln P̂n;ir(x) +
d

∑
r=2

Î(ir, jr)

where

Î(ir, jr) = ∑
(x,y)∈Xir×Xjr

P̂n;ir,jr(x, y) ln
P̂n;ir,jr(x, y)

P̂n;ir(x)P̂n;jr(y)



15.4. THE OPTIMAL CHOW-LIU PRODUCT APPROXIMATION 305

is the plug in estimate of the mutual information. Clearly, the �rst term in the expression for

L(σ,P(ML)) does not depend on σ and hence the maximum likelihood estimate σ(ML) is given by

σ(ML) = argmaxσ {
d

∑
r=2

Î(ir, jr)} .

The number of spanning trees on d nodes is dd−2. This is Cayley's formula. An exhaustive search is not

feasable in practise. Besides, as pointed out by Chow - Liu [28], a greedy approach �nds the maximal

spanning tree.

There are several well known standard algorithms for �nding the spanning tree of maximum weight,

for example Kruskal's algorithm and Prim's algorithm. These algorithms are almost identical and �nd

the maximum weight spanning tree in O(d2 lnd) time.

Kruskal's algorithm Kruskal's Algorithm runs as follows:

1. The d variables yield d(d − 1)/2 edges. The edges are indexed in decreasing order, according to

their weights b1, b2, b3, . . . , bd(d−1)/2.

2. The edges b1 and b2 are selected. Then the edge b3 is added, if it does not form a cycle.

3. This is repeated, through b4, . . . bd(d−1)/2, in that order, adding edges if they do not form a cycle

and discarding them if they form a cycle.

This procedure returns a unique tree if the weights are di�erent. If two weights are equal, one may

impose an arbitrary ordering. From the d(d − 1)/2 edges, exactly d − 1 will be chosen.

Lemma 15.12. Kruskal's algorithm returns the tree with the maximum weight.

Proof The result may be proved by induction. It is clearly true for 2 nodes. Assume that it is

true for d nodes and consider a collection of d + 1 nodes, labelled (X1,X2, . . . ,Xd+1), where they are

ordered so that for each j = 1, . . . , d + 1, the maximal tree from (X1, . . . ,Xj) gives the maximal tree

from any selection of j nodes from the full set of d+ 1 nodes. Let b(i,j) denote the weight of edge (i, j)
for 1 ≤ i < j ≤ d + 1. Edges will be considered to be undirected. Let T (d+1)j denote the maximal tree

obtained by selecting j nodes from the d + 1 and consider T (d+1)d+1 .

Let Z denote the leaf node in T (d+1)d+1 such that among all leaf nodes in T (d+1)d+1 the edge (Z,Y ) in
T (d+1)d+1 has the smallest weight. Removing the node Z gives the maximal tree on d nodes from the set

of d + 1 nodes. This is seen as follows. Clearly, there is no tree with larger weight that can be formed

with these d nodes, otherwise the tree on d nodes with larger weight, with the addition of the leaf

(Z,Y ) would be a tree on d + 1 nodes with greater weight than T d+1
d+1 . It follows that Z = Xd+1 and

hence that Xd+1 is a leaf node of T (d+1)d+1 .

By the inductive hypothesis, T (d+1)d may be obtained by applying Kruskal's algorithm to the weights

(b(i,j))1≤i<j≤d. Now consider an application of Kruskal's algorithm to the weights (b(i,j))1≤i<j≤d+1 and

note that for any (i, j) with i < j such that the undirected edge (Xi,Xj) forms part of the tree T (d+1)d ,

b(i,d+1) < b(i,j) and b(j,d+1) < b(i,j). Therefore, if the edges (b(i,j))1≤i<j≤d+1 are listed according to their



306 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

weight and the Kruskal algorithm applied, then all the edges used in T (d+1)d will appear further up the

list than any edge (b(k,d+1))dk=1 and therefore all the edges of T (d+1)d will be included by the algorithm

before the edges (b(k,d+1))dk=1 are considered. It follows that T (d+1)d+1 is the graph obtained by applying

Kruskal's algorithm to the nodes (X1, . . . ,Xd+1).

Corollary 15.13 (Prim's Algorithm). The tree of maximal weight may be chosen by choosing any

initial node Ci, adding a link Ci − Cj where j is chosen such that bij = maxk bik and at each stage,

adding the node Ca to the tree that maximises bak over nodes Ck already in the tree.

Proof It is clear that, with the same ordering of the weight, Prim's algorithm returns the same tree

as Kruskal's algorithm.

15.4.4 The Chow-Liu Algorithm and Polytrees

A probability distribution PX1,...,Xd
factorises according to a polytree if there is an ordering of the

variables σ such that

PX1,...,Xd
=

d

∏
j=1

P
Xσ(j)∣Π

(σ)
j

,

Π
(σ)
j ⊆ {Xσ(1), . . .Xσ(j−1)}

and where the directed graph, formed by placing directed edges from each variable in Π
(σ)
j to Xσ(j)

for j = 1, . . . , d is a tree.

A distribution that factorises along a polytree satis�es the condition: if Π
(σ)
j = {Y (σ,j)1 , . . . , Y

(σ,j)
m },

then

P
Π
(σ)
j

=
m

∏
k=1

P
Y
(σ,j)
k

.

To extend the Chow-Liu algorithm to polytrees, the conditional mutual information is required;

I(A,C ∣B) = ∑
xA∪B∪C

PA∪B∪C(xA∪B∪C) ln
PA∪C∣B(xA, xC ∣xB)

PA∣B(xA∣xB)PC∣B(xC ∣xB)
.

The following lemma is required.

Lemma 15.14. If A ⊥P B∣C, then

min(I(A,C), I(B,C)) ≥ I(A,B).

Proof This follows from observing that if A ⊥P B∣C, then

I(A,B) + I(A,C ∣B) = I(A,C), I(A,B) + I(C,B∣A) = I(B,C),

which follows from:

A ⊥P B∣C⇔ PA∪C∣B =
PA∪B∪C

PB
= PA∪CPB∪C

PBPC

and hence

I(A,C ∣B) =∑PA∪B∪C ln
PA∪CPB

PA∪BPC
= I(A,C) − I(A,B).

The other is similar.



15.5. ASYMPTOTIC CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATE 307

Theorem 15.15. Suppose that P factorises according to a polytree. Kruskal's algorithm will locate the

skeleton of the polytree.

Proof Let A = {i}, B = {j} and D = {k} be three distinct nodes. Assume that i ⊥P j∣k. This can

happen in the following cases:

i→ k → j, i← k ← j, i← k → j,

where m→ n indicates a directed path. In all cases, I(i, k∣j) > 0 and I(k, j∣i) > 0. It follows that

min(I(i, k), I(j, k)) > I(i, j).

Kruskal's algorithm takes the edge of largest weight that does not form a cycle. The algorithm will

therefore not choose the edge (i, j) if there is a node k between i and j in σ.

For i→ k ← j, i ⊥P j and hence the edge i − j will not be chosen by Kruskal's algorithm.

It is straightforward to �nd appropriate directions for the edges; if there are edges i − j − k, then the

edges take directions i→ j ← k if and only if I(i, k) = 0.

15.5 Asymptotic Consistency of the Maximum Likelihood Estimate

Let W(T (ML)
d (n)) = ∑d

r=2 Î(ir, jr) denote the weight of the tree computed by the Chow-Liu algorithm.

Suppose that there is a distribution P0 which is the true, but unknown distribution. Let

P(σ)0 = argminP∈P(X ,Td)DKL(P0∥P).

Then P(σ)0 is the reverse I-projection of P0 and the corresponding structure σ(0) = (i0r , j0r )dj=2 is the

Chow-Liu dependence structure. If P ∈ P(X ,Td), then P(σ)0 = P0.

Let T 0
d denote the tree structure corresponding to σ(0), then

W(T 0
d ) =

d

∑
r=2

I0(i0r , j0r )

where I0(i0r , j0r ) are the mutual informations computed with P0↓(i0r,j0r ), which is the tree of maximal

weight.

Let

P̂(σML)
ML;n = argminP∈P(X ,Td)DKL(Pn∥P)

where Pn denotes the empirical distribution and σML denotes the maximum likelihood Chow-Liu

dependence structure. Let W(T ;n) denote the weight of tree T based on probability distribution Pn

and, in particular, let W(T (ML)
d (n);n) denote the Chow Liu dependence tree weight based on σML

and P̂n . Then the following result holds:

Theorem 15.16.

W(T (ML)
d (n);n) n→+∞Ð→ W(T 0

d ) P0 − a.s.



308 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

Proof This is a consequence of the strong law of large numbers; �rstly, since X is �nite, the strong

law of large numbers gives that

max
x∈X
∣Pn(x) − P0(x)∣ n→+∞Ð→ 0 P0 − a.s.

from which a.s. convergence of all empirical marginal distributions follows and in particular

În(i, j)
n→+∞Ð→ I0(i, j)

for all pairs (i, j). It follows that for each tree Td,

W(Td;n)
n→+∞Ð→ W(Td) P0 − a.s.

and hence, since Td is a �nite set,

max
Td∈Td

∣W(Td;n) −W(Td)∣
n→+∞Ð→ 0.

Note that, by construction, W(Td;n) ≤W(T (ML)
d (n);n) for all Td and each n. Now let

T0
d = {Td ∈ Td∣W(Td) =W(T 0

d )}.

Since Td is �nite, there is a positive constant δ such that

δ = min
Td∈Td/T0

d

∣W(T 0
d ) −W(Td)∣ > 0.

Choose n large enough such that P0 a.s.

max
Td∈Td

∣W(Td;n) −W(Td)∣ ≤
δ

2
.

There is an nδ such that this holds for all n ≥ nδ and such that there is a tree in T0
d, say T 0

d such that

W(T (ML)
d (n)) =W(T 0

d ) and such that

∣W(T 0
d ;n) −W(T 0

d )∣ ≤
δ

2
.

In other words, for any ϵ > 0 with δ
2 > ϵ, it holds that for n > nϵ,

∣W(T (ML)
d (n);n) −W(T 0

d )∣ < ϵ P0 − a.s.

This result does not assert convergence of the sequence of trees T (ML)
d (n) unless the set T0

d contains

exactly one element.



15.6. CLASSIFICATION 309

15.6 Classi�cation

Many of the techniques of supervised learning, or classi�cation, involve a Bayes rule and an approx-

imate distribution. Variables are of two types, symptom variables XO (O for observable) and class

variables, or diagnosis variables, XC . A prior distribution PC is placed over the class variables, evi-

dence is obtained in the form of an instantiation xO of XO of the symptom variables and the posterior

distribution over the class variables obtained using Bayes rule;

PC∣O =
PCPO∣C

PO
∝ PCPO∣C .

In supervised classi�cation, the probabilities PO∣C are learned, by observing the instantiations xO in

training examples where xC is given. When classifying (where the class xC is unknown, the class that

maximises PCPO∣C is chosen, for a given set of symptoms xO.

Often in classi�cation, the distribution PO∣C has too many states and instead a set of lower dimensional

marginals is considered:

P(xC) = {PAj ∣Bj ,C(.∣., xC) j = 1, . . . , s}

where for each xC , SC ∶= (Aj ,Bj)sj=1 is a dependence structure. The dependence structures may depend

on xC . The class variable xC is then chosen to maximise

PCPA1∣C
s

∏
j=1

PAj ∣Bj ,C .

The Naïve Classi�er The naïve classi�er considers X1, . . . ,Xd to be independent conditioned on

C, so that the approximation Q to the probability distribution P, given by

QX ∣C =
d

∏
j=1

PXj ∣C

is used. The aim is then, for an observation x, to �nd the value c that maximises PCQX ∣C(x∣.).

Classi�cation comes in two stages; �rstly, constructing the classi�er. For constructing the classi�er,

a large number of observations of X are made, assumed independent, for each value of C, where the

value of C is known. From this, PXj ∣C is estimated by P̂Xj ∣C(x∣c) =
n(x,c)
n(c) where n(x, c) is the number

of observations with (Xj ,C) = (x, c) in the sample.

If a prior distribution PC has been placed over the class variable C, the score function is then

PC(c)
d

∏
j=1

P̂Xj ∣C(xj ∣c)

and an observation x is assigned to the class c that maximises this function. If there is no prior, then

the likelihood function ∏d
j=1 P̂Xj ∣C(xj ∣c) is used.



310 CHAPTER 15. DATA STORAGE, PRODUCT APPROXIMATIONS, CHOW LIU TREES

Example 15.17.

In the article [28] by Chow and Liu, the example of character recognition is discussed. A person writes

a number, 0,1,2,3,4,5,6,7,8 or 9 in a rectangular space and the machine has to recognise which of

the ten characters has been written. The rectangle is split into a 12× 8 grid and each of the 96 spaces

is coded as a 1 or a 0 depending on which character has been written. In the example, 7000 numerals

were used as training examples to construct the classi�er, which was then applied to 12000 examples,

with a success rate of 91%.

Chow Liu Tree Suppose that V = {X1, . . . ,Xd,C}, where X = (X1, . . . ,Xd) is a random vector to

be observed and C is a class variable. With classi�cation, an observation x is assigned to the category

c that maximises pC(.)pX ∣C(X ∣.)
The Chow - Liu tree presents an improvement over the naïve classi�er. For each category c ∈ C,

the best �tting Chow Liu tree is estimated from the training variables;

QX ∣C =
d

∏
j=1

P̂Xj ∣Xπc(j),C

and then the observation x is assigned to the category c that maximises the score function SC,X =
PCQX ∣C(x∣.) if there is a prior PC over the categories, or the score function SC,X = QX ∣C(x∣.) if the
initial assessment is that all categories are equally likely.

The article [28] which introduced the Chow - Liu tree considers the problem of machine recognition

of handwritten numerals, 0,1,2,3,4,5,6,7,8,9. There are c = 10 pattern classes. Let ai denote the

numeral i. There is a prior distribution p = (p0, p1, . . . , p9) over the numerals. The number is written on

a 12×8 rectangle and 96 binary measurements are used to represent the numeral; 1 if the cell contains

writing and 0 otherwise. In the example given in [28], 19000 numerals produced by 4 inventory clerks

were scanned. 7000 of these were employed as training examples, to �nd the best �tting trees and

estimate the probabilities p0, . . . , p9. The optimal trees for each of the 10 numerals were obtained. For

the remaining numerals, the observation x = (x1, . . . , x96) was considered. By Bayes rule,

PC∣X(ak∣x) =
pX ∣C(x∣ak)PC(ak)

PX(x)
=
PX ∣C(x∣ak)PC(ak)

PX(x)
.

The quantity PX ∣C(x∣ak) was estimated by QX ∣C(x∣ak) and the following classi�cation rule was used:

the numeral was declared to be of class ak if PC(ak)QX ∣C(x∣ak) ≥ PC(ai)QX ∣C(x∣ai) for all i ≠ k. Using
the trees, the error rate was reduced from 0.09 to 0.04 compared with the model produced by assuming

independence between the contents of the 96 cells.



Chapter 16

Constraint-Based Structure Learning

Algorithms

16.1 Structure Learning

Let X = (X1, . . . ,Xd) be a random (row) vector and X an n × d random matrix, where each row is

an i.i.d. copy of X. Let x be an n × d data matrix, where the modelling assumption is that x is an

instantiation of X.

The object of structure learning is to learn the DAG of a Bayesian Network for X from x.

Structure learning algorithms fall broadly into two categories; search and score, and constraint

based. Many of the learning algorithms available are hybrid algorithms, which involve both constraint-

based and search-and-score principles.

For search and score algorithms, a score function is used to score each network, giving a high

score if it returns a high value for the score function. This is usually based on the likelihood function

(often the Cooper-Herskovitz likelihood, Equation (12.15)), which is combined with a penalisation term

for models that have a large number of parameters. Since the search space tends to be large, these

algorithms tend to be computationally expensive. They are considered in later chapters.

The other category of structure learning algorithm is constraint based. They tend to make the

rather bold assumption that there exists a faithful DAG for the underlying probability distribution

and work according to the principle of Theorem 2.3. That is, starting with a complete graph, they

remove an edge α ∼ β from the skeleton whenever a conditional independence statement Xα ⊥Xβ ∣XS is

established for some subset S ⊆ V /{α,β}. Here, using ϕ to denote the empty set, Xα ⊥Xβ ∣Xϕ means:

Xα ⊥ Xβ . A resulting vee- structure α − γ − β (where α /∼ β) is declared an immorality if γ /∈ S; it is
declared not to be an immorality if Xγ ∈ S. The edges of the skeleton corresponding to immoralities

are directed accordingly, the other compelled edges are directed and the algorithm returns an essential

graph.

311



312 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

16.2 Testing for Conditional Independence

16.2.1 Gaussian variables

For multivariate Gaussian, a test of X ⊥ Y ∣S may be carried out using partial correlation.

De�nition 16.1 (Partial Correlation). The partial correlation ρX,Y ∣S between X and Y given S is

de�ned as

ρ(X −ΣXSΣ
−1
SSS,Y −ΣY SΣ

−1
SSS).

where ΣSS is the covariance matrix of S, ΣXS is the covariance between X and S, ΣY S is the covariance

between Y and S. The partial correlation may be viewed in the following way: regress X on S

and regress Y on S; the partial correlation is the correlation between the residuals from these two

regressions.

For multivariate Gaussian, X ⊥ Y ∣S if and only if ρX,Y ∣S = 0. To test this, �rst regress X against S

and store the residuals R1, and regress Y against S and store the residuals R2. The estimated partial

correlation is the sample correlation between R1 and R2. Fisher's z-transform of the partial correlation

is de�ned as:

z(ρ̂X,Y ∣S) =
1

2
log(

1 + ρ̂X,Y ∣S
1 − ρ̂X,Y ∣S

) .

Consider the null hypothesis H0 ∶ ρX,Y ∣S = 0 versus the alternative H1 ∶ ρX,Y ∣S ≠ 0 (two sided test).

The null hypothesis is rejected at signi�cance level α if and only if

√
n − ∣S∣ − 3∣z(ρ̂X,Y ∣S)∣ ≥ zα/2

where zα is the value such that P(Z ≥ zα) = α for Z ∼ N(0,1). The distribution of the sample partial

correlation was described by Fisher (1924) [42].

Under the assumption that the variables are multivariate Gaussian, the statement X ⊥ Y ∣S (where

X and Y are variables and S is a vector) may be tested by considering Σ̂−1, where Σ is the covariance

matrix of (X,Y,S) and Σ̂−1 is either the inverse, or a generalised inverse, of Σ. If X ⊥ Y ∣S then

(Σ−1)XY = 0.

16.2.2 Discrete Variables

For discrete variables, testing for conditional independence is carried out, quite simply, using the usual

χ2 test. To test whether or not X ⊥ Y ∣S, let n(x, y, s) denote the number of times (X,Y,S) = (x, y, s)
appears in the data, n(x, s), n(y, s), n(s) the number of instances of (X,S) = (x, s), (Y,S) = (y, s),
S = s respectively. The G2 statistic, which is standard, is de�ned as

G2(X,Y,S) = 2 ∑
x,y,s

n(x, y, s) log n(x, y, s)n(s)
n(x, s)n(y, s) . (16.1)

Asymptotically, this is distributed as a χ2 distribution on (jx − 1)(jy − 1)js degrees of freedom, where

jx, jy and js are the number of values that X, Y and S respectively can take.



16.3. THE K2 STRUCTURAL LEARNING ALGORITHM 313

16.2.3 Hypothesis Testing and Statistical Theory

There are two basic di�culties with the method of declaring X ⊥ Y ∣S when the null hypothesis is not

rejected at a signi�cance level α. The �rst is that while the nominal signi�cance is α, there are rather

many tests carried out. All that can be said about the true signi�cance level is that it is less than

Nα, where N is the total number of tests carried out. Nevertheless, for a single hypothesis test, a

result `reject H0' at signi�cance level α is a good indicator that the data suggests that the alternative

hypothesis H1 is true; if H0 is rejected, then the dependence represented by H1 is clearly and distinctly

present in the data matrix x, even if it is not necessarily present in the probability distribution of the

random vector X.

There is, however, a much more serious problem. In statistical theory, the conclusion reached when

a test fails to reject the null hypothesis is, simply, `there is insu�cient evidence to reject the null

hypothesis'. The `court of law' metaphor is appropriate here; a `not guilty' verdict may simply mean

that the evidence is insu�cient to establish guilt beyond all reasonable doubt. It does not establish that

the defendant did not commit the crime. There are two possible reasons for a failure to reject a null

hypothesis: either the null hypothesis happens to be true, or else the null hypothesis is false, but the

test is not su�ciently powerful to detect this. The constraint based algorithms discussed all accept an

independence statementX ⊥ Y ∣S if the result of the test is `do not reject independence'. The problem is

that these independence statements are added to the list of constraints, and the output network satis�es

the D-separation statements, even if they contradict some of the `reject conditional independence'

statements that have been obtained by rejecting a null hypothesis of conditional independence.

Several approaches have been suggested to try and limit acceptance of conditional independence

that is incompatible with independence statements rejected. A. Fast in [41] suggests using the power

of the test, but points out the computational di�culties with this. He does not, though, address the

problem that if X /⊥ Y ∣S, then the corresponding D-connection statement should be in the network.

Blomberg and Margaritis in [9] formalise the identi�cation of all inconsistencies that stem from standard

probability theory and provide respective algorithms.

All the constraint based algorithms discussed need to be modi�ed to ensure that the conditional

dependence statements obtained by rejecting conditional independence statements correspond to D-

connection statements in the resulting DAG.

Some of the most prominent constraint-based algorithms are now described.

16.3 The K2 Structural Learning Algorithm

Let X = (X1, . . . ,Xd) and V = {X1, . . . ,Xd,C}, where C is a class variable, (X1, . . . ,Xd) are variables
to be observed, from which the class should be inferred.

The K2 structure learning algorithm, introduced by Cooper and Herskovitz, is an algorithm to

locate associations between the variables (X1, . . . ,Xd). Since the number of entries required to de�ne

the conditional probability functions increases exponentially with the number of parents, the algorithm

limits the number of parents a node can take. An upper limit of four parents is a value widely used.



314 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

The algorithm assumes that an order has been established for the d nodes X1, . . . ,Xd so that,

for each i, the parent nodes Pai for variable Xi are established among the nodes X1, . . . ,Xi−1. For

j = 1, . . . , i − 1, the empirical Kullback - Leibler divergence between the two empirical probability

distributions of (X1, . . . ,Xi), one determined by the graphs with and the other determined by the

graph without the directed edge (i, j), is measured and the edge is retained if a) the divergence is

su�ciently large and b) node i does not already have 4 parents. That is, if Pai is the current parent

set of Xi and Xj is under consideration, the quantity in question is

Q(i, j) =∑ P̂Xi,Pai,Xj
log

P̂Xi,Pai,Xj
P̂Pai

P̂Xi,Pai
P̂Pai,Xj

=∑ P̂Xi,Pai,Xj
log

P̂Xi∣Pai,Xj

P̂Xi∣Paj

.

Under the null hypothesis, that Xi ⊥ Xj ∣Pai, 2nQ(i, j) ∼ χ2
n(Pai)(n(Xi)−1)(n(Xj)−1)

, where n(Xi)
denotes the number of elements in the state space of Xi; similarly for Xj and Pai.

The resulting algorithm is a greedy algorithm, with all the advantages and disadvantages that this

implies.

When the K2 algorithm is used, the learnt structure depends entirely on the order chosen for the

variables generated before the learning process starts. It is therefore usual to repeat the algorithm

with several di�erent randomly chosen orders (say 1000) and choose the best; the one with the lowest

Kullback Leibler divergence between the �tted distribution and the empirical distribution.

Example 16.2 (Robotics).

This example is taken from the paper [79]. It shows an application to Bayesian network learning

techniques for task execution in mobile robots. The task here is for the robot to locate an open door

and travel through it.

The robot emits sonar pulses and is equipped with eight detectors, which detect the echoes. From

this information, it has to decide where the door is located.

An action has to be taken: step to left, right, or straight ahead. This is the class variable and the

class has to be determined by the signals received by the eight detectors. Since the signals are not

independent of each other (the echoes may be created by the same object), the model is improved by

incorporating a dependence structure.

In this experiment, the problem is to learn the structure of the Bayesian network and to estimate

the probability potentials from the training data base.

The K2 algorithm is employed to establish a suitable structure. For the robot learning example,

the maximum number is set to four. The size of the probability potentials cannot be too large, since

the robot is expected to �nd the door and travel through it in real time.

The intensity of an echo may be modelled as a continuous random variable, but the variables are

discretised for computational convenience. In general, it is not convenient to use a variable with more

than 20 di�erent values.

In the Bayesian Robotics experiment, the experiments were repeated 1000 times and nets with

optimal values selected.

The resulting network for the eight variables is shown in Figure 16.1.



16.4. THREE PHASE DEPENDENCY ANALYSIS 315

S4 //

~~

S5

  

S3

~~
++

S6

  

S2

��

// S7

��
rrS1 // S8

Figure 16.1: Network produced by the K2 algorithm. Here the nodes Sj represent the signals received

by the sensors. The variable C, not shown, which is a parent to all the variables shown, denotes the

class variable, the action to be performed.

In addition to the 8 variables shown in the network, there is also a class variable C, the direction

to be taken, which is a parent of all the nodes in X = (S1, S2, S3, S4, S5, S6, S7, S8). The network is

estimated using a uniform prior distribution over C, which is an ancestor variable for each random

ordering chosen for the nodes in X; the action performed is the action that maximises p̂X,C where

p̂ is the estimate of the distribution from the training examples, factorised according to the DAG in

Figure 16.1.

16.4 Three phase dependency analysis

The three phase dependency analysis algorithm (denoted TPDA) was introduced by Cheng, Greiner,

Kelly, Bell and Liu (2002) [23], who write, `this TPDA algorithm is correct (i.e., will produce the

perfect model of the distribution) given a su�cient quantity of training data whenever the underlying

model is monotone DAG faithful.' The algorithm requires the faithfulness assumption to hold and relies

on Theorem 2.3. The TPDA algorithm works in three phases; draughting, thickening and thinning,

outlined in Algorithm 4, which gives the main steps of the algorithm. A precise description of the

algorithm and proof that it returns a faithful DAG when it exists, is straightforward to establish and

is found in [23].

Strictly speaking, the TPDA algorithm is a hybrid algorithm, since the �rst stage (draughting) is

the Chow-Liu tree, which is a search and score procedure.

16.5 Fast Adjacency Search (FAS) algorithm

The FAS algorithm is perhaps the simplest constraint-based algorithm. Firstly, an input order of

the variables, (X1, . . . ,Xd) and then Algorithm 5 is applied. The algorithm works on the principle



316 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Algorithm 4 The Three Phase Dependency Analysis Algorithm

Stage 1: Draughting Locate the Chow - Liu tree

This stage is simply Kruskal's algorithm

Stage 2: Thickening Add edges

for i = 1, . . . , d − 1, j = i + 1, . . . , d do
Let Ci,j be the set of neighbours of Xi or Xj on a path between Xi and Xj

if Xi /⊥Xj ∣C for any subset C ⊆ Cij then

add an edge Xi ∼Xj

else

do not add an edge Xi ∼Xj

and let Si,j denote the set such that Xi ⊥Xj ∣Sij
end if

end for

Stage 3: Thinning Removing unnecessary edges

for i = 1, . . . , d − 1, j = i + 1, . . . , d do
Let Cij denote common neighbours of Xi and Xj

if Xi ∼Xj and there is a set C ⊆ Cij such that Xi ⊥Xj ∣C then

remove the edge between Xi and Xj .

end if

end for

Stage 4: Directing edges For each vee structure Xi ∼ Xk ∼ Xj , (Xi,Xk,Xj) is an immorality

if Xk /∈ Sij , otherwise it is not. Once the immoralities have been added, the additional compelled

edges are obtained using Meek's rules.



16.6. PC AND MMPC ALGORITHMS 317

that there exists a faithful graphical representation for the probability distribution. First, a complete

(undirected) graph is created. Then for n = 0,1,2, . . . an edge ⟨α,β⟩ is removed if and only if there

is a set Sα,β of size n such that Xα ⊥ Xβ ∣XSα,β
. This is the approach to �nding the skeleton. A vee

structure (α, γ, β) is declared to be an immorality if and only if γ /∈ Sα,β (known as the minimal sepset).

The remaining compelled edges are added using Meek's rules to obtain the essential graph. These are

edges α ∼ β that appear in structures given in Figure 2.10 De�nition 2.16 Page 42 are directed as in

the Figure 2.10.

16.6 PC and MMPC Algorithms

The PC algorithm was introduced by Spirtes, Glymour and Scheines [127] (1993) and was modi�ed

to produce the MMPC algorithm in [137] (2006). It is algorithm for locating the skeleton of a faithful

DAG (should such a DAG exist) and hence to construct the essential graph. It works in three stages.

Firstly, a forward stage starts with an empty graph, and adds in all possible edges. There are possibly

too many edges after this stage. Secondly, a backward stage removes some of the edges. The resulting

graph, after the second stage, will contain no false negatives, but may still contain some false positives.

A third stage is implemented to remove the false positives. The algorithm runs as follows:

The algorithm starts with an input order for the variables (X1, . . . ,Xd). Stage 1 of the PC algorithm

is given in Algorithm 6.

The MMPC di�ers from the PC in one aspect: there is a gentle change whereby at each stage the

best variable is added into the parent set. Stage 1 of the MMPC algorithm is given in Algorithm 7.

After the �rst stage of the PC / MMPC algorithm, the candidate parent/children sets may contain

too many variables. The next stage prunes them. This is Algorithm 8.

After Stages 1 and 2 of the PC / MMPC algorithm, there may still be false positives. Suppose a

probability distribution may be represented by the DAG in Figure 16.2. Working from T , the node C

may enter the output, and remain in the output.

T // A // C

B

OO ??

Figure 16.2: MMPC: A False Positive from Algorithm 8

This is because C is dependent on T , conditioned on all subsets of T 's parents and children; namely,

ϕ (the empty set) and {A}. Note that the collider connection TAB, is opened when A is instantiated

so that, when A is instantiated and B is uninstantiated, T is d-connected with C. For ϕ (the empty

set), TAC is a chain connection, where A is uninstantiated, so that T is D-connected to C.



318 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Algorithm 5 The FAS Algorithm

Start with Full Undirected Graph

Stage 0

for α = 1, . . . , d − 1, β = i + 1, . . . , d do
if Xα ⊥Xβ then

remove edge ⟨α,β⟩
set Sα,β = ϕ

end if

end for

for k ≥ 1 do
Stage k

for α = 1, . . . , d − 1, β = i + 1, . . . , d do
Work through sets S ⊂ V /{α,β}
of size k from lowest to highest sum of indices

if current graph contains edge ⟨α,β⟩ then
Test Xα ⊥Xβ ∣XS . If true, then remove edge ⟨α,β⟩.
set Sα,β = S and move to next (α,β) pair.

end if

end for

end for

Termination: Terminate when either all nodes have less than k neighbours, or else a pre-speci�ed

terminal value is reached.

for α = 1, . . . , d − 1, β = α + 1, . . . , d, γ = 1, . . . , d;γ ≠ α,β do
if α − γ − β is a vee-structure then

if γ /∈ Sα,β then
α − γ − β is an immorality

else

α − γ − β is not an immorality

end if

end if

end for

Now direct the additional compelled edges are obtained using Meek's rules.



16.6. PC AND MMPC ALGORITHMS 319

Algorithm 6 The PC Algorithm: Stage 1

for For i = 1, . . . , d do
initialise Z(i)0 = ϕ, the empty set.

these will become the parent/children sets of the variables

end for

for i = 1, . . . d do
for j = 1, . . . , d, j ≠ i do
check whether Xi ⊥ Xj ∣Z(i)j . If it is not, let Z(i)j+1 = Z

(i)
j ∪ {Xj}. If the independence statement

holds, then set Z(i)j+1 = Z
(i)
j and set SXiXj = Z

(i)
j . SXiXj is known as the sepset, or separating

set; a set that satis�es Xi ⊥Xj ∣Sij .
end for

end for

Set Z(i) = Z(i)d .

Algorithm 7 The MMPC Algorithm: Stage 1

for For i = 1, . . . , d do
initialise Z(i)0 = ϕ, the empty set.

these will become the parent/children sets of the variables

end for

for i = 1, . . . , d do
for k = 1, . . . , d, k ≠ i do
Let j∗k = argmaxj/∈{j∗1 ,...,j∗k−1}G(Xi,Xj ,Z(i)k−1).
Check whetherXi ⊥Xj∗ ∣Z(i)k−1. If it is not, let Z

(i)
k = Z

(i)
k−1∪{Xj∗}. If the independence statement

holds, then set Z(i)k = Z
(i)
k−1 and set SXiXj∗

= Z(i)k−1. SXiXj∗
is known as the sepset, or separating

set; a set that satis�es Xi ⊥Xj∗ ∣Sij∗ .
end for

end for

if i = d then
Z(i)d = Z

(i)
d−1

end if

Set Z(i) = Z(i)d .



320 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Algorithm 8 The PC / MMPC Algorithm: Stage 2

Suppose that Z(i) contains k variables.

Label them Y1, . . . , Yk. Let Z(i)k = Z
(i).

for j = 0, . . . , k − 1 do
Check whether there exists a set S ⊆ Zk−j/{Yk−j} such that Xi ⊥ Yk−j ∣S
if there is then

set Z(i)k−j−1 = Z
(i)
k−j/{Yk−i}, and set SXiYk−i

else

Set Z(i)k−j−1 = Z
(i)
k−j .

end if

end for

Let Z(i) = Z(i)1

This set contains all the variables which have an edge either to or from the variable Xi.

T and C are D-separated if and only if A and B are simultaneously instantiated; that is, T ⊥
C ∣{A,B}. But if B is independent from T given the empty set, so it will be removed from Z. Therefore,
the link TC will not be removed.

This is corrected by considering the parent / child sets of the other variables. When working from C,

both A and B will be in the parent / child set, and T ⊥ C ∣{A,B}. The third stage of the algorithm

(Algorithm 9) removes these false positives.

Algorithm 9 The PC / MMPC Algorithm: Stage 3

Let (Z(i))di=1 denote the parent / child sets for all the variables arrived at after Algorithm 8.

Let Xσ(1), . . . ,Xσ(k) denote the set of variables in Z(i), the parent child set for Xi arrived at after

Algorithm 8

Set Y(i)0 = Z(i).
for j = 1, . . . , k do
set

Y(i)j =
⎧⎪⎪⎨⎪⎪⎩

Y(i)j−1/{Xσ(j)} Xi /∈ Z(σ(j))

Y(i)j−1 Xi ∈ Z(σ(j)).

end for

for i = 1, . . . , d do
Set Z(i) = Y(i)k

end for

This returns the complete parent / child set for Xi.

The sepsets for the variables removed in the third stage have already been established.



16.7. RECURSIVE AUTONOMY IDENTIFICATION 321

Establishing the Essential Graph Having recorded the sepsets, sets such that X ⊥ Y ∣SXY , it

is now straightforward to construct the essential graph. For each vee structure (X,Z,Y ) (that is a
structure such that {X,Y } ⊂ Z(Z), but X /∈ Z(Y )), check whether or not Z ∈ SXY . If Z ∈ SXY , then

(X,Z,Y ) is not an immorality; the edges X −Z −Y remain undirected at this stage. If Z /∈ SXY , then

(X,Z,Y ) is an immorality.

Finally, add in the additional compelled edges using Meek's rules; edges α ∼ β that appear in

structures given in Figure 2.10 De�nition 2.16 Page 42 are directed as in the Figure 2.10.

16.7 Recursive Autonomy Identi�cation

The Recursive Autonomy Identi�cation algorithm is from Yehezkel and Lerner [150] (2009). Like the

FAS algorithm, it tries to keep the size of the sepsets as small as possible. The general idea is similar

to the FAS algorithm, but it tries to locate, and use, more of the chain graph structure of the essential

graph at each state. At stage n + 1, instead of simply checking all possible subsets of size n + 1 to

determine whether or not there is a set S such that X ⊥ Y ∣S, only those components of the current

chain graph after stage n that can have in�uence are considered. This reduces the number of tests

that have to be carried out at stage n + 1.
The algorithm assumes that there is a faithful graph and aims to locate its essential graph. When

testing for independence, it checks all relevant tests of X ⊥ Y ∣S for X,Y ∈ V and S ⊂ V for ∣S∣ = n (the

subset S has n variables) before making tests of X ⊥ Y ∣S where ∣S∣ = n+ 1, since tests are less reliable
when the conditioning sets are larger.

The �rst step of the algorithm is as follows.

� Starting with a variable set V , the initial graph is the complete graph, with undirected edges

between each pair of variables {X,Y }.

� For each pair {X,Y } ⊂ V , it is checked whether or not X ⊥ Y and if this holds, the edge X − Y
is removed. Record SX,Y = ϕ, the empty set (SX,Y is the separator).

� For each vee structureX−Z−Y where there is no edgeX−Y , the triple (X,Z,Y ) is an immorality

X → Z ← Y .

� The remaining compelled edges are added.

For each pair {X,Y } that do not have an edge between them, the set SX,Y used to determine the edge

removal using X ⊥ Y ∣SX,Y , is recorded.

After this initialisation (stage 0), the algorithm proceeds recursively. At stage n+1, do the following.

� Start with the skeleton from stage n. For each vee-structure α − γ − β, the vee-structure is an

immorality if γ /∈ Sα,β and it is not an immorality if γ ∈ Sα,β . Add in the remaining compelled

edges. The resulting graph is the Stage n essential graph, which is a chain graph. Locate the

chain components.



322 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

� Starting with a chain component that has no descendants and proceeding backwards, consider

in turn each chain component GC and the subgraph GD formed by taking the chain component

GC = (C,UC) together with the chain components that have parent variables of GC and all all the

directed edges connecting these chain components. Let D denote variable set for GD. For each
Y ∈ C and each neighbour X of Y (consider �rst the parents in di�erent connected components,

and then the undirected neighbours in the component GC), check whether there is a set SXY ⊂D
of size n such that X ⊥ Y ∣S. If there is, then remove the edge between X and Y and record

SXY . Remove the chain component GC and proceed recursively until the whole graph has been

considered.

This is repeated until the size of the largest neighbour set in the undirected graph is equal to n,

then the algorithm terminates. Undirect all the edges, �nd the immoralities and add in the remaining

compelled edges. The output is the resulting essential graph.

Note In [150], the algorithm presented is slightly di�erent; once an edge is directed, it is not subse-

quently undirected. It is di�cult to see the theoretical justi�cation for this; the modi�cation presented

here ensures that, when there is a faithful graph and assuming a perfect oracle, the output graph is

the essential graph.

Example 16.3 (Example for Recursive Autonomy Identi�cation).

Suppose that the DAG in Figure 16.3 is faithful to the distribution PX1,X2,X3,X4,X5,X6,X7 .

X3

}} !!

X1

!!

X4

}}

X5

X2

!!

X6

!!

X7

Figure 16.3: Example to illustrate RAI algorithm

Suppose also a `perfect oracle'; independence tests give the correct results. After the �rst round,

X1 /⊥ X2, X1 /⊥ X6, X1 /⊥ X7, but X1 ⊥ {X3,X4,X5}. X2 /⊥ Xj for any j, X3 /⊥ Xj for j = 4,5,6,7,

X4 /⊥Xj for j = 5,6,7, X5 /⊥Xj for j = 6,7 and X6 /⊥X7.



16.7. RECURSIVE AUTONOMY IDENTIFICATION 323

After the CI tests with conditioning sets size 0 have been carried out, the immoralities are deter-

mined;

(X1,X2,X3), (X1,X6,X3), (X1,X7,X3), (X1,X2,X4), (X1,X6,X4)

(X1,X7,X4), (X1,X2,X5), (X1,X6,X5), (X1,X7,X5).

The edges X3 −X4, X3 −X5 and X4 −X5, X2 −X6, X2 −X7 X6 −X7 remain undirected.

Removing the undirected edges, the chain components are A1 = {X1}, D = {X2,X6,X7} and

A2 = {X3,X4,X5}. D stands for descendant, A for ancestor.

Within D, X2 ⊥ X7∣X6 and this is the only CI statement with a conditioning set size 1. The edge

X2 −X7 is therefore removed and X2 −X6 −X7 is not an immorality, since X6 ∈ S2,7 (the sep set).

Within A2, X4 ⊥ X5∣X3, hence X4 −X5 is removed and X4 −X3 −X5 is not an immorality since

X3 ∈ S4,5.
Now consider the directed edges from A1 and A2 to D. {X3,X4,X5} ⊥ {X6,X7}∣X2, leading to

removal of the 6 corresponding directed edges. {X3,X5} ⊥ {X2}∣{X4}. Finally, Meek's rules may be

used to direct X2 →X6 and X6 →X7 giving the essential graph in Figure 16.4.

X3

X1

!!

X4

}}

X5

X2

!!

X6

!!

X7

Figure 16.4: Example for RAI algorithm: essential graph

At this point, D is now removed. Since A1 and A2 have no ancestors, they are considered separately and

the algorithm is �nished. If A1 and A2 were descendants of other chain components, a chain component

with no descendants would be chosen and the algorithm continues until all chain components have been

considered.

The algorithm is then repeated with conditioning sets of size 2, and so on, until the termination

condition is satis�ed.



324 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

16.8 Incompatible Immoralities: EDGE-OPT Algorithm

It is possible that in the constraint based structure learning algorithms, immoralities that are incom-

patible with each other may emerge. This could, for example, be vee structures declared not to be

immoralities, which lead to a cycle of length ≥ 4 without a chord, or two immoralities that give oppositie

orientations for an edge.

There are two possible reasons for incompatibilities; either the independence tests give inaccurate

results, or else there does not exist a faithful DAG.

A. Fast in [41] uses a constraint based method for dealing with this. EDGE-OPT ALGORITHM

starts with the edges of the skeleton produced by a constraint based algorithm, either FAS, MMPC

or RAI, chooses an orientation of the edges at random to produce a DAG and then considers each

vee-structure in turn, deciding locally whether or not it should be a collider.

The list of constraints (that is, for each X,Y with no edge between them, the statement X ⊥ Y ∣SXY

and X ∼ Y if there is no sepset) is established before EDGE-OPT start. At each stage, it chooses a

vee-structure, examines the possibilities for orientation of the edges in the vee structure, and chooses

the orientation that satis�es the largest number of constraints.

16.9 Hybrid Algorithms

We now consider various hybrid algorithms, which start by constraining the space and then using search

and score techniques within the constrained space.

16.9.1 The Maximum Minimum Hill Climbing Algorithm

The MMHC algorithm by Tsamardinos, Brown and Aliferis (2006) [137] is a hybrid algorithm. Firstly,

the set of edges of which the skeleton is a subset, is obtained using the constraint-based Maximum

Minimum Parents Children algorithm. The sep sets, though, are not recorded, since they are unnec-

essary. Having obtained the skeleton, the orientation of the edges is obtained via a search-and-score

procedure, known as the MMHC algorithm. It works as follows: let V = {X1, . . .Xd} and denote the

current graph by G = (V,D).

� Start with the empty graph G = (V,D) where D = ϕ.

� At each stage, either add a directed edge to D, choosing an edge in E and directing it; any

direction that does not produce a cycle is admissible, or delete an edge from G, or reverse an

edge in G, or leave the graph unaltered. From all the possibilities of `add an edge', `delete an

edge', `reverse an edge', `leave the graph unaltered' choose the one that gives the greatest score;

that is, the operation that produces the greatest reduction in the Kullback Leibler divergence

between the probability modelled along the graph and the empirical probability.

� Repeat until the score is not changed.



16.9. HYBRID ALGORITHMS 325

The algorithm may be modi�ed as follows: instead of the best change, make the best change that

results on a graph that has not already appeared. When 15 changes occur without an increase in the

best score ever encountered during the search, the algorithm terminates. The DAG that produced the

best score is then returned. which starts with the constraint based MMPC stage to locate the skeleton

and then carries out a search and score based MMHC stage, using the skeleton obtained from MMPC

as the candidate edge set. Two other hybrid methods are described below.

16.9.2 L1-Regularisation

One method, introduced by Schmidt, Niculescu-Mizil and Murphy (2007) [123], places constraints on

the model and then uses an L1 score function, described below, as the basis of a search and score

within the constrained space.

The method can be employed with Gaussian or binary variables. The binary case is outlined here.

In this algorithm, there is no restriction on the number of parents that a variable may have, but

there is a constraint on the way in which the parents in�uence the variable. The state space of variable

Xj is {−1,1} for each j and the conditional probabilities are modelled so that the logit function is

linear:

ln
⎛
⎝

pXj ∣Paj
(1∣πj)

1 − pXj ∣Paj
(1∣πj)

⎞
⎠
= (θj,0 +

pj

∑
k=1

θj,kπj,k) (16.2)

where πj = (πj1, . . . , πjpj), the con�guration of Paj , is a sequence of ±1 corresponding to the states of

the parent variables. The parent variables are only permitted to in�uence ln p
1−p linearly; no interactions

are permitted. This permits a large number of parents, since the number of parameters is linear, rather

than exponential, in the number of parents.

The algorithm works in two stages: like the MMPC, it �rst produces candidate parent children sets

for each variable. Having constrained the search space, it then uses a search and score algorithm to

determine the candidate parent / children sets. Having determined the parent / children sets, it runs the

hill climbing part of the MMHC algorithm of Tsamardinos, Brown and Aliferis to obtain the structure,

keeping the conditional probabilities of the form in Equation (16.2). For a vector x = (x1, . . . , xd) of
1's and −1's, let Paj denote all the variables without j. That is, all variables permitted as possible

parents for j at this stage. Let x̃(j) denote the vector x without xj . Let

LL(j, θj , x) = log pXj ∣Paj
(xj ∣x̃(j))

denote the log likelihood function and, for x the data matrix with rows x(1), . . . , x(n), let

LL(j, θj ,x) =
n

∑
k=1

LL(j, θj , x(k)).

The parameters θj are chosen to maximise the L1 regularisation score function,

L1R(θj ,x) = LL(j, θj ,x) − λ∥θj∥1,



326 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

where ∥θj∥1 = ∑d−1
k=1 ∣θjk∣ and λ is chosen appropriately. The sum is over the parameters corresponding

to dependence on parent variables; the parameter θj,0 is not included. The article [123] has some

discussion about the appropriate choice of λ.

The L1 regularisation, if λ is appropriately chosen, has the e�ect of choosing vectors θj with a

substantial number of zero components. Because of this property, it tends to favours a lower number of

parameters in the model. For this reason, L1 regularisation is a technique that is developing increasing

importance.

16.9.3 Gibbs sampling

A related approach to the problem of structure learning is found in Bulashevska and Eils (2005) [11].

The structure learning algorithm is intended for analysis of gene expression data, to locate gene regu-

latory interactions. As with Schmidt, Niculescu-Mizil and Murphy (2007) [123], the parents in�uence

the o�spring independently of each other and the algorithm forms `noisy OR' and `noisy AND' gates.

The parent sets are chosen using Gibbs sampling. The generic techniques of Gibbs sampling are found

in Gamerman and Lopes (2006) [49].

16.10 A Junction Tree Framework for Undirected Graphical Model

Selection

Let X = (X1, . . . ,Xd) be a random vector, with indexing set V = {1, . . . , d}. An undirected graphical

model is simply an undirected graph G = (V,U) where U is a set of undirected edges, such that G is

the independence graph of X.

The edge set U contains an edge ⟨α,β⟩ if and only if Xα /⊥Xβ ∣X−(α,β) (i.e. Xα not independent of

Xβ conditioned on all the other components of the random vector X).

Learning the independence graph may be problematic when d is large, since the conditional in-

dependence tests available have lower power when the number of states of the conditioning set is

large.

The process may be facilitated if additional a-priori information is available, of the form: U ⊆ Ũ ,
where Ũ is an undirected edge set with node set V . Let H = (V, Ũ).

If H is triangulated, a junction tree may be constructed from the cliques. It is clear that ⟨α,β⟩ /∈ U
if none of the cliques contain both α and β, since this implies that ⟨α,β⟩ /∈ Ũ .

If there is a clique C such that α,β ∈ C, then it is not necessary to consider X−(α,β); let C
denote the clique-set, and let C denote a generic element of C. Let Cα = {C ∈ C ∶ α ∈ C} and let

Wα,β = (∪C∈CαC) ∪ (∪C∈Cβ
C). In other words, Wα,β is the collection of nodes contained in cliques

which contain either α or β (or both). Then, by obvious properties of the independence graph,

⟨α,β⟩ ∈ U if and only if

Xα /⊥Xβ ∣XWα,β/{α,β}.



16.10. A JUNCTION TREE FRAMEWORK FORUNDIRECTEDGRAPHICALMODEL SELECTION327

In other words, only those cliques containing either α or β (or both) need to be considered, leading to

a reduction in the size of the conditioning sets and hence to more accurate conditional independence

tests.

There may be some additional gain, in terms of reducing the size of the conditioning sets, if the

junction tree can be successively updated, by removing from Ũ edges that have been considered, for

which it has been established that they are not in U .

Vats and Nowak [139](2014) provide a framework for this, by considering the so-called region graph.

A region graph is simply a directed acyclic graph, where a node the region graph (which we call a region-

node) is a subset of V , the node set. The region graph of interest is constructed as follows: the �rst

generation of regions, R1 is the collection C of cliques of a junction tree. These are the ancestor

nodes of the region graph. Generation Ri+1 is the set of all pairwise intersections of sets in Ri with

cardinality greater than or equal to 2, for i = 1, . . . , L−1, where L is the maximum value of i for which

Ri constructed in this way is non-empty.

The edge set of a region graph contains an edge R → S if and only if R ∈Ri and S ∈Ri+1 for some

i ∈ {1, . . . , L − 1} and there is a set T ∈Ri such that R ∩ T = S.
Vats and Nowak propose an algorithm for locating the independence graph G = (V,U), given a

decomposable graph H = (V, Ũ) where U ⊆ Ũ . The algorithm is given as Algorithm 10; some further

notation is needed before introducing it.

For a region R of a region graph, let

R = ∪S∈{an(R),R}S (16.3)

In other words, R is the union of region R and all its ancestors. In terms of the junction tree for H,
this is the union of all cliques which have R as a subset.

For a node set S, let K(S) denote the complete undirected graph with node set S. For a set of

nodes R, let denote the edge set W restricted to R and let

W ′
R =WR/{∪S∈ch(R)K(S)}. (16.4)

Algorithm 10 returns the independence graph G = (V,U).

Correctness of Algorithm 10 It remains to show that, assuming a perfect oracle, Algorithm 10

returns the independence graph G = (V,U). Firstly, it is clear that the algorithm thus constructed

considers all the edges of Ũ . Secondly, it is straightforward (and left as an exercise) to show that, if

the distribution factorises along the junction tree, then Xα /⊥Xβ ∣XR/{α,β}⇔Xα /⊥Xβ ∣XV /{α,β}. From

this it follows that, assuming a perfect oracle, the algorithm returns the independence graph.

Example 16.4 (Region Graph).

Suppose the independence graph G = (V,U) is given on the left of Figure 16.5 and it is known that

U ⊆ Ũ , where the graph H = (V, Ũ) on the right. Here V = {1,2,3,4,5,6,7}.
The algorithm proceeds as follows:



328 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Algorithm 10 Finding Independence Graph Given Decomposable Graph as Wrapper

Input: A graph H = (V, Ũ) such that U ⊆ Ũ
Output: The independence graph G = (V,U)
Step 1: Initialise: Û as Û = ϕ (empty set) and �nd the region graph of H.
Step 2: Suppose the regions are R1, . . . ,RL

and j is the smallest value such that there exists a region R ∈Rj such that Ũ ′R ≠ ϕ
where Ũ ′R is de�ned by (16.4)

for each R ∈Rj do

Compute R de�ned by (16.3) and Ũ ′R de�ned by (16.4). For each edge ⟨α,β⟩ ∈ Ũ ′R, remove the

edge from Ũ . Add the edge ⟨α,β⟩ to Û if and only if Xα /⊥Xβ ∣XR/{α,β}.

end for

(Note: at this stage, Ũ ∪ Û ⊇ U).
Step 3: Compute a new junction tree and region graph using an e�cient triangulation of edge set

Ũ ∪ Û
Step 4: If Ũ = ϕ then terminate, otherwise go to Step 2.

1 3 5 7 1

2 4 6 3 5 7

2 4 6

Figure 16.5: Graph G = (V,U) and H = (V, Ũ); Ũ ⊇ U

� Clique 1,2,3,5 has child 1,3,5. Remove edges from the child gives edges ⟨1,2⟩, ⟨2,3⟩, ⟨2,5⟩ from
Ũ to be estimated. Therefore, look at R1 (the cliques of the junction tree with the complete

graphs of the separators removed.

Clique 1,2,3,5 edges ⟨1,2⟩, ⟨2,3⟩, ⟨2,5⟩ considered; ⟨2,3⟩ and ⟨2,5⟩ removed. Edge ⟨1,2⟩ added
to Û

Clique 1,3,4,5 Children are 1,3,5 and 3,4,5. Therefore, only edge ⟨1,4⟩ is considered. This is
retained. It is therefore removed from Ũ and added to Û .

Clique 3,4,5,6 Children are 3,4,5 and 4,5,6. Only edge ⟨3,6⟩ is considered. It is removed from

Ũ .

Clique 4,5,6,7 Child is 4,5,6. Edges considered are: ⟨4,7⟩, ⟨5,7⟩ and ⟨6,7⟩. They are removed

from Ũ . Edges ⟨5,7⟩ and ⟨6,7⟩ are added to Û .

� At this stage, a new junction tree may be computed, using the edges from Ũ ∪ Û . This may be



1,2,3,5
1,3,5

1,3,4,5
3,4,5

3,4,5,6
4,5,6

4,5,6,7

1,2,3,5

��

1,3,4,5

zz $$

3,4,5,6

zz $$

4,5,6,7

��

1,3,5

$$

3,4,5

zz $$

4,5,6

zz

3,5 4,5

Figure 16.6: Junction Tree (above) and Region Graph (below) for Figure 16.5

more e�cient. Alternatively, we may continue with the same junction tree.

After deleting these edges from Ũ , generationR2 is the �rst generation that satis�es the property.

Region 1,3,5: This has one child, which is 3,5. The edges under consideration are therefore

⟨1,3⟩ and ⟨1,5⟩. These have not been considered before. They are removed from Ũ and edge

⟨1,3⟩ is added to Û .

Region 3,4,5: This has two children, 3,5 and 4,5. Only one edge is considered; ⟨3,4⟩. This is
removed from Ũ . It is not present in U and therefore (assuming a perfect oracle) is not added

to Û .

Region 4,5,6: This has one child, 4,5. The edges under consideration are therefore ⟨4,6⟩ and
⟨5,6⟩. They are removed from Ũ . The edge ⟨4,6⟩ is added to Û .

� At this stage, a new junction tree may be computed. If we proceed with the current junction

tree, we look at R3. This contains regions 3,5 and 4,5. Each region consists of two nodes; for

each region, there is one edge under consideration. The edge ⟨3,5⟩ is removed from Ũ and added

to Û ; similarly with ⟨4,5⟩.

At this stage, Ũ = ϕ and Û = U .

16.11 The Xie-Geng Algorithm for Learning a DAG

The algorithm of Xie-Geng [148] (2008) provides a framework for learning a DAG which is essentially

di�erent from FAS, PC/MMPC, RAI. This algorithm again assumes that there exists a faithful DAG

and, at the �nal stage of edge removal, removes edges according to the principle of Theorem 2.3,

although this last stage may be omitted if one does not have a priori information that there exists a

faithful DAG. The algorithm starts by �nding the independence graph (De�nition 5.6), which is useful

329



330 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

by Theorem 5.7. Recall the de�nition of weak decomposition (De�nition 7.17). The independence

graph is subsequently decomposed, the sep-sets recorded at each stage. With the reconstruction, an

edge ⟨α,β⟩ appears in the �nal graph if and only if it appears in all parts of the decomposition that

contain both nodes α and β; otherwise a suitable immorality is added, dictated by the sep-sets in the

usual manner. The compelled edges are then added and the essential graph is returned.

The algorithm assumes that independence statements Xα ⊥ Xβ ∣X−{α,β} can be veri�ed. This may

be a weak point for large numbers of random variables, since the power of conditional independence

tests decays proportionally to the number of variables in the conditioning set. The algorithm may be

combined with the algorithm of Section 16.10 from Vats and Nowak [139] to reduce the size of the

conditioning sets if there is additional a-priori information that the independence graph is contained

within a decomposable graph H = (V, Ũ).
Theorem 2.3 is essential for proving that the algorithm returns a faithful DAG when it exists.

From De�nition 5.6 (the de�nition of the independence graph) together with Theorem 5.7, it follows

that graphical separation statements in the independence graph are equivalent to the corresponding

conditional independence statements for the probability distribution. By Theorem 5.5 together with

the de�nition of the independence graph (De�nition 5.6), the independence graph is equivalent to the

moral graph of a faithful DAG, when a faithful DAG exists.

The following two theorems are used crucially in proving that the graph returned by the algorithm

is the skeleton of a DAG along which the distribution may be factorised.

Theorem 16.5. Let G = (V,D) be a DAG. Suppose that A á B∥GS for three subsets A,B,S ⊂ V . Let
α ∈ A and β ∈ A ∪ S. Then α á β∥GR for some R ⊂ A ∪B ∪ S if and only if α á β∥GR′ for a subset

R′ ⊂ A ∪ S.

Theorem 16.6. Let G = (V,D) be a DAG and suppose that A,B,S ⊂ V such that A á B∥GS. Let

α,β ∈ S. Then there is a subset R ⊆ A ∪B ∪ S such that α ⊥ β∣R if and only if either there is a subset

R′ ⊂ A ∪ S or there is a subset R′ ⊂ B ∪ S such that α á β∥R′.

These statements appear, at face value, precisely what one would expect. Their proofs, though, are

somewhat involved and non-trivial. The Xie-Geng algorithm is based on these statements, which

enable the edge set for the whole graph to be concluded from examining subsets of the variables. The

proofs of these theorems are given later, after the description of the algorithm.

16.11.1 Description of the Xie-Geng Algorithm

The algorithm proceeds as follows:

� An undirected graph is constructed. This is the graph G = (V,U) where ⟨α,β⟩ ∈ U if and only if

Xα /⊥ Xβ ∣X−(α,β). This is the independence graph (De�nition 5.6). It is therefore equivalent to

the moral graph of a faithful DAG if a faithful DAG exists (Exercise 6 page 352).

� A weak decomposition (A,B,S) (De�nition 7.17) of the moral graph is found, if such a decom-

position exists.



16.11. THE XIE-GENG ALGORITHM FOR LEARNING A DAG 331

� For each α ∈ A/S and β ∈ B/S, set Sα,β = S, the separator of α,β.

� Construct GiA∪S and GiB∪S , where for each γ, δ ∈ A ∪ S, ⟨γ, δ⟩ ∈ U i
A∪S if and only if Xγ /⊥

Xδ ∣X(A∪S)/{γ,δ}), similarly for GiB∪S . These are the independence graphs for A ∪ S and B ∪ S
respectively.

� Find weak decompositions of GiA∪S and GiB∪S , the independence graphs associated with these

weak decompositions and continue recursively until it is not possible to decompose any of these

pieces further. At each stage, if W ⊂ V is decomposed into A′,B′, S′, set Sα,β = S′ for each

α ∈ A′, β ∈ B′.

Before the assembly stage, the following additional stage is carried out on the cliques which are obtained

from the recursive decomposition:

� For each clique A in the decomposition and each pair {α,β} ⊆ A, check whether there is a subset

S ⊂ A/{α,β} such that Xα ⊥ Xβ ∣XS . If there is, then remove the edge ⟨α,β⟩ and let Sα,β = S,
the sep-set of {α,β}.

From these pieces, the DAG is constructed as follows:

� Two sub-skeletons LA∪S = (A ∪ S,UA∪S) and LB∪S = (B ∪ S,UB∪S) are combined to form

LA∪B∪S = (A ∪B ∪ S,UA∪B∪S)

where

UA∪B∪S = UA∪S ∪UB∪S/{⟨α,β⟩∣α,β ∈ S, ⟨α,β⟩ /∈ UA∪S ∩UB∩S}.

� This is done recursively until all the pieces have been added.

� For each separator Sα,β , orient a vee-structure (α, γ, β) as an immorality α → γ ← β if γ /∈ Sα,β .

� Orient the compelled edges.

Establishing Correctness If there is a faithful DAG for the distribution and a perfect oracle, then

the algorithm returns the essential graph of the faithful DAG. This is established as follows:

Suppose that GA∪C and GB∪C are faithful for the distributions over A ∪C and B ∪C respectively

and are combined according to the rules given to give GA∪B∪C . The results of Theorems 16.5 and 16.6

may be used to establish the D-separation properties:

For any α ∈ A and β ∈ B, Sα,β = C and therefore there is no edge α ∼ β in a faithful DAG for the

distribution over A ∪B ∪C. Following the reconstruction, there is no edge in GA∪B∪C .
For α,β ∈ C, the reconstruction has an edge α ∼ β in GA∪B∪C if and only if there are edges in both

GA∪C and GB∪C . Theorem 16.6 states that if G(A∪B ∪C) is a DAG over the variables A∪B ∪C and

there is a set R ⊆ A∪B∪C such that α á β∥G(A∪B∪C)R if and only if either there is a set R′ ⊂ A∪C such

that α á β∥G(A∪C)R′ or there is a set R′ ⊂ B ∪C such that α á β∥G(B∪C)R′. Therefore, G(A ∪B ∪C)
is a faithful graph for pA∪B∪C then its skeleton contains an edge α ∼ β between two variables in C if

and only if both GA∪C and GB∪C contain the edge.



332 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Example 16.7 (Example for the Xie-Geng Algorithm).

Suppose that the probability distribution PA,B,C,D,E,F,G,H and the DAG in Figure 16.7 are faithful.

B // E

A

��

// C

OO

��

G

��

``

D // F Hoo

Figure 16.7: A faithful DAG to illustrate the Xie-Geng algorithm

Suppose that we also have a perfect oracle (each conditional independence test gives the correct result).

The �rst step of the algorithm is to construct the independence graph, given in Figure 16.8. This is

constructed by starting with the empty graph and adding an undirected edge ⟨α,β⟩ if and only if

Xα /⊥Xβ ∣X−(α,β). If the DAG in Figure 16.7 is faithful, the independence graph is the moral graph.

B E

A C G

D F H

Figure 16.8: The Moral / Independence Graph for the DAG of Figure 16.7

The graph is now decomposed recursively; for example, take {C,G}, then this decomposes the graph

into {A,C,D,F} and {B,E,C,F,G,H}. The independence graphs for these two sets of variables are

illustrated in Figure 16.9.

Now consider the piece on the left hand side of Figure 16.9. The set {C,D} may be used as the

separation set, and the independence graphs of the two pieces {A,C,D} and {C,D,F} are shown in

Figure 16.10.

The edge C −D does not appear in the �rst graph, since C ⊥ D∣A. This is clear from the DAG in

Figure 16.7, which is faithful to the distribution. It therefore follows that in the reconstruction stage,

the edge C −D will not be present and that C − F −D will be an immorality.

More fully, the decomposition phase can proceed as follows:



16.11. THE XIE-GENG ALGORITHM FOR LEARNING A DAG 333

A C B E

D F C G

F H

Figure 16.9: First stage of decomposition for the Xie-Geng algorithm

A C C

D D F

Figure 16.10: Further stage of decomposition for the Xie-Geng algorithm

� {A} and {B,E,F,G,H} are separated by {C,D}; A ⊥ {B,E,F,G,H}∣{C,D}. The two pieces

are: {A,C,D} and {B,C,D,E,F,G,H}.

� Consider {A,C,D}. The graph is; A −D −C, since for variables {A,D,C}, C ⊥D∣A.

� This is decomposed further into {A,D} and {A,C}; C ⊥ D∣A. This decomposition is complete;

the pieces are cliques and cannot be decomposed further.

� Consider {B,C,D,E,F,G,H}. Then B ⊥ {D,F,H,G}∣{C,E}. The decomposition is into

{B,C,E} and {C,D,E,F,G,H}. The piece {B,C,E} is a clique, since B /⊥ C ∣E.

� For {C,D,E,F,G,H}, E ⊥ {D,F,H}∣{C,G}, so it is decomposed into {C,D,F,G,H} and

{C,E,G}. {C,E,G} is a clique at this stage, since C /⊥ G∣E.

� For {C,D,F,G,H}, C ⊥ G∣{D,F,H}, so the graph of this piece does not contain the edge C −G.

� G ⊥ {C,F,D}∣H, so decompose {C,D,F,G,H} into {G,H} and {C,D,F,H}.

� Now consider {C,D,F,H} and decompose into {C,D,F} and {H,D,F}; C ⊥ H ∣{D,F}. Since
C /⊥D∣F , the piece {C,D,F} is a clique. Since D /⊥H ∣F , this is also a clique.

Now the cliques are considered and edges removed according to the principle of Theorem 2.3.

� For {C,D,F} the edge C −D is not removed; C /⊥D and C /⊥D∣F .



334 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

B // E

A C

OO

��

G

``

D // F Hoo

Figure 16.11: Structure learning example: essential graph

� For {D,F,H}, the edge D−H is removed, with separation set (sep set) ϕ, since D ⊥H (with no

instantiated notes, there is an open collider in each trail in the original DAG).

� For the �nal stage of the `deconstruction' phase, edge B − C is removed because B ⊥ C, with
sepset SBC = ϕ.

Reconstruction For the reconstruction, these are put together, using the rule that GA∪B∪C has an

edge between two variables in C if and only if both GA∪C and GB∪C . At this stage, the edge C −D
is removed from the �nal graph, since at the earlier stage SCD = {A}. Similarly, C − G is removed

because SCG = {D,F,H}. Vee structures (α, γ, β) are immoralities if and only if γ /∈ Sα,β . This gives
the essential graph of Figure 16.11.

16.11.2 Proofs of Theorems 16.5 and 16.6

Finally, in the discussion of the Xie-Geng algorithm, we prove Theorems 16.5 and 16.6, thus establishing

the correctness of the Xie-Geng algorithm under the assumptions that there exists a faithful graph and

that there is a perfect oracle.

Theorem 16.5 requires some preparatory lemmas:

Lemma 16.8. Let G = (V,D) be a directed acyclic graph. Let α,β ∈ V . Let F = GmAn({α,β}∪S) where
An(W ) denotes the set W together with all nodes that are ancestor nodes in G for any node in W .

First, the subgraph is taken, then it is moralised. Prove that S separates α and β in F if and only if

α á β∥GS.

Proof of Lemma 16.8 Assume that there is a path from α to β in F that has no nodes in S. Then

a trail from α to β in G may be found by taking the directed edge in G if it corresponds to an edge

in F or two edges to form a collider if there is no corresponding edge in F ; the two directed edges

corresponding to the immorality that was removed when the graph was moralised.

If the collider node, or any of its descendants is in S, then the node is S-active. Assume that there

is one collider γ that is not S-active. Then each parent node (they are both in F) is either an ancestor



16.11. THE XIE-GENG ALGORITHM FOR LEARNING A DAG 335

of α or an ancestor of β and hence the collider node is either an ancestor of α or an ancestor of β. It

follows that there is a directed path from that node to α or β that does not pass through S. Assume

that it is α and consider the trail between α and β with the part between α and γ replaced by this

directed path from γ to α.

Proceeding inductively, a trail can be constructed such that the only colliders are S-active and

there are no other nodes in S on the trail. It follows that α /á β∥GS.
Now assume that all paths from α to β in F have at least one node in S. Consider any trail in

G between α and β. The skeleton of any trail that has only fork or chain connections is in F and

hence has a node in S. Consider any trail in G and consider the S-active collider connections. In H,
there is an undirected edge ⟨X,Y ⟩ for any collider connection (X,Z,Y ) such that Z is S-active. If the

trail has nodes not in An({α,β} ∪ S), then it clearly has a collider that is uninstantiated and has no

descendants in S. If all the nodes of the trail are in An({α,β} ∪ S), then since the undirected path

in H formed by taking the directed edge ⟨X,Y ⟩ instead of ⟨X,Z⟩, ⟨Z,Y ⟩ has a node in S, it follows

that the original trail has a fork or chain node in S and hence is blocked. The proof of Lemma 16.8 is

complete.

Lemma 16.9. Let G = (V,D) and let S ⊂ V . Two nodes {α,β} are D-separated by S if and only if

they are D-separated by an({α,β}) ∩ S, where an(W ) = An(W )/W .

Proof of Lemma 16.9 Set S′ = an({α,β}) ∩ S. Since S ⊇ S′, it follows that if α á β∥GS′ then
(trivially) there is a subset R ⊂ S such that α á β∥GR.

Now suppose that α /á β∥GS′. By Lemma 16.8, there is a path ρ connecting α and β in GmAn({α,β}
that does not contain any vertex of S′ and hence that ρ does not contain any vertex in S/{α,β}.

Suppose that α and β are D-separated by S0 ⊆ S. Since an({α,β})∩S0 ⊆ S′, it follows that ρ does
not contain any vertex in an({α,β}) ∩ S0 and hence, by Lemma 16.8, α /á β∥GS0. It follows that if

there is a subset R ⊆ S such that α á β∥GR, then α á β∥Gan({α,β}) ∩ S. The proof of Lemma 16.9 is

complete.

Lemma 16.10. Let G = (V,D) be a DAG and suppose that ρ is a trail between two non adjacent

vertices α and β. If there are any nodes in ρ that are not in An({α,β}), then the trail ρ is blocked by

any subset S ⊆ an({α,β})

Proof It is clear that such a trail contains a collider connection, where the collider node is not in

An({α,β}) and hence the node does is not in an({α,β}), nor does it have a descendant in this set.

The proof of Lemma 16.10 is complete.

We are now in a position to prove Theorem 16.5.

Proof of Theorem 16.5 Since A ∪ B ∪ S ⊇ A ∪ S, it follows trivially that existence of a suitable

subset of A ∪ S implies existence of a suitable subset of A ∪B ∪ S.
To prove that existence of a subset in A∪B ∪S implies existence of a subset in A∪S, assume that

α and δ are two vertices in A and A ∪ S respectively, that are D-separated by a subset of A ∪B ∪ S.



336 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Let

S′ = (an({α}) ∪ an({δ}) ∩ (A ∪ S).

By Lemma 16.9, it is su�cient to show that S′ blocks every trail ρ between α and δ. There are two

cases:

� ρ not contained completely in An({α, δ})

� ρ contained completely in An({α, δ}).

By Lemma 16.10, in the �rst case, ρ is blocked by S′ since S′ ⊂ an({α}) ∪ an({δ}).
For the second case, A á B∥GS implies that {α}∪ (S′ ∩A) ⊥ {β}∣S for each β ∈ B and hence (using

Exercise 2 page 22) that α á β∥G(S′ ∩A) ∪ S. Since S′ ⊆ A ∪ S, it follows that

α á β∥G(S′ ∪ S).

Now suppose there is a trail ρ contained in An({α, δ}) between α and δ that is not blocked by S′.

Let W = S′ ∪ S. Then W blocks ρ. There is therefore at least one node in ρ that is in W /S′. Note

that W ⊆ B. Let γ ∈ W /S′ denote the �rst node on the trail ρ, starting from α, that is in W /S′.
Let ρ′ denote the sub-trail of ρ between α and γ. Since ρ is not blocked by S′, neither is ρ′. Since

γ is the only node of ρ′ that is in B, it follows that if ρ′ is S′ active, it is also W active and hence

α /á γ∥G(S′ ∪ S), which is a contradiction.

If every sequence satis�es these properties, then clearly it satis�es these properties for every trail

and hence, from the de�nition, α /á β∥GS.
If α á β∥GS, then consider any such sequence of nodes. Take a subsequence by removing the loops

so that any node appears at most once. This is a trail. Since D-separation holds, the trail has the

property listed. The property therefore holds for the original sequence.

It is clear that if there is a set R′ ⊂ A ∪ S or R′ ⊂ B ∪ S, then R = R′ ⊂ A ∪ B ∪ S satis�es the

criterion.

Now suppose there is a set R̃ ⊂ A∪B∪S such that α ⊥ β∥GR̃ and let γ1, γ2 ∈ S such that γ1 ⊥ γ2∥GR̃.
By Lemma 16.9, γ1 ⊥ γ2∥GR where

R = (an(γ1) ∪ an(γ2)) ∩ (A ∪B ∪ S).

Suppose that γ2 is not an ancestor of γ1. This can be done without loss of generality, by exchanging

the roles of γ1 and γ2 if necessary.

Let

R1 = (an(γ1) ∪ an(γ2)) ∩ (A ∪ S).

R2 = (an(γ1) ∪ an(γ2)) ∩ (B ∪ S).

To prove that R1 or R2 D-separate γ1 and γ2, it is su�cient to show that for two trails ρ1 in A ∪ S
and ρ2 in B ∪ S either ρ1 is R1 active, or ρ2 is R2 active, or both.

Consider the two cases separately:

� One of the trails ρj is not completely contained in An({γ1, γ2})



16.11. THE XIE-GENG ALGORITHM FOR LEARNING A DAG 337

� both trails γ1 and γ2 are contained in An({γ1, γ2}).

For the �rst case, since both R1 and R2 are subsets of an(γ1) ∪ an(γ2), it follows from Lemma 16.10

that ρj is blocked by both R1 and R2.

Now consider the second case. Suppose that ρ1 is R1 active and ρ2 is R2 active. Both ρ1 and ρ2

are blocked by R = R1 ∪R2. It follows that ρ1 has a node in R/R1 and ρ2 has a node in R/R2. Let δ1

and δ2 denote the nodes on ρ1 and ρ2 respectively that are closest to γ1. As with the previous exercise,

γ1 ∈ R/R1 ⊆ B and γ2 ∈ R/R2 ⊆ A. Let ρ′1 and ρ′2 denote the subtrails of ρ1 and ρ2 respectively between
γ1 ↔ δ1, and γ1 ↔ δ2 respectively. Note that ρ′1 is R1 active, and ρ′2 is R2 active. Connecting at γ1

gives a sequence ρ′ between δ1 and δ2 through γ1. Note that ρ′ may not be a trail, since there may be

repeated nodes.

Any node that is not a collider node in ρ′1, since it is in an(γ1)∪an(γ2) and since neither ρ1 nor ρ
′
1

are blocked by R1, is not in R1 ∪ S. Similarly S does not contain any collider node on ρ′2. Therefore,

except perhaps for γ1, ρ
′ does not have any collider connections where the collider node is in S.

Let ν1 denote the neighbour of γ1 on ρ
′
1. Since ν1 ∈ an(γ1)∪an(γ2) and it is not γ2, it is an ancestor

of γ1 or γ2. If the orientation is γ1 → ν1, then γ2 is an ancestor of γ1, contradicting the assumption.

Therefore the edge is oriented ν1 → γ1. Similarly, for ν2 a neighbour of γ1 on ρ′2. It follows that

(ν1, γ1, ν2) is a collider on ρ′. Therefore S does not contain any nodes on ρ′ that are not collider nodes

on the trail.

Consider any collider node c in ρ′j (that is, the centre of a collider connection in ρ′j). It is either

in Rj or else has a descendant in Rj . Since c ∈ an(γ1) ∪ an(γ2), it follows that γ1 ∈ S or γ2 ∈ S is a

descendant of c. Since γ1 ∈ S, it follows that each collider node in ρ′ is either in S or has a descendant

in S.

It follows that δ1 /á δ2∥GS, contradicting A á B∥GS. It follows that either γ1 á γ2∥GR1 or γ1 á
γ2∥GR2. The proof of Theorem 16.5 is complete.

Another preparatory lemma is needed, before proving Theorem 16.6.

Lemma 16.11. Two non adjacent nodes α and β in a directed acyclic graph G = (V,D) are D-separated

by a set S ⊂ V if and only if for any sequence λ = (α,λ1, . . . , λn−1, β) (where the same node can appear

more than once) with edges between each consecutive pair

� either λ contains a chain or a fork connection such that the chain node or fork node is in S or

� λ contains a collider connection such that the collider node is not in S and has no descendant in

S.

A sequence λ with edges between each consecutive pair that satis�es this property is said to be blocked

by S.

Proof of Lemma 16.11 The result of Theorem 1.24 page 15, stating that a DAG G = (V,D) has an
edge between α and β in D if and only if α /á β∥GS for any subset S, is used crucially here, together

with the de�nition of `faithful', that conditional independence statements and D-separation statements

are equivalent.



338 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

For α ∈ A and β ∈ C, the graph GA∪B∪C in the reconstruction has an edge α ∼ β if and only if there

is an edge α ∼ β in the graph GA∪C . Theorem 16.5 states that if G(A ∪ B ∪ C) is a DAG over the

variables A ∪B ∪C then there is a set R ⊂ A ∪B ∪C such that α á β∥G(A∪B∪C)R if and only if there

is a set R′ ⊆ A ∪ C such that α á β∥G(A∪C)R′. It follows that if G(A ∪B ∪ C) is faithful for pA∪B∪C
then its skeleton contains an edge α ∼ β between two variables α ∈ A and β ∈ C if and only if G(A∪C)
contains an edge between α and β. The proof of Lemma 16.11 is complete.

Theorem 16.6 now follows almost directly:

Proof of Theorem 16.6 If α,β ∈ V , then any vee-structure α − γ − β such that γ /∈ Sα,β is an

immorality, hence the immoralities are correct. The proof of Theorem 16.6 is complete.

16.12 The Ma-Xie-Geng Algorithm for Learning Chain Graphs

We now turn attention to learning chain graphs. As with the Xie-Geng algorithm for learning DAGs,

the Ma-Xie-Geng algorithm for learning chain graphs starts by learning the independence graph. From

the independence graph, a separation tree can be learned (Theorem 5.23) and, from the separation

tree, edges may be deleted and edges oriented according to the principles described in 5.2.

The region graph of 16.10 can provide an e�ective alternative to the separation tree.

16.12.1 Skeleton Recovery with a Separation Tree

The skeleton of the chain graph may be recovered from the separation tree with the help of The-

orem 5.25. The assumption is that there exists a chain graph which is faithful to the probability

distribution. The recovery follows Algorithm 11. The algorithm consists of three main parts:

� Local skeletons are recovered for each individual tree-node of the separation tree. By Condition

1 of Theorem 5.25, edges deleted in any local skeleton are also absent in the global skeleton. This

is the same principle used in the Xie-Geng algorithm for DAGs.

� All the information from local skeletons is combined to give a global undirected graph, which has

all the edges of the skeleton, but may contain additional edges.

� Finally, the extra edges are eliminated.

Theorem 16.12. Suppose there is a chain graph faithful to a probability distribution P. Given a perfect

oracle (i.e. each test for conditional independence gives the correct answer, rejecting CI when it is false

and not rejecting when the CI statement is true), Algorithm 11 returns the skeleton of a faithful chain

graph.



16.12. THE MA-XIE-GENG ALGORITHM FOR LEARNING CHAIN GRAPHS 339

Algorithm 11 Recovering the Skeleton of a Chain Graph

Input: A separation tree T of G and the set of independence statements of P
Output: The skeleton of G and a set S of C-separators

Stage 1: recover local skeletons

Set S = ϕ
for each tree node Ch do

Start from a complete undirected graph Gh with vertex set Ch

for each pair of nodes {α,β} ⊂ Ch do

if ∃Sα,β ⊂ Ch such that Xα ⊥Xβ ∣XSα,β
then

Delete the edge ⟨α,β⟩ in Gh.
Add Sα,β to S

end if

end for

end for

Stage 2: Combine Local Skeletons

Combine the graphs Gh = (Ch,Eh) into an undirected graph G′ = (V,∪hEh).
for each pair of nodes {α,β} contained in more than one tree-node and ⟨α,β⟩ ∈ G do
if ∃Ch such that {α,β} ⊂ Ch and ⟨α,β⟩ /∈ Eh then

Delete the edge ⟨α,β⟩ from G′

end if

end for

Stage 3: Remove Extra Edges

for each pair of nodes {α,β} contained in more than one tree-node and ⟨α,β⟩ ∈ G′ do
if Xα ⊥ Xβ ∣XSα,β

for some Sα,β ⊂ NG′(α) or NG′(β) which is not a subset of any Ch with

{α,β} ⊂ Ch then

Delete ⟨α,β⟩ from G′

Add Suv to S
end if

end for



340 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Proof This uses Theorem 5.25. There is an edge between two nodes in a chain graph if and only

if α /á β∥GS for any subset S ⊆ V /{α,β}. The three lines which delete edges therefore only delete

edges which cannot appear in the skeleton. The output therefore returns a graph which contains all

the edges of the skeleton.

At the same time, if α /∼ β, then one of the three conditions of Theorem 5.25 holds. For condition

1, there is no edge ⟨α,β⟩ if α and β do not appear in the same tree node.

If condition 2 holds, then the edge ⟨α,β⟩ is removed in Stage 1 or Stage 2.

If condition 3 holds, then either α á β∥GPa(α) or α á β∥GPa(β) (or both) where Pa(γ) denotes
{δ ∶ (δ, γ) ∈D or ⟨δ, γ⟩ ∈ U}. The edge ⟨α,β⟩ is therefore removed in Stage 3.

16.12.2 Recovering the Complexes

Algorithm 12 locates and orients the complex arrows of G, after the skeleton G′ has been located.

Algorithm 12 Complex Recovery

Input: The conditional independence statements of P, the skeleton G′ of G and the set S of C-

separators from Algorithm 11.

Output: The pattern G∗ of G
Initialise: G∗ = G′

for each ordered pair (α,β) such that Sα,β ∈ S do
for each ⟨α, γ⟩ in G∗ do
if Xα ⊥Xβ ∣XSα,β∪{γ} then

Orient ⟨α, γ⟩ as (α, γ) in G∗

end if

end for

end for

The resulting graph G∗ is the pattern of G.

Before proving that Algorithm 12 orients the edges correctly, the following preparatory lemma is

necessary.

Lemma 16.13. Any arrow oriented by Algorithm 12 gives the same orientation as the arrow in G.

Proof The result is trivially clear and requires faithfulness; lack of C-separation implies that the

corresponding conditional independence statement does not hold.

If all trails α ↔ β are blocked by Sα,β , but opened by γ, then γ is either a node in the region of

a complex on the trail between α and β or a descendant of such a node. Since γ is adjacent to α, it

follows that G contains the arrow (α,β).

Theorem 16.14. If G′ is the skeleton of a chain graph G which is faithful to the probability distribution

P over X, then the output G∗ of Algorithm 12 is the pattern of G.



16.13. STRUCTURE LEARNING AND FAITHFULNESS: AN EVALUATION 341

Proof This follows from Theorem 16.12 and Proposition 5.26. Firstly, by Theorem 16.12 provides the

correct skeleton. Clearly, if all the C-sep-sets were recorded, Algorithm 12 would consider all ordered

pairs of nodes (α,β); for each γ such that ⟨α, γ ∈ G′ (the skeleton) and determine whether or not it

was a complex arrow (De�nition ??). The algorithm would then return the pattern; the graph where

all the complex arrows are directed and the others are undirected.

The only remaining issue is whether or not the sep-sets provided by Algorithm 11 are su�cient.

By Proposition 5.26, for any complex (α, ρ1, . . . , ρn, β), there is a tree-node C which contains both

parents α and β of the complex. Hence the set of C-sep-sets returned by Algorithm 11 is su�cient and

hence Algorithm 11 returns the correct pattern.

Example 16.15.

Suppose the chain graph in Figure 5.7 gives a faithful graphical representation of the conditional

independence structure of a probability distribution P. Suppose that we derive the separation tree

of Figure 5.8. This separation tree is not optimal, in the sense that the tree-node FGKH could

be decomposed further into two tree-nodes FKG and GH separated by G. Given a perfect oracle,

Algorithm 11 will return the correct skeleton and the set of C-sep-sets will be su�cient for Algorithm 12

will return the correct pattern.

The C-sep-sets found by Algorithm 1 are:

� Stage 1 (each tree node): SBC = {A}, SCD = {B} (we cannot separate B −C at this stage, nor

D −E), SFG = {D}, SFH = {G}, SKH = {G}.

� Stage 2 this simply looks at the edges removed from each tree-node. An edge between two nodes

is present in the skeleton if and only if it is present between the two nodes for every tree-node.

After Stage 2, the only additional edge, still present in the graph which is not present in the skeleton,

is D −E.

� Stage 3 The edge D−E is removed with sep set SDE = {C,F} using tree-nodes CDE and DEF .

The complex arrows are D → F , C → E, F → K and G → K. Algorithm 12 detects these because

G /⊥ F ∣SGF ∪K, i.e. G /⊥ F ∣{D,K} for the immorality G→K ← F .

For the other complex, D /⊥ C ∣SCD ∪ F and D /⊥ C ∣SCD ∪E.
The pattern has thus been established.

16.13 Structure Learning and Faithfulness: an Evaluation

16.13.1 Faithfulness and `real world' data

The Recursive Autonomy Identi�cation algorithm was analysed by B. Barros (2012) [4], applying it

both to data simulated from test networks and to a �nancial data set. When applied to simulated

data, simulated from the ALARM network, the algorithm performed very well; the performance was

consistent with the results described by Yehezkel and Lerner [150]. For a data set generated by a



342 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

probability distribution for which there exists a faithful DAG, the results veri�ed that the algorithm is

e�cient and produces a graph that corresponds well to the distribution that generated the data, with

low computational overheads. The feature of the algorithm of making all required tests with smaller

conditioning sets before moving on to larger increases accuracy over methods that do not do this. The

additional use made of the structure, identifying the chain components of the essential graph at each

stage, ensures that fewer statistical calls (references to the data set) are required.

Some features were noted in the performance of the algorithm. In earlier stages, some contradictory

directions appeared. That is, pairs of immoralities X → Y ← Z, Y → Z ← W , in situations where

the edge Y ∼ Z would be deleted in subsequent rounds of the algorithm following tests with larger

conditioning sets. The direction chosen for the edge during that round was dictated by which im-

morality appeared �rst. If the test X ⊥ Z ∣SX,Z , yielding a sep-set SX,Z was carried out �rst, then the

edge would take the direction Y ← Z. After carrying out the CI tests and determining the directions,

Meek's orientation rules were applied to determine the structures for the next round of the algorithm.

The algorithm worked very well; with 10000 observations, it produced a graph that had the correct

skeleton and only 4 edges with incorrect orientation.

The test of performance of an algorithm is based on the ability of the algorithm to recover a

probability distribution used to simulate data. There are several standard networks, including the

ALARM network, that are used. Data is simulated from the network and the algorithm applied to

the simulated data. Freedman and Humphreys (2000) p 33,34 [43] are somewhat scathing in their

assessment of this procedure for verifying the utility of an algorithm, of using simulated data from a

distribution known to have good properties. They write,

The ALARM network is supposed to represent causal relations between variables relevant to

hospital emergency rooms, and Spirtes Glymour Scheines (1993) [126] p 11 claim to have

discovered almost all the adjacencies and edge directions `from sample data'. However,

these `sample data' are simulated; the hospitals and patients exist only in the computer

program. The assumptions made by SGS (1993) [126] are all satis�ed by �at, having been

programmed into the computer: the question of whether they are satis�ed in the real world

is not addressed. After all, computer programs operate on numbers, not on blood pressures

or pulmonary ventilation levels (two of the many evocative labels on nodes in the ALARM

network).

Freedman and Humphreys continue by stating,

These kinds of simulations tell us very little about the extent to which modelling assump-

tions hold true for substantive applications.

The constraint based algorithms all depend crucially on the modelling assumption that there is a DAG

that is faithful to the set of conditional dependence / independence statements that can be established.

We have already pinpointed two di�culties that can arise in the `real world'; interaction e�ects without

main e�ects and hidden common causes.



16.13. STRUCTURE LEARNING AND FAITHFULNESS: AN EVALUATION 343

16.13.2 Interaction e�ects without main e�ects

Example 2.7 gives an example of a situation where these constraint based algorithms will miss key

associations between the variables. Any situation where factors taken individually give no information,

but where there are two-factor, or higher order factor interaction without main e�ects, will not be

detected. If applied to genetic data, for example, the algorithm will not be able to detect situations

where a single gene by itself has no apparent e�ect, but where the genome pathway may be opened by

two genes acting together.

This situation will not lead to internal inconsistencies in the functioning of the algorithms; asso-

ciations of this type will simply be missed and the output will be a DAG that does not show these

associations, but it may not lead to reversed edges (situations where the algorithm has to choose

between two contradictory directions for an edge).

16.13.3 Hidden variables

In a `real world' situation, there may well be hidden variables which are not measured and the experi-

menter may be unaware of their existence. This can lead to reversed edges, as the following example

illustrates. Suppose that X,Y,Z,W are variables that are recorded, while H is a hidden variable, a

common cause of X and Y , whose presence is not suspected by the researcher. Suppose that the causal

relations between H,X,Y,Z,W are given by Figure 16.12.

X Hoo // Y

W

OO

// Z

>>

Figure 16.12: H is hidden and does not appear in the data matrix

If the RAI algorithm is applied to the variables X,Y,Z,W , whose associations are described by the

d-connection statements of the DAG in Figure 16.12, then X ⊥ Z ∣W , giving X → Y ← Z and Y ⊥
W ∣Z, giving the immorality Y → X ← W . Even if there is a perfect oracle (su�cient data to give

correct results for each CI test so that the results are consistent with the probability distribution over

(X,Y,Z,W )), the edge between X and Y is a reversed edge, X ↔ Y . This notation means that, from

the CI tests, one test gives a direction X → Y ; the other gives a direction X ← Y and the algorithm

will choose the direction depending on the order in which the tests are carried out.

In the RAI algorithm, the direction that an edge takes in the output graph, under such circum-

stances is determined by the order of the variables; if the test results X ⊥ Z ∣W appears �rst, the

output graph will contain X → Y and thus the graph will contain the false d-separation statement

W ⊥ Y ∣{X,Z}, while if the resultW ⊥ Y ∣Z appears �rst, the output graph will contain the edge Y →X

and the false d-separation statement X ⊥ Z ∣{W,Y }. The two possibilities are given in Figure 16.13.



344 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

X // Y X Yoo

W

OO

// Z

OO

W

OO

// Z

OO

Figure 16.13: Possible outputs applying constraint based algorithm to variables (X,Y,Z,W ) from
Figure 16.12

16.13.4 The scope of structure learning

Algorithms can detect associations, at the level of `descriptive statistics', without reference to the

process that generates the data and the nature of randomness. At the level of descriptive statistics,

the scope of constraint based algorithms is viewed along the following lines: from the n × d data

matrix, an empirical distribution can be established (or, at least, if d is very large, empirical probability

distributions of the marginalisation to subsets of the variables can be established). Any test result that

produces X /⊥ Y ∣S corresponds to a d-connection statement that is to be retained in the output graph;

any test result where X /⊥ Y ∣S is not rejected does not have to be retained in the output graph. The

output graph attempts to have as few edges as possible, while retaining all the d-connection statements

that were established through rejecting independence.

For large numbers of variables, there are clear di�culties that make serious inferential statistics

impossible. The assumption is that the n × d data matrix represents n independent instantiations of

a d-random vector X. This assumption, together with an assumption that n is su�ciently large for a

central limit theorem e�ect to hold is required for the test statistics to be approximately χ2. Even if

the nominal signi�cance level α chosen for rejecting a null hypothesis can be considered as a measure

of a probability in any serious way the number of tests required is large that the overall signi�cance

level could be close to 1. In terms of descriptive statistics, the output graph can be informative, but

it is di�cult to reach inferential conclusions from the output of these algorithms.

16.13.5 Application of FAS and RAI to �nancial data

After testing the Fast and RAI algorithms on the training example of the ALARM network, where

it performed well, the work of Barros [4] proceeded to run these algorithms on a �nancial data set,

composed of the closing values of 18 stock market indices (Amsterdam stock index, Austrian traded

index, Brussels stock index, etc ...) from 1st January 2005 to 1st January 2011, approximately 1000

instantiations of 18 variables.

The aim of the thesis was to detect changes in associations between the variables, to learn a

structure, detect when the structure was no longer appropriate and update.

In the �nancial data set, the raw RAI algorithm gave no independence statements after the �rst

round; for each pair of variables (X,Y ), the result was `reject independence'. Therefore, any pair of



16.13. STRUCTURE LEARNING AND FAITHFULNESS: AN EVALUATION 345

variables should be d-connected in the output graph. Yet the output graph, following application of the

raw RAI algorithm, gave pairs of d-separated variables, which indicates that conditional independence

was falsely accepted due to weak tests.

In order to deal with the situation where `accept independence' from tests with large condition-

ing sets contradicted d-connection statements with lower order conditioning sets, Barros adopted a

more conservative approach than the argumentation of Bromberg and Margaritis [9] and modi�ed

the algorithm so that it did not accept an independence statement that resulted in a d-separation

in the output graph contradicting a dependence statement that has already been established. This

modi�cation worked well.

The output still gave a large number of `reversed edges'. While the ALARM network gave one or

two, the �nancial data set gave approximately 28 reversed edges, indicating situations that appeared

in the DAG in Figure 16.12, with possible output graphs corresponding to Figure 16.13.

The presence of a substantial number of `common cause' hidden variables would explain this.

This was a randomly chosen `real world' data set and probably not appropriate for an algorithm

based on a `faithfulness' assumption. The variables here do not satisfy one of the motivating features of

the faithfulness assumption, that the variables stand in causal relation to each other; their association

is more likely to be a result of hidden common causes, such as government policies, or global �nancial

considerations that in�uence the various stock markets.

The same di�culties seemed to arise in other applications. The RAI algorithm was applied to

the genetic data found in Friedman et. al. [46]. Tentative results seem to give substantially di�erent

output depending on the input order of the variables, suggesting hidden common causes.

16.13.6 Conclusion

Constraint based algorithms o�er a fast approach, which is convenient with data matrices when d, the

number of variables, is very large. They can be many times faster than search and score algorithms.

Unfortunately, these algorithms tend to assume `faithfulness' and work on the principle of removing an

edge whenever a conditional independence test gives the result `do not reject X ⊥ Y ∣S'. This leads to
several di�culties. Firstly, since tests with larger conditioning sets are weaker, it can lead to situations

where deletion of an edge can contradict earlier d-connection statements. This di�culty is present even

if there is a faithful DAG corresponding to the independence structure. Secondly, two-factor, or higher

order interactions are not detected if there are no `main e�ects'. Thirdly, hidden variables can lead to

contradictory edges, resulting in d-separation statements not present in the probability distribution. If

there is no faithful DAG that describes the underlying independence structure, this can manifest itself

in other ways.

Modi�cations to remove the �rst of these di�culties have been considered, for example by Bromberg

and Margaritis [9] using argumentation and the more conservative approach of Barros [4] retaining all

dependence statements that have been established through rejecting independence.

The second and third of these di�culties have not been fully addressed by constraint based algo-

rithms.



346 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

16.13.7 The `Causal Discovery' Controversy

The discussion about structure learning has described various methods to locate structures that rep-

resent the independence relations within a data set. All these methods, search and score, constraint

based, hybrid, yield results that fall under the heading of descriptive statistics. The search and score

methods simply examine some of the available structures and choose the structure with the highest

score of those examined. On the `classical' side, there is no measure of con�dence for the structure

chosen; on the `Bayesian' side, even if a prior distribution is placed over the structure space and the

posterior used as the basis of a score function, there is no posterior assessment of the probability for

the structure to lie in a certain subspace of the set of possible structures; only a small number of

structures are visited and the structure chosen is the one visited that gives the largest score. With

constraint based methods, even if the hypothesis that the data matrix represents n instantiations of

i.i.d. random vectors held, the number of tests is so large that even with a small nominal signi�cance

level for each test, the overall signi�cance level approaches 1.

The output structure can give useful information at the level of descriptive statistics, but little or

no formal inference can be made. This is generally the case in multivariate statistics, where methods

are often more successful as descriptive than inferential tools.

Assume, though, that statistical associations have been established. Substantial parts of the litera-

ture suggest claims that a rigorous engine for inferring causation from association has been established.

For example, Spirtes, Glymour and Scheines (1993) [126] claim to have algorithms for discovering causal

relations based only on empirical data. The underlying assumption seems to be that, for a large class

of problems, when immoralities are learned from data and Meek's rules then applied, cause to e�ect

can be inferred for the directed edges of the essential graph. Schmidt, Niculesu-Mizil and Murphy

(2007) [123] write, explaining why they are constructing techniques to produce directed graphs,

`... undirected models cannot be used to model causality in the sense of Pearl [109], which is

useful in many domains such as molecular biology, where interventions can be performed.'

The thrust of the quote is that directed edges whose direction can be interpreted as cause to e�ect,

can be learned from data. But placing a causal interpretation on a directed arrow in a graph that has

been learned purely by applying a structure learning algorithm to data can be misleading.

In a situation where interventions can be performed, a causal directed graph can be obtained

from the undirected graph through further controlled experiments. Consider the situation on three

variables (X,Y,Z) where X ⊥ Z ∣Y , but X /⊥ Y , X /⊥ Z, Y /⊥ Z, Y /⊥X ∣Z and Y /⊥ Z ∣X. There are three

DAGs along which the distribution pX,Y,Z may be factorised, given in Figure 16.14. Suppose that an

intervention may be carried out on the variable Y , forcing its state. This has the e�ect of removing

arrows from parents of Y to Y . If the state Y ← y is forced, this gives the graphs in Figure 16.15.

If all the states of Y can be explored, in a controlled experiment, by randomly assigning levels of

the `treatment' variable Y , the causal structure can be determined from the Markov structure, but not

otherwise.

Markowetz and Spang [91] discuss the application of intervention calculus for perturbation experi-

ments that are inferring gene function and regulatory pathways.



16.13. STRUCTURE LEARNING AND FAITHFULNESS: AN EVALUATION 347

Y

~~   

Y

��

X Z X

>>

Z

Y

~~

X Z

``

Figure 16.14: Three Markov equivalent DAGs

Y = y

|| ""

Y = y

""

X Z X Z

Y = y

||

X Z

Figure 16.15: Intervention Y ← y in Figure 16.14

As Freedman and Humphreys point out (1999) [43], commenting on automated causal learning,

`these claims are premature at best and the examples used in [126] to illustrate the algorithms are

indicative of failure rather than success.' They point out that `the gap between association and

causation has yet to be bridged.'

16.13.8 Faithfulness and the great leap of faith

One of the leading assumptions behind `causal discovery' is the assumption that distributions of interest

satisfy the faithfulness assumption, that there is a DAG G with variable set V = (U,O) where U denotes

the unobserved variables and O the observed variables and a probability distribution P over (U,O)
such that P factorises along G and G gives a faithful graphical representation of the independence

structure.

This is described as follows;



348 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

Y1 //

~~

X3

X2 Y2

``

~~

Y3

``

// X1

Figure 16.16: DAG for the natural factorisation; it is not faithful

` .... the faithfulness condition can be thought of as the assumption that conditional

independence relations are due to causal structure rather than to accidents of parameter

values.' Spirtes et. al. (2000) [127]

Example 2.7 gives an instance of a situation where the probability distribution does not have faithful

graphical representation. For the variables (Y1, Y2, Y3,X1,X2,X3), the DAG that best represents the

associations between the variables is given by Figure 16.16. In this graph, X1 = 1 if Y2 = Y3 and 0

otherwise. X1 ⊥ Y2 and X1 ⊥ Y3, but X1 /⊥ {Y2, Y3}. In this situation the in�uence of Y2 and Y3 on X1

is not seen if the variables are considered separately, but the interaction e�ect is decisive.

Another statement of the same principle is found in Meek (1995) [93]

In cases where P(G) (the set of distributions that factorise along a graph G) can be

parametrised by a family of distributions with a parameter of �nite dimensions, the set of

unfaithful distributions typically has Lebesgue measure zero. (Spirtes et. al. (2000) [127]

pp 42 - 2)

This assumption, that the set of observable variables O may be extended to a set V = (U,O) where
U represents unobserved common causes, or confounders, and that there will exist a DAG over V

that is faithful to the probability distribution over V , is re-stated in Robins, Scheines, Spirtes and

Wasserman (2003) [117]. There is strong interest in classes of faithful distributions in the literature;

the work of Zhang and Spirtes [151] requires that the class of distributions under consideration satisfy

a stronger assumption than faithfulness in order to obtain uniform consistency in causal inference for a

certain class of problems; [117] illustrates non-existence of uniform consistency when only faithfulness is

assumed, because of the possibility of non-faithful distributions in the closure of the set of distributions

under consideration.

Consider again Example 2.7 and suppose that O = (X1,X2,X3), the values for (X1,X2,X3) are
observable and U = (Y1, Y2, Y3), the results of (Y1, Y2, Y3) are hidden. Clearly, the set of distributions
over 6 binary variables that factorises over the DAG in Figure 16.16 can be described by a �nite

parameter space; 15 parameters are required to describe the entire set of distributions; the param-

eter space is [0,1]15. Furthermore, it is clear that the parameters to describe the distribution over

(Y1, Y2, Y3,X1,X2,X3) in Example 2.7 correspond to exactly one point in the parameter space, which



16.13. STRUCTURE LEARNING AND FAITHFULNESS: AN EVALUATION 349

has Lebesgue measure zero. Nevertheless, examples where knowledge of two causes is required to ex-

plain the e�ect and where knowledge only of a single cause tells you nothing about an e�ect arise all

the time in practise, in the real world.

Furthermore, the parametrisation of any distribution that has an independence structure has

Lebesgue measure zero in the parameter space of all distributions over the variables in question.

Meek's argument can equally well be used to argue against searching for any independence structure

at all.

Faithfulness appears a convenient hypothesis to produce beautiful mathematics (and the relation

between DAGs and probability distributions under this assumption has produced a very elegant and

attractive mathematical theory), but it is di�cult to see that it necessarily applies to real world

situations; the real world does not respect the fact that the set of parameters that describe the situation

have Lebesgue measure zero in a mathematical parameter space. Divergence between `real world'

behaviour and the assumption that it should �t into a convenient mathematical framework has been

termed `The Mind Projection Fallacy' by E.T. Jaynes (2003) [70].

16.13.9 Inferring non-causation and causation

Robins, Scheines, Spirtes and Wasserman (2003) [117] describe situations where non-causation can be

inferred. A situation where such an inference can be made is given by Figure 16.12 representing the

causal associations between variables, where H is hidden and X,Y,W are observable. In this example,

X is not a cause of Y , neither is Y a cause of X. This can be inferred from the CI tests; from the

results X ⊥ Z ∣W and Y ⊥W ∣Z, it is possible to infer that the relation between X and Y is not cause

to e�ect in either direction and that a common cause H would explain the test results.

The discovery of an immorality, though, does not necessarily imply causation. Suppose H1 and

H2 are hidden and X,Z,Y are observable in Figure 16.17. The distribution over (X,Z,Y ) factorises
according to Figure 16.18.

H1

~~   

H2

~~   

X Z Y

Figure 16.17: H1 and H2 hidden

If one were using immoralities as a guide to causation, one would conclude that X and Y were common

causes of Z. As Freedman and Humphreys point out in [43], commenting on Spirtes Glymour Scheines

(1993) [126] on a DAG produced from a sociological data set,

The graph says, for instance, that race and religion cause region of residence.

In the context, this is non-sensical and raises a timely note of caution when inferring causality.



350 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

X

  

Y

��

Z

Figure 16.18: DAG for (X,Y,Z) from Figure 16.17

16.13.10 Summarising causal discovery

Freedman and Humphreys go on to summarise the attempts to automate `causal discovery' with the

example of smoking and lung cancer,

The epidemiologists discovered an important truth - smoking is bad for you. The epi-

demiologists made this discovery by looking at the data and using their brains, two skills

that are not readily automated. .... The examples in SGS (1993) [126] count against the

automation principle, not for it.'

The conclusion drawn by the authors of this article is that the output produced by structure learning

algorithms provides invaluable information. It can give good information about associations and can

certainly point towards the possibility of causal relations, but they do not even begin to automate the

process of learning causality; it is still necessary for researchers to use their brains to design experiments,

examine the data and use their brains again, taking into account circumstances and contexts additional

to the raw data, to reach conclusions. As the example from SGS (1993) [126], extended by Freedman

and Humphreys [43] shows, causation cannot be deduced from the presence of an immorality and,

indeed, cannot be inferred from the output of structure learning algorithms alone.

Notes The PC algorithm was introduced by Spirtes et. al. [126](1993), while the MMPC was in-

troduced by Tsamardinos et. al. [137](2006). The FAS algorithm is discussed in Fast [41]. Recursive

Autonomy Identi�cation is due to Yehezkel and Lerner [150](2009).



16.14 Exercises

1. This problem is motivated by the following consideration: when searching for a graph with a

suitable structure to �t a given data set with reasonable accuracy, Markov chain Monte Carlo

techniques are often used. These algorithms are computationally more e�cient if they change

as few edges as possible at each transition, while ensuring that the chain can move through the

entire space of graphs. It is also more e�cient to search the space of essential graphs, to ensure

that the chain does not spend time moving between graphs that are Markov equivalent.

This exercise shows that even in a simple setting, it is necessary to change at least two edges per

move to ensure that the algorithm can move from the current essential graph a di�erent essential

graph.

(a) Consider a collider connection A→ B ← C. Is this an essential graph?

(b) List all the essential graphs on three variables.

(c) List all the graphs that may be obtained by altering one edge of the graph A → B ← C,

through either adding or removing a directed edge or an undirected edge, or from directing

an undirected edge, or from `un-directing' a directed edge, or reversing the direction of a

directed edge. Which of these graphs are essential graphs?

2. Let Y1, Y2, Y3 be three independent identically distributed variables with probability function

P(1) = P(0) = 1
2 . Let

X1 =
⎧⎪⎪⎨⎪⎪⎩

1 Y2 = Y3
0 otherwise

X2 =
⎧⎪⎪⎨⎪⎪⎩

1 Y1 = Y3
0 otherwise

X3 =
⎧⎪⎪⎨⎪⎪⎩

1 Y1 = Y2
0 otherwise

(a) Let V = {X1,X2,X3}. Construct an undirected graph by adding an edge between two nodes

α and β if and only if α /⊥ β∣S for any subset S ⊆ V /{α,β}.
(b) Construct the independence graph.

(c) What happens if V = {Y1, Y2, Y3,X1,X2,X3}?

3. Consider the second structure in Figure 16.19.

(a) Is it a chain graph?

(b) Is it an essential graph? If not, why not?

(c) If it is a chain graph, what are the chain components? Are they triangulated?

(d) Do there exists any substructures on three variables from the graph on the right of the form

of the graph on the left?

351



γ

��
γ

��

β α β

α δ

@@

Figure 16.19: Figure for Exercise 3

The following two exercises are taken from Chickering [24].

4. For any DAG G = (V,D), an edge (X,Y ) ∈ D is said to be covered in G if PaX = PaY /{X}. Let
G1 = (V,D1) be a DAG and let G2 = (V,D2) be obtained by reversing the edge (X,Y ) ∈ D1.

Prove that G2 is Markov equivalent to G1 if and only if (X,Y ) is covered in G1.

5. Let G1 and G2 be two Markov equivalent DAGs and suppose that there are exactly m edges in G1
with the opposite orientation in G2. Using Exercise 4, prove that there is a sequence of exactly

m distinct edge reversals in G1 with the following properties:

� Each edge reversed is covered when it is reversed.

� After each reversal, the resulting graph H is Markov equivalent to G2.

� After all reversals, H = G2.

6. Let G = (V,D) be a directed acyclic graph. Prove that Gm, the moral graph, contains an

undirected edges ⟨X,Y ⟩ if and only if X /á Y ∥GV /{X,Y } (X and Y are not d-separated by

V /{X,Y }).

7. Recall the Recursive Autonomy Identi�cation algorithm, Subsection 16.7 page 321.

(a) In the description of stage 0, where an edge between X and Y is removed if and only if

X ⊥ Y , assume that the resulting skeleton is correct. Why is (X,Z,Y ) an immorality if

there are edges X − Y and Y −Z but no edge X − Y ?

(b) Assume that the graph in Figure 16.20 is a faithful graph for PX1,X2,X3,X4 . Assume that

the data set is su�ciently large so that each test for independence gives the correct result.

Outline how the algorithm proceeds, sketching the graphs returned at each stage of the

algorithm, stating the reasons for deleting edges and directing edges.

(c) Assume that the graph in Figure 16.21 is a faithful graph for PX1,X2,X3,X4 and that each

independence test gives the correct result. Outline how the algorithm proceeds.

352



X1

!!

X2

}}

X3

��

X4

Figure 16.20: Directed acyclic graph for algorithm, example 1

X2

!!

X1

==

!!

X4

X3

==

Figure 16.21: Directed acyclic graph for algorithm, example 2

(d) Assume that the graph in Figure 2.3 is faithful to the distribution PU1,Z1,Z2,Z3,Z4 and

that variable U1 is hidden. What is the output of the RAI algorithm if the input is

(Z1, Z2, Z3, Z4)? What is the output of the RAI algorithm if the input order is (Z4, Z3, Z2, Z1)?

353



16.15 Answers

1. (a) Yes: A→ B ← C is an essential graph.

(b) Recall that the essential graph is the graph where directions are retained on and only on

those edges that retain the same direction in every graph in the Markov equivalence class.

Hence A−B ← C is not an essential graph since A→ B ← C and A← B ← C are not Markov

equivalent; if B ← C is present and (A,B,C) is not an immorality, this forces A← B.

With this in mind, the essential graphs are:

The three graphs A → B ← C, B → A ← C, A → C ← B, the three graphs with one

(undirected) edge between two of the nodes and the third node unconnected, the graph with

no edges between any of the nodes, the three graphs with two undirected edges A −B −C,
A −C −B, C −A −B. The graph with three undirected edges between A, B and C.

(c) A,B ← C; A −B ← C; A ← B ← C; A → B,C; A → B −C; A → B → C. None of them are

essential graphs.

2. (a) The graph contains no edges; since X1 ⊥X2, X1 ⊥X3 and X2 ⊥X3.

(b) The graph is complete; X1 /⊥X2∣X3, X1 /⊥X3∣X2 and X2 /⊥X3∣X1.

(c) Again, the graph constructed according to the `faithfulness' principle (no edge X ∼ Y
whenever X ⊥ Y ∣S for some S) is empty since Y1 ⊥ X1, Y1 ⊥ X2, X1 ⊥ X2. Taking S = ϕ
(the empty set) in each case, any pair of variables is independent.

3. (a) Yes; it is a chain graph.

(b) No; the edge α − β appears in a compelled con�guration and should be directed α ↦ β.

(c) There is one chain component, which contains all the nodes {α,β, γ, δ}, with the edges

γ ↦ β and δ ↦ β removed. It is a tree and it is clearly triangulated, because it contains no

cycles.

(d) No; {γ,α, δ} has two undirected edges, {γ, β, δ} forms an immorality centred at β, {α, δ, β}
has three edges and {α, γ, δ} has three edges.

This shows that to show that a chain graph is an essential graph, it is not su�cient simply

to show that the chain components are triangulated and that the substructure on the left in

Figure 16.19 does not appear.

4. When edge (X,Y ) is reversed in a DAG G1 to form a new graph G2, the two graphs are Markov

equivalent if and only if it has the same skeleton, and the same immoralities and there are no

cycles in G2.

When (X,Y ) is removed and (Y,X) is added, there are no new immoralities if and only if for

each Z ∈ Pa(X), there is link between Y and Z. The link is (Z,Y ), otherwise there is a cycle in

G1. Therefore Pa(X) ⊆ Pa(Y ) in G1.

No immoralities are removed and no cycles are introduced if and only if for any Z ∈ Pa(Y )/{X},
Z ∈ Pa(X), so Pa(Y )/{X} ⊆ Pa(X). It follows that Pa(X) = Pa(Y )/{X}.

354



5. Assume that none of the m edges are covered. Then using the previous exercise, for each

edge (X,Y ) to be altered, either there is a node Z ∈ Pa(Y )/Pa(X) or there is a node Z ∈
Pa(X)/Pa(Y ). If there is a node Z ∈ Pa(Y )/Pa(X) then (X,Y,Z) is an immorality, so that the

direction X → Y remains the same in any Markov equivalent graph. It follows that for each of

the m edges (X,Y ), there is a variable Z ∈ Pa(X)/Pa(Y ). If the direction of the edge (Z,X)
is not also reversed, then (Z,X,Y ) is an immorality in the new graph, which is a contradiction.

It follows that there is at least one covered edge among the m edges. Change the orientation of

this edge. After the change, there is a covered edge among the remaining m−1 and by induction

the target graph is obtained after m changes.

6. Firstly, note that the moral graph contains an edge X −Y if and only if Y ∈MB(X), the Markov

blanket of X. MB(X) is the set X, together with Pa(X) (the parents of X) and Ch(X) (the
children of X) and all parents that share a child with X. That is, X together with all neighbours

of X and those variables that are linked to X when the graph is moralised.

Note that

X ⊥ V /MB(X)∥GMB(X)

so that, using the weak union result of Exercise 2 page 22, if Y /∈MB(X),

X ⊥ Y ∥GV /{X,Y }.

If Y ∈MB(X), then the moral graph contains an edge X − Y and X /⊥ Y ∥GV /{X,Y }.

7. (a) If X −Z − Y is a fork or chain connection, X /⊥ Y so that X − Y would not be removed. It

follows that if the vee structure X −Z − Y remains in the �nal graph, it is an immorality.

(b) Stage 1: add all edges, all are undirected.

Stage 2: X1 ⊥ X2 so remove X1 −X2. No other edges removed. X1 −X3 −X2 is a collider,

X1 −X4 −X2 is a collider. No additional compelled edges.

The chain components are: {X1}, {X2} and {X3,X4}.
Stage 3: Consider chain component {X3,X4} together with chain components containing

parents. X1 ⊥ X4∣X3, X2 ⊥ X4∣X3 so remove X1 − X4 and X2 − X4. Now X3 → X4 is

compelled.

There are now no parent sets of size greater than 1 hence the algorithm terminates.

(c) Stage 1: add all edges to make the complete undirected graph.

Stage 2: test X ⊥ Y ∣ϕ; no edges removed, none of the variables are (pairwise) independent.

There is therefore only one chain component after this stage; the complete graph. Stage

3: test X ⊥ Y ∣Z for each triple (12 tests). The only independence result is X2 ⊥ X3∣X1,

therefore edge ⟨X2,X3⟩ is removed. The triple (X2,X4,X3) is an immorality. The triple

(X2,X1,X3) is not an immorality. By Meek's rules, the edge ⟨X1,X4⟩ is compelledX1 →X4.

Stage 4: the chain components are the subgraph with {X2,X1,X4} and the subgraph {X4}.
Start with {X4}, this is connected to {X2,X1,X4}. At this stage, X1 ⊥X4∣{X2,X3} so that

355



356 CHAPTER 16. CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHMS

the edge X1 →X4 is removed. The algorithm now terminates, returning the essential graph

with undirected edges ⟨X1,X2⟩ and ⟨X1,X3⟩ and directed edges ⟨X2,X4⟩ and ⟨X3,X4⟩.



Chapter 17

Bayesian Networks in R: Structure and

Parameter Learning

17.1 Bayesian Networks with bnlearn

This tutorial is based predominantly on the bnlearn package, a package by Marco Scutari. It supports

a wide variety of structure learning algorithms. These are found in the documentation. They are:

Constraint Based Algorithms

1. Grow-Shrink gs: based on the Grow-Shrink Markov Blanket, the �rst (and simplest) Markov

blanket detection algorithm used in a structure learning algorithm.

2. Incremental Association iamb: based on the Markov blanket detection algorithm of the same

name, which is based on a two-phase selection scheme (a forward selection followed by an attempt

to remove false positives).

3. Fast Incremental Association fast.iamb: a variant of IAMB which uses speculative stepwise

forward selection to reduce the number of conditional independence tests.

4. Interleaved Incremental Association inter.iamb: another variant of IAMB which uses

forward stepwise selection to avoid false positives in the Markov blanket detection phase.

Search and Score Learning Algorithms

1. Hill-Climbing hc: a hill climbing greedy search on the space of the directed graphs. The

optimised implementation uses score caching, score decomposability and score equivalence to

reduce the number of duplicated tests.

2. Tabu Search tabu: a modi�ed hill climbing able to escape local optima by selecting a network

that minimally decreases the score function.

357



358CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

Hybrid Learning Algorithms

1. Max-Min Hill-Climbing mmhc: a hybrid algorithm which combines the Max-Min Parents and

Children algorithm (to restrict the search space) and the Hill-Climbing algorithm (to �nd the

optimal network structure in the restricted space).

2. Restricted Maximization rsmax2: a more general implementation of the Max-Min Hill-

Climbing, which can use any combination of constraint-based and score-based algorithms.

Other (Constraint-Based) Learning Algorithms

These algorithms learn the structure of the undirected graph underlying the Bayesian network, which

is known as the skeleton of the network or the (partial) correlation graph. Therefore all the arcs are

undirected, and no attempt is made to detect their orientation. They are often used in hybrid learning

algorithms.

1. Max-Min Parents and Children mmpc: a forward selection technique for neighbourhood

detection based on the maximization of the minimum association measure observed with any

subset of the nodes selected in the previous iterations.

2. Hiton Parents and Children si.hiton.pc: a fast forward selection technique for neigh-

bourhood detection designed to exclude nodes early based on the marginal association. The

implementation follows the Semi-Interleaved variant of the algorithm.

3. Chow-Liu chow.liu: an application of the minimum-weight spanning tree and the information

inequality. It learn the tree structure closest to the true one in the probability space.

4. ARACNE aracne: an improved version of the Chow-Liu algorithm that is able to learn poly-

trees.

17.1.1 Creating and Manipulating Network Structures

The following illustrates how to create objects of class bn. We consider the marks data set, which

gives the exam scores of 88 students across �ve di�erent topics: mechanics, vectors, algebra, analysis

and statistics. The original data set was investigated by Mardia et. al. (1979) [90] and subsequently

became a bench mark for structure learning (e.g. Whittaker (1990) [144]. It is a data set within the

bnlearn package under the name marks.

> library(bnlearn)

> data(marks)

> str(marks)

'data.frame': 88 obs. of 5 variables:

$ MECH: num 77 63 75 55 63 53 51 59 62 64 ...

$ VECT: num 82 78 73 72 63 61 67 70 60 72 ...



17.1. BAYESIAN NETWORKS WITH BNLEARN 359

$ ALG : num 67 80 71 63 65 72 65 68 58 60 ...

$ ANL : num 67 70 66 70 70 64 65 62 62 62 ...

$ STAT: num 81 81 81 68 63 73 68 56 70 45 ...

First create an empty network with the nodes corresponding to the variables using the empty.graph

function:

> ug<-empty.graph(names(marks))

The arcs presented in Whittaker (1990) from Figure 17.1 may be added as follows:

> arcs(ug,ignore.cycles=TRUE)=matrix(

+ c("MECH","VECT","MECH","ALG","VECT","MECH",

+ "VECT","ALG","ALG","MECH","ALG","VECT",

+ "ALG","ANL","ALG","STAT","ANL","ALG",

+ "ANL","STAT","STAT","ALG","STAT","ANL"),

+ ncol=2, byrow = TRUE,

+ dimnames=list(c(),c("from","to")))

> plot(ug)

MECH

VECT ALG

ANL

STAT

Figure 17.1: Marks network: undirected graph

The resuting ug object belongs to graph bn. There are several arguments: ug$learning, ug$nodes,

ug$arcs.

learning is not useful in this example, since this argument gives information about the results of

the structure learning algorithm used to generate the network and its tuning parameters (which were

not used here).

$nodes gives information about the Markov blanket of each node, while $arcs gives the arcs

presented in the network.



360CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

> ug

Random/Generated Bayesian network

model:

[undirected graph]

nodes: 5

arcs: 6

undirected arcs: 6

directed arcs: 0

average markov blanket size: 2.40

average neighbourhood size: 2.40

average branching factor: 0.00

generation algorithm: Empty

> dag = empty.graph(names(marks))

> arcs(dag)=matrix(c("VECT","MECH","ALG","MECH","ALG","VECT",

+ "ANL","ALG","STAT","ALG","STAT","ANL"),

+ ncol=2,byrow=TRUE,

+ dimnames=list(c(),c("from","to")))

> dag

Random/Generated Bayesian network

model:

[STAT][ANL|STAT][ALG|ANL:STAT][VECT|ALG][MECH|VECT:ALG]

nodes: 5

arcs: 6

undirected arcs: 0

directed arcs: 6

average markov blanket size: 2.40

average neighbourhood size: 2.40

average branching factor: 1.20

generation algorithm: Empty

A dag can be speci�ed by its adjacency matrix. The function all.equal() indicates whether two

graphs are equal.

> mat=matrix(c(0,1,1,0,0,0,0,1,0,0,0,0,



17.1. BAYESIAN NETWORKS WITH BNLEARN 361

+ 0,1,1,0,0,0,0,1,0,0,0,0,0),

+ nrow=5,

+ dimnames=list(nodes(dag),nodes(dag)))

> mat

MECH VECT ALG ANL STAT

MECH 0 0 0 0 0

VECT 1 0 0 0 0

ALG 1 1 0 0 0

ANL 0 0 1 0 0

STAT 0 0 1 1 0

> dag2=empty.graph(nodes(dag))

> amat(dag2)=mat

> all.equal(dag,dag2)

[1] TRUE

A new bn object may be created by adding (set.arc), dropping (drop.arc) or reversing rev.arc)

arcs from the original. For example:

> dag3 = empty.graph(nodes(dag))

> dag3 = set.arc(dag3,"VECT","MECH")

> dag3 = set.arc(dag3,"ALG","MECH")

A topological ordering of the nodes (from ancestors to descendants) may be obtained by the func-

tion node.ordering(). The neighbours and Markov blanket may be found using nbr() and mb()

respectively. The %in% command may be used to establish membership.

> node.ordering(dag)

[1] "STAT" "ANL" "ALG" "VECT" "MECH"

> nbr(dag,"ANL")

[1] "ALG" "STAT"

> mb(dag,"ANL")

[1] "ALG" "STAT"

> "ANL" %in% mb(dag,"ALG")

[1] TRUE

We can check that the Markov blanket of a variable consists of parents, children and children of parents:

> chld=children(dag,"VECT")

> par=parents(dag,"VECT")

> o.par=sapply(chld,parents,x=dag)

> unique(c(chld,par,o.par[o.par != "VECT"]))

[1] "MECH" "ALG"

> mb(dag,"VECT")

[1] "MECH" "ALG"



362CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

17.1.2 Visualising Graphical Models

The structures from bnlearn may be plotted using functions provided by graph and Rgraphviz

packages (Gentry et. al. [52](2012)). The graphviz.plot function takes a bn object and returns the

corresponding graph object.

In bnlearn, vee-structure refers to a collider connection.

> library(Rgraphviz)

Loading required package: grid

> h = list(arcs=vstructs(dag2,arcs=TRUE),lwd=4,col="black")

> graphviz.plot(dag2,highlight=h,layout="fdp",main="dag2")

The output is shown in Figure 17.2.

dag2

MECH

VECT

ALG

ANL STAT

Figure 17.2: Plot obtained using graphviz.plot

The essential graph, showing the Markov equivalence class is returned by cpdag.The function moral

returns the moral graph.

> plot(cpdag(dag2))

for example gives a plot of the essential graph corresponding to dag2.

17.1.3 Structure Learning

In bnlearn, the Maximum Minimum Parents Children (MMPC) algorithm is referred to as the grow-

shrink algorithm. The name is natural following the procedure; �rst the maximum parents / children

set for each node is established and then unnecessary nodes are removed. This algorithm is implemented

simply by the function gs.

> bn.gs <- gs(marks)

> bn.gs



17.1. BAYESIAN NETWORKS WITH BNLEARN 363

Bayesian network learned via Constraint-based methods

model:

[undirected graph]

nodes: 5

arcs: 6

undirected arcs: 6

directed arcs: 0

average markov blanket size: 2.40

average neighbourhood size: 2.40

average branching factor: 0.00

learning algorithm: Grow-Shrink

conditional independence test: Pearson's Correlation

alpha threshold: 0.05

tests used in the learning procedure: 44

optimized: TRUE

The parameter value α = 0.05 is the nominal signi�cance level for each χ2 test for independence.

The mmhc algorithm learns a di�erent network, but it is Markov equivalent to the network learned by

the gs algorithm and has the same BIC score.

These structure learning algorithms often only direct an edge when a particular direction gives a

better �t, leaving other edges undirected. The function cextend() gets one graph out of the Markov

equivalence class, which may be used for scoring purposes. The BIC score for the learned graph may

be obtained as follows. The documentation lists other scoring criteria that are available (such as AIC).

> bn.gsdirect <- cextend(bn.gs)

> bn.gsdirect

Bayesian network learned via Constraint-based methods

model:

[STAT][ANL|STAT][ALG|ANL:STAT][VECT|ALG][MECH|VECT:ALG]

nodes: 5

arcs: 6

undirected arcs: 0

directed arcs: 6

average markov blanket size: 2.40

average neighbourhood size: 2.40



364CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

average branching factor: 1.20

learning algorithm: Grow-Shrink

conditional independence test: Pearson's Correlation

alpha threshold: 0.05

tests used in the learning procedure: 44

optimized: TRUE

> score(bn.gsdirect, data=marks, type="bic-g")

[1] -1720.15

17.1.4 Parameter Learning

Having established the network, the next task is to learn the parameters. With bnlearn, this is

performed by the bn.fit function.

> fitted = bn.fit(bn.gsdirect, data=marks)

> fitted

Bayesian network parameters

Parameters of node MECH (Gaussian distribution)

Conditional density: MECH | VECT + ALG

Coefficients:

(Intercept) VECT ALG

-12.3647583 0.4658693 0.5484053

Standard deviation of the residuals: 13.97432

Parameters of node VECT (Gaussian distribution)

Conditional density: VECT | ALG

Coefficients:

(Intercept) ALG

12.4183094 0.7543653

Standard deviation of the residuals: 10.48167

Parameters of node ALG (Gaussian distribution)

Conditional density: ALG | ANL + STAT

Coefficients:



17.1. BAYESIAN NETWORKS WITH BNLEARN 365

(Intercept) ANL STAT

24.7254768 0.3482454 0.2273881

Standard deviation of the residuals: 6.871428

Parameters of node ANL (Gaussian distribution)

Conditional density: ANL | STAT

Coefficients:

(Intercept) STAT

24.5824229 0.5223601

Standard deviation of the residuals: 11.86392

Parameters of node STAT (Gaussian distribution)

Conditional density: STAT

Coefficients:

(Intercept)

42.30682

Standard deviation of the residuals: 17.25559

The type of estimator (maximum likelihood or Bayes) can be speci�ed by either mle (maximum like-

lihood estimates) or Bayes the posterior Bayesian estimate arising from a �at, non-informative prior.

Only mle is available with continuous (Gaussian) data; the Bayes considers Dirichlet densities over the

parameter space.

The parameters of a �tted network can easily be replaced. For example, ALG has two parents, ANL and

STAT. For the Gaussian network, the restriction is that the standard deviation for the residuals at each

node is the same. We consider

ALG = β0 + ANLβ1 + STATβ2 + ϵ

where ϵ ∼ N(0, σ2), independent identically distributed. This is carried out by:

> fitted$ALG = list(coef=c("(Intercept)"=25, "ANL"=0.5, "STAT"=0.25),sd=6.5)

> fitted$ALG

Parameters of node ALG (Gaussian distribution)

Conditional density: ALG | ANL + STAT

Coefficients:

(Intercept) ANL STAT

25.00 0.50 0.25

Standard deviation of the residuals: 6.5



366CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

A bn.fit object can be created from scratch using the custom.fit function. For example:

> MECH.par = list(coef=c("(Intercept)"=-10, "VECT"=0.5, "ALG"=0.6),sd = 13)

> VECT.par = list(coef=c("(Intercept)"=10, "ALG"=1),sd=10)

> ALG.par=list(coef=c("(Intercept)"=25,"ANL"=0.5,"STAT"=0.25),sd=6.5)

> ANL.par=list(coef=c("(Intercept)"=25,"STAT"=0.5),sd=12)

> STAT.par=list(coef=c("(Intercept)"=43),sd=17)

> dist=list(MECH=MECH.par,VECT=VECT.par,ALG=ALG.par,ANL=ANL.par,STAT=STAT.par)

> fitted2 = custom.fit(bn.gsdirect,dist=dist)

17.1.5 Discretisation

The only continuous models that can be accommodated are Gaussian. When the data is manifestly not

Gaussian, it is better to discretise it and to construct a Bayesian network over multinomial variables.

There are several methods of discretisation available; look up the documentation for discretize. For

example:

> ?discretize

> dmarks = discretize(marks, breaks=2, method="quantile")

> bn.dgs=gs(dmarks)

> plot(bn.dgs)

> all.equal(cpdag(bn.dgs),cpdag(bn.gsdirect))

[1] "Different number of directed/undirected arcs"

The network learned from the discretised data is di�erent; MECH is independent of the other variables.

The parameters may be �tted to the structure using the discretised data:

> fitted3=bn.fit(cextend(bn.dgs),data=dmarks)

> fitted3$ALG

Parameters of node ALG (multinomial distribution)

Conditional probability table:

ANL

ALG [9,49] (49,70]

[15,50] 0.7777778 0.2558140

(50,80] 0.2222222 0.7441860

17.1.6 Latent Variables

Probability distributions often fail to have a faithful graphical representation because there are latent

(or hidden) variables missing from the model.



17.1. BAYESIAN NETWORKS WITH BNLEARN 367

For the marks data, Edwards (2000) [40] assumed that the students fell into two distinct groups

(which we call A and B). He then used a classi�cation technique involving the EM algorithm to assign

the students to two di�erenc classes. The results were as follows: group A contained students 1-44

and 46-52 while group B contained students 45 and 53 - 88. We add in this latent variable and we

construct a network for group A and another network for group B. We then discretize the variables

and learn the network when the latent variable is included. The results are:

> latent=factor(c(rep("A",44),"B",rep("A",7),rep("B",36)))

> bn.A = hc(marks[latent=="A",])

> bn.B = hc(marks[latent=="B",])

> modelstring(bn.A)

[1] "[MECH][ALG|MECH][VECT|ALG][ANL|ALG][STAT|ALG:ANL]"

> modelstring(bn.B)

[1] "[MECH][ALG][ANL][STAT][VECT|MECH]"

> dmarks=discretize(marks,breaks=2,method="interval")

> dmarks2=cbind(dmarks,LAT=latent)

> bn.LAT=hc(dmarks2)

> bn.LAT

Bayesian network learned via Score-based methods

model:

[MECH][ANL][LAT|MECH:ANL][VECT|LAT][ALG|LAT][STAT|LAT]

nodes: 6

arcs: 5

undirected arcs: 0

directed arcs: 5

average markov blanket size: 2.00

average neighbourhood size: 1.67

average branching factor: 0.83

learning algorithm: Hill-Climbing

score: BIC (disc.)

penalization coefficient: 2.238668

tests used in the learning procedure: 40

optimized: TRUE

Note that for the learned network, variable LAT has two parents; MECH and ANL. If MECH, VECT, ALG,

ANL, STAT were continuous, this distribution would therefore not fall into the CG framework.



368CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

17.1.7 Application to Gene Expression Data

The analysis for large arrays of gene expression data is dealt with in the following steps:

1. Outliers are removed. This is because, for continuous data, Bayesian Networks only supports

multivariate Gaussian distributions; outliers make the Gaussian modelling assumptions less likely

to hold.

2. Structure learning is repeated several times, so that there is more chance of �nding a global

maximiser for the score function.

3. The networks discovered in the previous step are averaged. This is a technique from Claskens

and Hjort (2008) [29]. The averaged network uses arcs present in (say) 85% of the networks.

We try this on the sachs.data.txt data set, found in the data directory of the course home page:

> library(bnlearn)

> sachs.data <- read.delim("~/data/sachs.data.txt")

> sachs<-sachs.data

> dsachs=discretize(sachs,method="hartemink",breaks=3,ibreaks=60,idisc="quantile")

Each variable in the dsachs data frame is a factor with three levels, corresponding approximately to

low, normal and high expression. Now apply bootstrap resampling to learn a set of 500 networks to

be used for model averaging:

> boot=boot.strength(data=dsachs,R=500,algorithm="hc",algorithm.args=list(score="bde",iss=10))

> boot[(boot$strength>0.85)&(boot$direction>=0.5),]

from to strength direction

1 praf pmek 1.000 0.5180000

23 plcg PIP2 1.000 0.5100000

24 plcg PIP3 1.000 0.5220000

34 PIP2 PIP3 1.000 0.5120000

56 p44.42 pakts473 1.000 0.5620000

57 p44.42 PKA 0.992 0.5665323

67 pakts473 PKA 1.000 0.5690000

89 PKC P38 1.000 0.5100000

90 PKC pjnk 1.000 0.5100000

100 P38 pjnk 0.954 0.5062893

The virtual sample size is 10, which is very low. Arcs are signi�cant if they appear in at least 85% of

the networks and in the direction that appears most frequently. The averaged network is formed quite

simply using the averaged.network function:

> avg.boot = averaged.network(boot,threshold=0.85)



17.1. BAYESIAN NETWORKS WITH BNLEARN 369

An alternative approach is to average the results of several hill climbing searches, each starting from

a di�erent network. The initial condition can be generated using a distribution over the space of con-

nected graphs. An algorithm to do this was proposed by Ide and Cozman [69](2002). It is implemented

by the function random.graph(). It is carried out as follows:

> library("bnlearn", lib.loc="~/R/x86_64-redhat-linux-gnu-library/3.1")

> nodes=names(dsachs)

> start=random.graph(nodes=nodes,method="ic-dag",num=500)

> netlist=lapply(start,function(net){

+ hc(dsachs,score="bde",iss=10,start=net)})

> rnd=custom.strength(netlist,nodes=nodes)

> rnd[(rnd$strength>0.85)&(rnd$direction>=0.5),]

from to strength direction

1 praf pmek 1 0.500

11 pmek praf 1 0.500

23 plcg PIP2 1 0.500

24 plcg PIP3 1 0.620

33 PIP2 plcg 1 0.500

34 PIP2 PIP3 1 0.620

56 p44.42 pakts473 1 0.500

57 p44.42 PKA 1 0.507

66 pakts473 p44.42 1 0.500

67 pakts473 PKA 1 0.507

89 PKC P38 1 0.500

90 PKC pjnk 1 0.500

99 P38 PKC 1 0.500

100 P38 pjnk 1 0.500

109 pjnk PKC 1 0.500

110 pjnk P38 1 0.500

> avg.start=averaged.network(rnd,threshold=0.85)

Warning messages:

1: In averaged.network.backend(strength = strength, nodes = nodes, :

arc pjnk -> PKC would introduce cycles in the graph, ignoring.

2: In averaged.network.backend(strength = strength, nodes = nodes, :

arc pjnk -> P38 would introduce cycles in the graph, ignoring.

> all.equal(cpdag(avg.boot),cpdag(avg.start))

[1] TRUE

The networks have the same skeleton, although some of the directions are di�erent.

The score is computed �rst by taking cpdag to get an essential graph and then by taking cextend

to form a dag.



370CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

> score(cextend(cpdag(avg.start)),dsachs,type="bde",iss=10)

[1] -8498.877

The bnlearn package contains a default level for the threshold, which is found in averaged.network

> averaged.network(boot)

Random/Generated Bayesian network

model:

[praf][plcg][p44.42][PKC][pmek|praf][PIP2|plcg][pakts473|p44.42][P38|PKC]

[pjnk|PKC][PIP3|plcg:PIP2][PKA|p44.42:pakts473]

nodes: 11

arcs: 9

undirected arcs: 0

directed arcs: 9

average markov blanket size: 1.64

average neighbourhood size: 1.64

average branching factor: 0.82

generation algorithm: Model Averaging

significance threshold: 0.954

The default threshold is computed as follows: Let

p̂(.) = {0 ≤ p̂(1) ≤ . . . ≤ p̂(k) ≤ 1}

denote the order statistics for the arc strengths stored in boot. Now, let t̂ denote a threshold and set

p̃(k)(t) =
⎧⎪⎪⎨⎪⎪⎩

1 p̂(k) ≥ t
0 p̂(k) < t.

.

This denotes the `empirical' probability function for arc strengths for the graph where arcs are present

if and only if p̂(k) ≥ t. Let p̃(.) denote the resulting vector.

Now choose t̂ to minimise

L1(t, p̂(.)) ∶= ∫ ∣Fp̂(.) − Fp̃(.) ∣dx

where Fp̂(.) and Fp̂(.) are the empirical distribution functions of p̂(.) and p̃(.) respectively. Then t̃, the

threshold is chosen to minimise this.



17.1. BAYESIAN NETWORKS WITH BNLEARN 371

17.1.8 Interventional Data

The data set in sachs.interventional.txt gives data from di�erent experiments, where the inter-

ventions to force the levels of certain variables, di�er from experiment to experiment.

> isachs <- read.table("~/data/sachs.interventional.txt",header=TRUE,colClasses="factor")

It is important that colClasses = �factor�.

One (less useful) way of dealing with the situation is to include the intervention INT in the network

and make all the variables depend on it. This is done using the whitelist command, which contains

all possible arcs from INT to the other nodes. These arcs are then forced to be present in the learned

network structure.

> wh = matrix(c(rep("INT",11),names(isachs)[1:11]),ncol=2)

> bn.wh = tabu(isachs,whitelist=wh,score="bde",iss=10,tabu=50)

The tabu learning algorithm gives more stable results here.

Not all the arcs in wh are necessary. The tiers2blacklist function may be used to blacklist all

arcs going towards INT, thus ensuring that only outgoing arcs are present.

> tiers=list("INT",names(isachs)[1:11])

> bl = tiers2blacklist(nodes=tiers)

> bn.tiers=tabu(isachs,blacklist=bl,score="bde",iss=10,tabu=50)

While the two methods given above, producing bn.wh and bn.tiers show how to force certain arrows

into a network, they do not involve the structure of the intervention.

The way to model an intervention is described as follows: the value of INT identi�es which node is

subject to an intervention. Therefore, we start by constructing a named list of which observations are

manipulated for each node.

> INT2=sapply(1:11,function(x){which(isachs$INT==x)})

> nodes=names(isachs)[1:11]

> names(INT2)=nodes

Now pass the list to tabu as an additional argument for mbde (the modi�ed BDe score function).

> start=random.graph(nodes=nodes,method="melancon",num=500,burn.in=10^5,every=100)

> netlist=lapply(start,function(net){

+ tabu(isachs[,1:11],score="mbde",exp=INT2,iss=10,start=net,tabu=50)})

> bn.mbde=averaged.network(arcs,threshold=0.85)

Warning messages:

1: In averaged.network.backend(strength = strength, nodes = nodes, :

arc pjnk -> PKA would introduce cycles in the graph, ignoring.



372CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

2: In averaged.network.backend(strength = strength, nodes = nodes, :

arc PKC -> PKA would introduce cycles in the graph, ignoring.

3: In averaged.network.backend(strength = strength, nodes = nodes, :

arc PKC -> P38 would introduce cycles in the graph, ignoring.

4: In averaged.network.backend(strength = strength, nodes = nodes, :

arc pjnk -> P38 would introduce cycles in the graph, ignoring.

> bn.mbde2 <- cextend(cpdag(bn.mbde))

> graphviz.plot(bn.mbde2)



17.2. EXERCISES 373

17.2 Exercises

1. This exercise uses the asia data set found in the bnlearn package.

(a) Create a bn object with the network structure shown in Figure 17.3.

asia

tub

smoke

lung

bronceither

xray dysp

Figure 17.3: Asia Network

(b) Derive the skeleton, the moral graph, and the essential graph representing the Markov

equivalence class. Plot them using graphviz.plot.

(c) Identify the parents, the children, the neighbours and the Markov blanket of each node.

(d) For the network in Figure 17.3, estimate the CPPs.

(e) Using the data asia, use the MMPC algorithm (called `grow-shrink' in bnlearn) to learn

the skeleton followed by hill climbing to learn the direction of the arrows. Is the output

DAG Markov equivalent to the graph in Figure 17.3?

2. The marks data set is found in the bnlearn package.

(a) Discretise the data using a quantile transform and di�erent numbers of intervals (say 2 to

5). Learn the network structure. How does the structure change with the discretisation?

(b) Repeat the discretisation using interval discretisation, using up to �ve intervals. Compare

the resulting networks with those obtained previously using quantile discretisation.

(c) Does Hartemink's discretisation algorithm perform better than either quantile or interval

discretisation? How does its behaviour depend on the number of initial breaks?

3. The ALARM network is a standard network used to test new algorithms. A synthetic data set

alarm is found in the bnlearn package. Type:

> library(bnlearn)

> ?alarm



374CHAPTER 17. BAYESIAN NETWORKS IN R: STRUCTURE AND PARAMETER LEARNING

On the bottom right quadrant of Rstudio, click on ALARM Monitoring System (synthetic)

data set. This gives a description. Go to the bottom under Examples. You will �nd the

structure of the `true' network.

(a) Create a bn object for the true network using the model string provided in the documenta-

tion.

(b) Compare the networks learned from the data using di�erent constraint based algorithms

with the true network, both in terms of structural di�erences and also using either BIC or

BDe.

(c) How are these constraint based strategies a�ected by di�erent choices of α (the nominal

signi�cance level of each test)?

(d) Now learn the structure with hill-climbing and tabu search, using the posterior density BDe

as a score function. How does the network change with the hyper parameters iss (imaginary

sample size)?

(e) Does the length of the tabu list have a signi�cant impact on the network structures learned

using tabu?

(f) Does the learned network depend on whether BDe or BIC is being used as a score criterion?

4. Now consider the data from Sachs et. al., found in sachs.data.txt on the course home page.

Use the original data set; not the discretised data set.

(a) Evaluate the networks leanred by hill-climbing with BIC and BGe, using cross-validation

and the log-likelihood loss function.

(b) Use bootstrap resampling to evaluate the distribution of the number of arcs present in each

of the networks learned. Do they di�er signi�cantly?

(c) Compute the averaged network structure for sachs using hill-climbing with BGe and dif-

ferent hyperparameters (imaginary sample sizes). How does the value of the signi�cance

threshold change as iss increases?



Chapter 18

Monte Carlo Algorithms for Graph Search

There are various Monte Carlo approaches to locating a structure. These involve running a stochastic

process through the space of possible structures and using this either to build up a posterior distribution

over the space of structures (Markov Chain Monte Carlo) or else designing a process with su�cient

mobility, that is attracted to highly scoring structures and scoring each structure visited. The output

from a stochastic optimisation algorithm is simply the structure visited with the highest score.

As usual, X = (X1, . . . ,Xd) denotes the random vector of variables, X =
⎛
⎜⎜
⎝

X(1)
⋮

X(n)

⎞
⎟⎟
⎠
denotes an n×d

random matrix of n independent copies of X, x denotes the data matrix, an instantiation of X.

18.1 A Stochastic Optimisation Algorithm for Essential Graphs

The following discussion is loosely based on the Markov chain Monte Carlo model composition algo-

rithm, known as MC3, and the augmented Markov chain Monte Carlo model composition (AMC3)

algorithm from Madigan, Andersson, Perlman and Volinsky [88] (1997). This algorithm provides a

stochastic process which works through the space of essential graphs. It is not intended to provide

a process that gives the correct stationary distribution; the aim is simply to �nd a process which

is su�ciently mobile, where the direction is biased towards highly scoring structures and where the

stochastic component will help the process to escape from local maxima.

Let E denote the space of edge sets for essential graphs. The aim is to construct a Markov chain

{E(t), j = 1,2, . . .} with state space E .
Firstly, assume that PD(D) is equal for each D ∈ equiv(E), where E denotes the edge set of an

essential graph and equiv(E) denotes the space of DAGs which have E as their essential graph. The

prior over DAGs, then

PE(E) = n(E)PD(D)

where n(E) is the number of DAGs within the equivalence class and D ∈ equiv(E). The posterior is
then given by:

375



376 CHAPTER 18. MONTE CARLO ALGORITHMS FOR GRAPH SEARCH

PE ∣X(E∣x)∝ PE(E)L(D,x) D ∈ equiv(E).

A penalisation may be useful; let κ ∈ (0,1) and let ∣E∣ denote the number of edges in the graph. If

sparser graphs are desirable, then it may be useful to consider a score function

SE ∣X(E∣x) = κ∣E∣PE ∣X(E∣x) κ ∈ (0,1). (18.1)

The di�culty with constructing Markov chains over the set of essential graphs is that if only a single

edge is modi�ed at a time, the chain may not move. This is seen rather simply with the immorality

A → B ← C. This is an essential graph on three variables. Any alteration of a single edge (either by

adding in one of (A,C), (C,A) or ⟨A,C⟩, or un-directing one of the directed edges or changing the

direction of an edge) gives a graph that is not an essential graph. It is therefore not possible to move

in a single step from the immorality (A,B,C) (where B is the collider node) to a di�erent essential

graph on the variables (A,B,C). Filling in the details is left as an exercise (Example 1, Page 351).

The (MC)3 algorithm therefore considers triples of nodes and works as follows. Let E0 be an edge

set of an arbitrarily chosen essential graph. To move from Ej to Ej+1, do the following:

� Choose three nodes (Xi,Xj ,Xk) at random, where Xi ≠ Xj , Xj ≠ Xk, Xi ≠ Xk, taking any

possible triple of nodes each with equal probability.

� Let E denote the current edge set. As usual, E = D ∪ U where D denotes the directed edges

and U denotes the undirected edges. ⟨α,β⟩ ∈ U denotes an undirected edge; (α,β) ∈D denotes a

directed edge α ↦ β. For Fij and Fjk where Fpq is de�ned below, consider the 16 possible graphs

generated by keeping all other edges the same and modifying any edges between the two pairs

[Xi,Xj] and [Xj ,Xk] (where [α,β] simply denotes the ordered pair of vertices) according to the

four possibilities for each pair:

Fpq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 (Xp,Xq) /∈D, (Xq,Xp) /∈D, ⟨Xp,Xq⟩ /∈ U
2 (Xq,Xp) ∈D
3 (Xp,Xq) ∈D
4 ⟨Xp,Xq⟩ ∈ U.

(18.2)

� Suppose the current state is E(0) and label the 16 possible graphs E(0),E(1), . . . ,E(15) generated

by all the possibilities of Fij and Fjk. For each graph, check whether it is an essential graph,

using the criteria of Theorem 5.3.

That is, it has to be a chain graph (for α ∈ Vi and β ∈ Vj where Vi and Vj are two separate chain

components) there is no cycle containing both α and β (that is, a sequence ρ0, . . . , ρm, ρm+1 = ρ0
with either (ρi, ρi+1) ∈ D or ⟨ρi, ρi+1⟩ ∈ U for each i = 0, . . . ,m). The chain components have to

be triangulated and the graph must not contain forbidden substructures (those in Figure 5.1).

� For each possible graph E(l) ∶ l = 0, . . .15, set

yl =
⎧⎪⎪⎨⎪⎪⎩

0 E(l) not essential

SE ∣X(E(l)∣x) E(l) essential



18.2. STRUCTURE MCMC 377

� where SE ∣X is de�ned by (18.1), or indeed any other reasonable score function. Select E(t + 1) =
E(l) with probability yl, l = 0,1, . . . ,15.

This gives a process which works through the space of essential graphs, guiding the process (at least

locally) to highly scoring structures, while the stochastic element ensures that the process can escape

from a local maximum with positive probability.

Since the aim is to examine each graph E(0), . . . ,E(N) visited, together with all those that were

checked as candidates when the transition probabilites were computed and then choose the one that

maximises S(E) ∶ E ∈ {graphs evaluated}, the following variation may be more e�cient.

� Start with an empty graph. Let E(0) denote the empty graph and let E(t) denote the graph

selected at step t.

� For each cycle of 1
2d(d − 1)(d − 2) steps, randomly select σ, an ordering of {1, . . . , d}, each with

probability 1
d! and, for j = 1, . . . , d, i = 1, . . . , d − 1, i ≠ j, k = i + 1, . . . , d, k ≠ j, do the following:

1. For the triple of nodes {Xσ(i),Xσ(j),Xσ(k)}, consider all 16 possibilities of (Fσ(i),σ(j), Fσ(j),σ(k))
(de�ned in Equation (18.2)) when applied to the current essential graph and record those for

which the new graph is an essential graph.

2. Let E(0) = E(t) and let E(1), . . . ,E(15) denote the other 15 possibilities. For E(0), . . . ,E(15), set

yk = 0 if E(k) is not an essential graph, otherwise, set yk = R(E(k)), where R is a suitable score

function.

3. Let E(t + 1) = E(k) where yk =maxj{yj ∣E(j) /∈ {E(0), . . . ,E(t)}}.

� After the algorithm has run for the required length of time (several cycles of length 1
2d(d−1)(d−

2)), the graph E that gives maxt∈{0,...,N}E(t) is selected.

Di�culties with Metropolis Hastings This algorithm has computational advantages. Only three

nodes at a time are considered, with the possibility of at most 15 di�erent essential graphs. It provides

a stochastic search algorithm, where the aim is to �nd a highly scoring structure. But it seems very

di�cult to modify it to produce a Metropolis Hastings scheme with a `theoretically' correct stationary

distribution. IfN(E) denotes the space of all essential graphs that can be obtained by such a procedure,
then the Q(E,E′), the probability of proposing E′ given a current state E does not have a convenient

expression and neither does the acceptance probability αE,E′ =min (1, S(E
′)Q(E′,E)

S(E)Q(E,E′) ) .

18.2 Structure MCMC

The classical MCMC method for learning the underlying structure of a Bayesian network dates back

to Madigan and York [89](1995). A prior PD is required over the space of directed edge sets D. The
score function used is the Cooper-Herskovitz likelihood, L(D,x), given by Equation (12.15). The aim

is to construct a Markov chain with posterior distribution



378 CHAPTER 18. MONTE CARLO ALGORITHMS FOR GRAPH SEARCH

PD∣X(D∣x)∝ PD(D) ×L(D,x).

The Markov chain is generated by the operations of addition and deletion of single edges. Given

directed edge set D(t) at iteration t, let N(D(t)) denote all directed edge sets which may be derived

from D(t) by one edge added or deleted, together with D(t) itself. A new edge set D′ is sampled from

the set N(D(t)) with proposal probability

Q(D(t),D′) =
⎧⎪⎪⎨⎪⎪⎩

1
∣N(D(t))∣ D′ ∈ N(D(t))
0 otherwise.

The acceptance probability is:

αD(t),D′ =min{1, Q(D′,D(t))P(D′∣x)
Q(D(t),D′)P(D(t)∣x)} =min{1, ∣N(D(t))∣P(D

′∣x)
∣N(D′)∣P(D(t)∣x)} .

The stationary distribution of this chain is PD∣X(.∣x).
There are modi�cations of the basic algorithm: let N(D(t)) denote the space of all DAGs obtained

by addition, deletion, or reversal of a single edge from the current DAG. This is a straightforward

modi�cation; the work of Giudici and Castelo [53](2003) shows that it leads to substantial gains in

e�ciency.

The samples are generated from randomly chosen starting points and the sequence of DAGs

recorded after some suitable burn-in period. This should give enough information to decouple the

chains from their starting points.

18.3 Edge Reversal Moves

The main problem with structure McMC is slow convergence. The following edge reversal move was

introduced by Grzegorczyk and Husmeier [58](2008).

If an edge Xi ↦ Xj is to be reversed, the two nodes Xi and Xj are �rst orphaned; that is, links

from Pai to Xi are removed and links from Paj to Xj are removed. This involves removing Xi ↦Xj .

Next, the node Xj ↦Xi is inserted. Then the remainder of the new parent set of Xi is established

according to a suitable score function and �nally a new parent set for Xj is established.

This move is clearly reversible under mild conditions on the way that the new parent sets are

established; consider the new graph. Suppose that Xj ↦ Xi is to be reversed. Firstly, all the edges

that have just been added, establishing the new parent sets are removed. Then Xi ↦ Xj is inserted,

then additional parents of Xj and �nally parents of Xi are established.

Notation Let D denote a directed edge set. For a node Xi, let D
(Xi)←π denote the graph D where

the edges Pai ↦ Xi are removed and a new parent set π is imposed on Xi. For a graph D, let 1(D)
denote the indicator function, returning value 1 if D is a DAG and 0 otherwise. Let

Z(Xi∣D) = ∑
π∶1(DXi←π)=1

Li(π∣D)



18.4. ORDER MCMC 379

where, for a given ordering of the nodes, Li(π∣x) denotes a score function for node i having parent set

π. Let

Z∗(Xi∣D,Xj) = ∑
π∶1(DXi←π)=1,Xj∈π

Li(π∣D).

Choice of New Parent Sets Let D0 denote the graph D after links Pai ↦ Xi and Paj ↦ Xj have

been removed. The new parent set for Xi, π̃i, is sampled from the distribution:

Q(π̃i∣D0,Xj) =
Li(π̃i∣x)1(DXi←π̃i

0 )1(Xj ∈ π̃i)
Z∗(Xi∣D0,Xj)

.

Having sampled π̃i, π̃j is now sampled from the distribution:

Q(π̃j ∣DXi←π̃i
0 ) ∶= Lj(π̃j ∣x)1(((D0)Xi←π̃i)Xj←π̃j)

Z(Xj ∣DXi←π̃i
0 )

Conditioned on choosing REV (deciding to make a move of reverse-edge type), the proposal probability

for the move D ↦ D′, where D′ is obtained by exchanging the parent sets (πi, πj) of nodes (Xi,Xj)
by π̃i, π̃j) is:

Q(D,D′) = 1

N(D)Q(π̃i∣D0,Xj)Q(π̃j ∣DXi←π̃i
0 )

where N(D) is the number of edges in D. The acceptance is:

α(D,D′) =min
⎛
⎝
1,
N(D)
N(D′)

Z∗(Xi∣D0,Xj)
Z∗(Xj ∣D′0,Xi)

Z(Xj ∣DXi←π̃i
0 )

Z(Xi∣D′Xj←πj

0 )
⎞
⎠
.

Adding Reverse Move to the Sampler A value pR ∈ (0,1) is chosen. If the current graph is

not empty, then with probability pR, it is decided is to make a reverse move and with probability

pS = 1 − pR it is decided to make a standard move (addition or deletion). Since the standard moves

comprise an ergodic Markov chain (albeit not with the desired level of mobility), the mixture is also

ergodic.

18.4 Order MCMC

The order MCMC algorithm was introduced by Friedman and Koller [47](2003), to establish the order-

ing of the nodes. The nodes 1, . . . , d according to a given permutation σ. The DAGs that correspond

to a given order are simply those where each node may only have parents of a lower order. Once the

posterior distribution over orders has been established, the DAG can be constructed relatively easily

using other methods (for example, the K2 algorithm).

Recall that the Cooper-Herskovits Likelihood (12.15) has product form, which may be written as:



380 CHAPTER 18. MONTE CARLO ALGORITHMS FOR GRAPH SEARCH

L(D∣x) =
d

∏
j=1

L̃(j, πj ∣x)

where j denotes node j in D and πj denotes its parent set. Assume that the prior PD(D) also has

form:

PD(D) =
d

∏
j=1

Q(j,Paj)

and set

S(j, πj ∣x) = Q(j, πj)L̃(j,Paj ∣x). (18.3)

The score R(σ∣x) for a given ordering σ, given the data x, is given by:

R(σ∣x) = ∑
D∈σ

P(D∣x)∝
d

∏
j=1

∑
Paσ(j)∈σ

S(σ(j),Paσ(j)∣x) (18.4)

where S is a score function, D ∈ σ denotes a DAG compatible with node ordering σ and Paσ(j) ∈ σ
denotes that the parent set of σ(j) is compatible with node ordering σ.

A hard limit K is placed on the size of each parent set. This reduces the complexity of scoring

each node to order nK .

It is much easier to consider moves between node orders. There are a variety of proposals for moves

from σ to σ′; for example, choose two at random and �ip them. The move σ ↦ σ′ is proposed with

probability Q(σ,σ′) the proposal is accepted with probability

ασ,σ′ =min(1, Q(σ
′, σ)R(σ′∣x)

Q(σ,σ′)R(σ∣x) ) .

Sampling the DAG Having converged to the stationary distribution over orders σ, orderings σ∗

are then sampled proportionally to R(σ∣x). A DAG is sampled for a �xed order, in the following way:

the parent sets are sampled independently for each variable Xi; for Xi, the scre function . This makes

the problem much easier; the parent sets for each variable Xi are sampled independently, according to

the score function (18.3).

The Problem with Bias The posterior distribution over orderings is;

P(σ∣x) =∑
D

P(σ,D∣x) = ∑
D∈σ

P(σ∣D)P(D∣x).

Here P(D∣x) is simply the Cooper-Herskovitz likelihood. This di�ers from the score function (18.4)

through the term P(σ∣D), which is simply the inverse of the number of orders that the DAG belongs

to. On average, the number of orders that each DAG belongs to is exponentially large. (It can range

from 1 to d!). Neglecting this term in the order MCMC algorithm then wieghts DAGs by the number

of orders they belong to.



18.5. PARTITION MCMC FOR DIRECTED ACYCLIC GRAPHS 381

18.5 Partition MCMC for Directed Acyclic Graphs

Partition MCMC was introduced recently by Kuipers and Mo�a [76](2015). With partition MCMC,

the moves are not between DAGs and the aim of the algorithm is not to end up with a distribution

over DAGs; rather, it is to end up with a distribution over layerings of DAGs (de�ned below).

Layering of a DAG The nodes of a DAG may be layered. A layering is a partition satisfying the

condition that no node in the same layer is either an ancestor or descendant of any other node in layer

k. The layers are indexed by N = {1,2,3, . . .}. It is known as a minimal layering if each node has the

minimal index value such that the partition is a layering.

The minimal layering clearly satis�es (for example) that all ancestor nodes are in layer 1. Further-

more, all nodes in layer k have at least one parent in layer k − 1.
Consider a minimal layering with m levels and let (k1, . . . , km) denote the number of nodes in each

layer. The number of DAGs belonging to such a partition is given by:

ak1,...,km =
d!

k1! . . . km!

m

∏
j=2
(2kj−1 − 1)kj

m

∏
j=3

2kjSj−2 .

where Sj = ∑j
i=1 ki. The �rst term is simply the number of ways of distributing d nodes in m partition

elements of size k1, . . . , km respectively. The second is the number of ways that nodes in each partition

can have parents in the previous partition. Subtracting 1 excludes the case where nodes receive no

edges. The third term is the number of ways that nodes can have parents from partitions other than

the one directly below.

18.5.1 Scoring Partitions

A score S(P ) is assigned to each partition P . This is done as follows: let λ = (k1, . . . , km) denote a

partition. This gives the shape of a layering; λ = (k1, . . . , km) where k1 + . . . + km = d speci�es that

there are k1 nodes in the �rst layer, k2 in the second, kj in the jth for j = 1, . . . ,m and there are m

layers. Furthermore, kj ≥ 1 for each j ∈ {1, . . . ,m}.
Let σ denote a permuation of the nodes. This speci�es which nodes are in which layer. If λ =

(k1, . . . , km), then Xσ(1), . . . ,Xσ(k1) belong to layer 1; nodes Xσ(k1+...+kj+1), . . . ,Xσ(k1+...+kj+kj+1) are in

layer j + 1 for j = 1, . . . ,m − 1.
Permuting nodes within a layer does not change anything. Let πλ,σ denote a representative per-

mutation; that is, λ together with permutation πλ,σ gives the same layering as λ together with σ. Let

Λ = (λ,πλ,σ). The score for Λ is:

S(Λ∣x) =∑
D

P(Λ∣D,x)P(D∣x) = ∑
D∈Λ

P(D∣x)∝
d

∏
j=1
∑

Paj∈Λ
S(Xj ,Paj ∣x).

where D ∈ Λ denotes that the DAG D is compatible with the layering speci�ed by Λ and Paj ∈ Λ
denotes that the parent set of variable j is compatible with Λ.



382 CHAPTER 18. MONTE CARLO ALGORITHMS FOR GRAPH SEARCH

The MCMC will propose a move Λ ↦ Λ′, by de�ning a set N(Λ) of neighbours and choosing each

with equal probability. The acceptance is:

αΛ,Λ′ =min(1, ∣N(Λ)∣∣N(Λ′)∣
S(Λ′∣x)
S(Λ∣x) ) (18.5)

18.5.2 Partition Moves

The basic partition move involves

� Splitting a layer in two;

� Merging two adjacent layers.

When splitting a layer of size k into two parts, one of size c and one of size k−c, there are (kc) ways
to do it. There are m − 1 ways to merge two partitions. The size of the neighbourhood is therefore:

(m − 1) +
m

∑
i=1

ki−1
∑
c=1
(ki
c
) =m − 1 +

m

∑
i=1
(2ki − 2) = (

m

∑
i=1

2ki) −m − 1.

When merging layer i with layer i+ 1, the score changes simply with the indicator function of whether

the parent sets are legal under the new layering. The alterations are only in those in the layer labelled

i+2 before the merge; the number of possible parent sets has increased - and (of course) those in layer

i+1 before the merge. Instead of being forced to have at least one parent from layer i before the merge,

links with these variables are excluded; now the variables from i + 1 (before merge) are forced to have

a parent in layer i − 1.
Splitting and merging thus de�ned give reversible moves, so that the acceptance de�ned by (18.5)

is positive.

It is straightforward to see that the chain is irreducible; from one partition any other partition can

be reached in a �nite number of moves which have positive probability. If necessary, the chain can stay

still with positive probability to ensure aperodicity.

18.5.3 Permutation Moves

The permutation moves are simpler. Two strategies can be adopted

� Choose two nodes at random, with the constraint that they are in di�erent layers, and swap

them. There are
m

∑
i=1

ki(n − ki)
2

possibilities, each chosen with equal probability. The move is accepted with probability
M(Λ)S(Λ′∣x)
M(Λ′)S(Λ∣x) .

� Choose two nodes at random, with the constraint that they are in adjacent layers. There are

M(Λ) =
m−1
∑
i=1

kiki+1

possible choices of pairs. They are chosen each with equal probability and the move is accepted

with probability
M(Λ)S(Λ′∣x)
M(Λ′)S(Λ∣x) .



18.5. PARTITION MCMC FOR DIRECTED ACYCLIC GRAPHS 383

18.5.4 Combination with Edge Reversal

The Edge Reversal Move discussed in Section 18.3 may be combined with these. In this context, �rstly

a DAG is chosen compatible with Λ, with probability proportional to its score. Then the reverse

move is proposed and accepted with the probabilities given in Section 18.3. Then the corresponding

partition / permutation Λ′ is computed. The Edge-Reversal move is not ergodic, but if probabilities

pR > 0, pλ > 0, pσ > 0 for the probabilities of taking an Edge Reversal, Partition and Permutation move

respectively are speci�ed in advance, where pR + pλ + pσ = 1, the process is ergodic, with the correct

stationary distribution.

Explicitly, let PD′∣D(Λ′∣Λ) denote the probability of a transition to Λ′ through an edge reversal

move D to D′. Let Q(D′∣D) denote the transition probability of a move from D to D′ given that the

move is edge reversal. Then

PD′∣D(Λ′∣Λ) =
P(D∣x)
P(Λ∣x)Q(D

′∣D).

This move satis�es the detailed balance equation;

P(D′∣x)
P(D∣x) =

Q(D′∣D)
Q(D∣D′)

from which

PD′∣D(Λ′∣Λ)
PD∣D′(Λ∣Λ′)

= P(Λ′∣x)
P(Λ∣x) . (18.6)

Finally, there may be more than one path between layerings;

P(Λ′∣Λ) = ∑
D,D′

PD′∣D(Λ′∣Λ)

is the total transition. Now, from Equation (18.6), it follows that:

P(Λ∣x)P(Λ′∣Λ) = P(Λ′∣x)P(Λ∣Λ′).



384 CHAPTER 18. MONTE CARLO ALGORITHMS FOR GRAPH SEARCH



Chapter 19

Dynamic Bayesian Networks

19.1 Introduction

Dynamic Bayesian networks (DBNs) are an important tool that have proved useful for a large class of

problems. The thesis of Kevin Murphy (2002) [97] provides a comprehensive introduction to the topic.

The �rst mention of dynamic Bayesian networks seems to be by Dean and Kanazawa (1989) [34].

The DBN framework provides a way to extend Bayesian network machinery to model probability

distributions over collections of random variables (Zt)t≥0. The parameter t ∈ {0,1,2, . . .} represents
time. Typically, the variables at a time slice t are partitioned into Zt = (U t,Xt, Y t) representing the

input, hidden and output variables of the model. The term `dynamic' refers to the fact that the system

is dynamic; the basic structure remains the same over time.

De�nition 19.1. A k - slice Dynamic Bayesian network is a DAG corresponding to a factorisation of

the probability distribution over the variables {Z0, Z1, . . .} such that for t ≥ k,

PZ0,...,Zt = PZ0

k−1
∏
s=1

PZs∣Z0,...,Zs−1

t

∏
s=k

PZs∣Zs−k,...,Zs−1

where, for t ≥ k,
PZt∣Zt−k−1,...,Zt−1

=∏
j

P
Zj
t ∣Pa(Z

j
t )
,

Zj
t is the jth node at time t, which could be a component of either Xt, Yt or Ut and the set Pa(Zj

t )
of parents of Zj

t belongs to the collection

Zt−k, . . . , Zt−1,{Z1
t , . . . , Z

j−1
t }.

The arrows within the same time slice do not represent causality.

The requirement is that the subgraph restricted to {Zt, . . . , Zt+k−1} is the same for each t ≥ 0 and

the conditional probabilities P
Zj
t ∣Pa(Z

j
t )

are the same for each t ≥ k. Furthermore, for 1 ≤ i ≤ j ≤ k,
and each s ≥ j, the subgraph restricted to {Zs+i, . . . , Zs+j} is a subgraph of the subgraph restricted to

{Zs+i−1, . . . , Zs+j}.

385



386 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

The arcs between slices are from left to right and re�ecting the causal �ow of time. If there is an

arc from Zj
t−1 to Zj

t , the node Z
j is said to be persistent. The arcs within a slice may have arbitrary

direction, so long as the overall DBN is a DAG. The arcs within a time slice may be undirected, since

they model correlation or constraints rather than causation. The resulting model is then a (dynamic)

chain graph.

The parameters of the conditional probabilities P
Zj
t ∣Pa(Z

j
t )

are time-invariant for t ≥ k, i.e., the
model is time-homogeneous. If parameters can change, they may be added to the state-space and

treated as random variables or alternatively a hidden variable may be added that selects which set of

parameters to use.

Within the engineering community, DBNs have become a popular tool, because they can express

a large number of models and are often computationally tractable.

DBNs have been successfully applied to in the reconstruction of genetic networks, where genes do

not remain static, but rather their expression levels �uctuate constantly. Increased expression level of a

gene will result in increased levels of mRNA from that gene which will in turn in�uence the expression

levels of other genes. DBNs have proved to be a successful way of analysing genetic expression data.

With a Dynamic Bayesian Network, the n × d data matrix no longer represents n independent

instantiations of a random d-vector. Rather, the rows represent time slices of a process {X(t) ∶ t ∈ N}.
Some assumptions (for example time homogeneity) have to be made in order to learn structure and

parameters.

If the number of instantiations n available is large in comparison to d, then standard multivariate

time series techniques may be used e�ectively. If n is small compared with d, other techniques (such

as LASSO L1 regularisation) should be used.

19.2 Multivariate Time Series

A VARMA(p,q) model (vector auto regressive moving average, lags p and q for the auto-regressive and

moving average parts respectively) is a model:

X(t) = µ
0
+ tµ

1
+

p

∑
j=1

AjX(t − j) +
q

∑
k=1

Bkϵt+1−q

where ϵt ∼ N(0,Σ) are i.i.d. (the distribution is not necessarily normal, but the normality assumption,

if true, leads to sharper estimation).

The MA part often leads to instability for estimation; we therefore only consider VAR(p) processes;

X(t) = µ
0
+ tµ

1
+

p

∑
j=1

AjX(t − j) + ϵt

The package vars �ts a vector auto regressive model:

> install.packages("vars")

> library(vars)



19.2. MULTIVARIATE TIME SERIES 387

Within vars, there is a test data-set Canada, which contains 4 macroeconomic indicators; prod (labour

productivity), e (employment), U (unemployment rate) and rw (real wages). A VAR(2) model is �tted

quite simply with the command:

> data(Canada)

> can = VAR(Canada,p=2)

> summary(can)

VAR Estimation Results:

=========================

Endogenous variables: e, prod, rw, U

Deterministic variables: const

Sample size: 82

Log Likelihood: -175.819

Roots of the characteristic polynomial:

0.995 0.9081 0.9081 0.7381 0.7381 0.1856 0.1429 0.1429

Call:

VAR(y = Canada, p = 2)

Estimation results for equation e:

==================================

e = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 1.638e+00 1.500e-01 10.918 < 2e-16 ***

prod.l1 1.673e-01 6.114e-02 2.736 0.00780 **

rw.l1 -6.312e-02 5.524e-02 -1.143 0.25692

U.l1 2.656e-01 2.028e-01 1.310 0.19444

e.l2 -4.971e-01 1.595e-01 -3.116 0.00262 **

prod.l2 -1.017e-01 6.607e-02 -1.539 0.12824

rw.l2 3.844e-03 5.552e-02 0.069 0.94499

U.l2 1.327e-01 2.073e-01 0.640 0.52418

const -1.370e+02 5.585e+01 -2.453 0.01655 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.3628 on 73 degrees of freedom

Multiple R-Squared: 0.9985,Adjusted R-squared: 0.9984

F-statistic: 6189 on 8 and 73 DF, p-value: < 2.2e-16



388 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

Estimation results for equation prod:

=====================================

prod = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.17277 0.26977 -0.640 0.52390

prod.l1 1.15043 0.10995 10.464 3.57e-16 ***

rw.l1 0.05130 0.09934 0.516 0.60710

U.l1 -0.47850 0.36470 -1.312 0.19362

e.l2 0.38526 0.28688 1.343 0.18346

prod.l2 -0.17241 0.11881 -1.451 0.15104

rw.l2 -0.11885 0.09985 -1.190 0.23778

U.l2 1.01592 0.37285 2.725 0.00805 **

const -166.77552 100.43388 -1.661 0.10109

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6525 on 73 degrees of freedom

Multiple R-Squared: 0.9787,Adjusted R-squared: 0.9764

F-statistic: 419.3 on 8 and 73 DF, p-value: < 2.2e-16

Estimation results for equation rw:

===================================

rw = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.268833 0.322619 -0.833 0.407

prod.l1 -0.081065 0.131487 -0.617 0.539

rw.l1 0.895478 0.118800 7.538 1.04e-10 ***

U.l1 0.012130 0.436149 0.028 0.978

e.l2 0.367849 0.343087 1.072 0.287

prod.l2 -0.005181 0.142093 -0.036 0.971

rw.l2 0.052677 0.119410 0.441 0.660

U.l2 -0.127708 0.445892 -0.286 0.775

const -33.188339 120.110525 -0.276 0.783

---



19.2. MULTIVARIATE TIME SERIES 389

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.7803 on 73 degrees of freedom

Multiple R-Squared: 0.9989,Adjusted R-squared: 0.9987

F-statistic: 8009 on 8 and 73 DF, p-value: < 2.2e-16

Estimation results for equation U:

==================================

U = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + const

Estimate Std. Error t value Pr(>|t|)

e.l1 -0.58076 0.11563 -5.023 3.49e-06 ***

prod.l1 -0.07812 0.04713 -1.658 0.101682

rw.l1 0.01866 0.04258 0.438 0.662463

U.l1 0.61893 0.15632 3.959 0.000173 ***

e.l2 0.40982 0.12296 3.333 0.001352 **

prod.l2 0.05212 0.05093 1.023 0.309513

rw.l2 0.04180 0.04280 0.977 0.331928

U.l2 -0.07117 0.15981 -0.445 0.657395

const 149.78056 43.04810 3.479 0.000851 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.2797 on 73 degrees of freedom

Multiple R-Squared: 0.9726,Adjusted R-squared: 0.9696

F-statistic: 324 on 8 and 73 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

e prod rw U

e 0.131635 -0.007469 -0.04210 -0.06909

prod -0.007469 0.425711 0.06461 0.01392

rw -0.042099 0.064613 0.60886 0.03422

U -0.069087 0.013923 0.03422 0.07821

Correlation matrix of residuals:



390 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

e prod rw U

e 1.00000 -0.03155 -0.1487 -0.6809

prod -0.03155 1.00000 0.1269 0.0763

rw -0.14870 0.12691 1.0000 0.1568

U -0.68090 0.07630 0.1568 1.0000

The default value, which estimates µ
0
and sets µ

1
= 0 is const. To set µ

0
= 0 and µ

1
= 0, type:

> VAR(Canada,p=2,type="none")

To set µ
0
= 0 while estimating an unknown trend µ

1
, type:

> VAR(Canada,p=2,type="trend")

To estimate both an intercept µ
0
and a trend µ

1
, type:

> VAR(Canada,p=2,type="both")

The stability function veri�es the covariance stationarity of a VAR process, using cumulative

sums of residuals. This may be carried out by:

> var.2c=VAR(Canada,p=2,type="const")

> stab=stability(var.2c,type="OLS-CUSUM")

> plot(stab)

There are several tests for normality which come under normality.test.

> normality.test(var.2c)

$JB

JB-Test (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 5.094, df = 8, p-value = 0.7475

$Skewness

Skewness only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 1.7761, df = 4, p-value = 0.7769



19.3. LASSO LEARNING 391

$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 3.3179, df = 4, p-value = 0.5061

The function serial.test carries out the Portmanteau (i.e. Ljung-Box) test

> serial.test(var.2c,lags.pt=16,type="PT.adjusted")

Portmanteau Test (adjusted)

data: Residuals of VAR object var.2c

Chi-squared = 231.5907, df = 224, p-value = 0.3497

The VARMA model is standard and is treated in any reasonable text on Time Series, for example [?].

19.3 Lasso Learning

One of the most prominent applications of DBNs is to gene expression data and locating regulatory

pathways. The main di�culty is that n (the number of instantiations) tends to be small compared

with d (the number of genes under investigation). On the other hand, gene expression networks tend

to be sparse.

One technique that has developed and is quite e�ective in such situations is L1 regularisation, or

LASSO learning.

LASSO and Least Angle Regression Given a set of input measurements (xj,1, . . . , xj,d) for j =
1, . . . , n and outcome measurement yj ∶ j = 1, . . . , n, taken as observations on independent variables,

the lasso �ts a linear model

ŷj = β̂0 +
d

∑
j=1

xj β̂j .

The criterion it uses is:

Minimise ∑n
j=1(yj ŷj)2 subject to ∑d

j=0 ∣βj ∣ ≤ s for a constraint value s.

The bound s is a tuning parameter. When s is su�ciently large, the constraint has no e�ect and the

solution is simply the usual multiple linear least squares regression of y on x1, . . . , xd.

For smaller values of s (s ≥ 0), the solutions are shrunken versions of the least squares estimates.

The L1 penalisation often forces some of the coe�cient estimates β̂j to be zero.



392 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

The choice of s therefore plays a similar role to choosing the number of predictors in a regression

model.

Cross-validation is the standard tool for estimating the best value for s.

Forward stepwise regression achieves the same objective as regularisation by adding in explanatory

variables one at a time:

� Start with all coe�cients βj equal to zero.

� Find the predictor xj which is most correlated to y and add it into the model. Take residuals

r = y − ŷ.

� Continue, at each stage adding to the model the predictor most correlated with r.

� Until: all predictors are in the model

The Least Angle Regression procedure follows the same general scheme, but does not add a predictor

fully into the model. The coe�cient of that predictor is increased only until that predictor is no longer

the one most correlated with the residual r. Then some other competing predictor is included.

Least Angle Regression algorithm The algorithm proceeds as follows:

� Start with all coe�cients βj equal to zero.

� Find the predictor xj most correlated with y.

� Increase the coe�cient βj in the direction of the sign of its correlation with y. Take residuals

r = y − ŷ. Stop when some other predictor xk has as much correlation with r as xj has.

� Increase (βj , βk) in their joint least squares direction, until some other predictor xm has as much

correlation with the residual r.

� Continue until: all predictors are in the model

It can be shown that, with one modi�cation, this procedure gives the entire path of lasso solutions,

as s is varied from 0 to in�nity. The modi�cation needed is: if a non-zero coe�cient hits zero, remove

it from the active set of predictors and recompute the joint direction.

Cross-Validation Cross validation is a model evaluation method where some of the data is removed

before training begins. Then when training is done, the data that was removed can be used to test

the performance of the learned model on �new� data. This is the basic idea for the class of model

evaluation methods called cross validation.

� Holdout The holdout method is the simplest kind of cross validation. The data set is separated

into two sets; the training set and the testing set. The function approximator �ts a function using



19.3. LASSO LEARNING 393

the training set only. Then the function approximator is asked to predict the output values for

the data in the testing set (it has never seen these output values before). The errors it makes

are accumulated as before to give the mean absolute test set error, which is used to evaluate the

model.

� K-fold Cross ValidationK-fold cross validation is one way to improve over the holdout method.

The data set is divided into k subsets, and the holdout method is repeated k times. Each time,

one of the k subsets is used as the test set and the other k-1 subsets are put together to form

a training set. Then the average error across all k trials is computed. The advantage of this

method is that it matters less how the data gets divided. Every data point gets to be in a test set

exactly once, and gets to be in a training set k-1 times. The variance of the resulting estimate is

reduced as k is increased. The disadvantage of this method is that the training algorithm has to

be rerun from scratch k times, which means it takes k times as much computation to make an

evaluation. A variant of this method is to randomly divide the data into a test and training set

k di�erent times. The advantage of doing this is that you can independently choose how large

each test set is and how many trials you average over.

� Leave-one-out Leave-one-out cross validation is K-fold cross validation taken to its logical

extreme, with K equal to n, the number of data points in the set. That means that the function

approximator is trained on all the data except for one point n separate times and a prediction

is made for that point. As before the average error is computed and used to evaluate the model.

The evaluation given by leave-one-out cross validation error (LOO-XVE) is good, but at �rst

pass it seems very expensive to compute.

19.3.1 Implementation

There are several packages available in R for DBN learning. One of the most prominent is the lars

package by Hastie and Efron [60] (2012). Other packages available are: glmnet package by Friedman

et. al. [44] (2010) and penalized by Goeman [54] (2012). For illustration, we use the arth800MTS data

set from the GeneNet package. This describes the expression levels of 800 genes of the Arabidopsis

thaliana during the diurnal cycle. We consider a subset arth12 of 12 of the genes.

> library(lars)

> library(GeneNet)

> data(arth800)

> subset=c(60,141,260,333,365,424,441,512,521,578,799)

> arth12=arth800.expr[,subset]

Now lars is used to estimate a model for a target variable spei�ed by a vector (say y) and a set of

possible parents speci�ed by a matrix of predictors (say x). The arth800 data set consists of two time

series, each of 11 points in length. That is, there are two repeated measurements for each time point.

To estimate a VAR(1) process, �rstly remove the two repeated measurements for the �rst time point



394 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

of y and the two repeated measurements for the last time point of x. They cannot be used for LASSO,

since y(t) needs x(t − 1).

> x = arth12[1:(nrow(arth12)-2),]

> y = arth12[-(1:2),"265768_at"]

> lasso.fit = lars(y=y,x=x,type="lasso")

> plot(lasso.fit)

The plot is shown in Figure 19.1.

* ** * * *
*

**
** *

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

|beta|/max|beta|

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

* ** * * * * ** ** *
* ** * * * * ** ** ** ** * * * * ** ** *
* ** * * * * ** ** ** ** * * * *

** ** *

* ** * * * * ** ** ** ** * * *
*

**
** *

* ** * * * * **
** *

* ** * * * * **
** *

*

** * * * * ** ** *

LASSO

1
1

1
0

7
8

0 1 3 4 5 6 7 9 11

Figure 19.1: Lasso output

The �gure is interpreted as follows: the aim is to predict y(t) (the expression levels for gene labelled

265768_at) by the expression levels one time unit earlier (given at time index t − 2 because we have

double measurements for each time); x(t−2). The regression is carried out by evaluating the coe�cients

β which minimise∑22
t=3(y(t)−∑11

j=1 xj(t−2)βj)2, subject to a constraint that∑11
j=1 ∣βj ∣ ≤ t for t increasing.

For the x-axis, this is presented as ∣β∣/max ∣β∣, where ∣β∣ = ∑11
j=1 ∣βj ∣ and max ∣β∣ is the value of ∑11

j=1 ∣βj ∣
for the unconstrained problem.

The values of the coe�cients are denoted by di�erent colours and the plot shows how they change as

the value of t increases. The vertical lines indicate the points at which new coe�cients are introduced.

The coe�cients may be obtained by

> coef(lasso.fit)

Structure learning (i.e. deciding which directed edges to include in the network) is carried out via

cross-validation. The cv.lars function does this.

> lasso.cv=cv.lars(y=y,x=x,mode="fraction")

The output gives the MSE (mean squared error) as a function of ∣β∣/max ∣β∣ (where ∣β∣ denotes the
constraint and max ∣β∣ denotes the value of ∑11

j=1 ∣βj ∣ for the unconstrained problem) and the output is

shown in Figure 19.2. The optimal set of arcs is chosen to minimise the mean squared error.



19.3. LASSO LEARNING 395

> frac=lasso.cv$index[which.min(lasso.cv$cv)]

> predict(lasso.fit,s=frac,type="coef",mode="fraction")

$s

[1] 0.1919192

$fraction

[1] 0.1919192

$mode

[1] "fraction"

$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

255070_at 253425_at 253174_at 251324_at 245319_at 245094_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.6420806

The non-zero coe�cients indicate the arcs to be included on the gene 265768_at for the optimal value

s=frac computed by cv.lars.

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.6

Fraction of final L1 norm

C
ro

s
s
−

V
a

lid
a

te
d

 M
S

E

Figure 19.2: Lasso cross validation

The number of steps can be controlled by setting the mode argument of predict to step.

> predict(lasso.fit,s=3,type="coef",mode="step")$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at 255070_at 253425_at

-0.02152962 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

253174_at 251324_at 245319_at 245094_at

0.00000000 0.00000000 0.00000000 -0.72966658



396 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

The L1 penalty can be speci�ed with mode = �lambda�

> predict(lasso.fit,s=0.2,type="coef",mode="lambda")$coefficients

265768_at 263426_at 260676_at 258736_at 257710_at 255764_at 255070_at 253425_at

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

253174_at 251324_at 245319_at 245094_at

0.0000000 0.0000000 0.0000000 -0.6961228

The lars package also �ts least angle regression and stepwise regression.

> lar.fit=lars(y=y,x=x,type="lar")

> lar.cv=cv.lars(y=y,x=x,type="lar")

> step.fit=lars(y=y,x=x,type="stepwise")

> step.cv=cv.lars(y=y,x=x,type="stepwise")

19.4 simone: Statistical Inference for MOdular NEtworks

The simone package by Chiquet et. al. [27](2009) implements LASSO speci�cally for dynamic Bayesian

networks. Install the package, activate it and get information using

> install.packages("simone")

> library(simone)

> ?simone

It works on the principle that the n×d data matrix contains n sequential observations of the d variables

and it �ts a VAR(1) model. The default is clustering = FALSE.

> result = simone(arth12,type="time-course")

The output is the number of edges in the network depending on the penalisation (default: BIC). A

sequencing display of the network as the penalty is reduced is obtained by:

> plot.simone(result)

The analysis can be carried out with clustering; edges are penalised if latent clustering is discovered

while constructing the network.

> resultcluster=simone(arth12,type="time-course",clustering=TRUE,control=ctrl)

The sequencing display of the network indicates that clustering has not changed the output much.



19.5. GENENET, GIDBN 397

19.5 GeneNet, GIDBN

> install.packages("G1DBN")

> library(G1DBN)

> data(arth800line)

> data(arth800line)

> subset=c(60,141,260,333,365,424,441,512,521,578,789,799)

> arth12=as.matrix(arth800line[,subset])

Learning is carried out in two stages: �rstly, learning the graph encoding the �rst order partial

dependencies with DBNScoreStep1.

> step1=DBNScoreStep1(arth12,method="ls")

> edgesG1=BuildEdges(score=step1$S1ls,threshold=0.50,prec=6)

> nrow(edgesG1)

[1] 27

The help commands describe the second step.

> step2=DBNScoreStep2(step1$S1ls,data=arth12,method="ls",alpha1=0.50)

> edgesG=BuildEdges(score=step2,threshold=0.05,prec=6)



398 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

19.6 Inference for Dynamic Bayesian Networks

For a given DBN (where the network structure and the conditional probability potentials have been

speci�ed), the queries of interest are usually those of computing the marginal distribution of Xi(t)
conditioned on all nodes other than Xi(t) at times 1, . . . , T . In line with standard time series problems,

these problems fall into three categories:

� If T = t, the query is called �ltering.

� If T > t (node Xi(t) is omitted), the query is called smoothing. It returns a smoothed value of

X̂i(t); the aim of the query is noise reduction.

� If T < t, the query is called prediction.

Queries which ask for the Most Probable Explanation can be performed for �ltering, smoothing

and prediction with the lars package.

To see how it works, consider the arth12 data set:

> library(GeneNet)

> data(arth800)

> subset = c(60, 141, 260, 333, 365, 424, 441, 512,

+ 521, 578, 789, 799)

> arth12 = arth800.expr[, subset]

> library(lars)

> x = arth12[1:(nrow(arth12) - 2), ]

> y = arth12[-(1:2), "265768_at"]

y contains the expression levels of gene 265768_at at all times except for time 0 (recall that there are

two measurements at each time). x contains the whole data set for all times except for the last one,

labelled 24.

> lasso.fit = lars(y = y, x = x, type = "lasso")

> lasso.cv = cv.lars(y = y, x = x, mode = "fraction")

> frac = lasso.cv$index[which.min(lasso.cv$cv)]

frac contains the value of the index that minimises the cross variation. Therefore, this is the value

that is used to build the model. Estimation for the expression levels of 265768_at may be carried out

quite simply by:

> lasso.est = predict(lasso.fit, type = "fit",

+ newx = x, s = frac,

+ mode = "fraction")$fit

> lasso.est

0-1 0-2 1-1 1-2 2-1 2-2 4-1



19.6. INFERENCE FOR DYNAMIC BAYESIAN NETWORKS 399

7.099782 6.894064 7.166249 7.157744 7.592092 7.379432 7.990548

4-2 8-1 8-2 12-1 12-2 13-1 13-2

8.078921 8.353137 8.333108 8.940241 8.780302 8.816387 8.758480

14-1 14-2 16-1 16-2 20-1 20-2

8.542374 8.417818 7.446577 7.329513 6.717392 6.747178

The estimated expression levels at 20-1 and 20-2 are a result of �ltering, while the others given

here are a result of smoothing.

The values of 24-1 and 24-2 can be predicted by:

> lasso.pred = predict(lasso.fit, type = "fit",

+ newx = arth12[c("24-1", "24-2"), ],

+ s = frac, mode = "fraction")$fit

> lasso.pred

24-1 24-2

6.822643 6.882054

The penalized package �ts LASSO models which are compatible with bnlearn. Therefore, more

complex conditional probability queries can be carried out using cpquery and cpdist if the model is

�rst learned in this way.

> library(penalized)

> lambda = optL1(response = y, penalized = x)$lambda

> lasso.t = penalized(response = y, penalized = x,

+ lambda1 = lambda)

# nonzero coefficients: 2

> coef(lasso.t)

(Intercept) 245094_at

14.0402894 -0.7059011

The only parent of gene 256768_at is 245094_at, which seems to act as an inhibitor.

This suggests that a model with this explanatory variable might be useful. Such a DBN can be created

in the following way:

>dbn1 =

+ model2network("[245094_at][265768_at|245094_at]")

>xp.mean = mean(x[, "245094_at"])

>xp.sd = sd(x[, "245094_at"])

>dbn1.fit =

+ custom.fit(dbn1,

+ dist = list("245094_at" = list(coef = xp.mean,

+ sd = xp.sd), "265768_at" = lasso.t))



400 CHAPTER 19. DYNAMIC BAYESIAN NETWORKS

Since the data is continuous, there are two possibilities: either create a Gaussian network, or discretise

the variables. The network dbn1 is Gaussian. The mean xp.mean and standard deviation xp.sd need

to be speci�ed.

The regression analysis suggests that high expression levels of 245094_at at time t − 1 lead to low

expression levels of 265768_at at time t. The cpquery function can be used:

>cpquery(dbn1.fit, event = (`265768_at` > 8),

+ evidence = (`245094_at` > 8))

[1] 0.2454624

>cpquery(dbn1.fit, event = (`265768_at` > 8),

+ evidence = (`245094_at` < 8))

[1] 0.9829545

Note With this package, it is not permitted to condition on events of measure 0. Therefore, intervals

must be speci�ed both for event and evidence.

The function cpdist may be used to generate random observations. To compare the conditional

distributions for both pieces of evidence, use:

>dist.low = cpdist(dbn1.fit, node = "265768_at",

+ evidence = (`245094_at` < 8))

>dist.high = cpdist(dbn1.fit, node = "265768_at",

+ evidence = (`245094_at` > 8))

These may be plotted and the densities compared.

Now suppose that the variables at time t are not independent of those at t − 2 given t − 1. It is then a

good idea to construct a DBN which depends on lags 1 and 2. To check whether the introduction of

t − 2 to explain t improves the model:

> y = arth12[-(1:2), "245094_at"]

> colnames(x)[12] = "245094_at1"

> lambda = optL1(response = y, penalized = x)$lambda

> lasso.s = penalized(response = y, penalized = x,

+ lambda1 = lambda)

> coef(lasso.s)

(Intercept) 258736_at 257710_at 255070_at 245319_at

-2.659077706 -0.009220815 0.273648262 -0.444106451 -0.134050990

245094_at1

1.589716443

The assumption is that the DBN is time homogeneous. These results suggest a network structure

which can be created as follows:



19.6. INFERENCE FOR DYNAMIC BAYESIAN NETWORKS 401

> dbn2 = empty.graph(c("265768_at", "245094_at",

+ "258736_at", "257710_at", "255070_at",

+ "245319_at", "245094_at1"))

> dbn2 = set.arc(dbn2, "245094_at", "265768_at")

> for (node in names(coef(lasso.s))[-c(1, 6)])

+ dbn2 = set.arc(dbn2, node, "245094_at")

> dbn2 = set.arc(dbn2, "245094_at1", "245094_at")

The parameters of dbn2 may be estimated via maximum likelihood. The parameters of 265769_at and

245094_at may then be substituted with those from the LASSO models lasso.t and lasso.s.



19.7 Exercises

1. Consider the Canada data set from the vars package. Load the data set, make some exploratory

analysis and estimate a VAR(1) process for this data set. Estimate the auto-regressive matrix A

and the constant matrix B which de�ne the VAR(1) model.

Compare the results with the LASSO matrix when the L1 penalty is estimated by cross-validation.

What are your conclusions?

2. Consider the arth800 data set from the GeneNet package. Load the data set. The time

series expression of the 800 genes is included in a data set called arth800.expr. Investigate its

properties.

Compute the variances of each of the 800 variables, plot them in decreasing order and create a

data set with those variables whose variance is greater than 2.

Can you �t a VAR process using the var package (unlikely)? Suggest alternative approaches

(such as LASSO) and apply them. Estimate a DBN with each approach and compare the DBNs.

Plot the DBNs using plot from G1DBN.

402



Chapter 20

Factor graphs and the sum product

algorithm

This chapter describes the Sum Product Algorithm, henceforth abbreviated SPA, which was introduced

by Wiberg [145] (1996). It is an algorithm for obtaining the marginals of a factorised function. It

has also become known as Loopy Belief Propagation. It operates on factor graphs. SPA can be

considered as the most elementary of a family of related algorithms, consisting of double-loop algorithms

(see Heskes et. al. [63](2003)), Generalised Belief Propagation (see Yedidia et. al. [149] (2005)),

Expectation Propagation (see [94](2001)), Expectation Consistent Approximate Inference (see Opper

and Winter [102](2005)), the Max-Product Algorithm (see Weiss and Freeman [143](2001)), the Survey

Propagation Algorithm (see Braunstein, Mézard and Zecchina [7] (2004) and [6](2005)) and Fractional

Belief Propagation (see Tatikonda [133](2003)) to name but a few variants. SPA and its variants

provide a natural method for a wide variety of applications: Wiberg [145] discusses applications to

error correcting codes, an application developed by McEliece, MacKay and Cheng [92] (1998). It is

used for satis�ability problems in combinatorial optimisation [7] and computer vision (stereo matching:

Sun, Zheng and Shum [131](2003) and image restoration Tanaka [132](2002)). More recently, a variant

known as `Stochastic Belief Propagation' algorithm was developed by Noorshams and Wainwright [101]

(2013) with applications to image analysis. For that situation, the number of states of each variable is

large, so that only a few of the states are randomly selected for update in each cycle of the algorithm.

20.1 Factorisation and Local Functions

As usual, let Ṽ = {1, . . . , d}, and for each j ∈ Ṽ let Xj = (x(1)j , . . . , x
(kj)
j ) denote the �nite state space

of variable Xj . Let X = ×dj=1Xj . The space X is the con�guration space. Let ϕ denote a function

de�ned on X . Let x = (x1, . . . , xd) ∈ X denote a con�guration and, for a subset D ⊆ {1, . . . , d}, where
D = {j1, . . . , jm}, let xD = (xj1 , . . . , xjm) and XD = ×v∈DXv.

A domain XD for D ⊂ {1, . . . , d} (where the subset is strict) is called a local domain.

De�nition 20.1 (Factorisability). The function ϕ is said to be factorisable if it factors into a product

of several local functions γj each de�ned on local domains, such that

403



404 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

ϕ(x) =∏
j∈J

γj(xDj
) (20.1)

for a collection of local domains XDj , j ∈ J where J = {1,2, . . . , q} and q ≤ d.

For a factorisable function ϕ, consider the problem of computing the marginal

ϕi(xi) = ∑
z∈XṼ /{i}

∏
j∈J

γj(z, xi), (20.2)

where the domains of the functions have been extended to X (De�nition 7.2). This is also known

as the `one i (eye) problem'. The aim of this chapter is to describe a procedure for computing the

marginalisation, which exploits the way in which the global function is factorised and uses the current

values to update the values assigned to each variable. The method involves a factor graph, which is an

example of a bipartite graph.

De�nition 20.2 (Bipartite Graph). A graph G is bipartite if its node set can be partitioned into two

sets W and U in such a way that every edge in G has one node in W and another in U .

A factor graph is a bipartite graph that expresses the structure of the factorisation given by Equa-

tion (20.1). The graph has the following properties:

� there is a variable node (an element of U) for each variable. A capital letter X will be used to

denote the variable node, a small letter the value x in the state space XX associated with the

variable.

� there is a function node (an element of W ) for each function γj . γj will be used to denote both

the local function and the node.

� an undirected edge connecting variable node Xi to factor node γj if and only if Xi is in the local

domain of γj .

In other words, a factor graph is a representation of the relation `is an argument of'.

Example 20.3 (A Bayesian Network as a Factor Graph).

A Bayesian Network has a joint probability distribution that factorises according to a DAG. This joint

distribution can be converted into a factor graph. Each function is the local function PXi∣Πi
and edges

are drawn from this node to Xi and to its parents Πi. The DAG corresponding to the factorisation

PX1X2X3X4 = PX1PX2∣X1
PX3∣X1X2

PX4∣X3

of PX1,X2,X3,X4 is shown in Figure 20.1 and the corresponding factor graph in Figure 20.2.



20.2. THE SUM PRODUCT ALGORITHM 405

X1
//

!!

X2

��

X3
// X4

Figure 20.1: A Directed Acyclic Graph

pX1 X1
pX3∣X1,X2 X3

pX4∣X3 X4

pX2∣X1 X2

Figure 20.2: The Factor Graph Corresponding to the Directed Acyclic Graph in Figure 20.1

20.2 The Sum Product Algorithm

Figure 20.3 indicates messages to be passed. The following notation is introduced:

µX→γj(x) x ∈ XX ∶ Variable to local function

This is the message sent from node X to node γj in the sum product algorithm and

µγj→X(x) x ∈ XX ∶ Local function to variable.

This is the message sent from the function node γj to the variable node X.

X

µX→γj

��

γj

µγj→X

ZZ

Figure 20.3: Updates in a Factor Graph

Recall the de�nition of neighbour (De�nition 1.2). Nv will be used to denote the set of neighbours of a

node v. A factor graph is undirected. By the de�nition of a factor graph, all the neighbours of a node

will be of the opposite type to the node itself.



406 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

The message sent from node v on edge e is the product of the local function at v (or the unit function

if v is a variable node) with all messages received at v on edges other than e and then marginalised to

the variable associated with e. The messages are de�ned recursively as follows.

De�nition 20.4 (Sum Product Update Rule). For x ∈ Xk, and for each Xk ∈ Nγj ,

µXk→γj(x) =
⎧⎪⎪⎨⎪⎪⎩

∏h∈NXk
/{γj} µh→Xk

(x) ∀x ∈ Xk NXk
≠ ϕ

1 NXk
= ϕ.

(20.3)

and for each γj ∈ NXk
,

µγj→Xk
(x) = ∑

y∈XṼ /{k}

γj(y, x) ∏
Y ∈Nγj /{Xk}

µY→γj(yj) ∀x ∈ Xk (20.4)

where ϕ denotes the empty set, and where the domain of γj has been extended to X and variable Xk

takes the last position; yj is the value taken by variable Xj (j ≠ k).

The �ow of computation in a factor graph is illustrated in Figure 20.4.

Figure 20.4: Updates in a fragment of a Factor Graph

De�nition 20.5 (Initialisation). The initialisation is

µXk→γj(x) = 1 ∀x ∈ Xj

for each Xk ∈ Nγj

and

µγj→Xk
(x) = 1 ∀x ∈ Xj

for each γj ∈ NXk
. for each variable node Xk and each function node γj.



20.2. THE SUM PRODUCT ALGORITHM 407

De�nition 20.6 (Termination). The termination at a node is the product of all messages directed

towards that node.

µXk
(x) = ∏

γj∈NXk

µγj→Xk
(x), x ∈ Xk (20.5)

and

µγj(xDj
) = ∏

Xk∈Nj

µXk→γj(xk) ∀xDj
∈ XDj .

Note that the function node receives communications from precisely those variables that are in the

domain of the function.

After sending su�ciently many messages according to a suitable schedule, the termination at the

variable node yields the marginalisation, or a suitable approximation to the marginalisation, over that

variable. That is,

µXi(x) = ∑
y∈XṼ /{i}

ϕ(y, x) ∀x ∈ Xi,

where the arguments of ϕ have been rearranged, so that variable Xi appears last.

Note Consider the problem where the potentials initially represent probability distributions over the

domains and where hard evidence is inserted rendering the potential over the `impossible'. For the

initialisation, only those states that are possible are included and the initialisation set to 1; the other

states are not included (equivalently, the corresponding initialisation is set to zero). The termination

at a node then gives the joint probability distribution of the variable and the evidence. If a conditional

probability is required, then the answer has to be normalised.

The Schedule One node is arbitrarily chosen as a root and, for the purposes of constructing a

schedule, the edges are directed to form a directed acyclic graph, where the root has no parents. If the

graph is a tree, then the choice of directed acyclic graph is uniquely de�ned by the choice of the root

node. Computation begins at the leaves of the factor graph.

� Each leaf variable node sends the trivial identity function to its parents.

� Each leaf function node sends a description of γ to its parents.

� Each node waits for the message from all its children before computing the message to be sent

to its parents.

� Once the root has received messages from all its children, it sends messages to all its children.

� Each node waits for messages from all its parents before computing the message to be sent to its

children.



408 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

This is repeated from root to leaves and is iterated a suitable number of times. No iterations are needed

if the factor graph is cycle free. This is known as a generalised forward and backward algorithm.

The following result was proved by N. Wiberg [145].

Theorem 20.7 (Wiberg). Let

ϕ(x) =∏
j

γj(xDj
)

and let G be a factor graph with no cycles, representing ϕ. Then, for any variable node Xk, the

marginal of ϕ at x ∈ Xk is

µXk
(x) = ∑

y∈XṼ /{k}

ϕ(y, x),

where the arguments of ϕ have been rearranged so that the kth variable appears last and µXk
(x) is given

in Equation (20.5).

Example 20.8.

Before giving a proof of Wiberg's theorem, the following example may be instructive. Consider

ϕ(x1, x2, x3) = γ1(x1, x2)γ2(x2, x3).

The factor graph is then a tree given in Figure 20.5.

X1 γ1(x1, x2) X2 γ2(x2, x3) X3

Figure 20.5: An Example on Three Variables and Two Functions

In this case, the messages are:

µX1→γ1(x1) = µX3→γ2(x3) = 1.

µγ1→X2(x2) = ∑
x1∈X1

γ1(x1, x2)µX1→γ1(x1) = ∑
x1∈X1

γ1(x1, x2)

µγ2→X2(x2) = ∑
x3∈X3

γ2(x2, x3)µX3→γ2(x3) = ∑
x3∈X3

γ2(x2, x3)

µX2→γ2(x2) = µγ1→X2(x2) = ∑
x1∈X1

γ1(x1, x2)

µX2→γ1(x2) = µγ2→X2(x2) = ∑
x3∈X3

γ2(x2, x3)

µγ1→X1(x1) = ∑
x2∈X2

γ1(x1, x2)µX2→γ1(x2) = ∑
(x2,x3)∈X2×X3

γ1(x1, x2)γ2(x2, x3)



20.2. THE SUM PRODUCT ALGORITHM 409

µγ2→X3(x3) = ∑
(x1,x2)∈X1×X2

γ1(x1, x2)γ2(x2, x3).

Note that the variable terminations are

µX1(x1) = µγ1→X1(x1) = ∑
(x2,x3)∈X2×X3

γ1(x1, x2)γ2(x2, x3)

µX2(x2) = µγ1→X2(x2)µγ2→X2(x2) = ∑
(x1,x3)∈X1×X3

γ1(x1, x2)γ2(x2, x3)

µX3(x3) = µγ2→X3(x3) = ∑
(x1,x2)∈X1×X2

γ1(x1, x2)γ2(x2, x3),

which are the required marginalisation. The theorem of N. Wiberg states that if the factor graph is a

tree, then after a full schedule, the terminations give the required marginalisation.

Proof of Theorem 20.7 Consider Figure 20.6. Suppose that a full schedule has been performed on

a tree. The proof proceeds in three steps.

Step 1: Decompose the factor graph into n components, R1, . . . ,Rn Choose a variable Xi and

suppose that n edges enter the variable nodeXi. Since there are no cycles, the margin ∑y∈XṼ /{i}
ϕ(y, xi)

(where the arguments of ϕ have been suitably rearranged) may be written as

∑
y∈XṼ /{i}

ϕ(y, xi) = ∑
y∈X ∣yi=xi

∏
j∈R1

γj(yDj
) ∏
j∈R2

γj(yDj
) . . . ∏

j∈Rn

γj(yDn
)

=
n

∏
k=1

∑
y
Rk
∈XRk

∣yi=xi

∏
j∈Rk

γj(yDj
)

=
n

∏
k=1

νRk
(xi),

where the notation is clear. The last expression has the same form as the termination formula. There-

fore the assertion is proved if it can be established that

νRk
(xi) = µγ0

k
→Xi
(xi), k = 1, . . . , n,

where γ01 , . . . , γ
0
n are the n function nodes that are neighbours of Xi. Due to the clear symmetry, it is

only necessary to consider one of these.

Step 2 Consider the decomposition of R1. The case where γ
0
1 has three neighbours is illustrated in

Figure 20.7. In the three variable case shown in Figure 20.7, X1 is the node under consideration and

γ01 is outside R3 and R4. Suppose the variables neighbouring γ01 are X1, Y1, . . . , Ym and the regions

corresponding to Y1, . . . , Ym are R11, . . . ,R1m respectively. Then νR1 can be decomposed as



410 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

Figure 20.6: Step 1 (chosen variable X1, which has two neighbours)

Figure 20.7: Step 2

νR1(x1) = ∑
y∈XR1

∣y1=x1

∏
j∈R1

γj(yDj
)

= ∑
(y1,...,ym)

γ01(x1, y1, . . . , ym)
m

∏
k=1

⎛
⎜
⎝

∑
zR1k

∈XR1k
∣Yk=yk

∏
j∈R3

γj(zDj
)
⎞
⎟
⎠

= ∑
(y1,...,ym)

γ01(x1, y1, . . . , ym)
m

∏
k=1

ν̃R1k
(yk)

where the notation Yk = yk means that the value of the variable denoted Yk takes the value yk in

zR1k
. The notation XR1k

denotes all the variable nodes that are neighbours of function nodes in R1k,

retaining the same indices as the full set of variables.

Crucially, note that if variable Xj is a leaf node in the graph, then ν̃Rj ≡ 1.



20.3. THE SUM PRODUCT ALGORITHM ON GENERAL GRAPHS 411

The expression for νR1 has the same form as the update rule given for µγj→X in Equation (20.4).

In other words, if ν̃Rj(yj) = µXj→γ0
1
(yj) for each j, then the result is proved. The algorithm proceeds

to the leaf nodes of the factor graph.

Step 3 There are two cases. If the leaf node is a function node (as in step 1, going from a variable

to functions), then (clearly from the graph) this is a function (h say) of a single variable (say Y ) and

(from (20.4)),

ν(y) = h(y) = µh→Y (y).

If the leaf node is a variable node X (as in step 2, going from functions to variables), then the leaf

variable is adjacent to a single function h (or else it is not a leaf), which has neighbours (Y1, . . . , Ym,X),
say, then

ν̃(x) = 1 = µX→h(x),

since if X is a leaf, then h is the only neighbour of X and hence µX→h(x) ≡ 1 from (20.3).

By tracing backward from the leaf nodes, it is now clear, by induction, that

∑
y∈XṼ /{i}

ϕ(y, xi) =
n

∏
j=1

µγ0
j→Xi

(xi),

where (γ01 , . . . , γ0n) are the neighbours of node Xi.

Termination Consider the termination formula

µX(x) = ∏
γj∈NX

µγj→X(x),

together with the formula for the message from a variable node to a function node:

µX→γj(x) = ∏
h∈NX/{γj}

µh→X(x).

Suppose the factor graph is a tree. Then, since any variable to function message is the product of

all but one of the factors in the termination formula, it is clear that µX(x) may be computed as the

product of the two messages that were passed in opposite directions, a) from the variable X to one of

the functions and b) from the function to the variable X.

20.3 The Sum Product Algorithm on General Graphs

The result of Wiberg shows that the sum product algorithm gives the correct answer after a �nite

schedule when the factor graph is a tree. Unfortunately, even in relatively simple examples (Exam-

ple 20.3), the factor graph is not a tree. The problem of �nding conditions on whether a propagation



412 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

scheme converges to the right answer has been considered in [95]. In general, there are two major

obstacles.

1. if the sum-product algorithm converges, it is not clear whether the convergence is to the required

marginal.

2. the sum-product algorithm does not always converge.

If the factors are all strictly positive, a �xed point exists [149]. This does not imply convergence towards

the �xed point and there is no guarantee that the �xed point is stable.

Mooij and Kappen [95] give su�cient conditions where the mapping has a �xed point and where

there is convergence to the �xed point.

20.4 Stochastic Probability Updates

This section considers the article by Noorshams and Wainwright [101]. Some simpli�cation to the

message passing algorithm can be made if it is assumed that the function ϕ over a domain X = ×dj=1Xj

is of the form:

ϕ =
d

∏
j=1

ψj ∏
⟨j,k⟩∈U

ψjk (20.6)

where the domain of ψj is Xj and the domain of ψjk is Xj ×Xk; U ⊆ {⟨j, k⟩ ∶ 1 ≤ j < k ≤ d}. The charge
here is:

Φ = {ψj ∶ j ∈ Ṽ ;ψjk ∶ ⟨j, k⟩ ∈ U}

In this case, the function nodes corresponding to the ψjs are leaf nodes, while the function nodes ψjk

only receive a message from one neighbour before passing a message onto a variable node. Therefore,

the message passed on from the function node is identical to the message received by the function

node; no multiplication is required.

For functions that factorise according to Equation (20.6), it follows that only variable to variable

messages need be considered; messages are propagated along the edges of the undirected graph G =
(Ṽ , U).

Let Muv denote the message transmitted along the edge ⟨u, v⟩ in the direction u↦ v. The message

passing algorithm discussed so far, in this setting, may be expressed as:

⎧⎪⎪⎨⎪⎪⎩

M0
uv ≡ 1

M t+1
uv (xv) = ∑y∈Xu

ψu(y)ψuv(y, xv)∏j∈N(u)/{v}M
t
ju

where N(u) denotes the neighbours of node u in graph G. If the factor graph is a tree, the messages

are sent into a root, then propagated back out to the leaves, resulting in exact marginalisations. If the

factor graph contains loops, then a suitable schedule is chosen and the updates are iterated.

Suppose that M t
uv

t→+∞Ð→ M∗
uv. The termination is:



20.4. STOCHASTIC PROBABILITY UPDATES 413

P(Xu = x(k)u ) = ψu(x(k)u ) ∏
w∈N(u)

M∗
wu(x(k)u ).

The Stochastic Probability Updates of Noorshams and Wainwright [101] consider the situation where

the state space for each variable Xj = (x(1)j , . . . , x
(kj)
j ) is large. Therefore, not all elements of the state

space are updated at each iteration. The algorithm proceeds as follows:

O�-line Phase For the o�-line phase, compute:

Γ̃uv(., x(j)v ) =
ψuv(., x(j)v )
βuv(x(j)v )

βuv(x(j)v ) =
ku

∑
i=1
ψuv(x(i)u , x(j)v )ψv(x(j)v ).

Stochastic Update

1. Initialise message vectors Mvu(x(k)u )0 ≡ 1

2. (a) Compute the product of incoming messages

M̃v/u(x(j)v ) = ∏
w∈N(v)/{u}

M t
wv(x(j)v )

(b) Pick a random index J t
vu according to the probability distribution

ptvu(x(j)v )∝ M̃v/u(x(j)v )βvu(x(j)v ) j ∈ {1, . . . , kv}

(c) Update message vector M t+1
vu with step-size λt ∈ (0,1) (superscript is an index):

M t+1
vu (.) = (1 − λt)M t

vu(.) + λtΓ̃uv(., x(J
t
vu)

v ).

Now suppose that kj = K, for some �xed K ∈ N. The computational complexity of this algorithm is

O(d) operations per edge per round.
The number λt is chosen as: λt = 1

1+t . It has to satisfy:

1. λt → 0 as t→ +∞,

2. ∑∞t=1 λt = +∞ to ensure `in�nite travel'.

Application to Image Restoration This algorithm is presented in [101], where results on conver-

gence are established. It is applied to image processing and computer vision; a 200×200 image (40000

pixels), with K = 256 grey-scale levels.

The model is the Potts model: it is assumed that the state space for each variable is Xj = {1, . . . ,K}
and

ψuv(i, j) =
⎧⎪⎪⎨⎪⎪⎩

1 i = j
γ i ≠ j



414 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

For the Potts model,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βuv(j) = ψu(j)(1 + (K − 1)γ)

Γuv(i, j) =
⎧⎪⎪⎨⎪⎪⎩

1
1+(K−1)γ i = j

γ
1+(K−1)γ i ≠ j

For the application to image processing, the lattice is used; the edge set is

U = {⟨(x, y), (x + 1, y)⟩ ∶ x = 1, . . . ,199, y = 1, . . . ,200;
⟨(x, y), (x, y + 1)⟩ ∶ x = 1, . . . ,200, y = 1, . . . ,199}.

The parameter in the Potts model is: γ = 0.05. This is a smoothing parameter. A picture of the moon

is taken, which is then contaminated by adding i.i.d. N(0,0.12) variables to each pixel. The algorithm

is then run, where evidence is entered on the singleton potentials;

ψj(x)←
⎧⎪⎪⎨⎪⎪⎩

1 intensity = x
0 otherwise

This is slightly di�erent from the earlier discussion of the sum-product algorithm; the single variable

potentials ψj represent the raw data; the edge potentials ψjk represent smoothing.

The propagation algorithm is applied and the output is the most likely value for each pixel.

The experiments indicate that the Stochastic Probability Update gives good results.

Notes The sum product algorithm is due to N.Wiberg (1996) [145], and was developed further,

with applications to Bayesian networks by F.R. Ksischang , B.J. Frey and H-A. Loeliger (2001) [78]

and S.M. Aji and R.J McEliece (2000) [1]. The stochastic update algorithm and application to image

processing was introduced by N. Noorshams and M.J. Wainwright [101] (2013).



20.5 Exercise

Consider the directed acyclic graph below.

B

��

E

�� ��

A R

Figure 20.8: Burglary, Earthquake and Radio

The variables are B- Burglary, A - Alarm, E- Earthquake and R - news broadcast.

These are random variables with the states (0 - no (false), 1 - yes(true)). The alarm is reliable for

detecting burglary, but also responds to minor earthquakes. Radio broadcasts tell about occurrences

of such earthquakes, but are not always correct. The conditional probability distributions for this

problem are given below.

PR∣E =
R/E 0 1

0 0.99 0.05

1 0.01 0.95

PA∣B,E(0∣., .) =
E/B 0 1

0 0.97 0.05

1 0.05 0.02

PB(1) = 0.01, PE(1) = 0.999

Assume that the joint distribution PA,B,E,R factorises recursively according to the Bayesian network

shown in the �gure. Using the sum - product algorithm, compute

1. the conditional probability PB∣A(1∣1)

2. the conditional probability PB∣A,R(1∣1,1).

415



20.6 Answer

The computation of PB∣A(1∣1) is given. The key point is that when hard evidence A = 1 is received,

this is accommodated by considering XA = {1} and only considering a = 1. When this is done, the

termination at variable B will give the function PB,A(.,1); this has to be normalised appropriately to

give the conditional probability.

The factor graph is given in Figure 20.9

pB(b) b pE(e)

a pA∣B,E(a, b, e) e pR∣E(e, r) r

Figure 20.9: Factor Graph

µPB→B = PB = (0.99,0.01)

µB→PA∣B,E
= µPB→B = (0.99,0.01)

A is observed to be 1, so

µA→PA∣B,E
(1) = 1 ∀(b, e)

Now µPA∣B,E→E needs a marginalisation

µPA∣B,E→E = ∑
b

PA∣B,E(1∣b, e)µB→PA∣B,E
(b)µA→PA∣B,E

(1)

= ∑
b

PA∣B,E(1∣b, e)µB→PA∣B,E
(b)

= (0.03 × 0.99 + 0.95 × 0.01,0.95 × 0.99 + 0.98 × 0.01) = (0.0392,0.9503)

µPE→E = PE

µR→pR∣E = (1,1)

µPR∣E→E =∑
r

PR∣E(r∣.) = (1,1)

All messages have been propagated to the root E.

Message µE→PE
is not involved in the computation of PB∣A so don't compute it.

µE→PA∣B,E
= µPE→E = (0.001,0.999)

Message µpA∣B,E→A not needed, so don't compute it. Neither is µE→PR∣E
nor µPR∣E→R.

416



20.6. ANSWER 417

µPA∣B,E→B(b) = ∑
e

PA∣B,E(1∣b, e)µE→PA∣B,E
(e)µA→PA∣B,E

(1)

= ∑
e

PA∣B,E(1∣b, e)µE→PA∣B,E
(e)

= (0.03 × 0.001 + 0.95 × 0.999,0.95 × 0.001 + 0.98 × 0.999) = (0.94908,0.97997)

Message µB→PB
not needed, because we are interested in the variable B and we need the product of

messages function to the variable B.

Finally,

(PB∣A(0∣1),PB∣A(1∣1)) = β(µPB→b(0)µPA∣B,E→b(0), µPB→b(1)µPA∣B,E→b(1))

= 1

0.968469627
(0.037203936,0.93165691)



418 CHAPTER 20. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM



Chapter 21

Graphical Models and Exponential

Families

This chapter deals with multivariate distributions which fall within the framework of exponential family.

The dependence structure is expressed as a graphical model. For an exponential family of full rank,

there is a 1 - 1 mapping between canonical parameters and mean �eld parameters. We discuss conjugate

duality and the Fenchel-Legendre transform between the log-partition function A(θ) ∶ θ ∈ Θ (the

canonical parameter space) and A∗(µ) ∶ µ ∈M where M is the mean-value parameter space and µ

denotes the mean value vector of the su�cient statistic vector. The Kullback-Leibler divergence has

particularly convenient form for exponential families; we discuss the primal, dual and mixed forms in

terms of the canonical and mean value parametrisations. We consider mean �eld approximations, to

obtain a mean �eld lower bound for A(θ).

21.1 Introduction to Exponential Families

The notations are as before. Let V = {X1, . . . ,Xd} denote the random variables. For j = 1, . . . , d, Xj

will denote the state space for variable Xj . If Xj is continuous, then Xj ⊆ R (the real numbers). If Xj is

discrete, then Xj = {x(1)j , . . . , x
(kj)
j }, where kj is possibly +∞. As usual, the notation X = (X1, . . . ,Xd)

denotes the row vector of variates. An instantiation of X will be denoted x ∈ X1 × . . .Xd ≡ X (when no

subscript is employed, X denotes the product space, which is the state space of the row vector X).

An exponential family is a family of probability distributions satisfying certain properties, listed in

De�nition 21.1 below. For the purposes of Bayesian Networks, the emphasis is on discrete variables

and Gaussian variables.

De�nition 21.1 (Exponential Family). An exponential family is a family of probability distributions

{Pθ ∶ θ ∈ Θ}, where Θ is a parameter space. These are de�ned by a probability mass function PX(.∣θ) if
X are discrete variables, or a probability density function πX(.∣θ) for continuous variables, indexed by

a parameter set Θ ⊆ Rp (where p is possibly in�nite), where there is a function Φ ∶ X → Rp, a function

A ∶ Θ→ R and a function h ∶ X → R such that

419



420 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

PX(x∣θ) = exp{⟨θ,Φ(x)⟩ −A(θ)}h(x)

if X is a discrete random vector and

πX(x∣θ) = exp{⟨θ,Φ(x)⟩ −A(θ)}h(x)

if X is a continuous random vector.

It is convenient to use the notation I to denote the indexing set for the parameters; θ = (θα)α∈I .
Then Φ denotes a collection of functions Φ = (ϕα)α∈I , where ϕα ∶ X → R. The inner product notation

is de�ned as

⟨θ,Φ(x)⟩ = ∑
α∈I

θαϕα(x).

The parameters in the vector θ are known as the canonical parameters or exponential parameters.

Attention will be restricted to distributions where ∣I ∣ = p < +∞; namely, I has a �nite number, p, of

elements.

Since ∑X PX(x∣θ) = 1 for discrete variables and ∫X πX(x∣θ)dx = 1 for continuous variables, it follows
that the quantity A, known as the log partition function, is given by the expression

A(θ) = log∫X exp{⟨θ,Φ(x)⟩}h(x)dx

for continuous variables and

A(θ) = log∑
X

exp{⟨θ,Φ(x)⟩}h(x)

for discrete variables. It is assumed that h, θ and Φ satisfy appropriate conditions so that A is �nite.

Set

P (x; θ) =
PX(x∣θ)
h(x) . (21.1)

With the set of functions Φ �xed, each parameter vector θ indexes a particular probability function

PX(.∣θ) belonging to the family. The exponential parameters of interest belong to the parameter space,

which is the set

Θ = {θ ∈ Rp∣A(θ) < +∞}. (21.2)

It will be seen shortly that A is a convex function of θ.

De�nition 21.2 (Regular Families). An exponential family for which the domain Θ of Equation (21.2)

is an open set is known as a regular family.

Attention will be restricted to regular families.



21.2. STANDARD EXAMPLES OF EXPONENTIAL FAMILIES 421

De�nition 21.3 (Minimal Representation). An exponential family, de�ned using a collection of func-

tions Φ for which there is no linear combination ⟨a,Φ(x)⟩ = ∑α∈I aαϕα(x) equal to a constant is known

as a minimal representation.

For a minimal representation, there is a unique parameter vector θ associated with each distribution.

De�nition 21.4 (Over-complete). An over-complete representation is a representation that is not

minimal; there is a linear combination of the elements of Φ which yields a constant.

When the representation is over-complete, there exists an a�ne subset of parameter vectors θ, each

associated with the same distribution.

Recall the de�nition of su�ciency, given in De�nition 12.12. The following lemma is crucial. Its proof

is left as an exercise

Lemma 21.5. Let X = (X1, . . . ,Xd) be a random vector with joint probability function

PX(x∣θ) = exp{⟨θ,Φ(x)⟩ −A(θ)}h(x), x ∈ X

then Φ(X), which will be denoted Φ, is a su�cient statistic for θ. If the representation is minimal,

then Φ(X) is a minimal su�cient statistic for θ.

Proof Exercise 1 page 436.

21.2 Standard Examples of Exponential Families

The purpose of this section is to take some basic distributions, which are well known, and illustrate

that they satisfy the de�nition of an exponential family.

Bernoulli Consider the random variableX, taking values 0 or 1, with probability function PX(1) = p,
PX(0) = 1 − p. This may be written as

PX(x) =
⎧⎪⎪⎨⎪⎪⎩

px(1 − p)1−x x ∈ {0,1}
0 other x.

Then

pX(x) = exp{x log ( p

1 − p) + log(1 − p)}

= exp{xθ + log(1 − p)}
= exp{xθ − log(1 + eθ)} ,

where θ = log ( p
1−p).



422 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Notation Here, the quantity θ denotes the canonical parameter.

In the language of exponential families, X = {0,1}, Φ = {ϕ} where ϕ(x) = x, h(0) = h(1) = 1,

PX(0∣θ) = e−A(θ), PX(1∣θ) = eθ−A(θ)

In other words

logPX(x∣θ) = θx −A(θ),

which gives

1 = PX(0∣θ) + PX(1∣θ) = e−A(θ)(1 + eθ)

so that

A(θ) = log(1 + exp{θ}).

Gaussian Recall that the one dimensional Gaussian density is of the form

π(x∣µ,σ) = 1√
2πσ

exp{−(x − µ)
2

2σ2
} .

This may be expressed in terms of an exponential family as follows: X = R, h(x) = 1, Φ = {ϕ1, ϕ2}
where ϕ1(x) = x and ϕ2(x) = −x2.

logπ(x∣θ) = θ1x − θ2x2 −A(θ)

where

1 = e−A(θ)∫
∞

−∞
eθ1x−θ2x

2

dx.

The partition function is therefore

A(θ) = 1

2
logπ − 1

2
log θ2 +

θ21
4θ22

and the parameter space is

Θ = {(θ1, θ2) ∈ R2∣θ2 > 0}.

Note that in the `usual' notation

θ1 =
µ

σ2
, θ2 =

1

σ2
.



21.3. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES 423

Exponential Recall that an Exponential density is of the form

π(x∣λ) =
⎧⎪⎪⎨⎪⎪⎩

λe−λx x ≥ 0
0 x < 0.

This is an exponential family, taking X = (0,+∞), h(x) = dx, Φ = ϕ, where ϕ(x) = −x, θ = λ, so that

e−A(θ) = θ, yielding A(θ) = − log θ, Θ = (0,+∞).

Poisson Recall that the probability function p for a Poisson distribution with parameter µ is given

by

P(x∣µ) = µ
x

x!
e−µ, x = 0,1,2, . . .

This is an exponential family with h(x) = 1
x! , θ = logµ so that P(x∣µ) = P (x; θ)h(x), where

P (x; θ) = exθ−eθ .

This gives A(θ) = exp{θ}. Since µ ≥ 0 and θ = logµ, it follows that Θ = R.

Beta Recall that the probability density function for a Beta distribution is given by

π(x∣α,β) =
⎧⎪⎪⎨⎪⎪⎩

Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 x ∈ [0,1]
0 other x.

This is an exponential family, with X = (0,1), h ≡ 1, α − 1 = θ1, β − 1 = θ2, Φ = {ϕ1, ϕ2} where

ϕ1(x) = logx, ϕ2(x) = log(1 − x). Then

logπ(x∣θ) = θ1 logx + θ2 log(1 − x) −A(θ),

where the partition function A is given by

A(θ) = log Γ(θ1 + 1) + log Γ(θ2 + 1) − log Γ(θ1 + θ2 + 2)

and the parameter space is Θ = (−1,∞)2.

21.3 Graphical Models and Exponential Families

The scalar examples described in section 21.2 serve as building blocks for the construction of exponential

families, which have an underlying graphical structure.

Example 21.6 (Sigmoid Belief Network Model).

The sigmoid belief network model, described below, was introduced by R. Neal (1992) [98]. It is an

exponential family, with an underlying graphical structure.

Consider a directed acyclic graph G = (V,D), where V = {X1, . . . ,Xd} is the set of variables, along
which the probability distribution of X = (X1, . . . ,Xd) may be factorised. Suppose that for each



424 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Xj ∈ V , j = 1, . . . , d, the random variable Xj takes values 0 or 1, each with probability 1/2. For any

two components Xs and Xt of the random vector X, component Xs has a direct causal e�ect on Xt

only if (Xs,Xt) ∈D.

The notation will be simpli�ed in the following way: V and D will be used to denote the sets of nodes

(variables) and directed edges respectively; the same notation will also be used to denote the indexing

sets of nodes and directed edges. In other words the notations

V = {1, . . . , d} and D = {(s, t)∣(Xs,Xt) ∈D}

will also be used. The meaning will be clear from the context. The probability distribution over the

possible con�gurations is modelled by an exponential family with probability function PX(.∣θ) of the
form

PX(x∣θ) = exp
⎧⎪⎪⎨⎪⎪⎩

d

∑
s=1

θsxs + ∑
(s,t)∈D

θ(s,t)xsxt −A(θ)
⎫⎪⎪⎬⎪⎪⎭
.

The notation Pai denotes the parent set of node Xi and πi(x) denotes the instantiation of Pai corre-

sponding to the instantiation {X = x}, this may be rewritten as

PX(x∣θ) =
d

∏
i=1

PXi∣Pai
(xi∣πi(x), θ),

where (clearly)

PXi∣Pai
(xi∣πi(x), θ) =

exp{xi (θi +∑xj∈πi(x) θ(ij)xj)}
1 + exp{θi +∑xj∈πi(x) θ(ij)xj}

,

where the notation xj ∈ πi(x) is clear. The index set is I = V ∪D. The domain Θ = Rn, where n = ∣I ∣.
Since the sum that de�nes A(θ) is �nite for all θ ∈ Rn, it follows that the family is regular. It is

minimal, since there is no linear combination of the functions equal to a constant.

This model may be generalised. For example, one may consider higher order interactions. To include

coupling of triples (Xs,Xt,Xu), one would add a monomial xsxtxu with corresponding exponential

parameter θ(s,t,u). More generally, the set C of indices of interacting variables may be considered,

giving

PX(x∣θ) = exp{∑
C∈C

θ(C)∏
s∈C

Xs −A(θ)} .

Example 21.7 (Noisy `or' as an Exponential Family).

The QMR - DT (Quick Medical Reference - Decision Theoretic) database is a large scale probabilistic

data base that is intended to be used as a diagnostic aid in the domain of internal medicine. It is a



21.4. PROPERTIES OF THE LOG PARTITION FUNCTION 425

bipartite graphical model; that is, a graphical model where the nodes may be of one of two types. The

upper layer of nodes (the parents) represent diseases and the lower layer of nodes represent symptoms.

There are approximately 600 disease nodes and 4000 symptom nodes in the database.

An evidence, or �nding will be a set of observed symptoms, denoted by a vector of length 4000,

each entry being a 1 or 0 depending upon whether or not the symptom is present or absent. This will

be denoted f , which is an instantiation of the random vector F . The vector d will be used to represents

the diseases; this is considered as an instantiation of the random vector D. Let dj denote component

j of vector d and let fj denote component j of vector f . Then, if the occurrence of various diseases

are taken to be independent of each other, the following factorisation holds:

PF ,D(f, d) = PF ∣D(f ∣d)PD(d) =∏
i

PFi∣D(fi∣d)∏
j

PDj(dj).

This may be represented by noisy `or' model. Let qi0 denote the probability that symptom i is present

in the absence of any disease and qij the probability that disease j induces symptom i, then the

probability that symptom i is absent, given a vector of diseases d is

PFi∣D(0∣d) = (1 − qi0)∏
j

(1 − qij)dj .

The noisy or may then be rewritten in an exponential form:

PFi∣D(0∣d) = exp
⎧⎪⎪⎨⎪⎪⎩
−∑

j

θijdj − θi0
⎫⎪⎪⎬⎪⎪⎭
,

where θij ≡ log(1 − qij) are the transformed parameters.

21.4 Properties of the log Partition Function

Firstly, some basic properties of the log partition function A(θ) are discussed, which are then developed
using convex analysis, discussed in [3]. Let Eθ[.] denote expectation with respect to p(.∣θ) for discrete
variables, or π(.∣θ) for continuous variables. Of particular importance is the idea that the vector

µ, where µi ∶= Eθ[ϕi(X)] provides an alternative parametrisation of the exponential family. Here

expectation is de�ned as

Eθ[f(X)] = ∫X πX(x∣θ)f(x)dx

if X is a continuous random vector and

Eθ[f(X)] = ∑
x∈X

PX(x∣θ)f(x)

if X is a discrete random vector. Recall that, for discrete variables,

A(θ) = log ∑
x∈X

e⟨θ,Φ(x)⟩h(x). (21.3)



426 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Provided expectations and variances exist, it follows that

∂

∂θα
A(θ) = ∑

x∈X
e⟨θ,Φ(x)⟩−A(θ)ϕα(x)h(x) = Eθ[ϕα(X)]. (21.4)

Taking second derivatives yields

∂

∂θα∂θβ
A(θ) = Eθ[ϕα(X)ϕβ(X)] −Eθ[ϕα(X)]Eθ[ϕα(X)] = Covθ(ϕα(X), ϕβ(X)).

It is and easy to show, and a standard fact, that any covariance matrix is non negative de�nite. It

now follows that, on Θ, A is a convex function.

Mapping to Mean Parameters Given a vector of functions Φ, set F (θ) = Eθ[Φ(X)] and let

M = F (Θ). For an arbitrary exponential family de�ned by

PX(x∣θ) = exp{⟨θ,Φ(x)⟩ −A(θ)}h(x),

a mapping Λ ∶ Θ→M may be de�ned as follows:

Λ(θ) ∶= Eθ[Φ(X)].

To each θ ∈ Θ, the mapping Λ associates a vector of mean parameters µ = Λ(θ) belonging to the set

M. Note that, by Equation (21.4),

Λ(θ) = ∇A(θ).

The mapping Λ is one to one, and hence invertible on its image, when the representation is minimal.

The image of Θ is the interior ofM.

Example 21.8 (Bernoulli Trial).

Consider a Bernoulli random variable X with state space {0,1}. That is, pX(0) = 1− p and pX(1) = p.
Now consider an Overcomplete exponential representation

PX(x∣θ) = exp{θ0(1 − x) + θ1x −A(θ0, θ1)}

so that

A(θ0, θ1) = log (eθ0 + eθ1) .

Here Θ = R2. ϕ0(x) = 1 − x and ϕ1(x) = x.

∂

∂θ0
A(θ) = eθ0−A(θ0,θ1) = 1 − p = µ0

∂

∂θ1
A(θ) = eθ1−A(θ0,θ1) = p = µ1.



21.5. FENCHEL LEGENDRE CONJUGATE 427

The setM of mean parameters is the simplex {(µ0, µ1) ∈ R+×R+∣µ0+µ1 = 1}. For any �xed µ = (µ0, µ1)
where µ0 ≥ 0, µ1 ≥ 0, µ0 + µ1 = 1, the inverse image is,

Λ−1(µ) = {(θ0, θ1) ∈ R2 ∣ eθ0

eθ0 + eθ1 = µ0}

which may be rewritten as

Λ−1(µ) = {(θ0, θ1) ∈ R2 ∣θ1 − θ0 = log
µ1
µ0
} .

In an over-parametrised, or over-complete representation, there is no longer a bijection between Θ and

Λ(Θ). Instead, there is a bijection between elements of Λ(Θ) and a a�ne subsets of Θ. A pair (θ, µ)
is said to be dually coupled if µ = Λ(θ), and hence θ ∈ Λ−1(µ).

21.5 Fenchel Legendre Conjugate

The Fenchel Legendre conjugate of the log partition function A is de�ned as follows:

A∗(µ) ∶= sup
θ∈Θ
{⟨µ, θ⟩ −A(θ)} . (21.5)

The choice of notation is deliberately suggestive; the variables in the Fenchel Legendre dual turn out

to have interpretation as the mean parameters. Recall the de�nition of P given by Equation (21.1);

namely, if PX(x∣θ) is the probability function (or density function), then

P (x; θ) =
PX(x∣θ)
h(x) .

De�nition 21.9 (Boltzmann - Shannon Entropy). The Boltzmann - Shannon entropy of PX(x∣θ) with
respect to h is de�ned as

H(PX(x∣θ)) = −Eθ[logP (x; θ)].

The following is the main result of the chapter.

Theorem 21.10. For any µ ∈M, let θ(µ) ∈ Λ−1(µ). Then

A∗(µ) = −H(PX(x∣θ(µ))).

In terms of this dual, for θ ∈ Θ, the log partition satis�es be expressed:

A(θ) = sup
µ∈M
{⟨θ, µ⟩ −A∗(µ)}. (21.6)



428 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Proof of Theorem 21.10 From the de�nition µ = Eθ[Φ(X)], it follows that

−H(PX(x∣θ)) = Eθ[logP (X; θ)] = Eθ[⟨θ,Φ(X)⟩] −A(θ) = ⟨θ, µ⟩ −A(θ). (21.7)

Consider the function

F (µ, θ) = ⟨µ, θ⟩ −A(θ).

Let θ(µ) denote a value of θ that maximises F (µ, θ) if such a value exists in Θ. The result follows

directly by using the de�nition given by Equation (21.5) together with Equation (21.7). Otherwise,

let θ(n)(µ) denote a sequence such that limn→+∞ F (µ, θ(n)(µ)) = A∗(µ). The �rst statement of the

theorem follows directly.

For the second part, choose θ ∈ Θ and choose µ(θ) = ∇θA(θ). By de�nition ofM, note that µ(θ) ∈M.

Since A is convex, it follows that µ(θ) maximises ⟨θ, µ⟩ −A(θ), so that

A(θ) = ⟨µ(θ), θ⟩ −A∗(µ(θ)).

But, from the de�nition of A∗(µ), it follows that for all µ ∈M,

A(θ) ≥ ⟨µ, θ⟩ −A∗(µ).

From this,

A(θ) = sup
µ∈M
{⟨µ, θ⟩ −A∗(µ)}

and Theorem 21.10 is established.

Examples The conjugate dual pair (A,A∗) is now computed for several examples of exponential

families.

Bernoulli Recall that A(θ) = log(1 + exp{θ}) for θ ∈ R. It follows that

A∗(µ) = sup
θ∈R
{θµ − log(1 + eθ)}

The supremum is attained for θ(µ) satisfying

µ = eθ(µ)

1 + eθ(µ)
.

It follows that

eθ(µ) = µ

1 − µ
and



21.5. FENCHEL LEGENDRE CONJUGATE 429

θ(µ) = logµ − log(1 − µ)

so that

A∗(µ) = µ logµ − µ log(1 − µ) − log(1 + µ

1 − µ),

which gives

A∗(µ) = µ logµ + (1 − µ) log(1 − µ).

Gaussian Recall that Θ = {(θ1, θ2)∣θ2 > 0} and

A(θ) = 1

2
logπ − 1

2
log θ2 +

θ21
4θ2

.

A∗(µ) = sup
θ∈Θ
{θ1µ1 + θ2µ2 −

1

2
logπ + 1

2
ln θ2 −

θ21
4θ2
}.

This is maximised when

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ1 − θ1(µ)
2θ2(µ) = 0

µ2 + 1
2θ2(µ) +

θ21(µ)
4θ22(µ)

= 0,

which gives

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ2(µ1, µ2) = − 1
2(µ2

1+µ2)
θ1(µ) = − µ1

µ2
1+µ2

and

A∗(µ1, µ2) = −
1

2
− 1

2
logπ − 1

2
log(−2(µ21 + µ2)).

Note that

M = {(µ1, µ2)∣µ21 + µ2 < 0}.

Exponential Distribution Recall that Θ = (0,+∞) and that A(θ) = − log(θ). By a straightforward

computation,

A∗(µ) = −1 − log(−µ)

and

M = (−∞,0).



430 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Poisson Distribution Recall that Θ = R and that A(θ) = exp{θ}. It is a straightforward computa-

tion to see that

A∗(µ) = µ logµ − µ

and that

M = (0,+∞).

21.6 Kullback Leibler Divergence

Recall De�nition 6.9, the Kullback Leibler distance between two probability distributions p ∈ [0,1]M

and q =∈ [0,1]M

DKL(q∣p) =
M

∑
j=1

qj ln
qj

pj
.

This may be written as

DKL(q∣p) = Eq [log
q(X)
p(X)] , (21.8)

where X is a random vector with state space X = (x1, . . . , xM) and Eq is expectation with respect

to the measure such that qj = P(X = xj). The de�nition of Kullback Leibler may be extended to

continuous distributions using Equation (21.8), where q and p denote the respective density functions.

In this case, Equation (21.8) is taken as

DKL(q∣p) = ∫
Rd
q(x) log q(x)

p(x)dx.

When q and p are members of the same exponential family, the Kullback Leibler distance may be

computed in terms of the parameters. The key result, for expressing the distance in terms of the

partition function, is the Fenchel's inequality given in Equation (21.9), which can be seen directly from

the de�nition of A∗(µ).

A(θ) +A∗(µ) ≥ ⟨µ, θ⟩, (21.9)

with equality if and only if µ = Λ(θ) and θ ∈ Λ−1(µ). That is, for µ = Λ(θ) and θ ∈ Λ−1(µ),

A(θ) +A∗(µ) = ⟨µ, θ⟩. (21.10)

Consider an exponential family of distributions, and consider two exponential parameter vectors, θ1 ∈ Θ
and θ2 ∈ Θ. When distributions are from the same exponential family, the notation D(θ1∣θ2) is used



21.7. MEAN FIELD THEORY 431

to denote DKL(p(.∣θ1)∣p(.∣θ2)). Set µ
i
= Λ(θi). Using the parameter to denote the distribution with

respect to which the expectation is taken, note that

D(θ1∣θ2) = Eθ1
[log P(X ∣θ1)

P(X ∣θ2)
] = A(θ2) −A(θ1) − ⟨µ1, θ2 − θ1⟩. (21.11)

The representation of the Kullback Leibler divergence given in Equation (21.11) is known as the primal

form of the KL divergence.

Taking µ
1
= Λ(θ1) and applying Equation (21.10), the Kullback Leibler distance may also be written

D(θ1∣θ2) ≡ D̃(µ1∣θ2) = A(θ2) +A
∗(µ

1
) − ⟨µ

1
, θ2⟩. (21.12)

The representation given in Equation (21.12) is known as the mixed form of the KL divergence. Recall

the de�nition of A∗ given by

A∗(µ) ∶= sup
θ∈Θ
{⟨µ, θ⟩ −A(θ)}

and recall Equation (21.6) from Theorem 21.10,

A(θ) = sup
µ∈M
{⟨θ, µ⟩ −A∗(µ)}.

Equation (21.6) may be rewritten as

inf
µ∈M
{A(θ) +A∗(µ) − ⟨θ, µ⟩} = 0.

It follows that infµ∈M D̃(µ∣θ) = 0.

Finally, taking µ
2
= Λ(θ2) and applying Equation (21.10) once again to Equation (21.12) yields the

so-called dual form of the KL divergence;

̃̃D(µ
1
∣µ

2
) ≡D(θ1∣θ2) = A∗(µ1) −A

∗(µ
2
) − ⟨θ2, µ1 − µ2⟩. (21.13)

21.7 Mean Field Theory

In this section, probability distributions of the form

PX(x∣θ) = exp{∑
α

θαϕα(x) −A(θ)}h(x)

are considered. Mean �eld theory techniques are discussed and it is shown how they may be used to

obtain estimates of the log partition function A(θ). This is equivalent to the problem of �nding an



432 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

appropriate normalising constant to make a function into a probability density, a problem that often

arises when updating using Bayes rule.

Mean Field Theory is based on the variational principle of Equation (21.6). The two fundamental

di�culties associated with the variational problem are the nature of the constraint setM and the lack

of an explicit form for the dual function A∗. Mean �eld theory entails limiting the optimization to a

subset of distributions for which A∗ is relatively easy to characterise.

More speci�cally, the discussion of this chapter is restricted to the case where the functions ϕα are

either linear or quadratic. The problem therefore reduces to considering a graph G = (V,U), where the
node set V denotes the variables and the edge set U denotes a direct association between the variables.

For this discussion, the edges in U are assumed to be undirected. As usual, V and U denote the node

(variable) and undirected edge sets; the same notation is used for the indexing sets. That is, with

minor abuse of notation (clear from the context), V and U are also used to mean: V = {1, . . . , d} and
U = {⟨s, t⟩∣⟨Xs,Xt⟩ ∈ E}. Speci�cally, the probability distributions under consideration are of the form

PX(x∣θ) = exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
s∈Ṽ

θsxs + ∑
(s,t)∈Ẽ

θ(s,t)xsxt −A(θ)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Let H denote a sub-graph of G over which it is feasible to perform exact calculations. In an exponential

formulation, the set of all distributions that respect the structure of H can be represented by a linear

subspace of the exponential parameters. Let I(H) denote the subset of indices associated with cliques

in H. Then the set of exponential parameters corresponding to distributions structured according to

H is given by

E(H) ∶= {θ ∈ Θ ∣ θα = 0, α ∈ I/I(H)} .

The simplest example is to consider the completely disconnected graph H = (V,ϕ). Then

E(H) = {θ ∈ Θ ∣ θ(s, t) = 0, (s, t) ∈ E} .

The associated distributions are of the product form

PX(X ∣θ) =∏
s∈Ṽ

PXs(xs∣θs).

Optimisation and Lower Bounds Let PX(x∣θ) denote the target distribution that is to be approx-

imated. The basis of mean �eld approximation is the following: any valid mean parameter speci�es a

lower bound on the log partition function, established using Jensen's inequality.

Proposition 21.11 (Mean Field Lower Bound).

A(θ) ≥ sup
µ∈M
{⟨θ, µ⟩ −A∗(µ)}



21.7. MEAN FIELD THEORY 433

Proof The proof is given for discrete variables; the proof for continuous variables is exactly the same,

replacing the sum with an integral.

A(θ) = log ∑
x∈X

exp{⟨θ,Φ(x)⟩}

= log ∑
x∈X

PX(x∣θ) exp{⟨θ,Φ(X)⟩ − logPX(x∣θ)}

= logEθ[exp{⟨θ,Φ(X)⟩ − logPX(X ∣θ)}]
(a)
≥ ⟨θ,Eθ[Φ(X)]⟩ −Eθ[logPX(X ∣θ)}]
= ⟨θ, µ⟩ −A∗(µ).

The inequality (a) follows from Jensen's inequality; the last line follows from Theorem 21.10.

There are di�culties in computing the lower bound in cases where there is not an explicit form for

A∗(µ). The mean �eld approach circumvents this di�culty by restricting to

M(G;H) ∶= {µ ∈ Rd ∣ µ = Eθ[Φ(X)], θ ∈ E(H)} .

Note thatM(G;H) ⊂M, hence

A(θ) ≥ sup
µ∈M
{⟨θ, µ⟩ −A∗(µ)} ≥ sup

µ∈M(G;H)
{⟨θ, µ⟩ −A∗(µ)} .

This lower bound is the best that can be obtained by restricting to H.

Let µ(n) denote a sequence such that for each n, µ(n) ∈M(G,H), such that µ(n)
n→+∞Ð→ µ and such

that

⟨θ, µ(n)⟩ −A∗(µ(n)) n→+∞Ð→ sup
µ∈M(G;H)

{⟨θ, µ⟩ −A∗(µ)} .

Note that µ ∈ M(G;H). Since θ ∈ Θ, it follows that µ ∈ M. The distribution associated with

µ minimises the Kullback Leibler divergence between the approximating distribution and the target

distribution, subject to the constraint that µ ∈ M(G;H). Recall the mixed form of the Kullback

Leibler divergence; namely, Equation (21.12).

D̃(µ∣θ) = A(θ) −A∗(µ) − ⟨µ, θ⟩.

Naive Mean Field Updates In the naive mean �eld approach, a fully factorised distribution is

chosen. This is equivalent to the approximation obtained by taking an empty edge set to approximate

the original distribution. The naive mean �eld updates are a set of recursions for �nding a stationary

point of the resulting optimisation problem.

Example 21.12 (Sigmoid Network Model).



434 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES

Let X = (X1, . . . ,Xd) be a random vector with state space X = {0,1}d (d binary variables). Suppose

that the distribution may be factorised along an undirected graph G = (V,U). The probability function
is given by

PX(x∣θ) = exp
⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

θjxj + ∑
⟨i,j⟩∈U

θ⟨i,j⟩xixj −A(θ)
⎫⎪⎪⎬⎪⎪⎭
.

The naive mean �eld approach involves considering the graph with no edges. In this restricted class,

PX(x∣θ) = exp
⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

θjxj −A(θ(H))
⎫⎪⎪⎬⎪⎪⎭
,

where θ(H) is the collection of parameters θ
(H)
s = θs, s = 1, . . . , d and θ(H)(s, t) ≡ 0. Note that

µs = Eθ[ϕs(X)] = Eθ[Xs]

and

µ(s,t) = Eθ[ϕs,t(X)] = Eθ[XsXt].

When θ ∈H, it follows that (Xs)ds=1 are independent, so that

µ(s,t) = Eθ[XsXt] = µsµt.

The optimisation is therefore restricted to the set of parameters

M(G;H) = {(µs)ds=1, (µ⟨s,t⟩)⟨s,t⟩∈{1,...,d}2 ∣0 ≤ µs ≤ 1, µ⟨s,t⟩ = µsµt.}

With the restriction to product form distributions, (Xs)ds=1 are independent Bernoulli variables and

hence

A∗H(µ) =
d

∑
s=1
{µs logµs + (1 − µs) log(1 − µs)}.

Set

F (µ; θ) =
d

∑
s=1

θsµs + ∑
⟨s,t⟩∈U

θ(s,t)µsµt −
d

∑
s=1
(µs logµs + (1 − µs) log(1 − µs)),

then the lower bound is given by

A(θ) ≥ sup
(µs)ds=1∈[0,1]d

F (µ; θ).

Note that, for each µs, the function F is strictly convex. It is easy to see that the maximum is attained

when, for all 1 ≤ s ≤ t, (µt)dt=1 satis�es

θs + ∑
t∶⟨s,t⟩∈U

θ⟨s,t⟩µt − log
µs

1 − µs
= 0,



21.7. MEAN FIELD THEORY 435

or

log
µs

1 − µs
= θs + ∑

t∈N (s)
θ⟨s,t⟩µt.

Note that if

log
y

1 − y = x,

then

y = σ(x),

where

σ(x) = 1

1 + e−x .

The algorithm then proceeds by setting

µ(j+1)s = σ
⎛
⎝
θs + ∑

t∈N (s)
θ⟨s,t⟩µ

(j)
t

⎞
⎠
.

As discussed in [72] (page 222), the lower bound thus computed seems to provide a good approximation

to the true value.

Notes

The material for Chapter 21 is taken mostly from Wainright and Jordan [142]. It is developed further

in [72]. Possible improvements to the lower bound are proposed by Humphreys and Titterington in [66].

The book by Barndor� - Nielsen [3] is the standard treatise of exponential families and the required

convex analysis.



21.8 Exercises: Graphical Models and Exponential Families

1. Prove lemma 21.5.

2. Let (X1,X2,X3) be random variables, with joint probability function

p(x1, x2, x3∣η) =
n!

x1!x2!x3!

3

∏
j=1

pxi
i , x1 + x2 + x3 = n,

where p1 = η2, p2 = 2η(1 − η) and p3 = (1 − η)2 and 0 ≤ η ≤ 1.

(a) Is this an exponential family?

(b) Obtain the minimal su�cient statistic for θ.

(c) Compute the mean parameter in terms of η.

(d) Compute the Fenchel Legendre Conjugate of the log partition function.

(e) Prove that the Kullback Leibler Divergence is given by

D(θ1∣θ2) = A(θ2) −A(θ1) − ⟨µ1, θ2 − θ1⟩.

D̃(µ1∣θ2) = A(θ2) +A∗(µ1) − ⟨µ1, θ2⟩
˜̃D(µ1∣µ2) = A∗(µ1) −A∗(µ2) − ⟨θ2, µ1 − µ2⟩.

State the de�nitions of the terms used in this equation.

(f) Compute the primal form of the Kullback Leibler divergence D(θ1∣θ2), where θ1 and θ2 are
the canonical parameters, for this example. Compute the dual form, expressed in terms of

the mean parameters.

3. (Mean Field Update) Consider a probability function, given by

pX(x∣θ) = exp
⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

θ(j)x(j) + ∑
(i,j)∈E

θ(i, j)x(j) −A(θ)
⎫⎪⎪⎬⎪⎪⎭
,

where θ = {(θ(j))nj=1, (θ(j, k)), (j, k) ∈ E}, E denotes the edge set and x ∈ {0,1}n. Let q denote
the probability function

qX(x∣θ) = exp
⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

θ(j)x(j) −AH(θ)
⎫⎪⎪⎬⎪⎪⎭
.

Let

A∗H(µ) = sup
θ
{⟨µ, θ⟩ −AH(θ).

(a) Prove that

A∗H(µ) =
n

∑
j=1
{µ(j) logµ(j) + (1 − µ(j)) logµ(j)} .

436



21.8. EXERCISES: GRAPHICAL MODELS AND EXPONENTIAL FAMILIES 437

(b) Prove that

A(θ) ≥ sup
µ

⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

θ(j)µ(j) + ∑
(j,k)∈E

θ(j, k)µ(j)µ(k) −A∗H(µ)
⎫⎪⎪⎬⎪⎪⎭
.

(c) Consider the probability distribution

p(x1, x2, x3; θ) = exp
⎧⎪⎪⎨⎪⎪⎩

3

∑
j=1

θ(j)xj + θ(1,2)x1x2 + θ(1,3)x1x3 −A(θ)
⎫⎪⎪⎬⎪⎪⎭
.

Show that the expression in the previous part is maximised for (µ(1), µ(2), µ(3)) that satisfy

log
µ(1)

1 − µ(1) = θ(1) + θ(1,2)µ(2) + θ(1,3)µ(3)

log
µ(2)

1 − µ(2) = θ(2) + θ(1,2)µ(1)

log
µ(3)

1 − µ(3) = θ(3) + θ(1,3)µ(1).

(d) Write a Matlab code to compute numerical approximations to the values (µ(1), µ(2), µ(3))
that give the naive mean �eld approximation to the log partition function A(θ).



438 CHAPTER 21. GRAPHICAL MODELS AND EXPONENTIAL FAMILIES



Chapter 22

Variational Methods for Parameter

Estimation

22.1 Complete Instantiations

Let x be an n × d data matrix with n i.i.d. instantiations of X = (X1, . . . ,Xd), which has distribution

Pθ. Here θ is the parameter vector; θ ∈ Θ ⊂ Rp. If {Pθ ∶ θ ∈ Θ} is an exponential family, there are

several useful techniques that may be used for parameter estimation.

The distributions encountered in Bayesian Networks and, more generally graphical models, are

usually multinomial, multivariate Guassian, or Conditional Gaussian. All these are exponential families

and lend themselves to the techniques discussed.

22.1.1 Triangulated Graphs

Probability distributions that factorise over a triangulated graph present the most straightforward

situation for parameter estimation. Such a probability distribution P may be written in the form:

P = ∏C∈C PC,

∏S∈S PS

where C and S denote the collections of cliques and separators.

Consider the multivariate setting. Let x = (x1, . . . , xd) denote an instantiation of the random vector

X = (X1, . . . ,Xd). For each s ∈ {1, . . . , d}, xs ∈ Xs = (1, . . . , ks), x ∈ X = ×ds=1Xs, xC = {xs ∶ s ∈ C} and
xS = {xs ∶ s ∈ S}. For simplicity, the values taken by the variables are noted by their indices.

This is a multinomial distribution written as an exponential family in an over-complete representation.

The mean �eld parameters are simply:

p(C,xC) ∶= PC(xC) ∶ C ∈ C, xC ∈ XC .

p(S,xS) = PS(xS) ∶ S ∈ S, xS ∈ XS .

The maximum likelihood estimators are:

439



440 CHAPTER 22. VARIATIONAL METHODS FOR PARAMETER ESTIMATION

p̂C(xC) =
1

n

n

∑
j=1

1xC
(xj,C) p̂S(xS) =

1

n

n

∑
j=1

1xS
(xj,S).

where xj,C denotes the value for clique C of instantiation j ∶ j = 1, . . . , n and similarly for xj,S . By

construction, these are clearly consistent; if S ⊂ C then p̂(S,xS) = ∑xC/xS
p̂(C,xC).

This may be written as an exponential family with over-complete canonical representation:

P(x) = exp{∑
C∈C

ψC(xC) − ∑
S∈S

ψS(xS)} (22.1)

where ψC = logPC and ψS = logPS .

Factorisation along a Chow-Liu Tree Now suppose that the distribution factorises along a Chow-

Liu tree. Equation 22.1 may now be written:

P(x) = exp
⎧⎪⎪⎨⎪⎪⎩

d

∑
s=1

θ(s;xs) + ∑
(s,t)∈E

θ(s, t;xs, xt)
⎫⎪⎪⎬⎪⎪⎭

where

θ(s;xs) = logPXs(xs), θ(s, t;xs, xt) = log
PXs,Xt(xs, xt)
PXs(xs)PXt(xt)

and E denotes the edge set of the graph. The maximum likelihood estimates of the parameters are

given by:

θ̂(s;xs) = log p̂s(xs) θ̂(s, t;xs, xt) = log
p̂s,t(xs, xt)
p̂s(xs)p̂t(xt)

.

22.1.2 Non-Triangulated Graphs

For non-triangulated graphs, there is no closed form expression for the maximum likelihood estimates.

Recall that a probability distribution factorises along an undirected graph if P may be written as:

P(x) = ∏
C∈C

ϕC(xC)

where C denotes the collection of cliques of the undirected graph. The probability distribution may be

written as:

P(x) = exp{∑
C∈C

θC(xC) −A(θ)}

where A(θ) is the log partition function and θ = {θC(xC) ∶ C ∈ C, xC ∈ XC}.
An iterative proportion �tting (IPF) method may be used, since the log partition function is convex.

Let

L(θ) = 1

n

n

∑
j=1
(∑
C∈C

θC(xj,C) −A(θ)) = ∑
C∈C

∑
xC∈XC

θC(xC)p̂C(xC) −A(θ) (22.2)



22.1. COMPLETE INSTANTIATIONS 441

then

∂

∂θC(xC)
L(θ) = p̂C(xC) −

∂

∂θC(xC)
A(θ) = p̂C(xC) − pC(xC). (22.3)

Here we've used the fact that we have an exponential family in its canonical form so that ∂
∂θC(xC)A(θ) =

Eθ [p̂C(xC)] = pC(xC) (from (22.2), p̂C(xC) is the su�cient statistic).

The aim is to �nd the MLE (where ∂
∂θC(xC)L(θ) = 0). The iterative proportional �tting scheme proceeds

as follows:

At iterations t = 0,1,2, . . . let θ(t)denote the current vector of parameter estimates.

� Choose a clique C = C(t) and compute the local marginal distribution

p
(t)
C (xC) ∶= Pθ(t)(XC = xC) ∀xC ∈ XC .

� Update the canonical parameter vector:

θ
(t+1)
C (xC) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ
(t)
C (xC) + log

p̂C(xC)
p
(t)
C (xC)

C = C(t), xC ∈ XC

θ
(t)
C (xC) otherwise

The sequence satis�es two important properties, which are stated as a proposition.

Proposition 22.1. 1.

A(θ(t+1)) = A(θ(t)).

2. For each t, Equation (22.3) holds.

Proof Suppose C(t) = C ′. De�ning θ(t+1) in this way gives:

A(θ(t+1)) = log∑
x

exp{∑
C∈C

θ
(t+1)
C (xC)}

= log∑
x

exp

⎧⎪⎪⎨⎪⎪⎩
∑
C∈C

θ
(t)
C (xC) + log

p̂C′(xC′)
p
(t)
C′ (xC′)

⎫⎪⎪⎬⎪⎪⎭

= log∑
x′C

p̂C′(xC′)eθ
(t)

C′
(xC′)

p
(t)
C′ (xC′)

∑
x/xC

exp

⎧⎪⎪⎨⎪⎪⎩
∑

C∈C/C′
θ
(t)
C (xC)

⎫⎪⎪⎬⎪⎪⎭

Now use:

pC′,θ(xC′) = e−A(θ)+θC′(xC′) ∑
x/xC

e∑C≠C′ θC(xC)

from which



442 CHAPTER 22. VARIATIONAL METHODS FOR PARAMETER ESTIMATION

A(θ(t+1)) = A(θ(t)) + log∑
xC′

p̂C′(xC′) = A(θ(t)).

This follows because ∑xC′
p̂C′(xC′) = 1.

For the second part, the parameter update gives:

pC,θ(t+1)(xC) =
p̂C(xC)

pC,θ(t)(xC)
pC,θ(t)(xC) = p̂C(xC).

It therefore follows that the IPF algorithm corresponds to a co-ordinate ascent method for maximising

the objective (22.2).

The Schedule Convexity of the log-partition function gives, by standard results, that the IPF

algorithm converges. The main issue is e�ciency. One way is to

1. Triangulate the graph and construct a junction tree. Fix a schedule for the junction tree.

2. For each node of the junction tree, consider the true model (the sub-graph of cliques and separa-

tors of the true model) and use the IPF scheme to update each clique of the triangulated graph

according to the schedule.

22.2 Partially Observed Models and Expectation-Maximisation

Now suppose that the random vector X is not observed directly, but rather a `noisy' version Y is

observed. The expectation-maximisation (EM) algorithm of Dempster et. al. [36] may be used.

22.2.1 Exact EM Algorithm for Exponential Families

Suppose we have a random vector (X,Y ) where X are unobserved and Y are observable. Suppose the

probability model is:

pθ(x, y) = exp{⟨θ, ϕ(x, y)⟩ −A(θ)}h(x)

The conditional distribution of X given Y is:

pθ(x∣y) =
exp{⟨θ, ϕ(x, y)⟩}

∫X exp{⟨θ, ϕ(x, y)⟩}h(x)dx =∶ exp{⟨θ, ϕ(x, y)⟩ −Ay(θ)} .

(this is the de�nition of Ay). For each �xed y, the conditional distribution of X is therefore an

exponential family with log partition function Ay given by:

Ay(θ) = log∫X exp{⟨θ, ϕ(x, y)⟩}h(x)dx.



22.2. PARTIALLY OBSERVED MODELS AND EXPECTATION-MAXIMISATION 443

The maximum likelihood estimate θ̂ is obtained by maximising the log probability of the observed data

y. This is referred to as the incomplete log likelihood in the EM setting. The incomplete log likelihood

is given by the integral:

L(θ; y) = log∫X exp{⟨θ, ϕ(x, y)⟩ −A(θ)}h(x)dx = Ay(θ) −A(θ). (22.4)

For each �xed y, the setMy of valid mean parameters is de�ned as:

My = {ν ∈ Rp ∶ µ = Eθ[ϕ(X,y)] θ ∈ Θ} .

The Fenchel-Legendre conjugate may be used to obtain:

Ay(θ) = sup
µ∈My

{⟨θ, µ⟩ −A∗y(µ)} (22.5)

where the conjugate dual is de�ned variationally as:

A∗y(µ) ∶= sup
θ∈dom(Ay)

{⟨µ, θ⟩ −Ay(θ)} . (22.6)

From (22.5), it follows that Ay(θ) ≥ ⟨µ, θ⟩ − A∗y(µ) for any µ. A lower bound for the incomplete log

likelihood is therefore:

L(θ, y) = Ay(θ) −A(θ) ≥ ⟨µ, θ⟩ −A∗y(µ) −A(θ) ∶= L̃(µ, θ).

With this set up, the EM algorithm is the coordinate ascent function on this function L̃ which gives a

lower bound. The steps of the EM algorithm are:

⎧⎪⎪⎨⎪⎪⎩

µ
(t+1)
y = arg maxµ∈My

L̃(µ, θ(t)) E step

θ(t+1) = arg maxθ∈ΘL̃(µ
(t+1)
y , θ) M step

(22.7)

Note that if L̃ were equal to the log likelihood L, then the E step would be equivalent to �nding the

expectation µ for parameter vector θ(t), while the M step would be precisely the problem of �nding

the maximum likelihood estimator based on expected su�cient statistics µ
(t+1)
y .

The maximisation of the M step gives L(θ(t+1), y) = L̃(µ(t+1)y , θ(t+1)), while the maximisation of the

E step gives L(θ(t), y).

Example 22.2 (EM for Conditional Gaussian).

The EM algorithm described can be used to estimate the parameters for a Conditional Gaussian

model. For example, consider the straightforward setting where Y = (Y1, . . . , Yr) are Gaussian variables,
Y ∣{X = j} = Yj for j = 1, . . . , r. Suppose that X, the index of the components, is unobserved. The

state space for X is X = {1, . . . , r} and X has a multinomial distribution.

The complete likelihood may be written as:



444 CHAPTER 22. VARIATIONAL METHODS FOR PARAMETER ESTIMATION

Lθ(x, y) = exp
⎧⎪⎪⎨⎪⎪⎩

r

∑
j=1

1j(x) {αj + γjy + γ̃jy2 −Aj(γj , γ̃j)} −A(α)
⎫⎪⎪⎬⎪⎪⎭

where θ = (α, γ, γ̃), the parameter α ∈ Rr parametrises the the multinomial distribution over the hidden

vector X and the pair (γj , γ̃j) parametrises the Gaussian distribution of the jth mixture component.

The log-partition function A(γj , γ̃j) is for the conditionally Gaussian distribution of Y given X = j,
while A(α) = log∑r

j=1 exp{αj} normalises the multinomial distribution.

When the complete likelihood is viewed as an exponential family, the su�cient statistics are the

collection of triples

Ψj(x, y) ∶= {1j(x),1j(x)y,1j(x)y2} j = 1, . . . , r.

Consider a collection of i.i.d. observations (y1, . . . , yn). To each observation there is associated a

triplet (µi, ηi, η̃i) ∈ Rr × Rr × Rr corresponding to expectations of the triplet of su�cient statistics

Ψj(X,yi) ∶ j = 1, . . . , r. The conditional distribution has form:

p(x∣y, θ)∝ exp

⎧⎪⎪⎨⎪⎪⎩

r

∑
j=1

1{j}(x) (αj + γjy + γ̃jy2 −Aj(γj , γ̃j))
⎫⎪⎪⎬⎪⎪⎭
.

It follows that the mean parameter pj∣y = P(X = j∣Y = y) is:

pj∣y =
exp{αj + γjy + γ̃jy2 −Aj(γj , γ̃j)}

∑r
k=1 exp{αk + γky + γ̃ky2 −Aj(γk, γ̃k)}

Similarly, the remaining mean parameters are:

ηj∣y = pj∣yy, η̃j∣y = pj∣yy2.

The computations of the mean parameter µy = (pj∣y, pj∣yy, pj∣yy2) correspond to the E step.

The M step requires �nding θ = (α, γ, γ̃) to maximise

⟨µ(t+1)y , θ) −A(θ).

Some computation shows that this problem takes the form of �nding (α, γ, γ̃) ∈ Θ which maximises:

r

∑
j=1

n

∑
i=1
(αjpj∣yi + γjpj∣yiyi + γ̃jpj∣yiy

2
i − pj∣yiAj(γj , γ̃j)) − nA(α).

The optimisation therefore decouples into separate maximisation problems: one for the α vector

parametrising the mixtures and one for each of the (γj , γ̃j) pairs specifying the Gaussian mixtures.

The optimum solution is therefore the value α such that



22.3. VARIATIONAL BAYES 445

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pj∣α = 1
n ∑

n
i=1 pj∣yi

Eγj ,γ̃j [Y ∣X = j] =
∑n

i=1 pj∣yiyi

∑n
i=1 pj∣yi

Eγj ,γ̃j [Y 2∣X = j] = ∑
n
i=1 pj∣yiy

2
i

∑n
i=1 pj∣yi

.

22.2.2 Mean Field Approximate EM

Suppose that it is not feasible to compute the su�cient statistics. Then the E step can be replaced

by a Mean Field E step where the maximum is taken over a reduced space of models:

µ(t+1)y = max
µ∈Mred

{⟨µ, θ(t)⟩ −A∗y(µ)} .

The E step no longer closes the gap between the incomplete log-likelihood L and the auxiliary function

L̃ and there are no longer guarantees that the algorithm goes uphill.

22.3 Variational Bayes

Assume that the complete distribution lies in an exponential family

p(x, y∣θ) = exp{⟨η(θ), ϕ(x, y)⟩ −A(η(θ))}

where the function η ∶ Rp → Rp gives some additional �exibility. Assume, furthermore, that the prior

distribution over Θ also lies in an exponential family and is of conjugate prior form:

pξ,λ(θ) = exp{⟨ξ, η(θ)⟩ − λA(η(θ)) −B(ξ, λ)} . (22.8)

This exponential family is speci�ed by the su�cient statistics: {η(θ),−A(η(θ))} ∈ Rd × R. The log

partition function B(ξ, λ) is de�ned in the usual way:

B(ξ, λ) ∶= log∫
Θ
exp{⟨ξ, η(θ)⟩ − λA(η(θ))}dθ.

Now consider the problem of computing the marginal likelihood pξ∗,λ∗(y) where y is an observed

datum and (ξ∗, λ∗) are �xed values of the hyperparameters. This requires averaging over both x (the

unobserved variables) and the parameter space Θ.

log pξ∗,λ∗(y) = log∫ (∫ p(x, y∣θ)dx)pξ∗,λ∗(θ)dθ = log∫ pξ∗,λ∗(θ)p(y∣θ)dθ.

A simple application of Jensen's inequality gives:

log pξ∗,λ∗(y) = logEξ,λ [
pξ∗,λ∗(Θ)
pξ,λ(Θ)

p(y∣Θ)] ≥ Eξ,λ [log p(y,Θ)] +Eξ,λ [log
pξ∗,λ∗(Θ)
pξ,λ(Θ)

]

with equality for (ξ, λ) = (ξ∗, λ∗). From Equation (22.4),

log p(y∣Θ) = Ay(η(Θ)) −A(η(Θ))



446 CHAPTER 22. VARIATIONAL METHODS FOR PARAMETER ESTIMATION

so that

pξ∗,λ∗(y) ≥ Eξ,λ [Ay(η(Θ)) −A(η(Θ))] +Eξ,λ [log
pξ∗,λ∗(Θ)
pξ,λ(Θ)

] (22.9)

where Ay is the log partition function of the conditional density p(x∣y, θ).

For each �xed y, the setMy is the set of mean parameters of the form µ = E[ϕ(X,y)].

The variational Bayes algorithm is based on optimising this lower bound using only distributions of

product form over (Θ,X ). Such an optimisation is referred to as `free form'. Using (22.6),

Ay(η) ≥ ⟨µ, η⟩ −A∗y(µ)

for any µ and hence the right hand side of Equation (22.9) has lower bound:

Eξ,λ [⟨µ(Θ), η(Θ)⟩ −A∗y(µ(Θ)) −A(η(Θ))] +Eξ,λ [log
pξ∗,λ∗(Θ)
pξ,λ(Θ)

] . (22.10)

for any function µ(θ). The expression in (22.10), restricting to µ constant, is:

(⟨µ, η⟩ −A∗y(µ) −A) +Eξ,λ [log
pξ∗,λ∗(Θ)
pξ,λ(Θ)

] , (22.11)

where η = Eξ,λ [η(Θ)] and A = Eξ,λ [A(Θ)]. Using (22.8),

log
pξ∗,λ∗(θ)
pξ,λ(θ)

= ⟨ξ∗ − ξ, η(θ)⟩ − (λ∗ − λ)A(η(θ)) − (B(ξ∗, λ∗) −B(ξ, λ))

so that:

Eξ,λ [log
pξ∗,λ∗(Θ)
pξ,λ(Θ)

] = ⟨η, ξ∗ − ξ⟩ + ⟨−A,λ∗ − λ⟩ −B(ξ∗, λ∗) +B(ξ, λ).

Now recall the de�nition of B∗ (Fenchel Legendre conjugate of B):

B∗(µ1, µ2) = sup
ξ,λ
{µ1ξ + µ2λ −B(ξ, λ)} .

Then, since {η(θ),−A(η(θ)) are the su�cient statistics, therefore ∂B
∂ξ = η and ∂B

∂λ = −A, so that:

B∗(η,A) = ⟨η, ξ⟩ + ⟨−A,λ⟩ −B(ξ, λ).

Hence the decoupled optimisation problem is equivalent to maximising:

⟨µ + ξ∗, η⟩ −A∗y(µ) + ⟨λ∗ + 1,−A⟩ −B∗(η,A)

over µ ∈My and (η,A) ∈ dom(B).
A coordinate ascent amounts to �rst maximising over µ and then maximising over the mean pa-

rameters (η,A). This generates a sequence of iterates (µ(t), η(t),A(t)). The updates are:



22.3. VARIATIONAL BAYES 447

⎧⎪⎪⎨⎪⎪⎩

µ(t+1) = arg maxµ∈My
{⟨µ, η(t)⟩ −A∗y(µ)} VB-E Step

(η(t+1),A(t+1)) = arg max(η,A) {⟨µ(t+1) + ξ∗, η⟩ − (1 + λ∗A −B∗(η,A)} VB-M Step
(22.12)

These coordinate-wise optimisations have explicit solutions; the explicit solution of the VB-E Step

is:

µ(t+1) = Eη(t) [ϕ(X,y)] .

Similarly, setting

(ξ(t+1), λ(t+1)) = (ξ∗ + µ(t+1), λ∗ + 1)

then

η(t+1) = E(ξ(t+1),λ(t+1)) [η(Θ)] .



448 CHAPTER 22. VARIATIONAL METHODS FOR PARAMETER ESTIMATION



Literature Cited

[1] S.M. Aji and R.J McEliece [2000] The Generalised Distributive Law IEEE Transactions on Infor-
mation Theory vol. 46 pp. 325 - 343

[2] S.A. Andersson, D. Madigan, M.D. Perlman and C.M. Triggs [1997] A graphical characterisation
of lattice conditional independence models Annals of Mathematics and Arti�cial Intelligence vol.
21 pp. 27 - 50

[3] O. Barndor� - Nielsen [1978]Information and Exponential Families in Statistical Theory Wiley

[4] Barros, B. [2012] Incremental Learning Algorithms for Financial Data Modelling Master's Thesis,
Linköping University, Department of Mathematics LiTH-MAT-INT-A�2012/01�SE

[5] Beeri, C.; Fagin, R.; Maier, D.; Yannakakis, M. [1983] On the desirability of acyclic database
schemes J. Assoc. Comput. Mach. 30 pp 479 - 513.

[6] [2005] Braunstein, A.; Mézard, M.; Zecchina, R. [2005] An Algorithm for Satis�ability Random
Structures and Algorithms, vol. 27, no. 2, pp. 201 - 226
http://dx.doi.org/10.1002/rsa.20057

[7] Braunstein, A.; Zecchina, R. [2004] Survey Propagation as Local Equilibrium Equations Journal
of Statistical Mechanics: Theory and Experiment vol. 2004, no. 6 pp. P06007
https://stacks.iop.org/1742-5468/2004/P06007

[8] Brockwell, P.J.; Davis, R.A. [1991] Time Series: Theory and Methods (second edition) Springer

[9] F. Bromberg, D. Margaritis [2009] Improving the reliability of causal discovery from small data
sets using argumentation Journal of Machine Learning Research vol. 10 pp. 301 - 340

[10] D.T. Brown [1959] A Note on Approximations to Discrete Probability Distributions Information
and Control vol. 2 pp. 386 - 392

[11] Bulashevska, S.; Eils, R. [2005] Inferring genetic regulatory logic from expression data Bioinfor-
matics vol 21 no 11 pp 2706 - 2713

[12] E. Castillo, J.M. Gutiérrez, A.S. Hadi [1996] A New Method for E�cient Symbolic Propagation in
Discrete Bayesian Networks Networks vol. 28 no. 1 pp. 31 - 43

[13] E. Castillo, J.M. Gutiérrez, A.S. Hadi [1997] Sensitivity Analysis in Discrete Bayesian Networks
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans vol. 27 no.
4

[14] Cayley, A. [1853] Note on a Question in the Theory of Probabilities The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science vol. VI. - fourth series July - December,
1853, Taylor and Francis. p. 259

[15] Cayley, A. [1854] On the theory of groups as depending on the symbolic equation θn = 1 Phil. Mag.
vol. 7 no. 4 pp 40 - 47

[16] Cayley, A. [1858] A Memoir on the Theory of Matrices Phil. Trans. of the Royal Soc. of London,
vol 148 p. 24

449



450 LITERATURE CITED

[17] Cayley, A. [1869] A Memoir on Cubic Surfaces Philosophical Transactions of the Royal Society of
London (The Royal Society) vol 159 pp 231�326

[18] Cayley, A. [1878] Desiderata and suggestions: No. 2. The Theory of groups: graphical representa-
tion Amer. J. Math. vol. 1 no. 2 174�176

[19] Cayley, A. [1889] A Theorem on Trees Quarterly Journal of Mathematics vol 23 pp 276-378

[20] H. Chan, A. Darwiche [2005] A Distance Measure for Bounding Probabilistic Belief Change Inter-
national Journal of Approximate Reasoning vol. 38 pp. 149 - 174

[21] H. Chan, A. Darwiche [2002]When do Numbers Really Matter? Journal of Arti�cial Intelligence
Research vol. 17 pp. 265 - 287

[22] H. Chan, A. Darwiche [2005] On the Revision of Probabilistic Beliefs Using Uncertain Evidence
Arti�cial Intelligence vol. 163 pp. 67-90

[23] Cheng, J.; Greiner, R.; Kelly, J.; Bell, D. A.; Liu, W. [2002] Learning Bayesian networks from
data: An information-theory based approach Arti�cial Intelligence vol 137 pp 43 - 90.

[24] D.M. Chickering [1995] A transformational characterization of Bayesian network structures In
Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Uncertainty in
Arti�cial Intelligence, pages 87 - 98 Morgan Kaufmann.

[25] Chickering, D. M. [2002] Optimal structure identi�cation with greedy search Journal of Machine
Learning Research, 507�554.

[26] D.M. Chickering, D. Heckerman, C. Meek [2004] Large Sample Learning of Bayesian Networks is
NP - Hard Journal of Machine Learning Research vol. 5 pp. 1287 - 1330

[27] Chiquet, J.; Smith, A.; Grasseau, G.; Matias, C.; Ambroise, C. [2009] SIMoNe: Statistical Infer-
ence for Modular Networks Bioinformatics 25(3):417�418

[28] C.K. Chow and C.N. Liu [1968] Approximating Discrete Probability Distributions with Dependence
Trees IEEE Transactions on Information Theory, vol. IT - 14 no. 3

[29] Claeskens G, Hjort NL [2008]Model selection and model averaging Cambridge University Press,
Cambridge

[30] G.F. Cooper [1990] The Computational Complexity of Probabilistic Inference using Bayesian Belief
Networks Arti�cial Intelligence vol. 42 pp. 393 - 405

[31] G.F. Cooper and E. Herskovitz [1992]A Bayesian Method for the Induction of Probabilistic Net-
works from Data Machine Learning vol. 9 pp. 309 - 347

[32] R.G. Cowell, A.P. David, S.L. Lauritzen and D.J. Spiegelhalter [1999] Probabilistic Networks and
Expert Systems Springer, New York

[33] A.P. Dawid [1992] Applications of a General Propagation Algorithm for Probabilistic Expert Sys-
tems Statistics and Computing vol. 2 pp. 25 - 36

[34] Dean, T.; Kanazawa, K. [1989] A Model for Reasoning about Persistence and Causation Compu-
tational Intelligence vol. 5, no. 2, pp.142 - 150.

[35] W.E. Deming and F.F. Stephan [1940] On a Least Squares Adjustment of a Sampled Frequency
Table when the Expected Marginal Totals are Known Annals of Mathematical Statistics vol. 11
pp. 427 - 444

[36] Dempster, P.; Laird, N.M.; Rubin, D.B. [1977]Maximum Likelihood from Incomplete Data via the
EM Algorithm Journal of the Royal Statistical Society, Series B, vol. 39, pp. 1 - 38

[37] P. Diaconis and S.L. Zabell [1982] Updating Subjective Probability Journal of the American Sta-
tistical Association vol. 77 (380) pp. 822 - 830



451

[38] J.M. Dickey [1983]Multiple Hypergeometric Functions: Probabilistic Interpretations and Statistical
Uses Journal of the American Statistical Association, 1983, vol. 78 (383) pp. 628 - 637

[39] Drton, M.; Sturmfels, B.; Sullivant, S. [2009] Lectures on algebraic statistics Birkhäuser

[40] D. Edwards [2000] Introduction to Graphical Modelling chapter 9: Causal Inference. Springer

[41] A. Fast [2010] Learning the structure of Bayesian networks with constraint satisfaction Ph.D.
thesis, Graduate School of the University of Massachusetts Amherst, Department of Computer
Science

[42] Fisher, R.A. [1924] The Distribution of the Partial Correlation Coe�cient Metron vol. 3 no. 3-4
pp. 329 - 332.

[43] D. Freedman and P. Humphreys [1999]Are there Algorithms that Discover Causal Structure? Syn-
these vol. 121 pp. 29 - 54

[44] Friedman, J.; Hastie, T.; Tibshirani, R. [2010]Regularisation Paths for Generalised Linear Models
via Coordinate Descent J Stat Softw 33(1):1�22

[45] Friedman, N.; Nachman, I.; Pe'er, D. [1999] Learning Bayesian network structure from massive
datasets: the `sparse candidate' algorithm Proc. Sixteenth Conference on Uncertainty in Arti�cial
Intelligence (UAI '99) pp 196 - 205

[46] Friedman, N.; Linial, M.; Nachman, I.; Pe'er, D. [2000] Using Bayesian Networks to Analyse
Expression Data Journal of Computational Biology 7 no 3/4 pp 601 - 620

[47] Friedman, N.; Koller, D. [2003]Being Bayesian About Network Structure: A Bayesian Approach
to Structure Discovery in Bayesian Networks Machine Learning, vol. 50 pp. 95 - 125

[48] Friedman, N. [2004] Inferring Cellular Networks Using Probabilistic Graphical Models Science Vol
303 no 5659 pp 799-805 DOI: 10.1126/science.1094068

[49] Gamerman, D.; Lopes, H.F. [2006] Markov chain Monte Carlo: stochastic simulation for Bayesian
inference Chapman and Hall CRC

[50] Garcia, L.D.; Stillman, M.; Sturmfels, B. [2005] Algebraic geometry of Bayesian networks Journal
of Symbolic Computation 39 pp 331�355

[51] D. Geiger, T. Verma and J. Pearl [1990] Identifying Independence in Bayesian Networks Networks
vol. 20 pp. 507 - 534.

[52] Gentry J, Long L, Gentleman R, Seth, Hahne F, Sarkar D, Hansen K [2012]Rgraphviz: provides
plotting capabilities for R graph objects. R package version 1.32.0

[53] Giudici, P.; Castelo, R. [2003]Improving Markov chain Monte Carlo Model Search for Data Mining
Machine Learning vol. 50 pp. 127 - 158

[54] Goeman, J.J. [2012]penalized R package R package version 0.9-41

[55] M.C. Golumbic [2004] Algorithmic Graph Theory and Perfect Graphs Elsevier

[56] Greenland, S.; Pearl, J.; Robins, J.M. [1999] Causal diagrams for epidemiologic research Epidemi-
ology pp 37 - 48

[57] Greenland, S.; Lash, T. [2008] Bias Analysis in: Modern Epidemiology, 3rd ed., Ed. K Rothman,
S. Greenland and T. Lash, pp 345 - 380. Philadelphia: Lippincott, Williams and Wilkins.

[58] Grzegorczyk, M.; Husmeier, D. [2008]Improving the Structure MCMC Sampler for Bayesian Net-
works by introducing a New Edge Reversal Move Mach. Learn vol. 71 pp. 265 - 305



452 LITERATURE CITED

[59] Hartmanis, J. [1959]Application of some Basic Inequalities for Entropy Information and Control
vol. 2 pp 199 - 213

[60] Hastie T.; Efron, B. [2012]lars: least angle regression, lasso and forward stagewise R package
version 1.1

[61] D. Heckerman [1998] A Tutorial on Learning with Bayesian Networks Report # MSR-TR-95-06
Microsoft Research, Redmont, Washington
http://research.microsoft.com/∼ heckerman/

[62] D. Heckerman, D. Geiger and D.M. Chickering [1995] Learning Bayesian Networks: The Combi-
nation of Knowledge and Statistical Data Machine Learning vol. 20 pp. 197 - 243

[63] Heskes, T.; Albers, C.; Kappen, H.J. [2003] Approximate Inference and Constrained Optimisation
in Proc. of the 19th Annual Conference on Uncertainty in Arti�cial Intelligence (UAI-03) San
Fransisco, CA: Morgan Kaufmann Publishers, pp. 313 - 320

[64] Huang, Y.; Valtorta, M. [2006] Pearl's Calculus of Intervention is Complete Proceedings of the
22nd Conference on Uncertainty in Arti�cal Intelligence pp. 217-224 UAI Press

[65] Huang, Y.; Valtorta, M. [2008] On the Completeness of an Identi�ability Algorithm for Semi-
Markov Models Ann Math Artif Intell vol. 54 pp. 363 - 408

[66] K. Humphreys and D.M. Titterington [2000] Improving the Mean - Field Approximation in Be-
lief Networks using Bahadur's Reparameterisation of the Multivariate Binary Distribution Neural
Processing Letters vol. 12 pp. 183 - 197

[67] Højsgaard, S. [2012] Graphical Independence Networks with the gRain Package for R Journal of
Statistical Software, vol. 46 no.10 pp. 1-26.
http://www.jstatsoft.org/v46/i10/

[68] Højsgaard,S.; Edwards, D.; Lauritzen, S. [2012] Graphical Models with R Springer

[69] Ide, J.S.; Cozman, F.G. [2002]Random generation of Bayesian networks In: SBIA '02: Proceedings
of the 16th Brazilian symposium on arti�cial intelligence, Springer, pp 366�375

[70] Jaynes, E.T. [2003] Probability Theory. The Logic of Science Cambridge University Press

[71] R.C. Je�rey [1965]The Logic of Decision McGraw - Hill, New York (second ed., University of
Chicago Press, Chicago, 1983; Paperback correction, 1990)

[72] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, L.K. Saul [1999] An Introduction to Variational
Methods for Graphical Models Machine Learning vol. 37 pp. 183 - 233

[73] Kellerer, H.G. [1991]Indecomposable marginal problems Advances in probability distributions with
given marginals: beyond the copulas, Springer Verlag, Berlin, pp 139 - 149

[74] H. Kiiveri, T.P. Speed, J.B. Carlin [1984] Recursive Causal Models J. Austral. Math. Soc. (series
A) vol. 36 pp. 30 - 52

[75] M. Koivisto and K. Sood [2004]Exact Bayesian Structure Discovery in Bayesian Networks Journal
of Machine Learning Research vol. 5 pp. 549 - 573

[76] Kuipers, J.; Mo�a, G. [2015] Partition MCMC for Inference on Acyclic Digraphs preprint:
arxiv:1504.05006v1

[77] Kuroki, M.; Pearl, J. [2014] Measurement Bias and E�ect Restoration in Causal Inference
Biometrika vol. 101 no. 2 pp. 423 - 437

[78] F.R. Ksischang , B.J. Frey, H-A. Loeliger [2001] Factor Graphs and the Sum Product Algorithm
IEEE Transactions on Information Theory vol. 47 February, pp. 498 - 519



453

[79] E. Lazkano, B. Sierra, A. Astigarraga, J.M. Martínez - Otzeta [2007] On the use of Bayesian
Networks to Develop Behaviours for Mobile Robots Robots and Autonomous Systems vol. 55 pp.
253 - 265

[80] S.L. Lauritzen, D.J. Spiegelhalter [1988]Local Computations of Probabilities on Graphical Struc-
tures and their Applications to Expert Systems Journal of the Royal Statistical Society B (Method-
ological) vol. 50 no. 2 pp. 157 - 224

[81] S.L. Lauritzen [1992]Propagation of Probabilities, Means and Variances in Mixed Graphical Asso-
ciation Models Journal of the Americal Statistical Association vol. 78 no. 420 pp. 1098 - 1108

[82] S. Lauritzen [2001] Causal Inference from Graphical Models in Complex Stochastic Systems pp.
63 - 108, Chapman and Hall

[83] S. Lauritzen and D. Spiegelhalter [1988] Local Computations with Probabilities on Graphical Struc-
tures and their Application to Expert Systems (with discussion) Journal of the Royal Statistical
Society, Series B, vol. 50, pp. 157 - 224

[84] S. Lauritzen [1992] Propagation of Probabilities, Means and Variances in Mixed Graphical Asso-
ciation Models Journal of the American Statistical Association vol. 87 no. 420 pp. 1098 - 1108

[85] Lewis II, P.M. [1959]Approximating Probability Distributions to Reduce Storage Requirements In-
formation and Control vol. 2 pp 214 - 225

[86] Ma, Z.; X, Xie; Geng, Z. [2008] Structure Learning of Chain Graphs via Decomposition J. Mach.
Learn Res 9 pp 2847 - 2880

[87] Madgison, J. [1977]Toward a Causal Model Approach for Adjusting for Pre-Existing Di�erences
in the Non-Equivalent Control Group Situation: A General Alternative to ANCOVA Eval. Rev.
vol. 1 pp. 399 - 420.

[88] D. Madigan, S.A. Andersson, M.D. Perlman, C.T. Volinsky [1996] Bayesian Model Averaging and
Model Selection for Markov Equivalence Classes of Acyclic Digraphs Communications In Statistics:
Theory and Methods vol. 25, no. 11 pp. 2493-2519

[89] D. Madigan and J. York [1995] Bayesian Graphical Models for Discrete Data International Statis-
tical Review vol. 63 pp. 215 - 232

[90] Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London

[91] Markowetz, F.; Spang, R. [2007]Inferring Cellular Networks - A Review BMC bioinformatics vol.
8 (Suppl 6) : S5

[92] McEliece, R.J.; MacKay, D.J.C.; Cheng, J.-F. [1998] Turbo Decoding as an Instance of Pearl's
`Belief Propagation' Algorithm IEEE J. Select. Areas Commun. vol. 16 pp. 140 - 152

[93] C. Meek [1995] Causal inference and causal explanation with background knowledge Proceedings
of the Eleventh Conference on Uncertainty in Arti�cial Intellegence pp 403 - 410

[94] Minka, T. [2001] Expectation Propagation for Approximate Bayesian Inference in Proc. of the
17th Annual Conf. on Uncertainty in Arti�cial Intelligence (UAI-01) San Fransisco, CA: Morgan
Kaufmann Publishers, pp. 362 - 369

[95] Mooij, J.M.; Kappen, H.J. [2007] Su�cient Conditions for Convergence of the Sum-Product Al-
gorithm IEEE Transactions on Information Theory, vol. 53 no. 12, pp 4422 - 4437

[96] Moore, A.; Wong, W-K. [2003] Optimal Reinsertion: A new search operator for accelerated and
more accurate Bayesian network structure learning Proceedings of the Twentieth International
Conference on Machine Learning (ICML - 2003), Washington DC

[97] Murphy, K.P. [2002] Dynamic Bayesian Networks: Representation, Inference and Learning Uni-
versity of California, Berkeley, Ph.D. thesis (Computer Science)



454 LITERATURE CITED

[98] R. Neal [1992] Correctionist Learning of Belief Networks Arti�cial Intelligence vol. 56 pp. 71 - 113

[99] R.E. Neapolitan [2004] Learning Bayesian Networks Pearson Prentice Hall, Upper Saddle River,
New Jersey.

[100] Nelson, E. [1987] Radically Elementary Probability Theory Princeton University Press

[101] Noorshams, N; Wainwright, M.J. [2013] Stochastic Belief Propagation: A Low-Complexity Alter-
native to the Sum-Product Algorithm IEEE Transactions on Information Theory vol. 59 no. 4 pp.
1981 - 2000

[102] Opper, M.; Winder, O. [2005] Expectation Consistent Approximate Inference Journal of Machine
Learning Research vol. 6 pp. 2177 - 2004

[103] J. Pearl [1982] Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach AAAI
- 82 Proceedings pp. 133 - 136

[104] J. Pearl [1987] Evidential Reasoning Using Stochastic Simulation of Causal Models Arti�cal In-
telligence, vol. 32, pp. 245-257.

[105] Pearl, J. [1988] Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
Morgan Kaufmann, San Mateo, CA.

[106] J. Pearl [1990] Probabilistic Reasoning in Intelligent Systems 2nd revised printing, Morgan and
Kaufman Publishers Inc., San Fransisco

[107] J. Pearl [1995]Causal Diagrams for Empirical Research Biometrika vol. 82 pp. 669 - 710

[108] J. Pearl [1995]Causal Inference from Indirect Experiments Arti�cial Intelligence in Medicine vol.
7 pp. 561 - 582

[109] J. Pearl [2000] Causality Cambridge University Press

[110] Pearl, J.; Dechter, D. [1996] Identifying Independencies in Causal Graphs with Feedback Proceed-
ings of the Twelfth International Conference in Uncertainty in Arti�cial Intelligence (UAI'96) pp.
420 - 426, Morgan Kaufmann

[111] J. Pearl, D. Geiger and T. Verma [1989] Conditional Independence and its Representations
Kybernetica vol. 25 no. 2 pp. 33 - 44

[112] J. Pearl and T. Verma [1987] The Logic of Representing Dependencies by Directed Acyclic Graphs
Proceedings of the AAAI, Seattle, Washington pp. 374 - 379

[113] Pearl, J. [2010] On Measurement Bias in Causal Inference In: Proc. 20th Cof. Uncertainty in
Arti�cial Intelligence, pp. 425 - 432, Catalina Island.

[114] J.M. P�ena [2007] Approximate Counting of Graphical Models Via MCMC Proceedings of the 11th
Conference in Arti�cial Intelligence pp. 352- 359

[115] Pistone, G.; Riccomagno, E.; Wynn, H. [2001] Algebraic Statistics: Computational Commutative
Algebra in Statistics Chapman and Hall, Boca Raton.

[116] M. Ramoni and P. Sebastiani [1997] Parameter Estimation in Bayesian Networks from Incomplete
Databases Knowledge Media Institute, KMI-TR-57

[117] Robins, J.M.; Scheines, R.; Spirtes, P.; Wasserman, L. [2003] Uniform consistency in causal
inference Biometrika vol 90 no 3 pp 491- 515

[118] R.W. Robinson [1977]Counting Unlabelled Acyclic Digraphs Springer Lecture Notes in Mathe-
matics: Combinatorial Mathematics V, C.H.C. Little (ed.) pp. 28 - 43.

[119] Rosenbaum, P.; Rubin, D. [1983] The Central Role of Propensity Score in Observational Studies
for Causal E�ects Biometrika vol. 70 pp. 41-55



455

[120] Sadeghi, K.; Lauritzen, S, [2012] Markov Properties for Mixed Graphs submitted to Bernoulli,
available on arxiv
http://arxiv.org/pdf/1109.5909v2.pdf

[121] J. L. Savage [1966]Foundations of Statistics John Wiley and Sons, New York.

[122] R.D. Schachter [1998] Bayes Ball: The Rational Pass Time for Determining Irrelevance and
Requisite Information in Belief Networks and In�uence Diagrams Proceedings of the 14th Annual
Conference on Uncertainty in Arti�cial Intelligence (ed G.F. Cooper and S. Moral) pp. 480 - 487,
Morgan Kaufmann, San Fransisco, CA.

[123] Schmidt, M.; Niculescu-Mizil, A.; Murphy, K. [2007] Learning graphical model structure using
l1-regularization paths Proceedings of the National Conference on Arti�cial Intelligence vol 22 no
2 pp 12- 78

[124] Shpister, I.; Pearl, J. [2006]Identi�cation of Joint Interventional Distributions in Recursive Semi-
Markovian Causal Models In: Proceedings of the Twenty-First National Conference on Arti�cial
Intelligence. Menlo Park, CA: AAAI Press. pp 1219 - 1226

[125] Shpister, I.; Pearl, J. [2008] Complete Identi�cation Methods for Causal Hierarchy Journal of
Machine Learning Research vol. 9 pp. 1941 - 1979

[126] Spirtes, P.; Glymour, C.; Scheines, R. [1993] Causation, Prediction and Search Lecture Notes in
Statistics no. 81 Springer-Verlag New York

[127] P. Spirtes, C. Glymour and R. Scheines [2000] Causation, Prediction and Search second edition,
The MIT press.

[128] Strotz, R.H.; Wold, H.O.A. [1960] Recursive versus Nonrecursive Systems: An Attempt at Syn-
thesis Econometrica vol. 28 pp. 417-427

[129] M. Studený [2005] Probabilistic Conditional Independence Structures Springer Verlag.

[130] Sturmfels, B. [2002] Solving Systems of Polynomial Equations In: CBMS Lectures Series, Amer-
ican Mathematical Society.

[131] Sun, J.; Zheng, N.-N.; Shum, H.-Y. [2003] Stereo Matching using Belief Propagation IEEE Trans-
actions on Pattern Analysis and Machine Intelligence vol. 25 no. 7 pp. 787 - 800

[132] Tanaka, K. [2002] Statistical-Mechanical Approach to Image Processing Journal of Physics A:
Mathematical and General vol. 35 no. 37 pp. R81 - R150
http://stacks.iop.org/0305-4470/35/R81

[133] Tatikonda, S.C. [2003] Convergence of the Sum-Product Algorithm in Proceedings 2003 IEEE
Information Theory Workshop

[134] Tian, J.; Pearl, J. [2002] A General Identi�cation Condition for Causal E�ects Proceedings of
the Eighteenth National Conference on Arti�cal Intelligence, AAAI Press, Menlo Park California
pp. 567 - 573.

[135] Tian, J.; Pearl, J. [2002]On the Testable Implications of Causal Models with Hidden Variables in
Proceedings of UAI-02, pp. 519 - 527

[136] Tian, J.; Shpitser, I. [2010] On Identifying Causal E�ects In: Dechter, R.; Ge�ner, H.; Halpern,
J. eds., Heuristics, Probability and Causality: A Tribpute to Judea Pearl UK: College Publications,
pp. 415 - 444.

[137] I. Tsamardinos, L.E. Brown and C.F. Aliferis [2006] The Max - Min Hill - Climbing Bayesian
Network Structure Learning Algorithm Machine Learning vol. 65 pp. 31 - 78

[138] M. Valtorta, Y.G. Kim, J. Vomlel [2002] Soft Evidential Update for Probabilistic Multiagent
Systems International Journal of Approximate Reasoning vol. 29 no. 1 pp. 71 - 106



456 LITERATURE CITED

[139] Vats, D.; Nowak, R.D. [2014]A Junction Tree Framework for Undirected Graphical Model Selec-
tion Journal of Machine Learning Research vol. 15 pp. 147 - 191

[140] P. Verma and J. Pearl [1992] An Algorithm for Deciding if a Set of Observed Independencies has a
Causal Explanation in Uncertainty in Arti�cial Intelligence, Proceedings of the Eighth Conference
(D. Dubois, M.P. Welman, B. D'Ambrosio and P.Smets, eds.) San Fransisco: Morgan Kaufman
pp. 323 - 330

[141] Vorobev, N. N. [1962] Consistent families of measures and their extensions Theory of Probability
and its Applications vol. 7 pp 147 - 162

[142] M.J. Wainright, M.I. Jordan [2003] Graphical Models, Exponential Families and Variational In-
ference Technical report 649, Department of Statistics, University of California, Berkeley

[143] On the Optimality of Solutions of the Max-Product Belief-Propagation Algorithm in Arbitrary
Graphs IEEE Transactions on Information Theory vol. 47 no. 2 pp. 736 - 744

[144] Whittaker, J. [1990]Graphical models in applied multivariate statistics Wiley

[145] N. Wiberg [1996] Codes and Decoding on General Graphs Linköping Studies in Science and
Technology. Dissertation 440 Linköpings Universitet, Linköping, 1996

[146] S. Wright [1921]Correlation and Causation Journal of Agricultural Research vol. 20 pp. 557 - 585

[147] Wright, S. [1934] The method of path coe�cients Ann. Math. Statist. vol 5 pp 161 - 215.

[148] X. Xie and Z. Geng [2008]A recursive method for structural learning of directed acyclic graphs
Journal of machine learning research vol. 9 pp. 459 - 483

[149] Yedidia, J.S.; Freeman, W.T.; Weiss, Y. [2005] Constructing Free-Energy Approximations and
Generalised Belief Propagation Algorithms IEEE Transactions on Information Theory, vol. 51 no.
7 pp. 2282-2312

[150] R. Yehezkel and B. Lerner [2009]Bayesian network structure learning by recursive autonomy
identi�cation Journal of Machine Learning Research vol. 10 pp 1527 - 1570

[151] Zhang, J; Spirtes, P. [2002]Strong faithfulness and uniform consistency in causal inference Pro-
ceedings of the nineteenth conference on uncertainty in arti�cial intelligence pp 632�639, Morgan
Kaufmann Publishers Inc.



Index

D-connected, 13
D-separation, 13

conditional independence, 15
I-equivalence, 30
I-map, 30, 29�32

perfect, 30
Imap

I-sub-map, 30

active
minimal active trail, 37
node, 37

active �ow, 167
ancestor, 6

back door criterion, 60, 59�62
Bayes ball, 14
Bayesian network, 9
Bernoulli, 421
beta

density, 239, 240, 423
integral, 239

bipartite graph, 404
bipartite graphical model, 425
Boltzmann - Shannon entropy, 427

canonical parameters, 420
chain component, 99
Chan - Darwiche distance, 121
charge, 143

restriction, 169
chord, 148, 209
common cause, 12
commutative law, 143
compelled edge , emph42
complete, 209
conditional Gaussian distribution, 204, 203�207

mean parameters, 205
parametrisation, 205
update using a Junction tree, 208�214

conditional Gaussian regression, 206
conditional independence, 7
con�guration, 141
confounding, 56, 59�62
conjugate dual, 428
connected

two nodes, 148
connection

chain, 10
collider, 11
fork, 11

consistency, 171�173
global, 172

local, 171
contraction, 143
contraction of a charge on a junction tree, 165
controlled experiment, 46

to establish the model within the equivalence
class, 51

Cooper Herskovitz likelihood, 247
cycle, 7, 209

descendant, 6
Dickey, J.M., 253
Dirichlet

density, 241
integral, 241

distance, 120
Chan - Darwiche, 121�127
Euclidean, 120

distributive law, 143
domain, 141, 141

extending the, 142

elimination
domain, 152
of a variable, 146
order, 152
sequence, 152

entropy, 419
Euler Gamma function, 239
evidence, 116�119

hard, 116
soft, 116
virtual, 116, 119
virtual on a DAG, 117
virtual, Pearl's method, 126, 128
weight of, 278

explaining away, 13
exponential distribution, 423
exponential family, 419, 419
exponential parameters, 420

factor graph, 403
factorisability, 403
factorisation, 9

along a DAG, 9
factorisation of a probability function

along an undirected graph, 159
fading, 246
faithful, 30
Fenchel inequality, 430
Fenchel Legendre conjugate, 427
�nding

hard, soft, virtual, 116

457



458 INDEX

�re, 264
�ow of messages, 163, 165�171

CG distribution, 208
fractional updating, 245
function, 141, 141

addition, multiplication, division, 142
function node, 404

Gaussian, 422
graph, 4

CG decomposable, 209
CG decomposition, 208
chain, 99, 99
complete, 147
connected, connected component, 6
decomposable, 149
decomposition, 148
directed, 4, 6
directed acyclic (DAG), 7
directed acyclic marked graph, 207
domain graph, 144
essential, 42, 41�375
family, 5
moral, 101
simple, 4
sub-graph, induced sub-graph, 6
triangulated, 148
undirected, 4, 6
weak decomposition, 148

greedy algorithm, 314

HUGIN, 264

identi�ability, 62, 59�62
immorality, 36
independence, 7
instantiated, 10
intervention

formula, 47
measure, 47

intervention formula, 47
iterative proportional �tting procedure, 175

Je�rey's rule, 113, 114, 124, 128
Jensen, J.L., 234
junction tree, 154�155

construction, 154
factorisation along, 162
soft evidence, 173

K2 structural learning algorithm, 313�314
Kullback Leibler divergence, 120, 234, 314, 419,

430�431
dual form, 431
mixed form, 431
primal form, 431

Laplace rule of succession, 241, 252
leaf, 7, 156
likelihood

estimate, 233
function, 233

local surgery, 47
locally directed Markov property, 17
log likelihood function, 233
log partition function, 420, 425�427

marginal charge, 162
marginalisation, 142

computational tree, 146
graphical representations, 144

Markov blanket, 14, 22
Markov chain Monte Carlo

learning the graph structure, 375
Model Composition Algorithm, 375

Markov equivalence, 30, 29�101
characterisation, 36�40
theorem, 36

Markov model, 29
maximal clique, 147, 154
maximum minimum hill climbing algorithm, 325
maximum minimum parents children algorithm,

317
maximum posterior estimate, 240
mean �eld lower bound, 432
mean �eld theory, 431�435
mean parameters, 205, 426
mean posterior estimate, 242
minimal representation, 421
missing data, 244
modularity, 251
moment generating function, 204
multinomial

sampling, 241
multivariate normal distribution, 204

naive mean �eld update, 433
node

child, 5
neighbour, 5
parent, 5
simplicial, 148, 154

node elimination, 151, 154
�ll ins, 151
perfect sequence, 151

noisy `or', 93, 424
causal network, 20
gate, 21
inhibitor, 20

NP hard, 285

odds, 122, 276, 277
one eye problem, 404
optimisation

constraint based, 281
score function, 281

over-complete representation, 421

path, 6
directed, 6

pattern recognition, 310
PC algorithm, 317
Pearl's update, 114, 114
Poisson distribution, 423
prediction su�ciency, 249



INDEX 459

for a Bayesian network, 250
predictive distribution, 243
predictive probability, 241
proportional scaling, 266�272

optimality of, 267
propositional logic, 93, 424

disjunction, 19

QMR - DT database, 19, 424
query, 18, 263

constraint, 269�272
query constraint, 263

regular family, 420
root, 156

CG, 210

Savage, J.L., 253
schedule, 167, 167

fully active, 167
sensitivity, 272
separator, 148, 154, 209

minimal, 148, 209
Shannon, 233
Shannon entropy, 233
sigmoid belief network model, 423
Simpson's paradox, 57
skeleton, 36
statistic

Bayesian su�cient, 247, 421
minimal su�cient, 421

strong component, 148
structure, 284

likelihood, 246
prior distribution, 284

sub-tree
base, 169
live, 169

su�ciency
Bayesian, 421

sum product algorithm, 403
sum product rule

initialisation, 406
schedule, 407
termination, 407

sum product update rule, 406
support, 121
sure thing principle, 56�57

thumb-tack, 248
trail, 6

active, 13
blocked, 13

tree, 7
rooted, 156

triangulated, 209
Turing machine, 285

update ratio, 164

variable node, 404
variational principle, 427

weight of evidence, 277


	Introduction
	Conditional Independence and Graphical Models
	Notational preliminaries: Graphical and Probabilistic
	Conditional Independence and Factorisation
	Directed Acyclic Graphs and Probability Distributions
	Connections in a Directed Acyclic Graph and Conditional Independence
	Bayes Ball

	D-Separation and Conditional Independence
	The Locally Directed Markov Property
	Quick Medical Reference - Decision Theoretic: An Example
	Propositional Logic and Noisy Logic Gates
	QMR - DT Data Base

	Notes
	Exercises
	Answers

	 Markov models and Markov equivalence
	I-maps and Markov equivalence
	Properties of Conditional Expectation and D-Separation

	Characterisation of Markov Equivalence
	Example 2.8 (Hidden Variables) Revisited

	Markov Equivalence and the Essential Graph
	Notes

	Intervention Calculus
	Causal Models and Bayesian Networks
	Conditioning by Observation and by Intervention
	The Intervention Calculus for a Bayesian Network
	Causal Models
	Establishing a Causal Model via a Controlled Experiment

	Properties of Intervention Calculus
	Confounding, The `Sure Thing' Principle and Simpson's Paradox
	Confounding
	Simpson's Paradox
	The Sure Thing Principle

	Identifiability: Back-Door and Front-Door Criteria
	Back Door Criterion
	Front Door Criterion
	Non-Indentifiability

	Inference Rules for Intervention Calculus
	Example: Front Door Criterion
	Causal Inference by Surrogate Experiments

	Measurement Bias and Effect Restoration
	The Matrix Adjustment Method
	Effect Restoration Without External Studies

	Identification of Counterfactuals
	Counterfactual Graphs
	Joint Counterfactual Probabilities and Intervention

	Notes
	Exercises
	Answers

	The Pioneering Work of Arthur Cayley 
	Cayley's Contribution
	Arthur Cayley and Judea Pearl's intervention calculus
	Arthur Cayley: algebraic geometry and Bayesian networks

	Moral Graph, Independence Graph, Chain Graphs
	The Moral Graph and the Independence Graph
	Chain Graphs
	Motivation
	Factorisation along a Chain Graph
	Separation Trees for Chain Graphs


	Evidence and Metrics
	Probability Updates
	Jeffrey's Rule

	Evidence
	Virtual Evidence
	Measures of Divergence between Probability Distributions
	The Chan - Darwiche Distance Measure
	Soft Evidence and Virtual Evidence

	Notes
	Exercises
	Answers

	Marginalisation, Triangulated Graphs and Junction Trees
	Functions and Domains
	Marginalisation and Graphical Representations
	Decomposable Graphs and Node Elimination
	Junction Trees
	Perfect Orders of Maximal Cliques
	Notes

	Junction trees and message passing
	Factorisation along an Undirected Graph
	Factorising along a Junction Tree
	Flow of Messages
	First Example

	Local Computation on Junction Trees
	Schedules
	Local and Global Consistency
	Using a Junction Tree with Virtual Evidence and Soft Evidence
	Notes
	Exercises
	Answers

	Bayesian Networks in R
	Introduction
	Graphs in R
	Undirected Graphs
	Directed Acyclic Graphs
	Mixed Graphs

	Bayesian Networks
	Specifying the Conditional Probability Potentials
	Building the Network
	Compilation - Finding the Clique Potentials
	Absorbing Evidence and Answering Queries
	Building a Network from Data
	Simulation using a Network
	Prediction
	Buidling a Bayesian Network using bnlearn

	Exercises

	Conditional Gaussian variables
	Conditional Gaussian Distributions
	Some Results on Marginalization
	CG Regression

	The Junction Tree for Conditional Gaussian Distributions
	Updating a CG distribution using a Junction Tree
	Notes
	Exercises

	Gaussian and Conditional Gaussian Graphical Models in R
	Undirected Gaussian Graphical Models
	Decomposition of UGGMs
	Directed Gaussian Graphical Models
	Gaussian Chain Graph Models
	Conditional Gaussian Models

	 Learning the Conditional Probability Functions
	Introduction
	Gaussian and Conditional Gaussian Networks
	Discrete Variables
	Maximum Likelihood for Discrete Variables
	Maximum Likelihood for Multinomial Sampling
	MLE for a Probability Factorised along a DAG

	The Bayesian Approach
	Independent Bernoulli trials and the Beta distribution
	Multinomial Sampling and the Dirichlet Integral
	Distribution for Conditional Probabilies of a Bayesian network

	Updating, Missing Data, Fractional Updating
	Likelihood Function for the Graph Structure
	Bayesian Sufficient Statistics
	Prediction Sufficiency
	Prediction Sufficiency for a Bayesian Network
	Notes
	Exercises
	Short Answers

	Parameters and Sensitivity
	Parameter Changes to Satisfy Query Constraints
	Proportional Scaling
	Query Constraints
	Binary Variables

	The Sensitivity of Queries to Parameter Changes
	Notes
	Exercises
	Answers

	Structure Learning
	Introduction
	Distance Measures
	Structural Hamming Distance
	Sensitivity and Specificity
	The Kullback Leibler Divergence

	Search and Score Algorithms
	Score Functions
	Sparse Candidate Algorithm
	Greedy Search and Greedy Equivalence Search

	Notes
	Exercises

	Data Storage, Product Approximations, Chow Liu Trees
	Introduction
	Product Approximations
	Existence of Extensions with Given Marginals
	Dependence Structures

	Reverse I-Projection and the Optimal Product Approximation
	The Optimal Chow-Liu Product Approximation
	Chow Liu Tree with known P
	Chow-Liu Algorithm with Unknown P
	The Log Likelihood Function
	The Chow-Liu Algorithm and Polytrees

	Asymptotic Consistency of the Maximum Likelihood Estimate
	Classification

	Constraint-Based Structure Learning Algorithms
	Structure Learning
	Testing for Conditional Independence
	Gaussian variables
	Discrete Variables
	Hypothesis Testing and Statistical Theory

	The K2 Structural Learning Algorithm
	Three phase dependency analysis
	Fast Adjacency Search (FAS) algorithm
	PC and MMPC Algorithms
	Recursive Autonomy Identification
	Incompatible Immoralities: EDGE-OPT Algorithm
	Hybrid Algorithms
	The Maximum Minimum Hill Climbing Algorithm
	L1-Regularisation
	Gibbs sampling

	A Junction Tree Framework for Undirected Graphical Model Selection
	The Xie-Geng Algorithm for Learning a DAG
	Description of the Xie-Geng Algorithm
	Proofs of Theorems 16.5 and 16.6

	The Ma-Xie-Geng Algorithm for Learning Chain Graphs
	Skeleton Recovery with a Separation Tree
	Recovering the Complexes

	Structure Learning and Faithfulness: an Evaluation
	Faithfulness and `real world' data
	Interaction effects without main effects
	Hidden variables
	The scope of structure learning
	Application of FAS and RAI to financial data
	Conclusion
	The `Causal Discovery' Controversy
	Faithfulness and the great leap of faith
	Inferring non-causation and causation
	Summarising causal discovery

	Notes
	Exercises
	Answers

	Bayesian Networks in R: Structure and Parameter Learning
	Bayesian Networks with bnlearn
	Creating and Manipulating Network Structures
	Visualising Graphical Models
	Structure Learning
	Parameter Learning
	Discretisation
	Latent Variables
	Application to Gene Expression Data
	Interventional Data

	Exercises

	Monte Carlo Algorithms for Graph Search
	A Stochastic Optimisation Algorithm for Essential Graphs
	Structure MCMC
	Edge Reversal Moves
	Order MCMC
	Partition MCMC for Directed Acyclic Graphs
	Scoring Partitions
	Partition Moves
	Permutation Moves
	Combination with Edge Reversal


	Dynamic Bayesian Networks
	Introduction
	Multivariate Time Series
	Lasso Learning
	Implementation

	simone: Statistical Inference for MOdular NEtworks
	GeneNet, GIDBN
	Inference for Dynamic Bayesian Networks
	Exercises

	 Factor graphs and the sum product algorithm
	Factorisation and Local Functions
	The Sum Product Algorithm
	The Sum Product Algorithm on General Graphs
	Stochastic Probability Updates
	Notes
	Exercise
	Answer

	Graphical Models and Exponential Families
	Introduction to Exponential Families
	Standard Examples of Exponential Families
	Graphical Models and Exponential Families
	Properties of the log Partition Function
	Fenchel Legendre Conjugate
	Kullback Leibler Divergence
	Mean Field Theory
	Notes
	Exercises: Graphical Models and Exponential Families

	Variational Methods for Parameter Estimation
	Complete Instantiations
	Triangulated Graphs
	Non-Triangulated Graphs

	Partially Observed Models and Expectation-Maximisation
	Exact EM Algorithm for Exponential Families
	Mean Field Approximate EM

	Variational Bayes

	Literature Cited
	INDEX

