Partial exam. Wednesday 11 May, 12:15–14:00

1. Show that the following problem is \(NP \)-complete.

 Given an alphabet \(A \) and a regular expression \(\alpha \) over \(A \), decide if there is a word generated by \(\alpha \) which contains every letter from \(A \).

 Hint. For \(NP \)-hardness, you may reduce \(CNF-SAT \). Note that the alphabet \(A \) is not fixed and may depend on the formula.

2. We consider the words of the form

 \[w = w_1 w_2 \ldots w_{2^m-1} w_{2^m} \]

 with \(w_i \in \{0, 1\}^m \), for \(i = 1, \ldots, 2^m \). Let the language \(L \) consists of all words \(w \) in the above form, in which the number of different blocks \(w_i \) is even. Show that \(L \) can be accepted by a sequence of circuits \(C_n \) of polynomial size and depth \(O(\log n) \).

3. We consider a grid \(n \times n \) with the nodes colored black or white. (It can be encoded as a word in \(\{0, 1\}^{n^2} \) in an obvious manner.) Show that a deterministic Turing machine can check in logarithmic space whether there is a monochromatic path from the topmost level to the lowest level.

4. Show that the complexity class \(P \) is closed under morphic images w.r.t. non-zero morphisms iff \(P = NP \).

 Hint. For the only if direction, use problem \(CNF-SAT \).

 Reminder. A morphism is defined by a mapping \(h : \Sigma \rightarrow \Sigma^* \), which is extended to \(\hat{h} : \Sigma \rightarrow \Sigma^* \) by

 \[\hat{h}(\varepsilon) = \varepsilon \]

 \[h(v w) = h(v) h(w). \]

 The morphic image of a language \(L \subseteq \Sigma^* \) is \(\{\hat{h}(w) : w \in L\} \). A morphism is non-zero iff \((\forall \sigma \in \Sigma) h(\sigma) \neq \varepsilon \).

 Remark. The necessity of the assumption that the morphism is non-zero was noticed during the exam. This yields an additional question: Why the claim fails without this assumption?