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Notacja

Przez wy, ws, . . ., w),| oznaczam kolejne litery stowa w. Przez Ax.wyrazenie oznaczam funk-
cje, ktora dla argumentu x przyjmuje wartos¢ wyrazenie.

Zadanie 1

Teza zadania nie jest prawdziwa. Wezmy jakikolwiek automat, ktory akceptuje stowo puste.
Wowczas dla stowa pustego musi on wykonaé¢ przynajmniej jeden krok, czyli dla zadnej
statej |C| liczba krokéw nie bedzie < C' - 0.

Udowodni¢ podobne twierdzenie, z tym ze nieréwnos¢ bedzie zachodzi¢ tylko dla stow
niepustych. Ustalmy konkretny automat A. Niech () bedzie jego zbiorem stanéw, I" zbiorem
symboli stosowych, natomiast d,,., niech bedzie taka stala, ze kazde przejécie automatu A
powoduje odlozenienie na stos co najwyzej d,a, symboli. Wezmy C) = 6pnas(|Q)?|T| + 2),
02 = 401 + 25ma:v + 4, 03 = |Q| . (|F| + 1)Cl+5maz+l, 04 =2+ 03(2 + 65ma$ + Ol), C =
14 Cy+ Cy,Cy. Wezmy dowolne niepuste stowo w € Z(A). Rozwazmy najkrétsze obliczenie
automatu A akceptujace to stowo. Udowodnie, ze liczba krokéw w tym obliczeniu jest nie
wieksza niz C'lw|. Ponumerujmy kroki naszego obliczenia przez 1,2, ..., n. Niech s(t) bedzie
wysokoscig stosu w kroku t. Przez wysokos¢ stosu w jakims$ kroku rozumiem wysokos¢
stosu po zdjeciu przez automat symbolu odczytywanego w tym kroku, a przed wlozeniem
nowych symboli na stos. Pozycje stosu réwniez numerujemy kolejno: 1,2, ... zaczynajac
od dotu. Przez p(i, t) bedziemy oznaczaé ostatni numer kroku przed krokiem ¢, w ktérym
zostal polozony symbol na pozycji stosu i. Analogicznie, przez z(i,t) bedziemy oznaczaé
pierwszy numer kroku po kroku ¢, w ktorym zostal zdjety symbol z pozycji stosu <. Niech

T1,T2, ..+, Tjw| beda numerami krokow, w ktorych odezytywalismy symbol z wejscia. Niech
mo = 1,my,| = noraz niech my, dlak = 1,2,. .., |w|—1 bedzie numerem tego wsréd krokow
Tr, Tk + 1, ... rer1, w ktorym wysoko$¢é stosu bylta najmniejsza (pierwszym z takich krokow

jesli byto kilka). Powiemy, ze w danym kroku ¢ przedzial [i, j] pozycji stosu jest czysty, jesli
zaden z krokéw p(i,t), p(i,t)+1,...p(j,t) oraz zaden z krokéw z(j,t), z(j,t)+1,..., 2(i,t)



nie wezytywal litery z wejscia (uwaga! nie w kazdym z wymienionych krokéw wktadalismy
lub zdejmowalismy ktéry$ z symboli lezacych na stosie w kroku ¢). W ustalonym kroku ¢
pozycje stosu ¢ nazwiemy podstawowgq, jesli byta najnizszg z pozycji stosu zajetych w kroku
p(i,t).

Lemat 1 Niech t bedzie dowolnym krokiem, [i, j] dowolnym przedziatem pozycji na stosie
w tym kroku. Jesli przedzial ten jest czysty, to jego dlugo$c wynosi co najwyzej C;.

Dowéd Ustalmy krok ¢ oraz przedzial [i,j]. Zalézmy wbrew tezie, ze jest on czy-
sty i ze jego dtugodé jest wieksza niz C) = e (|QJ?|T] + 2) i dojdziemy do sprzeczno-
sci. Niech k bedzie dowolng pozycja z tego przedziatu. Zauwazmy, ze najnizszy symbol
potozony w kroku p(k,t) nadal lezy na stosie w kroku ¢, poniewaz lezy on glebiej niz
k, wiec nie mégt by¢ zdjety wezesniej. Oznacza to, ze na stosie moze leze¢ co najwyzej
Omaz — 1 pozycji niepodstawowych pod rzad. Zatem w naszym przedziale jest co najmniej
|QI?|T| + 1 pozycji podstawowych. Kazdej z tych pozycji przypiszemy pewnag trojke: Pozy-
cji k przypiszemy trojke (qo, ao, q1), gdzie qo jest stanem przed wykonaniem kroku p(k,t),
ap symbolem na szczycie stosu przed wykonaniem kroku p(k,t), natomiast ¢; stanem po
wykonaniu kroku z(k, t). Zauwazmy, ze jest tylko |Q|?|T'| réznych tréjek, natomiast rozwa-
zamy az |Q*|T| + 1 pozycji podstawowych. Zatem pewne dwie pozycje k,[ (k < [) maja
przypisana ta sama tréjke (qo, ao, ¢1). Rozwazmy obliczenie, w ktérym nie bedzie krokow
pk,t),p(k,t) + 1,...,p(l,t) — 1 oraz z(I,t) + 1,2(I,t) + 2,..., z(k,t). Zauwazmy, ze to
obliczenie jest krotsze. Przeczy to wyborowi obliczenia. Pozostaje uzasadnié¢, ze jest to po-
prawne obliczenie. Poniewaz k, [ wybraliémy z przedziatu czystego, to usuniete kroki nie
wezytywaly nic z wejscia. Stan przed krokami p(k,t) i p(l,t) jest taki sam, bo jest to go.
Tak samo stan po wykonaniu z(l,t) i z(k,t), bo jest to ¢;. Obliczenia od p(l,t) do z(l,t) w
ogole nie patrza w glab stosu, zaleza tylko od pozycji na szczycie stosu, ale zaréwno przed
p(l,t), jak i przed p(k,t) lezy tam symbol ag. Tym bardziej obliczenia te nie modyfikuja
stosu ponizej pozycji [. Rowniez obliczenia usuwane nie modyfikuja stosu ponizej pozy-
cji k. Oznacza to, ze usuniecie omawianego kawalka obliczenia nie wptywa na mozliwosé
wykonania reszty, co konczy dowdd.

Lemat 2 Niech [i, j] bedzie dowolnym przedziatem pozycji stosu w pewnym kroku my,. Jesli
Zaden sposrod krokow p(i, my), p(i,mg) + 1,...,p(j, mx) (tutaj sq wszystkie kroki po kolei)

oraz z(j,mg), 2(j — Lymyg), ..., z(5,my) (a tutaj tylko kroki, w ktérych zdjelismy ze stosu
co$ z naszego przedziatu) nie jest jednym z krokow mo,ma, ..., my|, to przedziat [i,j] jest
czysty.

Przyjmijmy prawdziwos¢ zatozen i zalézmy, ze teza nie jest prawdziwa. Najpierw roz-
wazmy przypadek, gdy ze dla pewnego [ mamy p(i, my) < 1, < p(j, mg). Popatrzmy ile
moze by¢ rowne m;. Zgodnie z definicjg m; > r;. Zalozylismy, ze my; nie jest zadnym z kro-
kéw p(i, my), p(i,mg) + 1,...,p(5,my), czyli my > p(j, my). Ponadto oczywiscie m; < my
(bo I < k). Oznacza to, ze s(m;) > j, bo po polozeniu symbolu na j-tej pozycji stosu w
kroku p(j, my) (zgodnie z definicja p(j, my)) lezy on tam na pewno co najmniej do kroku



my. Z definicji m; wynika, ze w kroku m; wysoko$¢ stosu byta najmniejsza miedzy r; i ryy 1,
nie moze byé¢ wiec wieksza niz wysokos$é w kroku p(j, my), ktora to jest mniejsza niz j.
Sprzecznosé.

Pozostaje jeszcze mozliwosé, ze dla pewnego | mamy z(j, my) < r; < z(i, my). Wezmy
najmniejsze z [ spelniajacych ten warunek (oznacza to, ze r—1 < z(j, my)). Popatrzmy ile
moze by¢ réwne m;_;. Rozwazmy dwa przypadki:

e my_1 < z(j,m). Wtedy podobnie jak poprzednio: Oczywiscie m;_1 > my (bol—1>
k). Oznacza to, ze s(my_1) > j, bo (zgodnie z definicja z(j, my)) symbol na j-tej
pozycji stosu z chwili my, lezy tam az w kroku z(j, my). Z definicji m;_; wynika, ze
w kroku m;_; wysokos¢ stosu byta najmniejsza miedzy r;_; i r;, nie moze by¢ wiec
wigksza niz wysoko$¢ w kroku z(j, my), ktora to jest réwna j — 1. Sprzecznosé.

e 2(j,my) < my_y Niech ¢ bedzie najmniejsza z tych liczb i < ¢ < j, ze z(¢, my) < my_1.
Zgodnie z definicja m;—1 mamy s(m;_1) < s(z(c,my)) = ¢ — 1. Jedli ¢ = 4, to mamy
z(e,my) < my—y < 1 < z(e,my), czyli z(c,my) = my_y. Jesli ¢ > i, to: Zauwazmy,
ze s(my—1) = ¢ — 1, bo na pozycji stosu ¢ — 1 caly czas od kroku my lezy symbol,
ktéry zostanie Sciagniety dopiero w kroku z(c — 1, my), wiec w kroku m;_; ktory jest
pomiedzy rozmiar stosu nie moze zej$¢ ponizej ¢ — 1. Oznacza to ze s(m;_1) = c— 1.
Wiemy tez, ze m;_; jest pierwszym z krokéw pomiedzy r;_; i 7, dla ktérego to
zachodzi. Ale z(c,my) réwniez lezy pomiedzy r_1 i r; 1 s(z(e,my)) = ¢ — 1, co
oznacza, ze z(c,my) = my_1, czyli w tym przypadku réwniez z(c,my) = my_;. To
jednak jest sprzeczne z zalozeniem, ze m;_; nie jest zadnym z krokéw z(j, my), z(j —
Lmg), ..., z(i,my).

Lemat 3

|wl

Z |s(m;) — s(mi—1)| < Calw]
i=1
Dowdéd Niech R bedzie zbiorem tych i, ze s(m;) > s(m;—1). Udowodnie, ze

C
3 ls(my) = s(miz1)| < (201 + Snae + 2) 0] =
1€ER

Z tej nieréwnosci natychmiast wynika teza lematu, gdyz suma po pozostatych elementach
jest réwna tej sumie (bo s(mg) = s(my,|) = 0).

Niech R' bedzie zbiorem tych k, ze s(mg_1) + Omaz + 1 < s(my). Dla kazdego k € R’
popatrzmy na przedzial [i, j] = [s(mk—1) + Omaz + 1, s(my)] W kroku my. Na pewno zaden
sposrod krokéw p(i, my), p(i,my) + 1,...,p(j, mi) nie jest ktoryms z mg, ma, ..., mjy|, bo
miedzy my_1 1 my nie ma juz zadnego. Zatézmy, ze wsrdd z(j, mg), 2(j—1, mg), . .., 2(i, my)
jest doktadnie ¢ z krokéw mg, my, ..., my,. Udowodnie, ze wowczas przedzial [i, j] moze
mie¢ dlugosé co najwyzej (C1+41)(cx+1). Mozemy bowiem przedziat [i, j] podzieli¢ na ¢, +1
takich przedziatoéw [i = iy, ji1], [i2 = j1 + 2,83), . . - [ice+1 = Jep + 2, Jep+1 = J] (z ktérych byc
moze niektére sa puste), ze dla kazdego a wérdd z(j,, mg), 2(Jo — 1,my), . .., 2(iq, my) nie



ma juz zadnego z krokow mg, my, ..., my,|. Zgodnie z lematem @ kazdy z tych przedziatow
jest czysty. Jesli przedzial [i, j] miatby dtugo$¢ wieksza niz (C7+1)(cx+1), to suma dtugosci
tych matych przedziatéw bylaby wieksza niz C}(cx + 1), czyli ktéry$ z nich miatby dtugosé
wigksza niz Cy. Jest to jednak sprzeczne z lematem [§

Zauwazmy jednak, ze kazda sposréd liczb mg, m, ..., my, moze by¢ jedna z z(j, my),
z2(7 4+ 1,myg), ..., 2(i,my) tylko dla jednego my (bo sa to kroki, w ktérych zdejmujemy ze
stosu cos, co potozylidémy miedzy krokiem my_; i my). Inaczej méwiac suma wszystkich
cr jest nie wigksza niz |w| + 1. Oznacza to, ze (w ostatnim przejsciu wykorzystujemy
nierownosé¢ |R'| < |R| < |w| —1):

Z |S(mk) - S<mk—1)| < |R|5maz + Z (S(mk) - S(mk—l) - 5maw) <

keER keR'

|R‘5max + Z (Ck -+ 1)(01 + 1) <

keR’
< |R|Omaz + (|R'| + |w] +1)(C1 + 1) <
< |w|(dmaz + 2C1 + 2)

N

Lemat 4 Jesli pomiedzy krokiem a i b (wlgcznie) nie wezytujemy nic z wejscia oraz dla
kazdych dwdch krokéw c, d takich, ze a < ¢ < d < b, zachodzi |s(c) — s(d)| < C1 + dmag, to
b—a+1 < Cg.

Dowéd Zalézmy, ze b —a + 1 > C5 i dojdziemy do sprzecznosci. Niech $p,in 1 Smax
oznaczaja minimalng i maksymalng wysokos$é¢ stosu podczas krokéw od a do b. Niech S =
{Smin + 1, Smin + 2, ..., Smaz + 1}. Kazdemu krokowi przypiszemy pare (¢, f) € @ x (S —
(I'U {x})), gdzie ¢ jest stanem przed wykonaniem danego kroku, natomiast f zawartoscia
stosu na pozycjach z S przed wykonaniem danego kroku, przy czym jesli jakas pozycja jest
wtedy pusta, to wartodcia f jest *. Zauwazmy, ze réznych par jest tylko |Q|-(|T'|+1)1°!, przy
czym |S| < Oy + ez + 1. Natomiast krokéw mamy wiecej niz Cs = |Q| - (|T'| + 1)1 H0maeetL,
Zatem dla pewnych dwoch krokéw ¢ i d mamy ta sama pare (¢, f). Zauwazmy, ze stan stosu
przed krokami c i d jest taki sam, gdyz kroki posrednie nie modyfikowaly stosu glebiej niz
na pozycji Sy, + 1. Réwniez stan przed c i d jest taki sam. Mozemy wiec usunia¢ kroki
c,c+1,...,d—1 otrzymujac poprawne, ale krotsze obliczenie. Przeczy to jednak wyborowi
obliczenia jako najkrotsze.

Lemat 5 Jesli pomiedzy krokiem a i b (wlgcznie) nie wezytujemy nic z wejscia oraz dla
kazdego c takiego, Ze a < ¢ < b, zachodzi s(c¢) > min(s(a),s(b)) — dmaz, to b —a+ 1 <
Cs(1 +[s(b) — s(a)]).

Ustalmy a i b. Zalézmy, ze s(a) < s(b) (w przeciwnym przypadku sytuacja jest prawie
symetryczna). Podzielimy przedzial krokéw [a, b] na k < s(b) —s(a)+1 sasiednich przedzia-
tow krokéw: [a = ay,by = ag — 1], [ag, by = a3 — 1], ... [ax, by = b], z ktérych kazdy bedzie
spetnial zalozenia lematu [4] Jesli dla kazdego ¢ (a < ¢ < b) zachodzi s(c) — s(a) < C4, to
caly przedzial [a, b] spelnia zalozenia lematu[d] bo poziom stosu waha sie miedzy s(a)—0maz
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i s(a) + C1. W przeciwnym przypadku robimy tak: Niech as bedzie pierwszym takim kro-
kiem, ze s(az) — s(a) > C;. Dalej (dla ¢ > 3) postepujemy indukcyjnie (tak dtugo jak sie
da): niech a; bedzie pierwszym takim krokiem a;,—; < a; < b, ze s(a;) > s(a;—1). Niech
k bedzie ostatnim takim ¢, ze udato si¢ wyznaczy¢ a;. Ponadto niech b; = a;,.; — 1 dla
1=1,2,...,k—1oraz by = b. W ten sposdb uzyskujemy jaki$ podzial na sgsiednie prze-
dziaty. Trzeba udowodnié, ze spelniajg one zalozenia lematu [4f oraz ze k < s(b) — s(a) + 1.

Udowodnig najpierw, ze dla kazdych i,¢, (i > 1, a; < ¢ < b) mamy s(c) > s(a;) — C.
Popatrzmy w tym celu na przedzial [max(s(c), s(a)) + 1, s(a;)] pozycji stosu w kroku a;.
Przedzial ten jest czysty, bo p(maz(s(c), s(a))+1,a;) > a oraz z(max(s(c),s(a))+1,a;) <
c. Zatem, z lematu [§| otrzymujemy, ze s(a;) — maz(s(c), s(a)) < Cy. Ale s(a;) — s(a) > Ci,
czyli s(a;) — s(c) < Ch.

Oznacza to wtasnie, ze dla krokéow w przedziale [a;, b;] (dla @ > 1) poziom stosu wy-
nosi co najmniej s(a;) — Cy. Wynosi on takze nie wiecej niz s(a;), bo pierwszy krok, w
ktorym zuzywamy wiecej stosu, nalezy do nastepnego przedziatu. Natomiast dla krokéw
z przedziatu [ay, b;] poziom stosu waha si¢ miedzy s(a) — dpmas 1 S(a) + C). Zatem kazdy
z przedzialéow [a;, b;] spelnia zalozenia lematu [l Poniewaz s(a2) < s(az) < ... < s(ax) to
k —2 < s(ax) — s(az). Ponadto poniewaz a(ay) < s(b) + Cy oraz s(ag) > s(a) + C; + 1, to
k<24 (s(b)+Cy) —(s(a) + C1+ 1) = s(b) — s(a) + 1.

Korzystajac z lematu [4] dla kazdego z przedzialéw otrzymujemy:

b—a—l—lzi(bi—ai—l—l)</{;Cg<03(s(b)—s(a)+1)

i=1
Lemat 6 my — my_1 < Cy(1 + |s(my) — s(my_1)|)

Dowdéd Ustalmy k. Najpierw udowodnimy, ze s(ry) < maz(s(myg), s(mg_1))+0maz+Ch.
Zatézmy przeciwnie, ze s(ry) > max(s(myg), s(Mk—1)) 4 Omas + C1 1 popatrzmy na przedziat
i, 7] = [maz(s(my), s(Mrg_1)) + Omaz + 1, 8(rx)] pozycji stosu w chwili ry. Przedzial ten
jest czysty, bo p(j,ri) < mx < 2(j, k) oraz r_1 < my_1 < p(i,rx), 2(i,rx) < my <
rre1 (0 ile rg_q 1 744 istnieja). Jednak diugo$é tego przedziatu jest wieksza niz Cy. Z
lematu |8 dostajemy sprzecznos¢, czyli nasza nier6wnos¢ jest prawdziwa. Poniewaz s(ry) >
max(s(my), s(mx_1)), to wynika z niej bezposrednio, ze: |s(my)—s(r)|+|s(ry) —s(mg_1)| <
|s(mi) = s(mi—1)] + 2(0maz + C1).

Zachodza nastepujace nieréwnosci (przej$cie miedzy pierwsza i druga linijka uzyskujemy
korzystajac z lematu [5| dla krokéw [my_q1 + 1,7, — 1] oraz [ry + 1, my — 1] — jego zalozenia
sa spelnione na podstawie definicji my_1 i my):

24 ((me =) = (e + D+ D+ ((re = 1) = (M1 +1) +1) <

24 C5(24 [s(mg — 1) = s(re + 1)| + |s(re — 1) — s(my—1 + 1)]) <

2+ C3(2 4 40maz + [s(mu) — s(re)| + [s(rx) = s(mp—1)]) <

2+ C3(2 + 40maz + |s(mi) — s(mg—1)| + 2(Omaz + C1)) <

(24 C5(2 4 60maz + C1))(1 + |s(my) — s(mr—1)]) = Ca(1 + |s(my) — s(mi—1)])

mg — M1

N ININ N
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Podsumowanie Liczba krokéw naszego obliczenia to my, —mgo+1 =1+ Zl,:jzll(mk —
my_1). Korzystajac z lematu @jest ona nie wieksza niz 1+Cy S (14 |s(my) — s(ma_1))).
Nastepnie korzystajac z lematu |3 dostajemy, ze jest to nie wiecej niz 1+ Cy(1 + Co)|w|.

Dla |w| > 1 jest to < (1 4+ Cy + C5Cy)|w| = Clw|, co wlasnie mielismy dowies¢.

Zadanie 2

Klasa jezykéw bezkontekstowych nie jest zamnkigta na wymienione operacje. Rozwazmy
najpierw jezyk L = {a"b"c™d*":n,m > 1}. Jest to niewatpliwie jezyk bezkonstekstowy,
generuje go na przyktad gramatyka: S — XY, X — aXb|ab, Y — c¢Ydd|cdd. Udowodnie
teraz, ze jezyk %L nie jest bezkontekstowy. Zatdzmy przeciwnie i skorzystajmy z lematu
Ogdena. Niech M bedzie stala z tego lematu. Niech oo = a™b™ M. Nalezy ono do 3L, bo
aMpM M AM ¢ [, Wyrézniamy wszystkie litery ¢, jest ich > M. Niech wiec o = a17y1 372000
bedzie odpowiednim podziatem istniejacym na mocy lematu. Zauwazmy, ze jesli ktoras z
czedel 1, Yo zawiera dwie rozne litery, to stowo ayvifBy2ay & %L, bo nie bedzie postaci
a™b"c™. Ponadto, poniewaz 7,7, zawiera co najmniej jedna wyrdznionag pozycje, to 7o
zawiera tylko litery c. Jedli v, zawiera jaka$ litere a, to stowo a1v?B3v3an zawiera wigcej
a niz b, wiec nie nalezy do %L (poniewaz zawiera tez c¢). Podobnie jesli vo zawiera jakas
litere b. Zatem ~y; i v, zawieraja tylko litery c. Poniewaz 17, jest niepuste, to ayv:3vsay =
aMpM MR dla pewnego k > 1. Jesli aMbM MR € 1L to |aMbM AMTE| = |l gt R
dla pewnego [ > 0. To oznacza jednak, ze k = 2k + 3l, co przeczy zatozeniu k > 1,
Sprzecznosc.

Rozwazmy teraz jezyk {a’b’cFalb™c™: j, k,1,m,n > 1,k # 1}. Jezyk ten jest bezkontek-
stowy, generuje go na przyktad gramatyka: S — XY BC, X — aXblab, Y — cYa|cCa|cAa,
C — Ccle, A — Aala, B — Bb|b. Zauwazmy, ze jesli ww = a’b/cFa'b™c™ € L, to w = a?b’c*
oraz j = . Wynika z tego, ze j # k. W druga strone, jedli w = a/b’cF, gdzie j, k > 1, j # k,
to ww € L. Zatem VL = {a’V/c*: j,k > 1,j # k}. Jezyk ten nie jest bezkontekstowy.
Zatozmy przeciwnie i skorzystajmy z lematu Ogdena. Niech M bedzie stala z tego lematu.
Niech o = aMpM MM ¢ /T Wyrézniamy wszystkie litery a, jest ich > M. Niech wiec
a = 171 8y200 bedzie odpowiednim podziatem istniejacym na mocy lematu. Zauwazmy;,
ze jedli ktoras z czeéci v1, Yo zawiera dwie rézne litery, to stowo ayy2By3as & VL, bo
nie bedzie postaci a’b’cF. Jedli v, nie zawiera zadnej litery b, to poniewaz 7,7y, zawiera co
najmniej jedna litere a, to stowo ayy2Bv3ay zawiera wiecej a niz b, wiec nie nalezy do /L.
Podobnie dochodzimy do wniosku, ze 7, musi zawiera¢ doktadnie tyle samo liter a, co 7,
liter b. Oznaczmy ta liczbe przez k i rozwazmy i = 1 + MT' (poniewaz 1 < k < M, to ma to

, . . | | | 7’ 7
sens). Wowezas oy Byhoy = aMHMIpMHIMMEMY o /T, sprzecznodé.

Zadanie 3

Idea dowodu Jedli podzielimy sobie stowo w jakim$ miejscu na dwie czesci, to zauwazmy;,
ze maszyna moze przeniesé¢ tylko skonczona iloé¢ informacji z lewej strony na prawa. Py-



taniem moze by¢ tylko jeden ze skonczonej liczby standéw maszyny przy przechodzeniu do
lewej czesci, odpowiedzig réwniez. Na to samo pytanie uzyskiwana jest zawsze ta sama
odpowiedz, bo maszyna nie moze nic sobie zapisa¢ w lewej cze$ci, bo tam juz znajduje
si¢ stowo. Stworzymy wiec automat, ktory od razu liczy odpowiedzi na wszystkie mozliwe
zapytania maszyny dotyczace lewej czesci.

W jedng strone twierdzenie jest oczywiste. Kazdy automat skonczony mozemy symu-
lowa¢ za pomocag maszyny Turinga z ograniczeniem read once o tych samych stanach po
prostu przesuwajac si¢ w prawo i nic nie zapisujac. Wezmy wiec dowolna maszyne Turinga
M z ograniczeniem read once dziatajaca nad alfabetem symboli terminalnych . Zalézmy
dla uproszczenia, ze jej zbiér stanéw to QM = {1,...,n}. Zatézmy tez, ze maszyna M ak-
ceptuje zawsze z gtowicg na prawo od poczatkowego stowa w. Kazda maszyne mozna tatwo
zamieni¢ na réwnowazng taka — gdy maszyna ma juz akceptowac, to jeszcze przesuwamy
glowice w prawo az do napotkania blanka i dopiero wtedy naprawde akceptujemy (przy tej
przerébee zwigkszamy liczbe stanéw o jeden).

Posrednim krokiem bedzie zdefiniowanie maszyn M s dla wszystkich funkcji f: QM —
P(QM) w nastepujacy sposob:

e Alfabety jak w maszynie M rozszerzone o nowy symbol terminalny $.
e Stany i stany koncowe jak w maszynie M.

e Przejscia takie jak w maszynie M oraz dodatkowo (¢,$) — ($,p,+1) dla kazdego
g€, pe fq.

Dla dowolnej maszyny M’ i dowolnego Q; C QM przez Do(M',Q;) bede oznaczal
maszyne M’ ktéra zaczyna obliczenia z glowicg nad drugg komoérks tasmy w pewnym
stanie q; € Q;.

Ponadto dla f: Q™ — P(QM), Q c QM, a € ¥ niech next(f,Q,a) bedzie zbiorem
tych stanéw g3 € QM| ze jesli na stowie $a uruchomimy maszyne Do(My, Q) to istnieje
obliczenie, w ktérym maszyna pierwszy raz znajdzie sie na pozycji trzeciej (czyli za a) w
stanie ¢s.

Okredle teraz deterministyczny automat skoniczony A, ktéry ma byé réwnowazny ma-

szynie M:
e Jego zbiorem stanéw bedzie P(QM) x (QM — P(QM)).

e Stan poczatkowy to (Qr, (Aq.¢)), gdzie Q; jest zbiorem standéw poczatkowych ma-
szyny M.

e Przejscia: dla kazdego stanu (Q, f) automatu A oraz a € ¥ niech ((Q, f),a) —
(next(f,Q,a), Ag.next(f,{q},a)).

e Stany koncowe to takie stany (@, f), ze maszyna DQ(Mf, Q) akceptuje stowo §$.



Trzeba teraz udowodni¢ réwnowaznosé A 1 M. Wynika ona natychmiast z nastepujacego
lematu dla k = |w| i z okreslenia stanéw koncowych dla A.

Lemat 7 Niech w € ¥* bedzie dowolnym stowem oraz niech 0 < k < |w|. Niech (Q, f)
bedzie stanem automatu A po wezytaniu stowa wy ... wy. Woéwczas maszyna M akceptuje
stowo w wtedy i tylko wtedy, gdy maszyna Dy(My, Q) akceptuje stowo $wii ... Wy

Dowéd Bedzie to dowdd indukeyjny ze wzgledu na k. Dla k = 0 teza jest oczywista:
Wtedy automat A jest w stanie (Qr, A\q.¢), gdzie @ jest zbiorem stanéw poczatkowych
maszyny M. Obliczeniu akceptujacemu maszyny M na stowie w odpowiada wiec obliczenie
akceptujace maszyny DQ(M 7, Qr) na stowie $w. W druga strone odpowiedniodé réwniez
zachodzi, gdyz obliczenie akceptujace DQ(JW 7, Q1) nie moze wchodzi¢ nad $, bo nie ma
zadnych przej$é¢ po odczytaniu $.

Udowodnie teraz teze dla dowolnego k£ > 1 zakladajac, ze jest ona prawdziwa dla & —1.
Niech (Qo, fo) bedzie stanem automatu A po wezytaniu k — 1 liter stowa w, natomiast
(Q1, f1) po wezytaniu k liter tego stowa. Po skorzystaniu z zatozenia indukcyjnego wy-
starczy udowodni¢ rownowaznos¢ pomiedzy dziataniem Dy(My,, Qo) na stowie Swy, . .. w)y,
oraz Dg(]\? 1, Q1) na stowie $wyy1 ... wy,|. Rozwazmy najpierw obliczenie akceptujace ma-
szyny Dz(Mv 1, @1) na stowie $wyq ... wy,|. Pokaze odpowiadajace mu obliczenie maszyny
Dg(]\? f0» Qo) na stowie $wy, . .. wy,|. Niech ¢; bedzie pierwszym stanem obliczenia maszyny
DQ(Mfl,Ql). Poniewaz ¢; € Q1 = next(fy, Qo, w), to istnieje obliczenie Dz(MfO,QO)
dla stowa $wy, (czyli takze dla stowa $wy ... wy,|), ktére prowadzi do stanu ¢; na pozycji
trzeciej. No to na poczatku wykonujemy to obliczenie. P6Zniej, dopoki maszyna jest nad
litera wy.1 lub dalej, mozemy wykonywac obliczenie maszyny Dg(]\? 71, @Q1). Zostaja jeszcze
pewne momenty, w ktérych maszyna wchodzi nad symbol $ w pewnym stanie gy. Wtedy
w nastepnym kroku juz z niego schodzi na prawo w pewnym stanie g;. Jesli tak jest, to
¢ € fi(qo) = next(fo,{qo}, wr), czyli istnieje obliczenie Dy(Mjy,, Qo) dla stowa Swy, (czyli
takze dla stowa $wy, ... wjy|), ktore prowadzi do stanu ¢, na pozycji trzeciej. Zastepujemy
wiec rozwazany jeden krok maszyny DQ(M £, Q1) tym wlasnie obliczeniem. Udowodnili$my
w ten sposob jedng stron¢ rownowaznosci. N

Rozwazmy teraz obliczenie akceptujace maszyny Dy(My,, Qo) na stowie Swy ... wyy,.
Pokaze odpowiadajace mu obliczenie maszyny DQ(M 1, @1) na stowie $wy41 ... wy,|. Niech
q1 bedzie stanem w ktérym obliczenie maszyny DQ(M o, Qo) wchodzi po raz pierwszy nad
litere wyy1. To samo obliczenie do tego momentu jest takze poprawne dla stowa $wy.
Oznacza to, ze q1_€ next(fo, Qo,qx) = Q1. Mozemy wiec zacza¢ odpowiadajace oblicze-
nie maszyny Dy(My,, (1) po prostu od tego momentu, pomijajac poczatkowy fragment.
Pézniej, dopoki maszyna jest nad litera wyy1 lub dalej, mozemy wykonywac obliczenie
maszyny Da(My,, Qo). Zostaja jeszcze pewne momenty, w ktorych maszyna wchodzi nad
symbol wy w pewnym stanie ¢o. Wtedy po pewnym czasie przechodzi po raz pierwszy na
pozycje¢ nad wyy; w pewnym stanie g;. Ten fragment obliczenia jest tez obliczeniem ma-
szymy Do(My,, {qo}) dla stowa $wy, w ktérym pierwszy raz znajdzie si¢ na pozycji trzeciej
w stanie ¢;. Oznacza to, ze ¢ € next(fo,{q}, wr) = fi(q). Mozemy wiec caly ten frag-
ment obliczenia zastgpi¢ jednym krokiem: przejsciem ze stanu gy przy odczycie $ do stanu



¢1 na jedna pozyje w prawo. W ten sposob pokazaliSmy druga strone¢ réwnowaznosci.

Jesli pozwolimy maszynie zapisywaé najwyzej raz, to uzyskamy pelmowartosciowa ma-
szyne Turinga. Dziatanie dowolnej maszyny bedziemy symulowaé na takiej w ten sposob,
ze po wykonaniu kazdego kroku symulowanej maszyny bedziemy kopiowaé stowo na kto-
rym operujemy na nowe miejsce. Doktadniej: Alfabet rozszerzamy w ten sposob, ze dla
kazdego symbolu (terminalnego lub nieterminalnego, takze blanka) dodajemy trzy nowe
odpowiadajace mu symbole nieterminalne. W ten sposéb z kazdym symbolem mozemy tez
pamietaé¢ informacje, czy glowica symulowanej maszyny Turinga znajduje sie na tej wta-
$nie pozycji oraz czy symbol zostal juz skopiowany. Dodatkowo dodajemy jeszcze symbol
nieterminalny $, ktéry bedzie stuzyt do oddzielania kolejnych kopii tasmy symulowanej ma-
szyny. Stan symulowanej maszyny bedziemy pamieta¢ poprzez stany maszyny symulujace;.
Przygotowanie symulacji wyglada tak, ze za stowem poczatkowym stawiamy $ i kopiujemy
tam stowo poczatkowe, przy czym nad pierwszym symbolem zaznaczamy, ze tam stoi gto-
wica. Takie kopiowanie wyglada tak, ze w stanie zapamigtujemy symbol i zaznaczamy, ze
zostal juz skopiowany, nastepnie jedziemy w prawo do konca i tam zapisujemy pamietany
symbol, po czym przesuwamy sie w lewo az do napotkania symbolu skopiowanego (przy
czym pierwszy krok jest nieco inny, trzeba postawi¢ $ i zmodyfikowaé¢ symbol). Nastepnie
powtarzamy symulacje pojedynczego kroku maszyny. Taka symulacja wyglada tak, ze za
naszym stowem stawiamy $ i kopiujemy tam to stowo, przy czym zamiast symbolu pod glo-
wicg zapisujemy nowy postawiony tam symbol oraz znacznik glowicy stawiamy by¢ moze o
jedna pozycje w prawo lub w lewo. Kopiowanie to wyglada podobnie jak poprzednio, przy
czym jesli na odczytanej pozycji stata glowica, to trzeba zapisa¢ nowy symbol zgodnie
z regutami symulowanej maszyny (na podstawie pamietanego jej stanu). Réwniez zawsze
przy odczycie sprawdzamy jedng pozycje na lewo i jedng pozycje i jesli tam stata glowica,
to sprawdzamy czy zgodnie z regutami symulowanej maszyny przesunie si¢ ona na pozycje
biezaca i jesli tak, to to zaznaczamy. Sa jeszcze szczegdlne przypadki. Gdy glowica jest
na koncu tasmy i przesuwa si¢ w prawo, wtedy trzeba dopisa¢ dodatkowo nowsa pozycje.
Trzeba tez uwazac co sie stanie, gdy symylowana maszyna probuje wykona¢ nieprawidtowg
operacje wyjscia przed poczatek tasmy. Podczas tego kopiowania zapamietujemy tez jaki
bedzie nowy stan i po skopiowaniu do niego przechodzimy. Jesli jest to stan akceptujacy to
akceptujemy. Jasne jest, ze maszyny te sa rownowazne. Ponadto wszystkie operacje nad-
pisania to zastapienie ktoregos z symboli jego odpowiednikiem oznaczajacym, ze zostatl on
juz skopiowany. A wiec nadpisujemy najwyzej raz.

Zadanie 4

Idea dowodu Najpierw udowodnie, ze obliczenie dziatajace w czasie liniowym moze w
kazdym miejscu przebywac tylko staty ilos¢ czasu. Nie moze wiecej, bo nie zdazy przynies¢
sobie informacji o dtugosci stowa, czyli nie bedzie wiedzialo, ile czasu moze w danym miej-
scu przebywaé. Wynika z tego, ze jesli podzielimy sobie stowo w ktéryms miejscu na dwie
czesed, to tylko skonczong liczbe informacji mozna przenie$¢ miedzy jedna czescig a druga.



Pytaniem jest stan, w ktérym wchodzimy do lewej czesci, odpowiedzia stan, w ktorym wy-
chodzimy, a mozemy zada¢ tylko ograniczong liczbe pytan. Stworzymy automat skonczony,
ktory od razu liczy wszystkie mozliwe ciggi pytan i odpowiedzi.

W jedng strone twierdzenie jest oczywiste. Kazdy automat skonczony mozna za po-
moca maszyny turniga po prostu przesuwajac si¢ w prawo i zmieniajac stan, wykonamy
w ten sposob liczbe krokéw rowng diugosci stowa. Ustalmy pewnag maszyne Turinga M
pracujaca w czasie liniowym z pewng statg C. Zalézmy dla uproszczenia, ze maszyna M
zatrzymuje sie zawsze z glowicag na prawo od poczatkowego stowa. Kazdg maszyne mozna
tatwo zamieni¢ na rownowazng takg — gdy maszyna ma juz akceptowac, to jeszcze przesu-
wamy gltowice w prawo az do napotkania blanka i dopiero wtedy naprawde sie akceptujemy
(przy tej przerébce zwiekszamy liczbe stanéw o jeden), podczas tego przesuwania wyko-
namy nie wiecej krokéw niz wykonaliémy do tej pory plus poczatkowa dtugoéé stowa. Zeby
nie dopusci¢ do tego, ze maszyna postawi blanka gdzies w srodku poczatkowego stowa, to
dodajemy do alfabetu dodatkowy symbol odpowiadajacy blankowi, bedziemy go zawsze
stawia¢ zamiast blanka, a przy odczycie nie rozrézniamy jego i prawdziwego blanka.

Niech zbiorem stanéw naszej maszyny bedzie QM a jej alfabetem symboli terminalnych
3. Niech C; = C?+2C2%(|Q|+1)¢. Rozmiarem obliczenia dla danej pozycji r(p) niech bedzie
liczba krokéw, w ktérych glowica przechodzi pomiedzy pozycjami p i p+1 (w ktérakolwiek
strone). Niech k(p,i) bedzie numerem kroku, w ktérym maszyna przechodzi pomiedzy
pozycjami p i p + 1 po raz i-ty. Pozycje p nazwiemy niskq, jesli r(p) < C. Udowodnie
najpierw nastepujacy lemat:

Lemat 8 Dla kazdego stowa w, pozycji na tasmie ppmaz (1 < Pmae < |w|) oraz ustalonego
obliczenia maszyny M na tym stowie, mamy r(pmaz) < Ci.

Zatozmy, ze teza nie jest spelniona. Wybierzmy w, pq. oraz obliczenie, dla ktérych
T(Prmaz) > C1 = C?+2C%(|Q]+1)¢, przy czym wyboru dokonujemy w ten sposdb, aby stowo
w byto najkrotsze mozliwe. Wiemy, ze maszyna dziata w czasie liniowym, a doktadniej, ze
wynokuje najwyzej Clw| krokéw. Zatem C) < 7(pmaz) < Clw], czyli inaczej |w| > C,/C =
C+2C(1Q| +1)°.

Zauwazmy teraz, ze co najmniej 1+2(|Q|+ 1) < |w|/C pozycji p pomiedzy 11 |w]| jest
niskich, bo jesli k jest liczba takich pozycji, to mamy C|w| > Z;‘uﬂ1 r(p) = (Jw|—k)(C+1),
czyli kC > |w.

Kazdej pozycji niskiej p przypiszemy funkcje f:{1,2,...,C} — (QU{x}) taka, ze f(a)
dla a < r(p) bedzie stanem po kroku k(p,a), natomiast dla a > r(p) bedzie f(a) = *.
Roéznych takich funkcji jest tylko (|@Q| + 1)¢. Natomiast pozycji niskich jest przynajmniej
1+2(|Q| +1)¢. Zatem wérdéd pozycji od 1 do pex — 1 lub wéréd pozycji od ppqe + 1 do |w]
jest ich co najmniej 14 (|Q|+1)C. Przyjmijmy, Ze wéréd pozycji od 1 do ppee—1 (W przeciw-
nym przypadku jest analogicznie). Wowczas na tym fragmencie jest wiecej pozycji niskich
niz funkcji, czyli dla pewnych dwéch pozycji niskich p; < ps mamy tag samg funkcje f. Roz-
wazmy wowczas stowo v = wy ... wp, Wy, 11 . . . wy,|. Nasze obliczenie na stowie w przenosi si¢
na stowo v w naturalny sposéb, tzn. wykonujemy kolejno kroki: 1,2, ..., k(p1, 1), k(pa, 1) +
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Lk(py, 1)+1,...,k(p2,2), k(p1,2)+1,k(p1,2) +2, ..., k(p1,3), k(p2,3) + 1, k(p2,3) +2, .. ..
Dzigki temu, ze p; i po maja taka sama funkcje f, to obliczenia wykonane nad kazda
pozycja stowa v beda dokladnie takie same jak nad odpowiadajaca jej pozycja stowa w
(natomiast oczywiscie globalnie moze si¢ zdarzy¢, ze jakie$ kroki sg w innej kolejnosci, np.
ze k(p2,2) > k(p1,2)). Zauwazmy, ze pozycja pPma. nhie zostala usunieta z naszego stowa
i dla odpowiadajacej jej pozycji nadal mamy taki sam duzy rozmiar obliczenia. W ten
sposob skonstruowalismy krotsze stowo v nie spetniajace tezy, co przeczy wyborowi w jako
najkrétszego takiego.

Dla konkretnej maszyny M’, stowa wejSciowego w, obliczenia i pozycji p funkcja przej-
$cia nazwiemy funkcje f:{1,...,C1} — QM U{x*} taka, ze f(a) dla a < r(p) bedzie stanem
po kroku k(p, a), natomiast dla a > r(p) bedzie f(a) = *.

Posrednim krokiem bedzie zdefiniowanie maszyn Mg dla wszystkich zbiorow S €
P({1,...,C1} — QM U {x}) w nastepujacy sposéb:

e Alfabety jak w maszynie M rozszerzone o nowe symbol terminalne $, #.
o Stany: QM x S x {1,...,C}.
e Przejscia:

L. ((QO7f7 n)7a’0) - (ah((JIaf? n)7m) dla ka‘ZdegO (QO7a0) - (abqhm) przejécia
maszyny M oraz f € S,ne{l,...,C1};

2. ((f(n), f,n),$) — (3, (f(n+1), f,n+2),+1) dlakazdego f € S,n € {1,...,C1},

jesli f(n) # * # f(n+1);
3. ((QOa f7 n)7 #) - (#7 (qla f7 TL), _1) dla kaZdego f S Sa n e {17 BRI 01}7 qo, 1 €
QM.
e Stany akceptujace: Qp x Sx{1,...,C1} gdzie Qf jest zbiorem standéw akceptujacych
maszyny M.

e Stany poczatkowe: (f(1), f,2) dla kazdego f € S, jesli f(1) # *. Gdy nie ma zadnego
stanu poczatkowego to zaktadamy, ze maszyna od razu zatrzymuje sie.

e Maszyna zawsze zaczyna z gtowicg na drugiej pozycji tasmy.

Ponadto dla S € P({1,...,C1} — QY U {x}), a € ¥ niech next(S,a) bedzie zbiorem
funkcji przejscia dla pozycji drugiej maszyny Mg, stowa $a#, dla wszystkich mozliwych
obliczen (rozwazamy tu takze obliczenia, ktore zatrzymuja sie w pewnym momencie mimo
ze mozliwe sa dalsze kroki).

Okresle teraz deterministyczny automat skonczony A, ktéry ma byé rownowazny ma-
szynie M:

e Jego zbiorem stanéw bedzie P({1,...,C1} — (QM U {x})).
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e Stan poczatkowy to {f: f(1) € Qy, f(n) = * dla n > 1}, gdzie @1 jest zbiorem stanéw
poczatkowych maszyny M.

e Przejscia: (S,a) — next(S,a) dla kazdego stanu S automatu A oraz a € 3.
e Stany koncowe to takie stany S, ze maszyna Mg akceptuje stowo $.

Trzeba teraz udowodni¢ réwnowaznosé A 1 M. Wynika ona natychmiast z nastepujacego
lematu dla k = |w| i z okreslenia stanéw koncowych dla A.

Lemat 9 Niech w € ¥* bedzie dowolnym stowem oraz niech 0 < k < |w|. Niech S bedzie
stanem automatu A po wezytaniu stowa wy ... wy. Wowczas maszyna M akceptuje stowo
w wtedy 1 tylko wtedy, gdy maszyna Mg akceptuje stowo Swyiq ... Wjy|.

Dowdéd Bedzie to dowdd indukeyjny ze wzgledu na k. Dla k = 0 teza jest oczywista:
Wtedy automat A jest w stanie ¢i = {f: f(1) € Q1, f(n) = x dlan > 1}, gdzie Q; jest
zbiorem stanéw poczatkowych maszyny M. Obliczeniu akceptujacemu maszyny M na sto-
wie w odpowiada wiec obliczenie akceptujace maszyny Mg na stowie $w za pomocy przejsé
typu 1 dla f € ¢*, n = 2. W druga strone¢ odpowiedniosé¢ réwniez zachodzi, przejéciom typu
1 nie wchodzacym nad $ odpowiadajg przejscia maszyny M, natomiast przejscia innych
typéw nie wystgpig, ani nie wejdziemy nad $, bo nie ma zadnych przej$¢ po odczytaniu $
(a rozwazamy obliczenie akceptujace).

Udowodni¢ teraz tez¢ dla dowolnego k£ > 1 zakladajac, ze jest ona prawdziwa dla
k — 1. Niech Sy bedzie stanem automatu A po wezytaniu k — 1 liter stowa w, natomiast
S1 po wezytaniu k liter tego stowa. Po skorzystaniu z zalozenia indukcyjnego wystarczy
udowodni¢ réwnowazno$¢ pomiedzy dziataniem Mg, na stowie $wy ... wyp, oraz Mg, na
stowie $wy 11 . . . wjy|. Rozwazmy najpierw obliczenie akceptujace O; maszyny M s, ha stowie
$Wit1 - .. wp|. Pokaze odpowiadajace mu obliczenie maszyny MSO na stowie $wy ... w)y|.
Niech (fi(1), f1,2) bedzie pierwszym stanem obliczenia O;. Zauwazmy, ze w zadnym z
przej$¢ maszyny Mg, nie zmienia sie drugi element (czyli fi). Z okreslenia przejsé typu 2
wynika, ze fi jest funkcja przejscia dla pozycji 1. Wiemy tez, ze f € next(So, wy). Istnieje
wigc obliczenie Oy maszyny Mg, na stowie $wy# takie, ze f; jest funkcja przejscia dla
pozycji 2. Robimy wiec tak: Wykonujemy obliczenie Oy az do momentu, gdy wejdzie ono
nad trzecig pozycje. Wtedy zaczynamy wykonywac¢ O, z tym ze nie uwzgledniamy drugiego
i trzeciego elementu stanu (czyli f i n), sa one stale takie jak w ostanim dotychczas kroku
Oy. Tak postepujemy az do momentu gdy O; wejdzie nad §, wéwcezas znowu wykonujemy
Oy, itd. Bedzie to poprawne obliczenie Mg, na stowie $wy . . . Wjy|. Kroki nad $ 1wy wziete
z Oy sa oczywiscie poprawne. Kroki nad wyy; i dalej wziete z O; sa poprawne, mimo
ze zmieniliSmy f i n, bo przejécia typu 1 sg takie same niezaleznie od f i n. Natomiast
wejscia nad wy1 wygladaja tak samo w O; jak w nowym obliczeniu. Réwniez wejscia nad
wy wygladaja tak samo w Oy jak w nowym obliczeniu. Udowodnilismy w ten sposéb jedna
strone rownowaznosci.

Rozwazmy teraz obliczenie akceptujace Oy maszyny M s, Da stowie $wy, . .. wy,|. Pokaze

odpowiadajace mu obliczenie maszyny Mg, na stowie $wy1 ... wy,|. Niech fi bedzie funkeja
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przejscia dla pozycji 2 (czyli miedzy wy i wyy1) tego obliczenia. Rozwazmy nastepujace
obliczenie Mg, na stowie $wy#: Wykonujemy wszystkie kroki obliczenia Oy wykonywane
nad pozycja 1 lub 2. Gdy obliczenie to wychodzi nad pozycje 3, to pomijamy wszystkie kroki
az do powrotu na pozycje 2, a krok wracajacy na pozycje 2 zastepujemy jednym krokiem
wracajacym na pozycje 2 w takim samym stanie. Taki krok jest mozliwy, bo jak jestesmy
nad # to mozemy przej$¢ w lewo w dowolnym stanie. Zauwazmy, ze funkcja przejscia dla
pozycji 2 tak skonstruowanego obliczenia nadal jest fi, co oznacza, ze f1 € next(So, wi) =
Sy. Pokaze teraz obliczenie maszyny Mg, na stowie Swyq ... wp,|. Zaczynamy w stanie
(f1(1), f1,2) nad wyyq. Obliczenie Oy réwniez kiedy$ wejdzie nad wyyq, po raz pierwszy
zrobi to w stanie (fi(1),-,-). Bedziemy od tego momentu wykonywaé obliczenie Oy, z
tym ze nie uwzgledniamy drugiego i trzeciego elementu stanu, beda one stale takie jak w
pierwszym kroku (czyli f; i 2). Tak postepujemy az do momentu, gdy Oy wejdzie nad wy
(czyli nasze obliczenie nad $). Wtedy pomijamy wszystkie kroki Oy wykonane nad $ i wy,
wykonujemy dopiero krok wracajacy nad wy 1. Taki krok jest mozliwy, weszliémy nad $ w
stanie f1(2), a chcemy znad niego wréci¢ w stanie f1(3). Pézniej znowu wykonujemy kroki
O az do powrotu nad $, itd. Wszystkie ,skopiowane” kroki sg poprawne, bo przejscia
typu 1 sg takie same niezaleznie od f i n. Natomiast przejscia znad $ w prawo dlatego, ze
funkcja przejécia obliczenia Oy nad pozycja 2 jest wlasnie f;. W ten sposoéb pokazaliSmy
drugg strone réwnowaznosci.

W dowodzie tym korzystaliSmy caly czas niejawnie z tego, ze wszystkie rozwazane ob-
liczenia maja dla kazdej pozycji rozmiar co najwyzej C4. Dzieki temu funkcja przejscia
opisuje wszystkie przejécia miedzy rozwazanymi pozycjami, a nie tylko pierwsze C;. Dla
obliczenia maszyny M wynika to z lematu [ Trzeba tez zwréci¢ uwage, ze rownowazne
obliczenia kolejnych maszyn Mg maja na kazdej pozycji taki sam rozmiar obliczenia jak na
odpowiadajacej pozycji obliczenie maszyny M, czyli réwniez nie wiekszy niz C;. Réwniez
niejawnie korzystamy z tego, ze wszystkie te obliczenia skoriczg si¢ na prawo od rozwaza-
nych pozycji (tak zalozyliSmy o obliczeniach akceptujacych).

Zadanie 6

Idea dowodu Udowodnig, ze jesli maszyna zuzywa mniej niz c - loglog |w| komérek pa-
mieci, to tak naprawde zuzywa statg ich liczbe. Nie moze wigcej, bo za pomoca tak matej
ilo$ci pamieci nie jest w stanie skoncentrowac informacji o dtugosci stowa, nie bedzie wiec
wiedziata ile komoérek moze zuzy¢. Skonczona liczbe komoérek mozemy symulowaé za po-
moca stanu maszyny, wiec sytuacja wyglada tak jak w zadaniu 3.

Przyjmuje, ze rozwazana w tym zadaniu maszyna ma dwie tasmy. Na jednej (gor-
nej) zapisane jest stowo, ktére nalezy rozpozna¢. Na tej tasmie nie mozna pisa¢. Druga
(dolna) tasma poczatkowo jest pusta, na tej tasmie mozna pisa¢. Przyjmuje taki sposéb
liczenia komorek, ze licze wszystkie komorki tasmy do zapisywania, nad ktorymi znalazta
sie maszyna, réwniez te, na ktorych zapisata blanka. Alternatywnym sposobem liczenia
bytby taki, w ktorym liczymy tylko komorki, w ktérych maszyna zapisata symbol rézny od

13



blanka. Wtedy maszyna mogtaby sobie wybiera¢, w ktorych komoérkach bedzie zapisywac
zostawiajac jakies przerwy miedzy nimi. M6éj dowdd nie przenosi si¢ na ten sposéb liczenia,
bo wtedy mozna przechowywaé¢ duzo wiecej informacji na tasmie (poprzez rozmieszczenie
wykorzystanych komérek oraz poprzez aktualna pozycje). Jest jeszeze drobna (siggajaca
najwyzej jeden) rozbiezno$¢ miedzy liczba komorek, nad ktorymi znalazta sie maszyna, a
liczba komorek, do ktérych cos zapisata, bo maszyna moze wejs¢ nad jakas pozycje i za-
konczy¢ dziatanie nic tam jeszcze nie zapisujac. Jednak wida¢, ze takie réznice rzedu jeden
nie majg zupeklie wpltywu na rozwazania asymptotyczne jak w tym zadaniu.

Twierdzenie udowodni¢ metoda nie wprost. Ustalmy pewna maszyne M, dla ktérej
teza nie jest prawdziwa. Inaczej mowiac, dla kazdej statej ¢ > 0 tylko dla skonczenie wielu
stéw w maszyna M wykorzystuje co najmniej ¢ - loglog |w| komérek pamieci. Zatézmy dla
uproszczenia, ze maszyna M akceptuje zawsze z gtowica na prawo od poczatkowego stowa
w. Kazdag maszyne mozna tatwo zamieni¢ na réwnowazng taka — gdy maszyna ma juz
akceptowac, to jeszcze przesuwamy glowice w prawo az do napotkania blanka i dopiero
wtedy naprawde akceptujemy (przy tej przerébcee zwigkszamy liczbe stanéw o jeden).

Niech ¢ bedzie liczba standéw naszej maszyny. Niech s bedzie liczba symboli terminalych
oraz nieterminalnych w alfabecie naszej maszyny. Zatézmy, ze loglogs > 0 (jesli tak nie
jest, to mozemy dodaé jakies nieuzywane symbole nieterminalne). Rozwazmy

1 loglog(s + 1)
c=—7—"—|(1-
log(s + 2) loglog(2s + 2)

Zauwazmy, ze ¢ > 0. Wybierzmy kq takie, ze:

e Kazde ze skonczenie wielu stéow w, ktore zuzywa co najmniej ¢ - loglog |w| komérek
pamieci zuzywa ich mniej niz k.

o ko > cloglog(2s + 2)

e Dla kazdego k > ko zachodzi 2kqs® + 2 < (s + 1)*. (Istnienie takiej stalej wynika z

k
tego, ze funkcja wyktadnicza (%) rosnie szybciej niz funkcja 2kq + S%)
e Dla kazdego k > kg zachodzi k(s + 1)* +1 < (s + 2)¥.

Udowodnie, ze kazde obliczenie akceptujace zuzywa mniej niz kg komorek pamieci.
Zat6ézmy przeciwnie. Rozwazmy stowo w, dla ktorego maszyna zuzywa k > ky komorek
pamieci, przy czym stowo w niech bedzie najkrétsze mozliwe. Z definicji kg wiemy, ze k <
cloglog |w]|. Niech 1,4, bedzie (dowolnym) krokiem, w ktérym dolna glowica znajdowata
si¢ na pozycji k, natomiast p,.. pozycja gornej tasmy przed tym krokiem. Niech T =
{1,...k} x XUk x Q, gdzie Q jest zbiorem stanéw maszyny M, natomist ¥ i ' jej
alfabetami symboli terminalnych i nieterminalnych. Elementy T beda opisywaé¢ T'-stan
maszyny przy ustalonej pozycji na goérnej tasmie (trzebaby to nazwaé ,stanem”, ale to
stowo jest juz zajete). Pierwszy element tej tréjki bedzie oznaczal pozycje gtowicy na
dolnej tasmie, drugi bedzie to zawartosé¢ dolnej tasmy, natomiast trzeci — stan maszyny.
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Kazdej pozycji p na gérnej tasmie przypiszemy pare (to, f) € T x (T — T U {x})
w nastepujacy sposob: Niech ty bedzie T-stanem maszyny po pierwszym wejsciu gornej
glowicy na pozycje p + 1. Dla kazdego T-stanu t, rozwazmy moment (o ile istnieje, jest
najwyzej jeden), w ktérym maszyna przeszta z pozycji p + 1 na pozycje p majac po tym
przejéciu T-stan t. Niech f(t) bedzie T-stanem w pierwszym momencie po rozwazanym,
gdy maszyna znalazlta sie na pozycji p + 1 (istnieje, gdyz maszyna konczy na prawo od
stowa w). Dla pozostalych ¢ niech f(t) = *. Zauwazmy, ze réznych takich par jest

N = ksq- (ks*q+ 1)F"
Mamy dalej (korzystajac z wlasnosci kg i poniewaz k > ko):

ON < 2(kshq+ 1P < (2ksFg + 2)F T < (s 4 DR
< (s+ 1) < (s pylree

Poniewaz cloglog(2s + 2) < ko < k < cloglog |w], to:

1 <1 _ loglog(s +1) ) < 1 (1 _ loglog(s + 1))
log(

‘= log(s + 2) log log(2s + 2) s+2) log log |w|

Mnozac przez log(s + 2) loglog |w| dostajemy:
clog(s + 2)loglog |w| + loglog(s + 1) < log log |w|
Potegujac (tzn. podnoszac 2 do potegi strona nieréwnosci) otrzymujemy:
(5 4 2)closloelwlo0(s 4 1) < log |w]

I jeszcze raz potegujemy:
(S + 1>(s+2)010g10g\w| < |w|

Dostalismy wiec, ze 2N < |w|. Oznacza to, ze pewnym dwém pozycjom pg,p; wsrod
L,...,Dmaz — 1 lub wéréd pag, ..., |w| przypisaliémy ta sama pare (to, f). Niech v =
W1 .. WpyWp, 41 - - - Wiy| (ze stowa w usuwamy litery na pozycjach od py + 1 do py).

Pokaze obliczenie akceptujace stowo v, ktore rowniez zuzywa k komoérek pamieci. Bedzie
to sprzeczne z zatozeniem, ze w byto najkrotsze. Na poczatku wykonujemy takie same kroki
jak w obliczeniu na stowie w, az do momentu wejscia nad pozycje py + 1. Rozwazmy teraz
pierwszy moment, w ktorym obliczenie to wchodzi na pozycje p; + 1. Wykonujemy to
obliczenie od tego momentu na odpowiadajacych pozycjach stowa v, az do momentu gdy
wejdzie ono spowrotem na pozycje p; (albo sie skonczy). Jest to poprawny ciag krokéw, bo
na goéornej tasmie odczytujemy odpowiadajace sobie pozycje, natomiast w momencie wejscia
na pg + 1 i w momencie wejscia na p; + 1 jest taki sam T-stan ty. Nastepnie powtarzamy
nastepujaca czynnosc:

Krok [ obliczenia na w polega na tym, ze przechodzimy z pozycji p; +1 na p; w pewnym
T-stanie t. Rozwazmy moment, w ktorym obliczenie to znalazto si¢ na pozycji po w T-stanie
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t (moze sie zdarzy¢, ze jest to wezesniej lub pdzniej niz [). Wykonyjemy to obliczenie od
tego momentu na odpowiadajacych pozycjach stowa v, az do momentu gdy wejdzie ono na
pozycje po+ 1. Jest to oczywiscie poprawny ciag krokéw, bo na goérnej tasmie odczytujemy
odpowiadajace sobie pozycje, a zaczynamy w takim samym 7T-stanie t. Po wejéciu na
pozycje po + 1 jestesmy w T-stanie f(t). Niech r bedzie pierwszym krokiem po kroku [, w
ktorym oryginalne obliczenie wchodzi na pozycje p; + 1. Po tym kroku réwniez bedzymy
w T-stanie f(t). Dalej wykonujemy kroki od kroku r + 1 az do momentu, gdy wejscia ono
spowrotem nad p; albo sie skonczy. Jest to poprawne, bo z gérnej tasmy odczytujemy to
samo i jesteSmy w tym samym 7-stanie. Jesli obliczenie si¢ nie skonczyto, to wykonujemy
dalej czynnos¢ opisana w tym akapicie.

Trzeba uzasadni¢, ze kazdy z krokow obliczenia na stowie w, przed ktérym gltowica
znajdowata sie na nieusunietej pozycji, zostanie wykonany doktadnie raz. Jasno widac,
ze bedzie tak z obliczeniami na prawo od p;, one wykonuja si¢ w tej samej kolejnosci co
poprzednio. W miedzyczasie wykonuja sie jakie$ obliczenia na pozycjach do py. Obliczenie
przed pierwszym wej$ciem na py+ 1 wykona si¢ doktadnie raz, na samym poczatku. Kazdy
z pozostalych fragmentéw wykonywal sie jako odpowiedz na wejécie z pozycji pg + 1 na
pozycje po w pewnym 7-stanie. Teraz natomiast wykona si¢ jako odpowiedZ na wejscie z
pozycji p1 + 1 na pozycje p; w tym samym 7'-stanie, czyli rowniez dokltadnie raz.

W szczegdlnosci wiec wykona sie krok 1,4, gdyz pozycja pma. nie zostata usunieta.
Skonstruowane obliczenie na stowie v wykorzystuje wiec takze k komérek pamieci. Przeczy
to wyborowi stowa w, co konczy dowod.

Wiemy wigc, ze kazde obliczenie akceptujace zuzywa mniej niz kg komorek pamieci.
Mozemy wigc maszyne M zasymulowac¢ za pomocg maszyny, ktéra w ogéle nic nie zapisuje.
Bedzie ona pamietata pierwsze kg — 1 komorek dolnej tasmy oraz pozycje glowicy na
niej w stanie, jest tego skonczenie wiele. Zauwazmy, ze jesli maszyna M przechodzi nad
komorke kg, to juz na pewno nie zaakceptuje stowa, mozemy wiec nie symulowaé dalej,
tylko zatrzymaé si¢ w stanie nieakceptujacym. Maszyna ktora nic nie zapisuje akceptuje
jezyk regularny, zgodnie z tym co zostalo udowodnione w zadaniu 3.
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