
Języki, algorytmy i obliczenia
Rozwiązania zadań z gwiazdką - seria 2

Paweł Parys (parys@mimuw.edu.pl)

25 stycznia 2005

Notacja

Przez w1, w2, . . . , w|w| oznaczam kolejne litery słowa w. Przez λx.wyrażenie oznaczam funk-
cję, która dla argumentu x przyjmuje wartość wyrażenie.

Zadanie 1

Teza zadania nie jest prawdziwa. Weźmy jakikolwiek automat, który akceptuje słowo puste.
Wówczas dla słowa pustego musi on wykonać przynajmniej jeden krok, czyli dla żadnej
stałej |C| liczba kroków nie będzie ¬ C · 0.
Udowodnię podobne twierdzenie, z tym że nierówność będzie zachodzić tylko dla słów

niepustych. Ustalmy konkretny automat A. Niech Q będzie jego zbiorem stanów, Γ zbiorem
symboli stosowych, natomiast δmax niech będzie taką stałą, że każde przejście automatu A
powoduje odłożenienie na stos co najwyżej δmax symboli. Weźmy C1 = δmax(|Q|2|Γ| + 2),
C2 = 4C1 + 2δmax + 4, C3 = |Q| · (|Γ| + 1)C1+δmax+1, C4 = 2 + C3(2 + 6δmax + C1), C =
1+C4+C2C4. Weźmy dowolne niepuste słowo w ∈ Z(A). Rozważmy najkrótsze obliczenie
automatu A akceptujące to słowo. Udowodnię, że liczba kroków w tym obliczeniu jest nie
większa niż C|w|. Ponumerujmy kroki naszego obliczenia przez 1, 2, . . . , n. Niech s(t) będzie
wysokością stosu w kroku t. Przez wysokość stosu w jakimś kroku rozumiem wysokość
stosu po zdjęciu przez automat symbolu odczytywanego w tym kroku, a przed włożeniem
nowych symboli na stos. Pozycje stosu również numerujemy kolejno: 1, 2, . . . zaczynając
od dołu. Przez p(i, t) będziemy oznaczać ostatni numer kroku przed krokiem t, w którym
został położony symbol na pozycji stosu i. Analogicznie, przez z(i, t) będziemy oznaczać
pierwszy numer kroku po kroku t, w którym został zdjęty symbol z pozycji stosu i. Niech
r1, r2, . . . , r|w| będą numerami kroków, w których odczytywaliśmy symbol z wejścia. Niech
m0 = 1,m|w| = n oraz niechmk dla k = 1, 2, . . . , |w|−1 będzie numerem tego wśród kroków
rk, rk+1, . . . , rk+1, w którym wysokość stosu była najmniejsza (pierwszym z takich kroków
jeśli było kilka). Powiemy, że w danym kroku t przedział [i, j] pozycji stosu jest czysty, jeśli
żaden z kroków p(i, t), p(i, t)+1, . . . p(j, t) oraz żaden z kroków z(j, t), z(j, t)+1, . . . , z(i, t)

1



nie wczytywał litery z wejścia (uwaga! nie w każdym z wymienionych kroków wkładaliśmy
lub zdejmowaliśmy któryś z symboli leżących na stosie w kroku t). W ustalonym kroku t
pozycję stosu i nazwiemy podstawową, jeśli była najniższą z pozycji stosu zajętych w kroku
p(i, t).

Lemat 1 Niech t będzie dowolnym krokiem, [i, j] dowolnym przedziałem pozycji na stosie
w tym kroku. Jeśli przedział ten jest czysty, to jego długość wynosi co najwyżej C1.

Dowód Ustalmy krok t oraz przedział [i, j]. Załóżmy wbrew tezie, że jest on czy-
sty i że jego długość jest większa niż C1 = δmax(|Q|2|Γ| + 2) i dojdziemy do sprzeczno-
ści. Niech k będzie dowolną pozycją z tego przedziału. Zauważmy, że najniższy symbol
położony w kroku p(k, t) nadal leży na stosie w kroku t, ponieważ leży on głębiej niż
k, więc nie mógł być zdjęty wcześniej. Oznacza to, że na stosie może leżeć co najwyżej
δmax − 1 pozycji niepodstawowych pod rząd. Zatem w naszym przedziale jest co najmniej
|Q|2|Γ|+1 pozycji podstawowych. Każdej z tych pozycji przypiszemy pewną trójkę: Pozy-
cji k przypiszemy trójkę (q0, a0, q1), gdzie q0 jest stanem przed wykonaniem kroku p(k, t),
a0 symbolem na szczycie stosu przed wykonaniem kroku p(k, t), natomiast q1 stanem po
wykonaniu kroku z(k, t). Zauważmy, że jest tylko |Q|2|Γ| różnych trójek, natomiast rozwa-
żamy aż |Q|2|Γ| + 1 pozycji podstawowych. Zatem pewne dwie pozycje k, l (k < l) mają
przypisaną tą samą trójkę (q0, a0, q1). Rozważmy obliczenie, w którym nie będzie kroków
p(k, t), p(k, t) + 1, . . . , p(l, t) − 1 oraz z(l, t) + 1, z(l, t) + 2, . . . , z(k, t). Zauważmy, że to
obliczenie jest krótsze. Przeczy to wyborowi obliczenia. Pozostaje uzasadnić, że jest to po-
prawne obliczenie. Ponieważ k, l wybraliśmy z przedziału czystego, to usunięte kroki nie
wczytywały nic z wejścia. Stan przed krokami p(k, t) i p(l, t) jest taki sam, bo jest to q0.
Tak samo stan po wykonaniu z(l, t) i z(k, t), bo jest to q1. Obliczenia od p(l, t) do z(l, t) w
ogóle nie patrzą w głąb stosu, zależą tylko od pozycji na szczycie stosu, ale zarówno przed
p(l, t), jak i przed p(k, t) leży tam symbol a0. Tym bardziej obliczenia te nie modyfikują
stosu poniżej pozycji l. Również obliczenia usuwane nie modyfikują stosu poniżej pozy-
cji k. Oznacza to, że usunięcie omawianego kawałka obliczenia nie wpływa na możliwość
wykonania reszty, co kończy dowód.

Lemat 2 Niech [i, j] będzie dowolnym przedziałem pozycji stosu w pewnym kroku mk. Jeśli
żaden spośród kroków p(i,mk), p(i,mk) + 1, . . . , p(j,mk) (tutaj są wszystkie kroki po kolei)
oraz z(j,mk), z(j − 1,mk), . . . , z(i,mk) (a tutaj tylko kroki, w których zdjęliśmy ze stosu
coś z naszego przedziału) nie jest jednym z kroków m0,m1, . . . ,m|w|, to przedział [i, j] jest
czysty.

Przyjmijmy prawdziwość założeń i załóżmy, że teza nie jest prawdziwa. Najpierw roz-
ważmy przypadek, gdy że dla pewnego l mamy p(i,mk) ¬ rl ¬ p(j,mk). Popatrzmy ile
może być równe ml. Zgodnie z definicją ml ­ rl. Założyliśmy, że ml nie jest żadnym z kro-
ków p(i,mk), p(i,mk) + 1, . . . , p(j,mk), czyli ml > p(j,mk). Ponadto oczywiście ml ¬ mk
(bo l ¬ k). Oznacza to, że s(ml) > j, bo po położeniu symbolu na j-tej pozycji stosu w
kroku p(j,mk) (zgodnie z definicją p(j,mk)) leży on tam na pewno co najmniej do kroku

2



mk. Z definicji ml wynika, że w kroku ml wysokość stosu była najmniejsza między rl i rl+1,
nie może być więc większa niż wysokość w kroku p(j,mk), która to jest mniejsza niż j.
Sprzeczność.
Pozostaje jeszcze możliwość, że dla pewnego l mamy z(j,mk) ¬ rl ¬ z(i,mk). Weźmy

najmniejsze z l spełniających ten warunek (oznacza to, że rl−1 < z(j,mk)). Popatrzmy ile
może być równe ml−1. Rozważmy dwa przypadki:

• ml−1 < z(j,mk). Wtedy podobnie jak poprzednio: Oczywiście ml−1 ­ mk (bo l−1 ­
k). Oznacza to, że s(ml−1) > j, bo (zgodnie z definicją z(j,mk)) symbol na j-tej
pozycji stosu z chwili mk leży tam aż w kroku z(j,mk). Z definicji ml−1 wynika, że
w kroku ml−1 wysokość stosu była najmniejsza między rl−1 i rl, nie może być więc
większa niż wysokość w kroku z(j,mk), która to jest równa j − 1. Sprzeczność.

• z(j,mk) ¬ ml−1 Niech c będzie najmniejszą z tych liczb i ¬ c ¬ j, że z(c,mk) ¬ ml−1.
Zgodnie z definicją ml−1 mamy s(ml−1) ¬ s(z(c,mk)) = c − 1. Jeśli c = i, to mamy
z(c,mk) ¬ ml−1 ¬ rl ¬ z(c,mk), czyli z(c,mk) = ml−1. Jeśli c > i, to: Zauważmy,
że s(ml−1) ­ c − 1, bo na pozycji stosu c − 1 cały czas od kroku mk leży symbol,
który zostanie ściągnięty dopiero w kroku z(c− 1,mk), więc w kroku ml−1 który jest
pomiędzy rozmiar stosu nie może zejść poniżej c− 1. Oznacza to że s(ml−1) = c− 1.
Wiemy też, że ml−1 jest pierwszym z kroków pomiędzy rl−1 i rl, dla którego to
zachodzi. Ale z(c,mk) również leży pomiędzy rl−1 i rl i s(z(c,mk)) = c − 1, co
oznacza, że z(c,mk) ­ ml−1, czyli w tym przypadku również z(c,mk) = ml−1. To
jednak jest sprzeczne z założeniem, że ml−1 nie jest żadnym z kroków z(j,mk), z(j−
1,mk), . . . , z(i,mk).

Lemat 3
|w|∑
i=1

|s(mi)− s(mi−1)| ¬ C2|w|

Dowód Niech R będzie zbiorem tych i, że s(mi) > s(mi−1). Udowodnię, że

∑
i∈R
|s(mi)− s(mi−1)| ¬ (2C1 + δmax + 2)|w| =

C2
2
|w|

Z tej nierówności natychmiast wynika teza lematu, gdyż suma po pozostałych elementach
jest równa tej sumie (bo s(m0) = s(m|w|) = 0).
Niech R′ będzie zbiorem tych k, że s(mk−1) + δmax + 1 ¬ s(mk). Dla każdego k ∈ R′

popatrzmy na przedział [i, j] = [s(mk−1) + δmax + 1, s(mk)] w kroku mk. Na pewno żaden
spośród kroków p(i,mk), p(i,mk) + 1, . . . , p(j,mk) nie jest którymś z m0,m1, . . . ,m|w|, bo
międzymk−1 imk nie ma już żadnego. Załóżmy, że wśród z(j,mk), z(j−1,mk), . . . , z(i,mk)
jest dokładnie ck z kroków m0,m1, . . . ,m|w|. Udowodnię, że wówczas przedział [i, j] może
mieć długość co najwyżej (C1+1)(ck+1). Możemy bowiem przedział [i, j] podzielić na ck+1
takich przedziałów [i = i1, j1], [i2 = j1 + 2, i3], . . . [ick+1 = jck + 2, jck+1 = j] (z których być
może niektóre są puste), że dla każdego a wśród z(ja,mk), z(ja − 1,mk), . . . , z(ia,mk) nie

3



ma już żadnego z kroków m0,m1, . . . ,m|w|. Zgodnie z lematem 2 każdy z tych przedziałów
jest czysty. Jeśli przedział [i, j] miałby długość większą niż (C1+1)(ck+1), to suma długości
tych małych przedziałów byłaby większa niż C1(ck+1), czyli któryś z nich miałby długość
większą niż C1. Jest to jednak sprzeczne z lematem 8.
Zauważmy jednak, że każda spośród liczb m0,m1, . . . ,m|w| może być jedną z z(j,mk),

z(j + 1,mk), . . . , z(i,mk) tylko dla jednego mk (bo są to kroki, w których zdejmujemy ze
stosu coś, co położyliśmy między krokiem mk−1 i mk). Inaczej mówiąc suma wszystkich
ck jest nie większa niż |w| + 1. Oznacza to, że (w ostatnim przejściu wykorzystujemy
nierówność |R′| ¬ |R| ¬ |w| − 1):

∑
k∈R
|s(mk)− s(mk−1)| ¬ |R|δmax +

∑
k∈R′
(s(mk)− s(mk−1)− δmax) ¬

¬ |R|δmax +
∑
k∈R′
(ck + 1)(C1 + 1) ¬

¬ |R|δmax + (|R′|+ |w|+ 1)(C1 + 1) ¬
¬ |w|(δmax + 2C1 + 2)

Lemat 4 Jeśli pomiędzy krokiem a i b (włącznie) nie wczytujemy nic z wejścia oraz dla
każdych dwóch kroków c, d takich, że a ¬ c ¬ d ¬ b, zachodzi |s(c)− s(d)| ¬ C1 + δmax, to
b− a+ 1 ¬ C3.

Dowód Załóżmy, że b − a + 1 > C3 i dojdziemy do sprzeczności. Niech smin i smax
oznaczają minimalną i maksymalną wysokość stosu podczas kroków od a do b. Niech S =
{smin + 1, smin + 2, . . . , smax + 1}. Każdemu krokowi przypiszemy parę (q, f) ∈ Q× (S →
(Γ ∪ {∗})), gdzie q jest stanem przed wykonaniem danego kroku, natomiast f zawartością
stosu na pozycjach z S przed wykonaniem danego kroku, przy czym jeśli jakaś pozycja jest
wtedy pusta, to wartością f jest ∗. Zauważmy, że różnych par jest tylko |Q|·(|Γ|+1)|S|, przy
czym |S| ¬ C1+ δmax+1. Natomiast kroków mamy więcej niż C3 = |Q| · (|Γ|+1)C1+δmax+1.
Zatem dla pewnych dwóch kroków c i d mamy tą samą parę (q, f). Zauważmy, że stan stosu
przed krokami c i d jest taki sam, gdyż kroki pośrednie nie modyfikowały stosu głębiej niż
na pozycji smin + 1. Również stan przed c i d jest taki sam. Możemy więc usuniąć kroki
c, c+1, . . . , d−1 otrzymując poprawne, ale krótsze obliczenie. Przeczy to jednak wyborowi
obliczenia jako najkrótsze.

Lemat 5 Jeśli pomiędzy krokiem a i b (włącznie) nie wczytujemy nic z wejścia oraz dla
każdego c takiego, że a ¬ c ¬ b, zachodzi s(c) ­ min(s(a), s(b)) − δmax, to b − a + 1 ¬
C3(1 + |s(b)− s(a)|).

Ustalmy a i b. Załóżmy, że s(a) ¬ s(b) (w przeciwnym przypadku sytuacja jest prawie
symetryczna). Podzielimy przedział kroków [a, b] na k ¬ s(b)−s(a)+1 sąsiednich przedzia-
łów kroków: [a = a1, b1 = a2 − 1], [a2, b2 = a3 − 1], . . . [ak, bk = b], z których każdy będzie
spełniał założenia lematu 4. Jeśli dla każdego c (a ¬ c ¬ b) zachodzi s(c)− s(a) ¬ C1, to
cały przedział [a, b] spełnia założenia lematu 4, bo poziom stosu waha się między s(a)−δmax

4



i s(a) + C1. W przeciwnym przypadku robimy tak: Niech a2 będzie pierwszym takim kro-
kiem, że s(a2) − s(a) > C1. Dalej (dla i ­ 3) postępujemy indukcyjnie (tak długo jak się
da): niech ai będzie pierwszym takim krokiem ai−1 < ai ¬ b, że s(ai) > s(ai−1). Niech
k będzie ostatnim takim i, że udało się wyznaczyć ai. Ponadto niech bi = ai+1 − 1 dla
i = 1, 2, . . . , k − 1 oraz bk = b. W ten sposób uzyskujemy jakiś podział na sąsiednie prze-
działy. Trzeba udowodnić, że spełniają one założenia lematu 4 oraz że k ¬ s(b)− s(a) + 1.
Udowodnię najpierw, że dla każdych i, c, (i > 1, ai ¬ c ¬ b) mamy s(c) ­ s(ai) − C1.

Popatrzmy w tym celu na przedział [max(s(c), s(a)) + 1, s(ai)] pozycji stosu w kroku ai.
Przedział ten jest czysty, bo p(max(s(c), s(a))+1, ai) ­ a oraz z(max(s(c), s(a))+1, ai) ¬
c. Zatem, z lematu 8 otrzymujemy, że s(ai)−max(s(c), s(a)) ¬ C1. Ale s(ai)− s(a) > C1,
czyli s(ai)− s(c) ¬ C1.
Oznacza to właśnie, że dla kroków w przedziale [ai, bi] (dla i > 1) poziom stosu wy-

nosi co najmniej s(ai) − C1. Wynosi on także nie więcej niż s(ai), bo pierwszy krok, w
którym zużywamy więcej stosu, należy do następnego przedziału. Natomiast dla kroków
z przedziału [a1, b1] poziom stosu waha się między s(a) − δmax i s(a) + C1. Zatem każdy
z przedziałów [ai, bi] spełnia założenia lematu 4. Ponieważ s(a2) < s(a3) < . . . < s(ak) to
k − 2 ¬ s(ak)− s(a2). Ponadto ponieważ a(ak) ¬ s(b) + C1 oraz s(a2) ­ s(a) + C1 + 1, to
k ¬ 2 + (s(b) + C1)− (s(a) + C1 + 1) = s(b)− s(a) + 1.
Korzystając z lematu 4 dla każdego z przedziałów otrzymujemy:

b− a+ 1 =
k∑
i=1

(bi − ai + 1) ¬ kC3 ¬ C3(s(b)− s(a) + 1)

Lemat 6 mk −mk−1 ¬ C4(1 + |s(mk)− s(mk−1)|)

Dowód Ustalmy k. Najpierw udowodnimy, że s(rk) ¬ max(s(mk), s(mk−1))+δmax+C1.
Załóżmy przeciwnie, że s(rk) > max(s(mk), s(mk−1))+δmax+C1 i popatrzmy na przedział
[i, j] = [max(s(mk), s(mk−1)) + δmax + 1, s(rk)] pozycji stosu w chwili rk. Przedział ten
jest czysty, bo p(j, rk) < rk < z(j, rk) oraz rk−1 ¬ mk−1 < p(i, rk), z(i, rk) < mk ¬
rk+1 (o ile rk−1 i rk+1 istnieją). Jednak długość tego przedziału jest większa niż C1. Z
lematu 8 dostajemy sprzeczność, czyli nasza nierówność jest prawdziwa. Ponieważ s(rk) ­
max(s(mk), s(mk−1)), to wynika z niej bezpośrednio, że: |s(mk)−s(rk)|+|s(rk)−s(mk−1)| ¬
|s(mk)− s(mk−1)|+ 2(δmax + C1).
Zachodzą następujące nierówności (przejście między pierwszą i drugą linijką uzyskujemy

korzystając z lematu 5 dla kroków [mk−1+1, rk− 1] oraz [rk +1,mk− 1] — jego założenia
są spełnione na podstawie definicji mk−1 i mk):

mk −mk−1 = 2 + ((mk − 1)− (rk + 1) + 1) + ((rk − 1)− (mk−1 + 1) + 1) ¬
¬ 2 + C3(2 + |s(mk − 1)− s(rk + 1)|+ |s(rk − 1)− s(mk−1 + 1)|) ¬
¬ 2 + C3(2 + 4δmax + |s(mk)− s(rk)|+ |s(rk)− s(mk−1)|) ¬
¬ 2 + C3(2 + 4δmax + |s(mk)− s(mk−1)|+ 2(δmax + C1)) ¬
¬ (2 + C3(2 + 6δmax + C1))(1 + |s(mk)− s(mk−1)|) = C4(1 + |s(mk)− s(mk−1)|)

5



Podsumowanie Liczba kroków naszego obliczenia to m|w|−m0 +1 = 1+
∑|w|
k=1(mk −

mk−1). Korzystając z lematu 6 jest ona nie większa niż 1+C4
∑|w|
k=1(1+ |s(mk)−s(mk−1)|).

Następnie korzystając z lematu 3 dostajemy, że jest to nie więcej niż 1 + C4(1 + C2)|w|.
Dla |w| ­ 1 jest to ¬ (1 + C4 + C2C4)|w| = C|w|, co właśnie mieliśmy dowieść.

Zadanie 2

Klasa języków bezkontekstowych nie jest zamnkięta na wymienione operacje. Rozważmy
najpierw język L = {anbncmd2m:n,m ­ 1}. Jest to niewątpliwie język bezkonstekstowy,
generuje go na przykład gramatyka: S → XY , X → aXb|ab, Y → cY dd|cdd. Udowodnię
teraz, że język 12L nie jest bezkontekstowy. Załóżmy przeciwnie i skorzystajmy z lematu
Ogdena. Niech M będzie stałą z tego lematu. Niech α = aMbMc2M . Należy ono do 12L, bo
aMbMc2Md4M ∈ L. Wyróżniamy wszystkie litery c, jest ich­M . Niech więc α = α1γ1βγ2α2
będzie odpowiednim podziałem istniejącym na mocy lematu. Zauważmy, że jeśli któraś z
części γ1, γ2 zawiera dwie różne litery, to słowo α1γ21βγ

2
2α2 6∈ 12L, bo nie będzie postaci

anbncm. Ponadto, ponieważ γ1γ2 zawiera co najmniej jedną wyróżnioną pozycję, to γ2
zawiera tylko litery c. Jeśli γ1 zawiera jakąś literę a, to słowo α1γ21βγ

2
2α2 zawiera więcej

a niż b, więc nie należy do 12L (ponieważ zawiera też c). Podobnie jeśli γ2 zawiera jakąś
literę b. Zatem γ1 i γ2 zawierają tylko litery c. Ponieważ γ1γ2 jest niepuste, to α1γ21βγ

2
2α2 =

aMbMc2M+k dla pewnego k ­ 1. Jeśli aMbMc2M+k ∈ 12L, to |a
MbMc2M+k| = |cld4M+2k+2l|

dla pewnego l > 0. To oznacza jednak, że k = 2k + 3l, co przeczy założeniu k ­ 1,
sprzeczność.
Rozważmy teraz język {ajbjckalbmcn: j, k, l,m, n ­ 1, k 6= l}. Język ten jest bezkontek-

stowy, generuje go na przykład gramatyka: S → XY BC,X → aXb|ab, Y → cY a|cCa|cAa,
C → Cc|c, A→ Aa|a, B → Bb|b. Zauważmy, że jeśli ww = ajbjckalbmcn ∈ L, to w = ajbjck
oraz j = l. Wynika z tego, że j 6= k. W drugą stronę, jeśli w = ajbjck, gdzie j, k ­ 1, j 6= k,
to ww ∈ L. Zatem

√
L = {ajbjck: j, k ­ 1, j 6= k}. Język ten nie jest bezkontekstowy.

Załóżmy przeciwnie i skorzystajmy z lematu Ogdena. Niech M będzie stałą z tego lematu.
Niech α = aMbMcM+M ! ∈

√
L. Wyróżniamy wszystkie litery a, jest ich ­ M . Niech więc

α = α1γ1βγ2α2 będzie odpowiednim podziałem istniejącym na mocy lematu. Zauważmy,
że jeśli któraś z części γ1, γ2 zawiera dwie różne litery, to słowo α1γ21βγ

2
2α2 6∈

√
L, bo

nie będzie postaci ajbjck. Jeśli γ2 nie zawiera żadnej litery b, to ponieważ γ1γ2 zawiera co
najmniej jedną literę a, to słowo α1γ21βγ

2
2α2 zawiera więcej a niż b, więc nie należy do

√
L.

Podobnie dochodzimy do wniosku, że γ1 musi zawierać dokładnie tyle samo liter a, co γ2
liter b. Oznaczmy tą liczbę przez k i rozważmy i = 1+ M !

k
(ponieważ 1 ¬ k ¬M , to ma to

sens). Wówczas α1γi1βγ
i
2α2 = a

M+M !bM+M !cM+M ! 6∈
√
L, sprzeczność.

Zadanie 3

Idea dowodu Jeśli podzielimy sobie słowo w jakimś miejscu na dwie części, to zauważmy,
że maszyna może przenieść tylko skończoną ilość informacji z lewej strony na prawą. Py-

6



taniem może być tylko jeden ze skończonej liczby stanów maszyny przy przechodzeniu do
lewej części, odpowiedzią również. Na to samo pytanie uzyskiwana jest zawsze ta sama
odpowiedź, bo maszyna nie może nic sobie zapisać w lewej części, bo tam już znajduje
się słowo. Stworzymy więc automat, który od razu liczy odpowiedzi na wszystkie możliwe
zapytania maszyny dotyczące lewej części.

W jedną stronę twierdzenie jest oczywiste. Każdy automat skończony możemy symu-
lować za pomocą maszyny Turinga z ograniczeniem read once o tych samych stanach po
prostu przesuwając się w prawo i nic nie zapisując. Weźmy więc dowolną maszynę Turinga
M z ograniczeniem read once działającą nad alfabetem symboli terminalnych Σ. Załóżmy
dla uproszczenia, że jej zbiór stanów to QM = {1, . . . , n}. Załóżmy też, że maszyna M ak-
ceptuje zawsze z głowicą na prawo od początkowego słowa w. Każdą maszynę można łatwo
zamienić na równoważną taką — gdy maszyna ma już akceptować, to jeszcze przesuwamy
głowicę w prawo aż do napotkania blanka i dopiero wtedy naprawdę akceptujemy (przy tej
przeróbce zwiększamy liczbę stanów o jeden).
Pośrednim krokiem będzie zdefiniowanie maszyn M̃f dla wszystkich funkcji f :QM →

P (QM) w następujący sposób:

• Alfabety jak w maszynie M rozszerzone o nowy symbol terminalny $.

• Stany i stany końcowe jak w maszynie M .

• Przejścia takie jak w maszynie M oraz dodatkowo (q, $) → ($, p,+1) dla każdego
q ∈ QM , p ∈ f(q).

Dla dowolnej maszyny M ′ i dowolnego QI ⊂ QM przez D2(M ′, QI) będę oznaczał
maszynę M ′, która zaczyna obliczenia z głowicą nad drugą komórką taśmy w pewnym
stanie qI ∈ QI .
Ponadto dla f :QM → P (QM), Q ⊂ QM , a ∈ Σ niech next(f,Q, a) będzie zbiorem

tych stanów q3 ∈ QM , że jeśli na słowie $a uruchomimy maszynę D2(M̃f , Q) to istnieje
obliczenie, w którym maszyna pierwszy raz znajdzie się na pozycji trzeciej (czyli za a) w
stanie q3.
Określę teraz deterministyczny automat skończony A, który ma być równoważny ma-

szynie M :

• Jego zbiorem stanów będzie P (QM)× (QM → P (QM)).

• Stan początkowy to (QI , (λq.φ)), gdzie QI jest zbiorem stanów początkowych ma-
szyny M .

• Przejścia: dla każdego stanu (Q, f) automatu A oraz a ∈ Σ niech ((Q, f), a) →
(next(f,Q, a), λq.next(f, {q}, a)).

• Stany końcowe to takie stany (Q, f), że maszyna D2(M̃f , Q) akceptuje słowo $.

7



Trzeba teraz udowodnić równoważność A iM . Wynika ona natychmiast z następującego
lematu dla k = |w| i z określenia stanów końcowych dla A.

Lemat 7 Niech w ∈ Σ∗ będzie dowolnym słowem oraz niech 0 ¬ k ¬ |w|. Niech (Q, f)
będzie stanem automatu A po wczytaniu słowa w1 . . . wk. Wówczas maszyna M akceptuje
słowo w wtedy i tylko wtedy, gdy maszyna D2(M̃f , Q) akceptuje słowo $wk+1 . . . w|w|.

Dowód Będzie to dowód indukcyjny ze względu na k. Dla k = 0 teza jest oczywista:
Wtedy automat A jest w stanie (QI , λq.φ), gdzie QI jest zbiorem stanów początkowych
maszynyM . Obliczeniu akceptującemu maszynyM na słowie w odpowiada więc obliczenie
akceptujące maszyny D2(M̃f , QI) na słowie $w. W drugą stronę odpowiedniość również
zachodzi, gdyż obliczenie akceptujące D2(M̃f , QI) nie może wchodzić nad $, bo nie ma
żadnych przejść po odczytaniu $.
Udowodnię teraz tezę dla dowolnego k ­ 1 zakładając, że jest ona prawdziwa dla k−1.

Niech (Q0, f0) będzie stanem automatu A po wczytaniu k − 1 liter słowa w, natomiast
(Q1, f1) po wczytaniu k liter tego słowa. Po skorzystaniu z założenia indukcyjnego wy-
starczy udowodnić równoważność pomiędzy działaniem D2(M̃f0 , Q0) na słowie $wk . . . w|w|
oraz D2(M̃f1 , Q1) na słowie $wk+1 . . . w|w|. Rozważmy najpierw obliczenie akceptujące ma-
szyny D2(M̃f1 , Q1) na słowie $wk+1 . . . w|w|. Pokażę odpowiadające mu obliczenie maszyny
D2(M̃f0 , Q0) na słowie $wk . . . w|w|. Niech q1 będzie pierwszym stanem obliczenia maszyny
D2(M̃f1 , Q1). Ponieważ q1 ∈ Q1 = next(f0, Q0, wk), to istnieje obliczenie D2(M̃f0 , Q0)
dla słowa $wk (czyli także dla słowa $wk . . . w|w|), które prowadzi do stanu q1 na pozycji
trzeciej. No to na początku wykonujemy to obliczenie. Później, dopóki maszyna jest nad
literą wk+1 lub dalej, możemy wykonywać obliczenie maszyny D2(M̃f1 , Q1). Zostają jeszcze
pewne momenty, w których maszyna wchodzi nad symbol $ w pewnym stanie q0. Wtedy
w następnym kroku już z niego schodzi na prawo w pewnym stanie q1. Jeśli tak jest, to
q1 ∈ f1(q0) = next(f0, {q0}, wk), czyli istnieje obliczenie D2(M̃f0 , Q0) dla słowa $wk (czyli
także dla słowa $wk . . . w|w|), które prowadzi do stanu q1 na pozycji trzeciej. Zastępujemy
więc rozważany jeden krok maszyny D2(M̃f1 , Q1) tym właśnie obliczeniem. Udowodniliśmy
w ten sposób jedną stronę równoważności.
Rozważmy teraz obliczenie akceptujące maszyny D2(M̃f0 , Q0) na słowie $wk . . . w|w|.

Pokażę odpowiadające mu obliczenie maszyny D2(M̃f1 , Q1) na słowie $wk+1 . . . w|w|. Niech
q1 będzie stanem w którym obliczenie maszyny D2(M̃f0 , Q0) wchodzi po raz pierwszy nad
literę wk+1. To samo obliczenie do tego momentu jest także poprawne dla słowa $wk.
Oznacza to, że q1 ∈ next(f0, Q0, qk) = Q1. Możemy więc zacząć odpowiadające oblicze-
nie maszyny D2(M̃f1 , Q1) po prostu od tego momentu, pomijając początkowy fragment.
Później, dopóki maszyna jest nad literą wk+1 lub dalej, możemy wykonywać obliczenie
maszyny D2(M̃f0 , Q0). Zostają jeszcze pewne momenty, w których maszyna wchodzi nad
symbol wk w pewnym stanie q0. Wtedy po pewnym czasie przechodzi po raz pierwszy na
pozycję nad wk+1 w pewnym stanie q1. Ten fragment obliczenia jest też obliczeniem ma-
szymy D2(M̃f0 , {q0}) dla słowa $wk, w którym pierwszy raz znajdzie się na pozycji trzeciej
w stanie q1. Oznacza to, że q1 ∈ next(f0, {q0}, wk) = f1(q0). Możemy więc cały ten frag-
ment obliczenia zastąpić jednym krokiem: przejściem ze stanu q0 przy odczycie $ do stanu

8



q1 na jedną pozyję w prawo. W ten sposób pokazaliśmy drugą stronę równoważności.

Jeśli pozwolimy maszynie zapisywać najwyżej raz, to uzyskamy pełnowartościową ma-
szynę Turinga. Działanie dowolnej maszyny będziemy symulować na takiej w ten sposób,
że po wykonaniu każdego kroku symulowanej maszyny będziemy kopiować słowo na któ-
rym operujemy na nowe miejsce. Dokładniej: Alfabet rozszerzamy w ten sposób, że dla
każdego symbolu (terminalnego lub nieterminalnego, także blanka) dodajemy trzy nowe
odpowiadające mu symbole nieterminalne. W ten sposób z każdym symbolem możemy też
pamiętać informację, czy głowica symulowanej maszyny Turinga znajduje się na tej wła-
śnie pozycji oraz czy symbol został już skopiowany. Dodatkowo dodajemy jeszcze symbol
nieterminalny $, który będzie służył do oddzielania kolejnych kopii taśmy symulowanej ma-
szyny. Stan symulowanej maszyny będziemy pamiętać poprzez stany maszyny symulującej.
Przygotowanie symulacji wygląda tak, że za słowem początkowym stawiamy $ i kopiujemy
tam słowo początkowe, przy czym nad pierwszym symbolem zaznaczamy, że tam stoi gło-
wica. Takie kopiowanie wygląda tak, że w stanie zapamiętujemy symbol i zaznaczamy, że
został już skopiowany, następnie jedziemy w prawo do końca i tam zapisujemy pamiętany
symbol, po czym przesuwamy się w lewo aż do napotkania symbolu skopiowanego (przy
czym pierwszy krok jest nieco inny, trzeba postawić $ i zmodyfikować symbol). Następnie
powtarzamy symulację pojedyńczego kroku maszyny. Taka symulacja wygląda tak, że za
naszym słowem stawiamy $ i kopiujemy tam to słowo, przy czym zamiast symbolu pod gło-
wicą zapisujemy nowy postawiony tam symbol oraz znacznik głowicy stawiamy być może o
jedną pozycję w prawo lub w lewo. Kopiowanie to wygląda podobnie jak poprzednio, przy
czym jeśli na odczytanej pozycji stała głowica, to trzeba zapisać nowy symbol zgodnie
z regułami symulowanej maszyny (na podstawie pamiętanego jej stanu). Również zawsze
przy odczycie sprawdzamy jedną pozycję na lewo i jedną pozycję i jeśli tam stała głowica,
to sprawdzamy czy zgodnie z regułami symulowanej maszyny przesunie się ona na pozycję
bieżącą i jeśli tak, to to zaznaczamy. Są jeszcze szczególne przypadki. Gdy głowica jest
na końcu taśmy i przesuwa się w prawo, wtedy trzeba dopisać dodatkowo nową pozycję.
Trzeba też uważać co się stanie, gdy symylowana maszyna próbuje wykonać nieprawidłową
operację wyjścia przed początek taśmy. Podczas tego kopiowania zapamiętujemy też jaki
będzie nowy stan i po skopiowaniu do niego przechodzimy. Jeśli jest to stan akceptujący to
akceptujemy. Jasne jest, że maszyny te są równoważne. Ponadto wszystkie operacje nad-
pisania to zastąpienie któregoś z symboli jego odpowiednikiem oznaczającym, że został on
już skopiowany. A więc nadpisujemy najwyżej raz.

Zadanie 4

Idea dowodu Najpierw udowodnię, że obliczenie działające w czasie liniowym może w
każdym miejscu przebywać tylko stałą ilość czasu. Nie może więcej, bo nie zdąży przynieść
sobie informacji o długości słowa, czyli nie będzie wiedziało, ile czasu może w danym miej-
scu przebywać. Wynika z tego, że jeśli podzielimy sobie słowo w którymś miejscu na dwie
części, to tylko skończoną liczbę informacji można przenieść między jedną częścią a drugą.

9



Pytaniem jest stan, w którym wchodzimy do lewej części, odpowiedzią stan, w którym wy-
chodzimy, a możemy zadać tylko ograniczoną liczbę pytań. Stworzymy automat skończony,
który od razu liczy wszystkie możliwe ciągi pytań i odpowiedzi.

W jedną stronę twierdzenie jest oczywiste. Każdy automat skończony można za po-
mocą maszyny turniga po prostu przesuwając się w prawo i zmieniając stan, wykonamy
w ten sposób liczbę kroków równą długości słowa. Ustalmy pewną maszynę Turinga M
pracującą w czasie liniowym z pewną stałą C. Załóżmy dla uproszczenia, że maszyna M
zatrzymuje się zawsze z głowicą na prawo od początkowego słowa. Każdą maszynę można
łatwo zamienić na równoważną taką — gdy maszyna ma już akceptować, to jeszcze przesu-
wamy głowicę w prawo aż do napotkania blanka i dopiero wtedy naprawdę się akceptujemy
(przy tej przeróbce zwiększamy liczbę stanów o jeden), podczas tego przesuwania wyko-
namy nie więcej kroków niż wykonaliśmy do tej pory plus początkowa długość słowa. Żeby
nie dopuścić do tego, że maszyna postawi blanka gdzieś w środku początkowego słowa, to
dodajemy do alfabetu dodatkowy symbol odpowiadający blankowi, będziemy go zawsze
stawiać zamiast blanka, a przy odczycie nie rozróżniamy jego i prawdziwego blanka.
Niech zbiorem stanów naszej maszyny będzie QM , a jej alfabetem symboli terminalnych

Σ. Niech C1 = C2+2C2(|Q|+1)C . Rozmiarem obliczenia dla danej pozycji r(p) niech będzie
liczba kroków, w których głowica przechodzi pomiędzy pozycjami p i p+1 (w którąkolwiek
stronę). Niech k(p, i) będzie numerem kroku, w którym maszyna przechodzi pomiędzy
pozycjami p i p + 1 po raz i-ty. Pozycję p nazwiemy niską, jeśli r(p) ¬ C. Udowodnię
najpierw następujący lemat:

Lemat 8 Dla każdego słowa w, pozycji na taśmie pmax (1 ¬ pmax ¬ |w|) oraz ustalonego
obliczenia maszyny M na tym słowie, mamy r(pmax) ¬ C1.

Załóżmy, że teza nie jest spełniona. Wybierzmy w, pmax oraz obliczenie, dla których
r(pmax) > C1 = C2+2C2(|Q|+1)C , przy czym wyboru dokonujemy w ten sposób, aby słowo
w było najkrótsze możliwe. Wiemy, że maszyna działa w czasie liniowym, a dokładniej, że
wynokuje najwyżej C|w| kroków. Zatem C1 < r(pmax) ¬ C|w|, czyli inaczej |w| ­ C1/C =
C + 2C(|Q|+ 1)C .
Zauważmy teraz, że co najmniej 1+2(|Q|+1)C ¬ |w|/C pozycji p pomiędzy 1 i |w| jest

niskich, bo jeśli k jest liczbą takich pozycji, to mamy C|w| ­ ∑|w|p=1 r(p) ­ (|w|−k)(C+1),
czyli kC ­ |w|.
Każdej pozycji niskiej p przypiszemy funkcję f : {1, 2, . . . , C} → (Q∪{∗}) taką, że f(a)

dla a ¬ r(p) będzie stanem po kroku k(p, a), natomiast dla a > r(p) będzie f(a) = ∗.
Różnych takich funkcji jest tylko (|Q| + 1)C . Natomiast pozycji niskich jest przynajmniej
1+2(|Q|+1)C . Zatem wśród pozycji od 1 do pmax−1 lub wśród pozycji od pmax+1 do |w|
jest ich co najmniej 1+(|Q|+1)C . Przyjmijmy, że wśród pozycji od 1 do pmax−1 (w przeciw-
nym przypadku jest analogicznie). Wówczas na tym fragmencie jest więcej pozycji niskich
niż funkcji, czyli dla pewnych dwóch pozycji niskich p1 < p2 mamy tą samą funkcję f . Roz-
ważmy wówczas słowo v = w1 . . . wp1wp2+1 . . . w|w|. Nasze obliczenie na słowie w przenosi się
na słowo v w naturalny sposób, tzn. wykonujemy kolejno kroki: 1, 2, . . . , k(p1, 1), k(p2, 1)+

10



1, k(p2, 1)+1, . . . , k(p2, 2), k(p1, 2)+1, k(p1, 2)+2, . . . , k(p1, 3), k(p2, 3)+1, k(p2, 3)+2, . . ..
Dzięki temu, że p1 i p2 mają taką samą funkcję f , to obliczenia wykonane nad każdą
pozycją słowa v będą dokładnie takie same jak nad odpowiadającą jej pozycją słowa w
(natomiast oczywiście globalnie może się zdarzyć, że jakieś kroki są w innej kolejności, np.
że k(p2, 2) > k(p1, 2)). Zauważmy, że pozycja pmax nie została usunięta z naszego słowa
i dla odpowiadającej jej pozycji nadal mamy taki sam duży rozmiar obliczenia. W ten
sposób skonstruowaliśmy krótsze słowo v nie spełniające tezy, co przeczy wyborowi w jako
najkrótszego takiego.

Dla konkretnej maszyny M ′, słowa wejściowego w, obliczenia i pozycji p funkcją przej-
ścia nazwiemy funkcję f : {1, . . . , C1} → QM ∪{∗} taką, że f(a) dla a ¬ r(p) będzie stanem
po kroku k(p, a), natomiast dla a > r(p) będzie f(a) = ∗.
Pośrednim krokiem będzie zdefiniowanie maszyn M̃S dla wszystkich zbiorów S ∈

P ({1, . . . , C1} → QM ∪ {∗}) w następujący sposób:

• Alfabety jak w maszynie M rozszerzone o nowe symbol terminalne $, #.

• Stany: QM × S × {1, . . . , C1}.

• Przejścia:

1. ((q0, f, n), a0) → (a1, (q1, f, n),m) dla każdego (q0, a0) → (a1, q1,m) przejścia
maszyny M oraz f ∈ S, n ∈ {1, . . . , C1};

2. ((f(n), f, n), $)→ ($, (f(n+1), f, n+2),+1) dla każdego f ∈ S, n ∈ {1, . . . , C1},
jeśli f(n) 6= ∗ 6= f(n+ 1);

3. ((q0, f, n),#) → (#, (q1, f, n),−1) dla każdego f ∈ S, n ∈ {1, . . . , C1}, q0, q1 ∈
QM .

• Stany akceptujące: QF ×S×{1, . . . , C1} gdzie QF jest zbiorem stanów akceptujących
maszyny M .

• Stany początkowe: (f(1), f, 2) dla każdego f ∈ S, jeśli f(1) 6= ∗. Gdy nie ma żadnego
stanu początkowego to zakładamy, że maszyna od razu zatrzymuje się.

• Maszyna zawsze zaczyna z głowicą na drugiej pozycji taśmy.

Ponadto dla S ∈ P ({1, . . . , C1} → QM ∪ {∗}), a ∈ Σ niech next(S, a) będzie zbiorem
funkcji przejścia dla pozycji drugiej maszyny M̃S, słowa $a#, dla wszystkich możliwych
obliczeń (rozważamy tu także obliczenia, które zatrzymują się w pewnym momencie mimo
że możliwe są dalsze kroki).
Określę teraz deterministyczny automat skończony A, który ma być równoważny ma-

szynie M :

• Jego zbiorem stanów będzie P ({1, . . . , C1} → (QM ∪ {∗})).

11



• Stan początkowy to {f : f(1) ∈ QI , f(n) = ∗ dla n > 1}, gdzieQI jest zbiorem stanów
początkowych maszyny M .

• Przejścia: (S, a)→ next(S, a) dla każdego stanu S automatu A oraz a ∈ Σ.

• Stany końcowe to takie stany S, że maszyna M̃S akceptuje słowo $.

Trzeba teraz udowodnić równoważność A iM . Wynika ona natychmiast z następującego
lematu dla k = |w| i z określenia stanów końcowych dla A.

Lemat 9 Niech w ∈ Σ∗ będzie dowolnym słowem oraz niech 0 ¬ k ¬ |w|. Niech S będzie
stanem automatu A po wczytaniu słowa w1 . . . wk. Wówczas maszyna M akceptuje słowo
w wtedy i tylko wtedy, gdy maszyna M̃S akceptuje słowo $wk+1 . . . w|w|.

Dowód Będzie to dowód indukcyjny ze względu na k. Dla k = 0 teza jest oczywista:
Wtedy automat A jest w stanie qAI = {f : f(1) ∈ QI , f(n) = ∗ dla n > 1}, gdzie QI jest
zbiorem stanów początkowych maszyny M . Obliczeniu akceptującemu maszyny M na sło-
wie w odpowiada więc obliczenie akceptujące maszyny M̃S na słowie $w za pomocą przejść
typu 1 dla f ∈ qAI , n = 2. W drugą stronę odpowiedniość również zachodzi, przejściom typu
1 nie wchodzącym nad $ odpowiadają przejścia maszyny M , natomiast przejścia innych
typów nie wystąpią, ani nie wejdziemy nad $, bo nie ma żadnych przejść po odczytaniu $
(a rozważamy obliczenie akceptujące).
Udowodnię teraz tezę dla dowolnego k ­ 1 zakładając, że jest ona prawdziwa dla

k − 1. Niech S0 będzie stanem automatu A po wczytaniu k − 1 liter słowa w, natomiast
S1 po wczytaniu k liter tego słowa. Po skorzystaniu z założenia indukcyjnego wystarczy
udowodnić równoważność pomiędzy działaniem M̃S0 na słowie $wk . . . w|w| oraz M̃S1 na
słowie $wk+1 . . . w|w|. Rozważmy najpierw obliczenie akceptujące O1 maszyny M̃S1 na słowie
$wk+1 . . . w|w|. Pokażę odpowiadające mu obliczenie maszyny M̃S0 na słowie $wk . . . w|w|.
Niech (f1(1), f1, 2) będzie pierwszym stanem obliczenia O1. Zauważmy, że w żadnym z
przejść maszyny M̃S1 nie zmienia się drugi element (czyli f1). Z określenia przejść typu 2
wynika, że f1 jest funkcją przejścia dla pozycji 1. Wiemy też, że f ∈ next(S0, wk). Istnieje
więc obliczenie O0 maszyny M̃S0 na słowie $wk# takie, że f1 jest funkcją przejścia dla
pozycji 2. Robimy więc tak: Wykonujemy obliczenie O0 aż do momentu, gdy wejdzie ono
nad trzecią pozycję. Wtedy zaczynamy wykonywać O1, z tym że nie uwzględniamy drugiego
i trzeciego elementu stanu (czyli f i n), są one stale takie jak w ostanim dotychczas kroku
O0. Tak postępujemy aż do momentu gdy O1 wejdzie nad $, wówczas znowu wykonujemy
O0, itd. Będzie to poprawne obliczenie M̃S0 na słowie $wk . . . w|w|. Kroki nad $ i wk wzięte
z O0 są oczywiście poprawne. Kroki nad wk+1 i dalej wzięte z O1 są poprawne, mimo
że zmieniliśmy f i n, bo przejścia typu 1 są takie same niezależnie od f i n. Natomiast
wejścia nad wk+1 wyglądają tak samo w O1 jak w nowym obliczeniu. Również wejścia nad
wk wyglądają tak samo w O0 jak w nowym obliczeniu. Udowodniliśmy w ten sposób jedną
stronę równoważności.
Rozważmy teraz obliczenie akceptujące O0 maszyny M̃S0 na słowie $wk . . . w|w|. Pokażę

odpowiadające mu obliczenie maszyny M̃S1 na słowie $wk+1 . . . w|w|. Niech f1 będzie funkcją

12



przejścia dla pozycji 2 (czyli między wk i wk+1) tego obliczenia. Rozważmy następujące
obliczenie M̃S0 na słowie $wk#: Wykonujemy wszystkie kroki obliczenia O0 wykonywane
nad pozycją 1 lub 2. Gdy obliczenie to wychodzi nad pozycję 3, to pomijamy wszystkie kroki
aż do powrotu na pozycję 2, a krok wracający na pozycję 2 zastępujemy jednym krokiem
wracającym na pozycję 2 w takim samym stanie. Taki krok jest możliwy, bo jak jesteśmy
nad # to możemy przejść w lewo w dowolnym stanie. Zauważmy, że funkcją przejścia dla
pozycji 2 tak skonstruowanego obliczenia nadal jest f1, co oznacza, że f1 ∈ next(S0, wk) =
S1. Pokażę teraz obliczenie maszyny M̃S1 na słowie $wk+1 . . . w|w|. Zaczynamy w stanie
(f1(1), f1, 2) nad wk+1. Obliczenie O0 również kiedyś wejdzie nad wk+1, po raz pierwszy
zrobi to w stanie (f1(1), ·, ·). Będziemy od tego momentu wykonywać obliczenie O0, z
tym że nie uwzględniamy drugiego i trzeciego elementu stanu, będą one stale takie jak w
pierwszym kroku (czyli f1 i 2). Tak postępujemy aż do momentu, gdy O0 wejdzie nad wk
(czyli nasze obliczenie nad $). Wtedy pomijamy wszystkie kroki O0 wykonane nad $ i wk,
wykonujemy dopiero krok wracający nad wk+1. Taki krok jest możliwy, weszliśmy nad $ w
stanie f1(2), a chcemy znad niego wrócić w stanie f1(3). Później znowu wykonujemy kroki
O0 aż do powrotu nad $, itd. Wszystkie „skopiowane” kroki są poprawne, bo przejścia
typu 1 są takie same niezależnie od f i n. Natomiast przejścia znad $ w prawo dlatego, że
funkcją przejścia obliczenia O0 nad pozycją 2 jest właśnie f1. W ten sposób pokazaliśmy
drugą stronę równoważności.
W dowodzie tym korzystaliśmy cały czas niejawnie z tego, że wszystkie rozważane ob-

liczenia mają dla każdej pozycji rozmiar co najwyżej C1. Dzięki temu funkcja przejścia
opisuje wszystkie przejścia między rozważanymi pozycjami, a nie tylko pierwsze C1. Dla
obliczenia maszyny M wynika to z lematu 8. Trzeba też zwrócić uwagę, że równoważne
obliczenia kolejnych maszyn M̃S mają na każdej pozycji taki sam rozmiar obliczenia jak na
odpowiadającej pozycji obliczenie maszyny M , czyli również nie większy niż C1. Również
niejawnie korzystamy z tego, że wszystkie te obliczenia skończą się na prawo od rozważa-
nych pozycji (tak założyliśmy o obliczeniach akceptujących).

Zadanie 6

Idea dowodu Udowodnię, że jeśli maszyna zużywa mniej niż c · log log |w| komórek pa-
mięci, to tak naprawdę zużywa stałą ich liczbę. Nie może więcej, bo za pomocą tak małej
ilości pamięci nie jest w stanie skoncentrować informacji o długości słowa, nie będzie więc
wiedziała ile komórek może zużyć. Skończoną liczbę komórek możemy symulować za po-
mocą stanu maszyny, więc sytuacja wygląda tak jak w zadaniu 3.

Przyjmuję, żę rozważana w tym zadaniu maszyna ma dwie taśmy. Na jednej (gór-
nej) zapisane jest słowo, które należy rozpoznać. Na tej taśmie nie można pisać. Druga
(dolna) taśma początkowo jest pusta, na tej taśmie można pisać. Przyjmuję taki sposób
liczenia komórek, że liczę wszystkie komórki taśmy do zapisywania, nad którymi znalazła
się maszyna, również te, na których zapisała blanka. Alternatywnym sposobem liczenia
byłby taki, w którym liczymy tylko komórki, w których maszyna zapisała symbol różny od

13



blanka. Wtedy maszyna mogłaby sobie wybierać, w których komórkach będzie zapisywać
zostawiając jakieś przerwy między nimi. Mój dowód nie przenosi się na ten sposób liczenia,
bo wtedy można przechowywać dużo więcej informacji na taśmie (poprzez rozmieszczenie
wykorzystanych komórek oraz poprzez aktualną pozycję). Jest jeszcze drobna (sięgająca
najwyżej jeden) rozbieżność między liczbą komórek, nad którymi znalazła się maszyna, a
liczbą komórek, do których coś zapisała, bo maszyna może wejść nad jakąś pozycję i za-
kończyć działanie nic tam jeszcze nie zapisując. Jednak widać, że takie różnice rzędu jeden
nie mają zupełnie wpływu na rozważania asymptotyczne jak w tym zadaniu.
Twierdzenie udowodnię metodą nie wprost. Ustalmy pewną maszynę M , dla której

teza nie jest prawdziwa. Inaczej mówiąc, dla każdej stałej c > 0 tylko dla skończenie wielu
słów w maszyna M wykorzystuje co najmniej c · log log |w| komórek pamięci. Załóżmy dla
uproszczenia, że maszyna M akceptuje zawsze z głowicą na prawo od początkowego słowa
w. Każdą maszynę można łatwo zamienić na równoważną taką — gdy maszyna ma już
akceptować, to jeszcze przesuwamy głowicę w prawo aż do napotkania blanka i dopiero
wtedy naprawdę akceptujemy (przy tej przeróbce zwiększamy liczbę stanów o jeden).
Niech q będzie liczbą stanów naszej maszyny. Niech s będzie liczbą symboli terminalych

oraz nieterminalnych w alfabecie naszej maszyny. Załóżmy, że log log s > 0 (jeśli tak nie
jest, to możemy dodać jakieś nieużywane symbole nieterminalne). Rozważmy

c =
1

log(s+ 2)

(
1− log log(s+ 1)
log log(2s+ 2)

)

Zauważmy, że c > 0. Wybierzmy k0 takie, że:

• Każde ze skończenie wielu słów w, które zużywa co najmniej c · log log |w| komórek
pamięci zużywa ich mniej niż k0.

• k0 > c log log(2s+ 2)

• Dla każdego k ­ k0 zachodzi 2kqsk + 2 ¬ (s + 1)k. (Istnienie takiej stałej wynika z
tego, że funkcja wykładnicza

(
s+1
s

)k
rośnie szybciej niż funkcja 2kq + 2

sk
.)

• Dla każdego k ­ k0 zachodzi k(s+ 1)k + 1 ¬ (s+ 2)k.

Udowodnię, żę każde obliczenie akceptujące zużywa mniej niż k0 komórek pamięci.
Załóżmy przeciwnie. Rozważmy słowo w, dla którego maszyna zużywa k ­ k0 komórek
pamięci, przy czym słowo w niech będzie najkrótsze możliwe. Z definicji k0 wiemy, że k <
c log log |w|. Niech nmax będzie (dowolnym) krokiem, w którym dolna głowica znajdowała
się na pozycji k, natomiast pmax pozycją górnej taśmy przed tym krokiem. Niech T =
{1, . . . , k} × (Σ ∪ Γ)k × Q, gdzie Q jest zbiorem stanów maszyny M , natomist Σ i Γ jej
alfabetami symboli terminalnych i nieterminalnych. Elementy T będą opisywać T -stan
maszyny przy ustalonej pozycji na górnej taśmie (trzebaby to nazwać „stanem”, ale to
słowo jest już zajęte). Pierwszy element tej trójki będzie oznaczał pozycję głowicy na
dolnej taśmie, drugi będzie to zawartość dolnej taśmy, natomiast trzeci — stan maszyny.

14



Każdej pozycji p na górnej taśmie przypiszemy parę (t0, f) ∈ T × (T → T ∪ {∗})
w następujący sposób: Niech t0 będzie T -stanem maszyny po pierwszym wejściu górnej
głowicy na pozycję p + 1. Dla każdego T -stanu t, rozważmy moment (o ile istnieje, jest
najwyżej jeden), w którym maszyna przeszła z pozycji p + 1 na pozycję p mając po tym
przejściu T -stan t. Niech f(t) będzie T -stanem w pierwszym momencie po rozważanym,
gdy maszyna znalazła się na pozycji p + 1 (istnieje, gdyż maszyna kończy na prawo od
słowa w). Dla pozostałych t niech f(t) = ∗. Zauważmy, że różnych takich par jest

N = ksq · (kskq + 1)kskq

Mamy dalej (korzystając z własności k0 i ponieważ k ­ k0):

2N < 2(kskq + 1)ks
kq+1 ¬ (2kskq + 2)kskq+1 ¬ (s+ 1)k(s+1)k

¬ (s+ 1)(s+2)k ¬ (s+ 1)(s+2)c log log |w|

Ponieważ c log log(2s+ 2) ¬ k0 ¬ k ¬ c log log |w|, to:

c =
1

log(s+ 2)

(
1− log log(s+ 1)
log log(2s+ 2)

)
¬ 1
log(s+ 2)

(
1− log log(s+ 1)

log log |w|

)

Mnożąc przez log(s+ 2) log log |w| dostajemy:

c log(s+ 2) log log |w|+ log log(s+ 1) ¬ log log |w|

Potęgując (tzn. podnosząc 2 do potęgi strona nierówności) otrzymujemy:

(s+ 2)c log log |w| log(s+ 1) ¬ log |w|

I jeszcze raz potęgujemy:
(s+ 1)(s+2)

c log log |w| ¬ |w|

Dostaliśmy więc, że 2N < |w|. Oznacza to, że pewnym dwóm pozycjom p0, p1 wśród
1, . . . , pmax − 1 lub wśród pmax, . . . , |w| przypisaliśmy tą samą parę (t0, f). Niech v =
w1 . . . wp0wp1+1 . . . w|w| (ze słowa w usuwamy litery na pozycjach od p0 + 1 do p1).
Pokażę obliczenie akceptujące słowo v, które również zużywa k komórek pamięci. Będzie

to sprzeczne z założeniem, że w było najkrótsze. Na początku wykonujemy takie same kroki
jak w obliczeniu na słowie w, aż do momentu wejścia nad pozycję p0 + 1. Rozważmy teraz
pierwszy moment, w którym obliczenie to wchodzi na pozycję p1 + 1. Wykonujemy to
obliczenie od tego momentu na odpowiadających pozycjach słowa v, aż do momentu gdy
wejdzie ono spowrotem na pozycję p1 (albo się skończy). Jest to poprawny ciąg kroków, bo
na górnej taśmie odczytujemy odpowiadające sobie pozycje, natomiast w momencie wejścia
na p0 + 1 i w momencie wejścia na p1 + 1 jest taki sam T -stan t0. Następnie powtarzamy
następującą czynność:
Krok l obliczenia na w polega na tym, żę przechodzimy z pozycji p1+1 na p1 w pewnym

T -stanie t. Rozważmy moment, w którym obliczenie to znalazło się na pozycji p0 w T -stanie

15



t (może się zdarzyć, że jest to wcześniej lub później niż l). Wykonyjemy to obliczenie od
tego momentu na odpowiadających pozycjach słowa v, aż do momentu gdy wejdzie ono na
pozycję p0+1. Jest to oczywiście poprawny ciąg kroków, bo na górnej taśmie odczytujemy
odpowiadające sobie pozycje, a zaczynamy w takim samym T -stanie t. Po wejściu na
pozycję p0 + 1 jesteśmy w T -stanie f(t). Niech r będzie pierwszym krokiem po kroku l, w
którym oryginalne obliczenie wchodzi na pozycję p1 + 1. Po tym kroku również będzymy
w T -stanie f(t). Dalej wykonujemy kroki od kroku r + 1 aż do momentu, gdy wejścia ono
spowrotem nad p1 albo się skończy. Jest to poprawne, bo z górnej taśmy odczytujemy to
samo i jesteśmy w tym samym T -stanie. Jeśli obliczenie się nie skończyło, to wykonujemy
dalej czynność opisaną w tym akapicie.
Trzeba uzasadnić, że każdy z kroków obliczenia na słowie w, przed którym głowica

znajdowała się na nieusuniętej pozycji, zostanie wykonany dokładnie raz. Jasno widać,
że będzie tak z obliczeniami na prawo od p1, one wykonują się w tej samej kolejności co
poprzednio. W międzyczasie wykonują się jakieś obliczenia na pozycjach do p0. Obliczenie
przed pierwszym wejściem na p0+1 wykona się dokładnie raz, na samym początku. Każdy
z pozostałych fragmentów wykonywał się jako odpowiedź na wejście z pozycji p0 + 1 na
pozycję p0 w pewnym T -stanie. Teraz natomiast wykona się jako odpowiedź na wejście z
pozycji p1 + 1 na pozycję p1 w tym samym T -stanie, czyli również dokładnie raz.
W szczególności więc wykona się krok nmax, gdyż pozycja pmax nie została usunięta.

Skonstruowane obliczenie na słowie v wykorzystuje więc także k komórek pamięci. Przeczy
to wyborowi słowa w, co kończy dowód.
Wiemy więc, że każde obliczenie akceptujące zużywa mniej niż k0 komórek pamięci.

Możemy więc maszynęM zasymulować za pomocą maszyny, która w ogóle nic nie zapisuje.
Będzie ona pamiętała pierwsze k0 − 1 komórek dolnej taśmy oraz pozycję głowicy na
niej w stanie, jest tego skończenie wiele. Zauważmy, że jeśli maszyna M przechodzi nad
komórkę k0, to już na pewno nie zaakceptuje słowa, możemy więc nie symulować dalej,
tylko zatrzymać się w stanie nieakceptującym. Maszyna która nic nie zapisuje akceptuje
język regularny, zgodnie z tym co zostało udowodnione w zadaniu 3.

16


