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1 Slowa, liczby, grafy

Do tej partii zadan moze podej$é¢ Czytelnik bez zadnej znajomosci teorii automatdw.

1. Stowa pierwotne. Stowo w € ¥* nazywamy pierwotnym (ang. primitive), jesli nie da sie
go przedstawi¢ w = v", inaczej niz dlan=11iv = w.

(a) Dowiesé, ze dla kazdego stowa niepustego w, istnieje dokltadnie jedno stowo pierwotne
v, takie ze w = v", dla pewnego n > 1.
Liczbe n nazywamy wyktadnikiem stowa w.

(b) O stowach wv i vw méwimy, ze sa w relacji koniugacji. Dowiesé, ze jest to relacja
réwnowaznosci.
Dowiesé, ze dwa stowa bedace w relacji koniugacji maja ten sam wykladnik. Jaka jest
moc klasy abstrakcji relacji koniugacji dla stowa o dtugosci m i wyktadniku n?

2. Jezyk nawiasowy. Wykazaé, ze zbiér poprawnie uformowanych ciagéw nawiaséw moze by¢
zdefiniowany na dwa réwnowazne sposoby:

e Jako najmniejszy zbiér L zawierajacy ciag pusty oraz taki, ze jesli w,v € L, to réwniez
(w),wv € L.

e Zbiér stéw nad alfabetem {(,)}, w ktérych ilosé «)” jest taka sama jak ilosé¢ “(”, a w
kazdym prefiksie ilosé )" jest niewigksza niz ilosé “(” .

3. Zbiory semi-liniowe. Zbidr liczb naturalnych postaci {a + bn : n € N}, dla ustalonych
a,b € N nazywamy liniowym. Zbior bedacy suma skoriczonej liczby zbioréow liniowych
nazywamy semiliniowym. (Gdy sumowana rodzina jest pusta, otrzymujemy zbiér pusty.)

(a) Dowiesé, ze kazdy zbidr postaci {a+bini+...+bgng : ny,...,ni € N}, dla ustalonych
kia,by,..., b € N, jest semi-liniowy.
Wskazowka. Wykorzysta¢ podzialy zbioru liczb naturalnych na klasy abstrakcji relacji
przystawania modulo m, dla odpowiednio dobranych liczb m.

(b) Dowiesé¢, ze zbidr liczb naturalnych A jest semi-liniowy wtedy i tylko wtedy, gdy jest
prawie periodyczny tzn. gdy istnieja ¢ € N id € N — {0} takie, ze dla kazdego = > ¢,
reA s r+de A
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(¢) W grafie zorientowanym ustalamy dwa wierzchotki. Interesuje nas zbiér dlugosci
wszystkich mozliwych Sciezek pomiedzy tymi wierzchotkami. Dowiesé¢, ze jest to zbidr
semi—liniowy.

(d) Dowiesé, ze rodzina zbioréw semi-liniowych jest zamknieta na skoriczone sumy, przeciecia
oraz na uzupelienie wzgledem N.

4. Graf gry (J. P. Jouannaud). Rozwazamy nastepujaca gre pomiedzy Barmanem i Klien-
tem. Przed Barmanem na obrotowym talerzu stoja cztery szklanki tworzac wierzchotki
kwadratu. Szklanka moze by¢ ustawiona normalnie lub dnem do géry, jednak Barman ma
przepaske na oczach i rekawiczki na rekach, tak ze nie moze tego zobaczyé¢ ani wyczué.
Ruch Barmana polega na odwrdceniu jednej lub dwéch dowolnie wybranych szklanek.
Ruch Klienta polega na obréceniu talerza (o wielokrotnosé éwieré-obrotu). Barman wy-
grywa, jesli w jakim$ momencie gry wszystkie szklanki ustawione sa w tej samej pozycji
(zostanie o tym lojalnie poinformowany).

Czy Barman noze wygraé startujac z nieznanej konfiguracji poczatkowej, a jesli tak, to w
jakiej liczbie ruchow?

Czy graliby Panstwo o pieniadze z Barmanem ? A gdyby zamiast kwadratu byty 3 szklanki
ustawione w tréjkat lub 5 w pieciokat ?

5. Kody. Zbiér C C X1 nazywamy kodem, jesli kazde stowo w € ¥* dopuszcza co najwyzej
jedna faktoryzacje wzgledem C' (tzn., da sie “odkodowaé”).
Niech ¥ = {a,b}. Dowies¢, ze zbiér {aa, baa,ba} jest kodem, a zbiér {a,ab,ba} nie jest.

Jesdli skonczony zbiér C' nie jest kodem, oszacowaé z géry dlugosé najkrétszego stowa, ktére
o tym $wiadczy (tzn. dopuszcza dwie rézne faktoryzacje).

Poda¢ wielomianowy algorytm sprawdzania, czy dany skonczony zbiér C' jest kodem.

Wskazowka. Mozna rozwazy¢ graf, ktérego wierzchotkami sa sufiksy stow z C, a krawedz
z v do u prowadzi wtedy, gdy (Jw € C)w = vu. Wtedy rozwiazanie naszego problemu
mozna wydedukowaé z przeszukania tego grafu.

2 Jezyki regularne

2.1 Automaty skonczone i wyrazenia regularne
1. Dowies¢, ze dla dowolnych jezykéw L, M, (L*M*)* = (LU M)*.

2. Dowiesé, ze wyrazenie regularne (00 + 11 + (01 + 10)(00 + 11)*(10 + 10))* reprezentuje
zbiér wszystkich stéw nad alfabetem {0,1}, w ktérych zaréwno liczba wystapieri 0 jak i
liczba wystapien 1 sa parzyste.

Jak najkrécej reprezentowaé zbiér stéw, w ktérych te liczby sa tej samej parzystosci?

3. Zbudowaé automat nad alfabetem {0,1}, rozpoznajacy stowa, w ktérych liczba jedynek
na pozycjach parzystych jest parzysta, a liczba jedynek na pozycjach nieparzystych jest
nieparzysta.

4. Dodawanie. Rozwazamy stowa nad alfabetem {0,1}%. Powiemy, ze stowo (ai,b1,c1)
oo {ap, by, ¢,) dhugosci n reprezentuje dodawanie, jedli liczba reprezentowana binarnie przez
stowo c1 ... ¢, jest suma liczb reprezentowanych przez ai ...a, ib;1 ...b,. Na przyklad, ciag
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(0,0,1)(1,1,1)(0,1,0)(1,1,0) reprezentuje dodawanie (5+7=12). Podaé¢ wyrazenie regu-
larne opisujace zbiér wszystkich stéw nad alfabetem {0, 1}® reprezentujacych dodawanie
W POWYZSzZym sensie.

5. Podzielnosé.
(a) Skonstruowac skonczony automat deterministyczny nad alfabetem {0, 1,...,8,9} roz-
poznajacy zbior dziesietnych reprezentacji wielokrotnosci liczby 7.
(b) Jak wyzej, ale przy reprezentacji odwrotnej, tj. poczynajac od cyfr najmniej znaczacych.
(c¢) Uogdlni¢ niniejsze zadanie.
6. Alfabet jednoliterowy. Dowiesé, ze jezyk L C {a}* jest regularny wtedy i tylko wtedy, gdy

zbidr liczb naturalnych {n : @™ € L} jest semi-liniowy w sensie rozdzialu 1. Dowies¢, ze
dla dowolnego zbioru X C {a}*, jezyk X* jest regularny.

7. Zbiory semi-liniowe (por. zadanie 3 z rozdziatu 1).

(a) Dowiesé, ze dla dowolnego jezyka regularnego L zbidr {|w| : w € L} jest semi-liniowy.
W szczegolnosci, jezyki regularne nad jednoliterowym alfabetem moga by¢ utozsamiane
ze zbiorami semi-liniowymi poprzez bijekcje w — |w|.

(b) Dowiesé, ze jesli M C N jest zbiorem semi-liniowym, to jezyk {bin(m): m € M}
jest regularny, gdzie bin(m) oznacza binarna reprezentacje liczby m.

Uwaga. Fakt analogiczny do 7b mozna udowodni¢ dla dowolnej reprezentacji, a zatem
zbiér semi-liniowy jest regularny w reprezentacji o podstawie k, dla k > 1. W przeciwnym
kierunku wiadomo, ze jesli zbidr jest regularny w reprezentacjach o wzglednie pierwszych
podstawach p i g, to jest semi-liniowy — jest to wniosek z glebokiego Twierdzenia Co-
bhama.

8. Dowies¢, ze dla danych liczb a, b, p,r € N, jezyk
L = {bin(z)$bin(y) : (a-x+b-y) =r (mod p)}
jest regularny.

Przyklady automatéw zwiazanych z rozpoznawaniem wzorca Czytelnik znajdzie ponizej w punk-
cie 2.5.

2.2 Lemat o pompowaniu

1. Dowiesé, ze nastepujace jezyki nie sa regularne:

{a"b" : n e N}
{a®" : n € N}
e {af : p jest liczba pierwsza}

e {a't/ : nwd(i,j) =1}
o {a™V" : m#n}
e {bin(p) : p jest liczba pierwsza}.
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2.3

. Dowie$¢, ze zbior palindroméw nad alfabetem o co najmniej dwoch elementach nie jest

regularny.

. Dowiesé, ze zbidér wyrazen regularnych nie jest regularny.

Dowies¢, ze jedli w Zadaniu 4 z punktu 2.1 zamienimy dodawanie przez mmnozenie, to
otrzymany jezyk (nad alfabetem {0,1}%) jest wprawdzie dobrze okredlony, ale nie jest
regularny.

. Udowodnié¢ nieco silniejszy wariant Lematu o pompowaniu:

Jedli L jest regularny, to

(*) Istnieje stala ng, ze dla kazdych stéw v, w,u takich ze |w| > ng i vwu € L,
istnieja x,y, z takie, ze w = xyz, 0 < |y| < ng, oraz Vn € N, vzy"zu € L.

Podaé przyktad jezyka L, ktéry spehia (*), choé nie jest regularny.

Wskazéwka. 3, cb"cb” ... cb® +(b + c)*cc(b + ¢)*, gdzie p przebiega liczby pierwsze.
P

Wiasnosci domkniecia jezykow regularnych

. Dowies¢, ze dla jezyka regularnego L C ¥* i dowolnego zbioru X C ¥* jezyki

XL = {w: (FveX)vwelL}

LX' = {w: Gue X)wue L}

sg regularne.

. Dowiesé, ze jezyk L jest regularny wtedy i tylko wtedy, gdy jezyk L stéw stanowiacych

lustrzane odbicia stéw z L jest regularny.

Uwaga. Lustrzane odbicie w slowa w mozemy w $cisly sposéb zdefiniowaé rekurencyjnie:
et = ¢ i (wo)® = ow, dlaw € ¥*, 0 € .

. Dla danego automatu A rozpoznajacego jezyk L, skonstruowaé automat rozpoznajacy

jezyk
Cycle(L) = {vu : uv € L}

Czy z faktu, ze jezyk Cycle(L) = {vu : uv € L} jest regularny, mozna wnioskowaé, ze
jezyk L jest regularny?

. Niech L bedzie jezykiem regularnym nad alfabetem {0,1}. Dowie$¢, ze nastepujacy jezyk

jest regularny:

{w : w € LA sposréd stéw o dlugosei |w|, w jest najmniejsze w porzadku leksykograficznym}

. Przyjmujemy, ze kazde niepuste stowo binarne w € {0,1}*, w = wy ... wy, reprezentuje

pewien ulamek w przedziale [0, 1),

. 1 1 1
bin(w) = w1y —i-wg? + ... +wk2—k
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10.

11.

12.

Dla liczby rzeczywistej r € [0, 1], niech
L, ={w : bin(w) <r}

Dowiesé, ze jezyk L, jest regularny wtedy i tylko wtedy, gdy liczba r jest wymierna.

. Niech L bedzie jezykiem regularnym. Dowies¢, ze nastepujace jezyki sa réwniez regularne:

o 1L =g {w: (Ju)|u|l =|w|Awue L}
o VL =4 {w: wwelL}

Niech L bedzie jezykiem regularnym. Dowiesé, ze nastepujace jezyki sa réwniez regularne:

(a) Root(L) ={w : (In € N)w™ € L}
(b) Sqrt(L) = {w : Gu)|u| = |w|* Awu € L}
Wskazéwka. n2 =1+ 3+ ...(2n — 1).
(c) Log(L) = {w : (3u)|u| = 2" Awu € L}
Wskazéwka. 27 =1+ 2+ 22 42771 4 1,
(d) Fibb(L) = {w : (Ju)|u| = Fj,, ANwu € L}
gdzie F,, jest n-ta liczba Fibonacciego tzn.
h=FK=1
Fn+2 :Fn+Fn+1

. Dowies¢, ze dla dowolnego jezyka regularnego L, jezyk

{w: w"l e L}

jest réwniez regularny.

. Niech bedzie dany jezyk regularny L i dowolne, niekoniecznie regularne, jezyki Li, ...,

L,,,. Skonstruowaé skonczony automat deterministyczny rozpoznajacy jezyk nad alfabetem

{1,...,m}
L = {leglkL“Llek QL}

Nietrywialnym palindromem nazwiemy kazdy palindrom o dlugosci co najmniej 2. Niech
Pal§1 oznacza zbior nietrywialnych palindroméw nad alfabetem Y. Dowiesé, ze jezyk
(Palgl)* jest regularny wtedy i tylko wtedy, gdy |X| = 1.

Czy jezyk ({ww’ :w € (0+1)*})* jest regularny?
Ktére z nastepujacych jezykéw nad alfabetem {0, 1} sa regularne?
(a) Zbiér stéw posiadajacych nietrywialny palindrom jako prefiks.
(b) Zbiér stéw posiadajacych palindrom dlugosci parzystej jako prefiks.
(¢) Zbiér stéw posiadajacych nietrywialny palindrom dhlugosci nieparzystej jako prefiks.
Niech L bedzie jezykiem regularnym. Dowiesé, ze jezyki:
o L, ={w: (Fu)ul =2/w|ANwu e L}
o Ly ={w:(3u)2lu|l=|w|Awue L}
o L_ ={w:(3u,v)ul=|v|=|w| Avwv e L}
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13.

14.

2.4

sa jezykami regularnymi, a jezyk
o Ly | ={w : (Fw)|u|l = |v|] = |w| Auwv € L}
moze nie by¢ regularny.

Przeplotem stéw w i v nazwiemy dowolne stowo dtugosci |w| + |v|, ktére mozna rozbié¢ na
roztaczne podciagi w i v. Na przyklad, przeplotami stéw ab i acb sg stowa abach, aabcb,
acabb, acbab, aacbb. Przeplotem jezykéw L i M jest zbidr wszystkich mozliwych przeplotéw
stéw w € L, v € M. Jezyk ten oznaczamy L || M.

Dowiesé, ze jesli L i M sa jezykami regularnymi, to L || M jest réwniez regularny.

Okreslamy Lf = L U (L || L) U (L| L || L) U.... Poda¢ prayklad jezyka regularnego L
nad dwuelementowym alfabetem, dla ktérego L* nie jest jezykiem regularnym.

Automaty minimalne.

. Niech w € ¥* bedzie stowem o dlugosci |w| = n > 0. Dowie$é, ze minimalny automat de-

terministyczny rozpoznajacy wszystkie stowa nad X, ktorych sufiksem jest w, ma doktadnie
n + 1 stanow.

. Niech w € ¥* bedzie slowem o diugosci |w| = n > 0. Dowies$é¢, ze minimalny automat

deterministyczny rozpoznajacy wszystkie podstowa stowa w ma nie wiecej niz 2n stanéw.

. Trzy druzyny pitkarskie A, B i C rozgrywaja miedzy soba serie spotkan towarzyskich,

przy czym umoéwily sie, ze kazdy kolejny mecz jest rozgrywany pomiedzy druzyna, ktora
wygrala poprzedni mecz i druzyne, ktéra nie brata udzialu w tym spotkaniu (tzn. jesli
druzyna X wygrala z druzyna Y, to nastepny mecz rozegraja X i 7). Zakladajac, ze nie ma
remisow, rozwazamy zbiér stéw nad alfabetem {A, B, C}, stanowiacych ciagi mozliwych
wynikéw spotkan. Dowies¢, ze jest to jezyk regularny. Zbudowaé¢ minimalny automat
deterministyczny, ktéry go rozpoznaje.

. Pan X zakupil pakiety trzech réznych akcji: A, B i C. Kazdego dnia bada wzajemne

potozenie wartosci swoich akcji, ktére moze byé reprezentowane jako uporzadkowanie zbioru
{4, B,C}, w kierunku od najmniej do najbardziej wartosciowej. (Przyjmujemy zalozenie,
ze dwie rézne akcje maja zawsze rézne wartosci.) Pan X postanowil, ze jesli w ciagu dwéch
kolejnych dni ktéras z akeji dwukrotnie spadnie na nizsza pozycje, to sprzeda te akcje. Np.
jesli kolejne notowania (w tym wypadku: uporzadkowania) sa (4, B,C), (B,C, A), (C, B, A)
to pan X sprzeda pakiet akcji C'. Rozwazamy zbiér G wszystkich uporzadkowan liniowych
zbioru {A, B,C}. Dowiesé, ze zbiér tych ciagéw nad alfabetem G, ktére opisuja takie
wyniki notowan gieldowych, przy ktérych pan X nie pozbedzie sie zadnego pakietu akcji,
jest jezykiem regularnym. Znalezé liczbe stanéw automatu minimalnego akceptujacego
ten jezyk.

. Pan X postanowit, ze kazdego dnia bedzie pracowal lub nie, przestrzegajac przy tym

zasady, by na zadne siedem kolejnych dni nie przypadalo wiecej niz cztery dni pracy.
Mozliwy rozklad dni pracy pana X w ciggu n kolejnych dni mozemy przedstawié¢ jako
n-bitowe stowo, gdzie 1 odpowiada dniowi pracy, a 0 dniowi odpoczynku. Dowies¢, ze
zbiér wszystkich tak otrzymanych stéw jest jezykiem regularnym (nad alfabetem {0, 1}).
Zmnalez¢ minimalny automat deterministyczny.
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6. Dowiesé, ze istnieje nieskoniczenie wiele stéw w € (a + b)* takich, ze jedli zastosujemy

2.5

homomorfizm a +— 0, b — 1, to otrzymamy zapis binarny liczby podzielnej przez 3, a kiedy
zastosujemy homomorfizm a +— 1, b — 0, to réwniez otrzymamy zapis binarny liczby
podzielnej przez 3 (oczywiscie ignorujemy poczatkowe zera).

Rozwazamy automat wydajacy napoje, dzialajacy na nastepujacych zasadach.

— Kazdy napdj kosztuje 1 zloty.

— W chwili poczatkowej automat nie zawiera zadnych monet.

— Automat przyjmuje monety: 1 zloty lub 1 euro; w tym ostatnim przypadku wydaje
3 zlote reszty po warunkiem, oczywiscie, ze ma dostateczng ilos¢ monet jednoztotowych
(zakladamy, ze €1 = 4 zt).

— Jedli automat nie jest w stanie wydaé reszty — sygnalizuje blad.

— Jesli po wrzuceniu monety i ewentualnym wydaniu reszty wartos¢ wszystkich monet
zgromadzonych w automacie osiagnie rownowartosé 8 zl, wszystkie monety sa wyjmowane
(reset).

Historia dzialania jest ciag wrzuconych monet (zloty lub euro). Historia jest udana, jesli
w trakcie jej realizacji ani razu nie wystapit btad.

Skonstruowaé¢ minimalny automat deterministyczny rozpoznajacy zbidr wszystkich uda-
nych historii.

Rozpoznawanie wzorca w tekscie

. Deterministyczny automat z zadania 1 z punktu 2.4 rozpoznajacy jezyk YX*w mozna skon-

struowaé biorac za stany wszystkie prefiksy stowa w (a zatem |w|+1 stanéw) oraz przejscia
v 5 u, gdzie u jest maksymalnym sufiksem slowa va bedacym jednoczesnie prefiksem w.
(Efektywna konstrukcja tegoz automatu, patrz zadanie 3 w punkcie 2.7.) Dowiesé, ze liczba
nietrywialnych przej§é ,,wstecznych”, tj. przejéé postaci v % u, gdzie |v| > |u| > 0, jest
nie wieksza niz |w|. Zauwazmy, ze daje to mozliwosé¢ reprezentacji automatu o rozmiarze
proporcjonalnym do |w| (przejécia postaci v - ¢ mozemy pominaé).

Wskazowka. Wykazaé, ze dla kazdej liczby k istnieje co najwyzej jedno nietrywialne
przejscie wsteczne, takie, ze |va| — |u| = k.

2. Rozpoznawanie podstow.

(a) Dla danego stowa w o dlugosci |w| = n skonstruowaé automat deterministyczny o
< 2n + 1 stanach rozpoznajacy doktadnie zbidr sufikséw slowa w.
Wskazowka. Jako stany automatu mozna wziaé zbiory pozycji Sy (Sy C {0,1,...,n})
konczacych wystapienie x jako podstowa stowa w. Oszacowanie na liczbe stanéw wy-
nika ze spostrzezenia, ze rézne zbiory S;, Sy sa albo w relacji inkluzji albo rozlaczne,
a zatem, ze wzgledu na inkluzje, tworza drzewo o nie wiecej niz n lisciach.

(b) Powyzszy automat zawiera stan typu ,,czarna dziura”, mianowicie stan ) = S,., gdzie
x nie jest podstowem w. Dowiesé, ze liczbe przej$é nie prowadzacych do stanu ()
mozna oszacowal z gory przez 3n.

Wskazowka. Wziaé drzewo rozpinajace grafu automatu i oszacowac liczbe pozostalych
krawedzi przez liczbe sufikséw w.
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2.6

1.

(¢) Opisany wyzej automat jest minimalny dla zbioru sufikséw. Te sama konstrukcje
mozna zastosowaé¢ rowniez do rozpoznawania zbioru wszystkich podstéw stowa w, ale
otrzymany automat nie musi by¢ minimalny. Podaé¢ przyktad.

Wskazéwka: 4 grudnia.

Warianty automatéw skonczonych

Automaty z e-przejsciami. Niedeterministyczny automat z e-przejsciami A = (X, Q, 1,9, F)
jest okreslony jak zwykly automat skonczony z tym, ze § C @ x (X U {e}) x Q. Relacja
q 2 p (gdzie p,q € Q i w € ¥*) jest okreslona jak poprzednio, tzn. ¢ = g iq 23 p o ile
qg>aq i (q1,a,p) € § z tym, ze teraz a moze by¢ litera w 3 lub e.

Dowieé¢, ze dla dowolnego automatu z e-przejsciami istnieje zwykly automat skoriczony,
ktory akceptuje ten sam jezyk.

. Automat z wyjsciem wg Mealy’ego. Automat Mealy’ego mozna przedstawié jako deter-

ministyczny automata skonczony, powiedzmy A = (X,Q, gz, 9, F) dany razem z funkcja
v Q x X — A. Intuicyjnie, dany stan ¢ i litera ¢ € > determinuja nie tylko ko-
lejny stan, powiedzmy p, ale takze sygnal wyjsciowy (output), v(q,0). Dokladniej, stowo
w = wiws ... w, nad X, takie, ze 5(q1,w1...wi,1) = p;, dla i = 1,...,n, wyznacza n-
literowe stowo nad alfabetem A,

Y(w) =des (a1, w1)y(p2, w2) - - . ¥ (P, wn)

Powiemy, ze automat Mealy’ego redukuje jezyk Lq do Ls jesli (VYw) w € Ly & 4(w) € Lo.
Skonstruowaé automat, ktéry redukuje a*b(a*ba*ba*)* do (a*ba*ba*)*.

. Automat z wyjsciem wg Moore’a. Automat Moore’a mozna przedstawi¢ jako determi-

nistyczny automata skoriczony wraz z funkcja v : @ — A. Tym razem, stowo w =
WIW3 . . . Wy, Wyznacza

A(w) =ger v((qr,w1))v((qr, wiws)) . .. y(8(qr, wiws . .. wy))

Dowiesé¢, ze automaty Mealy’ego i Moore’a sa rownowazne w tym sensie, ze dla kazdego
automatu jednego typu mozna znalezé automat drugiego typu realizujacy te sama funkcje
4.

Automaty dwukierunkowe. Funkcja przejécia deterministycznego automatu dwukierunko-
wego jest postaci § : Q@ x ¥ — @Q x {L, R}, co interpretujemy, ze automat moze przesunaé
czytnik zaréwno w prawo jak i w lewo. Dowiesé, ze deterministyczne automaty dwukierun-
kowe moga by¢ symulowane przez zwykle automaty skoniczone. (Rezultat zachodzi réwniez
dla automatéw niedeterministycznych.)

Wskazowka. Znane rozwiazanie oparte na idei ciagéw skrzyzowan (ang. crossing sequences)
mozna znalezé w rozdziale 2.6 ksiazki J.E.Hopcroft, J.D.Ullman, Wprowadzenie do teorii
automatow, jezykow i obliczen, Wydawnictwo Naukowe PWN, Warszawa 1994. Innym,
byé moze prostszym rozwiazaniem! jest uwzglednienie w stanie symulujacego automatu
jednokierunkowego funkcji h : Q@ — @ U {L} o nastepujacej interpretacji: jesli automat
(dwukierunkowy) péjdzie w lewo w stanie g, to wréci w stanie h(q) (by¢ moze wcale nie
wréci, gdy h(q) = 1).

! Zaproponowanym przez Mikolaja Bojanczyka.
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2.7

Uwaga. W dalszej czeéci wyktadu spotkamy sie z mocniejszym stwierdzeniem, a mianowi-
cie, ze maszyny Turinga pracujace na jednej tasmie w czasie liniowym akceptuja jedynie
jezyki regularne.

Algorytmy i zlozonos¢

. Zaprojektowaé algorytm, ktory dla wyrazenia regularnego (i stowa w € ¥* odpowiada na

pytanie, czy w nalezy do jezyka opisywanego przez (3

(a) w czasie O(|3] - |B]? - w]),
(b) w czasie O(|8] - |w|),

Wskazowka. Skonstruowaé automat niedeterministyczny rownowazny wyrazeniu 3 i obli-
czy¢ zbior stanéw osiagalnych po stowie w. Dla oszacowania w punkcie 1b uzy¢ automatu z
e-przejéciami (por. zadanie 2.6. 1), w grafie ktérego z kazdego stanu wychodza co najwyzej
dwie krawedzie.

. Rozwazamy pytanie ,, w € L[3] 7" jak w zadaniu 1, ale dla wogdinionego wyrazenia regu-

larnego, tj. takiego, w ktérym dopuszczamy réwniez operacje teorio-mnogosciowe N i —.
Zaprojektowaé algorytm, ktéry rozstrzyga to pytanie w czasie wielomianowym od |3|+|w|.

Wskazowka. Zastosowaé metode programowania dynamicznego: dla 1 < i < j < |w|
sukcesywnie oblicza¢ zbiér podwyrazen o wyrazenia [ takich, ze w[i..j] € L[a].

. Konstrukcje automatu z zadan 2.4. 11 2.5. 1, ktéry dla danego w rozpoznaje jezyk 3*w,

mozna przeprowadzi¢ za pomoca nastepujacego algorytmu. Niech m = |w|.

Najpierw obliczamy pomocnicza tablice F'[0..m], taka, ze F[0] = 0 oraz F'[i] jest dlugoscia
najdluzszego prefiksu wlasciwego wll..i] bedacego jednoczesnie sufiksem wil..i], dla ¢ =
1,...,m.

F[0] := F[1] :==0; i := 0;
for j :=2 tom do
begin (+i = F[j — 1]%)
while wj # wit1 A ¢ >0 do i := Fi];
if wj = w;yq then i : =17+ 1;
Flj] =i
end
W konstrukeji automatu przyjmujemy, ze stany sa liczbami 0,1,...,m (ktére mozna
utozsamié¢ z prefiksami w o odpowiednich dlugosciach). Funkcje przejscia ¢ okreslamy
przez
e 0(0,wy)=1,8(0,a) =0, dla a # wy,
o 6(j,wjt1) =Jj+1,0(j,a) =0(F[j],a), dla a # wjn

Dowiesé, ze powyzszy algorytm oblicza zadany automat w czasie liniowym wzgledem
dhugosci w (zaleznym od alafabetu).

. Niech A bedzie ustalonym automatem deterministycznym. Zaprojektowaé algorytm, ktéry

dla danej liczby n znajduje w czasie O(n) liczbe stéw dlugosci n akceptowanych przez A.
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10.

11.

. Poda¢ przyklad $wiadczacy o tym, ze najkrétsze stowo, jakiego nie akceptuje automat

niedeterministyczny o n stanach moze mieé¢ dtugosé 29,

Wskazowka. Rozwazy¢ automat akceptujacy wszystko za wyjatkiem stowa

(...((a3a1)az)?as . .. an_1)%an.

. Dowiesé, ze jedli dwa stany n—stanowego automatu deterministycznego nie sa réwnowazne

(tzn. L(A,q) # L(A,p)), to istnieje stowo dlugosci nie wiekszej niz n akceptowane z
dokladnie jednego z nich.

Wskazowka. Rozwazy¢ zstepujacy ciag relacji réwnowaznosci na zbiorze stanéw: R;(p, q)
o ile stany p i ¢ sa nierozréznialne stowami diugosci < i.

Podaé algorytm rozstrzygajacy rownowazno$é¢ dwéch automatéw deterministycznych.

Uwaga. Zastosowanie idei zadania 6 prowadzi do efektywniejszego algorytmu niz testowa-
nie niepustosci automatu produktowego.

(a) Wykazaé, ze dla dowolnego automatu niedeterministycznego o n stanach mozna skon-
struowaé réwnowazne wyrazenie regularne dugosei 20,

(b) (**) Poda¢ przyklad swiadczacy o tym, ze najkrétsze wyrazenie regularne réwnowazne
danemu automatowi deterministycznemu o n stanach moze mieé¢ dtugogé 294,
Wskazowka. Rozwazyé automat, ktorego graf jest pelnym grafem o n wierzchotkach,
a kazda krawedZ ma inng etykiete. Stosujac indukcje po n, skonstruowaé petle, ktora
,,wymusza’ eksponencjalng dlugos¢ wyrazenia regularnego.

. Fksplozja stanéw w produkcie automatéw. Niech ¥ = {0,1,...,k} iniech dlai=1,... k,

L; bedzie zbiorem stéw v nad > o nastepujacej wlasnosci:

1 wystepuje w v, ale przed pierwszym i pomiedzy kazdymi dwoma kolejnymi
wystapieniami ¢, ¢ — 1 wystepuje co najmniej dwa razy.

Nietrudno jest skonstruowaé¢ deterministyczny automat o 4 stanach rozpoznajacy L;. Do-

wiesé, ze kazdy (nawet niedeterministyczny) automat rozpoznajacy jezyk Ly N ... N Ly
musi mieé¢ co najmniej 28! — 1 stanéw.

Wskazowka. Oszacowaé od dotu dlugosé najkrétszego stowa w tym jezyku.

Dowiesé, ze jakikolwiek automat niedeterministyczny rozpoznajacy jezyk {zcy : =,y €
{a,b}* A z[1..k] = y[1..k]} ma 29®) stanéw.

Stowo synchronizujgce. Mowimy, ze stowo w synchronizuje stany automatu determini-
stycznego, jesli istnieje taki stan ¢y, ze startujac z dowolnego stanu i czytajac stowo w,
automat dojdzie zawsze do stanu qo, tzn. (Vg € Q)q — qo.

(a) Znalez¢ stowo synchronizujace dla automatu nad alfabetem {a,b} o zbiorze stanéw
{0,1,...,k — 1} i funkcji przejscia
i%i+1 (modk) dlai=0,1,...,k—1
i dlai=0,1,..., k2
k=120
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(b) Zaprojektowaé algorytm, ktéry dla automatu o n stanach rozstrzyga w czasie O(n?),
czy istnieje stowo synchronizujace i w pozytywnym przypadku znajduje takie stowo
(dtugosci < (n — 1)3).

(¢) (*) Znalezé najkrotsze stowo synchronizujace dla automatu z punktu (11a).

Uwaga. Liczaca juz 40 lat hipoteza Cernego glosi, ze najkrétsze stowo synchronizujace, o ile
istnieje, ma dtugoéé (n—1)? (zob. http://www liafa.jussieu.fr/~jep/Problemes/Cerny.html).



