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1 S lowa, liczby, grafy

Do tej partii zadań może podej́sć Czytelnik bez żadnej znajomości teorii automatów.

1. S lowa pierwotne. S lowo w ∈ Σ∗ nazywamy pierwotnym (ang. primitive), jeśli nie da si ↪e
go przedstawić w = vn, inaczej niż dla n = 1 i v = w.

(a) Dowieść, że dla każdego s lowa niepustego w, istnieje dok ladnie jedno s lowo pierwotne
v, takie że w = vn, dla pewnego n ≥ 1.
Liczb ↪e n nazywamy wyk ladnikiem s lowa w.

(b) O s lowach wv i vw mówimy, że s ↪a w relacji koniugacji. Dowieść, że jest to relacja
równoważności.
Dowieść, że dwa s lowa b ↪ed ↪ace w relacji koniugacji maj ↪a ten sam wyk ladnik. Jaka jest
moc klasy abstrakcji relacji koniugacji dla s lowa o d lugości m i wyk ladniku n?

2. J ↪ezyk nawiasowy. Wykazać, że zbiór poprawnie uformowanych ci ↪agów nawiasów może być
zdefiniowany na dwa równoważne sposoby:

• Jako najmniejszy zbiór L zawieraj ↪acy ci ↪ag pusty oraz taki, że jeśli w, v ∈ L, to również
(w), wv ∈ L.

• Zbiór s lów nad alfabetem {(, )}, w których ilość “)” jest taka sama jak ilość “(”, a w
każdym prefiksie ilość “)” jest niewi ↪eksza niż ilość “(” .

3. Zbiory semi–liniowe. Zbiór liczb naturalnych postaci {a + bn : n ∈ N}, dla ustalonych
a, b ∈ N nazywamy liniowym. Zbiór bed ↪acy sum ↪a skończonej liczby zbiorów liniowych
nazywamy semiliniowym. (Gdy sumowana rodzina jest pusta, otrzymujemy zbiór pusty.)

(a) Dowieść, że każdy zbiór postaci {a+b1n1+. . .+bknk : n1, . . . , nk ∈ N}, dla ustalonych
k i a, b1, . . . , bk ∈ N, jest semi–liniowy.
Wskazówka. Wykorzystać podzia ly zbioru liczb naturalnych na klasy abstrakcji relacji
przystawania modulo m, dla odpowiednio dobranych liczb m.

(b) Dowieść, że zbiór liczb naturalnych A jest semi–liniowy wtedy i tylko wtedy, gdy jest
prawie periodyczny tzn. gdy istniej ↪a c ∈ N i d ∈ N−{0} takie, że dla każdego x > c,
x ∈ A ⇔ x + d ∈ A.
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(c) W grafie zorientowanym ustalamy dwa wierzcho lki. Interesuje nas zbiór d lugości
wszystkich możliwych ścieżek pomi ↪edzy tymi wierzcho lkami. Dowieść, że jest to zbiór
semi–liniowy.

(d) Dowieść, że rodzina zbiorów semi–liniowych jest zamkni ↪eta na skończone sumy, przeci ↪ecia
oraz na uzupe lnienie wzgl ↪edem N .

4. Graf gry (J. P. Jouannaud). Rozważamy nast ↪epuj ↪ac ↪a gr ↪e pomi ↪edzy Barmanem i Klien-
tem. Przed Barmanem na obrotowym talerzu stoj ↪a cztery szklanki tworz ↪ac wierzcho lki
kwadratu. Szklanka może być ustawiona normalnie lub dnem do góry, jednak Barman ma
przepask ↪e na oczach i r ↪ekawiczki na r ↪ekach, tak że nie może tego zobaczyć ani wyczuć.
Ruch Barmana polega na odwróceniu jednej lub dwóch dowolnie wybranych szklanek.
Ruch Klienta polega na obróceniu talerza (o wielokrotność ćwierć-obrotu). Barman wy-
grywa, jeśli w jakimś momencie gry wszystkie szklanki ustawione s ↪a w tej samej pozycji
(zostanie o tym lojalnie poinformowany).

Czy Barman noże wygrać startuj ↪ac z nieznanej konfiguracji pocz ↪atkowej, a jeśli tak, to w
jakiej liczbie ruchów?

Czy graliby Państwo o pieni ↪adze z Barmanem ? A gdyby zamiast kwadratu by ly 3 szklanki
ustawione w trójk ↪at lub 5 w pi ↪eciok ↪at ?

5. Kody. Zbiór C ⊆ Σ+ nazywamy kodem, jeśli każde s lowo w ∈ Σ∗ dopuszcza co najwyżej
jedn ↪a faktoryzacj ↪e wzgl ↪edem C (tzn., da si ↪e “odkodować”).

Niech Σ = {a, b}. Dowieść, że zbiór {aa, baa, ba} jest kodem, a zbiór {a, ab, ba} nie jest.

Jeśli skończony zbiór C nie jest kodem, oszacować z góry d lugość najkrótszego s lowa, które
o tym świadczy (tzn. dopuszcza dwie różne faktoryzacje).

Podać wielomianowy algorytm sprawdzania, czy dany skończony zbiór C jest kodem.

Wskazówka. Można rozważyć graf, którego wierzcho lkami s ↪a sufiksy s lów z C, a kraw ↪edź
z v do u prowadzi wtedy, gdy (∃w ∈ C) w = vu. Wtedy rozwi ↪azanie naszego problemu
można wydedukować z przeszukania tego grafu.

2 J ↪ezyki regularne

2.1 Automaty skończone i wyrażenia regularne

1. Dowieść, że dla dowolnych j ↪ezyków L,M , (L∗M∗)∗ = (L ∪M)∗.

2. Dowieść, że wyrażenie regularne (00 + 11 + (01 + 10)(00 + 11)∗(10 + 10))∗ reprezentuje
zbiór wszystkich s lów nad alfabetem {0, 1}, w których zarówno liczba wyst ↪apień 0 jak i
liczba wyst ↪apień 1 s ↪a parzyste.

Jak najkrócej reprezentować zbiór s lów, w których te liczby s ↪a tej samej parzystości?

3. Zbudować automat nad alfabetem {0, 1}, rozpoznaj ↪acy s lowa, w których liczba jedynek
na pozycjach parzystych jest parzysta, a liczba jedynek na pozycjach nieparzystych jest
nieparzysta.

4. Dodawanie. Rozważamy s lowa nad alfabetem {0, 1}3. Powiemy, że s lowo 〈a1, b1, c1〉
. . . 〈an, bn, cn〉 d lugości n reprezentuje dodawanie, jeśli liczba reprezentowana binarnie przez
s lowo c1 . . . cn jest sum ↪a liczb reprezentowanych przez a1 . . . an i b1 . . . bn. Na przyk lad, ci ↪ag
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〈0, 0, 1〉〈1, 1, 1〉〈0, 1, 0〉〈1, 1, 0〉 reprezentuje dodawanie (5+7=12). Podać wyrażenie regu-
larne opisuj ↪ace zbiór wszystkich s lów nad alfabetem {0, 1}3 reprezentuj ↪acych dodawanie
w powyższym sensie.

5. Podzielność.

(a) Skonstruować skończony automat deterministyczny nad alfabetem {0, 1, . . . , 8, 9} roz-
poznaj ↪acy zbiór dziesi ↪etnych reprezentacji wielokrotności liczby 7.

(b) Jak wyżej, ale przy reprezentacji odwrotnej, tj. poczynaj ↪ac od cyfr najmniej znacz ↪acych.

(c) Uogólnić niniejsze zadanie.

6. Alfabet jednoliterowy. Dowieść, że j ↪ezyk L ⊆ {a}∗ jest regularny wtedy i tylko wtedy, gdy
zbiór liczb naturalnych {n : an ∈ L} jest semi–liniowy w sensie rozdzia lu 1. Dowieść, że
dla dowolnego zbioru X ⊆ {a}∗, j ↪ezyk X∗ jest regularny.

7. Zbiory semi–liniowe (por. zadanie 3 z rozdzia lu 1).

(a) Dowieść, że dla dowolnego j ↪ezyka regularnego L zbiór {|w| : w ∈ L} jest semi–liniowy.
W szczególności, j ↪ezyki regularne nad jednoliterowym alfabetem mog ↪a być utożsamiane
ze zbiorami semi–liniowymi poprzez bijekcj ↪e w 7→ |w|.

(b) Dowieść, że jeśli M ⊆ N jest zbiorem semi–liniowym, to j ↪ezyk {bin(m) : m ∈ M}
jest regularny, gdzie bin(m) oznacza binarn ↪a reprezentacj ↪e liczby m.

Uwaga. Fakt analogiczny do 7b można udowodnić dla dowolnej reprezentacji, a zatem
zbiór semi–liniowy jest regularny w reprezentacji o podstawie k, dla k ≥ 1. W przeciwnym
kierunku wiadomo, że jeśli zbiór jest regularny w reprezentacjach o wzgl ↪ednie pierwszych
podstawach p i q, to jest semi–liniowy — jest to wniosek z g l ↪ebokiego Twierdzenia Co-
bhama.

8. Dowieść, że dla danych liczb a, b, p, r ∈ N, j ↪ezyk

L = {bin(x) $ bin(y) : (a · x + b · y) ≡ r (mod p)}

jest regularny.

Przyk lady automatów zwi ↪azanych z rozpoznawaniem wzorca Czytelnik znajdzie poniżej w punk-
cie 2.5.

2.2 Lemat o pompowaniu

1. Dowieść, że nast ↪epuj ↪ace j ↪ezyki nie s ↪a regularne:

• {anbn : n ∈ N}
• {a2n

: n ∈ N}
• {ap : p jest liczb ↪a pierwsz ↪a}
• {aibj : nwd(i, j) = 1}
• {ambn : m 6= n}
• {bin(p) : p jest liczb ↪a pierwsz ↪a}.
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2. Dowieść, że zbiór palindromów nad alfabetem o co najmniej dwóch elementach nie jest
regularny.

3. Dowieść, że zbiór wyrażeń regularnych nie jest regularny.

4. Dowieść, że jeśli w Zadaniu 4 z punktu 2.1 zamienimy dodawanie przez mnożenie, to
otrzymany j ↪ezyk (nad alfabetem {0, 1}3) jest wprawdzie dobrze określony, ale nie jest
regularny.

5. Udowodnić nieco silniejszy wariant Lematu o pompowaniu:

Jeśli L jest regularny, to

(*) Istnieje sta la n0, że dla każdych s lów v, w, u takich że |w| ≥ n0 i vwu ∈ L,
istniej ↪a x, y, z takie, że w = xyz, 0 < |y| ≤ n0, oraz ∀n ∈ N, vxynzu ∈ L.

Podać przyk lad j ↪ezyka L, który spe lnia (*), choć nie jest regularny.

Wskazówka.
∑

p cb∗cb∗ . . . cb∗︸ ︷︷ ︸
p

+(b + c)∗cc(b + c)∗, gdzie p przebiega liczby pierwsze.

2.3 W lasności domkni ↪ecia j ↪ezyków regularnych

1. Dowieść, że dla j ↪ezyka regularnego L ⊆ Σ∗ i dowolnego zbioru X ⊆ Σ∗ j ↪ezyki

X−1L = {w : (∃v ∈ X) vw ∈ L}

i

LX−1 = {w : (∃u ∈ X) wu ∈ L}

s ↪a regularne.

2. Dowieść, że j ↪ezyk L jest regularny wtedy i tylko wtedy, gdy j ↪ezyk LR s lów stanowi ↪acych
lustrzane odbicia s lów z L jest regularny.

Uwaga. Lustrzane odbicie wR s lowa w możemy w ścis ly sposób zdefiniować rekurencyjnie:
εR = ε i (wσ)R = σwR, dla w ∈ Σ∗, σ ∈ Σ.

3. Dla danego automatu A rozpoznaj ↪acego j ↪ezyk L, skonstruować automat rozpoznaj ↪acy
j ↪ezyk

Cycle(L) = {vu : uv ∈ L}

Czy z faktu, że j ↪ezyk Cycle(L) = {vu : uv ∈ L} jest regularny, można wnioskować, że
j ↪ezyk L jest regularny?

4. Niech L bedzie j ↪ezykiem regularnym nad alfabetem {0, 1}. Dowieść, że nast ↪epuj ↪acy j ↪ezyk
jest regularny:

{w : w ∈ L∧ spośród s lów o dlugości |w|, w jest najmniejsze w porz ↪adku leksykograficznym}

5. Przyjmujemy, że każde niepuste s lowo binarne w ∈ {0, 1}∗, w = w1 . . . wk, reprezentuje
pewien u lamek w przedziale [0, 1),

bin(w) = w1
1
2

+ w2
1
22

+ . . . + wk
1
2k
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Dla liczby rzeczywistej r ∈ [0, 1], niech

Lr = {w : bin(w) ≤ r}

Dowieść, że j ↪ezyk Lr jest regularny wtedy i tylko wtedy, gdy liczba r jest wymierna.

6. Niech L b ↪edzie j ↪ezykiem regularnym. Dowieść, że nast ↪epuj ↪ace j ↪ezyki s ↪a również regularne:

• 1
2L =df {w : (∃u) |u| = |w| ∧ wu ∈ L}

•
√

L =df {w : ww ∈ L}

7. Niech L b ↪edzie j ↪ezykiem regularnym. Dowieść, że nast ↪epuj ↪ace j ↪ezyki s ↪a również regularne:

(a) Root(L) = {w : (∃n ∈ N) wn ∈ L}
(b) Sqrt(L) = {w : (∃u)|u| = |w|2 ∧ wu ∈ L}

Wskazówka. n2 = 1 + 3 + . . . (2n− 1).

(c) Log(L) = {w : (∃u)|u| = 2|w| ∧ wu ∈ L}
Wskazówka. 2n = 1 + 2 + 22 + 2n−1 + 1.

(d) Fibb(L) = {w : (∃u)|u| = F|w| ∧ wu ∈ L}
gdzie Fn jest n-t ↪a liczb ↪a Fibonacciego tzn.

F1 = F2 = 1
Fn+2 = Fn + Fn+1

8. Dowieść, że dla dowolnego j ↪ezyka regularnego L, j ↪ezyk

{w : w|w| ∈ L}

jest również regularny.

9. Niech b ↪edzie dany j ↪ezyk regularny L i dowolne, niekoniecznie regularne, j ↪ezyki L1, . . . ,
Lm. Skonstruować skończony automat deterministyczny rozpoznaj ↪acy j ↪ezyk nad alfabetem
{1, . . . ,m}

L = {i1i2 . . . ik : Li1Li2 . . . Lik ⊆ L}

10. Nietrywialnym palindromem nazwiemy każdy palindrom o d lugości co najmniej 2. Niech
Pal >1

Σ oznacza zbiór nietrywialnych palindromów nad alfabetem Σ. Dowieść, że j ↪ezyk
(Pal >1

Σ )∗ jest regularny wtedy i tylko wtedy, gdy |Σ| = 1.

Czy j ↪ezyk ({wwR : w ∈ (0 + 1)∗})∗ jest regularny?

11. Które z nast ↪epuj ↪acych j ↪ezyków nad alfabetem {0, 1} s ↪a regularne?

(a) Zbiór s lów posiadaj ↪acych nietrywialny palindrom jako prefiks.

(b) Zbiór s lów posiadaj ↪acych palindrom d lugości parzystej jako prefiks.

(c) Zbiór s lów posiadaj ↪acych nietrywialny palindrom d lugości nieparzystej jako prefiks.

12. Niech L b ↪edzie j ↪ezykiem regularnym. Dowieść, że j ↪ezyki:

• L+−− = {w : (∃u) |u| = 2|w| ∧ wu ∈ L}
• L++− = {w : (∃u) 2|u| = |w| ∧ wu ∈ L}
• L−+− = {w : (∃u, v) |u| = |v| = |w| ∧ uwv ∈ L}
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s ↪a j ↪ezykami regularnymi, a j ↪ezyk

• L+−+ = {uv : (∃w) |u| = |v| = |w| ∧ uwv ∈ L}

może nie być regularny.

13. Przeplotem s lów w i v nazwiemy dowolne s lowo d lugości |w|+ |v|, które można rozbić na
roz l ↪aczne podci ↪agi w i v. Na przyk lad, przeplotami s lów ab i acb s ↪a s lowa abacb, aabcb,
acabb, acbab, aacbb. Przeplotem j ↪ezyków L i M jest zbiór wszystkich możliwych przeplotów
s lów w ∈ L, v ∈ M . J ↪ezyk ten oznaczamy L ‖ M .

Dowieść, że jeśli L i M s ↪a j ↪ezykami regularnymi, to L ‖ M jest również regularny.

14. Określamy L] = L ∪ (L ‖ L) ∪ (L ‖ L ‖ L) ∪ . . .. Podać przyk lad j ↪ezyka regularnego L
nad dwuelementowym alfabetem, dla którego L] nie jest j ↪ezykiem regularnym.

2.4 Automaty minimalne.

1. Niech w ∈ Σ∗ b ↪edzie s lowem o d lugości |w| = n > 0. Dowieść, że minimalny automat de-
terministyczny rozpoznaj ↪acy wszystkie s lowa nad Σ, których sufiksem jest w, ma dok ladnie
n + 1 stanów.

2. Niech w ∈ Σ∗ b ↪edzie s lowem o d lugości |w| = n > 0. Dowieść, że minimalny automat
deterministyczny rozpoznaj ↪acy wszystkie pods lowa s lowa w ma nie wi ↪ecej niż 2n stanów.

3. Trzy drużyny pi lkarskie A, B i C rozgrywaj ↪a mi ↪edzy sob ↪a seri ↪e spotkań towarzyskich,
przy czym umówi ly si ↪e, że każdy kolejny mecz jest rozgrywany pomi ↪edzy drużyn ↪a, która
wygra la poprzedni mecz i drużyn ↪e, która nie bra la udzia lu w tym spotkaniu (tzn. jeśli
drużyna X wygra la z drużyn ↪a Y , to nast ↪epny mecz rozegraj ↪a X i Z). Zak ladaj ↪ac, że nie ma
remisów, rozważamy zbiór s lów nad alfabetem {A,B, C}, stanowi ↪acych ci ↪agi możliwych
wyników spotkań. Dowieść, że jest to j ↪ezyk regularny. Zbudować minimalny automat
deterministyczny, który go rozpoznaje.

4. Pan X zakupi l pakiety trzech różnych akcji: A,B i C. Każdego dnia bada wzajemne
po lożenie wartości swoich akcji, które może być reprezentowane jako uporz ↪adkowanie zbioru
{A,B, C}, w kierunku od najmniej do najbardziej wartościowej. (Przyjmujemy za lożenie,
że dwie różne akcje maj ↪a zawsze różne wartości.) Pan X postanowi l, że jeśli w ci ↪agu dwóch
kolejnych dni któraś z akcji dwukrotnie spadnie na niższ ↪a pozycj ↪e, to sprzeda t ↪e akcj ↪e. Np.
jeśli kolejne notowania (w tym wypadku: uporz ↪adkowania) s ↪a (A,B, C), (B,C,A), (C,B,A)
to pan X sprzeda pakiet akcji C. Rozważamy zbiór G wszystkich uporz ↪adkowań liniowych
zbioru {A,B, C}. Dowieść, że zbiór tych ci ↪agów nad alfabetem G, które opisuj ↪a takie
wyniki notowań gie ldowych, przy których pan X nie pozb ↪edzie si ↪e żadnego pakietu akcji,
jest j ↪ezykiem regularnym. Znaleźć liczb ↪e stanów automatu minimalnego akceptuj ↪acego
ten j ↪ezyk.

5. Pan X postanowi l, że każdego dnia b ↪edzie pracowa l lub nie, przestrzegaj ↪ac przy tym
zasady, by na żadne siedem kolejnych dni nie przypada lo wi ↪ecej niż cztery dni pracy.
Możliwy rozk lad dni pracy pana X w ci ↪agu n kolejnych dni możemy przedstawić jako
n-bitowe s lowo, gdzie 1 odpowiada dniowi pracy, a 0 dniowi odpoczynku. Dowieść, że
zbiór wszystkich tak otrzymanych s lów jest j ↪ezykiem regularnym (nad alfabetem {0, 1}).
Znaleźć minimalny automat deterministyczny.
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6. Dowieść, że istnieje nieskończenie wiele s lów w ∈ (a + b)∗ takich, że jeśli zastosujemy
homomorfizm a 7→ 0, b 7→ 1, to otrzymamy zapis binarny liczby podzielnej przez 3, a kiedy
zastosujemy homomorfizm a 7→ 1, b 7→ 0, to również otrzymamy zapis binarny liczby
podzielnej przez 3 (oczywíscie ignorujemy pocz ↪atkowe zera).

7. Rozważamy automat wydaj ↪acy napoje, dzia laj ↪acy na nast ↪epuj ↪acych zasadach.

— Każdy napój kosztuje 1 z loty.

— W chwili pocz ↪atkowej automat nie zawiera żadnych monet.

— Automat przyjmuje monety: 1 z loty lub 1 euro; w tym ostatnim przypadku wydaje
3 z lote reszty po warunkiem, oczywíscie, że ma dostateczn ↪a ilość monet jednoz lotowych
(zak ladamy, że e1 = 4 z l).

— Jeśli automat nie jest w stanie wydać reszty — sygnalizuje b l ↪ad.

— Jeśli po wrzuceniu monety i ewentualnym wydaniu reszty wartość wszystkich monet
zgromadzonych w automacie osi ↪agnie równowartość 8 z l, wszystkie monety s ↪a wyjmowane
(reset).

Histori ↪a dzia lania jest ci ↪ag wrzuconych monet (z loty lub euro). Historia jest udana, jeśli
w trakcie jej realizacji ani razu nie wyst ↪api l b l ↪ad.

Skonstruować minimalny automat deterministyczny rozpoznajacy zbiór wszystkich uda-
nych historii.

2.5 Rozpoznawanie wzorca w tekście

1. Deterministyczny automat z zadania 1 z punktu 2.4 rozpoznaj ↪acy j ↪ezyk Σ∗w można skon-
struować bior ↪ac za stany wszystkie prefiksy s lowa w (a zatem |w|+1 stanów) oraz przej́scia
v

a→ u, gdzie u jest maksymalnym sufiksem s lowa va b ↪ed ↪acym jednocześnie prefiksem w.
(Efektywna konstrukcja tegoż automatu, patrz zadanie 3 w punkcie 2.7.) Dowieść, że liczba
nietrywialnych przej́sć ,,wstecznych”, tj. przej́sć postaci v

a→ u, gdzie |v| > |u| > 0, jest
nie wi ↪eksza niż |w|. Zauważmy, że daje to możliwość reprezentacji automatu o rozmiarze
proporcjonalnym do |w| (przej́scia postaci v

a→ ε możemy pomin ↪ać).

Wskazówka. Wykazać, że dla każdej liczby k istnieje co najwyżej jedno nietrywialne
przej́scie wsteczne, takie, że |va| − |u| = k.

2. Rozpoznawanie pods lów.

(a) Dla danego s lowa w o d lugości |w| = n skonstruować automat deterministyczny o
≤ 2n + 1 stanach rozpoznaj ↪acy dok ladnie zbiór sufiksów s lowa w.
Wskazówka. Jako stany automatu można wzi ↪ać zbiory pozycji Sx (Sx ⊆ {0, 1, . . . , n})
kończ ↪acych wyst ↪apienie x jako pods lowa s lowa w. Oszacowanie na liczb ↪e stanów wy-
nika ze spostrzeżenia, że różne zbiory Sx, Sy s ↪a albo w relacji inkluzji albo roz l ↪aczne,
a zatem, ze wzgl ↪edu na inkluzj ↪e, tworz ↪a drzewo o nie wi ↪ecej niż n lísciach.

(b) Powyższy automat zawiera stan typu ,,czarna dziura”, mianowicie stan ∅ = Sx, gdzie
x nie jest pods lowem w. Dowieść, że liczb ↪e przej́sć nie prowadz ↪acych do stanu ∅
można oszacować z góry przez 3n.
Wskazówka. Wzi ↪ać drzewo rozpinaj ↪ace grafu automatu i oszacować liczb ↪e pozosta lych
kraw ↪edzi przez liczb ↪e sufiksów w.
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(c) Opisany wyżej automat jest minimalny dla zbioru sufiksów. T ↪e sam ↪a konstrukcj ↪e
można zastosować również do rozpoznawania zbioru wszystkich pods lów s lowa w, ale
otrzymany automat nie musi być minimalny. Podać przyk lad.
Wskazówka: 4 grudnia.

2.6 Warianty automatów skończonych

1. Automaty z ε-przej́sciami. Niedeterministyczny automat z ε-przej́sciami A = (Σ, Q, I, δ, F )
jest określony jak zwyk ly automat skończony z tym, że δ ⊆ Q × (Σ ∪ {ε}) × Q. Relacja
q

w→ p (gdzie p, q ∈ Q i w ∈ Σ∗) jest określona jak poprzednio, tzn. q
ε→ q i q

va→ p o ile
q

v→ q1 i (q1, a, p) ∈ δ z tym, że teraz a może być liter ↪a w Σ lub ε.

Dowieść, że dla dowolnego automatu z ε-przej́sciami istnieje zwyk ly automat skończony,
który akceptuje ten sam j ↪ezyk.

2. Automat z wyj́sciem wg Mealy’ego. Automat Mealy’ego można przedstawić jako deter-
ministyczny automata skończony, powiedzmy A = (Σ, Q, qI , δ, F ) dany razem z funkcj ↪a
γ : Q × Σ → ∆. Intuicyjnie, dany stan q i litera σ ∈ Σ determinuj ↪a nie tylko ko-
lejny stan, powiedzmy p, ale także sygna l wyj́sciowy (output), γ(q, σ). Dok ladniej, s lowo
w = w1w2 . . . wn nad Σ, takie, że δ̂(qI , w1 . . . wi−1) = pi, dla i = 1, . . . , n, wyznacza n-
literowe s lowo nad alfabetem ∆,

γ̂(w) =def γ(qI , w1)γ(p2, w2) . . . γ(pn, wn)

Powiemy, że automat Mealy’ego redukuje j ↪ezyk L1 do L2 jeśli (∀w) w ∈ L1 ⇔ γ̂(w) ∈ L2.
Skonstruować automat, który redukuje a∗b(a∗ba∗ba∗)∗ do (a∗ba∗ba∗)∗.

3. Automat z wyj́sciem wg Moore’a. Automat Moore’a można przedstawić jako determi-
nistyczny automata skończony wraz z funkcj ↪a γ : Q → ∆. Tym razem, s lowo w =
w1w2 . . . wn wyznacza

γ̂(w) =def γ(δ̂(qI , w1))γ(δ̂(qI , w1w2)) . . . γ(δ̂(qI , w1w2 . . . wn))

Dowieść, że automaty Mealy’ego i Moore’a s ↪a równoważne w tym sensie, że dla każdego
automatu jednego typu można znaleźć automat drugiego typu realizuj ↪acy t ↪e sam ↪a funkcj ↪e
γ̂.

4. Automaty dwukierunkowe. Funkcja przej́scia deterministycznego automatu dwukierunko-
wego jest postaci δ : Q×Σ → Q× {L,R}, co interpretujemy, że automat może przesun ↪ać
czytnik zarówno w prawo jak i w lewo. Dowieść, że deterministyczne automaty dwukierun-
kowe mog ↪a być symulowane przez zwyk le automaty skończone. (Rezultat zachodzi również
dla automatów niedeterministycznych.)

Wskazówka. Znane rozwi ↪azanie oparte na idei ci ↪agów skrzyżowań (ang. crossing sequences)
można znaleźć w rozdziale 2.6 ksi ↪ażki J.E.Hopcroft, J.D.Ullman, Wprowadzenie do teorii
automatów, j ↪ezyków i obliczeń, Wydawnictwo Naukowe PWN, Warszawa 1994. Innym,
być może prostszym rozwi ↪azaniem1 jest uwzgl ↪ednienie w stanie symuluj ↪acego automatu
jednokierunkowego funkcji h : Q → Q ∪ {⊥} o nast ↪epuj ↪acej interpretacji: jeśli automat
(dwukierunkowy) pójdzie w lewo w stanie q, to wróci w stanie h(q) (być może wcale nie
wróci, gdy h(q) = ⊥).

1Zaproponowanym przez Miko laja Bojańczyka.
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Uwaga. W dalszej cz ↪eści wyk ladu spotkamy si ↪e z mocniejszym stwierdzeniem, a mianowi-
cie, że maszyny Turinga pracuj ↪ace na jednej taśmie w czasie liniowym akceptuj ↪a jedynie
j ↪ezyki regularne.

2.7 Algorytmy i z lożoność

1. Zaprojektować algorytm, który dla wyrażenia regularnego β i s lowa w ∈ Σ∗ odpowiada na
pytanie, czy w należy do j ↪ezyka opisywanego przez β

(a) w czasie O(|Σ| · |β|2 · |w|),
(b) w czasie O(|β| · |w|),

Wskazówka. Skonstruować automat niedeterministyczny równoważny wyrażeniu β i obli-
czyć zbiór stanów osi ↪agalnych po s lowie w. Dla oszacowania w punkcie 1b użyć automatu z
ε-przej́sciami (por. zadanie 2.6. 1), w grafie którego z każdego stanu wychodz ↪a co najwyżej
dwie kraw ↪edzie.

2. Rozważamy pytanie ,,w ∈ L[β] ?” jak w zadaniu 1, ale dla uogólnionego wyrażenia regu-
larnego, tj. takiego, w którym dopuszczamy również operacje teorio–mnogościowe ∩ i −.
Zaprojektować algorytm, który rozstrzyga to pytanie w czasie wielomianowym od |β|+|w|.
Wskazówka. Zastosować metod ↪e programowania dynamicznego: dla 1 ≤ i ≤ j ≤ |w|
sukcesywnie obliczać zbiór podwyrażeń α wyrażenia β takich, że w[i..j] ∈ L[α].

3. Konstrukcj ↪e automatu z zadań 2.4. 1 i 2.5. 1, który dla danego w rozpoznaje j ↪ezyk Σ∗w,
można przeprowadzić za pomoc ↪a nast ↪epuj ↪acego algorytmu. Niech m = |w|.
Najpierw obliczamy pomocnicz ↪a tablic ↪e F [0..m], tak ↪a, że F [0] = 0 oraz F [i] jest d lugości ↪a
najd luższego prefiksu w laściwego w[1..i] b ↪ed ↪acego jednocześnie sufiksem w[1..i], dla i =
1, . . . ,m.

F [0] := F [1] := 0; i := 0;

for j := 2 to m do

begin (∗ i = F [j − 1] ∗)
while wj 6= wi+1 ∧ i > 0 do i := F [i];

if wj = wi+1 then i := i + 1;

F [j] := i

end

W konstrukcji automatu przyjmujemy, że stany s ↪a liczbami 0, 1, . . . ,m (które można
utożsamić z prefiksami w o odpowiednich d lugościach). Funkcj ↪e przej́scia δ określamy
przez

• δ(0, w1) = 1, δ(0, a) = 0, dla a 6= w1,

• δ(j, wj+1) = j + 1, δ(j, a) = δ(F [j], a), dla a 6= wj+1

Dowieść, że powyższy algorytm oblicza ż ↪adany automat w czasie liniowym wzgl ↪edem
d lugości w (zależnym od alafabetu).

4. Niech A b ↪edzie ustalonym automatem deterministycznym. Zaprojektować algorytm, który
dla danej liczby n znajduje w czasie O(n) liczb ↪e s lów d lugości n akceptowanych przez A.
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5. Podać przyk lad świadcz ↪acy o tym, że najkrótsze s lowo, jakiego nie akceptuje automat
niedeterministyczny o n stanach może mieć d lugość 2Ω(n).

Wskazówka. Rozważyć automat akceptuj ↪acy wszystko za wyj ↪atkiem s lowa

(. . . ((a2
0a1)2a2)2a3 . . . an−1)2an.

6. Dowieść, że jeśli dwa stany n–stanowego automatu deterministycznego nie s ↪a równoważne
(tzn. L(A, q) 6= L(A, p)), to istnieje s lowo d lugości nie wi ↪ekszej niż n akceptowane z
dok ladnie jednego z nich.

Wskazówka. Rozważyć zst ↪epuj ↪acy ci ↪ag relacji równoważności na zbiorze stanów: Ri(p, q)
o ile stany p i q s ↪a nierozróżnialne s lowami d lugości ≤ i.

7. Podać algorytm rozstrzygaj ↪acy równoważność dwóch automatów deterministycznych.

Uwaga. Zastosowanie idei zadania 6 prowadzi do efektywniejszego algorytmu niż testowa-
nie niepustości automatu produktowego.

8. (a) Wykazać, że dla dowolnego automatu niedeterministycznego o n stanach można skon-
struować równoważne wyrażenie regularne d lugości 2O(n).

(b) (**) Podać przyk lad świadcz ↪acy o tym, że najkrótsze wyrażenie regularne równoważne
danemu automatowi deterministycznemu o n stanach może mieć d lugość 2Ω(n).
Wskazówka. Rozważyć automat, którego graf jest pe lnym grafem o n wierzcho lkach,
a każda kraw ↪edź ma inn ↪a etykiet ↪e. Stosuj ↪ac indukcj ↪e po n, skonstruować p ↪etl ↪e, która
,,wymusza” eksponencjaln ↪a d lugość wyrażenia regularnego.

9. Eksplozja stanów w produkcie automatów. Niech Σ = {0, 1, . . . , k} i niech dla i = 1, . . . , k,
Li b ↪edzie zbiorem s lów v nad Σ o nast ↪epuj ↪acej w lasności:

i wyst ↪epuje w v, ale przed pierwszym i pomi ↪edzy kaźdymi dwoma kolejnymi
wyst ↪apieniami i, i− 1 wyst ↪epuje co najmniej dwa razy.

Nietrudno jest skonstruować deterministyczny automat o 4 stanach rozpoznaj ↪acy Li. Do-
wieść, że każdy (nawet niedeterministyczny) automat rozpoznaj ↪acy j ↪ezyk L1 ∩ . . . ∩ Lk

musi mieć co najmniej 2k+1 − 1 stanów.

Wskazówka. Oszacować od do lu d lugość najkrótszego s lowa w tym j ↪ezyku.

10. Dowieść, że jakikolwiek automat niedeterministyczny rozpoznaj ↪acy j ↪ezyk {xcy : x, y ∈
{a, b}∗ ∧ x[1..k] = y[1..k]} ma 2Ω(k) stanów.

11. S lowo synchronizuj ↪ace. Mówimy, że s lowo w synchronizuje stany automatu determini-
stycznego, jeśli istnieje taki stan q0, że startuj ↪ac z dowolnego stanu i czytaj ↪ac s lowo w,
automat dojdzie zawsze do stanu q0, tzn. (∀q ∈ Q) q

w→ q0.

(a) Znaleźć s lowo synchronizuj ↪ace dla automatu nad alfabetem {a, b} o zbiorze stanów
{0, 1, . . . , k − 1} i funkcji przej́scia
i

a→ i + 1 (mod k) dla i = 0, 1, . . . , k − 1
i

b→ i dla i = 0,1, . . . , k-2
k − 1 b→ 0 .
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(b) Zaprojektować algorytm, który dla automatu o n stanach rozstrzyga w czasie O(n3),
czy istnieje s lowo synchronizuj ↪ace i w pozytywnym przypadku znajduje takie s lowo
(d lugości ≤ (n− 1)3).

(c) (*) Znaleźć najkrótsze s lowo synchronizuj ↪ace dla automatu z punktu (11a).

Uwaga. Licz ↪aca już 40 lat hipoteza Černego g losi, że najkrótsze s lowo synchronizuj ↪ace, o ile
istnieje, ma d lugość (n−1)2 (zob. http://www.liafa.jussieu.fr/∼jep/Problemes/Cerny.html).


