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Podziekowania. Autorzy dziekuja Wszystkim, w szczeg6lnosci Studentom, ktorzy sy-
gnalizowali bledy, sugerowali nowe zadania lub podali ciekawe (i poprawne :) rozwiazania.

1 Stowa, liczby, grafy

Do tej partii zadan moze podejs¢ Czytelnik bez zadnej znajomosci teorii automatow.

1. Stowa pierwotne. Slowo w € ¥* nazywamy pierwotnym (ang. primitive), jesli nie
da sie go przedstawi¢ w = v", inaczej nizdlan =11iv = w.

(a) Dowies¢, ze dla kazdego stowa niepustego w, istnieje dokladnie jedno stowo
pierwotne v, takie ze w = v", dla pewnego n > 1.
Liczbe n nazywamy wyktadnikiem stowa w.

(b) O stowach wv i vw moéwimy, ze sa w relacji koniugacji. Dowiesé, ze jest to
relacja rownowaznosci.
Dowie$¢, ze dwa stowa bedace w relacji koniugacji maja ten sam wyktadnik.

Jaka jest moc klasy abstrakcji relacji koniugacji dla stowa o dlugosci m i wy-
ktadniku n?

2. Jezyk nawiasowy. Wykazaé, ze zbiér poprawnie uformowanych ciagéw nawiaséw
moze by¢ zdefiniowany na dwa réwnowazne sposoby:

e Jako najmniejszy zbiér L zawierajacy ciag pusty oraz taki, ze jesli w,v € L,
to rowniez (w),wv € L.

e Zbior stow nad alfabetem {(, )}, w ktorych ilosé “)” jest taka sama jak ilogé “(”,
a w kazdym prefiksie ilo§¢ “)” jest niewieksza niz ilo§¢ “(” .

3. Zbiory semi-liniowe. Zbior liczb naturalnych postaci {a + bn : n € N}, dla usta-
lonych a,b € N nazywamy liniowym. Zbiér bedacy suma skonczonej liczby zbioréw
liniowych nazywamy semiliniowym. (Gdy sumowana rodzina jest pusta, otrzymu-
jemy zbioér pusty.)
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(a) Dowies¢, ze kazdy zbior postaci {a + byng + ...+ bgny = ny,...,nx € N}, dla
ustalonych ki a,by,...,by € N, jest semi-liniowy.
Wskazéwka. Wykorzysta¢ podzialy zbioru liczb naturalnych na klasy abstrakcji
relacji przystawania modulo m, dla odpowiednio dobranych liczb m.

(b) Dowies¢, ze zbior liczb naturalnych A jest semi-liniowy wtedy i tylko wtedy,
gdy jest prawie periodyczny tzn. gdy istnieja ¢ € Nid € N — {0} takie, ze dla
kazdego x > ¢, v € A & x+d € A.

(c) W grafie zorientowanym ustalamy dwa wierzchotki. Interesuje nas zbioér diu-
gosci wszystkich mozliwych §ciezek pomiedzy tymi wierzchotkami. Dowies¢, ze
jest to zbiér semi-liniowy.

(d) Dowiesé¢, ze rodzina zbior6w semi-liniowych jest zamknieta na skoriczone sumy,
przeciecia oraz na uzupeinienie wzgledem N.

4. Graf gry (J. P. Jouannaud). Rozwazamy nastepujaca gre pomiedzy Barmanem i

2.1

Klientem. Przed Barmanem na obrotowym talerzu stoja cztery szklanki tworzac
wierzchotki kwadratu. Szklanka moze by¢ ustawiona normalnie lub dnem do géry,
jednak Barman ma przepaske na oczach i rekawiczki na rekach, tak ze nie moze
tego zobaczy¢ ani wyczu¢. Ruch Barmana polega na odwrdceniu jednej lub dwoch
dowolnie wybranych szklanek. Ruch Klienta polega na obroceniu talerza (o wielo-
krotnoéé¢ éwieré-obrotu). Barman wygrywa, jesli w jakim$ momencie gry wszystkie
szklanki ustawione sa w tej samej pozycji (zostanie o tym lojalnie poinformowany).

Czy Barman noze wygraé startujac z nieznanej konfiguracji poczatkowej, a jesli tak,
to w jakiej liczbie ruchéw?

Czy graliby Panstwo o pieniadze z Barmanem 7 A gdyby zamiast kwadratu byty 3
szklanki ustawione w trojkat lub 5 w pieciokat ?

Kody. Zbior C' C X1 nazywamy kodem, jesli kazde stowo w € ¥* dopuszcza co
najwyzej jedna faktoryzacje wzgledem C' (tzn., da sie “odkodowac”).

Niech ¥ = {a,b}. Dowies¢, ze zbior {aa, baa,ba} jest kodem, a zbiér {a,ab,ba} nie
jest.

Jesli skoniczony zbiér C' nie jest kodem, oszacowaé z gory dtugoséé najkrotszego stowa,
ktore o tym $wiadczy (tzn. dopuszcza dwie rézne faktoryzacje).

Patrz tez rozdz. 2.7, zadanie 14.

Jezyki regularne

Automaty skoriczone i wyrazenia regularne

. Dowies¢, ze dla dowolnych jezykow L, M, (L*M*)* = (L U M)*.

. Dowies¢, ze wyrazenie regularne (004 11+ (01+10)(00+11)*(10+10))* reprezentuje

zbiér wszystkich stow nad alfabetem {0, 1}, w ktorych zaréwno liczba wystapien 0
jak i liczba wystapieri 1 sa parzyste.
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Jak najkrécej reprezentowaé zbiér stow, w ktorych te liczby sa tej samej parzystosci?

3. Zbudowaé automat nad alfabetem {0, 1}, rozpoznajacy stowa, w ktérych liczba je-
dynek na pozycjach parzystych jest parzysta, a liczba jedynek na pozycjach niepa-
rzystych jest nieparzysta.

4. Dodawanie. Rozwazamy stowa nad alfabetem {0, 1}>. Powiemy, ze stowo (ay, by, c1)
... {ay, by, ¢n,) dlugosci n reprezentuje dodawanie, jedli liczba reprezentowana binar-
nie przez stowo c; ...c, jest suma liczb reprezentowanych przez a;...a, i by...0b,.
Na przyktad, ciag (0,0,1)(1,1,1)(0,1,0)(1,1,0) reprezentuje dodawanie (5+7=12).
Poda¢ wyrazenie regularne opisujace zbiér wszystkich stéw nad alfabetem {0,1}?
reprezentujacych dodawanie w powyzszym sensie.

5. Podzielnosé.
(a) Skonstruowaé skonczony automat deterministyczny nad alfabetem {0, 1,...,8,9}
rozpoznajacy zbidr dziesietnych reprezentacji wielokrotnodci liczby 7.

(b) Jak wyzej, ale przy reprezentacji odwrotnej, tj. poczynajac od cyfr najmnie;
znaczacych.

(c) Uogblni¢ niniejsze zadanie.
6. Alfabet jednoliterowy. Dowiesé, ze jezyk L C {a}* jest regularny wtedy i tylko wtedy,

gdy zbior liczb naturalnych {n : @ € L} jest semi-liniowy w sensie rozdzialu 1.
Dowie$¢, ze dla dowolnego zbioru X C {a}*, jezyk X* jest regularny.

7. Zbiory semi-liniowe (por. zadanie 3 z rozdziatu 1).

(a) Dowies¢, ze dla dowolnego jezyka regularnego L zbiér {|w| : w € L} jest semi—
liniowy.
W szczegoblnoscei, jezyki regularne nad jednoliterowym alfabetem moga by¢ utoz-
samiane ze zbiorami semi-liniowymi poprzez bijekcje w — |w|.

(b) Dowies¢, ze jesli M C N jest zbiorem semi-liniowym, to jezyk {bin(m) :
m € M} jest regularny, gdzie bin(m) oznacza binarng reprezentacje liczby m.

Uwaga. Fakt analogiczny do 7b mozna udowodni¢ dla dowolnej reprezentacji, a
zatem zbior semi-liniowy jest regularny w reprezentacji o podstawie k, dla k£ > 1.
W przeciwnym kierunku wiadomo, ze jesli zbior jest regularny w reprezentacjach o
wzglednie pierwszych podstawach p i ¢, to jest semi-liniowy — jest to wniosek z
glebokiego Twierdzenia Cobhama.

8. Dowieé¢, ze dla danych liczb a, b, p,r € N, jezyk
L = {bin(z)$bin(y) : (a-z+b-y)=r (mod p)}
jest regularny.

Przyktady automatéow zwiazanych z rozpoznawaniem wzorca Czytelnik znajdzie ponizej
w punkcie 2.5.
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2.2

1.

Lemat o pompowaniu

Dowies¢, ze nastepujace jezyki nie sa regularne:

{a"0" : n e N}

{a*" : ne N}

e {a? : p jest liczba pierwsza}
{a't? : nwd(i,j) = 1}

{a™b" : m #n}

{bin(p) : p jest liczba pierwsza}.

. Dowiesé, ze zbiér palindroméw nad alfabetem o co najmniej dwoch elementach nie

jest regularny.

. Dowied¢, ze zbior wyrazen regularnych nie jest regularny.

Dowies¢, ze jesli w Zadaniu 4 z punktu 2.1 zamienimy dodawanie przez mmnozenie,
to otrzymany jezyk (nad alfabetem {0, 1}3) jest wprawdzie dobrze okreslony, ale nie
jest regularny.
Udowodni¢ nieco silniejszy wariant Lematu o pompowaniu:
Jesli L jest regularny, to
(*) Istnieje stala ng, ze dla kazdych stéw v, w,u takich ze |w| > ng i
vwu € L, istnieja z,y, z takie, ze w = zyz, 0 < |y| < ng, oraz Vn €
N, vxy"zu € L.
Poda¢ przyktad jezyka L, ktory spelnia (*), choé nie jest regularny.

Wskazdwka. ), cb*cb” ... cb" +(b+ c)*ce(b+ c)*, gdzie p przebiega liczby pierwsze.
p

Wtasnoéci domkniecia jezykéw regularnych

1. Dowies¢, ze dla jezyka regularnego L C X* i dowolnego zbioru X C X* jezyki

XL = {w: (JveX)vweL}

LX™' = {w: (Fue X)wue L}

sa regularne.

. Dowie$é, ze jezyk L jest regularny wtedy i tylko wtedy, gdy jezyk LT sléw stano-

wiacych lustrzane odbicia stéw z L jest regularny.

Uwaga. Lustrzane odbicie w? stowa w mozemy w $cisly sposob zdefiniowaé reku-
rencyjnie: €' =€ i (wo)f = ow®, dlaw € T*, 0 € X.
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3. Dla danego automatu A rozpoznajacego jezyk L, skonstruowaé¢ automat rozpozna-
jacy jezyk
Cycle(L) = {vu : wv € L}

Czy z faktu, ze jezyk Cycle(L) = {vu : uv € L} jest regularny, mozna wnioskowac,
ze jezyk L jest regularny?

4. Niech L bedzie jezykiem regularnym nad alfabetem {0, 1}. Dowies¢, ze nastepujacy
jezyk jest regularny:

{w : w € LA sposrod stéw o dlugosci |w|, w jest najmniejsze w porzadku leksykograficznym }

5. Przyjmujemy, ze kazde niepuste stowo binarne w € {0,1}*, w = wy ... wy, reprezen-
tuje pewien utamek w przedziale [0, 1),

bin(w) = wll + wgi + . w—
2 22 2k
Dla liczby rzeczywistej r € [0, 1], niech
L, ={w : bin(w) <r}
Dowieéé, ze jezyk L, jest regularny wtedy i tylko wtedy, gdy liczba r jest wymierna.

6. Poda¢ przyktad nieskonczonego jezyka zamknietego na branie podstéw, ktory nie
zawiera nieskonczonego jezyka regularnego.

7. Niech L bedzie jezykiem regularnym. Dowies¢, ze nastepujace jezyki sa réwniez
regularne:
o 1L =4 {w: (u)|ul =|w| Awu € L}
o VL =g {w: wwel}
8. Niech L bedzie jezykiem regularnym. Dowie$¢, ze nastepujace jezyki sa réwniez
regularne:
(a) Root(L) ={w : (Gn € N)w" € L}
(b) Sart(L) = {w : (Ju)|u| = |w|* Nwu € L}
Wskazowka. n> =1+3+...(2n — 1).
(¢) Log(L) = {w : (3u)|u| = 2" Awu € L}
Wskazowka. 2" =1+2+22 42771 + 1.
1 =W : (Tu)|u| = L N WwWu €
(d) Fibb(L) = {w : (Ju)|u| = Fly, L}
gdzie F}, jest n-ta liczba Fibonacciego tzn.
F=F=1
Fn+2 :Fn+Fn+1

9. Dowies¢, ze dla dowolnego jezyka regularnego L, regularny jest rowniez jezyk

{w : w" e L}.
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10.

11.

12.

13.

14.

15.

16.
17.

Niech bedzie dany jezyk regularny L i dowolne, niekoniecznie regularne, jezyki L,
.., L,,. Skonstruowa¢ skoriczony automat deterministyczny rozpoznajacy jezyk
nad alfabetem {1,...,m}

Nietrywialnym palindromem nazwiemy kazdy palindrom o dlugo$ci co najmniej 2.

Niech Pal 3! oznacza zbior nietrywialnych palindroméw nad alfabetem Y. Dowiesc,
ze jezyk (Pala')* jest regularny wtedy i tylko wtedy, gdy |2| = 1.

Czy jezyk ({ww® :w € (0+ 1)*})* jest regularny?
Ktore z nastepujacych jezykoéw nad alfabetem {0, 1} sa regularne?

(a) Zbior stow posiadajacych nietrywialny palindrom jako prefiks.

(b) Zbior stow posiadajacych palindrom dtugosci parzystej jako prefiks.

(c) Zbior stow posiadajacych nietrywialny palindrom dlugosci nieparzystej jako
prefiks.

Oznaczmy przez Ile(w, ) liczbe wystapien stowa w jako podstowo x (wystapienia nie
musza by¢ roztaczne). Czy nastepujacy jezyk nad alfabetem {a,b} jest regularny?
Jesli tak, to poda¢ wyrazenie regularne. Jesli nie, to udowodnié, ze nie jest.

(a) Ly ={x : Ile(ab,z) = Ile(ba,x) + 1}
(b) Ly ={z : Ile(aba,z) = Ile(bab, x)}

Niech L bedzie jezykiem regularnym. Dowies¢, ze jezyki:

o L, ={w: (Ju)ul =2/w| ANwu e L}
o L, ={w:(Ju)2ul =|w| Awu e L}
o L ={w:(Fu,v)u|l=|v| =|w| Auwv € L}

sa jezykami regularnymi, a jezyk
o L, . ={w : (Fw)|u| = |v| = |w| Nuwv € L}
moze nie by¢ regularny.

Czy zachodzi fakt: jesli L jest regularny to istnieja dwa niepuste stowa u, v takie, ze
zachodzi réwnos¢ ilorazow L{uv}™' = L{vu}~!?

Poda¢ przyktad jezyka nieregularnego L, takiego ze L? jest jezykiem regularnym.
Dla stéw u, v o tej samej dtugosci, okreslamy odlegto$¢ Hamminga
d(u,w) = [{i: w; # v}

Udowodnié, ze dla dowolnego jezyka regularnego L i stalej K, nastepujacy jezyk
jest rowniez regularny:

{w: (Fuel)lu=|wloraz dlu,w) < K }
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18.

19.

Przeplotem stéw w i v nazwiemy dowolne stowo dlugosci |w| + |v|, ktére mozna
rozbi¢ na roztaczne podciagi w i v. Na przyktad, przeplotami stow ab i acbh sa stowa
abacb, aabeb, acabb, acbab, aacbb. Przeplotem jezykéw L i M jest zbidr wszystkich
mozliwych przeplotow stow w € L, v € M. Jezyk ten oznaczamy L || M.

Dowies¢, ze jesli L i M sa jezykami regularnymi, to L || M jest réwniez regularny.

Okreslamy Lf = LU (L || LYU (L || L || L) U.... Poda¢ przyktad jezyka regularnego
L nad dwuelementowym alfabetem, dla ktérego L nie jest jezykiem regularnym.

Automaty minimalne.

1. Niech w € ¥* bedzie stowem o dlugosci |{w| = n > 0. Dowies¢, ze minimalny

automat deterministyczny rozpoznajacy wszystkie stowa nad Y, ktorych sufiksem
jest w, ma doktadnie n + 1 stanow.

Niech w € Y¥* bedzie stowem o dlugosci |[w| = n > 0. Dowies¢, ze minimalny
automat deterministyczny rozpoznajacy wszystkie podstowa stowa w ma nie wiecej
niz 2n stanow.

Narysowaé diagramy automatéw minimalnych rozpoznajacych odpowiednio

(a) wszystkie podstowa

(b) wszystkie sufiksy

stowa abbababa (dla przejrzystosci rysunkéw pominaé stan ,$mietnik”).

Ile stanéw maja analogiczne automaty dla w, = ab(ba)" (liczac stan ,$mietnik”) ?
Skonstruowa¢ minimalny deterministyczny automat skoriczony dla jezyka

L = {a'bb*a? : 2| (i+j)}

Skonstruowaé¢ minimalny deterministyczny automat skoriczony dla jezyka

L = {a1a2...0,n . 7’L>0, &i€{0,1,2,3,4}, MAXZJ(CQ—G])SQ}

Opisa¢ strukture i narysowaé¢ diagram minimalnego deterministycznego automatu
skoniczonego akceptujacego wszystkie skoriczone ciagi zerojedynkowe takie, ze kazde
k kolejnych symboli zawiera doktadnie 2 jedynki i kazde kolejnych j < k£ symboli
zawiera co najwyzej dwie jedynki:

(a) Dla k = 3;
(b) dla k = 4.

(W szczegolnosei stowo puste nalezy do obu jezykow, a stowo 111 do zadnego z
nich.)
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7.

10.

Dowieé¢, ze minimalny automat deterministyczny réwnowazny podanemu automa-
towi niedeterministycznemu o n stanach (n > 2) ma doktadnie

(a)

E Y a a,b a,b a,b a,b a,b
(] @) (o] O O O [ ]

271 stanéw,

(b) (*)

b b b b

a b b
Na powyzszych rysunkach n = 7, stan poczatkowy jest wskazany przez =, a stan
akceptujacy jest oznaczony przez e.

2™ stanow.

Uwaga. Wtanos¢ stow rozpoznawang przez automat z punktu 7a mozna tatwo opisaé
w jezyku polskim, w przypadku punktu 7b jest to trudniejsze.

Oznaczmy przez ¥, alfabet {0,1,...k}. Niech NPAL; oznacza zbior stow nad al-
fabetem Y, nie zawierajacych, jako podstowa, palindromu (symetrycznego stowa
dtugosci co najmniej 2). Tle stanéw ma minimalny automat deterministyczny ak-
ceptujacy NPALgy 7 Podaé rozwiazanie ogélne dla k =0,1,2,...

. Trzy druzyny pitkarskie A, B i C' rozgrywaja miedzy soba serie spotkan towarzy-

skich, przy czym umowity sie, ze kazdy kolejny mecz jest rozgrywany pomiedzy
druzyna, ktéra wygrala poprzedni mecz i druzyne, ktéra nie brata udziatu w tym
spotkaniu (tzn. jesli druzyna X wygrata z druzyna Y, to nastepny mecz rozegraja X i
7). Zakladajac, ze nie ma remiséw, rozwazamy zbior stow nad alfabetem {A, B, C'},
stanowiacych ciagi mozliwych wynikéw spotkan. Dowies¢, ze jest to jezyk regularny.
Zbudowaé¢ minimalny automat deterministyczny, ktéry go rozpoznaje.

Pan X zakupil pakiety trzech réznych akcji: A, B i C. Kazdego dnia bada wzajemne
potozenie wartosci swoich akcji, ktére moze byé reprezentowane jako uporzgdkowanie
zbioru {A, B,C}, w kierunku od najmniej do najbardziej wartosciowej. (Przyjmu-
jemy zalozenie, ze dwie rozne akcje maja zawsze rdine wartosci.) Pan X posta-
nowil, ze jedli w ciagu dwoch kolejnych dni ktérad z akcji dwukrotnie spadnie na
nizsza pozycje, to sprzeda te akcje. Np. jesli kolejne notowania (w tym wypadku:
uporzadkowania) sa (A4, B,C), (B,C, A), (C, B, A) to pan X sprzeda pakiet akcji C.
Rozwazamy zbior G wszystkich uporzadkowari liniowych zbioru {A, B, C'}. Dowies¢,
ze zbior tych ciagéw nad alfabetem G, ktore opisuja takie wyniki notowar gietdo-
wych, przy ktorych pan X nie pozbedzie sie zadnego pakietu akcji, jest jezykiem
regularnym. Znalez¢ liczbe standéw automatu minimalnego akceptujacego ten jezyk.
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11.

12.

13.

2.

Pan X postanowit, ze kazdego dnia bedzie pracowal lub nie, przestrzegajac przy tym
zasady, by na zadne siedem kolejnych dni nie przypadato wiecej niz cztery dni pracy.
Mozliwy rozktad dni pracy pana X w ciagu n kolejnych dni mozemy przedstawi¢ jako
n-bitowe stowo, gdzie 1 odpowiada dniowi pracy, a 0 dniowi odpoczynku. Dowies¢,
ze zbidr wszystkich tak otrzymanych stow jest jezykiem regularnym (nad alfabetem
{0,1}). Znalez¢ minimalny automat deterministyczny.

Dowies$¢, ze istnieje nieskonczenie wiele stow w € (a+0b)* takich, ze jesli zastosujemy
homomorfizm a — 0, b — 1, to otrzymamy zapis binarny liczby podzielnej przez
3, a kiedy zastosujemy homomorfizm a — 1, b — 0, to réwniez otrzymamy zapis
binarny liczby podzielnej przez 3 (oczywiscie ignorujemy poczatkowe zera).
Rozwazamy automat wydajacy napoje, dziatajacy na nastepujacych zasadach.

— Kazdy napéj kosztuje 1 zloty.

— W chwili poczatkowej automat nie zawiera zadnych monet.

— Automat przyjmuje monety: 1 ztoty lub 1 euro; w tym ostatnim przypadku
wydaje 3 ztote reszty po warunkiem, oczywiscie, ze ma dostateczna ilo§¢ monet
jednoztotowych (zakladamy, ze €1 = 4 zl).

— Jesli automat nie jest w stanie wydac reszty — sygnalizuje blad.

— Jesli po wrzuceniu monety i ewentualnym wydaniu reszty warto$¢ wszystkich
monet zgromadzonych w automacie osiagnie rownowarto$¢ 8 zt, wszystkie monety
sa wyjmowane (reset).

Historig dzialania jest ciag wrzuconych monet (ztoty lub euro). Historia jest udana,
jesli w trakcie jej realizacji ani razu nie wystapit blad.

Skonstruowaé¢ minimalny automat deterministyczny rozpoznajacy zbior wszystkich
udanych historii.

Rozpoznawanie wzorca w teksScie

. Deterministyczny automat z zadania 1 z punktu 2.4 rozpoznajacy jezyk X*w mozna

skonstruowaé biorac za stany wszystkie prefiksy stowa w (a zatem |w| 4 1 stanéow)
oraz przejécia v — u, gdzie u jest maksymalnym sufiksem stowa va bedacym jed-
noczesnie prefiksem w. (Efektywna konstrukcja tegoz automatu, patrz zadanie 3
w punkcie 2.7.) Dowiesé, ze liczba nietrywialnych przejsé wstecznych”, tj. przejsé
postaci v = u, gdzie |v| > |u| > 0, jest nie wigksza niz |w|. Zauwazmy, ze daje
to mozliwos¢ reprezentacji automatu o rozmiarze proporcjonalnym do |w| (przejscia
postaci v = € mozemy pominac).

Wskazowka. Wykazaé, ze dla kazdej liczby k istnieje co najwyzej jedno nietrywialne
przejscie wsteczne, takie, ze |va| — |u| = k.

Rozpoznawanie podstow.

a) Dla danego stowa w o dlugosci |w| = n skonstruowac¢ automat deterministyczny
g g
o < 2n + 1 stanach rozpoznajacy dokltadnie zbiér sufiksow stowa w.
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Wskazéwka. Jako stany automatu mozna wziaé zbiory pozycji S, (S, C
{0,1,...,n}) konczacych wystapienie z jako podstowa stowa w. Oszacowa-
nie na liczbe stanéw wynika ze spostrzezenia, ze roézne zbiory S;, S, sa albo w
relacji inkluzji albo roztaczne, a zatem, ze wzgledu na inkluzje, tworza drzewo
o nie wiecej niz n lisciach.

(b) Powyzszy automat zawiera stan typu ,czarna dziura’, mianowicie stan () = S,
gdzie z nie jest podstowem w. Dowies¢, ze liczbe przej$¢ nie prowadzacych do
stanu () mozna oszacowaé z gory przez 3n.

Wskazéwka. Wziaé drzewo rozpinajace grafu automatu i oszacowac liczbe po-
zostalych krawedzi przez liczbe sufiksow w.

(c) Opisany wyzej automat jest minimalny dla zbioru sufikséw. Te sama konstruk-
cje mozna zastosowaé¢ réwniez do rozpoznawania zbioru wszystkich podstow
stowa w, ale otrzymany automat nie musi by¢ minimalny. Podaé¢ przyktad.

Wskazowka: 4 grudnia.

2.6 Warianty automatéw skornczonych

1. Automaty z e-przejéciami. Niedeterministyczny automat z e-przejéciami A = (X, Q, I, 4, F)
jest okreslony jak zwykly automat skoiiczony z tym, ze § C @ x (XU {e}) x Q. Re-
lacja ¢ — p (gdzie p,q € Q i w € ¥*) jest okreslona jak poprzednio, tzn. ¢ — ¢ i
va . v . . . . .
g—poileq—qi(q,a,p) €I ztym, ze teraz a moze by¢ litera w 3 lub e.

Dowieéé, ze dla dowolnego automatu z e-przejéciami istnieje zwykly automat skon-
czony, ktory akceptuje ten sam jezyk.

2. Automat z wyjSciem wg Mealy’ego. Automat Mealy’ego mozna przedstawié¢ jako
deterministyczny automata skonczony, powiedzmy A = (3, @, qz, 0, F') dany razem
z funkcja v : @ x X — A. Intuicyjnie, dany stan ¢ i litera ¢ € ¥ determinuja
nie tylko kolejny stan, powiedzmy p, ale takze sygnal wyjsciowy (output), v(q,0).
Doktadniej, stowo w = wjws,...w, nad X, takie, ze 5(q1,w1...w,-,1) = p;, dla
it =1,...,n, wyznacza n-literowe stowo nad alfabetem A,

Y(w) =gey Y(qr, w1)y(p2, w2) . . . Y(Pn, wy)

Powiemy, ze automat Mealy’ego redukuje jezyk L; do Lo jesli (Vw) w € L1 &
¥(w) € Ly. Skonstruowaé automat, ktoéry redukuje a*b(a*ba*ba*)* do (a*ba*ba*)*.

3. Automat z wyjsSciem wg Moore’a. Automat Moore’a mozna przedstawié¢ jako deter-
ministyczny automata skonczony wraz z funkcja v : Q — A. Tym razem, slowo
w = Wi Ws ... W, Wyznacza

A(w) =aer Y(0(qr, w1))(0(qr, wiws)) ... v(0(qr, wiws . .. wy))

Dowieé¢, ze automaty Mealy’ego i Moore’a sa réwnowazne w tym sensie, ze dla
kazdego automatu jednego typu mozna znalez¢ automat drugiego typu realizujacy
te sama funkcje 4.
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4.

Automaty dwukierunkowe. Funkcja przejscia deterministycznego automatu dwukie-
runkowego jest postaci 6 : Q X X — @ X {L, R}, co interpretujemy, ze automat moze
przesunaé czytnik zaréwno w prawo jak i w lewo. Dowies¢, ze deterministyczne au-
tomaty dwukierunkowe moga by¢ symulowane przez zwykle automaty skoniczone!.
(Rezultat zachodzi réwniez dla automatéw niedeterministycznych.)

Uwaga. W dalszej czedci wykladu spotkamy sie z mocniejszym stwierdzeniem, a
mianowicie, ze maszyny Turinga pracujace na jednej tasmie w czasie liniowym ak-
ceptuja jedynie jezyki regularne.

Dla ustalonego k, rozwazmy jezyk nad alfabetem {a, b, c} opisany wyrazeniem
((a+b)*e)" " (a+b)ala+b)* e ((a+ b))

Intuicyjnie: jezyk sktada sie z ,blokéw” liter a,b, zakoriczonych ,znacznikiem” c,
przy czym k-ty (od poczatku) blok ma te wlasnoéé, ze jego k-ty symbol od konca
jest a.

(a) Wykazaé, ze deterministyczny ,jednokierunkowy” automat rozpoznajacy ten
jezyk ma > 2% stanow.

(b) Skonstruowa¢ 2-kierunkowy automat o liniowej (O(k)) liczbie stanéw, rozpo-
znajacy ten jezyk.

(c) (*) Jak wyzej, ale automat ma prawo wykonaé tylko jeden nawrét. (Bez zmniej-
szenia ogo6lnosci, mozemy zalozy¢, ze automat idzie do koiica stowa, po czym
wraca 1 koficzy obliczenie na poczatku stowa.)

Algorytmy i ztozonosé

1. Zaprojektowac¢ algorytm, ktoéry dla wyrazenia regularnego (3 i stowa w € ¥* odpo-

wiada na pytanie, czy w nalezy do jezyka opisywanego przez [3

(a) w czasie O(|Z] - [B]* - [w]),
(b) w czasie O(|A] - [w]),

Wskazowka. Skonstruowaé¢ automat niedeterministyczny réwnowazny wyrazeniu 3 i
obliczy¢ zbioér standéw osiggalnych po stowie w. Dla oszacowania w punkcie 1b uzyé
automatu z e-przejSciami (por. zadanie 2.6. 1), w grafie ktorego z kazdego stanu
wychodza co najwyzej dwie krawedzie.

! Wskazéwka. Znane rozwigzanie oparte na idei ciagow skrzyzowan (ang. crossing sequences) mozna
znalez¢ w rozdziale 2.6 ksiazki J.E.Hopcroft, J.D.Ullman, Wprowadzenie do teorii automatéw, jezykdw
i obliczeri, Wydawnictwo Naukowe PWN, Warszawa 1994. Innym, by¢ moze prostszym rozwiazaniem
— zaproponowanym przez Mikolaja Bojanczyka — jest uwzglednienie w stanie symulujacego automatu
jednokierunkowego funkcji i : Q@ — QU {L} o nastepujacej interpretacji: jesli automat (dwukierunkowy)
pojdzie w lewo w stanie ¢, to wroci w stanie h(q) (by¢ moze wcale nie wroci, gdy h(g) = 1).
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2. Rozwazamy pytanie ,w € L[5] 77 jak w zadaniu 1, ale dla wogdlnionego wy-
razenia regularnego, tj. takiego, w ktérym dopuszczamy réwniez operacje teorio—
mnogosciowe N i —. Zaprojektowaé algorytm, ktory rozstrzyga to pytanie w czasie
wielomianowym od |3| + |w].

Wskazowka. Zastosowac¢ metode programowania dynamicznego: dla 1 <i < j < |w|
sukcesywnie obliczaé zbior podwyrazeni o wyrazenia 3 takich, ze wli..j| € L]a].

3. Konstrukcje automatu z zadan 2.4. 11 2.5. 1, ktéry dla danego w rozpoznaje jezyk
Y *w, mozna przeprowadzi¢ za pomoca nastepujacego algorytmu. Niech m = |w|.

Najpierw obliczamy pomocnicza tablice F[0..m], taka, ze F[0] = 0 oraz F[i] jest
dtugoscia najdtuzszego prefiksu whasciwego wll..7] bedacego jednoczesnie sufiksem
wll.d,dlai=1,...,m.

F[0] := F[1] :== 0; i := 0;
for j :=2to m do
begin (i — F[j — 1]+
while w; # w; 41 A ¢ > 0 do i := FJ[if;

if w; = w4 then 7 :=17 4 1;

Flj] =i
end
W konstrukeji automatu przyjmujemy, ze stany sa liczbami 0, 1, ..., m (ktére mozna

utozsamic z prefiksami w o odpowiednich dtugodciach). Funkcje przejscia § okre-
Slamy przez

e §(0,w) =1, 6(0,a) =0, dla a # w,
. 5(]? wj+1) = ] + 1; 6(J>a) = 5(F[J]7a)7 dla a 7é Wj41

Dowieéé, ze powyzszy algorytm oblicza zadany automat w czasie liniowym wzgledem
dtugosci w (zaleznym od alafabetu).

4. Niech A bedzie ustalonym automatem deterministycznym. Zaprojektowaé algorytm,
ktory dla danej liczby n znajduje w czasie O(n) liczbe stow dlugosci n akceptowa-
nych przez A.

5. Poda¢ przykltad swiadczacy o tym, ze najkrétsze stowo, jakiego nie akceptuje auto-
mat niedeterministyczny o n stanach moze mie¢ dtugosé 294,

Wskazowka. Rozwazy¢ automat akceptujacy wszystko za wyjatkiem stowa
(... ((afar)%az)?as . . . ap_1)a,.

6. Dowiedc, ze jesli dwa stany n—stanowego automatu deterministycznego nie sa row-
nowazne (tzn. L(A,q) # L(A,p)), to istnieje stowo dtugosci nie wiekszej niz n
akceptowane z doktadnie jednego z nich.

Wskazowka. Rozwazy¢ zstepujacy ciag relacji réwnowaznoSci na zbiorze stanéow:
Ri(p,q) o ile stany p i ¢ sa nierozroznialne stowami dlugosci < i.
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10.

11.

12.

13.

Poda¢ algorytm rozstrzygajacy réwnowazno$é¢ dwoéch automatoéow deterministycz-
nych.

Uwaga. Zastosowanie idei zadania 6 prowadzi do efektywniejszego algorytmu niz
testowanie niepustoéci automatu produktowego.

Czy dla stow u, v takich, ze |u| < |v| = n istnieje automat deterministyczny spel-
niajacy: u € L(A) Av ¢ L(A) i majacy O(logn) stanéw?

(a) Wykazac, ze dla dowolnego automatu niedeterministycznego o n stanach mozna
skonstruowa¢ réwnowazne wyrazenie regularne dtugosci 20,

(b) (**) Poda¢ przyktad $wiadczacy o tym, ze najkrotsze wyrazenie regularne row-
nowazne danemu automatowi deterministycznemu o n stanach moze mieé¢ dtu-
gosé 29
Wskazéwka. Rozwazy¢ automat, ktérego graf jest pelnym grafem o n wierz-
chotkach, a kazda krawedz ma inng etykiete. Stosujac indukcje po n, skonstru-
owal petle, ktora ,wymusza” eksponencjalng dtugos¢ wyrazenia regularnego.

Eksplozja standw w produkcie automatéw. Niech ¥ = {0,1,... k} i niech dla i =
1,...,k, L; bedzie zbiorem stéw v nad X o nastepujacej wtasnosci:

1 wystepuje w v, ale przed pierwszym i pomiedzy kazdymi dwoma kolej-
nymi wystapieniami ¢, 1 — 1 wystepuje co najmniej dwa razy.

Nietrudno jest skonstruowa¢ deterministyczny automat o 4 stanach rozpoznajacy
L;. Dowies¢, ze kazdy (nawet niedeterministyczny) automat rozpoznajacy jezyk
Ly N...N L musi mie¢ co najmniej 2¥+! — 1 stanow.

Wskazowka. Oszacowaé od dotu dtugos$¢ najkrotszego stowa w tym jezyku.

Dowiesé, ze jakikolwiek automat niedeterministyczny rozpoznajacy jezyk {xzcy :
z,y € {a,b}* A z[l..k] = y[1..k]} ma 29" stanéw.

Zakladajac, ze nastepujacy automat deterministyczny A, ma n stanéw (n > 2, na
rysunku n = 6), dowies¢, ze jakikolwiek automat deterministyczny rozpoznajacy
lustrzane odbicie jezyka L(A,) ma co najmniej 2" stanéw (por. zadanie 7 na str. 8).

b,c b b,c b,c b,c b,c
N D D D D
= e < o a O @) O @)

a a a
\/

Stowo synchronizujgce. Mowimy, ze stowo w synchronizuje stany automatu deter-
ministycznego, jesli istnieje taki stan qg, ze startujac z dowolnego stanu i czytajac
stowo w, automat dojdzie zawsze do stanu qo, tzn. (Vg € Q)q — qo.

(a) Znalez¢ stowo synchronizujace dla automatu nad alfabetem {a,b} o zbiorze
stanow {0, 1,...,k — 1} i funkcji przejécia
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i%i+1 (modk) dlai=0,1,....,k—1
i 2 dlai=0,1,...,k2
k—120
(b) Zaprojektowaé algorytm, ktéry dla automatu o n stanach rozstrzyga w czasie
O(n?), czy istnieje stowo synchronizujace i w pozytywnym przypadku znajduje
takie stowo (dtugosci < (n — 1)3).

(c) (*) Znalez¢ nagkrotsze stowo synchronizujace dla automatu z punktu (13a).

Uwaga. Liczaca juz 40 lat hipoteza Cernego® glosi, ze najkrotsze stowo synchroni-
zujace, o ile istnieje, ma dtugosé (n — 1)2.

14. Poda¢ wielomianowy algorytm sprawdzania, czy dany skoniczony zbioér stow C' C X*
jest kodem (por. rozdz. 1, zadanie 5).

Wskazowka. Skonstruowaé automat skonczony, rozpoznajacy hipotetyczne slowa
posiadajace dwie rozne faktoryzacje.

3 Jezyki bezkontekstowe

3.1 Gramatyki bezkontekstowe
1. Poda¢ gramatyki bezkontekstowe generujace nastepujace jezyki:

(a) zbior stow nad alfabetem {a,b}, ktore zawieraja tyle samo a co b;

(b) zbior stow nad alfabetem {a, b}, ktore zawieraja dwa razy wiecej a niz b;

(c) zbior stow nad alfabetem {a,b} o dtugosci parzystej, w ktorych liczba wysta-
pien litery b na pozycjach parzystych jest rowna liczbie wystapien tej litery na
pozycjach nieparzystych;

(d) zbiér wyrazen arytmetycznych nad alfabetem {0, 1, (,),+, -}, ktore, przy zwy-
ktej interpretacji dziatan dla liczb naturalnych, maja wartosé 3;

(e) zbior wyrazen arytmetycznych w notacji polskiej (nad alfabetem {0,1,+,-}) o
wartosci 4;

(f) zbiér poprawnie zbudowanych formul rachunku zdan ze zmienna zdaniowa p i
stalymi logicznymi true, false (alfabet: {p, true, false, A,V, =, (,)});

(g) zbior tych formul z poprzedniego punktu, ktére przy kazdym wartosciowaniu
zmiennej p maja wartos¢ logiczna prawda (tzn. tautologii);
(h) {a'bic* ci#j Vv j# k]
(i) {a'tia® : i+ k=j}.
2. Dla danych gramatyk bezkontekstowych G, H, skonstruowaé¢ gramatyki generujace
jezyki L(G)U L(H), L(G)L(H), (L(G))*, (L(G))" (=lustrzane odbicie).

2Zob. http://www.liafa.jussieu.fr/~jep/Problemes/Cerny.html.
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3. Wykazaé, ze zbiér palindroméw nad ustalonym alfabetem jak réwniez jego dopel-
nienie sa jezykami bezkontekstowymi.

4. Napisa¢ gramatyke bezkontekstowa (jak najkrotsza) generujaca jezyk:
L =A{dV :45>1i<2j—1}

5. Skonstruowaé gramatyke bezkontekstowa z jednym symbolem nieterminalnym gene-
rujaca zbior {z € (a+b)* : #.(x) = #p(2) }, gdzie #4(w) oznacza liczbe wystapien
symbolu s w stowie w.

6. Skonstruowaé gramatyke bezkontekstowa jednoznaczna generujaca jezyk Dy po-
prawnie uformowanych wyrazeni nawiasowych (por. Rozdzial 1, Zadanie 2).

7. Napisa¢ gramatyki bezkontekstowe generujace zbior tych stow z jezyka Dq, ktore

(a) zawieraja parzysta liczbe (np. 0) nawiasow otwierajacych,
(b) nie zawieraja podstowa (()).
8. Skonstruowaé¢ gramatyke bezkontekstowa jednoznaczna generujaca jezyk z Zada-
nia 5.

Wskazéwka.? Rozwazy¢ gramatyke

Z — ZaZ'b|ZbZ ale
Zt — Z%aZ'ble
Zm — ZbZale

Zauwazy¢ zwiazek miedzy produkcjami dla Z* a poprzednim zadaniem (podobnie
dla Z7).

9. Dowies¢, ze nastepujace warunki sg rownowazne dla jezyka L C »*:

(a) L jest regularny,

(b) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda regula jest
postaci X — e, X =Y, lub X — oY, 0€X,

(c) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda reguta jest
postaci X — e, X =Y, lub X — Yo, o€,

(d) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda reguta jest
postaci X — a lub X — 8Y, o, 3 € ¥*.

10. Poda¢ przyktad gramatyki bezkontekstowej w ktorej kazda reguta jest postaci X —
6 X =Y, X —0Y lub X — Yo, 0 € X, ale jezyk generowany przez gramatyke
nie jest regularny.

3Rozwiazanie podane przez studenta, pana Dariusza Leniowskiego.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

3.2

Czy kazdy jezyk bezkontekstowy jest generowany przez gramatyke w postaci z po-
przedniego zadania?

Powiemy, ze gramatyka G ma wlasnos¢ wtasciwego samozapetlenia, jesli dla pewne;j

zmiennej X zachodzi X < aX B, gdzie a, 8 # €. Udowodnij, ze gramatyka bezkon-
tekstowa nie majaca wlasnosci wlasciwego samozapetlenia generuje jezyk regularny.

Udowodnij, ze kazdy jezyk bezkontekstowy nad jednoliterowym alfabetem jest re-
gularny.

Udowodnij, ze jesli L jest bezkontekstowy to jezyk {a/®! : w € L} jest regularny.

Niech G bedzie gramatyka bezkontekstowa, z m zmiennymi i niech, dla kazdej reguty
y % w, |lw| < £. Dowiegé, ze jesli X! s €, to istnieje wyprowadzenie o dlugosci
1+ 0402+ ... 4™t Czy to oszacowanie jest optymalne?

Dowie$é, ze dla kazdej gramatyki G istnieje stata C', taka, ze dla dowolnego w # ¢,
jesli X7 & w, to istnieje wyprowadzenie o dlugosci < C' - |w].

Zalozmy, ze mamy pewna skoiiczona liczbe regul wymazujacych postaci a — e.
Stosujac takie reguty mozemy w danym stowie zastepowaé stowo a przez stowo
puste. Niech L bedzie zbiorem stow, ktére mozemy przeksztatci¢ na stowo puste
stosujac reguly wymazywania.

Czy zawsze istnieje gramatyka bezkontekstowa generujaca L i majaca tylko jeden
symbol nieterminalny 7

Zaprojektowaé algorytm, ktory, dla danej gramatyki (G, odpowiada na pytanie, czy
jezyk L(G) jest nieskoniczony.

Udowodnij, ze kazdy jezyk bezkontekstowy moze by¢ generowany przez gramatyke
w ktorej kazdy symbol nieterminalny (poza by¢ moze symbolem poczatkowym) ge-
neruje nieskonczenie wiele stéw terminalnych.

Bezkontekstowy czy nie? — lematy o pompowaniu

Udowodni¢, ze zaden nieskonczony podzbior jezyka L = {a™b™c" : n > 1} nie jest
jezykiem bezkontekstowym.

Udowodnié, ze dopelnienie jezyka z poprzedniego zadania jest jezykiem bezkontek-
stowym.

Udowodnié¢, ze jesli alfabet > ma co najmniej dwie litery, to jezyk L = {ww :
w € ¥*} nie jest bezkontekstowy, natomiast jego dopelnienie ¥* — L jest jezykiem
bezkontekstowym.

Dowies¢, ze dla kazdego ustalonego k dopelnienie jezyka {w* : w € ¥*} jest jezykiem
bezkontekstowym.
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5. Udowodni¢, ze jezyk L = {xcx : x € (a+b)* } nie jest jezykiem bezkontekstowym.

6. Udowodni¢, ze dopelnienie jezyka z poprzedniego zadania jest jezykiem bezkontek-
stowym.

7. Niech Subwords(x) oznacza zbiér wszystkich podstow stowa z, Subwords(L) =
U.,er, Subwords(x).

(a) Udowodnié, ze dla jezyka bezkontekstowego L, Subwords(L) jest jezykiem bez-
kontekstowym.

(b) Poda¢ przyktad jezyka bezkontekstowego nieregularnego L, dla ktorego Subwords(L)
jest jezykiem regularnym.

(c) Poda¢ przyklad jezyka bezkontekstowego L, dla ktorego Subwords(L) nie jest
jezykiem regularnym.

8. Pokazaé, ze jezyk dopasowywania wzorca L = {xcy : z,y € (a+b)*, y €
Subwords(x)} nie jest bezkontekstowy. Czy dopelnienie tego jezyka jest bezkontek-
stowe 7

9. Pokaza¢, ze jezyk L = {wcy® : x,y € (a+b)*, y € Subwords(x)} jest bezkontek-
stowy.

10. (*) Pokaza¢, ze dopelnienie jezyka z poprzedniego zadania nie jest jezykiem bezkon-
tekstowym.

11. Rozstrzygna¢, czy nastepujacy jezyk jest bezkontekstowy:
L = {u$w® : u,w € {a,b}", w jest prefiksem i sufiksem u }
To samo pytanie dla dopelnienia tego jezyka.

12. Udowodnié, ze jezyk L = {a'b/c* :i#j, i#k, j#k } nie jest bezkontekstowy.

Czy jego dopetnienie jest bezkontekstowe ?

13. Czy jezyk L = {a'ba’t’ :i,j7 > 1 } jest bezkontekstowy ?
Czy jego dopetnienie jest jezykiem bezkontekstowym ?

14. Udowodnié¢, ze jezyk L = {ww®w :w € (a + b)*} nie jest bezkontekstowy.

Czy jego dopetnienie jest bezkontekstowe 7
15. Pokaz, ze jezyk {x#y® : x,y € {0,1}F, [z] + 1 = [y]2} jest bezkontekstowy.
16. Pokaz, ze jezyk {z#vy : =,y € {0,1}1, [z]s + 1 = [y]2} nie jest bezkontekstowy.
17. Ktore z nastepujacych jezykéw sa bezkontekstowe 7

(a) {a™b" :m <n <2m}
(b) (a+b)*—{(a"b™)" :n > 1}
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(c) {wwPw :w € (a+b)*}

(d) {a*ba¥ba* : x +y =z}

(e) {a*ba¥ba* : x -y = z}
18. Dowiedz, ze nastepujace jezyki nie sa bezkontekstowe:

(a) {a't/a* : j = max {i,k}}

(b) {a'bic®: k #i}.
19. Czy jezyk

{bin(n) $ bin(n*)* : n € N},
gdzie bin(n) € {0, 1}* jest binarnym przedstawieniem liczby n, jest bezkontekstowy?

20. Niech [n], oznacza zapis binarny liczby naturalnej n > 1, pierwsza cyfra jest jedynka
(najbardziej znaczaca). Czy nastepujacy jezyk jest bezkontekstowy:
Ly = {[n]22n]s : n>1}

21. (a) Udowodnij, ze zbior tautologii nad ustalonym skonczonym zbiorem zmiennych
jest bezkontekstowy (stanowi to uogolnienie zadania (1g) z sekcji 3.1).

(b) Formutly nad przeliczalnym zbiorem zmiennych mozna przedstawié jako jezyk
nad skonczonym alfabetem, przyjmujac indeksowanie zmiennych. Doktadniej,
przyjmijmy, ze zbiér wszystkich formul jest generowany przez gramatyke

F true|false |V | (F'V F)|(FAF)|(=F)
xl
0[1J

JO|J1|e

oo~ =
Ll

Np. ((z101 Vv (—z0)) A (—(false vV £101))) jest formuta.
Udowodnij, ze zbiér wszystkich tautologii nie jest bezkontekstowy*.

22. Niech alfabetem bedzie {0,1}. Stowo Lyndona to stowo pierwotne (nie bedace po-
tega mniejszego stowa, por. rozdz. 1, zad. 1), ktore jest leksykograficznie najmniesze
sposrod swoich przesunieé cyklicznych.

Czy zbidr stéw Lyndona jest bezkontekstowy 7
Wskazéwka: wezmy a™'ba"ba™ i zastosujmy lemat Ogdena, ,markujac’ §rodkowa
grupe a”.

23. Niech PAL onacza zbiér palindroméw. Czy zachodzi implikacja:

L bezkontekstowy — L N PAL bezkontekstowy 7

4Stwierdzenie to wynika tatwo z hipotezy P # NP, ale nalezy je dowies¢ bez tej hipotezy.
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24.

25.

26.

27.

28.

29.

30.

Sformuluj uvwzxy-lemat o pompowaniu dla jezykow liniowych w ktorym |uvzy| =

O(1).
Dowiedz, ze jezyk {a'b'c’d’ : i,j € N} nie jest liniowy.

Dowiedz, ze L = {z € (a+ b)*,#.(x) = #u(x)} nie jest liniowym jezykiem
bezkontekstowym.
Udowodnij, ze zbiér stow w nad alfabetem {a, b} majacych te sama liczbe liter a co

b nie jest liniowym jezykiem bezkontekstowym.

Ktory z nastepujacych jezykow jest bezkontekstowy. W przypadku gdy jezyk jest
bezkontekstowy wypisa¢ gramatyke bezkontekstowa. W zadaniu [z]|y oznacza bi-
narny zapis liczby x, oraz w’* oznacza odwrocenie stowa w.

() L1 = {[zl2 & [yl : 1<2<y}
(b) Ly = {fa & [ylf : 1<z<y}
Niech Dy, Dy oznacza zbior poprawnych ciagéw nawiasowych jednego typu (okrggle

) 1 dwoch typow nawiasow (okragte i kwadratowe), odpowiednio, wlacznie ze stowem
pustym. Czy nastepujace jezyki sa bezkontekstowe

(a) { u#ov® : wv e Dy },
(b) { u#v® : ww e Dy }?

Niech L bedzie zbiorem stéw w alfabecie trzyelementowym, ktore nie zawieraja stowa
postaci zz, dla x # €. Udowodni¢, ze L nie jest bezkontekstowy.

Podac¢ przyklad jezyka bezkontekstowego nad alfabetem trzyelemnentowym, ktérego
dopelnienie jest nieskoriczone i nie zawiera stéw postaci xx, dla x # €.

Automaty ze stosem

1. Skonstruowa¢ automaty ze stosem rozpoznajace poznane wczesniej jezyki bezkontek-

stowe: zbiér palindroméw, zbidr poprawnie uformowanych ciagéw nawiaséow, zbior
stow, ktore maja dwa razy wiecej b niz a, zbiér ciagéw, ktore nie sa postaci ww.

Dla liczby naturalnej n, niech bin(n) € {0,1}* bedzie binarnym przedstawieniem
liczby n. Skonstruowaé automat ze stosem rozpoznajacy jezyk

{bin(n)$bin(n + 1)* : n € N}
Skonstruowaé¢ automat ze stosem rozpoznajacy jezyk
{bin(n) $bin(3 xn)* : n € N}

Uogolni¢ teze zadania®.

®Mozna zaczaé od przykladu {dec(n)$dec(2006 * n)® : n € N}, gdzie dec(n) € {0,1,...,9}* jest
dziesietnym przedstawieniem liczby n.
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10.

Dowiesé, ze dla kazdego automatu ze stosem A, mozna skonstruowaé¢ automat ze
stosem o dwdch stanach A’, taki ze L(A) = L(A’).

Dowie$é, ze automatowi A’ z poprzedniego zadania mozna postawi¢ dalszy wymog,
ze kazde przejécie jest postaci

/
q,CL,Z —A 4,0

gdzie |a| <2 (q,¢ dowolne).

. Dowiesdé, ze dla kazdego automatu ze stosem A, mozna skonstruowaé réwnowazny

mu automat ze stosem A”, w ktorym kazde przejscie jest postaci push lub pop, tzn.
q,a, Z A qu YZ
lub
q,a, Z — A" q,J €

Czy dla takich automatéw mozna nadal ograniczy¢ liczbe stanow?
Majac dany automat ze stosem akceptujacy jezyk L, skonstruowaé automaty ze
stosem akceptujace nastepujace jezyki:

o Prefix(L) = {w : (Fv)wv e L}
Suffix(L) = {w : (Ju)uw € L}
Subword(L) = {w : (Ju,v)uwv € L}
LE = {w? : we L}
(*) Cycle(L) = {vw : wv € L}

Majac dany automat ze stosem akceptujacy jezyk L i automat skonczony akceptu-
jacy jezyk R, skonstruowaé automaty ze stosem akceptujace nastepujace jezyki:

o LR!
e R°IL
e LNR

Niech #4(w) oznacza liczbe symboli s w stowie w, oraz PREF(u) oznacza zbior
prefikséw stowa u. Ponadto oznaczmy przez maz(w), min(w), med(w) opowiednio
maksimum, minimum i mediane liczb #,(w), #s(w), #.(w).

Ktory z nastepujacych jezykéw jest regularny, a ktéry bezkontekstowy?
(a) Ly = {u€(aUbUc)* : Yw e PREF(u) max(w) — min(w) < 13 }.
(b) Ly = {ue(aUbUc)" : Ywe PREF(u) maz(w) —med(w) < 13 }.

Dla danych jezykow regularnych L i M, skonstruowaé automat ze stosem rozpozna-
jacy jezyk U;cn (L' N M"). Uwaga: ten zbior nie musi by¢ regularny.
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11.

12.

13.

14.

Dowiesé, ze dla kazdego automatu ze stosem A istnieje statla C' (zalezna od auto-
matu), taka, ze dla kazdego stowa w € Z(A), istnieje obliczenie akceptujace (przez
pusty stos) o dlugosci < Clw|. Wskazéwka: oszacowaé wysoko§¢ stosu w obliczeniu
akceptujacym.

Niech A bedzie automatem ze stosem. Dowies¢, ze zbiér stow, ktore sg mozliwymi
zawarto$ciami stosu automatu A, jest jezykiem regularnym. Formalnie, mamy na
mys$li zbior

{ael” : Fw,veX)(FqeQ)q,w,Zr Fa q,v,a}

Wywnioskowaé stad, ze zbior stow, ktore sa mozliwymi zawartoSciami stosu auto-
matu A w jakims obliczeniu akceptujacym, jest jezykiem bezkontekstowym.

Automat ze stosem A = (X, 1", Q, q1, Z1, 9, F') nazywamy deterministycznym, jesli w
kazdej sytuacji mozliwy jest co najwyzej jeden ruch. Dokltadnie;j:

e jedli, dla pewnej pary q, Z, zachodzi q,¢€, Z — 4 p, a przy pewnych p, a, to dla
zadnego o € X, nie zachodzi ¢q,0,Z — 4 p', o/, dla zadnych p/, o/;

e dla kazdych ¢, 0, Z, istnieje co najwyzej jedna para p, «, taka ze q, 0, Z — 4 p, Q.

Jezyk bezkontekstowy jest deterministyczny jesli jest rozpoznawany przez pewien

deterministyczny automat ze stosem (w sensie standéw akceptujacych, tzn. L =
L(A)).

Dowies¢, ze jezyk {a™b" : n € N} U {a"b* : n € N} nie jest deterministycznym
jezykiem bezkontekstowym.

Wskazéwka.b Zakladajac, ze istnieje deterministyczny automat A rozpoznajacy ten
jezyk, rozwazy¢ automat A’, ktéry rozni sie od A tylko tym, ze zamienia rolami a
i b. Przy pomocy tych dwoch automatéw mozna tatwo skonstruowaé automat ze
stosem rozpoznajacy jezyk {a"b"a™ : n € N}.

Wykazaé, ze zbior palindroméw nad alfabetem dwuelementowym nie jest determi-
nistycznym jezykiem bezkontekstowym.

Wskazowka. Zastosowaé¢ metode z poprzedniego zadania. Przy pomocy hipotetycz-
nego automatu deterministycznego rozpoznajacego palindromy mozna np. skonstru-
owaé automat rozpoznajacy jezyk {ca"ba™ca"ba"c :n € N}.

Wlasno$ci jezykéw bezkontekstowych

1. Podaj przyktad jezyka bezkontekstowego L t.ze jezyk L = {x : (Jy)|z| =

ly| A xy € L} nie jest bezkontekstowy.

Udowodnié, ze przeciecie jezyka (deterministycznego) bezkontekstowego z regular-
nym jest tez jezykiem (deterministycznym) bezkontekstowym.

6Rozwiazanie podane przez studenta, pana Adama Wilczynskiego.
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3.

10.

11.

12.

13.

14.

Przeplotem st6w w 1 v nazwiemy dowolne stowo dtugosci |w|+|v|, ktére mozna rozbi¢
na roztaczne podciagi wiv. L1 M jest zbiér wszystkich mozliwych przeplotéw stow
w € L,v € M. Jezyk ten oznaczamy L || M. Udowodnij, ze przeplot jezyka bezkon-
tekstowego i regularnego jest jezykiem bezkontekstowym. Podaj przyklad jezykow
bezkontekstowych L i M, dla ktérych L || M nie jest jezykiem bezkontekstowym.

Domkniecie przeplotne jezyka L okre§lamy przez L = L U (L || L) U (L || L |
L) U.... Wykazaé, ze operacja domkniecia przeplotnego jezyka skonczonego moze
da¢ w wyniku jezyk ktory nie jest bezkontekstowy.

Udowodnié, ze jedli X, Y sa jezykami regularnymi to jezyk
L =3 ., X"nYy"

jest bezkontekstowy.

. Poda¢ przyklad jezykéw regularnych X, Y t.ze

Zn21(X”ﬂY”) = {a"" : n>1}
Podaj jezyki regularne X, Y, Z t.ze jezyk

Yo (XTNY"rNZ")

nie jest bezkontekstowy.

. Wskaz jezyk bezkontekstowy L, dla ktorego v/L = {w : ww € L} nie jest jezykiem

bezkontekstowym.

. Podaj przyklad jezyka bezkontekstowego takiego. ze {x : 2* € L dla pewnego k}

nie jest bezkontekstowy.

Rozwazmy nastepujacy morfizm:

h(a) = a, h(b) =0, h(d')=a, h(t)) =10
oraz h(z) = e dla symboli z € {a,b,a’,b'} dla ktorych morfizm nie zostal zdefinio-
wany powyzej. Wykazac, ze jezyk EQ(h,g) = {w : h(w) = g(w)} nie jest bezkon-
tekstowy.

Udowodnij, ze jesli U jest regularny to nastepujacy jezyk jest bezkontekstowy
{ay™ + x#y, vy cU}

Jezyk ma wtasnoé¢ prefiksowa, gdy dla kazdych dwoch stow z tego jezyka jedno z
nich jest prefiksem drugiego. Wykaz, ze jesli jezyk bezkontekstowy ma wlasnosé
prefiksowa to jest on regularny.

Niech L C {a, b}* bedzie jezykiem regularnym oraz h, g beda morfizmami. Udowod-
ni¢, ze nastepujacy jezyk jest liniowym jezykiem bezkontekstowym
{h(u)e(g(u))® + we L}

Udowodnij, ze przeciecie liniowego jezyka bezkontekstowego z regularnym jest jezy-
kiem liniowym.
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15.

16.

17.

18.

19.

20.

21.

4.1

Dla jezyka L okreslamy Min(L) jako zbior stéw w L minimalnych ze wzgledu na
porzadek bycia prefiksem. (Zatem u € Min(L) < nie istnieja v € L oraz w # ¢
takie, ze vw € L.) Udowodnij, ze dla deterministycznego jezyka bezkontekstowego
L jezyk Min(L) jest rowniez deterministycznym jezykiem bezkontekstowym.

Niech L = {a'¥/c* : k > ilub k > j}. Pokaz, ze Min(L) nie jest jezykiem
bezkontekstowym.
Zbiér Max (L) okreslamy analogicznie jak zbiér Min(L) w zadaniu 15. Podaj przy-

ktad jezyka bezkontekstowego L, dla ktorego Max(L) nie jest jezykiem bezkontek-
stowym.

Niech hq, hy beda morfizmami takimi, ze alfabet wyjsciowy nie zawiera $. Wykaz,
ze jezyki {xSy® : hy(z) = ho(x)} i {z8y" : hi(x) # ho(z)} sa liniowymi jezykami
bezkontekstowymi.
Podzbiér M C N* nazywamy liniowym jesli mozna go przedstawi¢c M = {@+n -
b : n € N}, dla pewnych wektoréw @,b € N* a semi-liniowym, jesli jest suma
skoniczenie wielu zbioréw semi-lniowych.

(a) Udowodnij, ze zbiér dtugosci stow jezyka bezkontekstowego jest semi-liniowy.

(b) (*) Udowodnij twierdzenie Parikha gloszace, ze dla jezyka bezkontekstowego
L C ¥* zbiér (C NI wektorow liczby wystapier liter z ¥ w stowach z L jest
semiliniowy.

Przypomnijmy pojecie odlegtosci Hamminga, okreslonej dla stéw tej samej dtugosci
(zadanie 2.3.17)
d(u,w) = [{i: w; # v}
Udowodnié, ze dla jezyka regularnego L, jezyk
{w: (Juel)u=|wl oraz d(u,w) < @ }
jest bezkontekstowy. Czy jezyk ten jest zawsze regularny 7

Czy nastepujace stwierdzenia sg prawdziwe:

(a) Istnieje nieskonczony zbior stéw L nad skonczonym alfabetem taki, ze ani L
ani dopelnienie L nie zawieraja nieskoiiczonego jezyka regularnego.

(b) To samo, ale wymagamy dodatkowo, aby L byl bezkontekstowy.

Teoria obliczen

Maszyny Turinga

. Skonstruowaé¢ maszyne Turinga obliczajaca funkcje 2" reprezentowana unarnie. Bar-

dziej dokltadnie, zaktadamy, ze alfabet wejéciowy sktada sie z jednego symbolu, po-
wiedzmy {1}. Jesli na wejsciu dany jest ciag n jedynek, (tzn. konfiguracja wejsciowa
jest qo1™), to po wykonaniu obliczenia konfiguracja powinna by¢ ¢;1%".
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2. Skonstruowa¢ maszyne Turinga obliczajaca funkcje [log n| reprezentowana unarnie.

3. Przyjmijmy ¥ = {0, 1}. Skonstruowa¢ maszyny Turinga rozpoznajace nastepujace
jezyki:
(a) zbiér palindromow
(b) {w$w : w e ¥*}
(c) {ww : we ¥}
)

(d) zbiér ciagéw reprezentujacych binarnie liczby pierwsze.

4. Graf zorientowany o n wierzchotkach ponumerowanych 0,1,...,n — 1, reprezentu-
jemy ciaggiem zer i jedynek dltugosci n?, takim, ze k-ty bit jest 1 o ile istnieje krawedz
z wierzchotka o numerze ¢ do wierzchotka o numerze j, gdzie k =i-n+ 7 + 1.

(a) Skonstruowaé niedeterministyczng maszyne Turinga rozpoznajaca zbior stow
zero-jedynkowych, ktére w powyzszy sposéb reprezentuja te grafy, w ktérych
istnieje Sciezka z wierzchotka o numerze 0 do wierzchotka o numerze n — 1.

(b) Skonstruowac¢ maszyne deterministyczng realizujaca to samo zadanie.

5. Przypomnijmy, ze dwie maszyny Turinga o tym samym alfabecie wej$ciowym uwa-
zamy za rownowazne o ile akceptuja ten sam jezyk. Udowodni¢, ze dla kazdej ma-
szyny Turinga istnieje rownowazna jej maszyna posiadajaca dokladnie jeden stan
akceptujacy i taka, ze w konfiguracji akceptujacej gtowica znajduje sie nad pierwsza
komérka tasmy (tzn. konfiguracja akceptujaca jest postaci g; cos).

6. Dla danej niedeterministycznej maszyny Turinga skonstruowaé réwnowazna ma-
szyne deterministyczng.

7. Dla danych deterministycznych maszyn Turinga M; i M, skonstruowaé¢ determini-
styczne maszyny rozpoznajace jezyki

e o o
=22
==
C

=

5

[ ] L(Ml *,

8. Udowodni¢, ze dla kazdej maszyny Turinga nad alfabetem wejsciowym {0, 1}, ist-
nieje rownowazna jej maszyna, ktorej alfabet wszystkich symboli roboczych obejmuje
jedynie symbole 0,1,5.

9. Powiemy, ze maszyna Turinga jest write-once je§li moze pisa¢ tylko w pustych ko-
morkach tasmy, a symbol raz napisany nie moze by¢ zastapiony zadnym innym
symbolem (w szczeg6lnosci nie moze by¢ “zmazany” tj. zastapiony przez “blank”).
Dla dowolnej maszyny Turinga z jedna tasma, skonstruowaé maszyne write-once z
dwiema tasmami, ktéra akceptuje ten sam jezyk.

(*) Dowies¢, ze maszyny typu write-once 7 jedng tasma akceptuja jedynie jezyki
regularne.
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10.

11.

12.

13.

4.2

Dla dowolnej maszyny Turinga (nad dowolnym alfabetem), skonstruowaé réwno-
wazna maszyne o jednej tasmie i czterech stanach. (Wolno powiekszy¢ alfabet ro-
boczy.)

Pojecie automatu ze stosem mozna rozszerzy¢ do automatu z k stosami, £ > 2.
Dowieé¢, ze dla kazdej maszyny Turinga istnieje rownowazny jej deterministyczny
automat z dwoma stosami. Wywnioskowa¢ stad, ze automat z k stosami, k& > 2
moze by¢ symulowany przez automat z 2 stosami (symulacje te mozna roéwniez
opisa¢ bezposrednio).

Udowodnié, ze jesli automat skonczony wyposazy¢ dodatkowo w kolejke, to otrzy-
many model ma sile obliczeniowa maszyny Turinga, tzn. dla dowolnej maszyny
istnieje automat z kolejka, ktory rozpoznaje ten sam jezyk.

Automat z k licznikami ¢y, ..., ¢, okreSlamy podobnie jak automat z k stosami,
z tym, ze liczniki zawieraja liczby naturalne, a dostepne operacje na licznikach sa

postaci ¢; := ¢; + 1, ¢; := ¢;i—1 (gdzie 0—1 = 0), oraz test ¢; L 0. Tzn. przejscia

”
takiego automatu sa postaci ¢ — p, q,¢; 20— P, q,C 7é 0—p, q—p,c =c+
1, ¢ — p,c = c;—1. Nie ma tagmy, lecz zakladamy, ze w chwili poczatkowej dana
wejSciowa jest wartodcia licznika c;, a pozostale liczniki majg wartos¢ 0. Dowiesé
najpierw, ze dla kazdej maszyny Turinga nad alfabetem {1} istnieje réwnowazny
jej automat z 4 licznikami. Nastepnie wykazaé, ze liczba licznikéw moze by¢ dalej
zredukowana do trzech. (Ograniczenie alfabetu maszyny Turinga nie jest istotne,
bo stowa nad alfabetem n-literowym mozna réwniez tatwo “przerobi¢” na liczby
naturalne w systemie unarnym.)

Obliczalno$é i nierozstrzygalno$é

. Udowodni¢ réwnowaznosé nastepujacych warunkow

jezyk L jest czesSciowo obliczalny,

jezyk L jest dziedzina pewnej funkcji czeSciowo obliczalnej,

jezyk L jest zbiorem wartosci pewnej funkcji czesciowo obliczalnej,

jezyk L jest zbiorem wartosci pewnej funkcji obliczalnej.

Udowodnié, ze jezyk L jest obliczalny, wtedy i tylko wtedy, gdy jest skoiiczony lub
jest zbiorem wartosci pewnej funkcji obliczalnej rosnacej.

Udowodnié¢ nastepujace twierdzenie Turinga-Posta : jesli zaré6wno jezyk jak i jego
uzupelnienie sg cze$ciowo obliczalne, to sa rowniez obliczalne.

Udowodnié, ze istnieje zbiér czeSciowo obliczalny, ktérego uzupelnienie nie zawiera
zadnego nieskoniczonego zbioru cze$ciowo obliczalnego.

Udowodni¢, ze istnieje automat z dwoma (sic /) licznikami A taki, ze nie jest roz-
strzygalne, czy A zatrzymuje sie dla danej wejsciowej n. Wskazéwka : wykorzystacé
zadanie 13.
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6.

7.

8.

10.

Udowodnié¢ nierozstrzygalno$é¢ nastepujacego problemu Posta.

Dane sa dwie listy stow : wy,...,u, € X* 1 wy,...,w, € X*. Pytanie, czy istnieje
ciag indeksow i1, ..., 4, € {1,...,n}, taki, ze u;, ... u;, = wy, ... w;, 7 Jesli taki ciag
istnieje, to stowo u;, ... u;, (= w;, ... w;,) nazywamy rozwigzaniem danej instancji
problemu Posta.

Wskazowka : Rozwazy¢ zmodyfikowany problem Posta, w ktérym dodatkowo wy-
maga sie, by pierwszymi stowami w rozwiazaniu byly u; i wq (tzn. iy = 1). Redukcja
zmodyfikowanego problemu do oryginalnego problemu Posta nie jest trudna. Z ko-
lei przedstawi¢ algoerytm, ktéry dla dowolnej maszyny Turinga M i jej wejscia w
konstruuje instancje P zmodyfikowanego problemu Posta w ten sposéb, ze P ma roz-
wiazanie wtedy i tylko wtedy, gdy M akceptuje w. Rozwiazaniem P (o ile istnieje)
bedzie wlasnie akceptujace obliczenie M na w.

Dowieé¢, ze nastepujace problemy sa nierozstrzygalne :

e Dana gramatyka bezkontekstowa G nad alfabetem Y. Pytanie : czy L(G) =
¥* 7 (Tzw. problem wuniwersalnosci.) Wskazéwka : Dla maszyny Turinga
M, udane obliczenie jest ciagiem co#ci# ... #cy, gdzie ¢; sa konfiguracjami
M, ¢y jest konfiguracja poczatkowa, cy akceptujaca, oraz c; ks cip1. Nalezy
przedstawi¢ algorytm, ktory dla dowolnej maszyny M konstruuje gramatyke
G generujaca wszystkie ciagi, ktore nie sa udanymi obliczeniami. A zatem,
gdybysmy potrafili rozstrzyga¢ problem uniwersalnosci, moglibyémy réwniez
rozstrzygac¢ problem niepustoéci (L(M) # () 7) dla maszyn Turinga, co jest
niemozliwe (na mocy twierdzenia Rice’a).

e Dane dwie gramatyki bezkontekstowe G, G5. Pytanie : czy L(G1) N L(Gs) #
() 7 Wskazowka : Podobnie jak poprzednie zadanie, ale nalezy wykorzystacé
operacje lustrzanego odbicia.

e Dana gramatyka bezkontekstowa G. Pytanie : czy G jest jednoznaczna (tzn. dla
kazedego stowa w L(G) istnieje doktadnie jedno drzewo wyprowadzenia).
Wskazowka : wykorzysta¢ problem Posta.

Czy nastepuacy problem X jest rozstrzygalny:
Dana gramatyka bezkontekstowa G, sprawdzi¢ czy L(G) zawiera palindrom.

Zalézmy, ze wiemy ze jednotasmowa deterministyczna maszyna Turinga M wyko-
nuje zawsze co najwyzej jeden "nawr6t” (to znaczy glowica przesuwa sie w prawo a
od pewnego momentu juz tylko w lewo). Czy problem “w € L(M)” jest rozstrzy-
galny, gdzie w jest stowem wejsciowym a L(M) oznacza zbiér stow akceptowanych
przez M stanem akceptujacym.

Czy nastepujacy problem jest rozstrzygalny. Dane sa dwa stowa u,w € X* oraz
liczba k, sprawdzi¢ czy

FzxeX) (|z| >k & lle(w,z) = Ile(u, z) )

gdzie Ile(w, z) oznacza liczbe wystapieni stowa w jako podstowo x (wystapienia nie
musza by¢ roztaczne).
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4.3

1.

Hierarchia Chomsky’ego

Dowies¢, ze kazda gramatyke monotoniczng, czyli o regutach o — 3, gdzie | 3| > |a/,
mozna sprowadzi¢ do postaci, w ktorej kazda reguta ma forme

aXf—ayf

gdzie X € V, a, 3,7 € (XUV)*, v # ¢ (V - zbior symboli nieterminalnych, > —
zbiér symboli terminalnych).

Uwaga. Przy powyzszym sprowadzeniu trzeba na ogét powiekszy¢ zbiér symboli
nieterminalnych.

. Dowieé¢, ze jezyki kontekstowe, to dokladnie jezyki rozpoznawane przez niedeter-

ministyczne automaty lintowo ograniczone.

Uwaga. Automaty liniowo ograniczone sa okreslone podobnie jak maszyny Turinga,
z tym, ze jedyna dostepna pamiecia sa komorki tasmy zajete na poczatku przez
stowo wejsciowe (przy czym koniec stowa jest zaznaczony specjalnym markerem).

. Dowieé¢, ze iloraz jezyka kontekstowego przez jezyk regularny moze nie by¢ jezykiem

obliczalnym.
Wskazowka. Wykorzystaé jezyk obliczenn maszyny Turinga, ktora akceptuje jezyk
nieobliczalny.

Wywnioskowaé dalej, ze ani jezyki kontekstowe, ani jezyki obliczalne nie sa za-
mkniete na ilorazy przez jezyki regularne.

. Dowied¢, ze jezyki czeSciowo obliczalne sg zamkniete na ilorazy przez jezyki cze-

$ciowo obliczalne.

Ktore z czterech klas hierarchii Chomsky’ego sa zamkniete na operacje U, N, — 7

Z1ozono$¢ obliczeniowa

1. Konstruowalnosé pamieciowa. Skonstruowaé¢ maszyne Turinga off-line, ktéra dla

wejscia w o dtugosci n zuzywa doktadnie f(n) komoérek pamieci roboczej, gdzie

f(n) =2n,n% n" 2" logn,...

Konstruowalnosé czasowa. Skonstruowaé maszyne Turinga, ktoéra dla wejscia w o
dtugosci n wykonuje doktadnie f(n) krokéw, gdzie f(n) = 2n,3n,n?,nk, 27 22" .

. Dowiesé, ze klasy P, NPi PSPACE sa zamkniete na operacje *.

Problem domina. Instancja problemu domina obejmuje liczbe naturalng M dana
unarnie oraz skoriczony zbior wzorcéw kostek domina, tzn. wektoréw postaci (up,
down, left, right ), gdzie up, down, left i right sa binarnie zadanymi liczbami, ktore
w tym kontekscie nazywamy kolorami. (Liczba koloréw nie jest ograniczona, a wiec
zalezy od danej instancji problemu.) Pytanie brzmi: czy kwadrat M x M mozna
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pokry¢ kostkami domina w ten sposéb, ze sasiednie kostki stykaja sie bokami o tym
samym kolorze, a na bokach kwadratu jest kolor 0 (“biaty”). Zaktadamy przy tym, ze
kazdy wzorzec mozna wykorzysta¢ dowolnie wiele razy, ale nie mozna go “obracac”
(tzn. up jest zawsze gorna krawedzia itd.).

Nalezy udowodni¢, ze problem domina jest NP-zupelny. Wskazéwka : zastosowaé
redukcje generyczna, tzn. wychodzac od dowolnej niedeterministycznej maszyny Tu-
ringa dziatajacej w czasie wielomianowym.

5. Udowodni¢, ze nastepujacy problem doktadnego pokrycia (ang. exact cover) jest NP-
zupeilny. Dana rodzina podzbioréw {1,2,... ,n} (liczby dane binarnie). Pytanie:
czy istnieje podrodzina podzbioréw roztacznych, ktére w sumie daja {1,2,...,n}.

Wskazowka : wykorzysta¢ zadanie 4.
6. Udowodni¢, ze nastepujacy problem plecakowy (ang. knapsack problem) jest NP-

zupelny. Dane: liczby n,mq,...,my (binarnie). Pytanie: czy istnieje podzbior
zbioru {my, ..., my} taki, ze m; + ...+ my = n.

Wskazowka : wykorzysta¢ zadanie 5.

7. Dowies¢, ze ztozenie dwoch funkcji obliczalnych w pamieci (przestrzeni) logaryt-
micznej jest funkcja obliczalng w pamieci logarytmicznej.

8. Dowies¢, ze kazdy problem z klasy NP redukuje sie do problemu $-CNF SAT w
pamieci logarytmiczne;j.



