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1 Stowa, liczby, grafy

Do tej partii zadan moze podejs¢ Czytelnik bez zadnej znajomosci teorii automatow.

1. Stowa pierwotne. Stowo w € ¥* nazywamy pierwotnym (ang. primitive), jesli nie
da sie go przedstawi¢ w = v", inaczej nizdlan =11 v = w.

a) Dowiesé, ze dla kazdego stowa niepustego w, istnieje doktadnie jedno stowo
Dowies¢, ze dla kazdego st i teg istnieje doktadnie jed I
pierwotne v, takie ze w = v", dla pewnego n > 1.
Liczbe n nazywamy wyktadnikiem stowa w.

(b) O stowach wv i vw moéwimy, ze sa w relacji koniugacji. Dowiesé, ze jest to
relacja réwnowaznosci.
Dowies¢, ze dwa stowa bedace w relacji koniugacji maja ten sam wykltadnik.

Jaka jest moc klasy abstrakeji relacji koniugacji dla stowa o dlugosci m i wy-
ktadniku n?

2. Jezyk nawiasowy. Wykazaé, ze zbiér poprawnie uformowanych ciagéw nawiaséw
moze by¢ zdefiniowany na dwa réwnowazne sposoby:

e Jako najmniejszy zbiér L zawierajacy ciag pusty oraz taki, ze jesli w,v € L,
to rowniez (w),wv € L.

e Zbior stow nad alfabetem {(, )}, w ktorych ilos¢ ) jest taka sama jak ilogé “(”,
a w kazdym prefiksie ilo§¢ “)” jest niewieksza niz ilo§¢ “(” .

3. Zbiory semi-liniowe. Zbioér liczb naturalnych postaci {a + bn : n € N}, dla usta-
lonych a,b € N nazywamy lintiowym. Zbioér bedacy suma skonczonej liczby zbioréw
liniowych nazywamy semiliniowym. (Gdy sumowana rodzina jest pusta, otrzymu-
jemy zbioér pusty.)

(a) Dowies¢, ze kazdy zbior postaci {a + byng + ...+ bgng = ny,...,nx € N}, dla
ustalonych ki a,by,...,by € N, jest semi-liniowy.
Wskazowka. Wykorzystaé podzialty zbioru liczb naturalnych na klasy abstrakcji
relacji przystawania modulo m, dla odpowiednio dobranych liczb m.
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(b) Dowies¢, ze zbior liczb naturalnych A jest semi-liniowy wtedy i tylko wtedy,
gdy jest prawie periodyczny tzn. gdy istnieja ¢ € Nid € N — {0} takie, ze dla
kazdego x >c, v € A & x+d € A.

(c) W grafie zorientowanym ustalamy dwa wierzchotki. Interesuje nas zbioér dtu-
gosci wszystkich mozliwych $éciezek pomiedzy tymi wierzchotkami. Dowies¢, ze
jest to zbiér semi-liniowy.

(d) Dowies¢, ze rodzina zbioréw semi-liniowych jest zamknieta na skoriczone sumy,
przeciecia oraz na uzupeinienie wzgledem N.

4. Graf gry (J. P. Jouannaud). Rozwazamy nastepujaca gre pomiedzy Barmanem i

Klientem. Przed Barmanem na obrotowym talerzu stoja cztery szklanki tworzac
wierzchotki kwadratu. Szklanka moze by¢ ustawiona normalnie lub dnem do géry,
jednak Barman ma przepaske na oczach i rekawiczki na rekach, tak ze nie moze
tego zobaczy¢ ani wyczu¢. Ruch Barmana polega na odwrdceniu jednej lub dwoch
dowolnie wybranych szklanek. Ruch Klienta polega na obroceniu talerza (o wielo-
krotnoéé éwieré-obrotu). Barman wygrywa, jesli w jakim§ momencie gry wszystkie
szklanki ustawione sa w tej samej pozycji (zostanie o tym lojalnie poinformowany).

Czy Barman noze wygraé startujac z nieznanej konfiguracji poczatkowej, a jesli tak,
to w jakiej liczbie ruchéw?

Czy graliby Panstwo o pieniadze z Barmanem 7 A gdyby zamiast kwadratu byty 3
szklanki ustawione w trojkat lub 5 w pieciokat ?

Kody. Zbior C C Y+ nazywamy kodem, jesli kazde stowo w € X* dopuszcza co
najwyzej jedna faktoryzacje wzgledem C' (tzn., da sie “odkodowac”).

Niech ¥ = {a,b}. Dowies¢, ze zbior {aa, baa,ba} jest kodem, a zbior {a,ab,ba} nie
jest.

Jesli skoniczony zbiér C' nie jest kodem, oszacowaé z gory dtugoséé najkrotszego stowa,
ktore o tym $wiadczy (tzn. dopuszcza dwie rozne faktoryzacje).

Poda¢ wielomianowy algorytm sprawdzania, czy dany skoniczony zbiér C' jest kodem.

Wskazowka. Mozna rozwazy¢ graf, ktérego wierzchotkami sa sufiksy stow z C') a
krawedz z v do u prowadzi wtedy, gdy (Jw € C)w = vu. Wtedy rozwiazanie
naszego problemu mozna wydedukowaé z przeszukania tego grafu.

Jezyki regularne

Automaty skornczone i wyrazenia regularne

. Dowies¢, ze dla dowolnych jezykow L, M, (L*M*)* = (L U M)*.

. Dowies¢, ze wyrazenie regularne (004 11+ (01+410)(00+11)*(10+10))* reprezentuje

zbiér wszystkich stow nad alfabetem {0, 1}, w ktorych zaréwno liczba wystapien 0
jak i liczba wystapienn 1 sa parzyste.

Jak najkrocej reprezentowaé zbiodr stow, w ktorych te liczby sa tej samej parzystosci?
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3. Zbudowaé automat nad alfabetem {0, 1}, rozpoznajacy stowa, w ktoérych liczba je-
dynek na pozycjach parzystych jest parzysta, a liczba jedynek na pozycjach niepa-
rzystych jest nieparzysta.

4. Dodawanie. Rozwazamy stowa nad alfabetem {0, 1}®. Powiemy, ze stowo (ay, by, c1)
oAy, by, c,) dtugosci n reprezentuje dodawanie, jedli liczba reprezentowana binar-
nie przez stowo c; ...c, jest suma liczb reprezentowanych przez a;...a, i by...0b,.
Na przyktad, ciag (0,0,1)(1,1,1)(0,1,0)(1,1,0) reprezentuje dodawanie (5+7=12).
Poda¢ wyrazenie regularne opisujace zbiér wszystkich stéw nad alfabetem {0,1}?
reprezentujacych dodawanie w powyzszym sensie.

5. Podzielnosé.
(a) Skonstruowaé skonczony automat deterministyczny nad alfabetem {0, 1,...,8,9}
rozpoznajacy zbidr dziesietnych reprezentacji wielokrotnodci liczby 7.

(b) Jak wyzej, ale przy reprezentacji odwrotnej, tj. poczynajac od cyfr najmniej
znaczacych.

(c) Uogolni¢ niniejsze zadanie.

6. Alfabet jednoliterowy. Dowies¢, ze jezyk L C {a}* jest regularny wtedy i tylko wtedy,
gdy zbior liczb naturalnych {n : @™ € L} jest semi-liniowy w sensie rozdzialu 1.
Dowies¢, ze dla dowolnego zbioru X C {a}*, jezyk X* jest regularny.

7. Zbiory semi-liniowe (por. zadanie 3 z rozdziatu 1).
(a) Dowies¢, ze dla dowolnego jezyka regularnego L zbior {|w| : w € L} jest semi—
liniowy.
W szczegblnoscei, jezyki regularne nad jednoliterowym alfabetem moga by¢ utoz-
samiane ze zbiorami semi-liniowymi poprzez bijekcje w — |w|.
(b) Dowiesé, ze jesli M C N jest zbiorem semi-liniowym, to jezyk {bin(m) :

m € M} jest regularny, gdzie bin(m) oznacza binarng reprezentacje liczby m.

Uwaga. Fakt analogiczny do 7b mozna udowodni¢ dla dowolnej reprezentacji, a
zatem zbior semi-liniowy jest regularny w reprezentacji o podstawie k, dla k£ > 1.
W przeciwnym kierunku wiadomo, ze jesli zbior jest regularny w reprezentacjach o
wzglednie pierwszych podstawach p i ¢, to jest semi-liniowy — jest to wniosek z
glebokiego Twierdzenia Cobhama.

8. Dowies¢, ze dla danych liczb a,b, p,r € N, jezyk
L = {bin(z)$bin(y) : (a-z+b-y)=r (modp)}
jest regularny.

Przyktady automatéow zwiazanych z rozpoznawaniem wzorca Czytelnik znajdzie ponizej
w punkcie 2.5.
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2.2

1.

Lemat o pompowaniu

Dowies¢, ze nastepujace jezyki nie sa regularne:

{a"0" : n e N}

{a*" : ne N}

e {a? : p jest liczba pierwsza}
{a't? : nwd(i,j) = 1}

{a™b" : m #n}

{bin(p) : p jest liczba pierwsza}.

. Dowiesé, ze zbiér palindroméw nad alfabetem o co najmniej dwoch elementach nie

jest regularny.

. Dowied¢, ze zbior wyrazen regularnych nie jest regularny.

Dowies¢, ze jesli w Zadaniu 4 z punktu 2.1 zamienimy dodawanie przez mmnozenie,
to otrzymany jezyk (nad alfabetem {0, 1}3) jest wprawdzie dobrze okreslony, ale nie
jest regularny.
Udowodni¢ nieco silniejszy wariant Lematu o pompowaniu:
Jesli L jest regularny, to
(*) Istnieje stala ng, ze dla kazdych stéw v, w,u takich ze |w| > ng i
vwu € L, istnieja z,y, z takie, ze w = zyz, 0 < |y| < ng, oraz Vn €
N, vxy"zu € L.
Poda¢ przyktad jezyka L, ktory spelnia (*), choé nie jest regularny.

Wskazdwka. ), cb*cb” ... cb" +(b+ c)*ce(b+ c)*, gdzie p przebiega liczby pierwsze.
p

Wtasnoéci domkniecia jezykéw regularnych

1. Dowies¢, ze dla jezyka regularnego L C X* i dowolnego zbioru X C X* jezyki

XL = {w: (JveX)vweL}

LX™' = {w: (Fue X)wue L}

sa regularne.

. Dowie$é, ze jezyk L jest regularny wtedy i tylko wtedy, gdy jezyk LT sléw stano-

wiacych lustrzane odbicia stéw z L jest regularny.

Uwaga. Lustrzane odbicie w? stowa w mozemy w $cisly sposob zdefiniowaé reku-
rencyjnie: €' =€ i (wo)f = ow®, dlaw € T*, 0 € X.
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3. Dla danego automatu A rozpoznajacego jezyk L, skonstruowaé¢ automat rozpozna-

jacy jezyk
Cycle(L) = {vu : wv € L}

Czy z faktu, ze jezyk Cycle(L) = {vu : uv € L} jest regularny, mozna wnioskowac,
ze jezyk L jest regularny?

4. Niech L bedzie jezykiem regularnym nad alfabetem {0, 1}. Dowies¢, ze nastepujacy
jezyk jest regularny:

{w : w € LA sposrod stéow o dlugosci |w|, w jest najmniejsze w porzadku leksykograficznym}

5. Przyjmujemy, ze kazde niepuste stowo binarne w € {0, 1}*, w = wy ... wy, reprezen-
tuje pewien utamek w przedziale [0, 1),

bin(w) = wll +Wo— + ...+ wp—
2 22 2k
Dla liczby rzeczywistej r € [0, 1], niech
L, ={w : bin(w) <r}
Dowiesé, ze jezyk L, jest regularny wtedy i tylko wtedy, gdy liczba r jest wymierna.

6. Niech L bedzie jezykiem regularnym. Dowie$¢, ze nastepujace jezyki sa réwniez
regularne:
o :L =4 {w : (3u)|u| = |w| Awu € L}
e VL =g {w: wwel}
7. Niech L bedzie jezykiem regularnym. Dowie$¢, ze nastepujace jezyki sa roéwniez
regularne:
(a) Root(L) ={w : (In € N)w" € L}

(b) Sart(L) = {w : (Ju)|u| = |w|* Nwu € L}
Wskazowka. n> =1+3+...(2n —1).

(¢) Log(L) = {w : (Fu)|u| = 2" Awu € L}
Wskazowka. 2" =1+ 2+ 22+ 2771 41,

(d) Fibb(L) = {w : (Fu)|u| = Flu ANwu € L}
gdzie F}, jest n-ta liczba Fibonacciego tzn.

F1:F2:1
Fn+2:Fn+Fn+1

8. Dowies¢, ze dla dowolnego jezyka regularnego L, jezyk
{w : w"l e L}

jest rowniez regularny.
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9.

10.

11.

12.

13.

14.

15.

16.

Niech bedzie dany jezyk regularny L i dowolne, niekoniecznie regularne, jezyki L,
.., L,,. Skonstruowa¢ skoriczony automat deterministyczny rozpoznajacy jezyk
nad alfabetem {1,...,m}

Nietrywialnym palindromem nazwiemy kazdy palindrom o dlugosci co najmniej 2.
Niech Pal 3! oznacza zbiér nietrywialnych palindroméw nad alfabetem Y. Dowiesé,
ze jezyk (Pal3!)* jest regularny wtedy i tylko wtedy, gdy |2| = 1.

Czy jezyk ({ww® :w € (0+ 1)*})* jest regularny?
Ktore z nastepujacych jezykéw nad alfabetem {0, 1} sa regularne?

(a) Zbior stow posiadajacych nietrywialny palindrom jako prefiks.

(b) Zbior stéw posiadajacych palindrom dtugosci parzystej jako prefiks.

(c) Zbior stow posiadajacych nietrywialny palindrom dlugosci nieparzystej jako

prefiks.

Oznaczmy przez Ile(w, z) liczbe wystapien stowa w jako podstowo x (wystapienia
nie musza by¢ roztaczne). Czy nastepujacy jezyk nad alfabetem {a, b} jest regularny
7 Jesli tak, to poda¢ wyrazenie regularne. Jedli nie, to udowodni¢, ze nie jest.

(a) Ly ={x : Ile(ab,x) = Ile(ba,x) + 1}
(b) Ly ={z : Ile(aba,z) = Ile(bab, x)}
Niech L bedzie jezykiem regularnym. Dowieé¢, ze jezyki:
o L, ={w: (Fu)|u| =2/w| ANwu € L}
o Ly ={w:(Ju)2u| =|w|Awue L}
o L ={w:(Fu,v)ul=|v| =|w| Auwv € L}
sa jezykami regularnymi, a jezyk
o L, . ={uw : (Jw)u| = |v| = |w| ANuwv € L}
moze nie by¢ regularny.

Czy zachodzi fakt: jesli L jest regularny to istnieja dwa niepuste stowa u, v takie, ze
zachodzi réwnoé¢ ilorazow L{uv}~' = L{vu}~1 ?

Przeplotem stéw w i v nazwiemy dowolne stowo dlugosci |w| + |v|, ktére mozna
rozbi¢ na rozlaczne podciagi w i v. Na przyktad, przeplotami stéw ab i ach sa stowa
abach, aabeb, acabb, acbab, aacbb. Przeplotem jezykéw L i M jest zbior wszystkich
mozliwych przeplotow stow w € L, v € M. Jezyk ten oznaczamy L || M.

Dowies¢, ze jesli L i M sa jezykami regularnymi, to L || M jest réwniez regularny.

Okreslamy Lf = LU (L || LYU (L || L || L) U.... Poda¢ przyktad jezyka regularnego
L nad dwuelementowym alfabetem, dla ktérego L* nie jest jezykiem regularnym.
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2.4

1.

Automaty minimalne.

Niech w € ¥* bedzie stowem o dlugosci |[w| = n > 0. Dowie$¢, ze minimalny
automat deterministyczny rozpoznajacy wszystkie stowa nad X, ktorych sufiksem
jest w, ma doktadnie n + 1 stanow.

Niech w € ¥* bedzie stowem o dlugosci |w| = n > 0. Dowies¢, ze minimalny
automat deterministyczny rozpoznajacy wszystkie podstowa stowa w ma nie wiecej
niz 2n stanow.

Skonstruowaé¢ minimalny deterministyczny automat skoriczony dla jezyka
L = {a'bb*a? : 2| (i+J)}
Skonstruowaé¢ minimalny deterministyczny automat skoriczony dla jezyka

L = {aay...a, : n>0, a; € {0,1,2,3,4}, MAX, ;(a; — a;) < 2}.

Opisa¢ strukture i narysowaé¢ diagram minimalnego deterministycznego automatu
skoniczonego akceptujacego wszystkie skoriczone ciagi zerojedynkowe takie, ze kazde
k kolejnych symboli zawiera dokladnie 2 jedynki i kazde kolejnych j < k symboli
zawiera co najwyzej dwie jedynki:

(a) Dla k = 3;
(b) dla k = 4.

(W szczegolnosei stowo puste nalezy do obu jezykow, a stowo 111 do zadnego z
nich.)

. Trzy druzyny piltkarskie A, B i C' rozgrywaja miedzy soba serie spotkan towarzy-

skich, przy czym umowily sie, ze kazdy kolejny mecz jest rozgrywany pomiedzy
druzyna, ktéra wygrala poprzedni mecz i druzyne, ktéra nie brata udziatu w tym
spotkaniu (tzn. jesli druzyna X wygrata z druzyna Y, to nastepny mecz rozegraja X i
7). Zakladajac, ze nie ma remiséw, rozwazamy zbior stow nad alfabetem {A, B, C'},
stanowiacych ciagi mozliwych wynikéw spotkai. Dowies¢, ze jest to jezyk regularny.
Zbudowaé¢ minimalny automat deterministyczny, ktéry go rozpoznaje.

Pan X zakupil pakiety trzech réznych akcji: A, B i C. Kazdego dnia bada wzajemne
potozenie wartosci swoich akcji, ktére moze by¢ reprezentowane jako uporzgdkowanie
zbioru {A, B,C'}, w kierunku od najmniej do najbardziej wartosciowej. (Przyjmu-
jemy zalozenie, ze dwie rozne akcje maja zawsze rdzne wartosci.) Pan X posta-
nowil, ze jeSli w ciggu dwoch kolejnych dni ktéras z akcji dwukrotnie spadnie na
nizsza pozycje, to sprzeda te akcje. Np. jesli kolejne notowania (w tym wypadku:
uporzadkowania) sa (A4, B,C), (B,C, A), (C, B, A) to pan X sprzeda pakiet akcji C.
Rozwazamy zbior G wszystkich uporzadkowan liniowych zbioru {A, B, C'}. Dowies¢,
ze zbior tych ciagéw nad alfabetem G, ktore opisuja takie wyniki notowan gietdo-
wych, przy ktorych pan X nie pozbedzie sie zadnego pakietu akcji, jest jezykiem
regularnym. Znalez¢ liczbe standéw automatu minimalnego akceptujacego ten jezyk.
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8.

10.

2.

Pan X postanowit, ze kazdego dnia bedzie pracowal lub nie, przestrzegajac przy tym
zasady, by na zadne siedem kolejnych dni nie przypadato wiecej niz cztery dni pracy.
Mozliwy rozktad dni pracy pana X w ciagu n kolejnych dni mozemy przedstawi¢ jako
n-bitowe stowo, gdzie 1 odpowiada dniowi pracy, a 0 dniowi odpoczynku. Dowies¢,
ze zbidr wszystkich tak otrzymanych stow jest jezykiem regularnym (nad alfabetem
{0,1}). Znalez¢ minimalny automat deterministyczny.

. Dowies¢, ze istnieje nieskonczenie wiele stow w € (a+b)* takich, ze jesli zastosujemy

homomorfizm a — 0, b — 1, to otrzymamy zapis binarny liczby podzielnej przez
3, a kiedy zastosujemy homomorfizm a — 1, b — 0, to réwniez otrzymamy zapis
binarny liczby podzielnej przez 3 (oczywiscie ignorujemy poczatkowe zera).
Rozwazamy automat wydajacy napoje, dziatajacy na nastepujacych zasadach.

— Kazdy napéj kosztuje 1 zloty.

— W chwili poczatkowej automat nie zawiera zadnych monet.

— Automat przyjmuje monety: 1 ztoty lub 1 euro; w tym ostatnim przypadku
wydaje 3 ztote reszty po warunkiem, oczywiscie, ze ma dostateczna ilo§¢ monet
jednoztotowych (zakladamy, ze €1 = 4 zl).

— Jesli automat nie jest w stanie wydac reszty — sygnalizuje blad.

— Jesli po wrzuceniu monety i ewentualnym wydaniu reszty warto$¢ wszystkich
monet zgromadzonych w automacie osiagnie rownowarto$¢ 8 zt, wszystkie monety
sa wyjmowane (reset).

Historig dzialania jest ciag wrzuconych monet (ztoty lub euro). Historia jest udana,
jesli w trakcie jej realizacji ani razu nie wystapit blad.

Skonstruowaé¢ minimalny automat deterministyczny rozpoznajacy zbior wszystkich
udanych historii.

Rozpoznawanie wzorca w teksScie

. Deterministyczny automat z zadania 1 z punktu 2.4 rozpoznajacy jezyk X*w mozna

skonstruowaé biorac za stany wszystkie prefiksy stowa w (a zatem |w| 4 1 stanéow)
oraz przejécia v — u, gdzie u jest maksymalnym sufiksem stowa va bedacym jed-
noczesnie prefiksem w. (Efektywna konstrukcja tegoz automatu, patrz zadanie 3
w punkcie 2.7.) Dowiesé, ze liczba nietrywialnych przejsé wstecznych”, tj. przejsé
postaci v = u, gdzie |v| > |u| > 0, jest nie wigksza niz |w|. Zauwazmy, ze daje
to mozliwos¢ reprezentacji automatu o rozmiarze proporcjonalnym do |w| (przejscia
postaci v = € mozemy pominac).

Wskazowka. Wykazaé, ze dla kazdej liczby k istnieje co najwyzej jedno nietrywialne
przejscie wsteczne, takie, ze |va| — |u| = k.

Rozpoznawanie podstow.

a) Dla danego stowa w o dlugosci |w| = n skonstruowac¢ automat deterministyczny
g g
o < 2n + 1 stanach rozpoznajacy dokltadnie zbiér sufiksow stowa w.
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Wskazéwka. Jako stany automatu mozna wziaé zbiory pozycji S, (S, C
{0,1,...,n}) konczacych wystapienie z jako podstowa stowa w. Oszacowa-
nie na liczbe stanéw wynika ze spostrzezenia, ze roézne zbiory S;, S, sa albo w
relacji inkluzji albo roztaczne, a zatem, ze wzgledu na inkluzje, tworza drzewo
o nie wiecej niz n lisciach.

(b) Powyzszy automat zawiera stan typu ,czarna dziura’, mianowicie stan () = S,
gdzie z nie jest podstowem w. Dowies¢, ze liczbe przej$¢ nie prowadzacych do
stanu () mozna oszacowaé z gory przez 3n.

Wskazéwka. Wziaé drzewo rozpinajace grafu automatu i oszacowaé liczbe po-
zostalych krawedzi przez liczbe sufiksow w.

(c) Opisany wyzej automat jest minimalny dla zbioru sufikséw. Te sama konstruk-
cje mozna zastosowaé¢ réwniez do rozpoznawania zbioru wszystkich podstow
stowa w, ale otrzymany automat nie musi by¢ minimalny. Podaé¢ przyktad.

Wskazowka: 4 grudnia.

2.6 Warianty automatéw skornczonych

1. Automaty z e-przej$ciami. Niedeterministyczny automat z e-przejéciami A = (X, Q, 1,4, F)
jest okreslony jak zwykly automat skoiiczony z tym, ze § C @ x (XU {e}) x Q. Re-
lacja ¢ — p (gdzie p,q € Q i w € ¥*) jest okreslona jak poprzednio, tzn. ¢ — ¢ i
va . v . . . . .
g—poileq—qi(q,a,p) €I ztym, ze teraz a moze by¢ litera w 3 lub e.

Dowieéé, ze dla dowolnego automatu z e-przejéciami istnieje zwykly automat skon-
czony, ktory akceptuje ten sam jezyk.

2. Automat z wyjSciem wg Mealy’ego. Automat Mealy’ego mozna przedstawié¢ jako
deterministyczny automata skonczony, powiedzmy A = (3, @, qz, 0, F') dany razem
z funkcja v : @ x X — A. Intuicyjnie, dany stan ¢ i litera ¢ € ¥ determinuja
nie tylko kolejny stan, powiedzmy p, ale takze sygnal wyjsciowy (output), v(q,0).
Doktadniej, stowo w = wjws,...w, nad X, takie, ze 5(q1,w1...w,-,1) = p;, dla
it =1,...,n, wyznacza n-literowe stowo nad alfabetem A,

Y(w) =gey Y(qr, w1)y(p2, w2) . . . Y(Pn, wy)

Powiemy, ze automat Mealy’ego redukuje jezyk L; do Lo jesli (Vw) w € L1 &
¥(w) € Ly. Skonstruowaé automat, ktoéry redukuje a*b(a*ba*ba*)* do (a*ba*ba*)*.

3. Automat z wyjsSciem wg Moore’a. Automat Moore’a mozna przedstawié¢ jako deter-
ministyczny automata skonczony wraz z funkcja v : Q — A. Tym razem, slowo
w = Wi Ws ... W, Wyznacza

A(w) =aer Y(0(qr, w1))(0(qr, wiws)) ... v(0(qr, wiws . .. wy))

Dowieé¢, ze automaty Mealy’ego i Moore’a sa réwnowazne w tym sensie, ze dla
kazdego automatu jednego typu mozna znalez¢ automat drugiego typu realizujacy
te sama funkcje 4.
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Automaty dwukierunkowe. Funkcja przejscia deterministycznego automatu dwukie-
runkowego jest postaci 6 : Q X X — @ X {L, R}, co interpretujemy, ze automat moze
przesunaé czytnik zaréwno w prawo jak i w lewo. Dowies¢, ze deterministyczne au-
tomaty dwukierunkowe moga by¢ symulowane przez zwykle automaty skoficzone.
(Rezultat zachodzi rowniez dla automatéw niedeterministycznych.)

Wskazowka. Znane rozwiazanie oparte na idei ciagoéw skrzyzowan (ang. crossing
sequences) mozna znalez¢ w rozdziale 2.6 ksiazki J.E.Hopcroft, J.D.Ullman, Wpro-
wadzenie do teorii automatow, jezykow i obliczen, Wydawnictwo Naukowe PWN,
Warszawa 1994. Innym, by¢ moze prostszym rozwigzaniem! jest uwzglednienie w
stanie symulujacego automatu jednokierunkowego funkeji h: Q@ — Q U {L} o na-
stepujacej interpretacji: jesli automat (dwukierunkowy) pojdzie w lewo w stanie g,
to wroci w stanie h(q) (by¢ moze wcale nie wroci, gdy h(q) = L1).

Uwaga. W dalszej czeéci wykltadu spotkamy sie z mocniejszym stwierdzeniem, a
mianowicie, ze maszyny Turinga pracujace na jednej tasmie w czasie liniowym ak-
ceptuja jedynie jezyki regularne.

Algorytmy i ztozonosé

1. Zaprojektowaé algorytm, ktory dla wyrazenia regularnego 3 i stowa w € ¥* odpo-

wiada na pytanie, czy w nalezy do jezyka opisywanego przez [3

(a) w czasie O(|3| - [6]* - |wl),
(b) w czasie O(|3] - |w|),

Wskazowka. Skonstruowaé¢ automat niedeterministyczny réwnowazny wyrazeniu (3 i
obliczy¢ zbior standéw osiagalnych po stowie w. Dla oszacowania w punkcie 1b uzy¢
automatu z e-przejSciami (por. zadanie 2.6. 1), w grafie ktorego z kazdego stanu
wychodza co najwyzej dwie krawedzie.

Rozwazamy pytanie ,w € L[] 77 jak w zadaniu 1, ale dla wogdlnionego wy-
razenia regularnego, tj. takiego, w ktérym dopuszczamy réwniez operacje teorio—
mnogosciowe M 1 —. Zaprojektowaé algorytm, ktory rozstrzyga to pytanie w czasie
wielomianowym od || + |w].

Wskazowka. Zastosowaé metode programowania dynamicznego: dla1 <i < j < |w|
sukcesywnie oblicza¢ zbior podwyrazeii a wyrazenia (3 takich, ze wl[i..j| € L]a].
Konstrukcje automatu z zadan 2.4. 11 2.5. 1, ktéry dla danego w rozpoznaje jezyk
¥*w, mozna przeprowadzi¢ za pomoca nastepujacego algorytmu. Niech m = |w|.

Najpierw obliczamy pomocniczg tablice F[0..m], taka, ze F[0] = 0 oraz Fi| jest
dtugoscia najdtuzszego prefiksu whasciwego wll..7] bedacego jednoczesnie sufiksem
wll.d],dlai=1,...,m.

F[0] := F[1] :== 0; i := 0;

for j := 2 to m do

1 Zaproponowanym przez Mikotaja Bojaiiczyka.
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begin (xi = F[j — 1] *)
while w; # w;41 A i >0 do i := F[i;

if w;j = w4 then 7 :=1741;

Flj] =i
end
W konstrukeji automatu przyjmujemy, ze stany sa liczbami 0, 1, ..., m (ktére mozna

utozsamic z prefiksami w o odpowiednich dtugodciach). Funkcje przejscia § okre-
Slamy przez

e 5(0,wy) =1, 6(0,a) =0, dla a # wy,
L 6(]7 ijrl) = .7 =+ 17 (5(],&) = 5(F[j]7a)a dla a 7é wj+1

Dowie$¢, ze powyzszy algorytm oblicza zadany automat w czasie liniowym wzgledem
dtugosci w (zaleznym od alafabetu).

4. Niech A bedzie ustalonym automatem deterministycznym. Zaprojektowac algorytm,
ktory dla danej liczby n znajduje w czasie O(n) liczbe stow dtugosci n akceptowa-
nych przez A.

5. Poda¢ przyktad swiadczacy o tym, ze najkrétsze stowo, jakiego nie akceptuje auto-
mat niedeterministyczny o n stanach moze mie¢ dtugosé 24,

Wskazowka. Rozwazy¢ automat akceptujacy wszystko za wyjatkiem stowa
(' e ((agal)2a2)2a3 s an—l)Qan-

6. Dowiesd¢, ze jesli dwa stany n-stanowego automatu deterministycznego nie sa réw-
nowazne (tzn. L(A,q) # L(A,p)), to istnieje stowo dlugosci nie wiekszej niz n
akceptowane z dokladnie jednego z nich.

Wskazowka. Rozwazy¢ zstepujacy ciag relacji réwnowaznoSci na zbiorze stanéow:
Ri(p,q) o ile stany p i ¢ sa nierozroznialne stowami dlugoscei < i.

7. Poda¢ algorytm rozstrzygajacy réwnowazno$¢ dwoch automatoéw deterministycz-
nych.

Uwaga. Zastosowanie idei zadania 6 prowadzi do efektywniejszego algorytmu niz
testowanie niepustoséci automatu produktowego.

8. (a) Wykazag, ze dla dowolnego automatu niedeterministycznego o n stanach mozna
skonstruowaé¢ réwnowazne wyrazenie regularne dtugosci 20,

(b) (**) Poda¢ przyktad $wiadczacy o tym, ze najkrotsze wyrazenie regularne row-
nowazne danemu automatowi deterministycznemu o n stanach moze mieé¢ dtu-
gosé 290,

Wskazéwka. Rozwazy¢ automat, ktorego graf jest pelnym grafem o n wierz-
chotkach, a kazda krawedz ma inng etykiete. Stosujac indukcje po n, skonstru-
owaé petle, ktora ,wymusza” eksponencjalng dtugos¢ wyrazenia regularnego.
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9. FEksplozja standw w produkcie automatéw. Niech ¥ = {0,1,...,k} i niech dla i =
1,...,k, L; bedzie zbiorem stéw v nad ¥ o nastepujacej wlasnosci:

1 wystepuje w v, ale przed pierwszym i pomiedzy kazdymi dwoma kolej-
nymi wystapieniami ¢, ¢ — 1 wystepuje co najmniej dwa razy.

Nietrudno jest skonstruowaé deterministyczny automat o 4 stanach rozpoznajacy
L;. Dowies¢, ze kazdy (nawet niedeterministyczny) automat rozpoznajacy jezyk
LN ...N L; musi mie¢ co najmniej 2+ — 1 standéw.

Wskazowka. Oszacowaé od dotu dtugos$¢ najkrotszego stowa w tym jezyku.

10. Dowiesé, ze jakikolwiek automat niedeterministyczny rozpoznajacy jezyk {zcy :
z,y € {a,b}* A z[l..k] = y[1..k]} ma 29" stanéw.

11. Stowo synchronizujgce. Moéwimy, ze stowo w synchronizuje stany automatu deter-
ministycznego, jesli istnieje taki stan qg, ze startujac z dowolnego stanu i czytajac
stowo w, automat dojdzie zawsze do stanu qo, tzn. (Vg € Q)q — qo.

(a) Znalez¢ stowo synchronizujace dla automatu nad alfabetem {a,b} o zbiorze
stanow {0,1,...,k — 1} i funkcji przejscia
i%i+1 (modk) dlai=0,1,....k—1
i 2 dlai=0]1,..., k=2
k=120

(b) Zaprojektowaé¢ algorytm, ktory dla automatu o n stanach rozstrzyga w czasie
O(n?), czy istnieje stowo synchronizujace i w pozytywnym przypadku znajduje
takie stowo (dtugosci < (n —1)3).

(¢) (*) Znalezé najkritsze stowo synchronizujace dla automatu z punktu (11a).

Uwaga. Liczaca juz 40 lat hipoteza C’emego glosi, ze najkrotsze stowo synchronizu-
jace, o ile istnieje, ma dtugosé (n—1)? (zob. http://www.liafa.jussieu.fr/~jep /Problemes/Cerny.html).

3 Jezyki bezkontekstowe

3.1 Gramatyki bezkontekstowe

1. Poda¢ gramatyki bezkontekstowe generujace nastepujace jezyki:

(a) zbior stow nad alfabetem {a,b}, ktore zawieraja tyle samo a co b;
(b) zbior stow nad alfabetem {a, b}, ktore zawieraja dwa razy wiecej a niz b;

(c) zbior stow nad alfabetem {a,b} o dlugosci parzystej, w ktorych liczba wysta-
pieni litery b na pozycjach parzystych jest rowna liczbie wystapienl tej litery na
pozycjach nieparzystych;

(d) zbiér wyrazen arytmetycznych nad alfabetem {0, 1, (,), +, -}, ktore, przy zwy-
ktej interpretacji dziatan dla liczb naturalnych, maja wartos¢ 3;
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(e) zbior wyrazen arytmetycznych w notacji polskiej (nad alfabetem {0,1,+,-}) o
wartoéci 4;

(f) zbiér poprawnie zbudowanych formut rachunku zdan ze zmienna zdaniowa p i
stalymi logicznymi true, false (alfabet: {p, true, false, A,V,—,(,)});

(g) zbior tych formut z poprzedniego punktu, ktére przy kazdym wartosciowaniu
zmiennej p maja wartos¢ logiczna prawda (tzn. tautologii);

(h) {a'bic* ci#j Vv j#kh

(i) {a't’a® : i+ k=j}.

2. Dla danych gramatyk bezkontekstowych G, H, skonstruowaé¢ gramatyki generujace
jezyki L(G)U L(H), L(G)L(H), (L(Q))*, (L(G))" (=lustrzane odbicie).

3. Wykazaé, ze zbiér palindroméw nad ustalonym alfabetem jak réwniez jego dopel-
nienie sa jezykami bezkontekstowymi.

4. Napisa¢ gramatyke bezkontekstowa (jak najkrotsza) generujaca jezyk:
L ={adV :4j>1i<2j—1}
5. Skonstruowaé gramatyke bezkontekstowa z jednym symbolem nieterminalnym gene-

rujaca zbior {z € (a+b)* : #.(x) = #p(2) }, gdzie #4(w) oznacza liczbe wystapien
symbolu s w stowie w.

6. Dowied¢, ze nastepujace warunki sa rownowazne dla jezyka L C »*:

(a) L jest regularny,
(b) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda reguta jest
postaci X — e, X =Y, lub X — oY, 0€X,

(c) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda regula jest
postaci X — e, X =Y, lub X — Yo, o€,

(d) L jest generowany przez gramatyke bezkontekstowa, w ktorej kazda regula jest
postaci X — o lub X — Y, o, 3 € X*.

7. Poda¢ przykltad gramatyki bezkontekstowej w ktorej kazda regula jest postaci X —
&, X =Y, X —-0Y lub X — Yo, 0 € X, ale jezyk generowany przez gramatyke
nie jest regularny.

8. Czy kazdy jezyk bezkontekstowy jest generowany przez gramatyke w postaci z po-
przedniego zadania?

9. Powiemy, ze gramatyka G ma wlasno$¢ wtasciwego samozapetlenia, jesli dla pewnej

zmiennej X zachodzi X A aX f, gdzie a, 3 # €. Udowodnij, ze gramatyka bezkon-
tekstowa nie majaca wlasnosci wlasciwego samozapetlenia generuje jezyk regularny.

10. Udowodnij, ze kazdy jezyk bezkontekstowy nad jednoliterowym alfabetem jest re-
gularny.
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11.
12.

13.

14.

15.

16.

Udowodnij, ze jesli L jest bezkontekstowy to jezyk {a®! : w € L} jest regularny.

Niech G bedzie gramatyka bezkontekstowa, z m zmiennymi i niech, dla kazdej reguty
y & w, |w| < ¢. Dowies¢, ze jesli X, i €, to istnieje wyprowadzenie o dtugosci
1+ 6+ 02+ .. .+ (™1 Czy to oszacowanie jest optymalne?

Dowies¢, ze dla kazdej gramatyki G istnieje stata C', taka, ze dla dowolnego w # e,
jesli X7 & w, to istnieje wyprowadzenie o dlugosci < C' - |w].

Zalézmy, ze mamy pewna skonczona liczbe regul wymazujacych postaci a — e.
Stosujac takie reguly mozemy w danym stowie zastepowaé stowo a przez stowo
puste. Niech L bedzie zbiorem stéw, ktére mozemy przeksztalci¢ na stowo puste
stosujac reguly wymazywania.

Czy zawsze istnieje gramatyka bezkontekstowa generujaca L i majaca tylko jeden
symbol nieterminalny ?

Zaprojektowaé algorytm, ktory, dla danej gramatyki GG, odpowiada na pytanie, czy
jezyk L(G) jest nieskoniczony.

Udowodnij, ze kazdy jezyk bezkontekstowy moze by¢ generowany przez gramatyke
w ktorej kazdy symbol nieterminalny (poza by¢ moze symbolem poczatkowym) ge-
neruje nieskonczenie wiele stéw terminalnych.

Bezkontekstowy czy nie 7 — lematy o pompowaniu

Udowodni¢, ze zaden nieskonczony podzbior jezyka L = {a™b"c" : n > 1} nie jest
jezykiem bezkontekstowym.

Udowodnié, ze dopetnienie jezyka z poprzedniego zadania jest jezykiem bezkontek-
stowym.

Udowodnié¢, ze jegli alfabet ¥ ma co najmniej dwie litery, to jezyk L = {ww :
w € X*} nie jest bezkontekstowy, natomiast jego dopelnienie ¥* — L jest jezykiem
bezkontekstowym.

Dowies¢, ze dla kazdego ustalonego k dopelnienie jezyka {w" : w € Y*} jest jezykiem
bezkontekstowym.

Udowodni¢, ze jezyk L = {zcx : x € (a+b)* } nie jest jezykiem bezkontekstowym.

Udowodnié, ze dopelnienie jezyka z poprzedniego zadania jest jezykiem bezkontek-
stowym.

Pokazaé¢, ze jezyk dopasowywania wzorca L = {xcy : z,y € (a+b)*, y €
Subwords(x)} nie jest bezkontekstowy. Czy dopelnienie tego jezyka jest bezkontek-
stowe 7

. Pokazad, ze jezyk L = {zcy® : xz,y € (a+b)*, y € Subwords(x)} jest bezkontek-

stowy.
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10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

(*) Pokazaé, ze dopetnienie jezyka z poprzedniego zadania nie jest jezykiem bezkon-
tekstowym.

Udowodni¢, ze jezyk L = {a'b/c* :i+#j, i #k, j# k } nie jest bezkontekstowy.
Czy jego dopetnienie jest bezkontekstowe 7

Czy jezyk L = {a'¥a'tV :i,j > 1} jest bezkontekstowy ?
Czy jego dopelnienie jest jezykiem bezkontekstowym ?
Udowodni¢, ze jezyk L = {www :w € (a + b)*} nie jest bezkontekstowy.
Czy jego dopetnienie jest bezkontekstowe 7
Pokaz, ze jezyk {z#y® : z,y € {0,1}T, [2]s + 1 = [y]2} jest bezkontekstowy.
Pokaz, ze jezyk {z#vy : z,y € {0,1}", [z]a + 1 = [y]2} nie jest bezkontekstowy.
Ktoére z nastepujacych jezykéw sa bezkontekstowe 7
(a) {a™b" :m < n <2m}
(b) (a+0)" —{(a"b")" :n > 1}
(c) {wwfw :w € (a+b)*}
(d) {a®ba¥ba* : x +y = z}
(e) {a*ba¥ba* : x -y =z}
Dowiedz, ze nastepujace jezyki nie sa bezkontekstowe:

(a) {a'ba”*:j = max {i,k}

(b) {a'b'c* : k #i}.
Czy jezyk

{bin(n) $ bin(n*)® : n € N},

gdzie bin(n) € {0, 1}* jest binarnym przedstawieniem liczby n, jest bezkontekstowy?

Niech [n]s oznacza zapis binarny liczby naturalnej n > 1, pierwsza cyfra jest jedynka
(najbardziej znaczaca). Czy nastepujacy jezyk jest bezkontekstowy:

Ly = {[n]z2[2n]s : n>1}

(a) Udowodnij, ze zbior tautologii nad ustalonym skoriczonym zbiorem zmiennych
jest bezkontekstowy (stanowi to uogélnienie zadania (1g) z sekcji 3.1).

(b) Formuly nad przeliczalnym zbiorem zmiennych mozna przedstawié jako jezyk
nad skonczonym alfabetem, przyjmujac indeksowanie zmiennych. Dokladniej,
przyjmijmy, ze zbiér wszystkich formul jest generowany przez gramatyke

F — true|false |V |(FVF)|(FAF)|(-F)
V —

I — 0[1J

J — JO|J1l]e
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20.

21.

22.

23.

Np. ((z101 V (=z0)) A (—(false vV £101))) jest formula.
Udowodnij, ze zbior wszystkich tautologii nie jest bezkontekstowy?.

Sformuluj uvwzxy-lemat o pompowaniu dla jezykow liniowych w ktorym |uvzy| =
O(1).
Dowiedz, ze jezyk {a'b'c’d’ : i,j € N} nie jest liniowy.

Dowiedz, ze L = {z € (a+ b)*,#.(x) = #u(x)} nie jest liniowym jezykiem
bezkontekstowym.
Udowodnij, ze zbior stow w nad alfabetem {a, b} majacych te sama liczbe liter a co

b nie jest liniowym jezykiem bezkontekstowym.

Ktory z nastepujacych jezykoéw jest bezkontekstowy. W przypadku gdy jezyk jest
bezkontekstowy wypisa¢ gramatyke bezkontekstowa. W zadaniu [z]| oznacza bi-
narny zapis liczby z, oraz w* oznacza odwrocenie stowa w.

(a) Ly = {[z & [yl : 1<z<y}.
(b) Ly = {[zh & [yly : 1<z <y}

Automaty ze stosem

1. Skonstruowa¢ automaty ze stosem rozpoznajace poznane wcze$niej jezyki bezkontek-

stowe: zbiér palindroméw, zbidr poprawnie uformowanych ciagéw nawiaséw, zbior
stow, ktore maja dwa razy wiecej b niz a, zbidr ciagoéw, ktore nie sa postaci ww.

. Dla liczby naturalnej n, niech bin(n) € {0, 1}* bedzie binarnym przedstawieniem

liczby n. Skonstruowaé automat ze stosem rozpoznajacy jezyk
{bin(n) $bin(n + 1)% : n € N}
Skonstruowaé automat ze stosem rozpoznajacy jezyk
{bin(n) $bin(3 xn)* : n € N}

Uogdlni¢ teze zadania®.

. Dowies¢, ze dla kazdego automatu ze stosem A, mozna skonstruowaé automat ze

stosem o dwdch stanach A’, taki ze L(A) = L(A’).

. Dowie$¢, ze automatowi A’ z poprzedniego zadania mozna postawic¢ dalszy wymog,

ze kazde przejécie jest postaci
q, a, Z Al q/7 Q

gdzie |a| < 2 (q,¢ dowolne).

2Stwierdzenie to wynika latwo z hipotezy P # NP, ale nalezy je dowieéé bez tej hipotezy.
3Mozna zaczaé od przykladu {dec(n)$dec(2006 x n)® : n € N}, gdzie dec(n) € {0,1,...,9}* jest
dziesietnym przedstawieniem liczby n.
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6.

10.

11.

12.

Dowiesé, ze dla kazdego automatu ze stosem A, mozna skonstruowaé réownowazny
mu automat ze stosem A”, w ktorym kazde przejscie jest postaci push lub pop, tzn.

q,a, Z AN q/7 YZ

lub
q7a72 — A" qlae

Czy dla takich automatéw mozna nadal ograniczy¢ liczbe stanéw?

Majac dany automat ze stosem akceptujacy jezyk L, skonstruowaé automaty ze
stosem akceptujace nastepujace jezyki:

Prefix(L) = {w : (Jv)wv € L}
Suffix(L) = {w : (Ju)uw € L}
Subword(L) = {w : (Ju,v)uwv € L}
LE ={w? : we L}

(*) Cycle(L) = {vw : wv € L}

Majac dany automat ze stosem akceptujacy jezyk L i automat skoniczony akceptu-
jacy jezyk R, skonstruowaé automaty ze stosem akceptujace nastepujace jezyki:

o LR

o R7'L

e LNR
Niech #4(w) oznacza liczbe symboli s w stowie w, oraz PREF(u) oznacza zbior

prefikséw stowa u. Ponadto oznaczmy przez maz(w), min(w), med(w) opowiednio
maksimum, minimum i mediane liczb #,(w), #s(w), #.(w).

Ktéry z nastepujacych jezykéw jest regularny, a ktéry bezkontekstowy?

(a) Ly = {u€(aUbUc)* : Yw € PREF(u) max(w) — min(w) < 13 }.
(b) Ly = {u€(aUbUc)* : Yw e PREF(u) maz(w) — med(w) < 13 }.

Dla danych jezykow regularnych L i M, skonstruowaé¢ automat ze stosem rozpozna-
jacy jezyk U,cn (L' N M"). Uwaga: ten zbi6r nie musi by¢ regularny.

Dowies¢, ze dla kazdego automatu ze stosem A istnieje statla C' (zalezna od auto-
matu), taka, ze dla kazdego stowa w € Z(A), istnieje obliczenie akceptujace (przez
pusty stos) o dlugosci < Clw|. Wskazéwka: oszacowaé wysokos¢ stosu w obliczeniu
akceptujacym.

Niech A bedzie automatem ze stosem. Dowies¢, ze zbiér stow, ktore sa mozliwymi
zawartoSciami stosu automatu A, jest jezykiem regularnym. Formalnie, mamy na
myS$li zbior

{ael” : Fw,veX)(FqeQ)q,w,Zr Fa q,v,a}
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13.

14.

3.4

Wywnioskowaé¢ stad, ze zbiér stéw, ktére sa mozliwymi zawartoSciami stosu auto-
matu A w jakims obliczeniu akceptujgcym, jest jezykiem bezkontekstowym.

Automat ze stosem A = (3,1, Q, q1, Z1,0, F) nazywamy deterministycznym, jesli w
kazdej sytuacji mozliwy jest co najwyzej jeden ruch. Dokltadnie;j:

e jedli, dla pewnej pary ¢, Z, zachodzi q,¢€, Z — 4 p, a przy pewnych p, a, to dla
zadnego o € X, nie zachodzi ¢,0,7Z — 4 p', o/, dla zadnych p’, o/;

e dla kazdych q, 0, Z, istnieje co najwyzej jedna para p, «, taka ze q, 0, Z — 4 p, a.
Jezyk bezkontekstowy jest determunistyczny jesli jest rozpoznawany przez pewien
deterministyczny automat ze stosem (w sensie stanéw akceptujacych, tzn. L =
L(A)). Dowiesé, ze jezyk {a™b" : n € N} U {a"b®" : n € N} nie jest determi-
nistycznym jezykiem bezkontekstowym.

Wykazaé, ze zbiér palindromoéw nad alfabetem dwuelementowym nie jest determi-
nistycznym jezykiem bezkontekstowym.

Wtasnoéci jezykéw bezkontekstowych

. Podaj przyktad jezyka bezkontekstowego L t.ze jezyk L = {x : (Jy)|z| =

ly| A zy € L} nie jest bezkontekstowy.

Udowodnié¢, ze przeciecie jezyka (deterministycznego) bezkontekstowego z regular-
nym jest tez jezykiem (deterministycznym) bezkontekstowym.

. Przeplotem stéw w i v nazwiemy dowolne stowo dtugosci |w|+|v|, ktére mozna rozbié

na roztaczne podciagi wiv. L1i M jest zbiér wszystkich mozliwych przeplotéw stow
w € L,v e M. Jezyk ten oznaczamy L || M. Udowodnij, ze przeplot jezyka bezkon-
tekstowego i regularnego jest jezykiem bezkontekstowym. Podaj przyklad jezykow
bezkontekstowych L i M, dla ktérych L || M nie jest jezykiem bezkontekstowym.

. Domkniecie przeplotne jezyka L okre§lamy przez L* = L U (L || L) U (L || L |

L) U.... Wykaza¢, ze operacja domkniecia przeplotnego jezyka skoriczonego moze
da¢ w wyniku jezyk ktory nie jest bezkontekstowy.

Udowodnié, ze jesli X, Y sa jezykami regularnymi to jezyk
L =3, ., X"nYy"

jest bezkontekstowy.

. Poda¢ przyklad jezykéw regularnych X, Y t.ze

Zn21(X”ﬂY”) = {a"b" : n>1}
Podaj jezyki regularne X, Y, Z t.ze jezyk
Yo (XTNY"rNZT)

nie jest bezkontekstowy.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Wskaz jezyk bezkontekstowy L, dla ktorego v/L = {w : ww € L} nie jest jezykiem

bezkontekstowym.

. Podaj przyklad jezyka bezkontekstowego takiego. ze {z : z* € L dla pewnego k}

nie jest bezkontekstowy.

Rozwazmy nastepujacy morfizm:

h(a) = a, h(b) =b, h(d')=a, h(b') =10
oraz h(xz) = e dla symboli z € {a,b,a’, '} dla ktérych morfizm nie zostal zdefinio-
wany powyzej. Wykazac, ze jezyk EQ(h,g) = {w : h(w) = g(w)} nie jest bezkon-
tekstowy.

Udowodnij, ze jeéli U jest regularny to nastepujacy jezyk jest bezkontekstowy
{ay™ + w#y, zyeU}

Jezyk ma wtasnoé¢ prefiksowa, gdy dla kazdych dwoéch slow z tego jezyka jedno z
nich jest prefiksem drugiego. Wykaz, ze jedli jezyk bezkontekstowy ma wlasnoscé
prefiksowa to jest on regularny.

Niech L C {a,b}* bedzie jezykiem regularnym oraz h, g beda morfizmami. Udowod-
ni¢, ze nastepujacy jezyk jest liniowym jezykiem bezkontekstowym
{h(u)e(g(u)® + we L}

Udowodnij, ze przeciecie liniowego jezyka bezkontekstowego z regularnym jest jezy-
kiem liniowym.

Dla jezyka L okreslamy Min(L) jako zbi6ér stéw w L minimalnych ze wzgledu na
porzadek bycia prefiksem. (Zatem u € Min(L) < nie istnieja v € L oraz w # ¢
takie, ze vw € L.) Udowodnij, ze dla deterministycznego jezyka bezkontekstowego
L jezyk Min(L) jest rowniez deterministycznym jezykiem bezkontekstowym.

Niech L = {a'¥/c* : k > ilub k > j}. Pokaz, ze Min(L) nie jest jezykiem
bezkontekstowym.

Zbior Max(L) okreslamy analogicznie jak zbior Min(L) w zadaniu 15. Podaj przy-
kiad jezyka bezkontekstowego L, dla ktorego Max(L) nie jest jezykiem bezkontek-
stowym.

Niech hq, hy beda morfizmami takimi, ze alfabet wyjsciowy nie zawiera $. Wykaz,
ze jezyki {xSy® : hy(z) = ho(x)} i {z8y" : hi(x) # hao(z)} sa liniowymi jezykami
bezkontekstowymi.

Podzbiér M C N* nazywamy liniowym jesli mozna go przedstawi¢ M = {@ + n -
b : n € N}, dla pewnych wektoréw @,b € N¥, a semi-liniowym, jedli jest suma
skoniczenie wielu zbioréw semi-lniowych.

(a) Udowodnij, ze zbiér dlugosci stow jezyka bezkontekstowego jest semi-liniowy.
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(b) (*) Udowodnij twierdzenie Parikha gloszace, ze dla jezyka bezkontekstowego
L C ¥* zbiér (C NI¥I) wektorow liczby wystapieii liter z X w stowach z L jest
semiliniowy.

20. Czy nastepujace stwierdzenia sa prawdziwe:

(a) Istnieje nieskoniczony zbior stéow L nad skonczonym alfabetem taki, ze ani L
ani dopelnienie L nie zawieraja nieskorniczonego jezyka regularnego.

(b) To samo, ale wymagamy dodatkowo, aby L byl bezkontekstowy.

Teoria obliczen

Maszyny Turinga

Skonstruowaé maszyne Turinga obliczajaca funkcje 2" reprezentowana unarnie. Bar-
dziej dokladnie, zaktadamy, ze alfabet wejéciowy sktada sie z jednego symbolu, po-
wiedzmy {1}. Jesli na wejéciu dany jest ciag n jedynek, (tzn. konfiguracja wejsciowa
jest go1™), to po wykonaniu obliczenia konfiguracja powinna by¢ ¢;1%".

Skonstruowac¢ maszyne Turinga obliczajaca funkcje [log n]| reprezentowana unarnie.

. Przyjmijmy > = {0,1}. Skonstruowaé¢ maszyny Turinga rozpoznajace nastepujace

jezyki:
(a) zbior palindromoéw
(b) {w$w : w e ¥*}
(c) {ww : we X}
(d) zbidr ciagéow reprezentujacych binarnie liczby pierwsze.

Graf zorientowany o n wierzchotkach ponumerowanych 0,1,...,n — 1, reprezentu-
jemy ciagiem zer i jedynek dlugoéci n?, takim, ze k-ty bit jest 1 o ile istnieje krawedz
z wierzchotka o numerze ¢ do wierzchotka o numerze j, gdzie k =i-n+ 7 + 1.

(a) Skonstruowaé¢ niedeterministyczng maszyne Turinga rozpoznajaca zbior stow
zero-jedynkowych, ktére w powyzszy sposob reprezentuja te grafy, w ktorych
istnieje §ciezka z wierzchotka o numerze 0 do wierzchotka o numerze n — 1.

(b) Skonstruowaé¢ maszyne deterministyczng realizujaca to samo zadanie.

Przypomnijmy, ze dwie maszyny Turinga o tym samym alfabecie wejéciowym uwa-
zamy za rownowazne o ile akceptuja ten sam jezyk. Udowodni¢, ze dla kazdej ma-
szyny Turinga istnieje rownowazna jej maszyna posiadajaca dokladnie jeden stan
akceptujacy i taka, ze w konfiguracji akceptujacej glowica znajduje sie nad pierwsza
komoérka tasmy (tzn. konfiguracja akceptujaca jest postaci g; cos).

. Dla danej niedeterministycznej maszyny Turinga skonstruowaé réwnowazna ma-

szyne deterministycznag.
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7. Dla danych deterministycznych maszyn Turinga M; i M, skonstruowaé¢ determini-

10.

11.

12.

13.

styczne maszyny rozpoznajace jezyki

e o o
g
Sl

[ ] L(Ml *,

Udowodni¢, ze dla kazdej maszyny Turinga nad alfabetem wejsciowym {0, 1}, ist-
nieje rownowazna jej maszyna, ktorej alfabet wszystkich symboli roboczych obejmuje
jedynie symbole 0,1,5.

. Powiemy, ze maszyna Turinga jest write-once jesli moze pisaé tylko w pustych ko-

morkach taémy, a symbol raz napisany nie moze by¢ zastapiony zadnym innym
symbolem (w szczegolnosci nie moze by¢ “zmazany” tj. zastapiony przez “blank”).
Dla dowolnej maszyny Turinga z jedna tasma, skonstruowaé maszyne write-once z
dwiema tasmami, ktéra akceptuje ten sam jezyk.

(*) Dowies¢, ze maszyny typu write-once z jedng tasma akceptuja jedynie jezyki
regularne.

Dla dowolnej maszyny Turinga (nad dowolnym alfabetem), skonstruowaé réwno-
wazna maszyne o jednej tasmie i czterech stanach. (Wolno powiekszy¢ alfabet ro-
boczy.)

Pojecie automatu ze stosem mozna rozszerzy¢ do automatu z k stosami, £ > 2.
Dowies¢, ze dla kazdej maszyny Turinga istnieje rownowazny jej deterministyczny
automat z dwoma stosami. Wywnioskowac¢ stad, ze automat z k stosami, £ > 2
moze by¢ symulowany przez automat z 2 stosami (symulacje te mozna rowniez
opisaé bezposrednio).

Udowodnié, ze jedli automat skoiiczony wyposazy¢ dodatkowo w kolejke, to otrzy-
many model ma sile obliczeniowa maszyny Turinga, tzn. dla dowolnej maszyny
istnieje automat z kolejka, ktéry rozpoznaje ten sam jezyk.

Automat z k licznikami c¢q, ..., ¢, okreSlamy podobnie jak automat z k stosami,
z tym, ze liczniki zawieraja liczby naturalne, a dostepne operacje na licznikach sa

postaci ¢; 1= ¢; + 1, ¢; := ¢;—1 (gdzie 0—1 = 0), oraz test c; £ 0. Tun. przejicia
?

takiego automatu sa postaci ¢ — p, q,¢; 20— P, q,C; 7é 0—p, q—p,c =c+
1, ¢ — p,c = c;i—1. Nie ma tagmy, lecz zakladamy, ze w chwili poczatkowej dana
wejSciowa jest wartodcia licznika c;, a pozostale liczniki majg wartos¢ 0. Dowiesé
najpierw, ze dla kazdej maszyny Turinga nad alfabetem {1} istnieje réwnowazny
jej automat z 4 licznikami. Nastepnie wykazaé, ze liczba licznikéw moze by¢ dalej
zredukowana do trzech. (Ograniczenie alfabetu maszyny Turinga nie jest istotne,
bo stowa nad alfabetem n-literowym mozna réwniez tatwo “przerobi¢” na liczby
naturalne w systemie unarnym.)
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Obliczalno$é i nierozstrzygalnosé

Udowodni¢ rownowazno$¢ nastepujacych warunkow

e jezyk L jest czesSciowo obliczalny,

e jezyk L jest dziedzing pewnej funkcji czesciowo obliczalnej,

e jezyk L jest zbiorem wartosci pewnej funkcji czeéciowo obliczalnej,
e jezyk L jest zbiorem wartosci pewnej funkcji obliczalnej.

Udowodnié, ze jezyk L jest obliczalny, wtedy i tylko wtedy, gdy jest skoiiczony lub
jest zbiorem wartosci pewnej funkcji obliczalnej rosnacej.

Udowodni¢ nastepujace twierdzenie Turinga—Posta : jesli zaréwno jezyk jak i jego
uzupelnienie sg cze$ciowo obliczalne, to sa rowniez obliczalne.

Udowodnié, ze istnieje zbiér czeSciowo obliczalny, ktérego uzupelnienie nie zawiera
zadnego nieskonczonego zbioru cze$ciowo obliczalnego.

. Udowodni¢, ze istnieje automat z dwoma (sic /) licznikami A taki, ze nie jest roz-

strzygalne, czy A zatrzymuje sie dla danej wejsciowej n. Wskazéwka : wykorzystaé
zadanie 13.

Udowodni¢ nierozstrzygalnos¢ nastepujacego problemu Posta.

Dane sa dwie listy stow : wy, ..., u, € X% 1 wy,...,w, € ¥*. Pytanie, czy istnieje
ciag indeksow iy, ..., i, € {1,...,n}, taki, ze u;, ... u;, = w;, ... w;, 7 Jesli taki ciag
istnieje, to stowo w;, ... u;, (= wy, ... w;,) nazywamy rozwigzaniem danej instancji
problemu Posta.

Wskazowka : Rozwazy¢ zmodyfikowany problem Posta, w ktorym dodatkowo wy-
maga sie, by pierwszymi stowami w rozwiazaniu byty u; i wq (tzn. iy = 1). Redukcja
zmodyfikowanego problemu do oryginalnego problemu Posta nie jest trudna. Z ko-
lei przedstawi¢ algoerytm, ktory dla dowolnej maszyny Turinga M i jej wejScia w
konstruuje instancje P zmodyfikowanego problemu Posta w ten sposéb, ze P ma roz-
wiazanie wtedy i tylko wtedy, gdy M akceptuje w. Rozwiazaniem P (o ile istnieje)
bedzie wtasnie akceptujace obliczenie M na w.

Dowieé¢, ze nastepujace problemy sa nierozstrzygalne :

e Dana gramatyka bezkontekstowa G nad alfabetem . Pytanie : czy L(G) =
¥* 7 (Tzw. problem wuniwersalnosci.) Wskazowka : Dla maszyny Turinga
M, udane obliczenie jest ciagiem co#ci1# ... #cy, gdzie ¢; sa konfiguracjami
M, cy jest konfiguracja poczatkowa, cs akceptujaca, oraz ¢; Fasr ¢;41. Nalezy
przedstawi¢ algorytm, ktory dla dowolnej maszyny M konstruuje gramatyke
G generujaca wszystkie ciagi, ktore nie sa udanymi obliczeniami. A zatem,
gdybyémy potrafili rozstrzyga¢ problem uniwersalnosci, moglibyémy réowniez
rozstrzygaé problem niepustosci (L(M) # 0 7) dla maszyn Turinga, co jest
niemozliwe (na mocy twierdzenia Rice’a).
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8.

e Dane dwie gramatyki bezkontekstowe G, Go. Pytanie : czy L(G1) N L(Gs) #
() 7 Wskazowka : Podobnie jak poprzednie zadanie, ale nalezy wykorzystaé
operacje lustrzanego odbicia.

e Dana gramatyka bezkontekstowa G. Pytanie : czy G jest jednoznaczna (tzn. dla
kazedego stowa w L(G) istnieje doktadnie jedno drzewo wyprowadzenia).
Wskazowka : wykorzysta¢ problem Posta.

Zalozmy, ze wiemy ze jednotasmowa deterministyczna maszyna Turinga M wyko-
nuje zawsze co najwyzej jeden "nawr6t” (to znaczy glowica przesuwa sie w prawo a
od pewnego momentu juz tylko w lewo). Czy problem “w € L(M)” jest rozstrzy-
galny, gdzie w jest stowem wejsciowym a L(M) oznacza zbiér stow akceptowanych
przez M stanem akceptujacym.

Czy nastepujacy problem jest rozstrzygalny. Dane sa dwa stowa u,w € X* oraz
liczba k, sprawdzi¢ czy

FzxeX) (|z| >k & lle(w,z) = Ille(u,z) )

gdzie Ile(w, z) oznacza liczbe wystapienl stowa w jako podstowo x (wystapienia nie
musza by¢ roztaczne).

Hierarchia Chomsky’ego

1. Dowies¢, ze kazda gramatyke monotoniczng, czyli o regutach a — (3, gdzie |5]| > |a/,

mozna sprowadzi¢ do postaci, w ktorej kazda reguta ma forme
aXp — ayp

gdzie X € V, a, 3,7 € (XU V)*, v # ¢ (V - zbior symboli nieterminalnych, > —
zbiér symboli terminalnych).

Uwaga. Przy powyzszym sprowadzeniu trzeba na ogdl powiekszy¢ zbiér symboli
nieterminalnych.

. Dowied¢, ze jezyki kontekstowe, to dokladnie jezyki rozpoznawane przez niedeter-

ministyczne automaty lintowo ograniczone.

Uwaga. Automaty liniowo ograniczone sa okreslone podobnie jak maszyny Turinga,
z tym, ze jedyna dostepna pamieciag sa komoérki tasmy zajete na poczatku przez
stowo wejsciowe (przy czym koniec stowa jest zaznaczony specjalnym markerem).

. Dowie$¢, ze iloraz jezyka kontekstowego przez jezyk regularny moze nie by¢ jezykiem

obliczalnym.
Wskazowka. Wykorzystaé jezyk obliczen maszyny Turinga, ktéra akceptuje jezyk
nieobliczalny.

Wywnioskowaé¢ dalej, ze ani jezyki kontekstowe, ani jezyki obliczalne nie sa za-
mkniete na ilorazy przez jezyki regularne.
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Dowieé¢, ze jezyki czeSciowo obliczalne sa zamkniete na ilorazy przez jezyki cze-
Sciowo obliczalne.

Ktoére z czterech klas hierarchii Chomsky’ego sa zamkniete na operacje U,N, — 7

Z1ozono$¢ obliczeniowa

1. Konstruowalnosé pamieciowa. Skonstruowaé¢ maszyne Turinga off-line, ktéra dla

wejscia w o diugosci n zuzywa doktadnie f(n) komoérek pamieci roboczej, gdzie

f(n) =2n,n% n" 2" logn,...

Konstruowalnosé czasowa. Skonstruowaé maszyne Turinga, ktora dla wejscia w o
dtugoéci n wykonuje dokladnie f(n) krokéw, gdzie f(n) = 2n,3n,n? n* 2" 22" .. .

. Dowies¢, ze klasy P, NP i PSPACE sa zamkniete na operacje *.

Problem domina. Instancja problemu domina obejmuje liczbe naturalng M dana
unarnie oraz skoiiczony zbior wzorcéw kostek domina, tzn. wektorow postaci (up,
down, left, right ), gdzie up, down, left i right sa binarnie zadanymi liczbami, ktore
w tym kontekscie nazywamy kolorami. (Liczba koloréw nie jest ograniczona, a wiec
zalezy od danej instancji problemu.) Pytanie brzmi: czy kwadrat M x M mozna
pokry¢ kostkami domina w ten sposéb, ze sasiednie kostki stykaja sie bokami o tym
samym kolorze, a na bokach kwadratu jest kolor 0 (“bialy”). Zakladamy przy tym, ze
kazdy wzorzec mozna wykorzysta¢ dowolnie wiele razy, ale nie mozna go “obracac”
(tzn. up jest zawsze gorna krawedzia itd.).

Nalezy udowodnié¢, ze problem domina jest NP-zupelny. Wskazéwka : zastosowaé
redukcje generyczna, tzn. wychodzac od dowolnej niedeterministycznej maszyny Tu-
ringa dzialajacej w czasie wielomianowym.

Udowodni¢, ze nastepujacy problem doktadnego pokrycia (ang. exact cover) jest NP-
zupelny. Dana rodzina podzbioréw {1,2,... n} (liczby dane binarnie). Pytanie:
czy istnieje podrodzina podzbioréw roztacznych, ktére w sumie daja {1,2,...,n}.

Wskazéwka : wykorzysta¢ zadanie 4.
Udowodnié¢, ze nastepujacy problem plecakowy (ang. knapsack problem) jest NP-

zupelny. Dane: liczby n,mg,...,my; (binarnie). Pytanie: czy istnieje podzbior
zbioru {my, ..., my} taki, ze m; + ...+ my = n.

Wskazéwka : wykorzysta¢ zadanie 5.

Dowies¢, ze zlozenie dwoch funkeji obliczalnych w pamieci (przestrzeni) logaryt-
micznej jest funkcja obliczalng w pamieci logarytmicznej.

. Dowiesé, ze kazdy problem z klasy NP redukuje sie do problemu $-CNF SAT w

pamieci logarytmiczne;j.



