Exercise 1 (1.5 points). Show that $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$, and find conditions for equality. Show that $I(X ; Y \mid Z) \geq I(Y ; Z \mid X)-I(Y ; Z)+$ $I(X ; Y)$, and find conditions for equality.
Exercise 2 (2 points). Let X_{0}, X_{1}, \ldots be random variables with values in \mathbb{Z}, that describe a random walk with inertia: $X_{0}=0$ with probability $1, X_{1}=1$ or -1 with equal probability $1 / 2$, and for each $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
\mathbb{P}\left(X_{n+2}-X_{n+1}=X_{n+1}-X_{n}\right)=9 / 10 \\
\mathbb{P}\left(X_{n+2}-X_{n+1}=-\left(X_{n+1}-X_{n}\right)\right)=1 / 10
\end{array}\right.
$$

Compute $H\left(X_{0}, \ldots, X_{n}\right)$.
Exercise 3 (1 point). Compute binary Huffman code and Shannon-Fano code of the sum $S=D_{1}+D_{2}$ of two independent dices with 6 faces. Compare their efficiencies with the entropy of S. Suppose now that there are N dices D_{1}, \ldots, D_{N}, with 6 faces each. When N tends to ∞, what can you tell about the efficiencies of binary Huffman codes and Shannon-Fano codes for the sum of those N dices, and the entropy of the sum $D_{1}+\ldots+D_{N}$?
Problem (2 points): Suppose now there are only two dices, but with an even number M of faces each, the same question as above.
Exercise 4 (Axiomatization of entropy, $\mathbf{3}$ points). For each m, let us denote

$$
D_{m}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m} \mid \sum_{i=1}^{m} x_{i}=1\right\}
$$

the set of probability distributions over m events, and for each m, let H_{m} : $D_{m} \rightarrow[0,+\infty)$ be a positive function over the set of probability distributions. Suppose that, for any m and n,

1. Robustness. H_{m} is symmetric and continuous,
2. Product of independent random events.
$H_{m n}\left(\frac{1}{m n}, \ldots, \frac{1}{m n}\right)=H_{m}\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)+H_{n}\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$
3. Grouping two events.
$H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=H_{m-1}\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)$.
4. Normalization.
$H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$.
Let $G: \bigcup_{m \in \mathbb{N}} D_{m} \rightarrow[0,+\infty)$ defined by $G\left(p_{1}, \ldots, p_{m}\right)=H_{m}\left(p_{1}, \ldots, p_{m}\right)$. The goal of this problem is proving that G is equal to H, the measure of (binary) entropy.
Hints: First prove that you can add as many zeros as you want to a probability distribution without changing its value. Secondly, extrapolate the grouping property to handle an arbitrary number of events. Then prove by induction on m that G and H coincide on binary distributions, i.e. distributions $\left(p_{1}, \ldots, p_{2^{m}}\right)$ such that for each $1 \leq i \leq m$, there exists n_{i} such that $p_{i}=n_{i} / 2^{m}$. Conclude with a density argument.
