Information Theory
 Part I. Shannon entropy

Damian Niwiński
University of Warsaw

Winter semester 2020/2021

Disclaimer. Credits to many authors. All errors are mine own.

Je n'ai fait celle-ci plus longue que parce que je n'ai pas eu le loisir de la faire plus courte.
I have made this [letter] longer, because I have not had the time to make it shorter.

Blaise Pascal, Lettres provinciales, 1657

Can any message be made shorter?

Can any message be made shorter?

141592653589793238462643383279502884197169399 37510582097494459230781640628620899862803482534211 70679

Can any message be made shorter?

141592653589793238462643383279502884197169399 37510582097494459230781640628620899862803482534211 70679

100 digits (after comma) of π

Can any message be made shorter?
3.141592653589793238462643383279502884197169399 37510582097494459230781640628620899862803482534211 70679

100 digits (after comma) of π

Can any message be made shorter?

Let n be the smallest integer that cannot be described in English with less than 1000 signs.

Can any message be made shorter?

Let n be the smallest integer that cannot be described in English with less than 1000 signs.
(- Berry's paradox).

Notation, what is it?

Any 1:1 function $\alpha: S \rightarrow \Sigma^{*}$, where Σ is a finite alphabet, is a notation for S.

Notation, what is it?

Any 1:1 function $\alpha: S \rightarrow \Sigma^{*}$, where Σ is a finite alphabet, is a notation for S.

Fact. If $\alpha: S \rightarrow \Sigma^{*}$ is notation for a finite set S, with $|S| \geq 1$ and $|\Sigma|=r \geq 2$ then, for some $s \in S$,

$$
|\alpha(s)| \geq\left\lfloor\log _{r}|S|\right\rfloor .
$$

Notation, what is it?

Any 1:1 function $\alpha: S \rightarrow \Sigma^{*}$, where Σ is a finite alphabet, is a notation for S.

Fact. If $\alpha: S \rightarrow \Sigma^{*}$ is notation for a finite set S, with $|S| \geq 1$ and $|\Sigma|=r \geq 2$ then, for some $s \in S$,

$$
|\alpha(s)| \geq\left\lfloor\log _{r}|S|\right\rfloor .
$$

Proof. The number of strings shorter than some $n \geq 1$ is

$$
1+r+r^{2}+\ldots+r^{n-1}=\frac{r^{n}-1}{r-1}<r^{n}
$$

Therefore, if $|S| \geq r^{n}$ then there must be $s \in S$, such that $|\alpha(s)| \geq n$.

Notation, what is it?

Any 1:1 function $\alpha: S \rightarrow \Sigma^{*}$, where Σ is a finite alphabet, is a notation for S.

Fact. If $\alpha: S \rightarrow \Sigma^{*}$ is notation for a finite set S, with $|S| \geq 1$ and $|\Sigma|=r \geq 2$ then, for some $s \in S$,

$$
|\alpha(s)| \geq\left\lfloor\log _{r}|S|\right\rfloor .
$$

Proof. The number of strings shorter than some $n \geq 1$ is

$$
1+r+r^{2}+\ldots+r^{n-1}=\frac{r^{n}-1}{r-1}<r^{n}
$$

Therefore, if $|S| \geq r^{n}$ then there must be $s \in S$, such that $|\alpha(s)| \geq n$.
Choose $r^{n} \leq|S|<r^{n+1}$.

Numbers with long notation

Fact. If $\alpha: \mathbb{N} \rightarrow \Sigma^{*}$ is notation for natural numbers with $|\Sigma|=r \geq 2$ then, for infinitely many k 's,

$$
|\alpha(k)|>\log _{r} k
$$

Numbers with long notation

Fact. If $\alpha: \mathbb{N} \rightarrow \Sigma^{*}$ is notation for natural numbers with $|\Sigma|=r \geq 2$ then, for infinitely many k 's,

$$
|\alpha(k)|>\log _{r} k
$$

Proof. For $n \geq|\alpha(0)|+1$, let

$$
k_{n}=\min \{k \in \mathbb{N}:|\alpha(k)| \geq n\} .
$$

Numbers with long notation

Fact. If $\alpha: \mathbb{N} \rightarrow \Sigma^{*}$ is notation for natural numbers with $|\Sigma|=r \geq 2$ then, for infinitely many k 's,

$$
|\alpha(k)|>\log _{r} k
$$

Proof. For $n \geq|\alpha(0)|+1$, let

$$
k_{n}=\min \{k \in \mathbb{N}:|\alpha(k)| \geq n\} .
$$

Then $k_{n}>0$, and for $i=0,1, \ldots, k_{n}-1,|\alpha(i)|<n$.

Numbers with long notation

Fact. If $\alpha: \mathbb{N} \rightarrow \Sigma^{*}$ is notation for natural numbers with $|\Sigma|=r \geq 2$ then, for infinitely many k 's,

$$
|\alpha(k)|>\log _{r} k
$$

Proof. For $n \geq|\alpha(0)|+1$, let

$$
k_{n}=\min \{k \in \mathbb{N}:|\alpha(k)| \geq n\}
$$

Then $k_{n}>0$, and for $i=0,1, \ldots, k_{n}-1,|\alpha(i)|<n$.
Hence $k_{n}<r^{n}$, and consequently

$$
\begin{aligned}
\log _{r} k_{n} & <n \\
& \leq\left|\alpha\left(k_{n}\right)\right|
\end{aligned}
$$

Numbers with long notation

The above estimation is tight, for example, with $\Sigma=\{0,1\}$,

n	0	1	2	3	4	5	6	7
$\alpha(n)$	ε	0	1	00	01	10	11	000
i.e., $\alpha(n)=\{0,1\}^{-1} \operatorname{bin}(n+1)$, satisfies								
$\|\alpha(n)\| \leq\left\lceil\log _{2} n\right\rceil$,								

for each $n \geq 2$.

Application

Fact (Euclid). There are infinitely many primes.

Application

Fact (Euclid). There are infinitely many primes.
Proof. Suppose there are only M primes: p_{1}, \ldots, p_{M}. Define $\alpha: \mathbb{N} \rightarrow\{0,1, \#\}$, for $n=p_{1}^{\beta_{1}} \ldots p_{M}^{\beta_{M}}$,

$$
\alpha(n)=\operatorname{bin}\left(\beta_{1}\right) \# \operatorname{bin}\left(\beta_{2}\right) \# \ldots \# \operatorname{bin}\left(\beta_{M}\right)
$$

Application

Fact (Euclid). There are infinitely many primes.
Proof. Suppose there are only M primes: p_{1}, \ldots, p_{M}. Define $\alpha: \mathbb{N} \rightarrow\{0,1, \#\}$, for $n=p_{1}^{\beta_{1}} \ldots p_{M}^{\beta_{M}}$,

$$
\alpha(n)=\operatorname{bin}\left(\beta_{1}\right) \# \operatorname{bin}\left(\beta_{2}\right) \# \ldots \# \operatorname{bin}\left(\beta_{M}\right)
$$

Then

$$
|\alpha(n)| \leq M\left(2+\log _{2} \log _{2} n\right)
$$

for all $n>0$, which clearly contradicts that $|\alpha(n)|>\log _{3} n$, for infinitely many n 's.

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $1: 1$.

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $1: 1$.

We call the set $\{\varphi(s): s \in S\}$ a code as well.
Note. A set $C \subseteq \Sigma^{*}$ is a code if any word in C^{*} is a product of words in C in a unique way.

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $1: 1$.

We call the set $\{\varphi(s): s \in S\}$ a code as well.
Note. A set $C \subseteq \Sigma^{*}$ is a code if any word in C^{*} is a product of words in C in a unique way.

Examples. If no word in C is a prefix of another word, C is a prefix-free code code (sometimes called prefix code).

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $1: 1$.

We call the set $\{\varphi(s): s \in S\}$ a code as well.
Note. A set $C \subseteq \Sigma^{*}$ is a code if any word in C^{*} is a product of words in C in a unique way.

Examples. If no word in C is a prefix of another word, C is a prefix-free code code (sometimes called prefix code).

The set $\{a, a b, b a\}$ is not a code, e.g. $a \cdot b a=a b \cdot a$..

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $\mathbf{1 : 1}$.

We call the set $\{\varphi(s): s \in S\}$ a code as well.
Note. A set $C \subseteq \Sigma^{*}$ is a code if any word in C^{*} is a product of words in C in a unique way.

Examples. If no word in C is a prefix of another word, C is a prefix-free code code (sometimes called prefix code).

The set $\{a, a b, b a\}$ is not a code, e.g. $a \cdot b a=a b \cdot a$..
The set $\{a a, b a a, b a\}$ is a code (not prefix-free).

Codes

For $\varphi: S \rightarrow \Sigma^{*}$, let $\hat{\varphi}\left(s_{1} \ldots s_{\ell}\right)=\varphi\left(s_{1}\right) \ldots \varphi\left(s_{\ell}\right)$.
A notation $\varphi: S \rightarrow \Sigma^{*}$ for a finite set S is a code if the mapping $\hat{\varphi}$ is $\mathbf{1 : 1}$.

We call the set $\{\varphi(s): s \in S\}$ a code as well.
Note. A set $C \subseteq \Sigma^{*}$ is a code if any word in C^{*} is a product of words in C in a unique way.

Examples. If no word in C is a prefix of another word, C is a prefix-free code code (sometimes called prefix code).
The set $\{a, a b, b a\}$ is not a code, e.g. $a \cdot b a=a b \cdot a$..
The set $\{a a, b a a, b a\}$ is a code (not prefix-free).
(Any word in $(a)^{+}+(a)^{*}\left(b a^{+}\right)^{+}$can be uniquely decoded.)

Codes

Property. A code φ is prefix iff, for any $v, w \in S^{*}, \hat{\varphi}(v) \leq \hat{\varphi}(w)$ implies $v \leq w$.

Codes

Property. A code φ is prefix iff, for any $v, w \in S^{*}, \hat{\varphi}(v) \leq \hat{\varphi}(w)$ implies $v \leq w$.

For this reason, a prefix-free code is also called instantaneous.

Codes

Property. A code φ is prefix iff, for any $v, w \in S^{*}, \hat{\varphi}(v) \leq \hat{\varphi}(w)$ implies $v \leq w$.

For this reason, a prefix-free code is also called instantaneous.
For a non-prefix code, e..g, $\{a a, b a a, b a\}$, we may have

$$
\begin{array}{lllll}
\mathbf{b} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \\
\mathbf{b} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a}
\end{array}
$$

Codes

Property. A code φ is prefix iff, for any $v, w \in S^{*}, \hat{\varphi}(v) \leq \hat{\varphi}(w)$ implies $v \leq w$.

For this reason, a prefix-free code is also called instantaneous.
For a non-prefix code, e..g, $\{a a, b a a, b a\}$, we may have

$$
\begin{array}{lllll}
\mathbf{b} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \\
\mathbf{b} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a}
\end{array}
$$

What can we say about the length of words in a code with m elements ?

Kraft's inequality

Fact. If $C \subseteq \Sigma^{*}$ is an instantaneous code $(|\Sigma|=r \geq 2)$ then

$$
\sum_{w \in C} \frac{1}{r^{|w|}} \leq 1
$$

Kraft's inequality

Fact. If $C \subseteq \Sigma^{*}$ is an instantaneous code $(|\Sigma|=r \geq 2)$ then

$$
\sum_{w \in C} \frac{1}{r^{|w|}} \leq 1 .
$$

Proof by example. Take 00, 0100, 0101, 011, 1010, 11.

Kraft's inequality - characterization

Theorem. Let $2 \leq|S|<\infty$, and $\ell: S \rightarrow \mathbb{N}$. Then

$$
\sum_{s \in S} \frac{1}{r^{\ell(s)}} \leq 1
$$

if, and only if, $\ell=|\varphi|$, for some instantaneous code $\varphi: S \rightarrow \Sigma^{*}$, with $|\Sigma|=r$.

Kraft's inequality - characterization

Theorem. Let $2 \leq|S|<\infty$, and $\ell: S \rightarrow \mathbb{N}$. Then

$$
\sum_{s \in S} \frac{1}{r^{\ell(s)}} \leq 1
$$

if, and only if, $\ell=|\varphi|$, for some instantaneous code $\varphi: S \rightarrow \Sigma^{*}$, with $|\Sigma|=r$.

Proof (only if). W.l.o.g. $S=\{1, \ldots, m\}$, and $\ell(1) \leq \ldots \leq \ell(m)$.
For $i=0,1, \ldots, m-1$, let $\varphi(i+1)$ be the lexicographically first word in $\sum^{\ell(i+1)}$ not extending any of $\varphi(1), \ldots, \varphi(i)$.

Kraft's inequality - characterization

Theorem. Let $2 \leq|S|<\infty$, and $\ell: S \rightarrow \mathbb{N}$. Then

$$
\sum_{s \in S} \frac{1}{r^{\ell(s)}} \leq 1
$$

if, and only if, $\ell=|\varphi|$, for some instantaneous code $\varphi: S \rightarrow \Sigma^{*}$, with $|\Sigma|=r$.

Proof (only if). W.l.o.g. $S=\{1, \ldots, m\}$, and $\ell(1) \leq \ldots \leq \ell(m)$.
For $i=0,1, \ldots, m-1$, let $\varphi(i+1)$ be the lexicographically first word in $\sum^{\ell(i+1)}$ not extending any of $\varphi(1), \ldots, \varphi(i)$.
Can we always do it, i.e.

$$
r^{\ell(i+1)-\ell(1)}+r^{\ell(i+1)-\ell(2)}+\ldots+r^{\ell(i+1)-\ell(i)}<r^{\ell(i+1)} ?
$$

Kraft's inequality - characterization

Theorem. Let $2 \leq|S|<\infty$, and $\ell: S \rightarrow \mathbb{N}$. Then

$$
\sum_{s \in S} \frac{1}{r^{\ell(s)}} \leq 1
$$

if, and only if, $\ell=|\varphi|$, for some instantaneous code $\varphi: S \rightarrow \Sigma^{*}$, with $|\Sigma|=r$.

Proof (only if). W.l.o.g. $S=\{1, \ldots, m\}$, and $\ell(1) \leq \ldots \leq \ell(m)$.
For $i=0,1, \ldots, m-1$, let $\varphi(i+1)$ be the lexicographically first word in $\sum^{\ell(i+1)}$ not extending any of $\varphi(1), \ldots, \varphi(i)$.
Can we always do it, i.e.

$$
r^{\ell(i+1)-\ell(1)}+r^{\ell(i+1)-\ell(2)}+\ldots+r^{\ell(i+1)-\ell(i)}<r^{\ell(i+1)} ?
$$

Yes, because

$$
\frac{1}{r^{\ell(1)}}+\frac{1}{r^{\ell(2)}}+\ldots+\frac{1}{r^{\ell(i)}}<1
$$

McMillan's theorem

Theorem. For any code $\varphi: S \rightarrow \Sigma^{*}$, there is an instantaneous code φ^{\prime} with $|\varphi|=\left|\varphi^{\prime}\right|$.
(Thus any code satisfies Kraft's inequality.)

McMillan's theorem

Theorem. For any code $\varphi: S \rightarrow \Sigma^{*}$, there is an instantaneous code φ^{\prime} with $|\varphi|=\left|\varphi^{\prime}\right|$.
(Thus any code satisfies Kraft's inequality.)
Proof. Suppose $K=\sum_{s \in S} \frac{1}{r|\varphi(s)|}>1$.

McMillan's theorem

Theorem. For any code $\varphi: S \rightarrow \Sigma^{*}$, there is an instantaneous code φ^{\prime} with $|\varphi|=\left|\varphi^{\prime}\right|$.
(Thus any code satisfies Kraft's inequality.)
Proof. Suppose $K=\sum_{s \in S} \frac{1}{r|\varphi(s)|}>1$.
Let $\operatorname{Min}=\min \{|\varphi(s)|: s \in S\}$, $\operatorname{Max}=\max \{|\varphi(s)|: s \in S\}$.
Consider

$$
K^{n}=\left(\sum_{s \in S} \frac{1}{r|\varphi(s)|}\right)^{n}=\sum_{i=\text { Min } \cdot n}^{M a x \cdot n} \frac{N_{n, i}}{r^{i}}
$$

where $N_{n, i}$ is the number of sequences $q_{1}, \ldots, q_{n} \in S^{n}$, such that $i=\left|\varphi\left(q_{1}\right)\right|+\ldots+\left|\varphi\left(q_{n}\right)\right|=\left|\hat{\varphi}\left(q_{1} \ldots q_{n}\right)\right|$.

McMillan's theorem

Theorem. For any code $\varphi: S \rightarrow \Sigma^{*}$, there is an instantaneous code φ^{\prime} with $|\varphi|=\left|\varphi^{\prime}\right|$.
(Thus any code satisfies Kraft's inequality.)
Proof. Suppose $K=\sum_{s \in S} \frac{1}{r|\varphi(s)|}>1$.
Let $\operatorname{Min}=\min \{|\varphi(s)|: s \in S\}$, $\operatorname{Max}=\max \{|\varphi(s)|: s \in S\}$.
Consider

$$
K^{n}=\left(\sum_{s \in S} \frac{1}{r|\varphi(s)|}\right)^{n}=\sum_{i=\text { Min } \cdot n}^{M a x \cdot n} \frac{N_{n, i}}{r^{i}}
$$

where $N_{n, i}$ is the number of sequences $q_{1}, \ldots, q_{n} \in S^{n}$, such that $i=\left|\varphi\left(q_{1}\right)\right|+\ldots+\left|\varphi\left(q_{n}\right)\right|=\left|\hat{\varphi}\left(q_{1} \ldots q_{n}\right)\right|$. But at most one such sequence can be encoded by a word in Σ^{i}, hence

$$
\frac{N_{n, i}}{r^{i}} \leq 1
$$

and

$$
K^{n} \leq(\operatorname{Max}-\operatorname{Min}) \cdot n+1, \quad \text { impossible }!
$$

Average length of a code

Let $p: S \rightarrow[0.1]$ be a probability distribution over S.
We wish to minimize

$$
\sum_{s \in S} p(s) \cdot|\varphi(s)|
$$

for a code φ.

Average length of a code

Let $p: S \rightarrow[0.1]$ be a probability distribution over S.
We wish to minimize

$$
\sum_{s \in S} p(s) \cdot|\varphi(s)|,
$$

for a code φ.
Let $S=\left\{s_{1}, \ldots, s_{m}\right\}, p\left(s_{i}\right)=p_{i}$.
Task. Among all tuples $\ell_{1}, \ldots, \ell_{m}$, satisfying Kraft's inequality find a one with minimal

$$
\sum_{i} p_{i} \cdot \ell_{i}
$$

Relation to 20 question game

Relation to 20 question game

Relation to 20 question game

For n possibilities, $\left\lceil\log _{2} n\right\rceil$ question suffices.
$S=\{1,2,3,4,5,6,7,8\}$

Relation to 20 question game

But knowing the probability we can do better.
$\mathrm{p}($ sleeps $)=\frac{1}{2}, \quad \mathrm{p}($ rests $)=\frac{1}{4}, \quad \mathrm{p}($ eats $)=\mathrm{p}($ works $)=\frac{1}{8}$.

Average number of questions:

$$
1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{7}{4}<2=\log _{2} 4 .
$$

Relation to 20 question game

We wish to find an object in S, knowing a probability distribution $p: S \rightarrow[0.1]$.

Task. Find a strategy that minimizes the average number of questions.

Note. Any strategy induces an instantaneous code over $\{0,1\}$: $\varphi(s)=$ the sequence of yes and no answers leading to s.

Conversely, an instantaneous code induces a strategy.

Calculus revisited - convex functions

A function $f:[a, b] \rightarrow \mathbb{R}$ is convex (on $[a, b]$) if $\forall x_{1}, x_{2} \in[a, b]$, $\forall \lambda \in[0,1]$,

$$
\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)
$$

It is strictly convex if the inequality is strict, except for $\lambda \in\{0,1\}$ and $x_{1}=x_{2}$.

Calculus revisited - convex functions

Lemma. If f is continuous on $[a, b]$ and has a second derivative on (a, b) with $f^{\prime \prime} \geq 0\left(f^{\prime \prime}>0\right)$ then it is convex (strictly convex).

Jensen's inequality

Let X be a random variable over a finite probability space S.
If $S=\left\{s_{1}, \ldots, s_{m}\right\}$, we let $p\left(s_{i}\right)=p_{i}, X(s)=x_{i}$.

Jensen's inequality

Let X be a random variable over a finite probability space S.
If $S=\left\{s_{1}, \ldots, s_{m}\right\}$, we let $p\left(s_{i}\right)=p_{i}, X(s)=x_{i}$.
X is constant if there are no $x_{i} \neq x_{j}$ with $p_{i}, p_{j}>0$.

Jensen's inequality

Let X be a random variable over a finite probability space S.
If $S=\left\{s_{1}, \ldots, s_{m}\right\}$, we let $p\left(s_{i}\right)=p_{i}, X(s)=x_{i}$.
X is constant if there are no $x_{i} \neq x_{j}$ with $p_{i}, p_{j}>0$.
The expected value of X is

$$
E X=\sum_{s \in S} p(s) \cdot X(s)=p_{1} x_{1}+\ldots+p_{m} x_{m}
$$

Jensen's inequality

Let X be a random variable over a finite probability space S.
If $S=\left\{s_{1}, \ldots, s_{m}\right\}$, we let $p\left(s_{i}\right)=p_{i}, X(s)=x_{i}$.
X is constant if there are no $x_{i} \neq x_{j}$ with $p_{i}, p_{j}>0$.
The expected value of X is

$$
E X=\sum_{s \in S} p(s) \cdot X(s)=p_{1} x_{1}+\ldots+p_{m} x_{m}
$$

Theorem (Jensen's inequality)
If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function then, for any random variable $X: S \rightarrow[a, b]$,

$$
E f(X) \geq f(E X)
$$

If moreover f is strictly convex then the inequality is strict unless X is constant.

Thm $\ldots \ldots . E f(X) \geq f(E X)$.
Proof. By induction on $|S|$. For $|S|=2$, $p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right) \geq f\left(p_{1} x_{1}+p_{2} x_{2}\right)$, convexity.

Thm $\ldots \ldots . E f(X) \geq f(E X)$.
Proof. By induction on $|S|$. For $|S|=2$,
$p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right) \geq f\left(p_{1} x_{1}+p_{2} x_{2}\right)$, convexity.
Let $|S|=m$, w.l.o.g. $p_{m}<1$.
Let $p_{i}^{\prime}=\frac{p_{i}}{1-p_{m}}$, for $i=1, \ldots, m-1$.

Thm $\ldots \ldots . E f(X) \geq f(E X)$.
Proof. By induction on $|S|$. For $|S|=2$,
$p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right) \geq f\left(p_{1} x_{1}+p_{2} x_{2}\right)$, convexity.
Let $|S|=m$, w.l.o.g. $p_{m}<1$.
Let $p_{i}^{\prime}=\frac{p_{i}}{1-p_{m}}$, for $i=1, \ldots, m-1$.

$$
\begin{aligned}
\sum_{i=1}^{m} p_{i} f\left(x_{i}\right) & =p_{m} f\left(x_{m}\right)+\left(1-p_{m}\right) \sum_{\mathbf{i}=1}^{\mathbf{m}-1} \mathbf{p}_{\mathbf{i}}^{\prime} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \\
& \geq \mathbf{p}_{\mathbf{m}} f\left(x_{m}\right)+\left(\mathbf{1}-\mathbf{p}_{\mathbf{m}}\right) \mathbf{f}\left(\sum_{\mathbf{i}=1}^{\mathbf{m}-1} \mathbf{p}_{\mathbf{i}}^{\prime} \mathbf{x}_{\mathbf{i}}\right) \\
& \geq f\left(\mathbf{p}_{\mathbf{m}} x_{m}+\left(\mathbf{1}-\mathbf{p}_{\mathbf{m}}\right) \sum_{i=1}^{m-1} p_{i}^{\prime} x_{i}\right) \\
& =f\left(\sum_{i=1}^{m} p_{i} x_{i}\right) .
\end{aligned}
$$

If f is strictly convex, but

$$
\begin{aligned}
\sum_{i=1}^{m} p_{i} f\left(x_{i}\right) & =p_{m} f\left(x_{m}\right)+\left(1-p_{m}\right) \sum_{i=1}^{m-1} p_{i}^{\prime} f\left(x_{i}\right) \\
& =p_{m} f\left(x_{m}\right)+\left(1-p_{m}\right)\left(\sum_{i=1}^{m-1} p_{i}^{\prime} x_{i}\right) \\
& =f\left(p_{m} x_{m}+\left(1-p_{m}\right) \sum_{i=1}^{m-1} p_{i}^{\prime} x_{i}\right) \\
& =f\left(\sum_{i=1}^{m} p_{i} x_{i}\right)
\end{aligned}
$$

then $x_{i}=\mathbf{C}$, for all $i=1, \ldots, m-1$, unless $p_{i}^{\prime}=p_{i}=0$.
Moreover, either $p_{m}=0$ or $x_{m}=\sum_{i=1}^{m-1} p_{i}^{\prime} x_{i}=\mathbf{C}$, as well.

The function $x \log x$

Convention: $0 \log _{r} 0=0 \log _{r} \frac{1}{0}=0$.
Justified by $\lim _{x \rightarrow 0} x \log _{r} x=\lim _{x \rightarrow 0}-x \log _{r} \frac{1}{x}=\lim _{y \rightarrow \infty}-\frac{\log _{r} y}{y}=0$.

Fact. For $r>1$, the function $\mathbf{x} \log _{\mathbf{r}} \mathbf{x}$ is strictly convex on $[0, \infty)$ (i.e., on any $[0, M], M>0$).

Proof.

$$
\left(x \log _{r} x\right)^{\prime \prime}=\left(\log _{r} x+x \cdot \frac{1}{x} \cdot \log _{r} e\right)^{\prime}=\frac{1}{x} \cdot \log _{r} e>0
$$

Golden lemma

Theorem (Gibbs' inequality)

Suppose $1=\sum_{i=1}^{m} x_{i} \geq \sum_{i=1}^{m} y_{i}$, where $x_{i} \geq 0$ and $y_{i}>0$, for $i=1, \ldots, m$, and let $r>1$.
Then

$$
\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}
$$

and the equality holds only if $x_{i}=y_{i}$, for $i=1, \ldots, m$.

Golden lemma

Theorem (Gibbs' inequality)

Suppose $1=\sum_{i=1}^{m} x_{i} \geq \sum_{i=1}^{m} y_{i}$, where $x_{i} \geq 0$ and $y_{i}>0$, for $i=1, \ldots, m$, and let $r>1$.
Then

$$
\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}
$$

and the equality holds only if $x_{i}=y_{i}$, for $i=1, \ldots, m$.
Corollary. If $\ell_{1}, \ldots, \ell_{m}$ satisfy $\sum_{i} \frac{1}{r_{i}} \leq 1$ then

$$
\sum_{i} p_{i} \cdot \ell_{i} \geq \sum_{i} p_{i} \cdot \log _{r} \frac{1}{p_{i}}
$$

Hence, the minimum is achieved if $\ell_{i}=\log _{r} \frac{1}{p_{i}}$, for $i=1, \ldots, m$.
$\ldots \ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof. Let us first assume that $\sum_{i=1}^{m} y_{i}=1$. We have

$$
\begin{aligned}
\text { Left }- \text { Right }=\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{x_{i}}{y_{i}} & =\sum_{i=1}^{m} y_{i} \cdot\left(\frac{x_{i}}{y_{i}}\right) \cdot \log _{r} \frac{x_{i}}{y_{i}} \\
& \geq \log _{r} \underbrace{\sum_{i=1}^{m} y_{i} \cdot\left(\frac{x_{i}}{y_{i}}\right)}_{1}=0 .
\end{aligned}
$$

Here we apply Jensen's inequality to the function $x \log _{r} x$ (strictly convex on $[0, \infty)$) and the random variable which takes the value $\left(\frac{x_{i}}{y_{i}}\right)$ with probability y_{i}.
$\ldots \ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof. Let us first assume that $\sum_{i=1}^{m} y_{i}=1$. We have

$$
\begin{aligned}
\text { Left }- \text { Right }=\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{x_{i}}{y_{i}} & =\sum_{i=1}^{m} y_{i} \cdot\left(\frac{x_{i}}{y_{i}}\right) \cdot \log _{r} \frac{x_{i}}{y_{i}} \\
& \geq \log _{r} \underbrace{\sum_{i=1}^{m} y_{i} \cdot\left(\frac{x_{i}}{y_{i}}\right)}_{1}=0 .
\end{aligned}
$$

Here we apply Jensen's inequality to the function $x \log _{r} x$ (strictly convex on $[0, \infty)$) and the random variable which takes the value $\left(\frac{x_{i}}{y_{i}}\right)$ with probability y_{i}.
The equality holds if this random variable is constant.
Remembering that $y_{i}>0$, and $\sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} y_{i}$, we then have $x_{i}=y_{i}$, for $i=1, \ldots, m$.
$\ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof continued, the case $\sum_{i=1}^{m} y_{i}<1$.
$\ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof continued, the case $\sum_{i=1}^{m} y_{i}<1$.
Let $y_{m+1}=1-\sum_{i=1}^{m} y_{i}$, and $x_{m+1}=0$.
$\ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof continued, the case $\sum_{i=1}^{m} y_{i}<1$.
Let $y_{m+1}=1-\sum_{i=1}^{m} y_{i}$, and $x_{m+1}=0$.
Then, by the previous case we have
$\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}}=\sum_{i=1}^{m+1} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m+1} x_{i} \cdot \log _{r} \frac{1}{x_{i}}=\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
$\ldots \ldots \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
Proof continued, the case $\sum_{i=1}^{m} y_{i}<1$.
Let $y_{m+1}=1-\sum_{i=1}^{m} y_{i}$, and $x_{m+1}=0$.
Then, by the previous case we have
$\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{y_{i}}=\sum_{i=1}^{m+1} x_{i} \cdot \log _{r} \frac{1}{y_{i}} \geq \sum_{i=1}^{m+1} x_{i} \cdot \log _{r} \frac{1}{x_{i}}=\sum_{i=1}^{m} x_{i} \cdot \log _{r} \frac{1}{x_{i}}$.
The equality may not hold in this case, as it would imply $x_{i}=y_{i}$, for $i=1, \ldots, m+1$, which contradicts the choice of $y_{m+1} \neq x_{m+1}$.

Shannon's entropy

The entropy of a finite probabilistic space S (with parameter $r>1$) is

$$
\begin{aligned}
H_{r}(S) & =\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)} \\
& =-\sum_{s \in S} p(s) \cdot \log _{r} p(s)
\end{aligned}
$$

Traditionally, $\mathrm{H}=\mathrm{H}_{2}$.

Shannon's entropy

The entropy of a finite probabilistic space S (with parameter $r>1)$ is

$$
\begin{aligned}
H_{r}(S) & =\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)} \\
& =-\sum_{s \in S} p(s) \cdot \log _{r} p(s)
\end{aligned}
$$

Traditionally, $\mathrm{H}=\mathrm{H}_{2}$.
First occurred in: Claude Shannon, A Mathematical Theory of Communication, 1948.

Shannon's entropy

$$
H_{r}(S)=\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)}
$$

Property.

$$
0 \leq H_{r}(S) \leq \log _{r}|S|
$$

Shannon's entropy

$H_{r}(S)=\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)}$

Property.

$$
0 \leq H_{r}(S) \leq \log _{r}|S| .
$$

The equality $0=H_{r}(S)$ holds iff $p(s)=1$, for some $s \in S$.
The equality $H_{r}(S)=\log _{r}|S|$ holds iff $p(s)=\frac{1}{|S|}$, for all $s \in S$.

Shannon's entropy

$H_{r}(S)=\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)}$

Property.

$$
0 \leq H_{r}(S) \leq \log _{r}|S|
$$

The equality $0=H_{r}(S)$ holds iff $p(s)=1$, for some $s \in S$.
The equality $H_{r}(S)=\log _{r}|S|$ holds iff $p(s)=\frac{1}{|S|}$, for all $s \in S$.
Proof. By the Golden Lemma with $x_{i}=p\left(s_{i}\right)$ and $y_{i}=\frac{1}{|S|}$,

$$
\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(s)} \leq \sum_{s \in S} p(s) \cdot \log _{r}|S|=\log _{r}|S|
$$

with the equality for $p(s)=\frac{1}{|S|}$.

Minimal code length

For a code $\varphi: S \rightarrow \Sigma^{*}$ (with $|\Sigma| \geq 2$), by the Kraft inequality and Golden Lemma

$$
\begin{aligned}
H_{r}(S) \leq & L(\varphi) \\
& \| \\
& \sum_{s \in S} p(s) \cdot|\varphi(s)|
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
H_{r}(S) \leq & L_{r}(S) \\
& \| \\
& \min \left\{L(\varphi): \varphi: S \rightarrow \Sigma^{*} \text { is a code }\right\}
\end{aligned}
$$

Minimal code length
For a code $\varphi: S \rightarrow \Sigma^{*}$ (with $|\Sigma| \geq 2$), by the Kraft inequality and Golden Lemma

$$
\begin{aligned}
H_{r}(S) \leq & L(\varphi) \\
& \| \\
& \sum_{s \in S} p(s) \cdot|\varphi(s)|
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
H_{r}(S) \leq & L_{r}(S) \\
& \| \\
& \min \left\{L(\varphi): \varphi: S \rightarrow \Sigma^{*} \text { is a code }\right\}
\end{aligned}
$$

That min exists is an exercise; it is realized by the Huffman coding (\longrightarrow Tutorials).

Example - game revisited

$\mathrm{p}($ sleeps $)=\frac{1}{2}, \quad \mathrm{p}($ rests $)=\frac{1}{4}, \quad \mathrm{p}($ eats $)=\mathrm{p}($ works $)=\frac{1}{8}$.

$$
L(\varphi)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot\left(\frac{1}{8}+\frac{1}{8}\right)=H_{2}(S)
$$

Hence the strategy is optimal !

Example - game revisited

$\mathrm{p}($ sleeps $)=\frac{1}{2}, \quad \mathrm{p}($ rests $)=\frac{1}{4}, \quad \mathrm{p}($ eats $)=\mathrm{p}($ works $)=\frac{1}{8}$.

$$
L(\varphi)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot\left(\frac{1}{8}+\frac{1}{8}\right)=H_{2}(S)
$$

Hence the strategy is optimal !
The number of questions for an option of probability q is $\log _{2} \frac{1}{q}$.

Shannon-Fano coding

Theorem.

$$
H_{r}(S) \leq L_{r}(S) \leq H_{r}(S)+1
$$

Moreover, the equality $H_{r}(S)=L_{r}(S)$ holds if and only if $|S| \geq 2$ and all probabilities $p(s)$ are integer powers of $\frac{1}{r}$, and the equality $L_{r}(S)=H_{r}(S)+1$ holds if and only if $H_{r}(S)=0$.
Proof. If $|S|=1$ then $0=H_{r}(S)<L_{r}(S)=1$. Let $|S| \geq 2$.
The inequality $H_{r}(S) \leq L_{r}(S)$ already proved. The equality holds iff $H_{r}(S)=L(\varphi)$, for some code φ. The claim follows from Golden Lemma.

Proof of $L_{r}(S)<H_{r}(S)+1$ unless $H_{r}(S)=0$. Let

$$
\ell(s)=\left\lceil\log _{r} \frac{1}{p(s)}\right\rceil
$$

provided that $p(s)>0$. Then

$$
\sum_{s: p(s)>0} \frac{1}{r^{\ell(s)}} \leq \sum_{p(s)>0} p(s)=\sum_{s \in S} p(s)=1
$$

If $(\forall s \in S) p(s)>0$, then ℓ is defined on the whole S, and satisfies the Kraft inequality, hence there is a code with $|\varphi|=\ell$, and

$$
L(\varphi)=\sum_{s \in S} p(s) \cdot \ell(s)<\sum_{s \in S} p(s) \cdot\left(\log _{r} \frac{1}{p(s)}+1\right)=H_{r}(S)+1
$$

Suppose $p(s)$ is 0 , for some s. If

$$
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}<1
$$

then we can extend ℓ to all s, preserving the Kraft inequality.
Again, there is a code with $|\varphi|=\ell$, satisfying

$$
L(\varphi)=\sum_{s \in S} p(s) \cdot \ell(s)<\sum_{s \in S} p(s) \cdot\left(\log _{r} \frac{1}{p(s)}+1\right)=H_{r}(S)+1
$$

Finally, suppose that

$$
\begin{equation*}
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}=1 \tag{*}
\end{equation*}
$$

Finally, suppose that

$$
\begin{equation*}
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}=1 \tag{*}
\end{equation*}
$$

We choose s^{\prime} with $p\left(s^{\prime}\right)>0$, and let

$$
\begin{aligned}
\ell^{\prime}\left(s^{\prime}\right) & =\ell\left(s^{\prime}\right)+1 \\
\ell^{\prime}(s) & =\ell(s), \text { for } s \neq s^{\prime}
\end{aligned}
$$

Finally, suppose that

$$
\begin{equation*}
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}=1 \tag{*}
\end{equation*}
$$

We choose s^{\prime} with $p\left(s^{\prime}\right)>0$, and let

$$
\begin{aligned}
\ell^{\prime}\left(s^{\prime}\right) & =\ell\left(s^{\prime}\right)+1 \\
\ell^{\prime}(s) & =\ell(s), \text { for } s \neq s^{\prime}
\end{aligned}
$$

Again extend ℓ^{\prime} so that there is a code with $|\varphi|=\ell^{\prime}$.

Finally, suppose that

$$
\begin{equation*}
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}=1 \tag{*}
\end{equation*}
$$

We choose s^{\prime} with $p\left(s^{\prime}\right)>0$, and let

$$
\begin{aligned}
\ell^{\prime}\left(s^{\prime}\right) & =\ell\left(s^{\prime}\right)+1 \\
\ell^{\prime}(s) & =\ell(s), \text { for } s \neq s^{\prime}
\end{aligned}
$$

Again extend ℓ^{\prime} so that there is a code with $|\varphi|=\ell^{\prime}$.
But $(*)$ implies $\ell(s)=\left\lceil\log _{r} \frac{1}{p(s)}\right\rceil=\log _{r} \frac{1}{p(s)}$. Hence

Finally, suppose that

$$
\begin{equation*}
\sum_{p(s)>0} \frac{1}{r^{\ell(s)}}=1 \tag{*}
\end{equation*}
$$

We choose s^{\prime} with $p\left(s^{\prime}\right)>0$, and let

$$
\begin{aligned}
\ell^{\prime}\left(s^{\prime}\right) & =\ell\left(s^{\prime}\right)+1 \\
\ell^{\prime}(s) & =\ell(s), \text { for } s \neq s^{\prime}
\end{aligned}
$$

Again extend ℓ^{\prime} so that there is a code with $|\varphi|=\ell^{\prime}$.
But $(*)$ implies $\ell(s)=\left\lceil\log _{r} \frac{1}{p(s)}\right\rceil=\log _{r} \frac{1}{p(s)}$. Hence

$$
\begin{aligned}
L(\varphi) & =\sum_{p(s)>0} p(s) \cdot \ell^{\prime}(s) \\
& =p\left(s^{\prime}\right)+\sum_{p(s)>0} p(s) \cdot \ell(s) \\
& =p\left(s^{\prime}\right)+H_{r}(S) \\
& <H_{r}(S)+1
\end{aligned}
$$

unless there is no s^{\prime} with $0<p\left(s^{\prime}\right)<1$.

Towards a better coding
Can we shrink the gap $\left[H_{r}(S), L_{r}(S)\right]$ further?

Towards a better coding

Can we shrink the gap $\left[H_{r}(S), L_{r}(S)\right]$ further?
Example. $S=\left\{s_{1}, s_{2}\right\}, p\left(s_{1}\right)=\frac{3}{4}, p\left(s_{2}\right)=\frac{1}{4}$.

$$
H_{2}(S)<1=L_{2}(S)
$$

Towards a better coding

Can we shrink the gap $\left[H_{r}(S), L_{r}(S)\right]$ further?
Example. $S=\left\{s_{1}, s_{2}\right\}, p\left(s_{1}\right)=\frac{3}{4}, p\left(s_{2}\right)=\frac{1}{4}$.

$$
H_{2}(S)<1=L_{2}(S)
$$

Encode 2-blocks

$$
\begin{array}{ll}
s_{1} s_{1} \mapsto 0 & s_{1} s_{2} \mapsto 10 \\
s_{2} s_{1} \mapsto 110 & s_{2} s_{2} \mapsto 111
\end{array}
$$

Towards a better coding

Can we shrink the gap $\left[H_{r}(S), L_{r}(S)\right]$ further?
Example. $S=\left\{s_{1}, s_{2}\right\}, p\left(s_{1}\right)=\frac{3}{4}, p\left(s_{2}\right)=\frac{1}{4}$.

$$
H_{2}(S)<1=L_{2}(S)
$$

Encode 2-blocks

$$
\begin{array}{ll}
s_{1} s_{1} \mapsto 0 & s_{1} s_{2} \mapsto 10 \\
s_{2} s_{1} \mapsto 110 & s_{2} s_{2} \mapsto 111
\end{array}
$$

With $p\left(s_{i}, s_{j}\right)=p\left(s_{i}\right) \cdot p\left(s_{j}\right)$, the average length of our encoding is
$\left(\frac{3}{4}\right)^{2} \cdot 1+\frac{3}{4} \cdot \frac{1}{4} \cdot(2+3)+\left(\frac{1}{4}\right)^{2} \cdot 3=\frac{9}{16}+\frac{15}{16}+\frac{3}{16}=\frac{27}{16}<2$.

Entropy of product space

Fact. Let, for $(s . q) \in S \times Q, p(s, q)=p(s) \cdot p(q)$. Then

$$
H_{r}(S \times Q)=
$$

Entropy of product space

Fact. Let, for $(s . q) \in S \times Q, p(s, q)=p(s) \cdot p(q)$. Then

$$
H_{r}(S \times Q)=H_{r}(S)+H_{r}(Q)
$$

Entropy of product space

Fact. Let, for $(s . q) \in S \times Q, p(s, q)=p(s) \cdot p(q)$. Then

$$
H_{r}(S \times Q)=H_{r}(S)+H_{r}(Q)
$$

Proof.

$$
\begin{aligned}
H(S \times Q) & =-\sum_{s, q} p(s, q) \cdot \log p(s, q) \\
& =-\sum_{s, q} p(s) \cdot p(q) \cdot(\log p(s)+\log p(q)) \\
& =-\sum_{s, q} p(s) p(q) \cdot \log p(s)-\sum_{s, q} p(s) p(q) \cdot \log p(q) \\
& =\sum_{q} p(q) \cdot H(S)+\sum_{s} p(s) \cdot H(Q) \\
& =H(S)+H(Q) .
\end{aligned}
$$

Shannon's coding theorem

Consequently, with $p\left(s_{1}, \ldots, s_{n}\right)=p\left(s_{1}\right) \cdot \ldots \cdot p\left(s_{n}\right)$,

$$
H_{r}\left(S^{n}\right)=n \cdot H_{r}(S)
$$

Shannon's coding theorem

Consequently, with $p\left(s_{1}, \ldots, s_{n}\right)=p\left(s_{1}\right) \cdot \ldots \cdot p\left(s_{n}\right)$,

$$
H_{r}\left(S^{n}\right)=n \cdot H_{r}(S)
$$

Theorem. For any finite probabilistic space S and $r \geq 2$,

$$
\lim _{n \rightarrow \infty} \frac{L_{r}\left(S^{n}\right)}{n}=H_{r}(S)
$$

Shannon's coding theorem

Consequently, with $p\left(s_{1}, \ldots, s_{n}\right)=p\left(s_{1}\right) \cdot \ldots \cdot p\left(s_{n}\right)$,

$$
H_{r}\left(S^{n}\right)=n \cdot H_{r}(S)
$$

Theorem. For any finite probabilistic space S and $r \geq 2$,

$$
\lim _{n \rightarrow \infty} \frac{L_{r}\left(S^{n}\right)}{n}=H_{r}(S)
$$

Proof. Recall

$$
H_{r}\left(S^{n}\right) \leq L_{r}\left(S^{n}\right) \leq H_{r}\left(S^{n}\right)+1
$$

Since $H_{r}\left(S^{n}\right)=n \cdot H_{r}(S)$, this yields

$$
H_{r}(S) \leq \frac{L_{r}\left(S^{n}\right)}{n} \leq H_{r}(S)+\frac{1}{n}
$$

Example - group testing

The state of a population consisting of N people is described by a vector of N bits ($\mathbf{1}$ - ill, $\mathbf{0}$ - healthy).
If the probability of being ill is $0<p<1$, the entropy for an individual is

$$
H(p)=-p \log p-(1-p) \log (1-p)
$$

and the entropy of the population is $N \cdot H(p)$ (assuming independence of events).

Group testing with 2 possible outcomes:

- someone in the group is infected,
- all people in the group are healthy,
is a binary coding method.
This gives us an estimation on the average number of tests T_{N}

$$
N \cdot H(p) \leq T_{N} .
$$

Random variables - notational conventions

For random variables $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$,

$$
\begin{aligned}
\sum_{s: A(s)=a} p(s)= & p(A=a) \\
= & p(a) \\
p(A=a \mid B=b)= & p(a \mid b) \\
p((A=a) \wedge(B=b))= & p(a \wedge b) \\
& \text { etc. }
\end{aligned}
$$

Entropy of random variable

For a random variable $X: S \rightarrow \mathcal{T}$,

$$
H_{r}(X) \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}} p(X=t) \cdot \log _{r} \frac{1}{p(X=t)}
$$

Entropy of random variable

For a random variable $X: S \rightarrow \mathcal{T}$,

$$
H_{r}(X) \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}} p(X=t) \cdot \log _{r} \frac{1}{p(X=t)}
$$

Note: $H_{r}(X)=E \operatorname{LogPX}_{r}$, where

Entropy of random variable

For a random variable $X: S \rightarrow \mathcal{T}$,

$$
H_{r}(X) \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}} p(X=t) \cdot \log _{r} \frac{1}{p(X=t)}
$$

Note: $H_{r}(X)=E \operatorname{LogPX}_{r}$, where

$$
\operatorname{LogPX}_{r}(s)=\left\{\begin{array}{lll}
\log _{r} \frac{1}{p(X=X(s))} & \text { if } & p(s)>0 \\
0 & \text { if } & p(s)=0
\end{array}\right.
$$

Entropy of random variable

For a random variable $X: S \rightarrow \mathcal{T}$,

$$
H_{r}(X) \stackrel{\text { def }}{=} \sum_{t \in \mathcal{T}} p(X=t) \cdot \log _{r} \frac{1}{p(X=t)}
$$

Note: $H_{r}(X)=E \operatorname{LogPX} X_{r}$, where

$$
\operatorname{LogPX}_{r}(s)=\left\{\begin{array}{lll}
\log _{r} \frac{1}{p(X=X(s))} & \text { if } & p(s)>0 \\
0 & \text { if } & p(s)=0
\end{array}\right.
$$

Indeed,

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} p(X=t) \cdot \log _{r} \frac{1}{p(X=t)} & =\sum_{t \in \mathcal{T}} \sum_{X(s)=t} p(s) \cdot \log _{r} \frac{1}{p(X=t)} \\
& =\sum_{s \in S} p(s) \cdot \log _{r} \frac{1}{p(X=X(s))}
\end{aligned}
$$

Conditional entropy

Let $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$. For $a \in \mathcal{A}$ with $p(a)>0$,

$$
H_{r}(B \mid a)=\sum_{b \in \mathcal{B}} p(b \mid a) \cdot \log _{r} \frac{1}{p(b \mid a)}
$$

For $p(a)=0, H_{r}(B \mid a)=0$.

Conditional entropy

Let $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$. For $a \in \mathcal{A}$ with $p(a)>0$,

$$
H_{r}(B \mid a)=\sum_{b \in \mathcal{B}} p(b \mid a) \cdot \log _{r} \frac{1}{p(b \mid a)}
$$

For $p(a)=0, H_{r}(B \mid a)=0$.

$$
H_{r}(B \mid A) \stackrel{\text { def }}{=} \sum_{a \in \mathcal{A}} p(a) \cdot H_{r}(B \mid a)
$$

Conditional entropy

Let $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$. For $a \in \mathcal{A}$ with $p(a)>0$,

$$
H_{r}(B \mid a)=\sum_{b \in \mathcal{B}} p(b \mid a) \cdot \log _{r} \frac{1}{p(b \mid a)}
$$

For $p(a)=0, H_{r}(B \mid a)=0$.

$$
H_{r}(B \mid A) \stackrel{\text { def }}{=} \sum_{a \in \mathcal{A}} p(a) \cdot H_{r}(B \mid a)
$$

Note: if A and B are independent then $p(b \mid a)=p(b)$, and hence $H_{r}(B \mid A)=H_{r}(B)$.

Conditional entropy

Let $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$. For $a \in \mathcal{A}$ with $p(a)>0$,

$$
H_{r}(B \mid a)=\sum_{b \in \mathcal{B}} p(b \mid a) \cdot \log _{r} \frac{1}{p(b \mid a)}
$$

For $p(a)=0, H_{r}(B \mid a)=0$.

$$
H_{r}(B \mid A) \stackrel{\text { def }}{=} \sum_{a \in \mathcal{A}} p(a) \cdot H_{r}(B \mid a)
$$

Note: if A and B are independent then $p(b \mid a)=p(b)$, and hence $H_{r}(B \mid A)=H_{r}(B)$.

Similarly, $H_{r}(A \mid B)=H_{r}(A)$.

Conditional entropy of function

If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ then

$$
H_{r}(\varphi(A) \mid A)=
$$

Conditional entropy of function

If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ then

$$
H_{r}(\varphi(A) \mid A)=0 .
$$

Indeed, if $p(A=a)>0$ then $p(\varphi(A)=\varphi(a) \mid A=a)=1$, hence $\log _{r} \frac{1}{p(\varphi(A)=\varphi(a) \mid A=a)}=0$.

Conditional entropy of function

If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ then

$$
H_{r}(\varphi(A) \mid A)=0 .
$$

Indeed, if $p(A=a)>0$ then $p(\varphi(A)=\varphi(a) \mid A=a)=1$, hence $\log _{r} \frac{1}{p(\varphi(A)=\varphi(a) \mid A=a)}=0$.

Conversely, if

$$
H_{r}(B \mid A)=0
$$

then, for all $a, p(a)=0$, or

Conditional entropy of function

If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ then

$$
H_{r}(\varphi(A) \mid A)=0 .
$$

Indeed, if $p(A=a)>0$ then $p(\varphi(A)=\varphi(a) \mid A=a)=1$, hence $\log _{r} \frac{1}{p(\varphi(A)=\varphi(a) \mid A=a)}=0$.

Conversely, if

$$
H_{r}(B \mid A)=0
$$

then, for all $a, p(a)=0$, or there is a unique b, such that $p(b \mid a)=1$.

Conditional entropy of function

If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ then

$$
H_{r}(\varphi(A) \mid A)=0 .
$$

Indeed, if $p(A=a)>0$ then $p(\varphi(A)=\varphi(a) \mid A=a)=1$, hence $\log _{r} \frac{1}{p(\varphi(A)=\varphi(a) \mid A=a)}=0$.

Conversely, if

$$
H_{r}(B \mid A)=0
$$

then, for all $a, p(a)=0$, or there is a unique b, such that $p(b \mid a)=1$.

Hence $B=\varphi(A)$, for some $\varphi: \mathcal{A} \rightarrow \mathcal{B}$.

Joint entropy

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$, let

$$
(A, B)(s)=(A(s), B(s))
$$

Joint entropy

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$, let

$$
(A, B)(s)=(A(s), B(s))
$$

Note: $p((A, B)=(a, b))=p((A=a) \wedge(B=b))$.
Then

Joint entropy

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$, let

$$
(A, B)(s)=(A(s), B(s))
$$

Note: $p((A, B)=(a, b))=p((A=a) \wedge(B=b))$.
Then

$$
H_{r}(A, B)=\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)}
$$

Joint entropy

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$, let

$$
(A, B)(s)=(A(s), B(s))
$$

Note: $p((A, B)=(a, b))=p((A=a) \wedge(B=b))$.
Then

$$
H_{r}(A, B)=\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)}
$$

If A and B are independent (i.e., $p(a \wedge b)=p(a) \cdot p(b)$),

Joint entropy

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$, let

$$
(A, B)(s)=(A(s), B(s))
$$

Note: $p((A, B)=(a, b))=p((A=a) \wedge(B=b))$.
Then

$$
H_{r}(A, B)=\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)} .
$$

If A and B are independent (i.e., $p(a \wedge b)=p(a) \cdot p(b)$),

$$
H_{r}(A, B)=H_{r}(A)+H_{r}(B) .
$$

Joint entropy

Theorem.

$$
H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)
$$

and the equality holds if and only if A and B are independent.

Joint entropy

Theorem.

$$
H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)
$$

and the equality holds if and only if A and B are independent.
Proof.

$$
\begin{aligned}
H_{r}(A, B) & =\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)} \\
H_{r}(A)+H_{r}(B) & =\sum_{a \in \mathcal{A}} p(a) \log _{r} \frac{1}{p(a)}+\sum_{b \in \mathcal{B}} p(b) \log _{r} \frac{1}{p(b)} \\
& =\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} p(a \wedge b) \log _{r} \frac{1}{p(a)}+\sum_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} p(a \wedge b) \log _{r} \frac{1}{p(b)} \\
& =\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \log _{r} \frac{1}{p(a) p(b)}
\end{aligned}
$$

Joint entropy

Theorem.

$$
H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)
$$

and the equality holds if and only if A and B are independent.
Proof.

$$
\begin{aligned}
H_{r}(A, B) & =\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)} \\
H_{r}(A)+H_{r}(B) & =\sum_{a \in \mathcal{A}} p(a) \log _{r} \frac{1}{p(a)}+\sum_{b \in \mathcal{B}} p(b) \log _{r} \frac{1}{p(b)} \\
& =\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} p(a \wedge b) \log _{r} \frac{1}{p(a)}+\sum_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} p(a \wedge b) \log _{r} \frac{1}{p(b)} \\
& =\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \log _{r} \frac{1}{p(a) p(b)}
\end{aligned}
$$

Proof of $H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)$.
Let

$$
\mathcal{A}^{+}=\{a \in \mathcal{A}: p(a)>0\}, \quad \mathcal{B}^{+}=\{b \in \mathcal{B}: p(b)>0\}
$$

We have

Proof of $H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)$.
Let

$$
\mathcal{A}^{+}=\{a \in \mathcal{A}: p(a)>0\}, \quad \mathcal{B}^{+}=\{b \in \mathcal{B}: p(b)>0\}
$$

We have

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & =\sum_{(a, b) \in \mathcal{A}^{+} \times \mathcal{B}^{+}} p(a \wedge b) \log _{r} \frac{1}{p(a) p(b)} \\
H_{r}(A, B) & =\sum_{a \in \mathcal{A}^{+}, b \in \mathcal{B}^{+}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)} .
\end{aligned}
$$

Proof of $H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)$.
Let

$$
\mathcal{A}^{+}=\{a \in \mathcal{A}: p(a)>0\}, \quad \mathcal{B}^{+}=\{b \in \mathcal{B}: p(b)>0\} .
$$

We have

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & =\sum_{(a, b) \in \mathcal{A}^{+} \times \mathcal{B}^{+}} p(a \wedge b) \log _{r} \frac{1}{p(a) p(b)} \\
H_{r}(A, B) & =\sum_{a \in \mathcal{A}^{+}, b \in \mathcal{B}^{+}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)}
\end{aligned}
$$

Now the inequality follows from the Golden Lemma.

Proof of $H_{r}(A, B) \leq H_{r}(A)+H_{r}(B)$.
Let

$$
\mathcal{A}^{+}=\{a \in \mathcal{A}: p(a)>0\}, \quad \mathcal{B}^{+}=\{b \in \mathcal{B}: p(b)>0\}
$$

We have

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & =\sum_{(a, b) \in \mathcal{A}^{+} \times \mathcal{B}^{+}} p(a \wedge b) \log _{r} \frac{1}{p(a) p(b)} \\
H_{r}(A, B) & =\sum_{a \in \mathcal{A}^{+}, b \in \mathcal{B}^{+}} p(a \wedge b) \cdot \log _{r} \frac{1}{p(a \wedge b)}
\end{aligned}
$$

Now the inequality follows from the Golden Lemma.
The equality holds if only if

$$
p(a \wedge b)=p(a) \cdot p(b)
$$

for all $(a, b) \in \mathcal{A}^{(+)} \times \mathcal{B}^{(+)}$, i.e. iff A and B are independent.

Mutual information

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$,

$$
I_{r}(A ; B)=H_{r}(A)+H_{r}(B)-H_{r}(A, B)
$$

is the mutual information of variables A and B.

Mutual information

For $A: S \rightarrow \mathcal{A}, B: S \rightarrow \mathcal{B}$,

$$
I_{r}(A ; B)=H_{r}(A)+H_{r}(B)-H_{r}(A, B)
$$

is the mutual information of variables A and B.
Note:

$$
I(A ; B)=\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b)\left(\log \frac{1}{p(a) p(b)}-\log \frac{1}{p(a \wedge b)}\right) .
$$

\approx "distance from independence".

Chain rule

$$
H_{r}(A, B)=H_{r}(A \mid B)+H_{r}(B) .
$$

Chain rule

$$
H_{r}(A, B)=H_{r}(A \mid B)+H_{r}(B) .
$$

Proof.

$$
\begin{aligned}
H(A, B)= & \sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(a \wedge b) \cdot \log \frac{1}{p(a \wedge b)} \\
= & \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}^{+}} p(a \mid b) p(b) \cdot \log \frac{1}{p(a \mid b) p(b)} \\
= & \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}^{+}} p(a \mid b) p(b) \cdot\left(\log \frac{1}{p(a \mid b)}+\log \frac{1}{p(b)}\right) \\
= & \sum_{b \in \mathcal{B}^{+}} p(b) \cdot \sum_{a \in \mathcal{A}} p(a \mid b) \cdot \log \frac{1}{p(a \mid b)}+ \\
& +\sum_{b \in \mathcal{B}^{+}} p(b) \log \frac{1}{p(b)} \cdot \underbrace{\sum_{a \in \mathcal{A}} p(a \mid b)}_{1} \\
= & H_{r}(A \mid B)+H_{r}(B)
\end{aligned}
$$

Conditional entropy revisited

Joint entropy + chain rule:

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & \geq H_{r}(A, B) \\
& =H_{r}(A \mid B)+H_{r}(B)
\end{aligned}
$$

Conditional entropy revisited

Joint entropy + chain rule:

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & \geq H_{r}(A, B) \\
& =H_{r}(A \mid B)+H_{r}(B)
\end{aligned}
$$

Corollary

$$
H_{r}(A \mid B) \leq H_{r}(A)
$$

and the equality holds if and only if A and B are independent.

Conditional entropy revisited

Joint entropy + chain rule:

$$
\begin{aligned}
H_{r}(A)+H_{r}(B) & \geq H_{r}(A, B) \\
& =H_{r}(A \mid B)+H_{r}(B)
\end{aligned}
$$

Corollary

$$
H_{r}(A \mid B) \leq H_{r}(A),
$$

and the equality holds if and only if A and B are independent.
Note: It may be $H_{r}(A \mid B=b)>H_{r}(A)$, for some b.

Chain rule for $n \geq 2$

$$
\begin{aligned}
H\left(A_{1}, \ldots, A_{n}\right)= & H\left(A_{1} \mid A_{2}, \ldots, A_{n}\right)+H\left(A_{2}, \ldots, A_{n}\right) \\
= & H\left(A_{1} \mid A_{2}, \ldots, A_{n}\right)+H\left(A_{2} \mid A_{3}, \ldots, A_{n}\right)+ \\
& +H\left(A_{3}, \ldots, A_{n}\right) \\
= & \ldots \ldots \\
= & \sum_{i=1}^{n} H\left(A_{i} \mid A_{i+1}, \ldots, A_{n}\right)
\end{aligned}
$$

where $H\left(A_{n} \mid \emptyset\right)=H\left(A_{n}\right)$.

Chain rule for $n \geq 2$

$$
\begin{aligned}
H\left(A_{1}, \ldots, A_{n}\right)= & H\left(A_{1} \mid A_{2}, \ldots, A_{n}\right)+H\left(A_{2}, \ldots, A_{n}\right) \\
= & H\left(A_{1} \mid A_{2}, \ldots, A_{n}\right)+H\left(A_{2} \mid A_{3}, \ldots, A_{n}\right)+ \\
& +H\left(A_{3}, \ldots, A_{n}\right) \\
= & \ldots \ldots \\
= & \sum_{i=1}^{n} H\left(A_{i} \mid A_{i+1}, \ldots, A_{n}\right)
\end{aligned}
$$

where $H\left(A_{n} \mid \emptyset\right)=H\left(A_{n}\right)$.
Corollary.

$$
H\left(A_{1}, \ldots, A_{n}\right) \leq H\left(A_{1}\right)+\ldots+H\left(A_{n}\right)
$$

and the equality holds if and only if A_{1}, \ldots, A_{n} are independent, i.e.

$$
p\left(a_{1} \wedge \ldots \wedge a_{n}\right)=p\left(a_{1}\right) \cdot \ldots \cdot p\left(a_{n}\right) .
$$

Conditional chain rule

$$
H(A, B \mid C)=H(A \mid B, C)+H(B \mid C) .
$$

Proof.

Analogous to the unconditional case.
We use the fact that, whenever $p(a \wedge b \mid c)>0$,

$$
p(a \wedge b \mid c)=\frac{p(a \wedge b \wedge c)}{p(c)}=\frac{p(a \wedge b \wedge c)}{p(b \wedge c)} \cdot \frac{p(b \wedge c)}{p(c)}=p(a \mid b \wedge c) \cdot p(b \mid c)
$$

Simple but tedious calculation.

Conditional joint entropy

Theorem.

$$
H(A, B \mid C) \leq H(A \mid C)+H(B \mid C)
$$

and the equality holds if and only if A and B are conditionally independent given C, i.e.,

$$
p(A=a \wedge B=b \mid C=c)=p(A=a \mid C=c) \cdot p(B=b \mid C=c)
$$

Proof.

Analogous to the unconditional case.

Conditional joint entropy

Theorem.

$$
H(A, B \mid C) \leq H(A \mid C)+H(B \mid C)
$$

and the equality holds if and only if A and B are conditionally independent given C, i.e.,

$$
p(A=a \wedge B=b \mid C=c)=p(A=a \mid C=c) \cdot p(B=b \mid C=c)
$$

Proof.

Analogous to the unconditional case.

Corollary.

$$
H(A \mid B, C) \leq H(A \mid C)
$$

and the equality holds iff A and B are conditionally independent given C.

Conditional information

Mutual information of A and B under condition C :

$$
\begin{aligned}
I(A ; B \mid C) & =H(A \mid C)+H(B \mid C)-\underbrace{H(A, B \mid C)}_{H(A \mid B, C)+H(B \mid C)} \\
& =H(A \mid C)-H(A \mid B, C) .
\end{aligned}
$$

Conditional information

Mutual information of A and B under condition C :

$$
\begin{aligned}
I(A ; B \mid C) & =H(A \mid C)+H(B \mid C)-\underbrace{H(A, B \mid C)}_{H(A \mid B, C)+H(B \mid C)} \\
& =H(A \mid C)-H(A \mid B, C) .
\end{aligned}
$$

Mutual information of A, B, and C :

$$
R(A ; B ; C)=I(A ; B)-I(A ; B \mid C)
$$

Conditional information

Mutual information of A and B under condition C :

$$
\begin{aligned}
I(A ; B \mid C) & =H(A \mid C)+H(B \mid C)-\underbrace{H(A, B \mid C)}_{H(A \mid B, C)+H(B \mid C)} \\
& =H(A \mid C)-H(A \mid B, C)
\end{aligned}
$$

Mutual information of A, B, and C :

$$
R(A ; B ; C)=I(A ; B)-I(A ; B \mid C)
$$

Note the symmetry:

$$
\begin{aligned}
I(A ; C)-I(A ; C \mid B) & =H(A)-H(A \mid C)-(H(A \mid B)-H(A \mid B, C)) \\
& =\underbrace{H(A)-H(A \mid B)}_{I(A ; B)}-\underbrace{}_{\left.I(A ; B \mid C)^{(H(A \mid C)-H(A \mid B, C)}\right)} .
\end{aligned}
$$

Venn diagram

Venn diagram

Mutual information

Note: $R(A ; B ; C)=I(A ; B)-I(A ; B \mid C)$ can be negative!

Mutual information

Note: $R(A ; B ; C)=I(A ; B)-I(A ; B \mid C)$ can be negative!
Example. Let A and B be independent random variables with values in $\{0,1\}$, and let

$$
C=A \oplus B .
$$

Then $I(A ; B)=0$, while

$$
I(A ; B \mid C)=H(A \mid C)-\underbrace{H(A \mid B, C)}_{0}
$$

and we can make sure that $H(A \mid C)>0$, e.g.

0	0	1	1	1	1	A
0	1	0	0	1	1	B
0	1	1	1	0	0	$\mathrm{C}=\mathrm{A}+\mathrm{B}$

Application: Perfect secrecy

A cryptosystem is a triple of random variables:

- M with values in \mathcal{M} (messages),
- K with values in \mathcal{K} (keys),
- \mathcal{C} with values in \mathcal{C} (cipher-texts),
where $\mathcal{M}, \mathcal{K}, \mathcal{C}$ are finite sets.

Application: Perfect secrecy

A cryptosystem is a triple of random variables:

- M with values in \mathcal{M} (messages),
- K with values in \mathcal{K} (keys),
- C with values in \mathcal{C} (cipher-texts),
where $\mathcal{M}, \mathcal{K}, \mathcal{C}$ are finite sets.
Additionally, a function $\operatorname{Dec}: \mathcal{C} \times \mathcal{K} \rightarrow \mathcal{M}$, such that

$$
M=\operatorname{Dec}(C, K)
$$

(unique decodability).

Application: Perfect secrecy

A cryptosystem is a triple of random variables:

- M with values in \mathcal{M} (messages),
- K with values in \mathcal{K} (keys),
- C with values in \mathcal{C} (cipher-texts),
where $\mathcal{M}, \mathcal{K}, \mathcal{C}$ are finite sets.
Additionally, a function $\operatorname{Dec}: \mathcal{C} \times \mathcal{K} \rightarrow \mathcal{M}$, such that

$$
M=\operatorname{Dec}(C, K)
$$

(unique decodability).
A cryptosystem is perfectly secret if $I(C ; M)=0$.

One time pad

Example. $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^{n}$, for some $n \in \mathbb{N}$, and

$$
C=M \oplus K
$$

(e.g., $101101 \oplus 110110=011011$).

One time pad

Example. $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^{n}$, for some $n \in \mathbb{N}$, and

$$
C=M \oplus K
$$

(e.g., $101101 \oplus 110110=011011$).

$$
\operatorname{Dec}(v, w)=v \oplus w .
$$

K is uniformly distributed

$$
p(K=v)=\frac{1}{2^{n}},
$$

for $v \in\{0,1\}^{n}$.
K and M are independent.

Perfect secrecy of One time pad

$I(M ; C)=0$ iff M and C are independent, i.e.

$$
p(C=w \mid M=u) \stackrel{?}{=} p(C=w) .
$$

We have

$$
\begin{aligned}
p(C=w)=\sum_{u \oplus v=w} p(M= & u \wedge K=v)=\sum_{u} p(M=u) \cdot \frac{1}{2^{n}}=\frac{1}{2^{n}} \\
p(C=w \mid M=u) & =\frac{p(C=w \wedge M=u)}{p(M=u)} \\
& =\frac{p(K=u \oplus w \wedge M=u)}{p(M=u)} \\
& =\frac{p(K=u \oplus w) \cdot p(M=u)}{p(M=u)} \\
& =\frac{1}{2^{n}} .
\end{aligned}
$$

Why one time ?
Because C and K may be dependent!.

0	0	1	1	1	1	M
0	1	0	0	1	1	K
0	1	1	1	0	0	$\mathrm{C}=\mathrm{M}+\mathrm{K}$

Why one time ?
Because C and K may be dependent!.

0	0	1	1	1	1	M
0	1	0	0	1	1	K
0	1	1	1	0	0	$\mathrm{C}=\mathrm{M}+\mathrm{K}$

$p(K=1 \mid C=0)=p(K=0 \mid C=1)=\frac{2}{3}$, hence $K \approx 1-C$.

Why one time ?
Because C and K may be dependent!.

0	0	1	1	1	1	M
0	1	0	0	1	1	K
0	1	1	1	0	0	$\mathrm{C}=\mathrm{M}+\mathrm{K}$

$p(K=1 \mid C=0)=p(K=0 \mid C=1)=\frac{2}{3}$, hence $K \approx 1-C$.
C.f. the American VENONA project (1943-1980).

Shannon's Pessimistic Theorem

Theorem. Any perfectly secret cryptosystem satisfies

$$
H(K) \geq H(M) .
$$

Consequently

$$
L_{r}(K) \geq H_{r}(K) \geq H_{r}(M) \geq L_{r}(M)-1
$$

i.e., keys must be as long as messages (almost).

Shannon's Pessimistic Theorem

Theorem. Any perfectly secret cryptosystem satisfies

$$
H(K) \geq H(M)
$$

Shannon's Pessimistic Theorem

Theorem. Any perfectly secret cryptosystem satisfies

$$
H(K) \geq H(M)
$$

Proof.

$$
H(M)=H(M \mid C, K)+\underbrace{I(M ; C)}_{H(M)-H(M \mid C)}+\underbrace{I(M ; K \mid C)}_{H(M \mid C)-H(M \mid K, C)} .
$$

But $H(M \mid C ; K)=0$, since $M=\operatorname{Dec}(C, K)$, and $I(M ; C)=0$, by assumption, hence

$$
H(M)=I(M ; K \mid C)
$$

By symmetry, we have

$$
H(K)=H(K \mid M, C)+I(K ; C)+\underbrace{I(K ; M \mid C)}_{H(M)} .
$$

Can functional processing increase information ?

Maybe $I(K ; C)>0$.

Can functional processing increase information ?

Maybe $I(K ; C)>0$.
Can we increase this information, e.g., by a computation, i.e.

$$
I(K ; f(C))>I(K ; C)
$$

for some f ?

Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

$$
I(A ; C) \leq I(A ; B) .
$$

Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

$$
I(A ; C) \leq I(A ; B)
$$

Proof.

$$
\begin{aligned}
\underbrace{I(A ;(B, C))}_{H(A)-H(A \mid B, C)} & =\underbrace{I(A ; C)}_{H(A)-H(A \mid C)}+\underbrace{I(A ; B \mid C)}_{H(A \mid C)-H(A \mid B, C)} \\
\| & \| \\
I(A ;(B, C)) & =I(A ; B)+\underbrace{I(A ; C \mid B)}_{0} .
\end{aligned}
$$

Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

$$
I(A ; C) \leq I(A ; B) .
$$

Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

$$
I(A ; C) \leq I(A ; B)
$$

Corollary. For any function f,

$$
I(A ; f(B)) \leq I(A ; B)
$$

Can functional processing increase information ?

Lemma. If A and C are conditionally independent given B, then

$$
I(A ; C) \leq I(A ; B)
$$

Corollary. For any function f,

$$
I(A ; f(B)) \leq I(A ; B)
$$

Proof. Follows from the Lemma, since

$$
I(A ; f(B) \mid B)=\underbrace{H(f(B) \mid B)}_{0}-\underbrace{H(f(B) \mid A, B)}_{0}=0 .
$$

The birth of modern information theory

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

Claude Shannon, A Mathematical Theory of Communication, 1948.

Seldom do more than a few of nature's secrets give way at one time.

Claude E. Shannon, The Bandwagon, 1956

Photo: Konrad Jacobs. Licensed under under the Creative Commons Attribution-Share Alike 2.0 Germany license.

Information channels

A communication channel Γ is given by

- a finite set \mathcal{A} of input objects,
- a finite set \mathcal{B} of output objects,
- a mapping $\mathcal{A} \times \mathcal{B} \ni(a, b) \mapsto P(a \rightarrow b) \in[0,1]$, such that, for all $a \in \mathcal{A}$,

$$
\sum_{b \in \mathcal{B}} P(a \rightarrow b)=1
$$

Information channels

A communication channel Γ is given by

- a finite set \mathcal{A} of input objects,
- a finite set \mathcal{B} of output objects,
- a mapping $\mathcal{A} \times \mathcal{B} \ni(a, b) \mapsto P(a \rightarrow b) \in[0,1]$, such that, for all $a \in \mathcal{A}$,

$$
\sum_{b \in \mathcal{B}} P(a \rightarrow b)=1
$$

Random variables A and B form an input-output pair for the channel Γ if, for all $a \in \mathcal{A}, b \in \mathcal{B}$,

$$
p(B=b \mid A=a)=P(a \rightarrow b)
$$

Information channels

$$
A \rightarrow \Gamma \rightarrow B
$$

Recall: A and B form an input-output pair for Γ if $\forall a, b$,

$$
p(B=b \mid A=a)=P(a \rightarrow b)
$$

If it is the case then

$$
p(A=a \wedge B=b)=P(a \rightarrow b) \cdot p(A=a)
$$

Information channels

$$
A \rightarrow \Gamma \rightarrow B
$$

Recall: A and B form an input-output pair for Γ if $\forall a, b$,

$$
p(B=b \mid A=a)=P(a \rightarrow b)
$$

If it is the case then

$$
p(A=a \wedge B=b)=P(a \rightarrow b) \cdot p(A=a)
$$

Therefore the distribution of (A, B) is uniquely determined by A and Γ, and B satisfies

Information channels

$$
A \rightarrow \Gamma \rightarrow B
$$

Recall: A and B form an input-output pair for Γ if $\forall a, b$,

$$
p(B=b \mid A=a)=P(a \rightarrow b)
$$

If it is the case then

$$
p(A=a \wedge B=b)=P(a \rightarrow b) \cdot p(A=a)
$$

Therefore the distribution of (A, B) is uniquely determined by A and Γ, and B satisfies

$$
p(B=b)=\sum_{a \in \mathcal{A}} P(a \rightarrow b) \cdot p(A=a) .
$$

Channel capacity

The capacity of a channel Γ is

$$
C_{\Gamma}=\max _{A} I_{2}(A ; B),
$$

where, (A, B) ranges over all input-output pair for Γ.

Channel capacity

The capacity of a channel Γ is

$$
C_{\Gamma}=\max _{A} I_{2}(A ; B)
$$

where, (A, B) ranges over all input-output pair for Γ.
The maximum exists because $I(A ; B)$ is a continuous mapping from a compact set

$$
\left\{p \in[0,1]^{\mathcal{A}}: \sum_{a \in \mathcal{A}} p(a)=1\right\} \rightarrow \mathbb{R}
$$

which is bounded since $I(A ; B) \leq H(A) \leq \log |\mathcal{A}|$.

Matrix representation

$$
\Gamma=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 n} \\
\ldots & \ldots & \ldots \\
P_{m 1} & \ldots & P_{m n}
\end{array}\right)
$$

where $P_{i j}=P\left(a_{i} \rightarrow b_{j}\right)$.

Matrix representation

$$
\Gamma=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 n} \\
\ldots & \ldots & \ldots \\
P_{m 1} & \ldots & P_{m n}
\end{array}\right)
$$

where $P_{i j}=P\left(a_{i} \rightarrow b_{j}\right)$.
Computing distribution of B from distribution of A
$\left(p\left(a_{1}\right), \ldots, p\left(a_{m}\right)\right) \cdot\left(\begin{array}{ccc}P_{11} & \ldots & P_{1 n} \\ \ldots & \ldots & \ldots \\ P_{m 1} & \ldots & P_{m n},\end{array}\right)=\left(p\left(b_{1}\right), \ldots, p\left(b_{n}\right)\right)$.

Examples

Faithful (noiseless) channel

$$
0 \longrightarrow 0
$$

Examples

Faithful (noiseless) channel

$$
0 \longrightarrow 0
$$

$$
1 \longrightarrow 1
$$

The matrix representation

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Examples

Faithful (noiseless) channel

$$
0 \longrightarrow 0
$$

The matrix representation

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
C_{\Gamma}=\max _{A} \underbrace{I(A ; B)}_{H(A)}=\log _{2}|\mathcal{A}|=1,
\end{gathered}
$$

since A is a function of B.

Inverse faithful channel

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Inverse faithful channel

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
C_{\Gamma}=\max _{A} \underbrace{I(A ; B)}_{H(A)}=1,
$$

Noisy channel without overlap

$$
\mathcal{A}=\{0,1\}, \mathcal{B}=\{0,1,2,3\}
$$

$$
\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

Noisy channel without overlap

$$
\mathcal{A}=\{0,1\}, \mathcal{B}=\{0,1,2,3\} .
$$

$$
\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

$$
C_{\Gamma}=\max _{A} \underbrace{I(A ; B)}_{H(A)}=1
$$

Noisy typewriter

$$
\begin{aligned}
& \mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\} \text { (26 letters) } \\
& \qquad p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
\end{aligned}
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.

Noisy typewriter

$$
\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}(26 \text { letters })
$$

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.

$$
\left(\begin{array}{ccccc}
0.5 & 0 & 0 & \ldots & 0.5 \\
0.5 & 0.5 & 0 & \ldots & 0 \\
0 & 0.5 & 0.5 & \ldots & 0 \\
0 & 0 & 0.5 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0.5
\end{array}\right)
$$

Noisy typewriter

$\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}$ (26 letters)

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.

$$
\left(\begin{array}{ccccc}
0.5 & 0 & 0 & \ldots & 0.5 \\
0.5 & 0.5 & 0 & \ldots & 0 \\
0 & 0.5 & 0.5 & \ldots & 0 \\
0 & 0 & 0.5 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0.5
\end{array}\right)
$$

$$
C_{\Gamma}=\max _{A} I(A ; B)=\max _{A} H(B)-\underbrace{H(B \mid A)}_{1}=\log 26-1=\log 13,
$$

the maximum for A uniform, which causes B uniform as well, because the columns sum up to 1 .

Bad channels

$C_{\Gamma}=0$ iff $I(A ; B)=0$, for all input-output pairs, i.e.,

$$
\underbrace{p(B=b \mid A=a)}_{P(a \rightarrow b)}=p(B=b),
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ (unless $p(A=a)=0)$.

Bad channels

$C_{\Gamma}=0$ iff $I(A ; B)=0$, for all input-output pairs, i.e.,

$$
\underbrace{p(B=b \mid A=a)}_{P(a \rightarrow b)}=p(B=b),
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ (unless $p(A=a)=0$).
That is, the values within a column must be equal.

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{3}
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Binary symmetric channel (BSC)

$\mathcal{A}=\mathcal{B}=\{0,1\}$.

Letting $\bar{P}=1-P$,

$$
\left(\begin{array}{ll}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)
$$

Fact. Any input-output pair (A, B) satisfies

$$
H(B) \geq H(A)
$$

with the equality if $P \in\{0,1\}$ or if $H(A)=1$.

For $\quad\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right), \quad H(B) \geq H(A) . \quad$ Proof.

Let
compute

$$
\begin{array}{ll}
p(A=0)=q & p(A=1)=\bar{q}, \\
p(B=0)=r & p(B=1)=\bar{r} .
\end{array}
$$

For $\quad\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right), \quad H(B) \geq H(A) . \quad$ Proof.

Let

$$
\begin{array}{ll}
p(A=0)=q & p(A=1)=\bar{q}, \\
p(B=0)=r & p(B=1)=\bar{r} .
\end{array}
$$

$$
(q, \bar{q}) \cdot\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)=(\underbrace{q P+\bar{q} \bar{P}}_{r}, \underbrace{q \bar{P}+\bar{q} P}_{\bar{r}})
$$

For $\quad\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right), \quad H(B) \geq H(A)$. Proof.

Let

$$
\begin{array}{ll}
p(A=0)=q & p(A=1)=\bar{q}, \\
p(B=0)=r & p(B=1)=\bar{r} .
\end{array}
$$

$$
(q, \bar{q}) \cdot\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)=(\underbrace{q P+\bar{q} \bar{P}}_{r}, \underbrace{q \bar{P}+\bar{q} P}_{\bar{r}})
$$

Then $\quad H(A)=-q \log q-\bar{q} \log \bar{q}$ $H(B)=-r \log r-\bar{r} \log \bar{r}$

$$
\text { For } \quad\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right), \quad H(B) \geq H(A) . \quad \text { Proof. }
$$

Let

$$
\begin{array}{ll}
p(A=0)=q & p(A=1)=\bar{q}, \\
p(B=0)=r & p(B=1)=\bar{r} .
\end{array}
$$

compute

$$
(q, \bar{q}) \cdot\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)=(\underbrace{q P+\bar{q} \bar{P}}_{r}, \underbrace{q \bar{P}+\bar{q} P}_{\bar{r}})
$$

Then $\quad H(A)=-q \log q-\bar{q} \log \bar{q}$

$$
H(B)=-r \log r-\bar{r} \log \bar{r}
$$

The function $x \log _{2} x+(1-x) \log _{2}(1-x)$ is strictly convex.
Taking $x_{1}=q, x_{2}=\bar{q}, r=P x_{1}+\bar{P} x_{2}$,

$$
\begin{aligned}
P \cdot(q \log q+\bar{q} \log \bar{q})+\bar{P} \cdot(q \log q+\bar{q} \log \bar{q}) & \geq r \log r+\bar{r} \log \bar{r} \\
\text { i.e., } H(A) & \leq H(B),
\end{aligned}
$$

with the equality if $P \in\{0,1\}$ or $q=\bar{q}$.

Binary symmetric channel $\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Computing the capacity.

Binary symmetric channel $\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Computing the capacity.

$$
\begin{aligned}
H(B \mid A)= & (p(A=0)+p(A=1)) . \\
& \cdot\left(p(s \mid s) \cdot \log \frac{1}{p(s \mid s)}+p(\bar{s} \mid s) \cdot \log \frac{1}{p(\bar{s} \mid s)}\right) \\
= & P \cdot \log \frac{1}{P}+\bar{P} \cdot \log \frac{1}{\bar{P}} .
\end{aligned}
$$

Binary symmetric channel $\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Computing the capacity.

$$
\begin{aligned}
H(B \mid A)= & (p(A=0)+p(A=1)) . \\
& \cdot\left(p(s \mid s) \cdot \log \frac{1}{p(s \mid s)}+p(\bar{s} \mid s) \cdot \log \frac{1}{p(\bar{s} \mid s)}\right) \\
= & P \cdot \log \frac{1}{P}+\bar{P} \cdot \log \frac{1}{\bar{P}} .
\end{aligned}
$$

Letting $H(s)=-s \log _{2} s-(1-s) \log _{2}(1-s)$,

$$
C_{\Gamma}=\max _{A} H(B)-H(B \mid A)=1-H(P),
$$

achieved for A with uniform distribution.

Binary symmetric channel $\left(\begin{array}{cc}P & \bar{P} \\ \bar{P} & P\end{array}\right)$

Computing the capacity.

$$
\begin{aligned}
H(B \mid A)= & (p(A=0)+p(A=1)) . \\
& \cdot\left(p(s \mid s) \cdot \log \frac{1}{p(s \mid s)}+p(\bar{s} \mid s) \cdot \log \frac{1}{p(\bar{s} \mid s)}\right) \\
= & P \cdot \log \frac{1}{P}+\bar{P} \cdot \log \frac{1}{\bar{P}} .
\end{aligned}
$$

Letting $H(s)=-s \log _{2} s-(1-s) \log _{2}(1-s)$,

$$
C_{\Gamma}=\max _{A} H(B)-H(B \mid A)=1-H(P),
$$

achieved for A with uniform distribution.
Note: $0 \leq C_{\Gamma} \leq 1$ (bounds achieved for $P \in\left\{0, \frac{1}{2}, 1\right\}$).

Shannon's scheme

Fig. 1 - Schematic diagram of a general communication system.
a decimal digit is about $3 \frac{1}{3}$ bits. A digit wheel on a desk computing machine has ten stable positions and therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units. Change from the base a to base b merely requires multiplication by $\log _{b} a$.

By a communication system we will mean a system of the type indicated schematically in Fig. 1_{a}. It conciste of eccentially five narts.

Decision rules

A mapping $\Delta: \mathcal{B} \rightarrow \mathcal{A}$ chosen to maximise $p(A=\Delta(b) \mid B=b)$.

Decision rules

A mapping $\Delta: \mathcal{B} \rightarrow \mathcal{A}$ chosen to maximise $p(A=\Delta(b) \mid B=b)$. The quality of the rule is measured by

$$
\operatorname{Pr}(\Delta, A) \stackrel{\text { def }}{=} p(\Delta \circ B=A) .
$$

Decision rules

A mapping $\Delta: \mathcal{B} \rightarrow \mathcal{A}$ chosen to maximise $p(A=\Delta(b) \mid B=b)$. The quality of the rule is measured by

$$
\begin{aligned}
& \operatorname{Pr}(\Delta, A) \stackrel{\text { def }}{=} p(\Delta \circ B=A) . \\
= & \sum_{b \in \mathcal{B}} p(B=b \wedge A=\Delta(b)) \\
= & \sum_{b \in \mathcal{B}} p(B=b) \cdot p(A=\Delta(b) \mid B=b) \\
= & \sum_{b \in \mathcal{B}} p(A=\Delta(b)) \cdot p(B=b \mid A=\Delta(b)) \\
= & \sum_{a \in \mathcal{A}} p(A=a) \cdot p(\Delta(B)=a \mid A=a) .
\end{aligned}
$$

Decision rules

Dually, the error probability of the rule Δ is

$$
\begin{aligned}
\operatorname{Pr}_{E}(\Delta, A) & =1-\operatorname{Pr}(\Delta, A) \\
& =\sum_{a \in \mathcal{A}, b \in \mathcal{B}} p(A=a \wedge B=b \wedge \Delta(b) \neq a) \\
& =\sum_{a \in \mathcal{A}} p(A=a) \cdot p(\Delta \circ B \neq a \mid A=a)
\end{aligned}
$$

Ideal observer rule

Dedicated to A,
$\mathcal{B} \ni b \mapsto \Delta_{o}(b)=a \in \mathcal{A}$, maximising

$$
p(a \mid b)=\frac{p(a \wedge b)}{p(b)}=\frac{P(a \rightarrow b) \cdot p(a)}{\sum_{a^{\prime} \in \mathcal{A}} P\left(a^{\prime} \rightarrow b\right) \cdot p\left(a^{\prime}\right)} .
$$

Maximal likelihood rule

If we don't know A,
$\mathcal{B} \ni b \mapsto \Delta_{\max }(b)=a \in \mathcal{A}$, maximising

$$
p(b \mid a)=P(a \rightarrow b)
$$

Maximal likelihood rule

If we don't know A,
$\mathcal{B} \ni b \mapsto \Delta_{\max }(b)=a \in \mathcal{A}$, maximising

$$
p(b \mid a)=P(a \rightarrow b)
$$

Note: If A has uniform distribution then

$$
\operatorname{Pr}\left(\Delta_{\max }, A\right)=\operatorname{Pr}\left(\Delta_{o}, A\right)
$$

Maximal likelihood rule

If we don't know A,
$\mathcal{B} \ni b \mapsto \Delta_{\max }(b)=a \in \mathcal{A}$, maximising

$$
p(b \mid a)=P(a \rightarrow b)
$$

Note: If A has uniform distribution then

$$
\operatorname{Pr}\left(\Delta_{\max }, A\right)=\operatorname{Pr}\left(\Delta_{o}, A\right)
$$

($\Delta_{\max }=\Delta_{o}$ if they agree on multiple choices).

Maximal likelihood rule

If we don't know A,
$\mathcal{B} \ni b \mapsto \Delta_{\max }(b)=a \in \mathcal{A}$, maximising

$$
p(b \mid a)=P(a \rightarrow b)
$$

Note: If A has uniform distribution then

$$
\operatorname{Pr}\left(\Delta_{\max }, A\right)=\operatorname{Pr}\left(\Delta_{o}, A\right)
$$

($\Delta_{\text {max }}=\Delta_{o}$ if they agree on multiple choices).
Indeed, for $b \in \mathcal{B}$, both rules maximise

$$
p(a \mid b) \cdot p(b)=p(a \wedge b)=P(a \rightarrow b) \cdot \frac{1}{|\mathcal{A}|}
$$

Maximal likelihood rule

Global optimality. Let

$$
\begin{aligned}
\mathcal{P} & =\left\{\mathbf{p}: \sum_{a \in \mathcal{A}} \mathbf{p}(a)=1\right\} \\
\mathbf{p}(a) & =p(A=a)
\end{aligned}
$$

Maximal likelihood rule

Global optimality. Let

$$
\begin{aligned}
\mathcal{P} & =\left\{\mathbf{p}: \sum_{a \in \mathcal{A}} \mathbf{p}(a)=1\right\} \\
\mathbf{p}(a) & =p(A=a)
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{\mathbf{p} \in \mathcal{P}} \operatorname{Pr}(\Delta, \mathbf{p}) d \mathbf{p} & =\int_{\mathbf{p} \in \mathcal{P}} \sum_{b \in \mathcal{B}} \mathbf{p}(\Delta(b)) \cdot P(\Delta(b) \rightarrow b) d \mathbf{p} \\
& =\sum_{b \in \mathcal{B}} P(\Delta(b) \rightarrow b) \cdot \int_{\mathbf{p} \in \mathcal{P}} \mathbf{p}(\Delta(b)) d \mathbf{p}
\end{aligned}
$$

Maximal likelihood rule

Global optimality. Let

$$
\begin{aligned}
\mathcal{P} & =\left\{\mathbf{p}: \sum_{a \in \mathcal{A}} \mathbf{p}(a)=1\right\} \\
\mathbf{p}(a) & =p(A=a)
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{\mathbf{p} \in \mathcal{P}} \operatorname{Pr}(\Delta, \mathbf{p}) d \mathbf{p} & =\int_{\mathbf{p} \in \mathcal{P}} \sum_{b \in \mathcal{B}} \mathbf{p}(\Delta(b)) \cdot P(\Delta(b) \rightarrow b) d \mathbf{p} \\
& =\sum_{b \in \mathcal{B}} P(\Delta(b) \rightarrow b) \cdot \int_{\mathbf{p} \in \mathcal{P}} \mathbf{p}(\Delta(b)) d \mathbf{p}
\end{aligned}
$$

Maximal for $\Delta=\Delta_{\text {max }}$.

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

Multiple use of channel

$$
\begin{gathered}
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k} \\
p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=?
\end{gathered}
$$

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

$$
p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=?
$$

$$
?=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)
$$

Multiple use of channel

$$
\begin{gathered}
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k} \\
p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=? \\
?=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)
\end{gathered}
$$

Is it enough that A_{1}, \ldots, A_{k} are independent?

Multiple use of channel $\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \stackrel{?}{=} p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

A_{1} and A_{2} are independent, with $A_{i}(0)=\frac{1}{3}, A_{i}(1)=\frac{2}{3}$.
B_{1} and B_{2} are identical.

Multiple use of channel $\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \stackrel{?}{=} p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

A_{1} and A_{2} are independent, with $A_{i}(0)=\frac{1}{3}, A_{i}(1)=\frac{2}{3}$.
B_{1} and B_{2} are identical.
$p(11 \mid 00)=p(00 \mid 01)=p(00 \mid 10)=p(11 \mid 11)=1(!)$

Multiple use of channel $\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \neq p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

A_{1} and A_{2} are independent, with $A_{i}(0)=\frac{1}{3}, A_{i}(1)=\frac{2}{3}$.
B_{1} and B_{2} are identical.

Multiple use of channel $\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \neq p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

A_{1} and A_{2} are independent, with $A_{i}(0)=\frac{1}{3}, A_{i}(1)=\frac{2}{3}$.
B_{1} and B_{2} are identical.
$p(11 \mid 00)=p(00 \mid 01)=p(00 \mid 10)=p(11 \mid 11)=1$.

Multiple use of channel $\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 5 & 4 / 5\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \stackrel{?}{=} p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

The independence of B_{1}, B_{2}, \ldots does not suffice either.

A_{2}| 1 | 0 |
| :--- | :--- |
| 0 | 1 |\rightarrow| 0 | 1 |
| :--- | :--- |
| 0 | 1 |$\quad B_{2}$

Multiple use of channel $\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 5 & 4 / 5\end{array}\right)$.

$$
p\left(b_{1}, b_{2} \mid a_{1}, a_{2}\right) \stackrel{?}{=} p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right)
$$

The independence of B_{1}, B_{2}, \ldots does not suffice either.

Here A_{1} and A_{2} are identical, hence obviously $p\left(x^{n} \mid y^{n}\right)=p(x \mid y)$, for any pair of symbols x, y. In particular $p(00 \mid 11)=\frac{1}{9}: \frac{5}{9}=\frac{1}{5}$, whereas $p(0 \mid 1) \cdot p(0 \mid 1)=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$.

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$
no memory

$$
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right)
$$

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$
no memory

$$
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right)
$$

no feedback

$$
p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
$$

Multiple use of channel

$$
A_{1}, A_{2}, \ldots A_{k} \rightarrow \Gamma \rightarrow B_{1}, B_{2}, \ldots B_{k}
$$

independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$
no memory

$$
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right)
$$

no feedback

$$
p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
$$

Hold if $\left(A_{1}, B_{1}\right), \ldots,\left(A_{k}, B_{k}\right)$ are independent.

Multiple use of channel

Theorem.

Independence of symbols \Longleftrightarrow no memory and no feedback.

Multiple use of channel

Theorem.

Independence of symbols \Longleftrightarrow no memory and no feedback.

Note. The conditions are indeed weaker than the independence of $\left(A_{1}, B_{1}\right), \ldots,\left(A_{k}, B_{k}\right)$.

Multiple use of channel

Theorem.

Independence of symbols \Longleftrightarrow no memory and no feedback.

Note. The conditions are indeed weaker than the independence of $\left(A_{1}, B_{1}\right), \ldots,\left(A_{k}, B_{k}\right)$.
For example, they hold for the faithfull channel, for any sequence A_{1}, \ldots, A_{k}.

Proof

$$
\left.\begin{array}{l}
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right) \\
p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
\end{array}\right\} \Longrightarrow
$$

For the induction step,

$$
p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right)=\underbrace{p\left(b_{k} \mid a_{k}\right)}_{\text {no mem. }} \cdot \underbrace{p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)}_{\|},
$$

Proof

$$
\left.\begin{array}{l}
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right) \\
p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
\end{array}\right\} \Longrightarrow
$$

For the induction step,

$$
\begin{aligned}
p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right)= & \underbrace{p\left(b_{k} \mid a_{k}\right)}_{\text {no mem. }} \cdot \underbrace{p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)}_{\|} \\
& \underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{\| \text {ind. }} \cdot \frac{p\left(a_{1} \ldots a_{k}\right)}{p\left(a_{1} \ldots a_{k-1}\right)}\}_{\text {no feed. }}
\end{aligned}
$$

Proof

$$
\left.\begin{array}{l}
p\left(b_{k} \mid a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)=p\left(b_{k} \mid a_{k}\right) \\
p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
\end{array}\right\} \Longrightarrow
$$

For the induction step,

$$
\begin{aligned}
p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right)= & \underbrace{p\left(b_{k} \mid a_{k}\right)}_{\text {no mem. }} \cdot \underbrace{p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)}_{\|}, \\
& \underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{\| \text {ind. }} \cdot \frac{p\left(a_{1} \ldots a_{k}\right)}{p\left(a_{1} \ldots a_{k-1}\right)}\}_{\text {no feed. }} \\
& p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k-1} \mid a_{k-1}\right) \cdot p\left(a_{1} \ldots a_{k-1}\right),
\end{aligned}
$$

if $p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k-1}\right)>0$.

Remaining case of $p\left(a_{1} \ldots a_{k-1}, a_{k}, b_{1} \ldots b_{k-1}\right)=0$.
(By assumption, $p\left(a_{1} \ldots a_{k}\right) \neq 0$.)

Remaining case of $p\left(a_{1} \ldots a_{k-1}, a_{k}, b_{1} \ldots b_{k-1}\right)=0$.
(By assumption, $p\left(a_{1} \ldots a_{k}\right) \neq 0$.)
If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=0$, we have, by induction hypothesis,

$$
\underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{=0}=\underbrace{p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k-1} \mid a_{k-1}\right)}_{=0} \cdot p\left(a_{1} \ldots a_{k-1}\right)
$$

Remaining case of $p\left(a_{1} \ldots a_{k-1}, a_{k}, b_{1} \ldots b_{k-1}\right)=0$.
(By assumption, $p\left(a_{1} \ldots a_{k}\right) \neq 0$.)
If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=0$, we have, by induction hypothesis,

$$
\begin{aligned}
\underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{=0} & =\underbrace{p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k-1} \mid a_{k-1}\right)}_{=0} \cdot p\left(a_{1} \ldots a_{k-1}\right) \\
\|\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right) & =p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right) \cdot p\left(a_{1} \ldots a_{k}\right) .
\end{aligned}
$$

Remaining case of $p\left(a_{1} \ldots a_{k-1}, a_{k}, b_{1} \ldots b_{k-1}\right)=0$.
(By assumption, $p\left(a_{1} \ldots a_{k}\right) \neq 0$.)
If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=0$, we have, by induction hypothesis,

$$
\begin{aligned}
\underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{=0} & =\underbrace{p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k-1} \mid a_{k-1}\right)}_{=0} \cdot p\left(a_{1} \ldots a_{k-1}\right) \\
p\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right) & =p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right) \cdot p\left(a_{1} \ldots a_{k}\right) .
\end{aligned}
$$

If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)>0$, we have

$$
0=\underbrace{p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{\text {well defined }} \stackrel{\text { no feed. }}{=} p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
$$

which contradicts the assumption that $p\left(a_{1} \ldots a_{k}\right)>0$.

Remaining case of $p\left(a_{1} \ldots a_{k-1}, a_{k}, b_{1} \ldots b_{k-1}\right)=0$.
(By assumption, $p\left(a_{1} \ldots a_{k}\right) \neq 0$.)
If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)=0$, we have, by induction hypothesis,

$$
\begin{aligned}
\underbrace{p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{=0} & =\underbrace{p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k-1} \mid a_{k-1}\right)}_{=0} \cdot p\left(a_{1} \ldots a_{k-1}\right) \\
\|\left(a_{1} \ldots a_{k}, b_{1} \ldots b_{k}\right) & =p\left(b_{1} \mid a_{1}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right) \cdot p\left(a_{1} \ldots a_{k}\right) .
\end{aligned}
$$

If $p\left(a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)>0$, we have

$$
0=\underbrace{p\left(a_{k} \mid a_{1} \ldots a_{k-1}, b_{1} \ldots b_{k-1}\right)}_{\text {well defined }} \stackrel{\text { no feed. }}{=} p\left(a_{k} \mid a_{1} \ldots a_{k-1}\right)
$$

which contradicts the assumption that $p\left(a_{1} \ldots a_{k}\right)>0$.
For the proof of " \Longleftarrow " see Lecture notes.

Multiple use of channel

Proviso.

If not stated otherwise, we assume that the independence of symbols property
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$ always holds.

BSC revisited

Let $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.
Then $\Delta_{\text {max }}(i)=$

BSC revisited

Let $\Gamma=\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.
Then $\Delta_{\text {max }}(i)=i$, for $i=0,1$, and, for any A,

$$
\begin{aligned}
\operatorname{Pr} C\left(\Delta_{\max }, A\right) & =\sum_{b \in\{0,1\}} p\left(\Delta_{\max }(b)\right) \cdot p\left(\Delta_{\max }(b) \rightarrow b\right) \\
& =p(A=0) \cdot P+p(A=1) \cdot P \\
& =P,
\end{aligned}
$$

hence

BSC revisited

Let $\Gamma=\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.
Then $\Delta_{\text {max }}(i)=i$, for $i=0,1$, and, for any A,

$$
\begin{aligned}
\operatorname{Pr}\left(\Delta_{\max }, A\right) & =\sum_{b \in\{0,1\}} p\left(\Delta_{\max }(b)\right) \cdot p\left(\Delta_{\max }(b) \rightarrow b\right) \\
& =p(A=0) \cdot P+p(A=1) \cdot P \\
& =P
\end{aligned}
$$

hence

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }, A\right)=Q
$$

BSC revisited

Let $\Gamma=\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.
Then $\Delta_{\text {max }}(i)=i$, for $i=0,1$, and, for any A,

$$
\begin{aligned}
\operatorname{Pr}\left(\Delta_{\max }, A\right) & =\sum_{b \in\{0,1\}} p\left(\Delta_{\max }(b)\right) \cdot p\left(\Delta_{\max }(b) \rightarrow b\right) \\
& =p(A=0) \cdot P+p(A=1) \cdot P \\
& =P
\end{aligned}
$$

hence

$$
\begin{aligned}
& \operatorname{Pr}_{E}\left(\Delta_{\max }, A\right)=Q \\
& \stackrel{\text { short. }}{=} \\
& \operatorname{Pr}_{E}\left(\Delta_{\max }\right) .
\end{aligned}
$$

Improving reliability - redundancy

Improving reliability - redundancy

I LOVE YOU.

Improving reliability - redundancy

I LOVE YOU.
\downarrow

Improving reliability - redundancy

I LOVE YOU.
\downarrow
III LLLOOOOOOOVVVVEEE YYYYOOOOOOOUUUU.

Improving reliability

For $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.

Improving reliability

For $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.

$$
\begin{array}{llll}
0 & \mapsto & 000 & \rightarrow \\
1 & \mapsto & 111 & \rightarrow
\end{array} \quad \begin{array}{lllllll}
\rightarrow & 000 & 001 & 010 & 100 & \mapsto & 0 \\
\rightarrow & 011 & 101 & 110 & 111 & \mapsto & 1
\end{array}
$$

Improving reliability

For $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.

$$
\begin{array}{rlll}
0 & \mapsto 000 & \rightarrow \\
1 & \mapsto 111 & \rightarrow & \rightarrow \\
& \rightarrow 000 & 001 & 010 \\
& \rightarrow 011 & 101 & 110 \\
111 & \mapsto & \mapsto & 1 \\
& \rightarrow \Gamma^{\prime} & \rightarrow \\
& \rightarrow
\end{array}
$$

Improving reliability

For $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.

$$
\begin{array}{rlll}
0 & \mapsto 000 & \rightarrow \\
1 & \mapsto 111 & \rightarrow & \rightarrow \\
& \rightarrow 000 & 001 & 010 \\
& \rightarrow 011 & 101 & 110 \\
111 & \mapsto & \mapsto & 1 \\
& \rightarrow \Gamma^{\prime} & \rightarrow \\
& \rightarrow
\end{array}
$$

where

$$
\Gamma^{\prime}=\left(\begin{array}{cc}
P^{3}+3 P^{2} Q & Q^{3}+3 Q^{2} P \\
Q^{3}+3 Q^{2} P & P^{3}+3 P^{2} Q
\end{array}\right) .
$$

Improving reliability

For $\Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, with $P>Q$.

$$
\begin{array}{rlll}
0 & \mapsto 000 & \rightarrow \\
1 & \mapsto 111 & \rightarrow & \rightarrow \\
& \rightarrow 000 & 001 & 010 \\
& \rightarrow 011 & 101 & 110 \\
111 & \mapsto & \mapsto & 1 \\
& \rightarrow \Gamma^{\prime} & \rightarrow \\
& \rightarrow
\end{array}
$$

where

$$
\begin{aligned}
\Gamma^{\prime} & =\left(\begin{array}{rr}
P^{3}+3 P^{2} Q & Q^{3}+3 Q^{2} P \\
Q^{3}+3 Q^{2} P & P^{3}+3 P^{2} Q
\end{array}\right) . \\
\operatorname{Pr}_{E}\left(\Delta_{\max }\right) & =Q^{3}+3 Q^{2} P .
\end{aligned}
$$

Improving reliability

Improving reliability

$$
\begin{gathered}
0 \\
0
\end{gathered} \begin{array}{cc}
\mapsto & 0^{n} \\
1 & \mapsto
\end{array} 1^{n} \rightarrow \square \quad \begin{array}{cc}
\rightarrow & \text { majority is } \\
\rightarrow & 0
\end{array} \mapsto \quad 0
$$

Improving reliability

The probability of error

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{i} P^{i} \cdot Q^{n-i} \leq \underbrace{\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{i}}_{2^{n-1}} P^{\left\lfloor\frac{n}{2}\right\rfloor} \cdot Q^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Since $\frac{1}{4}>P \cdot Q$, we have $P Q=\frac{\delta}{4}$, for some $\delta<1$. Hence

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right) \leq 2^{n-1} \cdot(P Q)^{\left\lfloor\frac{n}{2}\right\rfloor}=2^{n-1} \cdot \frac{\delta^{\left\lfloor\frac{n}{2}\right\rfloor}}{2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}}=\delta^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Therefore

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right) \rightarrow 0 \text { if } n \rightarrow \infty
$$

Improving reliability

The probability of error

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{i} P^{i} \cdot Q^{n-i} \leq \underbrace{\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{i}}_{2^{n-1}} P^{\left\lfloor\frac{n}{2}\right\rfloor} \cdot Q^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Since $\frac{1}{4}>P \cdot Q$, we have $P Q=\frac{\delta}{4}$, for some $\delta<1$. Hence

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right) \leq 2^{n-1} \cdot(P Q)^{\left\lfloor\frac{n}{2}\right\rfloor}=2^{n-1} \cdot \frac{\delta^{\left\lfloor\frac{n}{2}\right\rfloor}}{2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}}=\delta^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Therefore

$$
\operatorname{Pr}_{E}\left(\Delta_{\max }\right) \rightarrow 0 \text { if } n \rightarrow \infty
$$

But can we avoid stretching of the message to ∞ ?

Hamming distance

For $u, v \in \mathcal{A}^{n}$,

$$
d(u, v)=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|
$$

Hamming distance

For $u, v \in \mathcal{A}^{n}$,

$$
d(u, v)=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|
$$

positivity

$$
\begin{aligned}
& d(u, v)=0 \Longleftrightarrow u=v \\
& d(u, v)=d(v, u) \\
& d(u, w) \leq d(u, v)+d(v, w)
\end{aligned}
$$

Hamming distance

For $u, v \in \mathcal{A}^{n}$,

$$
d(u, v)=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|
$$

positivity

$$
\begin{aligned}
& d(u, v)=0 \Longleftrightarrow u=v \\
& d(u, v)=d(v, u) \\
& d(u, w) \leq d(u, v)+d(v, w)
\end{aligned}
$$

$$
\left(\left\{i: u_{i} \neq w_{i}\right\} \subseteq\left\{i: u_{i} \neq v_{i}\right\} \cup\left\{i: v_{i} \neq w_{i}\right\}\right) .
$$

Hamming distance

For $u, v \in \mathcal{A}^{n}$,

$$
d(u, v)=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|
$$

$$
\text { positivity } \quad d(u, v)=0 \Longleftrightarrow u=v
$$

$$
\text { symmetry } \quad d(u, v)=d(v, u)
$$

triangle inequality

$$
d(u, w) \leq d(u, v)+d(v, w)
$$

$$
\left(\left\{i: u_{i} \neq w_{i}\right\} \subseteq\left\{i: u_{i} \neq v_{i}\right\} \cup\left\{i: v_{i} \neq w_{i}\right\}\right) .
$$

For a $\mathrm{BSC} \Gamma=\left(\begin{array}{ll}P & Q \\ Q & P\end{array}\right)$, and an input-output pair (A, B),

$$
p\left(b_{1} \ldots b_{k} \mid a_{1} \ldots a_{k}\right)=Q^{d(\vec{a}, \vec{b})} \cdot P^{k-d(\vec{a}, \vec{b})}
$$

Transmission error

For a $\mathrm{BSC} \Gamma=,\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right)$, and an input-output pair (A, B), let

$$
E=A \oplus B
$$

Transmission error

For a $\mathrm{BSC} \Gamma=,\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right)$, and an input-output pair (A, B), let

$$
E=A \oplus B
$$

Note:

$$
p(b \mid a)=p(E=a \oplus b)
$$

Indeed,

$$
p(b \mid a)=\left\{\begin{array}{lll}
P & a=b & (E=a \oplus b=0) \\
Q & a \neq b & (E=a \oplus b=1)
\end{array}\right.
$$

On the other hand,

$$
p(E=0)=p(A=0) \cdot p(0 \rightarrow 0)+p(A=1) \cdot p(1 \rightarrow 1)=P
$$

and

$$
p(E=1)=p(A=0) \cdot p(0 \rightarrow 1)+p(A=1) \cdot p(1 \rightarrow q)=Q
$$

Transmission error in the multiple use of channels

Let $E_{i}=A_{i} \oplus B_{i}$, for $i=1, \ldots, k$.
Assuming the independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$, the variables E_{1}, \ldots, E_{k} are independent.

Transmission error in the multiple use of channels

Let $E_{i}=A_{i} \oplus B_{i}$, for $i=1, \ldots, k$.
Assuming the independence of symbols
$p\left(b_{1}, b_{2}, \ldots b_{k} \mid a_{1}, a_{2} \ldots a_{k}\right)=p\left(b_{1} \mid a_{1}\right) \cdot p\left(b_{2} \mid a_{2}\right) \cdot \ldots \cdot p\left(b_{k} \mid a_{k}\right)$,
the variables E_{1}, \ldots, E_{k} are independent.

$$
\begin{aligned}
& p\left(e_{1} \ldots e_{k}\right)=\sum_{\vec{a}} p(\vec{A}=\vec{a} \wedge \vec{B}=\vec{a} \oplus \vec{e})=\sum_{p(\vec{a})>0} p(\vec{A}=\vec{a}) \cdot p(\vec{B}=\vec{a} \oplus \vec{e} \mid \vec{A}=\vec{a}), \\
& \begin{aligned}
p(\vec{B}=\vec{a} \oplus \vec{e} \mid \vec{A}=\vec{a}) & =p\left(B_{1}=a_{1} \oplus e_{1} \mid A_{1}=a_{1}\right) \ldots p\left(B_{k}=a_{k} \oplus e_{k} \mid A_{k}=a_{k}\right) \\
& =p\left(E_{1}=e_{1}\right) \cdot \ldots \cdot p\left(E_{k}=e_{k}\right)
\end{aligned}
\end{aligned}
$$

for any \vec{a}, hence

$$
p\left(e_{1} \ldots e_{k}\right)=p\left(e_{1}\right) \cdot \ldots \cdot p\left(e_{k}\right)
$$

Transmission algorithm - outline

Given: a random $X \in \mathcal{X},|\mathcal{X}|=m, \Gamma=\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right), P>Q$.

1. Choose $n \in \mathbb{N}$, and $C \subseteq\{0,1\}^{n}$ with $|C|=m$.
2. Choose $\varphi: \mathcal{X} \xrightarrow{1: 1} C$. Let $\vec{A}=\varphi \circ X$.
3. Send

$$
\begin{aligned}
\underbrace{a_{1}, a_{2}, \ldots a_{k}}_{\vec{A}} \rightarrow \Gamma & \rightarrow \underbrace{b_{1}, b_{2}, \ldots b_{k}}_{\vec{B}} \\
p\left(b_{1} \ldots b_{n} \mid a_{1} \ldots a_{n}\right) & =Q^{d(\vec{a}, \vec{b})} \cdot P^{n-d(\vec{a}, \vec{b})} .
\end{aligned}
$$

4. To decode, given $\vec{B}=b_{1} \ldots b_{n}$, choose

$$
\Delta\left(b_{1} \ldots b_{n}\right)=a_{1} \ldots a_{n} \in C
$$

maximising $p\left(b_{1} \ldots b_{n} \mid a_{1} \ldots a_{n}\right)$ (minimising $d(\vec{a}, \vec{b})$).
Goal: minimise the probability of error

$$
\operatorname{Pr}_{E}(\Delta, \vec{A})=p(\Delta \circ \vec{B} \neq \vec{A})
$$

keeping the ratio $\frac{n}{\log m}$ as small as possible $<\infty$.

Worst case distribution

Fact. Let $\vec{A}, \vec{U} \in C \subseteq\{0,1\}^{n}$, with \vec{U} uniform and \vec{A} arbitrary.
Then there is a permutation $\sigma: C \xrightarrow{1: 1} C$ such that

$$
\operatorname{Pr}_{E}(\Delta, \sigma \circ \vec{A}) \leq \operatorname{Pr}_{E}(\Delta, \vec{U})
$$

Worst case distribution

Fact. Let $\vec{A}, \vec{U} \in C \subseteq\{0,1\}^{n}$, with \vec{U} uniform and \vec{A} arbitrary. Then there is a permutation $\sigma: C \xrightarrow{1: 1} C$ such that

$$
\operatorname{Pr}_{E}(\Delta, \sigma \circ \vec{A}) \leq \operatorname{Pr}_{E}(\Delta, \vec{U})
$$

Lemma. Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, and $p_{1}, \ldots, p_{m} \in[0,1]$ with $p_{1}+\cdots+p_{m}=1$.

Worst case distribution

Fact. Let $\vec{A}, \vec{U} \in C \subseteq\{0,1\}^{n}$, with \vec{U} uniform and \vec{A} arbitrary. Then there is a permutation $\sigma: C \xrightarrow{1: 1} C$ such that

$$
\operatorname{Pr}_{E}(\Delta, \sigma \circ \vec{A}) \leq \operatorname{Pr}_{E}(\Delta, \vec{U})
$$

Lemma. Let $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, and $p_{1}, \ldots, p_{m} \in[0,1]$ with $p_{1}+\cdots+p_{m}=1$.
If $\alpha_{1} \leq \cdots \leq \alpha_{m}$ and $p_{1} \geq \cdots \geq p_{m}$, then

$$
\sum_{i=1}^{m} p_{i} \alpha_{i} \leq \frac{1}{m} \sum_{i=1}^{m} \alpha_{i}
$$

Lemma. $\alpha_{1} \leq \cdots \leq \alpha_{m}, 1 \geq p_{1} \geq \cdots \geq p_{m} \geq 0, p_{1}+\cdots+p_{m}=1$, then $\sum_{i=1}^{m} p_{i} \alpha_{i} \leq \frac{1}{m} \sum_{i=1}^{m} \alpha_{i}$.
Proof by induction on m.
$p_{m}=\frac{1}{m}-h$, for some $h \geq 0, \quad \frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i} \leq \alpha_{m}$. By induction hypo.

$$
\frac{p_{1}}{p_{1}+\cdots+p_{m-1}} \alpha_{1}+\cdots+\frac{p_{m-1}}{p_{1}+\cdots+p_{m-1}} \alpha_{m-1} \leq \frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i}
$$

Lemma. $\alpha_{1} \leq \cdots \leq \alpha_{m}, 1 \geq p_{1} \geq \cdots \geq p_{m} \geq 0, p_{1}+\cdots+p_{m}=1$, then $\sum_{i=1}^{m} p_{i} \alpha_{i} \leq \frac{1}{m} \sum_{i=1}^{m} \alpha_{i}$.
Proof by induction on m.
$p_{m}=\frac{1}{m}-h$, for some $h \geq 0, \quad \frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i} \leq \alpha_{m}$. By induction hypo.

$$
\begin{aligned}
& \frac{p_{1}}{p_{1}+\cdots+p_{m-1}} \alpha_{1}+\cdots+ \frac{p_{m-1}}{p_{1}+\cdots+p_{m-1}} \alpha_{m-1} \leq \frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i} . \\
& p_{1} \alpha_{1}+\cdots+p_{m-1} \alpha_{m-1}+p_{m} \alpha_{m} \leq \underbrace{\left(p_{1}+\cdots+p_{m-1}\right)}_{1-p_{m}} \cdot \frac{1}{m-1} \cdot \sum_{i=1}^{m-1} \alpha_{i}+p_{m} \alpha_{m}= \\
&\left(\frac{m-1}{m}+h\right) \frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i}+\left(\frac{1}{m}-h\right) \alpha_{m}=\frac{1}{m} \sum_{i=1}^{m} \alpha_{i}+h \cdot \underbrace{\left(\frac{1}{m-1} \sum_{i=1}^{m-1} \alpha_{i}-\alpha_{m}\right)}_{\leq 0}
\end{aligned}
$$

Proof of the Fact $\ldots \operatorname{Pr}_{E}(\Delta, \sigma \circ \vec{A}) \leq \operatorname{Pr}_{E}(\Delta, \vec{U})$, for some σ.
Recall: $p(\vec{B}=\vec{b} \mid \vec{A}=\vec{a})=p(\vec{E}=\vec{a} \oplus \vec{b})$ (for any in-out $A, B)$.

Proof of the Fact $\ldots \operatorname{Pr}_{E}(\Delta, \sigma \circ \vec{A}) \leq \operatorname{Pr}_{E}(\Delta, \vec{U})$, for some σ. Recall: $p(\vec{B}=\vec{b} \mid \vec{A}=\vec{a})=p(\vec{E}=\vec{a} \oplus \vec{b})$ (for any in-out A, B).

$$
\begin{aligned}
\operatorname{Pr}_{E}(\Delta, \vec{A}) & =\sum_{\vec{a} \in C} p(\vec{A}=\vec{a}) p(\Delta \circ \vec{B} \neq \vec{a} \mid \vec{A}=\vec{a}) \\
& =\sum_{\vec{a} \in C} p(\vec{A}=\vec{a}) p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a}) \\
\operatorname{Pr}_{E}(\Delta, \vec{U}) & =\frac{1}{|C|} \sum_{\vec{a} \in C} p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a})
\end{aligned}
$$

Use the Lemma for numbers:

$$
\begin{aligned}
p(\vec{A}=\vec{a}), & \vec{a} \in C, \\
p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a}), & \vec{a} \in C .
\end{aligned}
$$

Transmission rate

For an alphabet with $|\mathcal{A}|=r \geq 2$, the transmission rate of a code $C \subseteq \mathcal{A}^{n}$ is

$$
R_{r}(C)=\frac{\log _{r}|C|}{n}
$$

As usual, $R=R_{2}$.

Transmission rate

For an alphabet with $|\mathcal{A}|=r \geq 2$, the transmission rate of a code $C \subseteq \mathcal{A}^{n}$ is

$$
R_{r}(C)=\frac{\log _{r}|C|}{n} .
$$

As usual, $R=R_{2}$.
Example. If $C=\{000,111\}^{m} \subseteq\{0,1\}^{3 m}$ then

$$
R(C)=\frac{m}{3 m}=\frac{1}{3} .
$$

No error
Theorem If $\operatorname{Pr}_{E}(\Delta, \vec{A})=0$ (with A uniform) then $R_{r}(C) \leq \log _{r} 2 \cdot C_{\Gamma}$.
In particular,

$$
R(C) \leq C_{\Gamma}
$$

No error

Theorem If $\operatorname{Pr}_{E}(\Delta, \vec{A})=0$ (with A uniform) then
$R_{r}(C) \leq \log _{r} 2 \cdot C_{r}$.
In particular,

$$
R(C) \leq C_{\Gamma} .
$$

Proof. The independence of symbols implies

$$
H(\vec{B} \mid \vec{A})=H\left(B_{1} \mid A_{1}\right)+\ldots+H\left(B_{n} \mid A_{n}\right) .
$$

No error

Theorem If $\operatorname{Pr}_{E}(\Delta, \vec{A})=0$ (with A uniform) then $R_{r}(C) \leq \log _{r} 2 \cdot C_{\Gamma}$.
In particular,

$$
R(C) \leq C_{\Gamma} .
$$

Proof. The independence of symbols implies

$$
H(\vec{B} \mid \vec{A})=H\left(B_{1} \mid A_{1}\right)+\ldots+H\left(B_{n} \mid A_{n}\right) .
$$

Further

$$
\begin{aligned}
I(\vec{A}, \vec{B}) & =H(\vec{B})-H(\vec{B} \mid \vec{A}) \\
& \leq \sum_{i=1}^{n} H\left(B_{i}\right)-\sum_{i=1}^{n} H\left(B_{i} \mid A_{i}\right) \\
& =\sum_{i=1}^{n} \underbrace{\left(H\left(B_{i}\right)-H\left(B_{i} \mid A_{i}\right)\right)}_{I\left(A_{i}, B_{i}\right)} \\
& \leq n \cdot C_{\Gamma} .
\end{aligned}
$$

Proof of $R_{r}(C) \leq \log _{r} 2 \cdot C_{\Gamma}$ cont'd.
We got $I(\vec{A}, \vec{B}) \leq n \cdot C_{\Gamma}$, hence

Proof of $R_{r}(C) \leq \log _{r} 2 \cdot C_{\Gamma}$ contd.

We got $I(\vec{A}, \vec{B}) \leq n \cdot C_{\Gamma}$, hence

$$
I_{r}(\vec{A}, \vec{B}) \leq \log _{r} 2 \cdot n \cdot C_{\Gamma} .
$$

But

$$
\begin{aligned}
I_{r}(\vec{A}, \vec{B}) & =H_{r}(\vec{A})-\underbrace{H_{r}(\vec{A} \mid \vec{B})}_{0} \\
& =\log _{r} m
\end{aligned}
$$

where $m=|C|$.

Proof of $R_{r}(C) \leq \log _{r} 2 \cdot C_{\Gamma}$ cont'd.

We got $I(\vec{A}, \vec{B}) \leq n \cdot C_{\Gamma}$, hence

$$
I_{r}(\vec{A}, \vec{B}) \leq \log _{r} 2 \cdot n \cdot C_{\Gamma} .
$$

But

$$
\begin{aligned}
I_{r}(\vec{A}, \vec{B}) & =H_{r}(\vec{A})-\underbrace{H_{r}(\vec{A} \mid \vec{B})}_{0} \\
& =\log _{r} m
\end{aligned}
$$

where $m=|C|$. Hence

$$
R_{r}(C)=\frac{\log _{r} m}{n} \leq \log _{r} 2 \cdot C_{\Gamma}
$$

Example: noisy typewriter revisited

$\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}$ (26 letters)

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.
$C_{\Gamma}=\max _{A} I(A ; B)=\max _{A} H(B)-\underbrace{H(B \mid A)}_{1}=\log 26-1=\log 13$.

Example: noisy typewriter revisited

$\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}$ (26 letters)

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.
$C_{\Gamma}=\max _{A} I(A ; B)=\max _{A} H(B)-\underbrace{H(B \mid A)}_{1}=\log 26-1=\log 13$.
If $|C|=26^{k}$ then

$$
\frac{\log _{26}|C|}{m}=\frac{k}{m}
$$

Example: noisy typewriter revisited

$\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}$ (26 letters)

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.
$C_{\Gamma}=\max _{A} I(A ; B)=\max _{A} H(B)-\underbrace{H(B \mid A)}_{1}=\log 26-1=\log 13$.
If $|C|=26^{k}$ then

$$
\frac{\log _{26}|C|}{m}=\frac{k}{m} \leq \log _{26} 2 \cdot \log _{2} 13=\frac{\log _{2} 13}{\log _{2} 13+1} .
$$

Example: noisy typewriter revisited

$\mathcal{A}=\mathcal{B}=\{a, b, \ldots, z\}$ (26 letters)

$$
p(\alpha \rightarrow \alpha)=p(\alpha \rightarrow \operatorname{next}(\alpha))=0.5
$$

where $\operatorname{next}(a)=b, \operatorname{next}(b)=c, \ldots, \operatorname{next}(y)=z, \operatorname{next}(z)=a$.
$C_{\Gamma}=\max _{A} I(A ; B)=\max _{A} H(B)-\underbrace{H(B \mid A)}_{1}=\log 26-1=\log 13$.
If $|C|=26^{k}$ then

$$
\frac{\log _{26}|C|}{m}=\frac{k}{m} \leq \log _{26} 2 \cdot \log _{2} 13=\frac{\log _{2} 13}{\log _{2} 13+1} .
$$

Note: this bound also follows from the inequality $26^{k} \leq \frac{26^{m}}{2^{m}}$ (a word of length m can give 2^{m} results.)

Example: noisy typewriter cont'd

$$
\begin{gathered}
C=\left\{\begin{array}{ccccccc}
a a & c c & e e & \ldots & \ldots & w w & y y \\
a c & c e & e g & \ldots & \ldots & w y & y a
\end{array}\right\},|C|=26, m=2 . \\
\frac{\log _{26}|C|}{m}= \\
=\frac{1}{2} \lll \frac{\log _{2} 13}{\log _{2} 13+1} .
\end{gathered}
$$

Example: noisy typewriter cont'd

$$
\begin{gathered}
C=\left\{\begin{array}{lllllll}
a a & c c & e e & \ldots & \ldots & w w & y y \\
a c & c e & e g & \ldots & \ldots & w y & y a
\end{array}\right\},|C|=26, m=2 . \\
\frac{\log _{26}|C|}{m}=\frac{1}{2} \lll \frac{\log _{2} 13}{\log _{2} 13+1} . \\
C=\left\{\ldots, \ldots, \begin{array}{|r|r|}
x \text { y z } & \mathrm{t}
\end{array}, \ldots, \ldots\right\},|C|=26^{3}, m=4,
\end{gathered}
$$

where t is on the list a, c, e, \ldots, w, y on the position $(x \bmod 2) \cdot 4+(y \bmod 2) \cdot 2+(z \bmod 2) \cdot 1$.

$$
\frac{\log _{26}|C|}{m}=\frac{3}{4} \lesssim \frac{\log _{2} 13}{\log _{2} 13+1} .
$$

Example: noisy typewriter cont'd

$$
C=\{\ldots, \ldots, w, \ldots, \ldots\},|C|=26^{k},
$$

where w encodes a number $1 \cdot 26^{k}+a_{k-1} \cdot 26^{k-1}+\cdots+a_{0} \cdot 26^{0}$ using m of the 13 digits a, c, e, \ldots, w, y, where

$$
m=k+\log _{13} 2 \cdot(k+1)
$$

hence

$$
\frac{\log _{26}|C|}{m}=\frac{k}{k+\log _{13} 2 \cdot(k+1)}=\frac{\log _{2} 13}{1+\log _{2} 13+\frac{1}{k}} \approx \frac{\log _{2} 13}{\log _{2} 13+1}
$$

Shannon channel coding theorem

Theorem. $\Gamma=\left(\begin{array}{cc}P & Q \\ Q & P\end{array}\right), P>Q$. Then $\forall \varepsilon, \delta>0 \quad \exists n_{0} \quad \forall n \geq n_{0}$ $\exists C \subseteq\{0,1\}^{n}$

$$
\begin{array}{r}
C_{\Gamma}-\varepsilon \leq \quad R(C) \leq C_{\Gamma} \\
\operatorname{Pr}_{E}(\Delta, C) \leq \delta
\end{array}
$$

We assume $\Delta=\Delta_{\max }$ and C is uniform.

Shannon channel coding theorem

Idea. The expected distance between A and B is $\mathbf{Q} \cdot \mathbf{n}$. Try to pack in $\{0,1\}^{n}$ as many disjoint balls of radius $\mathbf{Q} \cdot \mathbf{n}$ as possible.

Shannon channel coding theorem

Idea. The expected distance between A and B is $\mathbf{Q} \cdot \mathbf{n}$. Try to pack in $\{0,1\}^{n}$ as many disjoint balls of radius $\mathbf{Q} \cdot \boldsymbol{n}$ as possible.

The centers of the \mathbf{m} balls will be the code words.

Proof of the Shannon channel coding theorem

$$
\begin{aligned}
& \vec{a} \in C, \quad \vec{e} \in\{0,1\}^{n}, \quad \rho>0 . \\
& \quad(d(\vec{a}, \vec{a} \oplus \vec{e}) \leq \rho) \wedge(\forall \vec{b} \in C-\{\vec{a}\}, d(\vec{b}, \vec{a} \oplus \vec{e})>\rho) \Longrightarrow
\end{aligned}
$$

Proof of the Shannon channel coding theorem

$$
\begin{aligned}
& \vec{a} \in C, \quad \vec{e} \in\{0,1\}^{n}, \quad \rho>0 . \\
&(d(\vec{a}, \vec{a} \oplus \vec{e}) \leq \rho) \wedge(\forall \vec{b} \in C-\{\vec{a}\}, d(\vec{b}, \vec{a} \oplus \vec{e})>\rho) \Longrightarrow \\
& \Longrightarrow \Delta(\vec{a} \oplus \vec{e})=\vec{a} .
\end{aligned}
$$

Proof of the Shannon channel coding theorem

$$
\begin{aligned}
& \vec{a} \in C, \quad \vec{e} \in\{0,1\}^{n}, \rho>0 . \\
&(d(\vec{a}, \vec{a} \oplus \vec{e}) \leq \rho) \wedge(\forall \vec{b} \in C-\{\vec{a}\}, d(\vec{b}, \vec{a} \oplus \vec{e})>\rho) \Longrightarrow \\
& \Longrightarrow \Delta(\vec{a} \oplus \vec{e})=\vec{a} .
\end{aligned}
$$

$p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a}) \leq p(d(\vec{a}, \vec{a} \oplus \vec{E})>\rho)+\quad \sum \quad p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho)$

$$
\vec{b} \in C-\{\bar{a}\}
$$

Weak Law of Large Numbers

$X_{1}, X_{2}, \ldots, X_{n}$ independent with the same distribution, $\mu=E\left(X_{i}\right)$, then, for $\eta>0$,

$$
p\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|>\eta\right) \rightarrow 0 \text { if } n \rightarrow \infty .
$$

Weak Law of Large Numbers

$X_{1}, X_{2}, \ldots, X_{n}$ independent with the same distribution, $\mu=E\left(X_{i}\right)$, then, for $\eta>0$,

$$
p\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|>\eta\right) \rightarrow 0 \text { if } n \rightarrow \infty .
$$

Hence

$$
p\left(\left|\frac{1}{n} \sum_{i=1}^{n} E_{i}-Q\right|>\eta\right) \rightarrow 0 \text { if } n \rightarrow \infty,
$$

since $E\left(E_{i}\right)=0 \cdot P+\cdot Q=Q$.

Weak Law of Large Numbers

$X_{1}, X_{2}, \ldots, X_{n}$ independent with the same distribution, $\mu=E\left(X_{i}\right)$, then, for $\eta>0$,

$$
p\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|>\eta\right) \rightarrow 0 \text { if } n \rightarrow \infty .
$$

Hence

$$
p\left(\left|\frac{1}{n} \sum_{i=1}^{n} E_{i}-Q\right|>\eta\right) \rightarrow 0 \text { if } n \rightarrow \infty,
$$

since $E\left(E_{i}\right)=0 \cdot P+\cdot Q=Q$. Therefore, with $\rho=n \cdot(Q+\eta)$,

$$
\begin{array}{r}
p(d(\vec{a}, \vec{a} \oplus \vec{E})>\rho) \leq p\left(\frac{1}{n} \cdot \sum_{i=1}^{n} E_{i}>Q+\eta\right) \leq \\
p\left(\left|\frac{1}{n} \cdot \sum_{i=1}^{n} E_{i}-Q\right|>\eta\right) \leq \frac{\delta}{2},
\end{array}
$$

for n sufficiently large.

Proof of the Shannon channel coding theorem cont'd

Recall, with $\delta, \eta>0, \rho=n \cdot(Q+\eta)$,

$$
\begin{aligned}
\operatorname{Pr}_{E}(\Delta, C) & =\frac{1}{m} \sum_{\vec{a} \in C} p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a}) \\
& \leq \frac{1}{m} \sum_{\vec{a} \in C}\left(p(d(\vec{a}, \vec{a} \oplus \vec{E})>\rho)+\sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho)\right) \\
& \leq \frac{\delta}{2}+\frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho),
\end{aligned}
$$

The size of a ball
Lemma. For $\lambda \leq \frac{1}{2}$,

$$
\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq 2^{n \cdot H(\lambda)}
$$

where $H(x)=-x \log x-(1-x) \cdot \log (1-x)$.

The size of a ball
Lemma. For $\lambda \leq \frac{1}{2}$,

$$
\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq 2^{n \cdot H(\lambda)}
$$

where $H(x)=-x \log x-(1-x) \cdot \log (1-x)$.
Proof. Let $\kappa=1-\lambda$, then $\kappa \geq \lambda$.

The size of a ball

Lemma. For $\lambda \leq \frac{1}{2}$,

$$
\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq 2^{n \cdot H(\lambda)}
$$

where $H(x)=-x \log x-(1-x) \cdot \log (1-x)$.
Proof. Let $\kappa=1-\lambda$, then $\kappa \geq \lambda$. We first show that, for all $i \leq \lambda n$,

$$
\lambda^{i} \kappa^{n-i} \geq \lambda^{\lambda n} \cdot \kappa^{\kappa n}
$$

The size of a ball

Lemma. For $\lambda \leq \frac{1}{2}$,

$$
\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq 2^{n \cdot H(\lambda)}
$$

where $H(x)=-x \log x-(1-x) \cdot \log (1-x)$.
Proof. Let $\kappa=1-\lambda$, then $\kappa \geq \lambda$. We first show that, for all $i \leq \lambda n$,

$$
\lambda^{i} \kappa^{n-i} \geq \lambda^{\lambda n} \cdot \kappa^{\kappa n}
$$

For λn integer just replace bigger by smaller, otherwise $\lambda n=\lfloor\lambda n\rfloor+\Delta \lambda, \kappa n=\lfloor\kappa n\rfloor+\Delta \kappa,\lfloor\lambda n\rfloor+\lfloor\kappa n\rfloor=n-1$, and $\Delta \lambda+\Delta \kappa=1$. For $i \leq \lambda n$,

$$
\lambda^{i} \kappa^{n-i} \geq \lambda^{\lfloor\lambda n\rfloor} \cdot \kappa^{\lfloor\kappa n\rfloor+1}=\lambda^{\lfloor\lambda n\rfloor} \cdot \kappa^{\lfloor\kappa n\rfloor} \underbrace{\kappa^{\Delta \lambda+\Delta \kappa}}_{\geq \lambda^{\Delta \lambda} \cdot \kappa^{\Delta \kappa}} \geq \lambda^{\lambda n} \cdot \kappa^{\kappa n}
$$

Proof

$\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq 2^{n \cdot H(\lambda)}, \quad$ for $\lambda \leq \frac{1}{2}$.
We have shown $\quad \lambda^{i} \kappa^{n-i} \geq \lambda^{\lambda n} \cdot \kappa^{\kappa n}$.
Note

$$
\begin{aligned}
-\log _{2} \lambda^{\lambda n} \cdot \kappa^{\kappa n} & =-n \cdot\left(\lambda \cdot \log _{2} \lambda+\kappa \cdot \log _{2} \kappa\right) \\
& =n \cdot H(\lambda)
\end{aligned}
$$

Hence

$$
1 \geq \sum_{i \leq \lambda \cdot n}\binom{n}{i} \lambda^{i} \kappa^{n-i} \geq \sum_{i \leq \lambda \cdot n}\binom{n}{i} \lambda^{\lambda n} \cdot \kappa^{\kappa n}
$$

and consequently

$$
\sum_{i \leq \lambda \cdot n}\binom{n}{i} \leq \frac{1}{\lambda^{\lambda n} \cdot \kappa^{\kappa n}}=2^{n \cdot H(\lambda)}
$$

Proof of the Shannon channel coding theorem cont'd

Recall, with $\delta, \eta>0, \rho=n \cdot(Q+\eta)$,
$\operatorname{Pr}_{E}(\Delta, C)=\frac{1}{m} \sum_{\vec{a} \in C} p(\Delta(\vec{a} \oplus \vec{E}) \neq \vec{a})$
$\leq \frac{1}{m} \sum_{\vec{a} \in C}\left(p(d(\vec{a}, \vec{a} \oplus \vec{E})>\rho)+\sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho)\right)$
$\leq \frac{\delta}{2}+\underbrace{\frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho)}_{? ? ?}$,

Probabilistic argument

Let \mathcal{C} be the set of all sequences of different $c_{1}, \ldots, c_{m} \in\{0,1\}^{n}$.
Let $N=|\mathcal{C}|$.
For $\bar{C}=\left(c_{1}, \ldots, c_{m}\right)$, let $C=\left\{c_{1}, \ldots c_{m}\right\}$.
If

$$
\frac{1}{N} \sum_{\bar{C}} \operatorname{something}(C) \leq \delta
$$

then there exists a code C, such that

$$
\text { something }(C) \leq \delta
$$

Probabilistic argument

Proof of the Shannon channel coding theorem cont'd

We will estimate

$$
\begin{aligned}
& \frac{1}{N} \sum_{\bar{C}} \frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho) \\
& \quad=\frac{1}{N} \sum_{\bar{C}} \frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq i} p\left(d\left(c_{j}, c_{i} \oplus \vec{E}\right) \leq \rho\right) \\
& \quad=\frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq i} \underbrace{\frac{1}{N} \sum_{\bar{C}} p\left(d\left(c_{j}, c_{i} \oplus \vec{E}\right) \leq \rho\right)}_{(*)}
\end{aligned}
$$

We then estimate $\left({ }^{*}\right)$, for a fixed pair of indices $i \neq j$.

Estimation

Let

$$
S_{\rho}(\vec{e})=\left\{\vec{b} \in\{0,1\}^{n}: d(\vec{b}, \vec{e}) \leq \rho\right\} .
$$

Estimation

Let

$$
S_{\rho}(\vec{e})=\left\{\vec{b} \in\{0,1\}^{n}: d(\vec{b}, \vec{e}) \leq \rho\right\} .
$$

Clearly $d(\vec{x}, \vec{y} \oplus \vec{e})=d(\vec{x} \oplus \vec{y}, \vec{e})$, hence

$$
\frac{1}{N} \sum_{\bar{C}} p\left(d\left(c_{j}, c_{i} \oplus \vec{E}\right) \leq \rho\right)=\frac{1}{N} \sum_{\bar{C}} p\left(c_{i} \oplus c_{j} \in S_{\rho}(\vec{E})\right)
$$

boole
$=\sum_{\vec{e} \in\{0,1\}^{n}} p(\vec{E}=\vec{e}) \cdot \underbrace{\frac{1}{N} \sum_{\bar{c}} \overbrace{c_{i} \oplus c_{j} \in S_{\rho}(\vec{e})}}_{(* *)}$
We now estimate the value of $\left({ }^{* *}\right)$, for a fixed \vec{e}.

Estimation

$$
\frac{1}{N} \sum_{\bar{C}} \overbrace{c_{i} \oplus c_{j} \in S_{\rho}(\vec{e})}^{\text {boole }}
$$

Clearly, for any $\vec{a}, \vec{b} \in\{0,1\}^{n}-\left\{0^{n}\right\}$,

$$
\left|\left\{\bar{C}: \vec{a}=c_{i} \oplus c_{j}\right\}\right|=\left|\left\{\bar{C}: \vec{b}=c_{i} \oplus c_{j}\right\}\right|=\frac{N}{2^{n}-1} .
$$

Hence

$$
\underbrace{\frac{1}{N} \sum_{\bar{C}} \overbrace{c_{i} \oplus c_{j} \in S_{\rho}(\vec{e})}^{\text {boole }}}_{(* *)}=\frac{1}{N} \cdot \frac{N}{2^{n}-1}\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right|,
$$

Estimation

$$
\frac{1}{N} \sum_{\bar{C}} \overbrace{c_{i} \oplus c_{j} \in S_{\rho}(\vec{e})}^{\text {boole }}
$$

Clearly, for any $\vec{a}, \vec{b} \in\{0,1\}^{n}-\left\{0^{n}\right\}$,

$$
\left|\left\{\bar{C}: \vec{a}=c_{i} \oplus c_{j}\right\}\right|=\left|\left\{\bar{C}: \vec{b}=c_{i} \oplus c_{j}\right\}\right|=\frac{N}{2^{n}-1} .
$$

Hence

$$
\begin{gathered}
\underbrace{\frac{1}{N} \sum_{\bar{c}} \overbrace{c_{i} \oplus c_{j} \in S_{\rho}(\vec{e})}^{\text {boole }}}_{(* *)}=\frac{1}{N} \cdot \frac{N}{2^{n}-1}\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right|, \\
\sum_{\vec{e} \in\{0,1\}^{n}} p(\vec{E}=\vec{e}) \cdot \frac{1}{2^{n}-1}\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right|=\frac{1}{2^{n}-1}\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right| .
\end{gathered}
$$

Proof of the Shannon channel coding theorem cont'd

But

$$
\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right| \leq 2^{n \cdot H(Q+\eta)}
$$

(recall that $\rho=n(Q+\eta)$).

Proof of the Shannon channel coding theorem cont'd

But

$$
\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right| \leq 2^{n \cdot H(Q+\eta)}
$$

(recall that $\rho=n(Q+\eta)$).
Hence

$$
\frac{1}{N} \sum_{\bar{C}} \frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho) \leq \frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq i} \frac{1}{2^{n}-1} \cdot 2^{n \cdot H(Q+\eta)}
$$

Proof of the Shannon channel coding theorem cont'd

But

$$
\left|S_{\rho}(\vec{e})-\left\{0^{n}\right\}\right| \leq 2^{n \cdot H(Q+\eta)}
$$

(recall that $\rho=n(Q+\eta)$).
Hence

$$
\frac{1}{N} \sum_{\bar{C}} \frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho) \leq \frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq i} \frac{1}{2^{n}-1} \cdot 2^{n \cdot H(Q+\eta)}
$$

$$
=\frac{1}{m} \cdot m \cdot \underbrace{(m-1) \cdot \frac{1}{2^{n}-1}}_{\leq \frac{m}{2^{n}}} \cdot 2^{n \cdot H(Q+\eta)}
$$

$$
\leq m \cdot 2^{n(H(Q+\eta)-1)}
$$

Proof of the Shannon channel coding theorem cont'd

Summarize

$$
\begin{aligned}
\frac{1}{N} \sum_{\bar{C}} \operatorname{Pr}_{E}(\Delta, C) & \leq \frac{\delta}{2}+\frac{1}{m} \sum_{\vec{a} \in C} \sum_{\vec{b} \in C-\{\vec{a}\}} p(d(\vec{b}, \vec{a} \oplus \vec{E}) \leq \rho) \\
& \leq \frac{\delta}{2}+m \cdot 2^{n(H(Q+\eta)-1)} \\
& =\frac{\delta}{2}+2^{n \cdot\left(\frac{\log m}{n}+H(Q+\eta)-1\right)}
\end{aligned}
$$

Note $\left(\frac{\log m}{n}+H(Q+\eta)-1\right) \approx R(C)-C_{\Gamma}$.

Proof of the Shannon channel coding theorem cont'd

We can choose n_{0}, η, such that $\forall n \geq n_{0}, \exists m$,

$$
C_{\Gamma-\varepsilon} \leq \frac{\log m}{n} \leq C_{\Gamma}
$$

$$
\frac{\log _{2} m}{n}+H(Q+\eta)-1 \leq-\frac{\varepsilon}{3}
$$

$$
m=2^{k}
$$

Proof of the Shannon channel coding theorem cont'd

We can choose n_{0}, η, such that $\forall n \geq n_{0}, \exists m$,

$$
\begin{array}{r}
C_{\Gamma}-\varepsilon \leq \frac{\log m}{n} \leq C_{\Gamma} \\
\frac{\log _{2} m}{n}+H(Q+\eta)-1 \leq-\frac{\varepsilon}{3}
\end{array}
$$

Hence

$$
\begin{aligned}
\frac{1}{N} \sum_{\bar{C}} \operatorname{Pr}_{E}(\Delta, C) & \leq \frac{\delta}{2}+\underbrace{2^{n \cdot\left(\frac{\log m}{n}+H(Q+\eta)-1\right)}}_{\leq \frac{1}{2^{n \cdot \frac{\varepsilon}{3}}}} \\
& \leq \frac{\delta}{2}+\frac{\delta}{2}
\end{aligned}
$$

By probabilistic argument, a desired code C exists (with $R(C)=\frac{\log m}{n}$).

The Shannon channel coding theorem generally

For any channel Γ, and $\varepsilon, \delta>0$, for sufficiently large n, there exists a code $C \subseteq\{0,1\}^{n}$, along with some decision rule Δ_{n} satisfying

$$
C_{\Gamma}-\varepsilon \leq \quad \frac{\log |C|}{n} \quad \leq C_{\Gamma}
$$

$$
\operatorname{Pr}_{E}(\Delta, C) \leq \delta
$$

In other words, there is a sequence of codes $C_{\ell} \subseteq\{0,1\}^{n_{\ell}}, \ell \rightarrow \infty$, along with decision rules Δ_{ℓ} such that

$$
\frac{\log \left|C_{\ell}\right|}{n_{\ell}} \rightarrow C_{\Gamma} \quad \text { and } \quad \operatorname{Pr}_{E}\left(\text { Delta }_{\ell}, C_{\ell}\right) \rightarrow 0
$$

Error correcting codes

Trading optimality for efficiency. Let $C \subseteq\{0,1\}^{n}$.

$$
C \ni a_{1}, \ldots a_{n} \rightarrow \Gamma \rightarrow b_{1}, \ldots b_{n} \rightarrow \Delta\left(b_{1} \ldots, b_{n}\right) \in C
$$

C corrects \mathbf{k} errors if, for any $\vec{a} \in C, \vec{b} \in\{0,1\}^{n}$,

$$
\text { if } d(\vec{a}, \vec{b}) \leq k \text { then } \Delta(\vec{b})=\vec{a}
$$

Error correcting codes

Trading optimality for efficiency. Let $C \subseteq\{0,1\}^{n}$.

$$
C \ni a_{1}, \ldots a_{n} \rightarrow \square \rightarrow b_{1}, \ldots b_{n} \rightarrow \Delta\left(b_{1} \ldots, b_{n}\right) \in C
$$

C corrects \mathbf{k} errors if, for any $\vec{a} \in C, \vec{b} \in\{0,1\}^{n}$,

$$
\text { if } d(\vec{a}, \vec{b}) \leq k \text { then } \Delta(\vec{b})=\vec{a} \text {. }
$$

C detects \mathbf{k} errors if, for any $\vec{a} \in C, \vec{b} \in\{0,1\}^{n}$,

$$
\text { if } 0<d(\vec{a}, \vec{b}) \leq k \text { then } \vec{b} \notin C \text {. }
$$

corrects

detects

corrects

detects

corrects

detects

Error correcting codes

Let

$$
d(C)=\min \{d(v, w): v, w \in C, v \neq w\} .
$$

Fact.
A code C corrects k errors if, and only if, $2 k+1 \leq d(C)$.
A code C detects k errors if, and only if, $k<d(C)$.

Error correcting codes

Let

$$
d(C)=\min \{d(v, w): v, w \in C, v \neq w\} .
$$

Fact.
A code C corrects k errors if, and only if, $2 k+1 \leq d(C)$.
A code C detects k errors if, and only if, $k<d(C)$.

Example. $\left\{0^{n}, 1^{n}: n \in \mathbb{N}\right\}$ corrects $\left\lfloor\frac{n-1}{2}\right\rfloor$ errors.
$\left\{w_{1} w_{2} \ldots w_{n} \in\{0,1\}^{n}: \sum_{i} w_{i}=0 \bmod 2\right\}$ detects one error, but does not correct it.

One error

Problem. Find $C \subseteq\{0,1\}^{n+k}$ with $|C|=2^{n}$
that corrects a single error.

One error

Problem. Find $C \subseteq\{0,1\}^{n+k}$ with $|C|=2^{n}$
that corrects a single error.
To detect, $k=1$ suffices.

One error

Problem. Find $C \subseteq\{0,1\}^{n+k}$ with $|C|=2^{n}$
that corrects a single error.
To detect, $k=1$ suffices. Prolongate $w=w_{1} \ldots w_{k}$ by

$$
\text { check-bit }(w)=\sum_{i} w_{i} \bmod 2
$$

One error

Problem. Find $C \subseteq\{0,1\}^{n+k}$ with $|C|=2^{n}$ that corrects a single error.

To detect, $k=1$ suffices. Prolongate $w=w_{1} \ldots w_{k}$ by

$$
\text { check-bit }(w)=\sum_{i} w_{i} \bmod 2
$$

Heuristics.

\mathbf{n} original bits	\mathbf{k} check bits

An error can appear on $n+k$ positions, hence

$$
n+k+1 \leq 2^{k}
$$

It is possible with $n+k+1=2^{k}$ (for $\left.k \geq 2\right)$.

Hamming $\left(2^{k}-1, k\right)$ code

Let $a_{1} \ldots a_{n}$ with $n=2^{k}-k-1$.
Add the check bits on the positions 2^{i}, for $i=0,1, \ldots, k-1$.

Hamming $\left(2^{k}-1, k\right)$ code

Let $a_{1} \ldots a_{n}$ with $n=2^{k}-k-1$.
Add the check bits on the positions 2^{i}, for $i=0,1, \ldots, k-1$.

They are computed by solving k equations over $\mathbb{Z}_{2}(i . e ., \bmod 2)$
(0) $\quad x_{1}+x_{3}+x_{5}+x_{7}=0$
(1) $\quad x_{2}+x_{3}+x_{6}+x_{7}=0$
(2) $\quad x_{4}+x_{5}+x_{6}+x_{7}=0$,

Hamming $\left(2^{k}-1, k\right)$ code

Let $a_{1} \ldots a_{n}$ with $n=2^{k}-k-1$.
Add the check bits on the positions 2^{i}, for $i=0,1, \ldots, k-1$.

They are computed by solving k equations over \mathbb{Z}_{2} (i.e., $\bmod 2$)
(0) $x_{1}+x_{3}+x_{5}+x_{7}=0$
(1) $x_{2}+x_{3}+x_{6}+x_{7}=0$
(2) $x_{4}+x_{5}+x_{6}+x_{7}=0$,
where in the equation (i), we sum up those x_{t},

$$
t=b_{0}+b_{1} 2+\ldots+b_{k-1} 2^{k-1}
$$

where the bit \mathbf{i} is one.

\square	\square	a_{1}	\square	a_{2}	a_{3}	a_{4}
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}

(0)

$$
\begin{array}{ll}
\text { (0) } & x_{1}+x_{3}+x_{5}+x_{7}=0 \\
\text { (1) } & x_{2}+x_{3}+x_{6}+x_{7}=0 \tag{1}\\
\text { (2) } & x_{4}+x_{5}+x_{6}+x_{7}=0
\end{array}
$$

The unknown are x_{2}, where $i=0,1, \ldots, k-1$.

$$
x_{1} x_{2}, \ldots x_{n+k} \rightarrow \Gamma \rightarrow x_{1}^{\prime} x_{2}^{\prime}, \ldots x_{n+k}^{\prime}
$$

For example

$$
\begin{array}{ll}
\text { (0) } & x_{1}^{\prime}+x_{3}^{\prime}+x_{5}^{\prime}+x_{7}^{\prime}=0 \\
(\mathbf{1}) & x_{2}^{\prime}+x_{3}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1 \\
(\mathbf{2}) & x_{4}^{\prime}+x_{5}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1
\end{array}
$$

Then an error has occurred on the position

\square	\square	a_{1}	\square	a_{2}	a_{3}	a_{4}
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}

(0)

$$
\begin{align*}
& x_{1}+x_{3}+x_{5}+x_{7}=0 \\
& x_{2}+x_{3}+x_{6}+x_{7}=0 \tag{1}\\
& x_{4}+x_{5}+x_{6}+x_{7}=0 \tag{2}
\end{align*}
$$

The unknown are x_{2}, where $i=0,1, \ldots, k-1$.

$$
x_{1} x_{2}, \ldots x_{n+k} \rightarrow \Gamma \rightarrow x_{1}^{\prime} x_{2}^{\prime}, \ldots x_{n+k}^{\prime}
$$

For example

$$
\begin{array}{ll}
\text { (0) } & x_{1}^{\prime}+x_{3}^{\prime}+x_{5}^{\prime}+x_{7}^{\prime}=0 \\
(\mathbf{1}) & x_{2}^{\prime}+x_{3}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1 \\
(\mathbf{2}) & x_{4}^{\prime}+x_{5}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1
\end{array}
$$

Then an error has occurred on the position

$$
6=
$$

\square	\square	a_{1}	\square	a_{2}	a_{3}	a_{4}
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}

$$
\begin{array}{ll}
\text { (0) } & x_{1}+x_{3}+x_{5}+x_{7}=0 \tag{0}\\
\text { (1) } & x_{2}+x_{3}+x_{6}+x_{7}=0 \\
\text { (2) } & x_{4}+x_{5}+x_{6}+x_{7}=0
\end{array}
$$

The unknown are x_{2}, where $i=0,1, \ldots, k-1$.

$$
x_{1} x_{2}, \ldots x_{n+k} \rightarrow \Gamma \rightarrow x_{1}^{\prime} x_{2}^{\prime}, \ldots x_{n+k}^{\prime}
$$

For example
(0) $x_{1}^{\prime}+x_{3}^{\prime}+x_{5}^{\prime}+x_{7}^{\prime}=0$
(1) $x_{2}^{\prime}+x_{3}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1$
(2) $x_{4}^{\prime}+x_{5}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1$.

Then an error has occurred on the position

$$
6=0 \cdot 2^{0}+1 \cdot 2^{1}+1 \cdot 2^{2}
$$

Hamming ($\left.2^{k}-1, k\right)$ code cont'd

(0) $x_{1}^{\prime}+x_{3}^{\prime}+x_{5}^{\prime}+x_{7}^{\prime}=0$
(1) $x_{2}^{\prime}+x_{3}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1$
(2) $x_{4}^{\prime}+x_{5}^{\prime}+x_{6}^{\prime}+x_{7}^{\prime}=1$.

A single error (if any) has occurred on the position

$$
t=b_{0}+b_{1} 2+\ldots+b_{k-1} 2^{k-1}
$$

where b_{i} is the value of the equation (i) after substitution.

Hamming $(7,4)$ code

The sum in each circle should be even.

Then a "guilty" bit can be easily found.

Hamming's bound

If $C \subseteq\{0,1\}^{m}$ corrects t errors then

$$
|C| \cdot\left(1+m+\binom{m}{2}+\ldots+\binom{m}{t}\right) \leq 2^{m}
$$

Hamming's bound

If $C \subseteq\{0,1\}^{m}$ corrects t errors then

$$
|C| \cdot\left(1+m+\binom{m}{2}+\ldots+\binom{m}{t}\right) \leq 2^{m}
$$

Example. For $C=\left\{0^{2 n+2}, 1^{2 n+2}\right\}$, we have
$\{0,1\}^{2 n+2}=B\left(0^{2 n+2}, n\right) \dot{\cup} B\left(1^{2 n+2}, n\right) \dot{\cup}\left\{w \in\{0,1\}^{2 n+2}: \sharp_{0}(w)=\sharp_{1}(w)\right\}$.

Hamming's bound

If $C \subseteq\{0,1\}^{m}$ corrects t errors then

$$
|C| \cdot\left(1+m+\binom{m}{2}+\ldots+\binom{m}{t}\right) \leq 2^{m}
$$

Example. For $C=\left\{0^{2 n+2}, 1^{2 n+2}\right\}$, we have
$\{0,1\}^{2 n+2}=B\left(0^{2 n+2}, n\right) \dot{\cup} B\left(1^{2 n+2}, n\right) \dot{\cup}\left\{w \in\{0,1\}^{2 n+2}: \not \sharp_{0}(w)=\sharp_{1}(w)\right\}$.

But for the Hamming $\left(2^{k}-1, k\right)$ code we have

$$
\underbrace{2^{2^{k}-k-1}}_{|C|} \cdot(1+\underbrace{\left(2^{k}-1\right)}_{m})=2^{2^{k}-1} .
$$

In this sense the Hamming code is optimal.

Hamming code

Recall

$$
2^{2^{k}-k-1} \cdot(\underbrace{1+\left(2^{k}-1\right)}_{\mid \text {ball } \mid})=2^{2^{k}-1} .
$$

Thus

$$
d\left(\operatorname{Hamming}\left(2^{k}-1, k\right)\right)=
$$

Hamming code

Recall

$$
2^{2^{k}-k-1} \cdot(\underbrace{1+\left(2^{k}-1\right)}_{\mid \text {ball } \mid})=2^{2^{k}-1} .
$$

Thus

$$
d\left(\operatorname{Hamming}\left(2^{k}-1, k\right)\right)=3
$$

Indeed, assumption that $d(v, w) \geq 4$, for the closest words v, w, leads to contradiction.

Hadamard code

Hadamard matrices. Values ± 1, any two distinct rows are orthogonal.

$$
\begin{gathered}
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \\
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Hadamard code

Hadamard matrices. Values ± 1, any two distinct rows are orthogonal.

$$
\begin{gathered}
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \\
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Note

$$
\begin{aligned}
H \cdot H^{T} & =n \cdot I_{n} \\
(\operatorname{det} H)^{2} & =n^{n} \\
\operatorname{det} H & =n^{\frac{n}{2}}
\end{aligned}
$$

which is maximal over $[-1,1]$ (Hadamard).

Hadamard code

A Hadamard matrix H of order n induces a binary code $C \subseteq\{0,1\}^{n}$.

Hadamard code

A Hadamard matrix H of order n induces a binary code $C \subseteq\{0,1\}^{n}$.
For the rows r_{i} of H, form $\pm r_{1}, \ldots, \pm r_{n}$, and replace -1 by 0 . Then $|C|=2 n$ and

$$
\forall v, w \in C, v \neq w \Rightarrow d(v, w)=n \vee d(v . w)=\frac{n}{2}
$$

hence $d(C)=n$.

$$
\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}
$$

Linear codes

Recall

$$
\begin{array}{ccccccc}
\square & \square & a_{1} & \square & a_{2} & a_{3} & a_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7}
\end{array}
$$

$$
\begin{aligned}
x_{1}+x_{3}+x_{5}+x_{7} & =0 \\
x_{2}+x_{3}+x_{6}+x_{7} & =0 \\
x_{4}+x_{5}+x_{6}+x_{7} & =0
\end{aligned}
$$

Note: the Hamming $\left(2^{k}-1, k\right)$ code is closed under vector \oplus : if x and y are in the code, then so is $z=x \oplus y$

$$
\begin{array}{llllllll}
\oplus & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
\hline & z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} & z_{7}
\end{array}
$$

Linear codes

Recall

$$
\begin{aligned}
& x_{1}+x_{3}+x_{5}+x_{7}=0 \\
& x_{2}+x_{3}+x_{6}+x_{7}=0 \\
& x_{4}+x_{5}+x_{6}+x_{7}=0
\end{aligned}
$$

Note: the Hamming $\left(2^{k}-1, k\right)$ code is closed under vector \oplus : if x and y are in the code, then so is $z=x \oplus y$

$$
\begin{array}{llllllll}
\oplus & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
\hline & z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} & z_{7}
\end{array}
$$

Thus it forms a linear space over the field \mathbb{Z}_{2}.

Linear codes

Similarly,

$$
\left\{w_{1} w_{2} \ldots w_{n} \in\{0,1\}^{n}: \sum_{i} w_{i}=0 \bmod 2\right\}
$$

which is the maximal (of size

Linear codes

Similarly,

$$
\left\{w_{1} w_{2} \ldots w_{n} \in\{0,1\}^{n}: \sum_{i} w_{i}=0 \bmod 2\right\}
$$

which is the maximal (of size 2^{n-1}) code that detects one error, is a linear code.

Linear codes

Similarly,

$$
\left\{w_{1} w_{2} \ldots w_{n} \in\{0,1\}^{n}: \sum_{i} w_{i}=0 \bmod 2\right\}
$$

which is the maximal (of size 2^{n-1}) code that detects one error, is a linear code.

In general, for a finite field $\mathbb{F}_{q}\left(q=\left|\mathbb{F}_{q}\right|, q=p^{\alpha}, p\right.$ prime $)$,
$C \subseteq \mathbb{F}_{q}^{n}$ is a linear code if it is a linear subspace of \mathbb{F}_{q}^{n} over the field \mathbb{F}_{q}.

Linear codes

Let

$$
\begin{aligned}
\text { weight }(\mathbf{w}) & =\left|\left\{i: w_{i} \neq 0\right\}\right| \\
& =d(\mathbf{w}, \mathbf{0})
\end{aligned}
$$

Fact. For a linear code $C \subseteq \mathbb{F}_{q}^{n}$,

$$
d(C)=\min \{\operatorname{weight}(\mathbf{w}): \mathbf{w} \in C, \mathbf{w} \neq \mathbf{0}\}
$$

\leq because $\mathbf{0} \in C$.
\geq because $\forall \mathbf{v}, \mathbf{w} \in C, d(\mathbf{v}, \mathbf{w})=\operatorname{weight}(\mathbf{v}-\mathbf{w})$.

Linear codes

Let

$$
\begin{aligned}
\text { weight }(\mathbf{w}) & =\left|\left\{i: w_{i} \neq 0\right\}\right| \\
& =d(\mathbf{w}, \mathbf{0})
\end{aligned}
$$

Fact. For a linear code $C \subseteq \mathbb{F}_{q}^{n}$,

$$
d(C)=\min \{\operatorname{weight}(\mathbf{w}): \mathbf{w} \in C, \mathbf{w} \neq \mathbf{0}\}
$$

\leq because $\mathbf{0} \in C$.
\geq because $\forall \mathbf{v}, \mathbf{w} \in C, d(\mathbf{v}, \mathbf{w})=\operatorname{weight}(\mathbf{v}-\mathbf{w})$.
Example. In any Hamming $\left(2^{k}-1, k\right)$ code there is an element with exactly three 1's, e.g., from

\square	\square	1	\square	0	0	0
1	1	1	0	0	0	0

