
Information Theory On-Line. Synopsis of Lecture

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte.
I have made this [letter] longer, because I have not had the time to make it shorter.

Blaise Pascal, Lettres provinciales, 1657

21.02.2006.

Notation , what is it?

An experiment: guess a word which somebody has thought of. Should it work as well with a
number?
Note that integers written in a positional system are “densely packed”, unlike words of natural
language. That is, all strings over {0, 1, . . . , 9} denote some numbers (up to leading 0’s), while
only few strings over {a, b, . . . , z} are (meaningful) words. One explanation of this dissimilarity
is that we dispose of efficient algorithms to operate on (short) encodings of numbers, while our
“algorithms” to communicate with words require more redundancy.
Everyday life examples: writing the amount on cheque both by digits and by words, or spelling
a flight number by phone.

Information theory tries to reconcile two antagonistic objectives:

• to make the message as short as possible,

• to prevent errors while the message is sent by an uncertain channel.

Is there any message that we could not make shorter? We are warned by Berry’s paradox:

Let n be the smallest integer that cannot be described in English with less than 1000
signs.

(Thus we have described it.) The concept of notation should be understood properly. Notation
is not a part of an object, but it is given “from outside” to a set of objects, in order to distinguish
between them.

Definition Any 1:1 function α : S → Σ∗, where Σ is a finite alphabet, is notation for S.

Fact If |S| = m > 0 and |Σ| = r ≥ 2 then, for some s ∈ S,

|α(s)| ≥ blogr mc.

Proof The number of string shorter than k is

1 + r + r2 + . . .+ rk−1 =
rk − 1
r − 1

< rk.

Letting k = blogr mc, we see that there is not enough words shorter than k to denote all elements
of S. QED
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Corollary If α : N → Σ∗ is notation for natural numbers then, for infinitely many n’s,
α(n) > blogr nc.

Proof Choose m such that blogr mc > |α(0)|. By Fact above, some i0 ∈ {0, 1, . . . ,m−1} must
satisfy |α(i0)| ≥ blogr mc > blogr i0c. (By assumption, i0 > 0.)

Now choose m′ such that blogr m
′c > |α(i0)|. Again, some i1 ∈ {0, 1, . . . ,m′ − 1} satisfies

|α(i1)| ≥ blogr m
′c > blogr i1c, and, by assumption, i1 > i0. And so on. QED

As an application, we can see an “information-theoretical” proof of

Fact (Euclid) There are infinitely many prime numbers.

Proof Suppose to the contrary, that there are only p1, . . . , pM . This would induce a notation
α : N → {0, 1,#}, for n = pβ1

1 . . . pβM
M ,

α(n) = bin(β1)#bin(β2)# . . .#bin(βM ),

where bin(β) is the usual binary notation for β (|bin(β)| ≤ 1 + log2 β). Since 2βi ≤ pβi
i ≤ n, we

have βi ≤ log2 n, for all i. Consequently

|α(n)| ≤M(2 + log2 log2 n)

for all n > 0, which clearly contradicts that |α(n)| > log3 n, for infinitely many n’s. QED

Codes

Any mapping ϕ : S → Σ∗ can be naturally extended to the morphism ϕ̂ : S∗ → Σ∗,

ϕ̂(s1 . . . s`) = ϕ(s1) . . . ϕ(s`)

Definition A notation ϕ : S → Σ∗ for a finite non-empty set S is a code if ϕ̂ is 1:1. A code is
instantaneous (prefix–free) if moreover ¬ϕ̂(s) ≤ ϕ̂(s′), for s 6= s′.

Note that the property of being an (instantaneous) code depends only on the set ϕ̂(S).
Notice that ε 6∈ ϕ̂(S) (why ?). Any prefix-free set is a code, the set {aa, baa, ba} is example of
a non-instantaneous code, while {a, ab, ba} is not a code at all.
In the sequel we will usually omit “hat” and identify ϕ̂ with ϕ.
Clearly, in order to encode a set S of m elements with an alphabet Σ of r letters (with m, r ≥ 2,
say), it is enough to use strings of length dlogr me, so that |ϕ(w)| ≤ |w| · dlogr me, for w ∈ S∗.
However, in order to make the coding more efficient, i.e., to keep |ϕ(w)| as short as possible, it
is useful to use shorter strings for those elements of S which occur more frequently.
There is an analogy between efficient codes and strategies in a so-called 20 question game. In
this game one person invents an object o (presumably, from some large set S), and the remaining
players try to guess it by asking questions (normally, up to 20), the answers to which can be
only yes or no. So the questions are generally of the form o ∈ S′ ? , where S′ ⊆ S.
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Clearly, dlog2 |S|e questions suffice to identify any object in S. Can we do better?
In general of course not, since a tree with 2k leaves must have depth at least k. However, if
some objects are more probable than others, we can improve the expected number of questions.
(Besides, this feature makes the real game interesting.)
Suppose the elements of a set S = {s1, s2, s3, s4} are given with probabilities p(s1) = 1

2 , p(s2) =
1
4 , p(s3) = p(s4) = 1

8 . Then the strategy
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guarantees the expected number of questions

1 · 1
2

+ 2 · 1
4

+ 3 ·
(

1
8

+
1
8

)
=

7
4

which is less than dlog2 4e = 2.
In general, any binary tree with leaves labeled by elements of a finite set S represents some
strategy for the game over S (if we neglect the 20 threshold). All questions can be reconstructed
bottom-up from the leaves, so we need not bother about them. Identifying directions left and
right with 0 and 1, respectively, we have a mapping S → {0, 1}∗, which sends each s to the
corresponding leaf. In the example above, this would be

s1 7→ 0, s2 7→ 10, s3 7→ 110, s4 7→ 111.

Clearly, this mapping is an instantaneous code, in which the maximal (expected) length of a
code word equals the maximal (expected) number of questions.
The situation can be extended to the case of |Σ| = r ≥ 2. We do not develop a corresponding
game, but will often explore the correspondence between instantaneous codes and r-ary trees.

Generally, a tree over a set X (or X-tree, for short) is any non-empty set T ⊆ X∗ closed
under prefix relation (denoted ≤). In this context, an element w of T is a node of level |w|,
ε is the root , ≤-maximal nodes are leaves, a node wv (with w, v ∈ X∗) is below w, and wx
(with x ∈ X) is an immediate successor (or child) of w. A subtree of T induced by w ∈ T is
Tw = {v : wv ∈ T}.
Now, any instantaneous code ϕ : S → Σ∗ induces a tree over Σ, Tϕ = {w : for some s, w ≤ ϕ(s)}.
Conversely, any tree T ⊆ Σ∗ with |S| leaves induces an instantaneous code; in fact many (|S|!)
codes, depending on permutation of S.
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As mentioned above, our goal is to optimize the code length, keeping the resistance for trans-
mission errors. The following is the first step toward the first objective.
Given a code ϕ : S → Σ∗, let |ϕ| : S → N denote the length function, given by |ϕ|(s) = |ϕ(s)|.

Theorem (Kraft inequality) Let 2 ≤ |S| < ∞ and |Σ| = r. A function ` : S → N is the
length function, i.e., ` = |ϕ|, for some instantaneous code ϕ : S → Σ∗, if and only if∑

s∈S

1
r`(s)

≤ 1. (1)

Proof (⇒) If all words ϕ(s) have the same length k then, considering that ϕ is 1:1, we clearly
have ∑

s∈S

1
r|ϕ(s)| ≤

rk

rk
= 1. (∗)

More generally, let k be the maximal length of all ϕ(s)’s. For any s with |ϕ(s)| = i, let

Ps = {ϕ(s)v : v ∈ Σk−i}

(in other words, this is the set of nodes of level k below ϕ(s) in the full Σ-tree). Clearly

∑
w∈Ps

1
r|w|

=
rk−i

rk
=

1
ri

and the sets Ps, Ps′ are disjoint for s 6= s′. Hence again

∑
s∈S

1
r|ϕ(s)| =

∑
s∈S

∑
w∈Ps

1
r|w|

≤ rk

rk
= 1.

(⇐) Let us enumerate S = {s1, . . . , sm} in such a way that `(s1) ≤ . . . ≤ `(sm). For
i = 0, 1, . . . ,m − 1, we inductively define ϕ(si+1) to be the first lexicographically element w
of Σ`(i+1) which is not comparable to any of ϕ(s1), . . . , ϕ(si) w.r.t. the prefix ordering ≤. It
remains to show that there is always such w. Like in the previous case, let Psj be the set of
nodes of level `(si+1) below ϕ(sj), we have |Psj | = r`(i+1)−`(j). We need to verify that

r`(i+1)−`(1) + r`(i+1)−`(2) + . . .+ r`(i+1)−`(i) < r`(i+1)

which amounts to
1

r`(1)
+

1
r`(2)

+ . . .+
1
r`(i)

< 1.

This follows directly from the hypothesis; we may assume that the inequality is strict since
i < m. QED

28.02.2006.

If a code is not instantaneous, the Kraft inequality still holds, but the argument is more subtle.

Theorem (McMillan) For any code ϕ : S → Σ∗, there is an instantaneous code ϕ′ with
|ϕ| = |ϕ′|.
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Proof The case of |S| = 1 is trivial, and if |S| ≥ 2 then r = |Σ| ≥ 2 as well. It is then enough
to show that ϕ satisfies the Kraft inequality. Let K =

∑
s∈S

1
r|ϕ(s)| . Suppose to the contrary

that K > 1. Let Min = min{|ϕ(s)| : s ∈ S}, Max = max{|ϕ(s)| : s ∈ S}. Consider

Kn =

(∑
s∈S

1
r|ϕ(s)|

)n

=
Max ·n∑

i=Min·n

Nn,i

ri
,

where Nn,i is the number of sequences q1, . . . , qn ∈ Sn, such that i = |ϕ(q1)| + . . . + |ϕ(qn)| =
|ϕ(q1 . . . qn)|. Since ϕ is a code, at most one such sequence can be encoded by a word in Σi,
hence

Nn,i

ri
≤ 1.

This follows
Kn ≤ (Max −Min) · n+ 1

which clearly fails for sufficiently large n. The contradiction proves that K ≤ 1. QED

Properties of convex functions

Before proceeding with further investigation of codes, we need to recall some concepts from the
calculus.

Definition A function f : [a, b] → R is convex (on [a, b]) if ∀x1, x2 ∈ [a, b], ∀λ ∈ [0, 1],

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2). (2)

It is strictly convex if the inequality is strict, except for λ ∈ {0, 1} and x1 = x2.
Geometrically, it means that any chord linking two points of the function graph lies (strictly)
above the graph.

Lemma If f is continuous on [a, b] and has a second derivative on (a, b) with f ′′ ≥ 0 (f ′′ > 0)
then it is convex (strictly convex).

Proof Assume f ′′ ≥ 0. Then by the Mean value theorem, f ′ is weakly increasing on (a, b) (for
a < t1 < t2 < b, f ′(t2)− f ′(t1) = f ′′(t̃)(t2 − t1) ≥ 0).

Let xλ = λx1 + (1− λ)x2. Rearranging our formula a bit, we have to show

λ(f(xλ)− f(x1))
?
≤ (1− λ)(f(x2)− f(xλ)).

Using the Mean value theorem, this time for f , it reduces to

λf ′(x̃1)(xλ − x1)
?
≤ (1− λ)f ′(x̃2)(x2 − xλ)

λ(1− λ)f ′(x̃1)(x2 − x1)
?
≤ λ(1− λ)f ′(x̃2)(x2 − x1),

which holds since f ′ is weakly increasing. If f ′′ > 0 the argument is similar. QED
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In this course, unless stated otherwise, we consider only finite probabilistic spaces. If we say
that X is a random variable on S, we tacitly assume that S is given with probability mapping
p : S → [0, 1] (i.e.,

∑
s∈S p(s) = 1), and X : S → R. Recall that the expected value of X is

EX =
∑
s∈S

p(s) ·X(s).

If S = {s1, . . . , sm}, we adopt the notation p(si) = pi, X(s) = xi. In this writing EX =
p1x1 + . . .+ pmxm.
Note that EX does not depend on those xi’s for which pi = 0. We say that X is constant if
there are no xi 6= xj with pi, pj > 0.

Theorem (Jensen’s inequality) If f : [a, b] → R is a convex function then, for any random
variable X : S → [a, b],

Ef(X) ≥ f(EX). (3)

If moreover f is strictly convex then the inequality is strict unless X is constant.

Proof By induction on |S|. The case of |S| = 1 is trivial, and if |S| = 2, the inequality amounts
to

p1f(x1) + p2f(x2) ≥ (>) f(p1x1 + p2x2)

which is just the definition of (strict) convexity. (Note that X is constant iff p1 ∈ {0, 1} or
x1 = x2.)

Let S = {s1, . . . , sm}, and suppose the claim holds for any random variables over S′, |S′| ≤
m− 1.

Without loss of generality we may assume that pm < 1. Let p′i = pi
1−pm

, for i = 1, . . . ,m− 1.
We have

m∑
i=1

pi f(xi) = pmf(xm) + (1− pm)
m−1∑
i=1

p′i f(xi)

≥ pmf(xm) + (1− pm)f

(
m−1∑
i=1

p′i xi

)

≥ f

(
pmxm + (1− pm)

m−1∑
i=1

p′i xi

)

= f

(
m∑

i=1

pixi

)
.

Note that we have used the induction hypothesis twice: for the random variable given by proba-
bilities p′1, . . . , p

′
m−1 and values x1, . . . , xm−1, and for the random variable given by probabilities

pm, 1− pm, and values xm and
∑m−1

i=1 p′ixi, respectively.
Now suppose f is strictly convex and in the above the equalities hold. Then the first auxiliary

random variable is constant, i.e., xi = C, for all i = 1, . . . ,m − 1, unless p′i = pi = 0. Since
the second auxiliary random variable must also be constant, we have, whenever pm > 0, xm =∑m−1

i=1 p′ixi = C, as well. QED

6



Convention We let
0 logr 0 = 0 logr

1
0

= 0

This is justified by the fact that limx→0 x logr x = limx→0−x logr
1
x = lim|y|→∞− logr y

y = 0.
From the above lemma, we deduce that, if r > 1 then the function x logr x is strictly convex on
[0,∞) (i.e., on any [0,M ], M > 0). Indeed,

(x logr x)
′′ =

(
logr x+ x · 1

x
· logr e

)′
=

1
x
· logr e > 0.

Golden Lemma Suppose 1 =
∑q

i=1 xi ≥
∑q

i=1 yi, where xi ≥ 0 and yi > 0, for i = 1, . . . , q,
and let r > 1. Then

q∑
i=1

xi · logr

1
yi

≥
q∑

i=1

xi · logr

1
xi
,

and the equality holds only if xi = yi, for i = 1, . . . , q.

Proof Let us first assume that
∑q

i=1 yi = 1. We have

Left − Right =
q∑

i=1

xi · logr

xi

yi
=

q∑
i=1

yi ·
(
xi

yi

)
· logr

xi

yi

Applying Jensen’s inequality to function x logr x (on [0,∞)), we get

q∑
i=1

yi ·
(
xi

yi

)
· logr

xi

yi
≥ logr

q∑
i=1

yi ·
(
xi

yi

)
= 0.

Here we consider the random variable which takes the value
(

xi
yi

)
with probability yi. As the

function x logr x is even strictly convex on [0,∞) (c.f. page 7), the equality implies that this
random variable is constant. Remembering that yi > 0, and

∑q
i=1 xi =

∑q
i=1 yi, we then have

xi = yi, for i = 1, . . . , q.
Now suppose

∑q
i=1 yi < 1. Let yq+1 = 1 −

∑q
i=1 yi, and xq+1 = 0. Then, by the previous

case we have
q∑

i=1

xi · logr

1
yi

=
q+1∑
i=1

xi · logr

1
yi

≥
q+1∑
i=1

xi · logr

1
xi

=
q∑

i=1

xi · logr

1
xi
.

Note that the equality may not hold in this case, as it would imply xi = yi, for i = 1, . . . , q + 1,
which contradicts the choice of yq+1 6= xq+1. QED

Entropy

We come back to the strategy presented on page 3. The number of questions it needs to identify
an object si is precisely log2

1
p(si)

. So, the expected number of questions is
∑m

i=1 p(si) · log2
1

p(si)
.

It is possibly since probabilities in that game are powers of 1
2 .

Using the Golden Lemma, we can see that this number of questions is optimal. For, consider
any strategy, with the number of questions to identify si equal `(si). By the Kraft inequality∑m

i=1
1

2`(si)
≤ 1.
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Taking in the Golden Lemma xi = p(si) and yi = 1
2`(si)

, we obtain

m∑
i=1

p(si) · `(si) ≥
m∑

i=1

p(si) · log2

1
p(si)

.

7.03.2006.

The right-hand side of the inequality above makes sense even if the p(s)’s are not powers of 1
2 .

We thus arrive to the central concept of Information Theory.

Definition (Shannon entropy) The entropy of a (finite) probabilistic space S (with para-
meter r > 1) is

Hr(S) =
∑
s∈S

p(s) · logr

1
p(s)

(4)

= −
∑
s∈S

p(s) · logr p(s). (5)

In other words, Hr(S) is the expected value of a random variable defined on S by s 7→ logr
1

p(s) .

Traditionally, we abbreviate H = H2.

Remark We may note that the concept of entropy combines two ideas:

• computing the mean value of some function composed with probability,
∑

s∈S p(s)·f ◦p(s),

• choosing f = log, which is perhaps most important.

Indeed, function log plays a crucial role in the so-called Weber-Fechner law of cognitive science,
stating that the human perception (P ) of the growth of a physical stimuli (S), is proportional
to the relative growth of the stimuli rather than to its absolute growth,

∂P ≈ ∂S

S

which, after integration, gives us

P ≈ logS.

This has been observed in perception of weight, brightness, sound (both intensity and height),
and even one’s economic status. In this context, we might view entropy as our “perception of
probability”.

What values entropy can take, depending on |S| and p ? From definition we readily have
Hr(S) ≥ 0, and this value is indeed attained if the whole probability is concentrated in one
point. On the other hand, we have

Fact

Hr(S) ≤ logr |S| (6)

and the equality holds if and only if p(s) = 1
|S| , for all s ∈ S.
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Proof Indeed, taking in the Golden Lemma xi = p(si) and yi = 1
|S| , we obtain

∑
s∈S

p(s) · logr

1
p(s)

≤
∑
s∈S

p(s) · logr |S| = logr |S|,

with the equality for p(s) = 1
|S| , as desired. QED

As we have seen, if all probabilities are powers of 1
2 then the entropy equals to the (average)

length of an optimal code. We will see that it is always a lower bound.

Definition (minimal code length) For a code ϕ, let

L(ϕ) =
∑
s∈S

p(s) · |ϕ(s)|.

Given S and integer r ≥ 2, let Lr(S) be the minimum of all L(ϕ)’s, where ϕ ranges over all
codes ϕ : S → Σ∗, with |Σ| = r.
Note that, because of the McMillan Theorem (page 4), the value of Lr(S) would not change if
ϕ have ranged over instantaneous codes.

Theorem For any finite probabilistic space S

Hr(S) ≤ Lr(S) (7)

and the equality holds if and only if all probabilities p(s) are powers of 1
r .

Proof For the first half of the claim, it is enough to show that

Hr(S) ≤ L(ϕ)

holds for any code ϕ : S → Σ∗, with |Σ| = r. We obtain this readily taking in the Golden
Lemma xi = p(si) and yi = 1

r|ϕ(s)| .
Now, if the equality Hr(S) = Lr(S) holds then we have also Hr(S) = L(ϕ), for some code

ϕ. Again from Golden Lemma, we obtain p(s) = 1
r|ϕ(s)| , for all s ∈ S.

On the other hand, if each probability p(s) is of the form 1
r`(s)

, then by the Kraft inequality,
there exists a code ϕ with |ϕ(s)| = `(s), and for this code L(ϕ) = Hr(S). Hence Lr(S) ≤ Hr(S),
but by the previous inequality, the equality must hold. QED

The second part of the above theorem may appear pessimistic, as it infers that in most cases
our coding is “imperfect” (Hr(S) < Lr(S)). Note that probabilities usually are not chosen by
us, but rather come from Nature.

However, it turns out that, even with a fixed S and p we can, in a sense, bring the average
code length closer and closer to Hr(S). This is achieved by some relaxation of the concept of a
code.
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Example Let S = {s1, s2} with p(s1) = 3
4 , p(s2) = 1

4 . Then clearly L2(S) = 1. (The reader
may convince herself or himself by elementary calculation that H2(S) < 1, in accordance with
our Theorem.)
This means that we are unable to make the encoding of a message α ∈ S∗ shorter than α itself,
even on average. Now, consider the following mapping:

s1s1 7→ 0 s1s2 7→ 10
s2s1 7→ 110 s2s2 7→ 111

Of course, this is not a code of S, but apparently we could use this mapping to encode sequences
over S of even length. Indeed, it is a code for the set S2. Consider S2 = S × S as the product
(probabilistic) space with

p (si, sj) = p(si) · p(sj).

Then the average length of our encoding of the two-symbols blocks is(
3
4

)2

· 1 +
3
4
· 1
4
· (2 + 3) +

(
1
4

)2

· 3 =
9
16

+
15
16

+
3
16

=
27
16

< 2.

As the reader may expect, if we proceed in this vein for n = 2, 3, . . ., we can obtain more and
more efficient encodings. But can we overcome the entropy bound, i.e., to get

Lr(Sn)
n

?
< Hr(S)

for some n ?
We will see that this is not the case, but the Shannon First Theorem (next lecture) will tell us
that the entropy bound can be approached arbitrarily close, as n→∞.

To this end, we have first to find the entropy H(Sn) of Sn viewed as the product space. This
could be done by a tedious elementary calculation, but we prefer to deduce the formula from
general properties of random variables.
Recall that the expected value of a random variable X : S → R can be presented in two ways,
readily equivalent to each other:

EX =
∑
s∈S

p(s) ·X(s) =
∑

t∈X(S)⊆R

t · p(X = t).

The last term is often written simply as∑
t∈R

t · p(X = t),

where we assume that the sum of arbitrarily many 0’s is 0.
The notation p(X = t) used above is a particular case of p(ψ(X)), for some formula ψ, which
denotes the probability that ψ(X) holds, i.e., the sum of p(s)’s, for those s, for which ψ(X(s)) is
satisfied.
We recall a basic fact from Probability Theory.1

1The reader may verify it by elementary calculation, using conditional probabilities.
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Linearity of expectation If X and Y are arbitrary random variables (defined on the same
probabilistic space) then, for any α, β ∈ R,

E(αX + βY ) = αEX + βEY. (8)

Now consider two probabilistic spaces S and Q. (According to the tradition, if confusion does
not arise, we use the same letter p for the probability functions on all spaces.)

Let S ×Q be the product space, with the probability given by

p(s, q) = p(s) · p(q).

Given random variables X : S → R and Y : Q→ R, we define the random variables X̂, Ŷ , over
S ×Q, by

X̂(s, q) = X(s)
Ŷ (s, q) = Y (q).

Note2 that

p(X̂ = t) =
∑

X̂(s,q)=t

p(s, q) =
∑

X(s)=t

∑
q∈Q

p(s) · p(q) =
∑

X(s)=t

p(s) = P (X = t).

Similarly, p(Ŷ = t) = p(Y = t).
Therefore, EX̂ = EX and EŶ = EY . By linearity of expectation,

E(X̂ + Ŷ ) = EX̂ + EŶ = EX + EY.

Let in the above X : s 7→ logr
1

p(s) , and Y : q 7→ logr
1

p(q) . Then

(X̂ + Ŷ )(s, q) = logr

1
p(s)

+ logr

1
p(q)

= logr

1
p(s)

· 1
p(q)

= logr

1
p(s, q)

.

But, by the remark after definition of entropy (c.f. 8), this is precisely the random variable on
S × Q whose expected value amounts to the entropy of S × Q, i.e., Hr(S × Q) = E(X̂ + Ŷ ).
Hence, the equation above gives us

Hr(S ×Q) = HrS +HrQ. (9)

Consequently,

HrS
n = n ·HrS. (10)

14. 03. 2006

In order to estimate Lr(Sn)
n −Hr(S), we first complete the inequality of the Theorem from page 9

by the upper bound.
2Throughout these notes, we generally use notation

∑
ψ(a1,...,ak) t(a1, . . . , ak), for the sum of terms

t(a1, . . . , ak), where (a1, . . . , ak) ranges over all tuples satisfying ψ(a1, . . . , ak).
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Theorem (Shannon-Fano coding) For any finite probabilistic space S and r ≥ 2, there is
a code ϕ : S → Σ∗ (with |Σ| = r), satisfying

L(ϕ) ≤ Hr(S) + 1.

Consequently
Hr(S) ≤ Lr(S) ≤ Hr(S) + 1.

Moreover, the strict inequality Lr(S) < Hr(S) + 1 holds unless p(s) = 1, for some s ∈ S (hence
Hr(S) = 0).

Proof For |S| = 1, we have trivially Hr(S) = 0 and Lr(S) = 1. Assume |S| ≥ 2. We let

`(s) =
⌈
logr

1
p(s)

⌉
for those s ∈ S for which p(s) > 0. Then∑

s:p(s)>0

1
r`(s)

≤
∑

p(s)>0

p(s) =
∑
s∈S

p(s) = 1.

We consider several cases. If (∀s ∈ S) p(s) > 0, then the above coincides with the Kraft
inequality, and hence there is a code ϕ satisfying |ϕ(s)| = `(s), for s ∈ S. But as `(s) <
logr

1
p(s) + 1, we obtain

∑
s∈S

p(s) · `(s) <
∑
s∈S

p(s) ·
(

logr

1
p(s)

+ 1
)

= Hr(S) + 1.

Now suppose that p(s) may be 0, for some s. If∑
p(s)>0

1
r`(s)

< 1,

then we can readily extend the definition of ` to all s, such that the Kraft inequality
∑

s∈S
1

r`(s)
≤

1 is satisfied. Again, there is a code with length `, satisfying `(s) < logr
1

p(s) + 1, whenever
p(s) > 0, and hence∑

s∈S

p(s) · `(s) <
∑
s∈S

p(s) ·
(

logr

1
p(s)

+ 1
)

= Hr(S) + 1.

(Remember our convention that 0 · log 1
0 = 0.)

Finally, suppose that ∑
p(s)>0

1
r`(s)

= 1.

We choose s′ with p(s′) > 0, and let

`′(s′) = `(s′) + 1
`′(s) = `(s), for s 6= s′.

12



Now again we can extend `′ to all s in such a way that the Kraft inequality holds. In order
to evaluate the average length of this code, let us first observe that our assumptions yield that
`(s) = logr

1
p(s) , whenever p(s) > 0. (Indeed, we have 1

r`(s)
≤ p(s) by definition of `, and

1 =
∑

p(s)>0
1

r`(s)
=
∑

p(s)>0 p(s), hence p(s) = 1
r`(s)

, whenever p(s) > 0.) Then the code with
length `′ satisfies∑

s∈S

p(s) · `′(s) =
∑

p(s)>0

p(s) · `′(s) = p(s′) +
∑

p(s)>0

p(s) · `(s) = p(s′) +Hr(S).

Hence we get Lr(S) ≤ Hr(S) + 1 and the inequality is strict unless we cannot find s′ with
0 < p(s′) < 1. QED
We are ready to state

Shannon’s First Theorem For any finite probabilistic space S and r ≥ 2,

lim
n→∞

Lr(Sn)
n

= Hr(S).

Proof We have from the previous theorem

Hr(Sn) ≤ Lr(Sn) ≤ Hr(Sn) + 1,

but since Hr(Sn) = n ·Hr(S),

Hr(S) ≤ Lr(Sn)
n

≤ Hr(S) +
1
n
,

which yields the claim. QED

Relative entropy and mutual information

Entropy of random variable If X : S → X is a random variable, we let

Hr(X) =
∑
t∈X

p(X = t) · logr

1
p(X = t)

Thus, Hr(X) amounts to the expected value

Hr(X) = E

(
logr

1
p(X)

)
,

where p(X) is the random variable on S, given by p(X) : s 7→ p(X = X(s)). Indeed,∑
t∈X

p(X = t) · logr

1
p(X = t)

=
∑
t∈X

∑
X(s)=t

p(s) · 1
p(X = t)

=
∑
s∈S

p(s) · 1
p(X = X(s))

.

Notational conventions: If the actual random variables are known from the context, we often
abbreviate the event X = a by just a; so we may write, e.g., p(x|y) instead of p(X = x|Y = y),
p(x ∧ y) instead of p ((X = x) ∧ (Y = y)), etc.

13



Conditional entropy Let A : S → A, B : S → B, be two random variables. For b ∈ B, let

Hr(A|b) =
∑
a∈A

p(a|b) · logr

1
p(a|b)

.

Now let

Hr(A|B) =
∑
b∈B

p(b)Hr(A|b).

Note that if A and B are independent then, in the above formula p(a|b) = a, and hence
Hr(A|B) = A. On the other hand, Hr(A|A) = 0; more generally, if ϕ : A → B is any function
then

Hr(ϕ(A)|A) = 0. (11)

Indeed, if p(A = a) > 0 then p(ϕ(A) = ϕ(a)|A = a) = 1, and hence logr
1

p(ϕ(A)=ϕ(a)|A=a) = 0.
We will see more properties of the the conditional entropy in the sequel.

Joint entropy We also consider the couple (A,B) as a random variable (A,B) : S → A×B,

(A,B)(s) = (A(s), B(s)) .

Note that the probability that this variable takes value (a, b) is p ((A,B) = (a, b)) = p ((A = a) ∧ (B = b)),
which we abbreviate by p(a∧ b). This probability is, in general, different from p(a) · p(b). In the
case if, for all a ∈ A, b ∈ B ,

p(a ∧ b) = p(a) · p(b),

(i.e., the events A = a and B = b are independent), the variables A and B are called independent .

Now Hr(A,B) is well defined by

Hr(A,B) =
∑

a∈A,b∈B
p(a ∧ b) · logr

1
p(a ∧ b)

.

Note that if A and B are independent then

logr

1
p(A,B)

= logr

1
p(A)

+ logr

1
p(B)

,

Remembering the characterization Hr(X) = E
(
logr

1
p(X)

)
, we have, by linearity of expectation

(8),

Hr(A,B) = Hr(A) +Hr(B).

In general case we have the following.

14



Theorem

Hr(A,B) ≤ Hr(A) +Hr(B). (12)

Moreover, the equality holds if and only if A and B are independent.

Proof We rewrite the right-hand side a bit, in order to apply the Golden Lemma. We use the
obvious equalities p(a) =

∑
b∈B p(a ∧ b), and p(b) =

∑
a∈A p(a ∧ b).

Hr(A) +Hr(B) =
∑
a∈A

p(a) logr

1
p(a)

+
∑
b∈B

p(b) logr

1
p(b)

=
∑
a∈A

∑
b∈B

p(a ∧ b) logr

1
p(a)

+
∑
b∈B

∑
a∈A

p(a ∧ b) logr

1
p(b)

=
∑

a∈A,b∈B
p(a ∧ b) logr

1
p(a)p(b)

Note that the above expression is well defined, because if p(a) = 0 or p(b) = 0 then p(a∧ b) = 0,
as well.
Let us momentarily denote

(A× B)+ = {(a, b) : p(a) > 0 and p(b) > 0}.

We have clearly ∑
(a,b)∈(A×B)+

p(a ∧ b) =
∑

(a,b)∈(A×B)+

p(a) · p(b) = 1.

Then, applying the Golden Lemma (page 7) to x = p(a ∧ b), y = p(a) · p(b), where (a, b) ranges
over (A× B)+, we obtain

Hr(A,B) =
∑

(a,b)∈(A×B)+

p(a ∧ b) logr

1
p(a ∧ b)

≤
∑

(a,b)∈(A×B)+

p(a ∧ b) logr

1
p(a)p(b)

= Hr(A) +Hr(B).

Moreover, the equality holds only if p(a ∧ b) = p(a) · p(b), for all (a, b) ∈ (A × B)+, and
consequently, for all a ∈ A, b ∈ B. On the other hand, we have already seen that independence
of A and B implies this equality. QED

Definition (information) The value

I(A;B) = Hr(A) +Hr(B)−Hr(A,B). (13)

is called mutual information of variables A and B.

15



Remark The above concepts and properties have some interpretation in terms of 20 questions
game (page 2). Suppose an object to be identified is actually a couple (a, b), where a and b are
values of random variables A and B, respectively. Now, if A and B are independent, we can do
nothing better than identify a and b separately. Thus our series of questions splits into “questions
about a” and “questions about b”, which is reflected by the equality Hr(A,B) = Hr(A)+Hr(B).
However, if A and B are dependent, we can take advantage of mutual information and decrease
the number of questions.

21.03.2006.

To increase readability, since now on we will omit subscript r, writing H, I, . . . , instead of Hr,
Ir, . . . Unless stated otherwise, all our results apply to any r > 1. Without loss of generality,
the reader may assume r = 2.

Remark From the transformations used in the proof of the theorem above, we easily deduce

I(A;B) =
∑

a∈A,b∈B
p(a ∧ b)

(
log

1
p(a)p(b)

− log
1

p(a ∧ b)

)
. (14)

Hence I(A;B) can be viewed as a measure of the distance between the actual distribution of
the joint variable (A;B) and its distribution if A and B were independent.

Note that the above sum is nonnegative, although some summands
(
log 1

p(a)p(b) − log 1
p(a∧b)

)
can

be negative.
The following property generalizes the equalityH(A,B) = H(A)+H(B) to the case of dependent
variables.

Fact (Chain rule)

H(A,B) = H(A|B) +H(B). (15)

Proof Just calculate:

H(A,B) =
∑

a∈A,b∈B
p(a ∧ b) · log

1
p(a ∧ b)

=
∑
a∈A

∑
b∈B

p(a|b)p(b) · log
1

p(a|b)p(b)

=
∑
a∈A

∑
b∈B

p(a|b)p(b) ·
(

log
1

p(a|b)
+ log

1
p(b)

)
=

∑
b∈B

p(b) ·
∑
a∈A

p(a|b) · log
1

p(a|b)
+
∑
b∈B

p(b) log
1
p(b)

·
∑
a∈A

p(a|b)

= H(A|B) +H(B).

QED
Applying the chain rule, we get alternative formulas for information:

I(A;B) = H(A)−H(A|B) (16)
= H(B)−H(B|A). (17)
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This also implies that I(A;B) ≤ min{H(A),H(B)}.
The Chain rule generalizes easily to the case of n ≥ 2 variables A1, A2, . . . , An.

H(A1, . . . , An) = H(A1|A2, . . . , An) +H(A2, . . . , An)
= H(A1|A2, . . . , An) +H(A2|A3, . . . , An) +H(A3, . . . , An)

=
n∑

i=1

H(Ai|Ai+1, . . . , An) (18)

if we adopt convention H(A|∅) = A.
A more subtle generalization follows from relativization.

Conditional chain rule

H(A,B|C) = H(A|B,C) +H(B|C). (19)

Proof We have

H(A,B|c) =
∑

a∈A,b∈B
p(a ∧ b|c) · log

1
p(a ∧ b|c)

=
∑
a,b

p(a|b ∧ c) · p(b|c) ·
(

log
1

p(a|b ∧ c)
+ log

1
p(b|c)

)
=

∑
b

p(b|c) ·
∑

a

p(a|b ∧ c) · log
1

p(a|b ∧ c)
+
∑

b

p(b|c) · log
1

p(b|c)
·
∑

a

p(a|b ∧ c)︸ ︷︷ ︸
1

.

In the above, a and b range over those values for which the respective conditional probabilities
are defined3. We use the fact that, whenever p(a ∧ b|c) > 0,

p(a ∧ b|c) =
p(a ∧ b ∧ c)

p(c)
=
p(a ∧ b ∧ c)
p(b ∧ c)

· p(b ∧ c)
p(c)

= p(a|b ∧ c) · p(b|c).

By taking the average over p(c), we further have

H(A,B|C) =
∑
c∈C

p(c) ·H(A,B|c)

=
∑

c

p(c) ·
∑

b

p(b|c) ·
∑

a

p(a|b ∧ c) · log
1

p(a|b ∧ c)
+
∑

c

p(c) ·
∑

b

p(b|c) · log
1

p(b|c)

=
∑
b,c

p(b ∧ c) ·
∑

a

p(a|b ∧ c) · log
1

p(a|b ∧ c)︸ ︷︷ ︸
H(A|B,C)

+
∑

c

p(c) ·
∑

b

p(b|c) · log
1

p(b|c)︸ ︷︷ ︸
H(B|C)

,

as required. QED
We leave to the reader to show that

H(A,B|C) ≤ H(A|C) +H(B|C) (20)

and the equality holds if and only if A and B are conditionally independent given C, i.e.,

p(A = a ∧B = b|C = c) = p(A = a|C = c) · p(B = b|C = c).

The proof can go along the same lines as on the page 15.
3Recall that p(x|y) is undefined if p(y) = 0.
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Conditional information We let the mutual information of A and B given C be defined by

I(A;B|C) = H(A|C) +H(B|C)− H(A,B|C)︸ ︷︷ ︸
H(A|B,C)+H(B|C)

(21)

= H(A|C)−H(A|B,C). (22)

Finally, let mutual information of A, B, and C be defined by

R(A;B;C) = I(A;B)− I(A;B|C). (23)

Let us see that this definition is indeed symmetric, i.e., does not depend on the particular
ordering of A,B,C:

I(A;C)− I(A;C|B) = H(A)−H(A|C)− (H(A|B)−H(A|B,C))
= H(A)−H(A|B)︸ ︷︷ ︸

I(A;B)

−H(A|C)−H(A|B,C)︸ ︷︷ ︸
I(A;B|C)

.

Note however, that in contrast to I(A;B) and I(A;B|C), R(A;B;C) can be negative.
The set of equations relating the quantitiesH(X),H(Y ),H(Z),H(X,Y ),H(X,Y |Z), I(X;Y ), I(X;Y |Z),
R((X;Y ;Z), . . . , can be pictorially represented by the so-called Venn diagram. (See the Inter-
net; note however that this is only a helpful representation without extra meaning.)

Application: Perfect secrecy

A cryptosystem is a triple of random variables:

• M with values in a finite set M (messages),

• K with values in a finite set K (keys),

• C with values in a finite set C (cipher-texts).

Moreover, there must be a function Dec : C × K →M, such that

M = Dec(C,K)

(unique decodability).
A cryptosystem is perfectly secret if I(C;M) = 0.

Example: One time pad Here M = K = C = {0, 1}n, for some n ∈ N, and

C = M ⊕K

where ⊕ is the component-wise xor (e.g., 101101⊕110110 = 011011). Hence Dec(v, w) = v⊕w,
as well. Moreover we assume that K has uniform distribution over {0, 1}n, i.e., p(K = v) = 1

2n ,
for v ∈ {0, 1}n, and that K and M are independent.
In order to show perfect secrecy, it is enough to prove that M and C are independent (see
Theorem on page 15), i.e.

p(C = w ∧ M = u) ?= p(C = w) · p(M = u).
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We have

p(C = w) =
∑
u∈M

p(K = u⊕ w|M = u) · p(M = u)

=
∑
u∈M

p(K = u⊕ w) · p(M = u) (by independence of M and K)

=
∑
u∈M

1
2n

· p(M = u)

=
1
2n
.

On the other hand, we have, by definition of C and independence of M and K,

p(C = w ∧ M = u) = p(K = w ⊕ v ∧ M = u)

=
1
2n

· p(M = u)

which gives the desired equality. QED

Exercise Show that the independence ofM andK is really necessary to achieve perfect secrecy
of one-time pad.

Shannon’s Pessimistic Theorem Any perfectly secret cryptosystem satisfies

H(K) ≥ H(M).

Consequently (c.f. the Shannon-Fano coding, page 12)

Lr(K) ≥ Hr(K) ≥ Hr(M) ≥ Lr(M)− 1

Roughly speaking, to guarantee perfect secrecy, the keys must be (almost) as long as messages,
which is highly impractical.

Proof We have

H(M) = H(M |C,K) + I(M ;C)︸ ︷︷ ︸
H(M)−H(M |C)

+ I(M ;K|C)︸ ︷︷ ︸
H(M |C)−H(M |K,C)

.

But H(M |C;K) = 0, since M = Dec(C,K) is a function of (C,K), and I(M ;C) = 0, by
assumption, hence

H(M) = I(M ;K|C).

By symmetry, we have

H(K) = H(K|M,C) + I(K;C) + I(K;M |C)︸ ︷︷ ︸
H(M)

,

which gives the desired inequality. QED
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28.03.2006.

We observe a property of information which at first sight may appear a bit surprising. Let A
and B be random variables; we may think that A represents some experimental data, and B
our knowledge about them. Can we increase the information about A by processing B (say, by
analysis, computation, etc.)? It turns out that we cannot.

Lemma Suppose A and C are conditionally independent, given B (see page 17). Then

I(A;C) ≤ I(A;B).

Proof First note the following chain rule for information:

I(A; (B,C))︸ ︷︷ ︸
H(A)−H(A|B,C)

= I(A;C)︸ ︷︷ ︸
H(A)−H(A|C)

+ I(A;B|C)︸ ︷︷ ︸
H(A|C)−H(A|B,C)

.

By symmetry, and from the conditional independence of A and C

I(A; (B,C)) = I(A;B) + I(A;C|B)︸ ︷︷ ︸
0

,

which yields the desired inequality. QED
Note that the equality holds iff, additionally, A and B are conditionally independent given C.

Corollary If f is a function then

I(A; f(B)) ≤ I(A;B). (24)

Proof Follows from the Lemma, since

I(A; f(B)|B) = H(f(B)|B)︸ ︷︷ ︸
0

−H(f(B)|A,B)︸ ︷︷ ︸
0

= 0.

QED

Channels

Definition A communication channel Γ is given by

• a finite set A of input objects,

• a finite set B of output objects,

• a mapping A× B → [0, 1], sending (a, b) to P (a→ b), such that, for all a ∈ A,∑
b∈B

P (a→ b) = 1.

Random variables A and B with values in A and B, respectively, form an input-output pair for
the channel Γ if, for all a ∈ A, b ∈ B,

p(B = b|A = a) = P (a→ b).

We visualize it by
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A→ Γ → B.

Note that if A and B form an input-output pair then

p(A = a ∧ B = b) = P (a→ b) · p(A = a).

Hence, the distribution of (A,B) forming an input-output pair is uniquely determined by A (for
fixed Γ). In particular, a suitable B exists and its distribution is determined by

p(B = b) =
∑
a∈A

P (a→ b) · p(A = a). (25)

Knowing this, the reader may easily calculate H(A,B), H(B|A), I(A;B), etc. (depending on Γ
and A).
We define the capacity of the channel Γ by

CΓ = max
A

I(A;B), (26)

where, for concreteness, I = I2. Here A ranges over all random variables with values in A, and
(A,B) forms an input-output pair for Γ. The maximum exists because I(A;B) is a continuous
mapping from the compact set {p ∈ [0, 1]A :

∑
a∈A p(a) = 1} to R, which moreover is bounded

since I(A;B) ≤ H(A) ≤ log |A|.
If A = {a1, . . . , am}, B = {b1, . . . , bn}, then the channel can be represented by a matrix P11 . . . P1n

. . . . . . . . .
Pm1 . . . Pmn,


where Pij = p(ai → bj).
The formula for distribution of B in matrix notation is

(p(a1), . . . , p(am)) ·

 P11 . . . P1n

. . . . . . . . .
Pm1 . . . Pmn,

 = (p(b1), . . . , p(bn)) . (27)

Examples

We can present a channel as a bipartite graph from A to B, with an arrow a → b labeled by
P (a→ b) (if P (a→ b) = 0, the arrow is not represented).

Faithful (noiseless) channel Let A = B = {0, 1}.

0 // 0

1 // 1

The matrix representation of this channel is(
1 0
0 1

)
Since A is always a function of B, we have I(A;B) = H(A), and hence the capacity is

CΓ = max
A

I(A;B) = max
A

H(A) = log2 |A| = 1.
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Inverse faithful channel

0

))RRRRRRRRRRRRRRRRR 0

1

55lllllllllllllllll 1

matrix representation:
(

0 1
1 0

)
, capacity: CΓ = 1.

Noisy channel without overlap Here A = {0, 1}, B = {0, 1, 2, 3}.

0

0

1
2

55lllllllllllllllll
1
2

// 1

1
1
3 //

2
3 ))RRRRRRRRRRRRRRRRR 2

3

The matrix representation is (
1
2

1
2 0 0

0 0 1
3

2
3

)
Here again A is a function of B, hence I(A;B) = H(A) − H(A|B) = H(A), and therefore
CΓ = 1.

Noisy typewriter 4 Here we assume A = B = {a, b, . . . , z} (26 letters, say), and

p(α→ α) = p(α→ next(α)) =
1
2

where next(a) = b, next(b) = c, . . . , next(y) = z, next(z) = a.
We leave to the reader to draw graphical and matrix representation.
To compute the capacity, first observe that, for any α,

H(B|α) = p(α|α) · log
1

p(α|α)
+ p(next(α)|α) · log

1
p(next(α)|α)

= (
1
2

+
1
2
) · log2 = 1.

Hence
CΓ = max

A
I(A;B) = max

A
H(B)−H(B|A)︸ ︷︷ ︸

1

= log 26− 1 = log 13

(the maximum is achieved for A with uniform distribution).

The reader may have already grasped that capacity is a desired value, like information, and
unlike entropy. What are the channels with the minimal possible capacity, i.e., CΓ = 0?

4Typewriter had been a manual device for typing, before a computer-served printers were invented (see old
movies).
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Bad channels Clearly CΓ = 0 whenever I(A;B) = 0 for all input-output pairs, i.e., all such
pairs are independent. This requires that p(B = b|A = a) = p(B = b), for all a ∈ A, b ∈ B
(unless p(A = a) = 0), hence for a fixed b, all values p(B = b|A = a) (i.e., all values in a column
in the matrix representation) must be equal.

For example, the following channels have this property:(
1
2

1
2

1
2

1
2

) (
1
2 0 1

6
1
3

1
2 0 1

6
1
3

)  0 0 1
0 0 1
0 0 1


The last example is a particularly dull channel, which always outputs the same value. Note

that in this case H(B) is always 0, which means that the entropy may sometimes decrease while
sending a message through a channel. However, in most interesting cases it actually increases.
The following example is most important in our further studies.

Binary symmetric channel (BSC)

Here again A = B = {0, 1}.

0 P //

1−P
))RRRRRRRRRRRRRRRRR 0

1

1−P

55lllllllllllllllll
P

// 1

Letting P̄ = 1− P , the matrix representation is(
P P̄
P̄ P

)
Prior to calculating CΓ, we note the important property.

Fact If (A,B) forms an input-output pair for a BSC then

H(B) ≥ H(A).

Moreover, the equality holds only if P ∈ {0, 1} (i.e., the channel is faithful or inverse-faithful),
or if H(A) = 1 (i.e., the entropy of A achieves the maximal value).

Proof Let q = p(A = 0). Then p(A = 1) = q̄, and we calculate the distribution of B by the
formula

(q, q̄) ·
(
P P̄
P̄ P

)
= (qP + q̄P̄︸ ︷︷ ︸

p(B=0)

, qP̄ + q̄P︸ ︷︷ ︸
p(B=1)

)

Let r = p(B = 0). Then

H(A) = −q log q − q̄ log q̄
H(B) = −r log r − r̄ log r̄

Recall our convention (page 13) that 0 logr 0 = 0 logr
1
0 = 0, and let h denote the mapping

h(x) = x lnx+ (1− x) ln(1− x),
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defined for 0 ≤ x ≤ 1. We easily calculate (for 0 < x < 1)

h′(x) = 1 + lnx− 1− ln(1− x)

h′′(x) =
1
x

+
1

1− x
> 0.

Hence by the lemma on convex functions (page 5), the function h(x) is strictly convex on [0, 1],
and it readily implies that so is the function

log2 e · h(x) = x log2 x+ (1− x) log2(1− x).

Taking in the definition of convexity x1 = q, x2 = q̄, and λ = P (hence λx1 + (1 − λ)x2 = r),
and noting that h(q) = h(q̄), we obtain that

q log q + q̄ log q̄ ≥ r log r + r̄ log r̄
i.e., H(A) ≤ H(B)

and, moreover, the equality holds only if P ∈ {0, 1} or if q = q̄, which holds iff H(A) =
log2 |{0, 1}| = 1. QED
We are going to calculate CΓ. It is convenient to use notation

H(s) = −s log2 s− (1− s) log2(1− s) (28)

(justified by the fact that H(s) = H(X), whenever p(X = 0) = s, p(X = 1) = s̄). Note that
H(0) = H(1) = 0, and the maximum of H in [0, 1] is H(1

2) = 1.
By the definition of conditional entropy, we have

H(B|A) = p(A = 0) ·
(
p(B = 0|A = 0) · log

1
p(B = 0|A = 0)

+ p(B = 1|A = 0) · log
1

p(B = 1|A = 0)

)
+ p(A = 1) ·

(
p(B = 0|A = 1) · log

1
p(B = 0|A = 1)

+ p(B = 1|A = 1) · log
1

p(B = 1|A = 1)

)
= p(A = 0) ·

(
P · log

1
P

+ P̄ · log
1
P̄

)
+ p(A = 1) ·

(
P̄ · log

1
P̄

+ P · log
1
P

)
= P · log

1
P

+ P̄ · log
1
P̄

= H(P ).

Hence, H(B|A) does not depend on A.
Now, by the calculation of the distribution of B above, we have

H(B) = H(qP + q̄P̄ )

which achieves the maximal value 1 = H(1
2), for q = 1

2 . Hence

CΓ = max
A

H(B)−H(B|A) = 1−H(P ). (29)
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Decision rules

Suppose we receive a sequence of letters bi1 , . . . , bik , transmitted through a channel Γ. Knowing
the mapping (P (a→ b)) (for a ∈ A, b ∈ B), can we decode the message?

In some cases the answer is simple. For example, in the inverse faithful channel (page 22),
we should just interchange 0 and 1. However, for the noisy typewriter (page 22), no unique
decoding exists. For instance, an output word afu, can result from input zet , but also from aft ,
and many others5 (but not, e.g., from input abc).

In general, the objective of the receiver is, given an output letter b, to “decide” what input
symbol a has been sent. Clearly the receiver wants to maximize p(A = a|B = b). A decision
rule is any mapping ∆ : B → A.
The quality of the rule is measured by

PrC(∆, A) =def p(∆ ◦B = A), (30)

where (A,B) forms the input–output pair6. Using conditional probabilities we can compute it
in several ways, for example by

p(∆ ◦B = A) =
∑

a∈A,b∈B
p(A = a ∧B = b ∧∆(b) = a)

=
∑
b∈B

p(B = b ∧A = ∆(b))

=
∑
b∈B

p(A = ∆(b)) · (B = b|A = ∆(b))

=
∑
b∈B

p(A = ∆(b)) · P (∆(b) → b).

Dually, the error probability of the rule ∆ is

PrE(∆, A) = 1− PrC(∆, A)

=
∑

a∈A,b∈B
p(A = a ∧B = b ∧∆(b) 6= a).

We can compute it by

PrE(∆, A) =
∑
a∈A

p(A = a) · p(∆ ◦B 6= a|A = a) (31)

We are interested in rules maximizing PrC(∆, A), and thus minimizing PrE(∆, A).
If the distribution of A is known, the above objective is realized by

Ideal observer rule This rule sends b ∈ B to ∆o(b) = a, such that p(a|b) is maximal, where
p(a|b) can be calculated (knowing A)

p(a|b) =
p(a ∧ b)
p(b)

=
p(a→ b) · p(a)∑

a′∈A p(a′ → b) · p(a′)
.

5The reader is encouraged to find some “meaningful” examples.
6We have noted that in this case the distribution of B is determined (eq. (25)), hence the definition is correct.
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It follows easily from definition that

PrC(∆o, A) ≥ PrC(∆, A),

for any rule ∆.
If the distribution of A is unknown, a reasonable choice is

Maximal likelihood rule This rule sends b ∈ B to ∆max(b) = a, such that p(a→ b) = p(b|a)
is maximal. If A has uniform distribution (i.e., p(a) = 1

|A|) then this rule acts as ∆o, i.e.7,

PrC(∆max, A) = PrC(∆o, A).

Indeed, maximizing p(a|b) given b amounts to maximizing p(a ∧ b) = p(a|b) · p(b), which in the
uniform case is p(a ∧ b) = p(a→ b) · 1

|A| (i.e., depends on p(a→ b), but not on p(a)).

If A is not uniform, the maximal likelihood rule need not be optimal (the reader may easily
find an example). However, it is in some sense globally optimal . We only sketch the argument
informally.

Let A = {a1, . . . , am}, and let P be the set of all possible probability distributions over A,

P = {p :
∑
a∈A

p(a) = 1}.

We identify a random variable A taking values in A with its probability distribution p in P.
Now, the global value of a rule ∆ can be calculated by∫

p∈P
PrC(∆,p) dp =

∫
p∈P

∑
b∈B

p(∆(b)) · p(∆(b) → b) dp

=
∑
b∈B

p(∆(b) → b) ·
∫
p∈P

p(∆(b)) dp

But it should be clear (at least intuitively, as the formal argument should refer to the concept of
Lebesgue integral) that

∫
p∈P p(a) dp may not depend on a. (Note that p(a) is just a projection

of p on one of its components, and no component is a priori privileged.) Thus
∫
p∈P p(∆(b)) dp

is always the same. Hence, maximization of
∫
p∈P PrC(∆,p) dp amounts to maximization of∑

b∈B p(∆(b) → b), and this is realized by the maximal likelihood rule.

11.04.2006

Multiple use of channel

Recall (page 20) that if A and B form an input-output pair for a channel Γ then p(b|a) = P (a→
b). Now suppose that we subsequently send symbols a1, a2, . . . , ak; what is the probability that
the output is b1, b2, . . . , bk ? One may expect that this is just the product of the P (a→ b)’s, we
shall see that this is indeed the case if the transmissions are independent.
Recall that random variables X1, . . . , Xk are independent8 if

p(X1 = x1 ∧ . . . ∧Xk = xk) = p(X1 = x1) · . . . · p(Xk = xk)

Extending our notational convention (see page 13), we often abbreviate p(X1 = x1 ∧ . . .∧Xk =
xk) by p(x1 . . . xk), etc.

7We have ∆max = ∆o, assuming that both rules make the same choice if there are more a’s with the same
maximal p(a→ b).

8The reader should note that this assumption is stronger than pairwise independence; an easy example consists
of X1, . . . , Xk (k > 2), with values in {0, 1}, where X1, . . . , Xk−1 are independent and Xk =

⊕k−1
i=1 Xi.
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Lemma If the random variables (X,Y ) and (X ′, Y ′) are independent then

p(Y = y ∧ Y ′ = y′|X = x ∧X ′ = x′) = p(Y = y|X = x) · p(Y ′ = y′|X ′ = x′),

whenever p(X = x ∧X ′ = x′) > 0.

Proof Observe first that independence of (X,Y ) and (X ′, Y ′) implies independence of X and
X ′; indeed we have

p(x ∧ x′) = p
(
(x ∧

∨
Y) ∧ (x′ ∧

∨
Y ′)
)

=
∑
y,y′

p(x ∧ y) · p(x′ ∧ y′) = p(x) · p(x′).

Hence

p(y ∧ y′|x ∧ x′) =
p(y ∧ y′ ∧ x ∧ x′)

p(x ∧ x′)
=
p(y ∧ x) · p(y′ ∧ x′)

p(x) · p(x′)
= p(y|x) · p(y′|x′).

Corollary Suppose that (A1, B1), . . . , (Ak, Bk), are independent random variables with the
same distribution, such that each (Ai, Bi) forms an input-output pair for a channel Γ. Then

p(b1 . . . bk|a1 . . . ak) = p(b1|a1) · . . . · p(bk|ak). (32)

Proof Clearly the independence of (A1, B1), . . . , (Ak, Bk) implies that (A1, B1) is independent
from the random variable (A2, . . . , Ak, B2, . . . , Bk). Hence, we prove the desired equality by
repeated application of the Lemma. QED

The independence assumption in the above corollary may appear unrealistic in some applications.
Indeed, it can be replaced by somewhat weaker hypotheses. We discuss it briefly.
Suppose that (A1, B1), . . . , (Ak, Bk) satisfy the following two conditions.

Memorylessness:

p(bk|a1 . . . ak, b1 . . . bk−1) = p(bk|ak) (33)

Absence of feedback:

p(ak|a1 . . . ak−1, b1 . . . bk−1) = p(ak|a1 . . . ak−1) (34)

Then the equation (32) is also satisfied.
Indeed, we can use induction on k to show

p(a1 ∧ . . . ∧ ak ∧ b1 ∧ . . . ∧ bk) = p(b1|a1) · . . . · p(bk|ak) · p(a1 ∧ . . . ∧ ak),

whenever the last probability is > 0. The case of k = 1 is trivial. To show the induction step,
we have, from (33),

p(a1 ∧ . . . ∧ ak ∧ b1 ∧ . . . ∧ bk) = p(bk|ak) · p(a1 . . . ak, b1 . . . bk−1),

and from (34)

p(a1 . . . ak, b1 . . . bk−1) = p(a1 ∧ . . . ∧ ak−1 ∧ b1 ∧ . . . ∧ bk−1) ·
p(a1 ∧ . . . ∧ ak)
p(a1 ∧ . . . ∧ ak−1)
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But, by the induction hypothesis,

p(a1 ∧ . . . ∧ ak−1 ∧ b1 ∧ . . . ∧ bk−1)
p(a1 ∧ . . . ∧ ak−1)

= p(b1|a1) · . . . · p(bk−1|ak−1),

which gives the claim.

Proviso In what follows, unless stated otherwise, we always assume that the equation (32)
holds, whenever a BSC is used several times.

Improving reliability

Suppose we use a binary symmetric channel (see page 23) Γ given by the matrix
(
P Q
Q P

)
,

where P > Q. In this case ∆max(i) = i, for i = 0, 1, and, for any A,

PrC(∆max, A) =
∑

b∈{0,1}

p(∆max(b)) · p(∆max(b) → b)

= p(A = 0) · P + p(A = 1) · P
= P,

hence PrE(∆max, A) = Q. As it does not depend on A, we simply write PrE(∆max) = Q.
Can we achieve a better result, using the same channel in a more clever way? A natural solution
is to send each bit of the message more than once, say 3 times. As the correct transmission is
more likely than the error (since P > Q), the receiver should decode the message looking at the
majority:

0 7→ 000 →
1 7→ 111 →

Γ → 000 001 010 100 7→ 0
→ 011 101 110 111 7→ 1

Then the whole procedure behaves as a (new) channel

0 →
1 →

Γ′ → 0
→ 1

What is the matrix of this channel?
Using the Corollary above, we can see that, e.g., the probability p(0|0) that the output is 0 if
the input has been 0, amounts to

p(000|000) + p(001|000) + p(010|000) + p(100|000) = P 3 + 3P 2Q.

Similar calculations made for the remaining p(i|j), easily show that Γ′ is again a binary symme-
tric channel, with the matrix (

P 3 + 3P 2Q Q3 + 3Q2P
Q3 + 3Q2P P 3 + 3P 2Q

)
Clearly Q3 + 3Q2P < P 3 + 3P 2Q, hence the error probability of Γ′ is

PrE(∆max) = Q3 + 3Q2P.
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To see that this is indeed less than Q, it is enough to examine the function Q3 +3Q2(1−Q)−Q,
which turns out to be negative for Q < 1

2 + 1√
12

.

More generally, if the sender sends each bit n times and the receiver decides by majority (for
simplicity, suppose that n is odd), we obtain the BSC channel with the matrix

∑n
i=dn

2
e

(
n
i

)
P i ·Qn−i

∑bn
2
c

i=0

(
n
i

)
P i ·Qn−i

∑bn
2
c

i=0

(
n
i

)
P i ·Qn−i

∑n
i=dn

2
e

(
n
i

)
P i ·Qn−i


Now the probability of error is

PrE(∆max) =
bn

2
c∑

i=0

(
n
i

)
P i ·Qn−i ≤

bn
2
c∑

i=0

(
n
i

)
︸ ︷︷ ︸

2n−1

P b
n
2
c ·Qb

n
2
c

Since 1
4 > P ·Q, we have PQ = δ

4 , for some δ < 1. Hence

PrE(∆max) ≤ 2n−1 · (PQ)b
n
2
c = 2n−1 · δ

bn
2
c

22·bn
2
c = δb

n
2
c

Therefore PrE(∆max) → 0 if n→∞.
This means that we can make the probability of error arbitrarily small, but it comes at the
expense of longer and longer messages. The celebrated Shannon’s theorem (which we will learn
at the next lecture) shows that, in some sense, this expense is not necessary. To get the intuition
that this may be possible, observe that our choice of repeating the same symbol has been made
for simplicity, but other choices are also possible. For example, while spelling a difficult word
(e.g., by phone), one often says the names, e.g., Bravo, Alpha, November, Alpha, Charlie, Hotel
(here I have used the International Radio Operators Alphabet).

Hamming distance

For a finite set A and n ∈ N, the Hamming distance between u, v ∈ An is defined by

d(u, v) = |{i : ui 6= vi}| (35)

It is easy to see that the axioms of the metric space are satisfied:

positivity d(u, v) = 0 ⇐⇒ u = v,

symmetry d(u, v) = d(v, u),

triangle inequality d(u,w) ≤ d(u, v) + d(v, w)

(the last follows from the fact that {i : ui 6= wi} ⊆ {i : ui 6= vi} ∪ {i : vi 6= wi}).

25.04.2006

Consider a BSC Γ given by a matrix
(
P Q
Q P

)
with P > Q. The Hamming distance defined

above allows for a succinct notation of the conditional probability that the sequence of outputs
is ~b = b1 . . . bk if the sequence of inputs is ~a = a1 . . . ak. The equation (32) gives us

p(b1 . . . bk|a1 . . . ak) = Qd(~a,~b) · P 1−d(~a,~b). (36)
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Channel coding

For an input-output pair (A,B), we consider an auxiliary random variable

E = A⊕B,

it can be viewed as the error of the transmission by channel. We have

p(b|a) = p(E = a⊕ b) (37)

Indeed, by definition of BSC

p(b|a) =
{
P a = b (a⊕ b = 0)
Q a 6= b (a⊕ b = 1)

On the other hand,

p(E = 0) = p(A = 0) · p(0 → 0) + p(A = 1) · p(1 → 1) = P

and
p(E = 1) = p(A = 0) · p(0 → 1) + p(A = 1) · p(1 → q) = Q,

so the both sides of (37) coincide, for all a, b.
Now consider a sequence of input-output pairs (A1, B1), . . . , (Ak, Bk), satisfying the equation
(32). This implies that the random variables E1, . . . , Ek (where Ei = Ai⊕Bi) are independent9.
Indeed, we have (in what follows, p( ~E = ~e), or simply p(~e), abbreviate p(E1 = e1∧. . .∧Ek = ek),
etc.)

p(e1 . . . ek) =
∑
~a

p( ~A = ~a ∧ ~B = ~a⊕ ~e) =
∑
~a

p( ~A = ~a) · p( ~B = ~a⊕ ~e| ~A = ~a),

where ~a ranges over those vectors for which p(~a) > 0. But, using (32) and (37), we have

p( ~B = ~a⊕ ~e| ~A = ~a) = p(B1 = a1 ⊕ e1|A1 = a1) · . . . · p(Bk = ak ⊕ ek|Ak = ak) (38)
= p(E1 = e1) · . . . · p(Ek = ek) (39)

for any ~a, hence

p(e1 . . . ek) = p(e1) · . . . · p(ek)

as desired.
Suppose we dispose of a binary symmetric channel Γ as above (P > Q), and wish to send a
value of a random variable X with values in X = {x1, . . . , xm}. In the early lectures we have
studied how to efficiently encode the values of X. If the channel is faithful, all we need is to find
an optimal encoding ϕ : X → {0, 1}∗ and then send the message bit by bit. The average length
(time) of transmission will be bounded by H(X) + 1 (c.f. the Shannon-Fano coding, page 12).
On the other hand, we can always encode X using strings of length dlogme, which gives the
bound for the worst-case time of the transmission. (The two bounds may be not achievable by
the same encoding.)

However, if the channel is insecure, this method would lead to errors. As the example on the
page 28 suggests, we should rather use redundant, and hence non-optimal encoding. In what
follows, we will struggle for a method which should re-conciliate two antagonistic objectives:

9The converse is not true in general, but the independence of E1, . . . , Ek, and independence of (E1, . . . , Ek)
from (A1, . . . , Ak) implies the equation (32).
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• keep redundancy as small as possible,

• keep the error probability as small as possible.

We first describe a general scheme of the method.

Transmission algorithm Suppose we are given a random variable X with values in X =
{x1, . . . , xm}.

1. Choose n ∈ N, and C ⊆ {0, 1}n with |C| = m.

2. Choose ϕ : X 1:1→ C. Clearly ϕ is an instantaneous code.

We can identify X and C (via ϕ). That is, since now on, we assume that X is a random
variable with values in C.

3. Send the string X = a1 . . . an by the channel Γ, bit by bit. Let the output received from
the channel be Y = b1 . . . bn. Assuming that the use of the channel is memoryless and
feedback–free, we have (eq. (36))

p(b1 . . . bk|a1 . . . ak) = Qd(~a,~b) · P 1−d(~a,~b).

4. To decode, given Y = b1 . . . bn, choose a1 . . . an ∈ C which maximizes p(b1 . . . bn|a1 . . . an)
(like in the maximal likelihood rule).

In other words, let ∆(b1 . . . bn) be a code-word in C nearest to b1 . . . bn. (We fix some
policy of choice if there is more than one word with this property.)

This ∆ is called the nearest neighbour rule.

The method described above can be viewed as a new channel (from C to C)

C 3 a1 . . . an → Γ → b1 . . . bn → ∆(b1 . . . bn) ∈ C

with the probability of error

PrE(∆, X) = p(∆ ◦ Y 6= X).

Our first observation is that the worst case is if (the distribution of) X is uniform, i.e., p(x) = 1
m ,

for x ∈ C.

Fact Let X,U , be two random variables with values in C ⊆ {0, 1}n, where U is uniform and
X arbitrary. Then there is a permutation ϕ : C 1:1→ C such that

PrE(∆, ϕ ◦X) ≤ PrE(∆, U).

Proof See the 2004 note http://zls.mimuw.edu.pl/∼niwinski/Info/ (in Polish).
Hence, in order to estimate the efficiency of our method in terms of PrE(∆, X), we may assume
without loss of generality that X is uniform.
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9.05.2006

In view of the fact just proved, in order to estimate the error probability for arbitrary variable,
it is enough to consider X with uniform distribution. In this case PrE(∆, X) depends only on
C, hence we will denote it just by PrE(∆, C).
The redundancy is measured as the ratio between the binary entropy of C, which is log2 |C|
(c.f. Fact on page 8) and the actual length of the code, i.e., n.

Definition The transmission rate of a code C ⊆ {0, 1}n is

R(C) =
log2 |C|

n
.

The intuition behind it is that, in order to transmit log2 |C| bits of information, we need in
reality to send n bits, hence the rate is log2 |C|

n bits per transmission.
Note that the two objectives stated on the page 30 mean that we want both PrE(∆, C) and

R(C) to be as small as possible.

Examples We start with a noisy typewriter described on the page 22. Although it does not
exactly fit to the setting above, the basic concepts are well illustrated.

Clearly this channel can produce many errors. However, if we have used only each second
letter, say a, c, e, g, . . . , u, w, y, then the received message can be always decoded in the correct
way.

Can we use this observation to transmit faithfully arbitrary texts?
A simple idea is to encode the letters by pairs, still using only a half of the alphabet, e.g.
a aa
b ac
c cc
d ce
. . .

For example, hhqtfeabtvjjceefbb should be read as greatidea.
Here, in order to transmit one letter, we need to send two, hence the transmission rate is 1

2 .
Can we do better?

If we have an auxiliary symbol, # say, which can be decoded without error, we can encode
(somewhat like in the musical notation)

a a
b # a
c c
d # c
. . .

Here the average length of the encoding is 1
2 · 1 + 1

2 · 2 = 3
2 , so we can estimate the rate by

2
3 . We can apply this idea without extending the alphabet, by choosing one letter, y say, to
play the role of #, and additionally encode y by yy (which decreases the rate slightly). A more
interesting problem of that kind is considered in Exercise 1 of Series 1 A.

In the second example we assume a BSC Γ, and explore the improvement we have made on
the page 28 to send just two bits 0 and 1. Assume n = k · `, and let m = 2k. Then every string
of bits a1 . . . ak can be encoded by a`

1 . . . a
`
k ∈ {0, 1}n, which defines a code of rate 1

` . Refining
the analysis of page 29 we can see that, for arbitrary k, we can make PrE(∆, C) arbitrary small
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if ` is sufficiently large. Roughly speaking, as soon as a BSC is not completely chaotic (i.e.,
P 6= Q), we can transmit arbitrary text with arbitrary small error, but the price to pay is the
slowing down the transmission rate almost to 0.

The celebrated Shannon Theorem shows that the situation is much better than that: we can
achieve the same thing with the rate close to a positive constant, namely the channel capacity
CΓ.

Before stating and proving the theorem, we show a kind of converse (lower bound) result,
stating that if no error is permitted, the transmission rate cannot exceed CΓ. In this fact, Γ can
be an arbitrary binary channel (not necessarily10 BSC), but as usual, we assume equation (32)
(c.f. Proviso on page 28).

Fact If PrE(∆, C) = 0 then

R(C) ≤ CΓ.

Proof Let X = (A1, . . . , An) and Y = (B1, . . . , Bn) be as in the transmission algorithm. Using
the equation (32) we verify by an easy calculation that

H(Y |X) = H(B1|A1) + . . .+H(Bn|An). (40)

We also have (12)

H(Y ) ≤ H(B1) + . . .+H(Bn)

Hence

I(X,Y ) = H(Y )−H(Y |X)

≤
n∑

i=1

H(Bi)−
n∑

i=1

H(Bi|Ai)

=
n∑

i=1

(H(Bi)−H(Bi|Ai))︸ ︷︷ ︸
I(Ai,Bi)

≤ n · CΓ

(by definition of CΓ).
On the other hand, we have

I(X,Y ) = H(X)−H(X|Y )︸ ︷︷ ︸
0

= log2m

where m = |C|. Here H(X|Y ) vanishes since the assumption PrE(∆, C) = 0 implies that X is
a function of Y , namely X = ∆(Y ) (c.f. (11)). Next, H(X) = log2m, since X is uniform (as
assumed in the definition of PrE(∆, C) = 0).

Hence we have
R(C) =

log2m

n
≤ CΓ

as required. QED
10Actually, the reader may notice that for a BSC, the statement is uninteresting, as the zero–error assumption

holds only for a faithful channel. However, the extension of the proof to a sharper result mentioned in Remark
below makes sense for BSC as well.
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Remark Using the continuity argument we could easily show that if we weaken the assumption
PrE(∆, C) = 0 to PrE(∆, C) ≤ δ, for some δ > 0, we have in the above proof H(X|Y ) ≤ ϑ(δ)
(for some continuous bounded function ϑ), and hence

log2m− ϑ(δ) ≤ n · CΓ

implying

R(C) ≤ CΓ +
ϑ(δ)
n

.

Roughly speaking, if we want to make the error probability small, we need to keep the trans-
mission rate close to CΓ.

We are ready to state the basic result of information theory, due to Claude Shannon (1948).
Intuitively it says that message transmission through a noisy channel with arbitrarily small
error probability is possible, with the transmission rate arbitrarily close to the channel capacity,
provided that the length of code is sufficiently large. We prove the theorem only for BSC, for
the general setting see, e.g., [2] (Theorem 8.7.1). The proof below follows [1].

Channel Coding Theorem (Shannon) Let Γ be a binary symmetric channel (BSC) with

a matrix
(
P Q
Q P

)
, where P > Q. Then ∀ε, δ > 0 ∃n0 ∀n ≥ n0 ∃C ⊆ {0, 1}n

CΓ − ε ≤ R(C) ≤ CΓ (41)
PrE(∆, C) ≤ δ (42)

Proof We first informally describe the basic idea. Suppose an input X = a1 . . . an is turned
into the output Y = b1 . . . bn. What is the expected distance between X and Y ? As this distance
amounts to the number of transmission errors, and the probability of one error is Q, the Law of
Large Numbers tells us that d(X,Y ) approaches to Q · n if n→∞. Now, if the decoding fails,
i.e., ∆(Y ) 6= X, it is useful to distinguish between two possible “reasons” for that:

• Y is “far” from X,

• Y is not that far, but a confusion arises, because some X ′ 6= X is at least as good as X,

where “far” means: exceeding the expected value Q · n.
The first type of failure is caused by the channel, but it is corrected by Nature: the Law of

Large Numbers guarantees that a big distance between X and Y happens rarely if n is large. The
second issue is, to some extent, responsibility of the code designer. Indeed, to prevent confusion,
the code-words should be “reasonably far” one from another. Taking the expected distance as
the measure of “far”, this means that the balls of radius Q ·n (in the Hamming metrics) centered
in any two code-words should be disjoint. So the question is: how many disjoint balls of radius
Q ·n can one “pack” in {0, 1}n? The size of one such ball, as we will see later, can be estimated
by ≈ 2n·H(Q). This suggests the number of balls of

m ≈ 2n : 2n·H(Q) = 2n(1−H(Q)) = 2n·CΓ ,

and hence the transmission rate R(C) ≈ CΓ. The amazing discovery of Shannon is that this bo-
und is really achievable. However, the proof is non-constructive, i.e., it only shows the existence
of the desired code.
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In what follows, we use the lower-case letters u, v, w, x, y, . . . for the “concrete” vectors in {0, 1}n,
to distinguish them from random variables. As usual, ⊕ is understood component-wise. We
choose η > 0, whose dependence on ε and δ will be made precise later (intuitively: very small).
Let

ρ = n(Q+ η).

Now suppose C ⊆ {0, 1}n is a code with |C| = m. By definition of ∆, if, for some u ∈ C,
e ∈ {0, 1}n, d(u, u⊕ e) ≤ ρ and ∀v ∈ C − {u}, d(v, u⊕ e) > ρ, then ∆(u⊕ e) = u. Therefore, if
∆(u⊕ e) 6= u then either d(u, u⊕ e) > ρ, or, for some v ∈ C −{u}, d(v, u⊕ e) ≤ ρ. Now we can
view the vector e as the value of a random variable E = (E1, . . . , En), where Ei = Ai ⊕ Bi are
as in the page 30. Recall that E1, . . . , En are independent and have the identical distribution
p(Ei = 0) = P , p(Ei = 1) = Q.

Then the above observation induces the following inequality, for a fixed u ∈ C.

p(∆(u⊕ E) 6= u) ≤ p(d(u, u⊕ E) > ρ) +
∑

v∈C−{u}

p(d(v, u⊕ E) ≤ ρ). (43)

16-05-2006

To estimate the first summands of (43) we use the following.

Weak Law of Large Numbers Let X1, X2, . . ., be a sequence of random variables, such that
any X1, X2, . . . , Xn are independent, and each Xi takes a finite number of real values with the
same distribution. Let µ = E(Xi). Then, for any α > 0,

lim
n→∞

p(| 1
n

n∑
i=1

Xi − µ| > α) = 0. (44)

We apply it to the sequence E1, E2, . . .. Clearly E(Ei) = 0 ·P+1 ·Q = Q. Hence p(| 1n ·
∑n

i=1Ei−
Q| > η) → 0 if n→∞. Therefore

p(d(u, u⊕ E) > ρ) ≤ p(
1
n
·

n∑
i=1

Ei > Q+ η) ≤ p(| 1
n
·

n∑
i=1

Ei −Q| > η) ≤ δ

2
, (45)

for n sufficiently large.
Now recall that we wish to estimate PrE(∆, C), which amounts to (c.f. (31))

PrE(∆, C) =
∑
u∈C

p(X = u) · p(∆ ◦ Y 6= u|X = u)

We have by definition Y = X ⊕ E, and from (39),

p(Y = w|X = u) = p(E = w ⊕ u). (46)

Hence

p(∆ ◦ Y 6= u|X = u) =
∑

v:∆(v) 6=u

p(Y = v|X = u)

=
∑

e:∆(u⊕e) 6=u

p(Y = u⊕ e)|X = u)

=
∑

e:∆(u⊕e) 6=u

p(E = e)

= p(∆(u⊕ E) 6= u).
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Moreover p(X = u) = 1
m since, by assumption, X is uniform.

Together with (45), this gives us

PrE(∆, C) ≤ 1
m

∑
u∈C

p(d(u, u⊕ E) > ρ) +
∑

v∈C−{u}

p(d(v, u⊕ E) ≤ ρ)


≤ δ

2
+

1
m

∑
u∈C

∑
v∈C−{u}

p(d(v, u⊕ E) ≤ ρ), (47)

if n is sufficiently large.
Before proceeding further, we will estimate the size of a ball of radius λ · n, where λ ≤ 1

2 . More
specifically, we show that ∑

i≤λ·n

(
n
i

)
≤ 2n·H(λ), (48)

where H is the function defined by (28).
Let κ = 1− λ. Note first that

log2 λ
λn · κκn = n · (λ · log2 λ+ κ · log2 κ)

= −n ·H(λ)

Now it is enough to show that, for all i ≤ λn,

λiκn−i ≥ λλn · κκn. (49)

Indeed, this will give us

1 ≥
∑

i≤λ·n

(
n
i

)
λiκn−i ≥

∑
i≤λ·n

(
n
i

)
λλn · κκn

and consequently ∑
i≤λ·n

(
n
i

)
≤ 1

λλn · κκn
= 2n·H(λ),

as required.
If λn is integer, the inequality (49) is obvious (just replace smaller by bigger). Otherwise, we
have λn = bλnc+ ∆λ, κn = bκnc+ ∆κ, bλnc+ bκnc = n− 1, and ∆λ+ ∆κ = 1. Since κ ≥ λ,
we have, for i ≤ λn,

λiκn−i ≥ λbλnc · κbκnc+1 = λbλnc · κbκnc κ∆λ+∆κ︸ ︷︷ ︸
≥λ∆λ·κ∆κ

≥ λλn · κκn.

This completes the proof of (48).
We come back to the estimation of PrE(∆, C). Recall that (47) holds for any code C, if only
n is sufficiently large. We will now show that, for sufficiently large n, there exists a code C
satisfying the conditions (41) and (42) of Shannon’s theorem; in particular the second term of
(47) should be estimated by δ

2 .
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To this end, rather than searching for a specific code C with the desired property, we will
use the probabilistic method .

Fix m < 2n. Let C be the set of all sequences c1, . . . , cm ∈ {0, 1}n, with ci 6= cj , for i 6= j.
Let N = |C|. Clearly

N =
(

2n

m

)
·m!

In what follows, we use symbol C̄ for a sequence in C, and let the notation PrE(∆, C̄) stand for
PrE(∆, C), where C is the set of values of C̄.

Now the probabilistic argument, due to Claude Shannon, is based on the following simple
observation. If

1
N

∑
C̄

PrE(∆, C̄) ≤ δ

then there exists a code C, such that PrE(∆, C) ≤ δ.
Note that if C̄ is a sequence in C with the set of values C = {c1, . . . , cm} then∑

u∈C

∑
v∈C−{u}

p(d(v, u⊕ E) ≤ ρ) =
m∑

i=1

∑
j 6=i

p(d(cj , ci ⊕ E) ≤ ρ).

Hence, (47) gives us

1
N

∑
C̄

PrE(∆, C̄) ≤ 1
N

∑
C̄

δ
2

+
1
m

m∑
i=1

∑
j 6=i

p(d(cj , ci ⊕ E) ≤ ρ)


=

δ

2
+

1
m

m∑
i=1

∑
j 6=i

1
N

∑
C̄

p(d(cj , ci ⊕ E) ≤ ρ)︸ ︷︷ ︸
(∗)

(50)

We will now estimate (*), for a fixed pair of indices i 6= j.
For e ∈ {0, 1}n, let Sρ(e) be the ball in {0, 1}n of radius ρ centered in e, i.e.,

Sρ(e) = {v ∈ {0, 1}n : d(v, e) ≤ ρ}.

It is easy to see that

d(v, u⊕ e) ≤ ρ ⇐⇒ v ⊕ u ∈ Sρ(e).

Hence
1
N

∑
C̄

p(d(cj , ci ⊕ E) ≤ ρ) =
1
N

∑
C̄

p (ci ⊕ cj ∈ Sρ(E))

=
∑

e∈{0,1}n
p(E = e) · 1

N

∑
C̄

·χ(ci ⊕ cj ∈ Sρ(e))︸ ︷︷ ︸
(∗∗)

(51)

where χ is the truth function, i.e.,

χ(ϕ) =
{

1 if ϕ holds
0 otherwise
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We now estimate the value of (**), for a fixed e. Obviously any vector different from 0n occurs
as a value of ci ⊕ cj , for some sequence C̄ ∈ C, and it is easy to see that each such vector occurs
in this role the same number of times, i.e.,

|{C̄ : u = ci ⊕ cj}| = |{C̄ : v = ci ⊕ cj}| =
N

2n − 1

for any u, v ∈ {0, 1}n − {0n}. Hence each u ∈ Sρ(e) − {0n} contributes the value N
2n−1 to the

sum
∑

C̄ ·χ(ci ⊕ cj ∈ Sρ(e)), i.e.,∑
C̄

·χ(ci ⊕ cj ∈ Sρ(e)) =
N

2n − 1
|Sρ(e)− {0n}|

Therefore we further have∑
e∈{0,1}n

p(E = e) · 1
N

∑
C̄

·χ(ci ⊕ cj ∈ Sρ(e)) =
∑

e∈{0,1}n
p(E = e) · 1

2n − 1
|Sρ(e)− {0n}|

=
1

2n − 1
|Sρ(e)− {0n}|

(since
∑

e p(E = e) = 1). Now, from (48), we have

|Sρ(e)− {0n}| ≤ 2n·H(Q+η)

(recall that ρ = Q+ η). Coming back to (50), we have

1
N

∑
C̄

PrE(∆, C̄) ≤ δ

2
+

1
m

m∑
i=1

∑
j 6=i

1
2n − 1

· 2n·H(Q+η)

=
δ

2
+

1
m
·m · (m− 1) · 1

2n − 1︸ ︷︷ ︸
≤ m

2n

·2n·H(Q+η)

≤ δ

2
+
m

2n
· 2n·H(Q+η)

=
δ

2
+ 2n·

(
log2m
n

+H(Q+η)−1
)

(52)

Intuitively, we are very close to the goal, as the term
(

log2 m
n +H(Q+ η)− 1

)
is “almost”

R(C)− CΓ, which11 we want to estimate in (41).
More specifically, from all previous considerations, we know that (52) holds for all sufficiently

large n, say n ≥ n1, and all 2 ≤ m < 2n, 0 < η < 1
2 −Q. We claim, that we can further choose

n0 ≥ n1, m, and η, in such a way that, for all n ≥ n0, the following holds. (Recall that ε and δ
are given in the theorem.)

CΓ − ε ≤ log2m

n
≤ CΓ (53)

log2m

n
+H(Q+ η)− 1 ≤ −ε

3
. (54)

11We have calculated in (29), CΓ = 1−H(P ), but H(P ) = H(Q), by symmetry of H.
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Note first that (54) implies

2n·
(

log2m
n

+H(Q+η)−1
)

≤ 1
2n· ε

3

,

hence, if n is sufficiently large, we finally have

1
N

∑
C̄

PrE(∆, C̄) ≤ δ

2
+
δ

2
= δ.

By the probabilistic argument, there exists a code C of size m, satisfying PrE(∆, C) ≤ δ, as
required by (42). Since R(C) = log2 m

n , (53) gives us the condition (41) as well.
It remains to show that the choices satisfying (53) and (54) indeed can be made. This is

best illustrated by the picture:

oo
ε
3 // oo

ε
3 // oo

ε
3 //

•

�
�
�
�
�
� •

�
�
�
�
�
� CΓ

k
n

1−H(Q+ η)

m = 2k

First, using the continuity of function H, we choose η such that CΓ− 1
3 ·ε ≤ 1−H(Q+η) ≤ CΓ.

Next, if n is sufficiently large, we can find k, such that CΓ − ε ≤ k
n ≤ CΓ − 2

3 · ε. Then (53)
and (54) are fulfilled by m = 2k. QED

Next lecture:

• Error correcting codes.

• Algorithmic (Kolmogorov) complexity.
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