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Determinacy of games

Zermelo's theorem on chess

In 1913, Ernst Zermelo proved mathematically that in the play of chess one
of the following possibilities holds.

• White have a winning strategy,

• Black have a winning strategy,

• both parties have the strategies to achieve at least a draw.

We will show this theorem on a more abstract level, not forgetting its algo-
rithmic aspect.

Arenas

We think of two players who will play by changing �situations� of the game
according to some rules. The current situation is always known to both
players, and it determines who should play. We name the players Eve and
Adam.

An arena is a directed graph, consisting of

• the set of positions Pos,

• the set of moves Move ⊆ Pos× Pos.
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The set of positions is partitioned into two disjoint sets Pos∃ and Pos∀ of
positions of Eve and Adam, respectively, i.e.,

Pos∃ ∪ Pos∀ = Pos

Pos∃ ∩ Pos∀ = ∅

(any of these sets can be empty). Relation (p, q) ∈ Move is usually written
by p → q. A position p, such that (∀q) p 6→ q is called terminal , which we
also write p 6→.

A play is a �nite or in�nite sequence

q0 → q1 → q2 → . . . → qk(→ . . .)

A �nite play that ends in a position qk 6→ is lost by the player who owns
this position. Thus, a player who cannot move, looses. Note that we allow
k = 0, i.e., a play can consist of just one position (no move), but an empty
sequence ε is not considered as a play.

Note that in our concept of an arena we do not privilege any of the players.
All concepts can be de�ned equally for both players. We will usually present
de�nition for Eve, but they can be adapted for Adam, by symmetry.

Game equation

In symbols, the equation for Eve is

X = (E ∩ ♦X) ∪ (A ∩�X) (1)

and the dual equation for Adam

Y = (A ∩ ♦Y ) ∪ (E ∩�Y ). (2)

Here, the variables X and Y range over subsets of Pos, E = Pos∃, A = Pos∀,
∪ and ∩ have their usual meaning and, for any Z ⊆ Pos,

♦Z = {v : ∃w, w ∈ Z ∧ Move(v, w)}
�Z = {v : ∀w, Move(v, w) ⇒ w ∈ Z}.

To ensure that the game equations have solutions, we recall a classical result
about ordered sets. A complete lattice is a partially order set 〈L,≤〉, such
that each subset Z ⊆ L has the least upper bound

∨
Z, and the greatest

lower bound
∧

Z. In particular,
∨
∅ is the least element denoted ⊥, and

∧
∅

is the greatest element denoted >.
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Theorem 1 (Knaster-Tarski) A monotonic mapping over a complete lat-

tice 〈L,≤〉 has a least �xed point

µx.f(x) =
∧
{z : f(z) ≤ z} (3)

and a greatest �xed point

νx.f(x) =
∨
{z : z ≤ f(z)}. (4)

Proof. We show the result for the greatest �xed point. Let

a =
∨
{z : z ≤ f(z)}︸ ︷︷ ︸

A

By monotonicity of f , z ≤ a implies f(z) ≤ f(a). For z ∈ A, this further
implies z ≤ f(z) ≤ f(a). Hence, f(a) is an upper bound of A, which follows
a ≤ f(a). Using again monotonicity of f , we obtain f(a) ≤ f(f(a)). Hence
f(a) ∈ A, which follows the converse inequality f(a) ≤ a. �

We will abbreviate

Eve (Z) = (E ∩ ♦Z) ∪ (A ∩�Z)

Adam (Z) = (A ∩ ♦Z) ∪ (E ∩�Z).

Clearly the operators Eve and Adam are monotonic over the complete lattice
〈℘(Pos),⊆〉. Hence, the game equations have solutions.

Traps and gardens of Eden

A set of positions Z ⊆ Pos is a trap for Adam if Z ⊆ Eve (Z). Intuitively,
Adam cannot go out of there, so the message for him is:

You must stay there or loose.

A set of positions is gardens of Eden for Adam if Adam (Z) ⊆ Z. Now the
message for Adam is

You cannot get there, unless you are already there.

Note that these concepts are implicitly present in the formulas of the Knaster-
Tarski Theorem. If we apply (3) and (4) to the game equations, we get the
following messages:
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The greatest trap for Adam is a garden of Eden for Eve.

The least garden of Eden for Eve is a trap for Adam.

It is worth to see that the above are indeed dual concepts. We use the
notation

Z = Pos− Z.

Lemma 1

Eve (X) = Adam (X)

Proof. We have

Eve (X) = (E ∩ ♦X) ∪ (A ∩�X)

=
(
E ∩ ♦X

)
∩

(
A ∩�X

)
=

(
E ∪ ♦X

)
∩

(
A ∪�X

)
=

(
A ∪�X

)
∩

(
E ∪ ♦X

)
=

(
A ∩ ♦X

)
∪

(
E ∩�X

)
∪ (A ∩ E)︸ ︷︷ ︸

∅

∪
(
♦X ∩�X

)
= Adam (X).

(The last summand can be omitted, because it is included in the �rst two.)
�

The following consequences are immediate.

Corollary 1 The complement of a trap for Adam is a garden of Eden for

him; similarly for Eve.

Corollary 2

µX.Eve (X) = νY.Adam (Y )

νX.Eve (X) = µY.Adam (Y )

Exercise 1 Show that the union of any family of traps for a player is again a trap

for this player.

Note that by Corollary 1 this implies that the intersection of any family of

gardens of Eden for a player is again a garden of Eden for this player.

Which more general property of ordered sets underlines these facts ? (Remember

the Knaster-Tarski Theorem.)
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Strategies

Intuitively, a strategy for a player, say Eve, tells her how to continue the play,
assuming that she has followed this strategy so far. Note that a strategy must
�answer� all legal moves of Adam.

A strategy for Eve can be represented by a non-empty set of �nite plays
S, such that

• if π ∈ S and last(π) ∈ Pos∃ then (∃!q) πq ∈ S,

• if π ∈ S and last(π) ∈ Pos∀ then (∀q) (last(π) → q) ⇒ πq ∈ S,

• S is closed under initial segments, i.e., if s0s1 . . . sk ∈ S then s0s1 . . . si ∈
S, for 0 ≤ i ≤ k.

Here last(π) denotes the last element of the sequence π.

A play (�nite or in�nite) π conforms with a strategy S if any �nite pre�x
of π belongs to S. Note that a strategy can be visualized as a tree (after
adding an auxiliary element as a root). Then the conforming plays form the
branches of this tree.

A strategy always contains some single positions � if we identify them as
one-element plays. If p ∈ S ∩ Pos, we say that p is an initial position of S,
and S is a strategy starting from p. We call a position q safe for Eve, if it
is initial in some strategy for her. (We emphasize that q itself need not be
position of Eve !)

Exercise 2 1. Show that if a position is safe for Eve then she can play in such

a way that she will never loose a play starting from this position (but a play

can be in�nite).

2. Give an example of an arena, where some position is safe for both players.

3. Give an example of an arena, where the positions safe for Eve are precisely

the positions of Adam, and vice-versa.

A strategy S (for Eve) induces a strategy function fS, which is a partial
function over the set of plays. The value fS(π) is de�ned whenever π ∈ S
with last(π) ∈ Pos∃, and amounts to the unique q, such that πq ∈ S.

A strategy S is positional (or memory-less) if this function depends only
on the current position, i.e.,

last(π) = last(ρ) ⇒ fS(π) = fS(ρ).
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In this case fS induces a partial function on PosE, that we denote by the
same symbol, fS : Pos∃ ⊇ dom fS → Pos,

fS(p) = q

whenever fS(π) = q, for some π with last(π) = p.
It is useful to see under which condition a converse construction is pos-

sible. Let f : Pos∃ ⊇ dom f → Pos be a partial function on Pos∃ which
agrees with moves, i.e., f ⊆ Move. We say that f is safe if there exists a trap
Z for Adam, such that dom f = Z ∩ Pos∃ and range f ⊆ Z. This concept is
motivated by the following.

Lemma 2 For f and Z as above, there is a positional strategy S for Eve,

such that Z ⊆ S. In particular, all positions in dom f are safe.

Proof. We construct this strategy by stages. Let

S1 = Z

Sn+1 = {wf(last(w)) : w ∈ Sn ∧ last(w) ∈ Pos∃} ∪
{wp : w ∈ Sn ∧ last(w) ∈ Pos∀}.

It follows by induction that all paths in Sn remain in Z; in particular
f(last(w)) is de�ned, whenever last(w) ∈ Pos∃. It is straightforward to
see that

S =
⋃

Sn

satis�es the requirements; note that fS = f . �

Note that if S is any positional strategy for Eve then the strategy function
fS is safe; we can take as Z the set of all positions that occur in some π in
S. The strategy produced by Lemma 2 can then be slightly larger that S, as
more positions can be initial. In the sequel we usually represent positional
strategies by safe functions, so that the actual strategies are always like in
Lemma 2 (with some Z).

Remark Let us see the above properties in terms of graphs. For f and
Z as in Lemma 2, consider a sub-arena obtained by restricting the set of
positions to Z and the set of moves to

Move ′ = Move ∩ ((Pos∀ ∩ Z)× Pos ∪ f) .
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That is, we remove all Eve's moves except for those indicated by f . Then no
play on this arena can be lost by Eve.

Exercise 3 Consider an arena

◦
��~~

~~
~

��@
@@

@@

◦

//

◦

oo

where all positions belong to Eve. Compute the cardinalities of the sets of

1. all strategies of Eve,

2. all positional strategies of Eve,

3. all safe functions of Eve,

4. all strategies of Adam,

5. all safe functions of Adam.

In game theory, as well as in game practice, we often construct some new
strategies by combining some already existing ones. The simplest operation
is that of sub-strategy .

Lemma 3 Let S be a strategy of Eve and w ∈ S. Let

S.w = {v : wv ∈ S}

Then S.w is also a strategy of Eve. Moreover, if S is positional, so is S.w.

Proof. Straightforward from the de�nition. �

The following lemma prepares the �rst important connection between the
game equation and strategies that we establish next.

Lemma 4 If Z is a trap for Adam then all positions in Z are safe for Eve.

Moreover, there is a positional strategy S for her, such that Z ⊆ S.
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Proof. By Lemma 2, it is enough to de�ne a safe function on Z ∩ Pos∃.
Since Z is a trap, for any p ∈ Z∩Pos∃, there is some q ∈ Z, such that p → q.
The existence of a safe function follows from the axiom of choice. �

Proposition 1 The set of all safe positions of Eve is the greatest �xed point

of the operator Eve . Moreover, there exists a positional strategy with this set

as initial positions.

Proof. Let Z0 be the set of all safe positions of Eve. We �rst show

Z0 ⊆ Eve (Z0). (5)

Let p ∈ Z0 and let S be a strategy of Eve starting from p. Consider the
strategy S.p (c.f. Lemma 3). There are two possibilities. If p ∈ Pos∃ then
pq ∈ S, for some q. Then q ∈ S.p, hence q is safe. If p ∈ Pos∀ then pq ∈ S, for
all q, such that p → q. Hence all such q's are safe. In any case, p ∈ Eve (Z0).
(5) and (4) give us Z0 ⊆ νx.Eve (x). The converse inequality, as well as the
strategy claim, follows directly from Lemma 4. �

Winning in �nite time

If a position is not safe for Adam then he has no guarantee that he will not
loose. But does it mean that Eve is sure to win ? Note that we have no
�guarantee� of winning other than a strategy. Again, the game equation will
be useful in answering this question.

A strategy S of Eve is �nitely winning if any play that conforms with S
is �nite � and hence lost for Adam. A position p is �nitely winning if p ∈ S,
for some strategy with this property. (Again recall that p need not to be a
position of Eve !)

The following fact is dual to Proposition 1.

Proposition 2 The set of all positions �nitely winning for Eve is the least

�xed point of the operator Eve . Moreover, there exists a positional �nitely
winning strategy with this set as initial positions.

Proof. Let W ′ be the set of positions that are initial for some positional

�nitely winning strategy. We �rst show

Eve (W ′) ⊆ W ′. (6)
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Suppose p ∈ Eve (W ′). If p ∈ Pos∃ then Eve can make a move to a position
q, from which there is a positional �nitely winning strategy S. Let fS be the
strategy function induced by S (see page 5). If p ∈ dom fS then p ∈ W ′, and
we are done. Otherwise, we can consider the extended function fS ∪{(p, q)}.
This function is clearly safe, and it is straightforward to see that the strategy
constructed in Lemma 2 is (positional and) �nitely winning. Hence p ∈ W ′.

If p ∈ Pos∀ then, for each q, such that p → q, we have q ∈ W ′. Then,
for each such q, we have some safe function fq, inducing a positional �nitely
winning strategy from q. However, the union of these functions need not be
a function. To remedy this, we will use the possibility of well-ordering of any
set, which is the �great� Theorem by Zermelo. But �rst, a lemma is in order.

Lemma 5 Let α be an ordinal, and let Sξ be a family of positional, �nitely

winning strategies for Eve, each Sξ induced by1 a safe function fξ. Let f be

de�ned on
⋃

ξ<α dom fξ by

f(p) = fξ(p)

where ξ is the least, such that fξ(p) is de�ned. Then f is safe and the induced

strategy is �nitely winning.

Proof of the lemma. Let init(Sξ) be the set of initial positions of Sξ. We
have dom fξ = Sξ ∩ Pos∃, for each ξ < α. Then I =

⋃
ξ<α Sξ is a trap (see

Exercise 1), and moreover dom f = I ∩ Pos∃ and range f ⊆ I. Hence f is
safe and induces a positional strategy with the set of initial positions I. Let
us see that this strategy is �nitely winning. Suppose on the contrary that
some in�nite play

q0 → q1 → q2 → . . .

conforms with this strategy. Note that no su�x of this play can conform
with any Sξ, because each Sξ is �nitely winning. Hence, Eve must in�nitely
many times switch the strategy from Sξ to some other Sξ′ . But this may only
happen if ξ′ < ξ. However, we cannot have an in�nite decreasing sequence
of ordinal numbers, a contradiction. More precisely, for each n, let ord (qn)
be the least ξ, such that qn ∈ init(Sξ). Then this sequence of ordinals is
non-increasing, but it cannot stabilize, which yields a contradiction. �

We come back to the proof of the proposition. If we well-order the set of
successors of p and apply the above lemma, we obtain a positional �nitely

1That is, Sξ coincides with Z of Lemma 2.
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winning strategy which has all successors of p among its initial positions.
Then it easy to see that the position p is �nitely winning as well. (If this
strategy is induced by a safe function f and some trap Z, we can extend this
trap by p.)

This completes the proof of ( 6).
By the equation ( 3) of the Knaster-Tarski Theorem, this implies µX.Eve (X) ⊆

W ′. But we already know that all positions outside µX.Eve (X) are in
νY.Adam (Y ) (Corollary 2), and then are safe for Adam (Lemma 4), so they
cannot be �nitely winning for Eve. Hence W ′ coincides with the set W of all
positions �nitely winning for Eve, and

W = W ′ = µX.Eve (X).

For each q in this set, we have a positional �nitely winning strategy from q.
To obtain a single strategy good for all q's, we can again use Lemma 5. �

Determinacy

We are ready to state the determinacy result which essentially comprises
Zermelo's theorem about chess.

Theorem 2 (Zermelo) For any position p, one of the following possibilities
holds:

1. p is �nitely winning for Eve,

2. p is winterly winning for Adam,

3. p is safe for both players.

Proof Let Xmin and Xmax be the least and greatest �xed points of Eve , and
similarly with Y for Adam . By Proposition 2, Xmin and Ymin are disjoint.
(No position can be �nitely winning for both players.) Using Corollary 2, we
get

Xmin ∪ Ymin = Xmax ∩ Ymax.

Hence, if 1 or 2 do not hold, 3 must hold. �

Note that we have proved this theorem without any restriction on the
cardinality of arenas. For �nite arenas, there is a natural algorithmic question
to decide which of the cases of Theorem 2 holds, and to �nd a suitable
strategy.
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Exercise 4 Design an algorithm which, for a �nite arena, determines which of the

cases of Theorem 2 holds. The algorithm can be made to run in time linear in the

size of the arena.

Next lecture (5.03.2009)

• Determinacy of the zero-sum games in the matrix form (de�nition).

• Indeterminate games.

If time permits. . .
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