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Solutions are due to 18 VI 2019.

Solutions to the problems should be sent to Marcin Przyby lko:
M.Przybylko@mimuw.edu.pl

They can be written in English or in Polish, but a solution to one problem should
not mix up the two languages. For each problem, we indicate the number of
points one can get for the solution. You may send answers to any selection of
problems.

All facts that were not proven during the lectures or the tutorials
but were used in your solution have to be proven.

1 Symmetrisation (0.5 + 1 points)

In this exercise we assume that the sets of pure strategies in consideration are
finite.

A two-player game is symmetric if both players have the same pure strategies,
and the payoff functions u1 and u2 satisfy: u1(x, y) = u2(y, x). An equilibrium
(p, q) is symmetric if p = q.

Tasks: Show that any symmetric game admits a symmetric equilibrium.

Show that two-player games admit a symmetrisation in the following sense:
there is a polynomial time procedure that transforms an arbitrary game A into
a symmetric game SA such that every symmetric equilibrium of SA can be
transformed to an equilibrium in A, again in polynomial time.

2 Constructive fixed-point (1 + 1 + 1 points)

The unit n-dimensional simplex ∆n is defined as follows:

∆n = {〈x1, x2, . . . , xn〉 ∈ [0, 1]n :

n∑
i=1

xi = 1}
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A k-face F of ∆n is an (n−k)-dimensional simplex of the form:

F = {〈x1, x2, . . . , xn〉 ∈ ∆n : xa1
= xa2

= · · · = xak
= 0}

for some 1 ≤ a1 < a2 < · · · < ak ≤ n.
Consider any triangulation T of ∆n. Denote by V the set of vertices of T . Let

c : V → {0, 1, . . . , n} be a coloring function satisfying th following constraints:

• c restricted to the set of vertices of ∆n is a bijection;

• if v ∈ V belongs to face F then c(v) belongs to the set of the colors of the
vertices of F .

Task: Show that there exists a simplex S in T , such that the coloring c restricted
to the set of vertices of S is a bijection.

Now consider a continuous function f : ∆n → ∆n on a unit n-dimensional
simplex ∆n. For any ε > 0, let us call x ∈ ∆n an ε-fixed point of f if:

|f(x)− x| ≤ ε.

Task: use the previous task to show that f has an ε-fixed point.
Extra task: assume that f is Lipschitz with constant k, i.e. ∀x,y∈∆n |f(y) −
f(x)| ≤ k|y − x|. Design and implement an algorithm (in any reasonable pro-
gramming language) that finds ε-fixed point of f .

3 Tom and Jerry (1 + 2 points)

Tom and Jerry move on a rope of length 10. Each of them chooses its initial
position, direction of movement, and speed. When a player reaches an end of
the rope (and only then), they change the direction retaining the same speed.
We let Jerry to move twice as faster as Tom. Specifically, we assume that at the
start of the game Tom chooses a pair of reals (p, v) with p ∈ [0, 10], v ∈ [−1, 1],
and Jerry a pair (q, w) with q ∈ [0, 10], w ∈ [−2, 2]; p, q are the initial positions
and v, w the initial velocities. The choices are simultaneous and independent.
Tom catches Jerry if they are in the same position on the rope; if it happens,
Jerry dies.

Task: What (mixed) strategy can be chosen by Jerry to maximize its life ex-
pectancy? What (mixed) strategy can be chosen by Tom to minimize the ex-
pected time needed to catch Jerry?

Extra task (of open character): Consider a variant of the game, where the
rope has a form of circle (rather then interval), and the players can modify
their velocities during the game (within their respective scopes). You are free
to define the conditions of your variant of the game, and perform the analysis.
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4 Optimal strategy in Mean-Payoff Games (1
point)

Consider a finite mean-payoff game G played by the maximiser (Eve) and min-
imiser (Adam). Recall from the course that these games are memoryless deter-
mined in the sense that, for every position u, there exists a compromise value
vu and memoryless strategies starting from this position, which are optimal for
both players (maximisers gains at least vu, whereas minimizer loses at most vu).

Task: Show that optimal strategies can be made global . That is, for every
finite mean-payoff game G, there exist positional strategies of maximiser and
minimiser respectively, that do not depend on initial positions, but for any
position are optimal for both of the players. Estimate the complexity of finding
such strategies.

5 Concurrent games on graphs (2 points)

The concurrent games on graphs are games played by two players called max-
imiser and minimiser.

A finite concurrent game on graphs is a tuple G = 〈V,E,A,B, s, vI , L〉 where
V is a finite set of vertices, E ⊆ V × V is a set of edges, A,B are non-empty
finite sets of actions, s : V ×A×B → V is a successor function, vI is an initial
vertex and L ⊆ V ω is a set of infinite words.

The game is played by moving a token, initially placed in vI , along the
edges of the graph 〈V,E〉. To move the token from vertex v ∈ V both players
independently and concurrently choose an action: maximiser chooses an action
a ∈ A and minimiser chooses an action b ∈ B. Then the successor function is
applied and the token is moved to the vertex s(v, a, b).

For simplicity and consistency we assume that every vertex has at lest one
outgoing edge and every combination of actions results in valid transition, i.e.
for all a ∈ A, b ∈ B, v ∈ V if s(v, a, b) = u then 〈v, u〉 ∈ E.

The play p ∈ V ω of the game is the sequence of vertices visited by the token.
After a play is formed, minimiser pays one coin to maximiser if p ∈ L and
maximiser pays one coin to minimiser if p /∈ L.

Task: Show that if the set L is topologically closed then the game is determined
under mixed strategies. The topology is defined as before.
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