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Chapter 1

Getting started

These notes accompany the course given at the University of Warsaw in Fall
semester 2012. The author highly appreciates any feedback from the audience.

Lecture 2.10.2012

1.1 Do games need a theory ?
The role of an abstract mathematical theory is twofold: it should help to ex-
plain empirical reality like, e.g., in physics and other natural sciences, but it
may also help to design/construct some useful real objects, like in engineer-
ing. A good example is Turing machine. It was invented as a mathematical
model of a human being performing computation, and later became a basis
for a general purpose computer.

empirical reality → abstraction → created reality

human’s computation → Turing machine → computer program

Game theory has two sources, which issue two concepts of a game. Games
in extensive form is a mathematical abstraction of social games, like board
games or card games. Such games can be implemented as computer games
played for entertainment, but they can also give an idea to construct some
useful algorithm, e.g., for program verification. Games in strategic form
model rational human behavior, especially decision making in presence of
conflicts. They can be used to make prediction, e.g., of behavior of markets,
and also to design some frame of economic action (mechanism design).
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social gaming → extensive games → verification algorithms,
computer games, . . .

decision making → strategic games → prediction,
mechanism design, . . .

Games in extensive form can be presented as a special case of strategic games,
but this abstraction is not always useful.

Remark. In some sense, social games anticipated game theory, as they are
often metaphors of human dealing with conflicts, cf. the rules of chess or Go.

1.1.1 Social games

We list few examples of games and informally point some features, which can
be present (+) or absent (–) in a particular game: randomness, completeness
of information, and simultaneous (as opposite to turn-based) moves.

# players randomness full information simultaneous moves
chess 2 – + –

football 22 (2 teams) + + (?) +
diplomacy 7 – + +
sea battle 2 – – +

Go 2 – + –
solitaire 1 – +
bridge 4 (2 teams) + – –
Yahtzee 1+ + + –

minesweepera 1 – –
don’t get angryb 2–6 + + –

aFixed setting.
bIn Poland called Chińczyk .

Convention about names

While considering a two player game, we usually name the players: Eve and
Adam and, unless stated otherwise, Eve is the player who starts the game.
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Figure 1.1: Graph representation of a Hex board 3× 3.

1.2 Game Hex
The game is played on a board consisting of a hexagonal grid n×n (classically:
n = 11); for nice pictures we refer the reader to Internet, e.g., Wikipedia.

Eve plays red pawns, and Adam plays blue pawns, say. The players
place in turn their pawns on arbitrary free cells of the board. As mentioned
above, Eve starts the game. Eve wants to connect the topmost and bottom-
most sides of the board by a read path, whereas Adam wants to connect the
leftmost and rightmost sides by a blue path. The game ends if there is no
free place left. At this moment (if not earlier) one of the players has certainly
won, because of the following.

Lemma 1 If the whole board is covered by pawns, there is always a read path
connecting the topmost and bottom-most sides, or a blue path connecting the
leftmost and rightmost sides, but not both. Consequently, when the game
ends, there is always a winner (no draw).

We postpone for a moment the proof of the lemma, and show the following.

Theorem 1 Eve has a winning strategy in the game Hex, for any n.

Proof. [Sketch] We know from the lemma that there cannot be a draw.
Suppose to the contrary that Adam has a winning strategy1. By symmetry
of the board, this readily implies that Eve would win the game if she played

1Here we use the fact that finite games are determined ; we will show this fact in a more
general setting.
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as the second player. Let G ba a hypothetical winning strategy for Eve in
the modified game. We will show that Eve can use this strategy to win the
original game.

Eve plays her first pawn anywhere, and marks it extra. When Adam
answers by placing his first pawn, Eve starts to play the strategy G. She
may encounter a problem when this strategy requires to place a pawn on
the position already occupied by the extra pawn. (She might like to skip
her move, but this is not allowed.) Then Eve places her pawn on any free
position, and at the same time moves the label extra to this new pawn. Note
that, in this way, all Eve’s pawns except for the extra pawn are placed
according to the strategy G.

Suppose that at some moment Adam forms his winning blue path. Then
he could readily form the same path if the pawns marked extra were never
present on the board. But this would contradict the assumption that strategy
G is winning for Eve. (Recall that this strategy works in the modified game,
where Eve plays as the second player.) Hence, we conclude that the strategy
for Eve described above (using extra pawns) is winning in the original game.

The argument used in this proof is known as strategy stealing . Indeed, we
show that if Adam had a winning strategy, Eve could “steal” it (cf. strategy
G above) and with some minor modification (like extra pawns) win the game.

Note that this argument is non-constructive. Indeed, no explicit strategy
is known for n > 9. �

We will now sketch the proof of the lemma. To this end, it will be
convenient to use the original, hexagonal, representation of the board. We
refer to a cell occupied by a blue or red pawn as blue-colored or red-colored,
respectively. We additionally color the area below the bottom-most side
(South) red, and the area to the left from the leftmost side (West) blue2.
(The North and East areas are not colored.) We will form a (directed) path
going by the edges of hexagon cells. The path starts in the left-bottom corner
(South-West). If the left-bottom cell is colored red, we go up, and if it is
collared blue, we go right. Note that in either case, because of the additional
coloring, we have red on the right-hand side and blue on the left-hand side.
This will be an invariant of our construction. The path will terminate if it

2This step, simplifying the argument, has been suggested by a student, Mr. ? during
the lecture.
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Figure 1.2: Forming a path.

arrives to the upper side, or to the rightmost side of the board. Note that,
in the former case, the cells adjacent to the right of our path are, by the
invariant, all colored red, and hence for a sequence wining for Eve. Similarly,
in the latter case, the cells adjacent to the left of the path form a winning
sequence for Adam. We will now show that if a path does not reach the
topmost/rightmost side then a next move is always possible, preserving the
invariant. Whenever our path arrives in a node of degree 3 having blue on
the left and red on the right, it will turn left or right depending on the color
of the third (“new”) area, and the invariant will be preserved (see Figure 1.2).

If our path arrives in a node of degree 2, it can be continued in a unique
way. But this can happen only on the southern or western border of the board
and then, because of the additional coloring, the invariant is preserved. To
the end of the proof, it remains to observe that the invariant excludes a
possibility of forming a loop (see again Figure 1.2).

1.3 Infinite games
Lecture 9.10.2012

The rules of many games do not a priori forbid playing them indefinitely
although, for obvious reasons, it can be hardly happen in practice. In our
course, however, we will give much attention to infinite games, as they have
nice mathematical theory and can model information systems, which are
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designed to act indefinitely as, e.g., operation systems, or Internet.

1.3.1 Choquet game

In this game players select open intervals of the real line; each new interval
should be contained in the previous one,

Eve I0 I2 I4

Adam I1 I3

where In+1 ⊆ In. Eve wins the game if
⋃
n∈N In 6= ∅; otherwise Adam is

the winner. Let In = (an, bn). At first sight, it may appear that the best
strategy for Eve is to copy the choices of Adam because, in this way, she will
“save” as many points as possible. But this strategy will fail if, in his moves,
Adam fixes one end of the interval and makes the other ends to converge to
it. For example, if bn = b, for n ∈ N, and an → b (i.e., limn→∞ an = b) then⋃
n∈ In 6= ∅, and Adam wins.
But Eve can win this game ! To this end, she should narrow the interval

from both sides, i.e., an < an+1 < bn+1 < bn, whenever Eve moves in the
n + 1-th turn. We have an → a ≤ b ← bn, for some a and b. Since the
sequences an and bn do not stabilize (because of the moves of Eve), we have
an < a ≤ b < bn, for any n. Hence

⋃
n∈N In ⊇ [a, b] 6= ∅.

1.3.2 Infinite XOR

A special feature of infinite games is that they can be indeterminate: even
if any infinite play is won by one of the players (no draws), it may happen
that none of the players has a winning strategy. We will again use a strategy
stealing argument, but in the special game we are going to construct, either
of the players will be able to steal a strategy from his/her opponent.

We need some preliminaries. Let 2 = {0, 1}, and let 2ω denote the set of
infinite words over 2, i.e., mappings N → 2. For v, w ∈ Bm, where m ≤ ω,
let hd(v, w) = |{i : vi 6= wi}| be the Hamming distance between v and w.
For v, w ∈ Bω, we let v ∼ w iff hd(v, w) < ω.

Definition 1 An infinite XOR function f : 2ω → 2 is a function with the
following property: if hd(w1, w2) = 1 then f(w1) 6= f(w2).

Proposition 1 Infinite XOR functions exist.
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Proof. We use the Axiom of Choice. Let S be a set which contains exactly
one element from each equivalence class of ∼. For w ∈ 2ω, let r(w) be the
element of S such that w ∼ r(w). We define f(w) = hd(w, r(w)) mod 2.
One easily checks that f is an infinite XOR function. �

Remark. It follows from a standard set-theoretical argument that there is
2c infinite XOR functions (where c denotes continuum, i.e., the cardinality
of 2ω). Observe first that each equivalence class of ∼ is countable, which
follows |S| = c. Then, for each α : S → {0, 1}, we obtain a different infinite
XOR function given by fα(w) = (f(w) + α(r(w))) mod 2.

In what follows, we suspend our convention, and disguise Eve and Adam
under the names of Player 0 and Player 1 respectively.

Definition 2 Let f be an infinite XOR function. The infinite XOR game
Gf is played as follows. Player 0 picks a word w0 ∈ B+. Then, Player 1
picks a word w1 ∈ B+. Player 0 picks a word w2 ∈ B+, Player 1 picks a word
w3 ∈ B+, and so on. Thus, we obtain a play which is an infinite sequence
of words: w0w1, w2, w3, . . . Player i wins iff f(w0w1w2w3 . . .) = i.

Definition 3 A strategy for player i in Gf is a function

S :
⋃
k∈ω

(2+)2k+i → 2+.

A play w0, w1, w2, . . . is consistent with S iff wk+1 = S(w0, w1, . . . , wk), for
each suitable k (i.e., each move of player i is given by S). S is winning iff
Player i wins each play consistent with S.

Note that in the above we view (2+)m as a product 2+ × 2+ × . . .× 2+ (m
times) rather than concatenation 2+2+ . . . 2+ (m times). Such an identifica-
tion would restrict the set of strategies, but in fact it would not affect our
result. Note that, by definition, (2+)0 = {∅}.

We use the strategy stealing argument to show that no player has a win-
ning strategy in the infinite XOR game. Intuitively, whenever our opponent
answers our move v with w, we could have instead changed one bit in v to
obtain another word v′, and play v′w instead of v. This effectively exchanges
the roles of the two players, so if our opponent had a winning strategy, we
can use it now for ourselves. The precise argument follows.

Theorem 2 No player has a winning strategy in an infinite XOR game Gf .
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Proof. Let S be a strategy for Player 1− i. We construct two strategies for
Player i, T and T ′, such that one of them will win at least one play against
S.

Consider first i = 0, and let the first move of Player 0 (who starts the
game) be T (∅) = 0. Suppose the answer of Player 1 is S(0) = w1. We
let T ′(∅) = 1w1. Now, if S(1w1) = w2 then we let T (0, w1) = w2, and if
S(0, w1, w2) = w3, we let T ′(1w1, w2) = w3, and so on. In symbols, we let

T ′(1w1, w2, . . . , w2k) = S(0, w1, . . . , w2k)

T (0, w1, . . . , w2k+1) = S(1w1, w2, . . . , w2k+1).

In the figure below, the dashed arrows indicate the “stealing”.

Player 0 0 w2 w4

Strategy T

Player 1 w1

���
�
� w3

���
�
�
� w5

���
�
�
�

Player 0 1w1 w3 w5

Strategy T ′

Player 1 w2

OO�
�
�
�
�
�
�
�
�
�
�
�
�
�

w4

OO�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note that in the two plays above Player 1 uses his strategy S, but the
resulting sequences differ exactly in one bit (actually the bit number 0),
hence one of the plays is lost by Player 1.

The argument for i = 1 is similar. Let the starting move of Player 0
be S(∅) = w0. We let T (w0) = 0. Now suppose S(w0, 0) = w1. We let
T ′(w0) = 1w1. If S(w0, 1w1) = w2, we let T (w0, 0, w1) = w2, and so on, as
represented on the figure below.
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Strategy T

Player 1 0 w2 w4

Player 0 w0 w2

OO�
�
�
�

w4

OO�
�
�
�

Strategy T ′

Player 1 1w1 w3 w5

Analogically as above, Player 0 uses her strategy S, but the resulting se-
quences differ exactly in one bit (namely the bit number |w0|), hence this
strategy cannot be winning.

Hence the game Gf is indeed indeterminate. �



Chapter 2

Determinacy of chess

Zermelo’s theorem on chess

In 1913, Ernst Zermelo proved mathematically that in the play of chess one
of the following possibilities holds.

• White have a winning strategy,

• Black have a winning strategy,

• both parties have the strategies to achieve at least a draw.

We will show this theorem on a more abstract level, not forgetting its algo-
rithmic aspect.

2.1 Arenas
We think of two players who will play by changing “situations” of the game
according to some rules. The current situation is always known to both
players, and it determines who should play. We name the players Eve and
Adam.

An arena is a directed graph, consisting of

• the set of positions Pos,

• the set of moves Move ⊆ Pos× Pos.

10
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The set of positions is partitioned into two disjoint sets Pos∃ and Pos∀ of
positions of Eve and Adam, respectively, i.e.,

Pos∃ ∪ Pos∀ = Pos

Pos∃ ∩ Pos∀ = ∅

(any of these sets can be empty). Relation (p, q) ∈ Move is usually written
by p → q. A position p, such that (∀q) p 6→ q is called terminal , which we
also write p 6→.

A play is a finite or infinite sequence

q0 → q1 → q2 → . . .→ qk(→ . . .)

A finite play that ends in a position qk 6→ is lost by the player who owns
this position. Thus, a player who cannot move, looses. Note that we allow
k = 0, i.e., a play can consist of just one position (no move), but an empty
sequence ε is not considered as a play.

Note that in our concept of an arena we do not privilege any of the players.
All concepts can be defined equally for both players. We will usually present
definition for Eve, but they can be adapted for Adam, by symmetry.

2.1.1 Game equation

In symbols, the equation for Eve is

X = (E ∩ ♦X) ∪ (A ∩�X) (2.1)

and the dual equation for Adam

Y = (A ∩ ♦Y ) ∪ (E ∩�Y ). (2.2)

Here, the variables X and Y range over subsets of Pos, E = Pos∃, A = Pos∀,
∪ and ∩ have their usual meaning and, for any Z ⊆ Pos,

♦Z = {v : ∃w, w ∈ Z ∧ Move(v, w)}
�Z = {v : ∀w, Move(v, w)⇒ w ∈ Z}.

To ensure that the game equations have solutions, we recall a classical result
about ordered sets. A complete lattice is a partially order set 〈L,≤〉, such
that each subset Z ⊆ L has the least upper bound

∨
Z, and the greatest

lower bound
∧
Z. In particular,

∨
∅ is the least element denoted ⊥, and

∧
∅

is the greatest element denoted >.
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Theorem 3 (Knaster-Tarski) A monotonic mapping f over a complete
lattice 〈L,≤〉 has a least fixed point

µx.f(x) =
∧
{z : f(z) ≤ z} (2.3)

and a greatest fixed point

νx.f(x) =
∨
{z : z ≤ f(z)}. (2.4)

Proof. We show the result for the greatest fixed point. Let

a =
∨
{z : z ≤ f(z)}︸ ︷︷ ︸

A

By monotonicity of f , z ≤ a implies f(z) ≤ f(a). For z ∈ A, this further
implies z ≤ f(z) ≤ f(a). Hence, f(a) is an upper bound of A, which follows
a ≤ f(a). Using again monotonicity of f , we obtain f(a) ≤ f(f(a)). Hence
f(a) ∈ A, which follows the converse inequality f(a) ≤ a. �

We consider the mappings Eve and Adam defined in the complete lattice
〈℘(Pos),⊆〉 by

Eve (Z) = (E ∩ ♦Z) ∪ (A ∩�Z)

Adam (Z) = (A ∩ ♦Z) ∪ (E ∩�Z).

Clearly these mappings are monotonic, which follows that the game equations
(2.1) and (2.2) have solutions.

Traps and gardens of Eden

A set of positions Z ⊆ Pos is a trap for Adam if Z ⊆ Eve (Z). Intuitively,
Adam cannot go out of there, so the message for him is:

No exit.

A set of positions is gardens of Eden for Adam if Adam (Z) ⊆ Z. Now the
message for Adam is

No entrance.
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Note that these concepts are implicitly present in the formulas of the Knaster-
Tarski Theorem. If we apply (2.3) and (2.4) to the game equations, we get
the following messages:

The greatest trap for Adam is a garden of Eden for Eve.

The least garden of Eden for Eve is a trap for Adam.

It is worth to see that the above are indeed dual concepts. We use the
notation

Z = Pos− Z.

Lemma 2

Eve (X) = Adam (X)

Proof. We have

Eve (X) = (E ∩ ♦X) ∪ (A ∩�X)

=
(
E ∩ ♦X

)
∩
(
A ∩�X

)
=

(
E ∪ ♦X

)
∩
(
A ∪�X

)
=

(
A ∪�X

)
∩
(
E ∪ ♦X

)
=

(
A ∩ ♦X

)
∪
(
E ∩�X

)
∪ (A ∩ E)︸ ︷︷ ︸

∅

∪
(
♦X ∩�X

)
= Adam (X).

(The last summand can be omitted, because it is included in the first two.)
�

We note the following consequences.

Corollary 1 The complement of a trap for Adam is a garden of Eden for
him; similarly for Eve.

Proof. Immediate from definitions. �

Corollary 2

µX.Eve (X) = νY.Adam (Y )

νX.Eve (X) = µY.Adam (Y )
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Proof. It follows from Lemma 2 that X is a fixed point of Eve if and only
if its complement X is a fixed point of Adam . But the smaller is X, the
bigger is its complement, and vice versa. �

Exercise 1 Show that the union of any family of traps for a player is again a trap
for this player.

Note that by Corollary 1 this implies that the intersection of any family of
gardens of Eden for a player is again a garden of Eden for this player.

Which more general property of ordered sets underlines these facts ? (Remember
the Knaster-Tarski Theorem.)

2.2 Strategies
Lecture 16.10.2012

Intuitively, a strategy for a player, say Eve, tells her how to continue the play,
assuming that she has followed this strategy so far. Note that a strategy must
“answer” all legal moves of Adam.

A strategy for Eve can be represented by a non-empty set of finite plays
S, such that

• if π ∈ S and last(π) ∈ Pos∃ then (∃!q)πq ∈ S,

• if π ∈ S and last(π) ∈ Pos∀ then (∀q) (last(π)→ q) ⇒ πq ∈ S,

• S is closed under initial segments, i.e., if s0s1 . . . sk ∈ S then s0s1 . . . si ∈
S, for 0 ≤ i ≤ k.

Here last(π) denotes the last element of the sequence π.
A play (finite or infinite) π conforms with a strategy S if any finite prefix

of π belongs to S. Note that a strategy can be visualized as a tree (after
adding an auxiliary element as a root). Then the conforming plays form the
branches of this tree.
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2.2.1 Safe positions

A strategy always contains some single positions – if we identify them as
one-element plays. If p ∈ S ∩ Pos, we say that p is an initial position of S,
and S is a strategy starting from p. We call a position q safe for Eve, if it
is initial in some strategy for her. (We emphasize that q itself need not be
position of Eve !)

Exercise 2 1. Show that if a position is safe for Eve then she can play in such
a way that she will never loose a play starting from this position (but a play
can be infinite).

2. Give an example of an arena, where some position is safe for both players.

3. Give an example of an arena, where the positions safe for Eve are precisely
the positions of Adam, and vice-versa.

A strategy S (for Eve) induces a strategy function fS, which is a partial
function over the set of plays. The value fS(π) is defined whenever π ∈ S
with last(π) ∈ Pos∃, and amounts to the unique q, such that πq ∈ S.

A strategy S is positional (or memory-less) if this function depends only
on the current position, i.e.,

last(π) = last(ρ) ⇒ fS(π) = fS(ρ).

In this case fS induces a partial function on PosE, that we denote by the
same symbol, fS : Pos∃ ⊇ dom fS → Pos,

fS(p) = q

whenever fS(π) = q, for some π with last(π) = p.
It is useful to see under which condition a converse construction is pos-

sible. Let f : Pos∃ ⊇ dom f → Pos be a partial function on Pos∃ which
agrees with moves, i.e., f ⊆ Move. We say that f is safe if there exists a trap
Z for Adam, such that dom f = Z ∩ Pos∃ and range f ⊆ Z. This concept is
motivated by the following.

Lemma 3 For f and Z as above, there is a positional strategy S for Eve,
such that Z ⊆ S. In particular, all positions in dom f are safe.



CHAPTER 2. DETERMINACY OF CHESS 16

Proof. We construct this strategy by stages. Let

S1 = Z

Sn+1 = {wf(last(w)) : w ∈ Sn ∧ last(w) ∈ Pos∃} ∪
{wp : w ∈ Sn ∧ last(w) ∈ Pos∀}.

It follows by induction that all paths in Sn remain in Z; in particular
f(last(w)) is defined, whenever last(w) ∈ Pos∃. It is straightforward to
see that

S =
⋃

Sn

satisfies the requirements; note that fS = f . �

Note that if S is any positional strategy for Eve then the strategy function
fS is safe; we can take as Z the set of all positions that occur in some π in
S. The strategy produced by Lemma 3 can then be slightly larger that S, as
more positions can be initial. In the sequel we usually represent positional
strategies by safe functions, so that the actual strategies are always like in
Lemma 3 (with some Z).

Remark Let us see the above properties in terms of graphs. For f and
Z as in Lemma 3, consider a sub-arena obtained by restricting the set of
positions to Z and the set of moves to

Move ′ = Move ∩ ((Pos∀ ∩ Z)× Pos ∪ f) .

That is, we remove all Eve’s moves except for those indicated by f . Then no
play on this arena can be lost by Eve.

Exercise 3 Consider an arena

◦
��~~~~~

��@@@@@

◦

//

◦

oo

where all positions belong to Eve. Compute the cardinalities of the sets of

1. all strategies of Eve,

2. all positional strategies of Eve,
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3. all safe functions of Eve,

4. all strategies of Adam,

5. all safe functions of Adam.

In game theory, as well as in game practice, we often construct some new
strategies by combining some already existing ones. The simplest operation
is that of sub-strategy .

Lemma 4 Let S be a strategy of Eve and w ∈ S. Let

S.w = {v : wv ∈ S}

Then S.w is also a strategy of Eve. Moreover, if S is positional, so is S.w.

Proof. Straightforward from the definition. �

The following lemma prepares the first important connection between the
game equation (2.1) and strategies.

Lemma 5 If Z is a trap for Adam then all positions in Z are safe for Eve.
Moreover, there is a positional strategy S for her, such that Z ⊆ S.

Proof. By Lemma 3, it is enough to define a safe function on Z ∩ Pos∃.
Since Z is a trap, for any p ∈ Z∩Pos∃, there is some q ∈ Z, such that p→ q.
The existence of a safe function follows from the axiom of choice. �

Proposition 2 The set of all safe positions of Eve is the greatest fixed
point of the operator Eve . Moreover, there exists a positional strategy with
this set as initial positions.

Proof. Let Z0 be the set of all safe positions of Eve. We first show

Z0 ⊆ Eve (Z0). (2.5)

Let p ∈ Z0 and let S be a strategy of Eve starting from p. Consider the
strategy S.p (cf. Lemma 4). There are two possibilities. If p ∈ Pos∃ then
pq ∈ S, for some q. Then q ∈ S.p, hence q is safe. If p ∈ Pos∀ then pq ∈ S, for
all q, such that p→ q. Hence all such q’s are safe. In any case, p ∈ Eve (Z0).
(2.5) and (2.4) give us Z0 ⊆ νx.Eve (x). The converse inequality, as well as
the strategy claim, follows directly from Lemma 5. �
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2.2.2 Winning in finite time

Lecture 23.10.2012

In this section, we do not assign a winner to infinite plays, we view them as
“good” for both players1. Recall however, that a player may loose the game
if a (finite) play arrives in a position from which this player has no move (cf.
11); this is like checkmate in chess. In such situation, the other player wins
(in finite time).

If a position is not safe for Adam then he has no guarantee that he will
not loose. But can Eve be sure to win ? It makes sense to ask, because a
game can be also indeterminate, as we have seen in Section 1.3.2. We will
give a positive answer to this question. Again, the game equation will be
useful.

A strategy S of Eve is finitely winning if any play that conforms with S
is finite – and hence lost for Adam. A position p is finitely winning if p ∈ S,
for some strategy with this property. (Again recall that p need not to be a
position of Eve !)

The following fact is dual to Proposition 2.

Proposition 3 The set of all positions finitely winning for Eve is the least
fixed point of the operator Eve . Moreover, there exists a positional finitely
winning strategy with this set as initial positions.

Proof. Let W ′ be the set of positions that are initial for some positional
finitely winning strategy. We first show

Eve (W ′) ⊆ W ′. (2.6)

Suppose p ∈ Eve (W ′). If p ∈ Pos∃ then Eve can make a move to a position
q, from which there is a positional finitely winning strategy S. Let fS be the
strategy function induced by S (see page 15). If p ∈ dom fS then p ∈ W ′, and
we are done. Otherwise, we can consider the extended function fS ∪{(p, q)}.
This function is clearly safe, and it is straightforward to see that the strategy
constructed in Lemma 3 is (positional and) finitely winning. Hence p ∈ W ′.

If p ∈ Pos∀ then, for each q, such that p → q, we have q ∈ W ′. Then,
for each such q, we have some safe function fq, inducing a positional finitely

1We have seen infinite games with winners/losers in Sections 1.3.1, 1.3.2, and we will
discuss such games in the next sections.
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winning strategy from q. However, the union of these functions need not be
a function. To remedy this, we will use the possibility of well-ordering of any
set, which is the “great” Theorem by Zermelo. But first, a lemma is in order.

Lemma 6 Let α be an ordinal, and let Sξ be a family of positional, finitely
winning strategies for Eve, each Sξ induced by2 a safe function fξ. Let f be
defined on

⋃
ξ<α dom fξ by

f(p) = fξ(p)

where ξ is the least, such that fξ(p) is defined. Then f is safe and the induced
strategy is finitely winning.

Proof. (Of the lemma.) Let init(Sξ) be the set of initial positions of Sξ.
We have dom fξ = Sξ ∩ Pos∃, for each ξ < α. Then I =

⋃
ξ<α Sξ is a trap

(see Exercise 1), and moreover dom f = I ∩ Pos∃ and range f ⊆ I. Hence
f is safe and induces a positional strategy with the set of initial positions
I. Let us see that this strategy is finitely winning. Suppose on the contrary
that some infinite play

q0 → q1 → q2 → . . .

conforms with this strategy. Note that no suffix of this play can conform
with any Sξ, because each Sξ is finitely winning. Hence, Eve must infinitely
many times switch the strategy from Sξ to some other Sξ′ . But this may only
happen if ξ′ < ξ. However, we cannot have an infinite decreasing sequence
of ordinal numbers, a contradiction. More precisely, for each n, let ord (qn)
be the least ξ, such that qn ∈ init(Sξ). Then this sequence of ordinals is
non-increasing, but it cannot stabilize, which yields a contradiction. �

We come back to the proof of the proposition. If we well-order the set of
successors of p and apply the above lemma, we obtain a positional finitely
winning strategy which has all successors of p among its initial positions.
Then it easy to see that the position p is finitely winning as well. (If this
strategy is induced by a safe function f and some trap Z, we can extend this
trap by p.)

This completes the proof of ( 2.6).
By the equation ( 2.3) of the Knaster-Tarski Theorem, this implies µX.Eve (X) ⊆

W ′. But we already know that all positions outside µX.Eve (X) are in
2That is, Sξ coincides with Z of Lemma 3.
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νY.Adam (Y ) (Corollary 2), and then are safe for Adam (Lemma 5), so they
cannot be finitely winning for Eve. Hence W ′ coincides with the set W of all
positions finitely winning for Eve, and

W = W ′ = µX.Eve (X).

For each q in this set, we have a positional finitely winning strategy from q.
To obtain a single strategy good for all q’s, we can again use Lemma 6. �

2.2.3 Determinacy

We are ready to state the determinacy result which essentially comprises
Zermelo’s theorem about chess.

Theorem 4 (Zermelo) For any position p, one of the following possibilities
holds:

1. p is finitely winning for Eve,

2. p is winterly winning for Adam,

3. p is safe for both players.

Proof. Let Xmin and Xmax be the least and greatest fixed points of Eve ,
and similarly with Y for Adam . By Proposition 3, Xmin and Ymin are disjoint.
(No position can be finitely winning for both players.) Using Corollary 2, we
get

Xmin ∪ Ymin = Xmax ∩ Ymax.

Hence, if 1 or 2 do not hold, 3 must hold. �

Remark We leave to the reader an adaptation of Theorem 4 to the game
of chess, which was the original focus of Zermelo. Clearly, in social games,
infinite plays do not really happen (to our knowledge). The rules of chess
specify the situations, when a draw can occur. However, we can artificially
expand such situations to infinite loops, so that the above theorem for the
modified game induces the claim of Zermelo for chess.

The reader may notice that if an arena is finite and acyclic — possibly
with draw positions — then we can prove the Zermelo Theorem in completely
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elementary way, e.g., by induction on the lifespan of a position (i.e., the
maximal length of a play, which can be played from the position). We have
presented the above general proof, because it works for arbitrary graphs,
and moreover introduces important concepts, like traps, gardens of Eden,
and positional strategies.

2.3 Algorithms
Lecture 30.10.2012

An algorithmic aspect of Theorem 4 is twofold:

• compute the regions 1, 2, 3,

• compute the respective strategies.

These questions make sense whenever an arena is finitely presented. Below
we consider the simplest case, when the arena is finite.

Let us focus on the following question.

Given an arena and a position p ∈ Pos. Is this position finitely
winning for Eve ?

The first remark is that this question is in NP , as we can guess a positional
strategy and verify that it is winning. More specifically, a strategy can be
represented by partial function f : Pos∃ → Pos. To verify if f does indeed
generate a strategy, it is enough to check if it is safe in the sense of Lemma 3.
To verify if the induced strategy is finitely winning, it is enough to complete
the function f (understood as a set of edges) by the moves of Adam, and
then check if the subgraph reachable from p contains infinite paths. All these
questions can be easily checked in polynomial time.

A similar argument shows the membership in NP for other regions, in
particular for the safe positions of Adam, which constitute the complement
of the above set. Therefore, the question is in fact in NP ∩ co-NP .

However, this estimation is weak, as indeed the the problem can be solved
in polynomial time. A natural argument comes from the fixed point repre-
sentations given in Propositions 2 and 3. We recall a useful property of fixed
points.
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Let 〈L,≤〉 be a complete lattice with the least and greatest elements
denoted by ⊥ and >, respectively. For a monotonic mapping f : L → L,
define a transfinite sequence f ξ by

f ξ+1(⊥) = f
(
f ξ(⊥)

)
f η(⊥) =

∨
ξ<η

f ξ(⊥) for limit η.

By monotonicity of f , this sequence is non-decreasing, and therefore stabilizes
for some ξ with the value 3 ∨ f ξ(⊥).

The sequence f(>) is defined similarly with
∧

instead of
∨
. We have the

following representations of the least and greatest fixed points, alternative to
those given in Theorem 3.

Lemma 7 For a monotonic mapping f over a complete lattice 〈L,≤〉,

µx.f(x) =
∨

f ξ(⊥) (2.7)

νx.f(x) =
∧

f ξ(>). (2.8)

Proof. We have µx.f(x) ≥ ⊥ = f 0(⊥), and this inequality continues to
hold for all ξ, because the application of f does not change the left-hand
side. If f ξ+1(⊥) = f ξ(⊥) then f ξ(⊥) as a fixed point of f , hence the converse
inequality also holds.

The argument for (2.8) is similar. �

In our case, if we wish to compute the least/greatest fixed points of the
operators Eve/Adam over a finite arena, we need at most |Pos|+ 1 steps of
the iteration, which roughly gives the time O(|Pos| · |Move|). Moreover, the
positional strategies can be computed at the same time.

For example, the following program computes a finitely winning strategy
for the player Eve.
WinE := StraE := ∅
Repeat

3Here, ξ ranges over ordinals less than the first ordinal above |L| or, with a slight abuse
of terminology, over all ordinals.
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Old := WinE
WinE := Eve (WinE)

∆ := Eve (WinE)−Old
StraE := for each p ∈ ∆ ∩ Pos∃, add to StraE some move (p, q),

with q ∈WinE
{ By definition of Eve, this step is well defined. }

until ∆ = ∅.

However, this algorithm is still not optimal. With some care, we may
ensure that each move is examined only once.

Exercise 4 Design an algorithm, which computes the winning regions of
Theorem 4 and respective positional strategies in time linear with respect to
the size of an arena.



Chapter 3

Parity games

In this section, we continue to study perfect information games on graph
arenas, but we now allow more winning scenarios. Either of the players will
be able to win in infinity, depending on some winning criteria. For example,
Eve may wish to visit three distinct nodes infinitely often. It is convenient
to specify the winning criteria independently from particular arenas, and to
this end we will use colors. We usually put colors on positions, and specify
the the winner by the sequence of colors encountered in an infinite play.
Alternatively, we may put colors on moves; this option is not very different,
and will be also sometimes in use.

3.1 Games on colored graphs
Definition 4 A graph game is specified by the following items:

G = 〈Pos∃,Pos∀,Move, C, rank ,W∃,W∀〉, (3.1)

where Pos∃,Pos∀,Move constitute an arena in the sense of Section 2.1, C
is a set of colors, rank : Pos → C is a coloring (or ranking) function, and
W∃,W∀ ⊆ Cω are the winning criteria for Eve and Adam, respectively,
satisfying W∃ ∩W∀ = ∅.

The rules of winning/loosing finite plays are as before. An infinite play
q0, q1, q2, . . . is won by Eve if the sequence

rank(q0), rank(q1), rank(q2), . . .

belongs to W∃, and by Adam if this sequence belongs to W∀; otherwise there
is a draw.

24
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We usually assume W∃ ∪W∀ = Cω (no draw). In this case, it is enough
to specify one of the sets W∃,W∀; by convenience we specify the criterion for
Eve.

The concept of strategy, as well as positional strategy, is defined exactly
as in Section 2.2. An Eve’s strategy S is winning , if every play conforming
with S is won by Eve. It is safe, if every play conforming with S is either won
by Eve or a draw. The analogous concepts for Adam are defined similarly.

Definition 5 A position p is winning for Eve if it belongs1 to some strategy
winning for Eve. It is safe for Eve if it belongs to some strategy safe for
Eve. The analogous concepts for Adam are defined similarly. (Note that a
position winning for a player need not belong to this player.)

A graph game G is determined if every position is winning for Eve, or
winning for Adam, or safe for both players.

Although determinacy depends on the whole game, we will see in the
sequel that some winning criteria guarantee determinacy for all arenas.

Example 1 The game considered in Section 2, can be presented in the above
setting with one (dummy) color and W∃ = W∀ = ∅. Theorem 4 shows that
all such games are determined. If we change the rules so that any infinite
game is won by Eve, we can model it by W∃ = {cω}, W∀ = ∅. Again, all such
games are determined. We call this last game a survival for Eve.

Isomorphism of games

Intuitively, two games are isomorphic if one can be obtained from the other
by possibly interchanging everything: positions, colors, and even players.

More specifically, let

G = 〈Pos∃,Pos∀,Move, C, rank ,W∃,W∀〉,
G′ = 〈Pos′∃,Pos′∀,Move ′, C ′, rank ′,W ′

∃,W
′
∀〉

be two games as in Definition 4. An isomorphism G → G′ consists of three
bijections

γplayers : {∃,∀} → {∃,∀}
γpositions : Pos → Pos′

γcolors : C → C ′

1Recall that we identify a position with a one-element play.
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Figure 3.1: A parity game.

As we may assume that the domains of these mappings are disjoint, we will
omit the subscripts in the sequel. We require the following conditions, for
any p, q ∈ Pos, c0, c1, . . . ∈ C, and X ∈ {∃,∀},

Move(p, q) ⇔ Move ′(γ(p), γ(q))

(c0, c1, . . .) ∈ WX ⇔ (γ(c0), γ(c1), . . .) ∈ W ′
γ(X)

3.2 Parity games
In these games, colors form a finite segment of natural numbers, and we
usually call them ranks . Intuitively, Eve likes even ranks and Adam odd
ones. The winner of an infinite play is determined by the highest rank,
which repeats infinitely often.

More specifically, for i ≤ k, let

Ci,k = {i, i+ 1, . . . , k}
Mi,k = {u ∈ Cω

i,k : lim sup
n→∞

un is even }

Mi,k = Cω
i,k −Mi,k.

A parity game of index (i, k) is a game of the form

G = 〈Pos∃,Pos∀,Move, Ci,k, rank ,Mi,k,Mi,k〉

That is, in a parity game, an infinite play is won by Eve if the highest rank
repeating infinitely often is even, and by Adam if it is odd (Figure 3.1).

It is easy to see that a parity game of index (i, k) is isomorphic to a game
of index (i+2, k+2) over the same arena and with the same players, where
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Figure 3.2: Index hierarchy.

the isomorphism affects only colors

γ(j) = j+2, for i ≤ j ≤ k

Therefore, it is enough to consider indices (i, k) with i = 0 or i = 1.
The indices form a hierarchy, presented on Figure 3.2, where a game of

index (i, k) can be represented as a game of any index index (i′, k′) lying
above, via an isomorphism, which affects only colors. For example, a game
of index (0, 1) is a special case of a game of index (1, 3) via an isomorphism
γ(j) = j + 2.

The indices lying on the same level, i.e., (0, n) and (1, n + 1) are called
dual .

Proposition 4 Any parity game of index (0, n) is isomorphic to some game
of index (1, n), and vice versa.

Proof. We obtain a game of index (1, n) from a game of index (0, n), by in-
terchanging the players and shifting the ranks by 1. The inverse isomorphism
yields the second claim. �

3.2.1 Positional determinacy of parity games

Parity games have very good properties. Not only are they determined (which
can be inferred from a more general theorem on Borel games), but they enjoy
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positional determinacy : the winner can always use a positional strategy.
Moreover, this strategy is global , i.e., does not depend on initial position.
The result was first proved by Emerson and Jutla [3] and independently by
A.W.Mostowski [9].

Theorem 5 Let G be a parity game of index (i, k). There exist positional
strategies SE and SA, for Eve and Adam, respectively, such that

Pos ⊆ SE ∪ SA.

Proof. See [11]. �

3.2.2 Muller games

Lecture 6.11.2012

We first introduce a construction, which adds some information to the po-
sitions of a game, which can make it easier to solve. the game easier to
solve.

Definition 6 (Cylindrification) Let G be a graph game in the sense of
Definition 4, with the set of colors C. LetM be a set, which we callmemory,
and let up be a partial function from C ×M to M , which we call update.
We define a new arena with the set of positions Pos×M , where the owner of
a position (p,m) is the same as for p. There is a move from (p,m) to (q, n),
whenever p → q is a move in the original arena and up (rank(p),m) = n.
Any game using this new arena is a cylindrification of G by M and up .

Note that, whenever up (rank(p),m) is undefined, there is no move from
a position (p,m), even if there were some moves in the original game.

For an infinite word u ∈ Cω, let Inf (u) be the set of colors that repeat
infinitely often in u, in symbols

Inf (u) = {c : |u−1({c})| = ω} (3.2)

If C is finite then Inf (u) is non-empty, for any u. For a family of sets
F ⊆ ℘(C), let

MF = {u ∈ Cω : Inf (u) ∈ F} (3.3)
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Note that

MF = MF (3.4)

(where we complement in Cω and in ℘(C), correspondingly).

Definition 7 A Muller game over a set of colors C is a game with the
winning criteria

W∃ = MF W∀ = MF

for some family F ⊆ ℘(C).

Note that a parity game of index (i, k) can be presented as a Muller game,
where F consists of subsets of {i, i + 1, . . . , k} with even maximum. The
Muller games form a richer class, in particular, they do not, in general enjoy
positional determinacy. We will see, however, that any Muller game can
be cylindrified to a parity game. This will yield the determinacy of Muller
games as well as an algorithm for solving them (for finite arenas).

We fix a set of colors C. The memory set will consists of the so-called
latest appearance records , in short LARs; the concept first introduced (with
a slight difference) by Gurevich and Harrington.

A LAR is a finite word over the alphabet C ∪ {\}, where each symbol
occurs at most once, and \ must appear.

The update function, for a LAR α and a color c, is defined as follows. If
c does not occur in α, we let up (α, c) = αc. If c occurs in α, we append it
to α as well, but the previous occurrence of c is replaced by the natural (\),
which is moved from its previous place. To help the intuition, we may view
this operation as an e-mail policy: keep only the last e-mail from a given
sender.

Lemma 8 Let u ∈ Cω. Define an infinite sequence of LARs by

α0 = \

αn+1 = up (αn, un)

Let αi = vi \ wi, for i ∈ N, and let set (w) denote the set of symbols occurring
in a word w. Then there exists m0, such that,

• for all m ≥ m0, set (wm) ⊆ Inf (u), and,

• for infinitely many m’s, set (wm) = Inf (u).
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Proof. Clearly, there is some `0, such that (∀m ≥ `0) um ∈ Inf (u). Note
that there may be some d 6∈ Inf (u) occurring in w`0 . Let `1 > `0 be such
that all c ∈ Inf (u) occur in the sequence u`0 , u`0+1, . . . , u`1 . There may still
be some d 6∈ Inf (u) occurring in w`1 , but all c ∈ Inf (u) occur to the right of
this d (because that have appeared later than d). Therefore, for `2 = `1 + 1,
we have set (w`2) ⊆ Inf (u). We claim that m0 = `2 satisfies the conditions
of the lemma. Clearly no d 6∈ Inf (u) can appear anymore in wt. To see that
set (wt) = Inf (u), for infinitely many t’s, observe first that, for any t ≥ `2,
the LAR αt has the form

v c1 . . . ci \ ci+1 · · · ck

for some v, where {c1, . . . , ck} = Inf (u). (Starting from `1, all symbols in
Inf (u) are situated to the right from all the other symbols.) Let t′ ≥ t be
the least, such that ut′ = c1. Note that before it happens, all the symbols
c2, . . . , ck remain to the right of c1. Then set (vt′+1) = Inf (u).

This remark completes the proof. �

We now extend the cylindrification ofG to a parity game of index (0, 2|C|),
by setting the ranks

rank(p, v\a1 . . . a`) =

{
2` if {a1, . . . , a`} ∈ F
2`+ 1 otherwise

Let us call the resulting parity game G′.

Theorem 6 A position p is winning for Eve in the Muller game G iff (p, \)
is winning for Eve in the parity game G′.

Similarly, a position p is winning for Adam in the Muller game G iff (p, \)
is winning for Adam in the parity game G′.

Consequently, Muller games are determined.

Proof. As we know already that parity games are determined (Theorem 5),
it is enough to show that if a position2 (p, \) is winning for Eve (Adam) in
G′ then the position p is winning for Eve (resp. Adam) in G.

Suppose Eve has a winning strategy in G′ from a position (p, \). Eve uses
this strategy while playing in G. More specifically, any path p0, p1, . . . , pk

2The claim holds in fact for any (p, α).
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(with p0 = p) in the arena ofG induces a unique path (p0, α0), (p1, α1), . . . , (pk, αk)
in G′, such that α0 = \, and αi+1 = up (rank(pi), αi), for i < k. Sup-
pose that the last position belongs to Eve and the strategy indicates a move
(pk, αk)→ (q, β). (Note that by the definition of cylindrification, it must be
the case that β = up (rank(pk), αk).) Then, in G, Eve makes a move pk → q.

We will show that this strategy is winning for Eve in G. Note that Eve
cannot loose in finite time, since otherwise the original strategy would not be
winning in G′. (Recall that the function up is everywhere defined.) Con-
sider an infinite path π = (p0, p1, . . .) conforming with the defined strategy.
The induces path π′ = ((p0, α0), (p1, α1), . . .) has been conforming with the
original strategy in G′. Let αi = vi\wi, for i ∈ N. From Lemma 8, there
is some m0 that, for all t ≥ m0, set (wt) is a subset of Inf (π), and Inf (π)
occurs infinitely often. Note that the rank of a position (pt, αt) (for t ≥ m0)
is the highest when set (wt) = Inf (π), and it is even if Inf (π) ∈ F , and
odd otherwise. Since the path π′ is winning for Eve in G′, we conclude that
Inf (π) ∈ F , and hence the path π is winning for Eve in G.

An analogous argument shows that if Adam has a winning strategy from
a position (p, \) in G′ then he has a winning strategy in G from the position
p. �

Bibliographical note.

These lecture notes are based on numerous sources. The bibliography is
under construction. We wish to apologize to all the authors whom we have
not credited properly.
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