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Solutions are due to 15 May 2019.

Solutions to problems 1 and 2 should be sent to Dr. Micha l Przyby lek:
mrp@mimuw.edu.pl

Solutions to problems 3, 4, 5 and 6 should be sent to Dr. Marcin Przyby lko:
M.Przybylko@mimuw.edu.pl

They can be written in English or in Polish, but a solution to one problem
should not mix up the two languages. For each problem, we indicate the number
of points one can get for the solution. You may send answers to any selection
of problems.

1 Flow games

Let G = 〈V,E〉 be a “doubly-weighted” graph, with weights (natural numbers)
assigned to both vertices V and edges E ⊆ V ×V . We shall denote the weighting
function as w : V tE → N . We say that a vertex a ∈ V is firing with respect to
a set of edges R ⊆ E if the cumulative weight of all input edges of a that are in
R is at least the weight of a, i.e.

w(a) ≤
∑

(x,a)∈R

w(x, a)

Let us denote the set of all such vertices by fireG(R). We say that graph G is legal
if its every vertex is firing with respect to the set of all edges, i.e.: V = fireG(E).
Moreover, we shall assume that loops are not allowed and between any two nodes
there is at most one edge:

∀(a,b)∈E (b, a) 6∈ E

We distinguish zero, one, and two-player flow games.

1.1 Zero-player game (1.5 point + 1.5 point)

Let G = 〈V,E〉 be a legal graph and R ⊆ E any set of edges in G. We shall
define a sequence of moves in a zero-player game starting from configuration
G0 = G, R0 = R recursively:

Rk+1 = {(x, a) ∈ (E \
k⋃

i=0

Ri) : a ∈ fireGk(

k⋃
i=0

Ri)}

Ek+1 = (Ek \Rk+1) ∪Rop
k+1

Gk+1 = 〈V,Ek+1〉
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where (x, y) ∈ Rop
k+1 ⇔ (y, x) ∈ Rk+1 and the weights are unchanged.

Consider the following problem: given a legal graph G = 〈V,E〉, a set of edges
R ⊆ E and an edge e ∈ E, does there exist a sequence of moves that reverses e?

1. Show that the above problem is P-complete.
2. Show that it remains P-complete on planar graphs (HINT: consider crossover

gadget from Figure 1)
3. Show that it remains P-complete if we restrict to graphs whose vertices have

degrees at most 3 and the possible weights of both vertices and edges are
{1, 2}.

Fig. 1. The crossover gadget. Red arrows have weight 1, whereas blue arrows have
weight 2. All nodes have weight 2.
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There is also an unbounded version of the game, with the following moves:

Rk+1 = {(x, a) ∈ Ek : a ∈ fireGk(RK)⊕ (a, x) ∈ Rk}
Ek+1 = (Ek \Rk+1) ∪Rop

k+1

Gk+1 = 〈V,Ek+1〉

where ⊕ is the XOR operator, i.e.: φ⊕ ψ ↔ (φ ∨ ψ) ∧ (¬φ ∨ ¬ψ). In this game,
during the k+1-th step we reverse all edges that not been reversed in the previous
step and whose targets are firing wrt. Rk. We also reverse back the edges that
have been reversed in the previous step, but whose targets are not firing now.

Consider the following unbounded problem: given a legal graph G = 〈V,E〉,
a set of edges R ⊆ E and an edge e ∈ E, does there exist a sequence of moves
that reverses e?

1. Show that the unbounded problem is PSpace-complete.

1.2 One-player game (1.5 point)

Let G = 〈V,E〉 be a legal graph. A move in a one-player game in G is a reversal
of a single edge, such that the resulting graph is legal.
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Consider the following problem: given a legal graph G = 〈V,E〉 and an edge
e ∈ E, does there exist a sequence of moves that reverse edge e?

1. We proved that if we restrict the above problem to the case where every edge
can be reversed at most once, then the problem is NP-complete (reduction
from 3CNF)

2. Show that the above problem is PSpace-complete.

1.3 Two-player game (2 points)

Let G = 〈V,E〉 be a legal graph, whose edges are partitioned onto disjoint sets
E = E∃ tE∀. The idea behind such partition is that set E∃ is controlled by one
player (the first player) and set E∀ is controlled by another player (the second
player). A play on graph G = 〈V,E〉 with a chosen edge e ∈ E consists of a
sequence of moves taken alternatively by the players. The first player wins if e
is reversed during the play. Otherwise, the second player wins (therefore, if any
of the players cannot move then the second player wins).

Consider the following problem: given a legal graph G = 〈V,E〉 and an edge
e ∈ E, does the first player have a winning strategy?

1. We proved that if we restrict the above problem to the case where every
edge can be reversed at most once, then the problem is PSpace-complete
(reduction from QBF)

2. (*) Show that the above problem is EXP-complete

2 Definable games (1 point)

An alternating graph is a graph G = 〈V,E〉 whose vertices are partitioned onto
disjoint sets V = V∃ t V∀. A move in an alternating graph from a vertex v ∈ V
is a vertex w ∈ V such that E(v, w). If v ∈ E∃ then the first of the players
chooses a move, otherwise (i.e. v ∈ E∀) the second player chooses a move. The
reachability game consists of an alternating graph G = 〈V,E〉 together with
two vertices s, k ∈ V . A play in such a game consists of a finite sequence of
moves that starts from s. The first player wins if k has been chosen during the
play. Otherwise, the second player wins. Consider the following problem: given
a reachability game G, v, k does the first player have a winning strategy?

1. We have learnt that the above problem can be solved on finite graph in linear
time (prof. Niwinski during the third lecture).

Let N be an infinite, countable set interpreted as a structure over empty
first-order signature with equality. We shall say that a set A ⊆ N k is definable
if there exists a first-order formula φ over the empty signature, such that:

A = {〈x1, x2, · · · , xk〉 ∈ N k : φ(x1, x2, · · · , xk)}
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Here are some examples of definable sets:

∅ = {x ∈ N : ⊥}
N k = {〈x1, x2, · · · , xk〉 ∈ N k : >}
N (2) = {〈x, y〉 ∈ N 2 : x 6= y}

A definable relation between definable sets is a relation between sets that is
definable as a set itself.

1. Prove that the existence of a winning strategy for the first player in a reach-
ability game on definable graphs is decidable.

3 ω-regular games (1.5 point)

Let G = 〈V = V0 t V1, E, vI , λ, L〉 be an ω-regular game, i.e. a game on a graph
where the objective L ⊆ Γω is a regular set of infinite words.

We have shown that ω-regular games are determined under finite memory
strategies. Show that deciding whether the first player has a winning strategy is:

– EXP-complete, if L is given by a non-deterministic parity automaton,
– and 2EXP-complete, if L set is given by an alternating parity automaton.

4 Multi-parity games (1.5 point)

Let G be a game on graph where the labelling function λ : V → [0, d] × [0, d]
assigns pairs of priorities. We say that the first player wins if the play satisfies
the parity condition on both coordinates.

1. Is the game (positionally) determined?
2. Show that deciding whether the first player has a winning strategy is coNP-

complete.

5 Multi-reachability game (2 points)

In reachability games there is a set of vertices which the first player wants to
reach. In multi-reachability games (MRG) there is a family of sets of vertices
and the first player wins if every set in the family has been visited at least once.

1. Show that MRG game is PSpace-complete.
2. Show that one-player MRG is NP-complete.
3. Show that if the sets are singletons then MRG is P-complete.
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6 Closed games (1.5)

Let Γ be an alphabet, i.e. a finite set. Let w, u ∈ Γω be two infinite words.
We say that w, u are in distance 2−n, denoted d(u, v) = 2−n, if their longest
common prefix is of length n. For instance, d(aω, bω) = 1, d(aω, a4bω) = 2−4,
and d(aω, anbω) = 2−n.

We say that a word w ∈ Γω is the limit of a sequence of infinite words un,
n ≥ 0, (or that un converges to w) if the sequence of distances d(un, w) converges
to 0. The closure cl(S) of a set of infinite words S is the set of all limits of all
its sequences, i.e. cl(S) = {w ∈ Γω | ∃(un). the sequence un converges to w}.

Set of infinite words S ⊆ Γω is called closed if S = cl(S). A set of infinite
words is called open, if its complement is closed.

1. Show that if a game on graphs has a closed winning objective, then one
of the players has a winning strategy.


