
The Modal Logic Programming System
MProlog ?

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We present the design of our implemented modal logic pro-
gramming system MProlog. This system is written in Prolog as a mod-
ule for Prolog. Codes, libraries, and most features of Prolog can be used
in MProlog programs. The system contains a number of built-in SLD-
resolution calculi for modal logics, including calculi for useful multimodal
logics of belief. It is a tool to experiment with applications of modal logic
programming to AI.

1 Introduction

Modal logics can be used to reason about knowledge, belief, actions, etc. Many
authors have proposed modal extensions for logic programming [4, 2, 1, 5, 12, 3,
9, 10]. There are two approaches: the direct approach and the translational ap-
proach. The first approach directly uses modalities, while the second one trans-
lates modal logic programs to classical logic programs. The works by Akama [1],
Debart et al [5], and Nonnengart [12] use the translational approach, while the
works by Fariñas del Cerro [4], Balbiani et al [2], Baldoni et al [3], and our works
[9, 10] use the direct approach.

In modal logic programming, it seems more intuitive and convenient to use
modalities in a direct way1 (e.g., in the debugging and interactive modes of
programming). In the direct approach, the work by Balbiani et al [2] disallows
2 in bodies of program clauses and goals, and the work by Baldoni et al [3]
disallows 3 in programs and goals. In the Molog system implemented by the
group of Fariñas del Cerro [4], universal modal operators in bodies of program
clauses and goals are also translated away.

In [9], we developed a fixpoint semantics, the least model semantics, and an
SLD-resolution calculus in a direct way for modal logic programs in all of the ba-
sic serial2 monomodal logics. There are two important properties of our approach
in [9]: no special restriction on occurrences of 2 and 3 is required (programs

? In J.J. Alferes and J.A. Leite (Eds.): Logics in Artificial Intelligence, 9th European
Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings.
LNCS 3229, pages 266–278, Springer, 2004.

1 Somehow one still has to use skolemization or a labeling technique for 3.
2 A monomodal logic is serial if it contains the axiom 2ϕ→ 3ϕ.

and goals are of a normal form but the language is as expressive as the general
modal Horn fragment) and the semantics are formulated closely to the style of
classical logic programming (as in Lloyd’s book [8]). In [10], we generalized the
methods and extended the results of [9] for multimodal logic programming, giv-
ing a general framework for developing semantics of multimodal logic programs
and presenting sound and complete SLD-resolution calculi for a number of useful
multimodal logics of belief, which will be considered in this work.

Despite that the theory of modal logic programming has been studied in a
considerable number of works, it has not received much attention in practice.
But if we want to use modal logics for practical applications, then modal logic
programming deserves for further investigations, especially in practical issues.

As far as we know, amongst the works by other authors that use the direct
approach for modal logic programming, only the Molog system proposed by
Fariñas del Cerro [4] has been implemented. The current version of this system
has, however, some drawbacks in design. It only says yes or no without giving
computed answers. Molog uses a special predicate, named prolog, to call formulas
of Prolog, which is undesirable when the amount of Prolog code is not small.
Molog uses <-- instead of :-, and & instead of ‘,’, which means that Prolog
program files cannot be included in Molog programs.

In this work, we present the design of our implemented modal logic program-
ming system MProlog [11], whose theoretical foundations are our work [9, 10].
Our system is written in Prolog as a module for Prolog. Codes, libraries, and
most features of Prolog can be used in MProlog programs in a pure way. The
system contains a number of built-in SLD-resolution calculi for modal logics, in-
cluding calculi for multimodal logics intended for reasoning about multi-degree
belief, for use in distributed systems of belief, or for reasoning about epistemic
states of agents in multi-agent systems.

Due to the lack of space, we will not discuss implementation details. The
design of MProlog presented here together with comments given in code files [11]
is sufficient to understand the implementation of the system. We assume that
the reader is familiar with the classical SLD-resolution calculus and Prolog.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language
of classical predicate logic with modal operators 2i and 3i, for 1 ≤ i ≤ m
(where m is fixed). If m = 1 then we ignore the subscript i and write 2 and
3. The operators 2i are called universal modal operators, while 3i are called
existential modal operators. Terms and formulas are defined in the usual way,
with an emphasis that if ϕ is a formula then 2iϕ and 3iϕ are also formulas.

A Kripke frame is a tuple 〈W, τ,R1, . . . , Rm〉, where W is a nonempty set of
possible worlds, τ ∈ W is the actual world, and Ri is a binary relation on W ,
called the accessibility relation for the modal operators 2i, 3i. If Ri(w, u) holds
then we say that the world u is accessible from the world w via Ri.

2

A fixed-domain Kripke model with rigid terms, hereafter simply called a
Kripke model or just a model, is a tuple M = 〈D,W, τ,R1, . . . , Rm, π〉, where
D is a set called the domain, 〈W, τ,R1, . . . , Rm〉 is a Kripke frame, and π is an
interpretation of constant symbols, function symbols and predicate symbols. For
a constant symbol a, π(a) is an element of D. For an n-ary function symbol f ,
π(f) is a function from Dn to D. For an n-ary predicate symbol p and a world
w ∈W , π(w)(p) is an n-ary relation on D.

A variable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M . The value of tM [V] for a term
t is defined as usual.

Given some Kripke model M = 〈D,W, τ,R1, . . . , Rm, π〉, some variable as-
signment V , and some world w ∈W , the satisfaction relation M,V,w � ψ for a
formula ψ is defined as follows:

M,V,w � p(t1, . . . , tn) iff (tM1 [V], . . . , tMn [V]) ∈ π(w)(p);
M,V,w � 2iϕ iff for all v ∈W such that Ri(w, v), M,V, v � ϕ;
M,V,w � ∀x.ϕ iff for all a ∈ D, (M,V ′, w � ϕ),

where V ′(x) = a and V ′(y) = V (y) for y 6= x;

and as usual for other cases (treating 3iϕ as ¬2i¬ϕ, and ∃x.ϕ as ¬∀x.¬ϕ). We
say that M satisfies ϕ, or ϕ is true in M , and write M � ϕ, if M,V, τ � ϕ for
every V . For a set Γ of formulas, we call M a model of Γ and write M � Γ if
M � ϕ for every ϕ ∈ Γ .

2.2 Modal Logics of Belief

If as the class of admissible interpretations we take the class of all Kripke models
(with no restrictions on the accessibility relations) then we obtain a quantified
multimodal logic which has a standard Hilbert-style axiomatization denoted by
K(m). Normal modal logics are extensions of K(m) using additional axioms. A
modal logic L is serial if it contains the axiom 2iϕ→ ¬2i¬ϕ (for all 1 ≤ i ≤ m).
To reflect properties of belief, one can extend K(m) with some of the following
axioms (see [10] for the corresponding restrictions on the accessibility relations
and [6, 7] for further readings on first-order modal logics):

Name Schema Meaning
(D) 2iϕ→ ¬2i¬ϕ belief is consistent
(I) 2iϕ→ 2jϕ if i > j subscript indicates degree of belief
(4) 2iϕ→ 2i2iϕ belief satisfies positive introspection
(4s) 2iϕ→ 2j2iϕ belief satisfies strong positive introspection
(5) ¬2iϕ→ 2i¬2iϕ belief satisfies negative introspection
(5s) ¬2iϕ→ 2j¬2iϕ belief satisfies strong negative introspection

By adding appropriate combinations of these axioms to K(m), we obtain
the modal logics KDI4, KDI4s, KDI45, KDI4s5 for reasoning about multi-
degree belief, the modal logic KD4s5s for use in distributed systems of belief,
and the modal logic KD45(m) for reasoning about epistemic states of agents in

3

multi-agent systems. (We use a subscript in KD45(m) to distinguish it from the
monomodal logic KD45.) In the mentioned modal logics of multi-degree belief,
the axiom (I) gives 2iϕ the meaning “ϕ is believed up to degree i”; while in the
logics KD4s5s and KD45(m), the formula 2iϕ means “the agent i believes in
ϕ”. For reasoning about belief and common belief of groups of agents, there is
a multimodal logic denoted by KD4Ig5a which combines features of KD45(m)

and KDI4. For further descriptions of the mentioned logics, see [10].

2.3 Modal Logic Programs

In this subsection, we define a modal logic programming language called MPro-
log, which is a purely logical formalism. Its implementation as an extension of
Prolog has a specific syntax and will be studied in Section 4.

A modality is a (possibly empty) sequence of modal operators. A universal
modality is a modality which contains only universal modal operators. We use
4 to denote a modality and � to denote a universal modality. Similarly as in
classical logic programming, we use a clausal form �(ϕ← ψ1, . . . , ψn) to denote
the formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)). We use E to denote a classical atom and
A, B1, . . . , Bn to denote formulas of the form E, 2iE, or 3iE.

A program clause is a formula of the form �(A ← B1, . . . , Bn), where � is
a universal modality and n ≥ 0. � is called the modal context, A the head, and
B1, . . . , Bn the body of the program clause.

An MProlog program is a finite set of program clauses. An MProlog goal
atom is a formula of the form �E or �3iE, where � is a universal modality.
An MProlog goal is a formula written in the clausal form ← α1, . . . , αk, where
each αi is an MProlog goal atom.

It is shown in [10] that MProlog has the same expressiveness power as the
general Horn fragment in normal modal logics. For a specific logic L, we may
adopt some restrictions on modal contexts of MProlog program clauses and
MProlog goals and call the obtained language L-MProlog. Such restrictions either
follow from equivalencies in L or are acceptable from the practical of view, and
furthermore, they do not reduce expressiveness of the language.

For example, in KDI4s5 we have the equivalence ∇∇′ϕ ≡ ∇′ϕ, where ∇
and ∇′ are modal operators. Hence we can assume that the modal context of an
KDI4s5-MProlog program clause has length 1 or 0, and an KDI4s5-MProlog
goal has goal atoms of the form E, 2iE, or 3iE with E being a classical atom.
See [10] for restrictions of L-MProlog in the other modal logics of belief.

3 A Framework of SLD-Resolution for MProlog

In [10], we give a general framework for developing fixpoint semantics, least
model semantics, and SLD-resolution calculi for L-MProlog, where L is a se-
rial modal logic whose frame restrictions, except seriality, are Horn clauses (in
particular, L can be any one of the modal logics of belief considered in this pa-
per). In this section, we outline the fragment involving SLD-resolution of that
framework. For fixpoint semantics, the reader is referred to [10].

4

A modal operator is now 2i, 3j , or 〈S〉k, where 〈S〉k is a 3k labeled by S
which is either a classical atom or a variable for classical atoms (called an atom
variable). For further information on labeled modal operators, see [10].

We use ∇ and ∇′ to denote modal operators, 4 to denote a modality (which
now may contain labeled modal operators). A modal atom is a formula of the
form 4E. A simple modal atom is a formula of the form E or ∇E. We use A,
B to denote simple modal atoms, and α, β to denote modal atoms.

There may exist a compact form for modalities in L. For each specific modal
logic L, we define the L-normal form of modalities. For example, a modality is
in KDI4s5-normal form if its length is 0 or 1. It is possible that no restriction
is adopted for L-normal form of modalities. A modality is in L-normal labeled
form if it is in L-normal form and does not contain unlabeled existential modal
operators 3i. A modal atom 4E is in L-normal (labeled) form if 4 is in L-
normal (labeled) form. Given a ground modal atom not in L-normal form, the
NFL operator converts it to L-normal form.

Given a modal atom α, one can derive other modal atoms from α using
axioms of L. The corresponding operator is called the SatL operator. The “direct
consequences” operator TL,P is defined using SatL and NFL. An SLD-resolution
calculus can be viewed as a reversed analogue of a direct consequences operator.
Hence, to define an SLD-resolution calculus for L-MProlog we need reversed
analogues of the operators SatL and NFL. These operators are called the rSatL
operator and the rNFL operator, respectively. See [10, 9] for formal definitions
of the operators SatL, NFL, rSatL, and rNFL.

The rSatL/rNFL operators are each specified by a finite set of rules of the
form α← β, where α and β are (schemata of) modal atoms. The rules are used
as meta-clauses (i.e. schemata of clauses) in SLD-derivations. Such rules can be
accompanied by conditions which specify when the rule can be used.

As an example, for L = KDI4s5, the rNFL operator is specified by the
only rule ∇E ← 〈X〉i∇E, and the rSatL operator is specified by three rules:
(a) ∇∇′E ← ∇′E, (b) 3iE ← 3jE if i > j, (c) 3iE ← 〈X〉iE; where X is a
fresh3 atom variable. We will use these rules for the example in the next page.

Resolvents of a goal ← α1, . . . , αk and an rSatL/rNFL rule α ← β are
defined in the usual way. For example, resolving ← 2132p(x) with the rule
∇∇′E ← ∇′E results in ← 32p(x), since ∇ is instantiated to 21, and ∇′ is
instantiated to 32.

For each specific modal logic L, we define a pre-order �L to compare
modal operators. For example, for L = KDI4s5, the pre-order �L is the
least reflexive and transitive binary relation between modal operators such that:
3i �L 〈S〉i �L 2i, and if i < j then 2i �L 2j and 3j �L 3i. If ∇ �L ∇′ then
we say that ∇ is an L-instance of ∇′. We say that an atom 4E is an L-instance
of 4′E′ if 4 and 4′ have the same length k and there exists a substitution θ
such that E = E′θ and for any 1 ≤ i ≤ k, the modal operator in position i of 4
is an L-instance of the modal operator in position i of 4′θ.

3 This means that standardizing is also needed for atom variables.

5

The forward labeled form of an atom α is the atom α′ such that if α is of the
form 43iE then α′ = 4〈E〉iE, else α′ = α. For example, the forward labeled
form of 31s(a) is 〈s(a)〉1s(a).

If � and �′ are universal modalities, and furthermore, � is a modal context
of an L-MProlog program clause, then we say that �′ is an L-context instance
of � if �ϕ → �′ϕ is a theorem in L for an arbitrary ϕ. For example, 21 is a
KDI4s5-context instance of 22.

Let G = ← α1, . . . , αi, . . . , αk be a goal and ϕ = �(A ← B1, . . . , Bn) a
program clause. Then G′ is derived from G and ϕ in L using mgu θ, and called
an L-resolvent of G and ϕ, if the following conditions hold:

– αi = 4′A′, with 4′ in L-normal labeled form, is called the selected atom.
– 4′ is an L-instance of �′ which is an L-context instance of �.
– θ is an mgu such that: A′θ has the same classical atom as Aθ, and A′θ is an

L-instance of the forward labeled form of Aθ.
– G′ is the goal ← (α1, . . . , αi−1,4′B1, . . . ,4′Bn, αi+1, . . . , αk)θ.

For example, the unique KDI4s5-resolvent of← 21p(x) and 22(p(x)← 32q(x))
is ← 2132q(x) (here, � = 22 and 4′ = �′ = 21). As another example, the
unique KDI4s5-resolvent of← 〈Y 〉1〈X〉1r(x), 〈X〉1s(x) and 21(21r(x)← s(x))
is ← 〈Y 〉1s(x), 〈X〉1s(x) (here, � = 21 and 4′ = �′ = 〈Y 〉1).

SLD-derivation is defined using two kinds of steps: a) resolving a goal with a
program clause, b) resolving a goal with an rSatL/rNFL rule. SLD-refutation
and computed answer are defined in the usual way.

Using the framework, in [10] we have given sound and complete SLD-
resolution calculi for L-MProlog for all the modal logics of belief considered
in this work.

As an example, consider the goal G = ← 21p(x) and the program P :

ϕ1 = 22(p(x)← 32q(x))
ϕ2 = 21(q(x)← r(x), s(x))
ϕ3 = 21(21r(x)← s(x))
ϕ4 = 31s(a)←

Here is an SLD-refutation of P ∪ {G} in L = KDI4s5:

Goals Input clauses/rules MGUs
← 21p(x)
← 2132q(x) ϕ1 {x1/x}
← 32q(x) rSatL(a)
← 31q(x) rSatL(b)
← 〈X〉1q(x) rSatL(c)
← 〈X〉1r(x), 〈X〉1s(x) ϕ2 {x5/x}
← 〈Y 〉1〈X〉1r(x), 〈X〉1s(x) rNFL

← 〈Y 〉1s(x), 〈X〉1s(x) ϕ3 {x7/x}
← 〈X〉1s(a) ϕ4 {x/a, Y/s(a)}
empty clause ϕ4 {X/s(a)}

6

4 Design of MProlog

Starting from the purely logical formalism of MProlog, we have built a real
system for it [11]. The implemented system adds extra features to the purely
logical formalism in order to increase usefulness of the language. It is written
in Prolog and can run in SICStus Prolog and SWI-Prolog. From now on we use
MProlog to refer to the implemented system.

MProlog is designed as an extension of Prolog. This means that we can use
Prolog codes, libraries and most features of Prolog in MProlog programs. This
gives MProlog capabilities for real applications. MProlog is implemented as a
module for Prolog and does not have its own running environment. It provides
instead a list of built-in predicates to be used in Prolog.

4.1 Syntax of MProlog Programs

In MProlog, there are three kinds of predicates: classical predicates, modal predi-
cates, and classical predicates which are defined using modal formulas. Predicates
of the last kind are called dum predicates. The semantics of classical predicates
and dum predicates does not depend on worlds in Kripke models. If E is a
classical atom of a classical predicate or a dum predicate then 4E ≡ E for ev-
ery modality 4. An MProlog program consists of modal fragments and classical
fragments (in an arbitrary number and order). Predicates defined in classical
fragments are classical predicates. Dum predicates are declared in an MProlog
program as follows

:- dum pred Pred1, . . . , Predn.
where each Predi is a pair Namei/Arityi. Dum predicates are defined in modal
fragments by clauses of the form E :- Body, where E is a classical atom. A pred-
icate defined in a modal fragment and not declared earlier as a dum predicate is
a modal predicate.

From now on, by a calculus we mean an SLD-resolution calculus for MProlog.
An MProlog program may use different calculi, as explained in Section 5. In an
MProlog program, a modal fragment starts with a declaration of the form:

:- calculus Cal1, . . . , Caln.
where Cal1, . . . , Caln are names of calculi. These calculi are called the calculi of
the fragment. If an MProlog program is loaded by mconsult(File,Cal) then the
program in File is treated as if it begins with

:- calculus Cal.
A modal fragment ends either by a declaration of another modal fragment, or
by the end of the program, or by one of the two following declarations:

:- calculus classical.
:- end.

In MProlog, modalities are represented as lists, e.g., as follows:

23q(x, y) [b, d] : q(X,Y)
2i〈X〉33jq(a) [bel(I), pos(3, X), pos(J)] : q(a)
2xgod exists← christian(x) [bel(X)] : god exists :- christian(X)

7

Here, b stands for “box”, d for “diamond”, bel for “believes”, and pos for “pos-
sible”. We use 4 : ϕ to represent 4ϕ. Notations of modal operators depend
on how the base SLD-resolution calculus is defined. As another example, for
MProlog-2 [10], which disallows existential modal operators in program clauses
and goals, we represent 2i1 . . .2ik

as [I1, . . . , Ik] (see belief box.cal of [11]).
Syntactically, an MProlog program is a Prolog program. Modal fragments in

an MProlog program may contain directives and clauses. Each clause in a modal
fragment is of one of the following forms:

Context : (Head :- Body).
Head :- Body.

where Context is a list representing a modality, Head is of the form E or M : E,
where E is a classical atom (in the sense of Prolog) and M is a list containing
one modal operator. All clauses in a modal fragment are declared to all of the
calculi of the fragment.

4.2 Syntax of SLD-Resolution Calculi for MProlog

SLD-resolution calculi for MProlog are specified using the framework given in
Section 3 and written in Prolog. An SLD-resolution calculus for L contains
rSatL/rNFL rules, definitions of auxiliary predicates, and definitions for the
following required predicates:

1. universal modal operator(Calculus, Operator)
2. dual modal operator(Calculus, Operator, DualOperator)
3. box lifting form(Calculus, ModalOperator, BoxLiftingForm)

which returns true iff BoxLiftingForm is the universal modal operator of the
same modal index as ModalOperator in the calculus Calculus

4. forward labeled form(Calculus, SimpleModalAtom, ForwardLabeledF)
5. normal labeled form(Calculus, Modality)
6. operator instance(Calculus, Instance, ModalOperator)
7. context instance(Calculus, UniversalModality, ModalContext)

If the option check in two steps of the defined calculus is set to true, then
instead of the last three predicates of the above list, the calculus must implement
two predicates with name prefixed by pre check or post check for each of the
replaced predicates.

Let us discuss the usefulness of the check in two steps option. Suppose that
we want to reason about multi-degree belief. We represent, e.g., 2i(p(x)← q(x))
by [bel(I)]: (p(X) :- q(X)). Thus we use variables like I for degrees of belief.
Sometimes it is better to delay instantiating such variables to concrete values in
order to eliminate branching. If we want to allow users to have ability to turn
on/off this option of delaying, then the defined calculus should be designed with
the check in two steps option turned on. The intention of pre check predicates is
to check the involved condition as much as possible without generating branch
points and to pass unchecked fragments of the condition to post check predicates,
which will be fired latter. In Section 5, we will describe the functioning of those
predicates in the MProlog interpreter.

8

A resolution cycle is a derivation consisting of a sequence of applications of
rSatL/rNFL rules and an application of a program clause. To create an ability
to reduce nondeterminism, we provide 4 categories (kinds) of rules: pre rSat,
rSat, post rSat, and rNF. Informally, operators pre rSat and post rSat are deter-
ministic, while operators rSat and rNF are nondeterministic. This means that
when the system tries to resolve a modal atom using an operator of the category
pre rSat or post rSat, the first applicable rule of the category will be used, and
when the system wants to use rSat (resp. rNF), different sequences of rSat rules
(resp. rNF rules) will be tried. Lengths of such sequences of rSat rules (resp. rNF
rules) are restricted by the option limit rSat (resp. limit rNF) of the calculus.

Rules of the mentioned categories are of one of the following forms:
AtomIn :- PreCondition, AtomOut, PostComputation.
RuleName :: (AtomIn :- PreCondition, AtomOut, PostComputation).

AtomIn and AtomOut are atoms of the form M : E, where M (standing for
a modality) and E (standing for a classical atom) may be variables in Prolog,
and M may be also a list. RuleName is a name in Prolog. PreCondition and
PostComputation are (possibly empty) sequences of formulas in Prolog separated
by ‘,’. AtomOut is called the atom out of the rule. It is the first outer (w.r.t. ‘,’)
atom of the form M : E of the body of the rule. Names of rules are unique. If a
rule is declared without a name, it will be given a unique name by the system.
We give below an example rule, a version of : 3iE ← 3jE if i > j.

rSatKDI4s5 :: ([pos(I)]:E :-
get calling history(rSat, Cal, , RNames),
\+ memberchk(rSatKDI4s5, RNames), % not called before
pre compare deg(Cal, I > J), [pos(J)]:E, post compare deg(Cal, I > J)).

As shown in the above example, designers of calculi have access to the history
of rules called in the current resolution cycle. Such a history for a given category
of rules is obtained by

get calling history(RuleCategory, Calculus, CalledAtom, RuleNames)
where the last three arguments are outputs. RuleNames is the list of names of
rules of the category RuleCategory which have been applied, in the reverse order,
in the current resolution cycle for the beginning atom CalledAtom .

Syntactically, rules are clauses in Prolog. They are defined as usual clauses.
Rules are declared to calculi either by a section of rules or by a directive. A
section of rules is a list of (definitions of) rules bounded by directives. A directive
opening a section of rules is of the following form:

:- RuleCategory Cal1, . . . , Caln.
where RuleCategory is one of pre rSat, rSat, post rSat, rNF; and Cal1, . . . , Caln
are names of calculi, to which the rules in the section are declared. A section of
rules is closed by any directive in Prolog or by the end of the main file. Rules
of the same category can also be declared to a calculus using a directive of the
following form:

:- set list of mrules(Calculus, RuleCategory, ListOfRuleNames).
Some options are automatically created with default values for each loaded

calculus. A definition of a calculus can change values of those options using

9

set option(Option, Calculus, Value) and set new options for itself (e.g., a numeric
option like max modal index is needed for modal logics of multi-degree belief).

4.3 Options and Built-in Predicates of MProlog

Before listing built-in predicates of MProlog, we give a list of options of MProlog,
which may affect the way the system interprets MProlog programs. There are
two kinds of options: options for calculi, and options for the system. Setting
values of options is done by the following predicates:

set option(OptionName, Calculus, Value)
set option(OptionName, Value)

There are the following built-in options for calculi: limit modality length (de-
fault: 4), limit rSat (default: 3), limit rNF (default: 1), use calling history (de-
fault: false), check in two steps (default: false). The limit modality length option
is used to restrict lengths of modalities that may appear in derivations. The
options limit rSat and limit rNF have been described in the previous subsec-
tion. For some built-in calculi, those numeric limits are firmly set, as they follow
from the nature of the base modal logic. In general, they are used to restrict the
search space and may affect completeness of the calculus. The boolean option
use calling history should be turned on if rules of the calculus use the history of
rules called in the current resolution cycle. The boolean option check in two steps
has been discussed in the previous subsection.

The boolean option loop checking is a useful option of the system. If it is
turned on, the MProlog interpreter will check whether the current modal atom
to be resolved has already appeared in the current derivation in order to prevent
infinite loops. There are also other options of the system: loop checking stack size
(default: 300), random selection of rules (default: false), debug (default: false),
current calculus (default: classical), and priority list of calculi (default not set).

There are three groups of built-in predicates which are useful for users: main
predicates (for consulting, calling, and tracing), predicates for getting and dis-
playing the status of the system, and predicates for dynamic modification of
programs. We list here only main predicates of the system4:

consult calculi(Files),
mconsult(ProgramFile, Calculus), mconsult(ProgramFile),
mcall(Goal, Calculus), mcall(Goal),
mtrace, nomtrace.

Our MProlog module can be loaded by consulting the file “mprolog.pl” of the
package. The user can then load SLD-resolution calculi for modal logics using
the predicate consult calculi, whose argument may be a file name or a list of file
names. The user can consult MProlog programs using the predicate mconsult/2
(see Section 4.1 for the meaning of the second argument). mconsult(ProgramFile)
is treated as mconsult(ProgramFile, classical). Goals involved with modal logics
can be asked using the predicate mcall/2, where the second argument indicates

4 See [11] for predicates of the remaining groups.

10

the calculus in which the goal is asked. If a default calculus is set using the cur-
rent calculus option, then mcall/1 can be used instead of mcall/2. The predicates
mtrace and nomtrace are used to turn on and off the trace mode for MProlog
(which concentrates on modal formulas and is not the trace mode of Prolog).

5 The MProlog Interpreter

The MProlog interpreter is realized by the predicate mcall(Goal, Calculus),
which initiates some variables and then calls mcall (Goal, Calculus). In this
section, we describe in detail the latter predicate, ignoring some aspects like
loop checking, updating the history of called rules, or effects of options.

The predicate of the argument Goal belongs to one of the following groups:
control predicates5 (\+, ‘;’, ‘,’, −>, if/3), classical predicates, dum predicates,
and modal predicates.

If Goal is an atom of a classical predicate, then mcall (Goal,) is de-
fined as Goal itself. Formulas PreCondition and PostComputation from a rule
Head :- PreCondition, AtomOut, PostComputation are treated as atoms of clas-
sical predicates, despite that they may be complicated formulas.

Because dum predicates can be defined in different calculi and their semantics
does not depend on worlds in Kripke models, they can be used to mix different
calculi. If Goal is an atom of a dum predicate then to resolve mcall (Goal, Calcu-
lus), the interpreter will try to resolve Goal first in Calculus and then in different
calculi as well. The list of those latter calculi is determined by the value of the
priority list of calculi option if it is set, and by the list of all calculi otherwise;
both cases exclude Calculus (the argument). Resolving Goal of a dum predicate
in a calculus Cal is done as follows: select a modal clause Head :- Body of Cal,
unify Goal with Head, and then call mcall (Body, Cal).

For the case of modal atoms, we first discuss some auxiliary predicates.
Resolving a modal atom Goal with a rule

Head :- PreCondition, AtomOut, PostComputation
is done by unifying Goal with Head, executing PreCondition, and returning Ato-
mOut and PostComputation as outputs. This task is done by the predicate

solve using mrule(Cal, Cat, RName, AtomIn, AtomOut, PostComputation)
with AtomIn = Goal and Cal, Cat, RName being respectively the calculus, the
category, and the name of the rule.

Resolving a modal atom Goal using a sequence of rules is done by calling
the above described predicate solve using mrule for each rule of the sequence,
where AtomIn of the first call of solve using mrule is Goal, and AtomIn of each
one of the next calls is AtomOut of the previous call. As outputs, it returns
AtomOut of the last call of solve using mrule and the composition (using ‘,’ and
the reverse order) of the obtained PostComputation formulas. If the sequence of
rules is empty then the outputs are Goal and true.

To resolve a modal atom Goal using rules of a calculus Cal that belong to a
category Cat, the interpreter searches for a sequence of rules to be used using the
5 From now on, we distinguish control predicates from classical predicates.

11

following strategy: if the rule category is pre rSat or post rSat then the sequence
consists of only the first applicable rule – if there exists, or is empty – otherwise;
if the rule category is rSat or rNF then different sequences of rules will be tried,
where short sequences have higher priorities. Having a sequence of rules, the
interpreter applies it to Goal as described in the previous paragraph. The task
is done by the predicate

solve using mrules(Cal, Cat, Goal, AtomOut, PostComputation),
where AtomOut and PostComputation are outputs.

Resolving a modal atom Goal with a modal clause in Calculus is done ac-
cording to the framework of SLD-resolution for MProlog, using the required
predicates of Calculus in an appropriate way. The task is done by the predicate

solve using mclauses(Calculus, Goal).
Now return to the problem of resolving mcall (Goal, Calculus) for the case

when Goal is a modal atom. It is done by executing the following statements
solve using mrules(Calculus, pre rSat, Goal, A2, F2),
solve using mrules(Calculus, rSat, A2, A3, F3),
solve using mrules(Calculus, post rSat, A3, A4, F4),
solve using mrules(Calculus, rNF, A4, A5, F5),
solve using mclauses(Calculus, A5),
F5, F4, F3, F2.

It remains to discuss the interpretation of the control predicates. In the cur-
rent version of MProlog, we just adopt the following solution, which does not
have a logical basis:

mcall_(M:(F1,F2), Cal) :- !, mcall_(M:F1, Cal), mcall_(M:F2, Cal).
mcall_(M:(F1;F2), Cal) :- !, mcall_(M:F1, Cal); mcall_(M:F2, Cal).
mcall_(M:(\+ F), Cal) :- !,

make_dual_modality(Cal, M, M2), \+ mcall_(M2:F, Cal).
mcall_(M:(F1 -> F2), Cal) :- mcall_(M:F1, Cal)->mcall_(M:F2, Cal).
mcall_(M:if(F1, F2, F3), Cal) :- !,

call(F1) -> mcall_(M:F2, Cal); mcall_(M:F3, Cal).

The interpretation for the case of M : (F1, F2) is sound and complete if M is
a modality in labeled form (i.e. M does not contain unlabeled existential modal
operators). The interpretation for the case of M : (F1;F2) is also sound.

6 Conclusions

This work presents a new design for modal logic programming. We have designed
MProlog to obtain high usefulness, effectiveness, and flexibility. For usefulness:
codes, libraries, and most features of Prolog can be used in MProlog programs;
for effectiveness: classical fragments are interpreted by Prolog itself, and a num-
ber of options can be used for MProlog to restrict the search space; for flexibility:
there are three kinds of predicates (classical, modal, dum) and we can use and
mix different calculi in an MProlog program.

12

MProlog has a very different theoretical foundation than the existing Molog
system. In MProlog, a labeling technique is used for existential modal operators
instead of skolemization. We also provide and use new technicalities like nor-
mal forms of modalities or pre-orders between modal operators. MProlog also
eliminates drawbacks of Molog (e.g., MProlog gives computed answers).

We have implemented SLD-resolution calculi for a number of useful modal
logics [11], including all of the multimodal logics of belief considered in this work.
The multimodal logics of belief KDI4s, KDI4s5, KDI45, KD4s5s, KD4Ig5a

were first introduced and studied by us for modal logic programming [10]. Some
of the implemented SLD-resolution calculi, e.g. the ones for KD, KD45, S5,
KDI4s5, KD4s5s, KD45(m), are very efficient6.

Our system is a tool for experimenting with applications of modal logic pro-
gramming to AI. See [11] for an interesting formulation of the wise men puzzle
in MProlog. Our system is also a tool for developing and experimenting with
new SLD-resolution calculi for modal logic programming.

Acknowledgements: I would like to thank professors Andreas Herzig and Luis
Fariñas del Cerro for a discussion on this paper. I would like also to thank
Dr. Rajeev Goré and the anonymous reviewers for many helpful comments and
suggestions.

References

1. Akama, S.: A Meta-Logical Foundation of Modal Logic Programming. 1-20-1,
Higashi-Yurigaoka, Asao-ku, Kawasaki-shi, 215, Japan, December 1989.

2. Balbiani, P., Fariñas del Cerro, L., Herzig, A.: Declarative Semantics for Modal
Logic Programs, Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, ICOT, 1988, 507–514.

3. Baldoni, M., Giordano, L., Martelli, A.: A Framework for a Modal Logic Program-
ming, Joint International Conference and Symposium on Logic Programming, MIT
Press, 1996, 52–66.

4. Fariñas del Cerro, L.: MOLOG: A System that Extends PROLOG with Modal
Logic, New Generation Computing, 4, 1986, 35–50.

5. Debart, F., Enjalbert, P., Lescot, M.: Multimodal Logic Programming Using Equa-
tional and Order-Sorted Logic, Theoretical Computer Science, 105, 1992, 141–166.

6. Fitting, M., Mendelsohn, R. L.: First-Order Modal Logic, Kluwer Academic Pub-
lishers, 1999.

7. Garson, J.: Quantification in Modal Logic, in: Handbook of Philosophical Logic,
Volume II (F. Guenthner, D. Gabbay, Eds.), 1999, 249–307.

8. Lloyd, J.: Foundations of Logic Programming, 2nd Edition, Springer-Verlag, 1987.

9. Nguyen, L. A.: A Fixpoint Semantics and an SLD-Resolution Calculus for Modal
Logic Programs, Fundamenta Informaticae, 55(1), 2003, 63–100.

6 For the mentioned logics, the rSat operator is either deterministic (for KD, KD45,
and KD4s5s) or nondeterministic but with a low branching factor (2 for KD45(m),
3 for S5, and m for KDI4s5).

13

10. Nguyen, L. A.: Multimodal Logic Programming and Its Applications to Modal De-
ductive Databases, manuscript (served as a technical report), available on Internet
at http://www.mimuw.edu.pl/˜nguyen/papers.html, 2003.

11. Nguyen, L. A.: Source Files, Calculi, and Examples of MProlog, available on
Internet at http://www.mimuw.edu.pl/˜nguyen/mprolog, 2004.

12. Nonnengart, A.: How to Use Modalities and Sorts in Prolog, Proceedings of
JELIA’94, LNCS 838 (C. MacNish, D. Pearce, L. M. Pereira, Eds.), Springer,
1994, 365–378.

14

