Liga zadaniowa 2018/2019
Seria IV, 03/12/2018
Pytania proszę kierować do Piotra Nayara na adres nayar@mimuw.edu.pl .
Wszelkie informacje o lidze, w tym zadania i ewentualne korekty treści zadań, rozwiązania zadań i punktacja, będą pojawiały się na stronie www.mimuw.edu.pl/~nayar.

Problem 1. (A) Is it true that for any bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ the series $\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$ is divergent?

Problem 2. (K) Prove that in a simple graph G with an even number of vertices there exist two distinct vertices with an even number of common neighbors.

Problem 3. (A) Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that the sequence $\left(2 a_{n+1}+\right.$ $\left.\sin a_{n}\right)_{n \geq 1}$ is convergent. Does this imply the convergence of the sequence $\left(a_{n}\right)_{n \geq 1}$?

Problem 4. $(\mathbf{A}+\mathbf{K})$ Let A_{1}, \ldots, A_{n} be subsets of a given finite set Ω. Prove that for any real numbers x_{1}, \ldots, x_{n} we have

$$
\sum_{i, j=1}^{n} \#\left(A_{i} \cap A_{j}\right) \cdot x_{i} x_{j} \geq 0
$$

Problem 5. $(\mathbf{G}+\mathbf{K})$ Let $A=\left(a_{i j}\right)_{i, j}$ be an $n \times n$ matrix with entries belonging to the set $\{0,1\}$. Assume that ${ }^{1} \operatorname{tr}\left(A^{k}\right)=0$ for every positive integer k. Show that there exists a permutation σ of $\{1, \ldots, n\}$ such that the $n \times n$ matrix $\left(a_{\sigma(i) \sigma(j)}\right)_{i, j}$ is upper triangular.

Problem 6. $(\mathbf{A}+\mathbf{G}+\mathbf{K})$ Let n be a positive integer. Inside a convex polygon of perimeter 1 a finite number of line segments is drawn such that their total length is strictly greater than n. Show that there exists a line that intersects at least $2 n+1$ of the segments.

[^0]
[^0]: ${ }^{1}$ Here tr is the trace of a matrix, that is the sum of its diagonal entries.

