Pytania proszę kierować do Piotra Nayara na adres nayar@mimuw.edu.pl .
Wszelkie informacje o lidze, w tym zadania i ewentualne korekty treści zadań, rozwiązania zadań i punktacja, będą pojawiały się na stronie www.mimuw.edu.pl/~nayar.

Problem 1. (A) Suppose $\left(a_{n}\right)_{n \geq 1}$ is a bounded sequence of nonzero real numbers. Does there always exist a subsequence $\left(b_{n}\right)_{n \geq 1}$ of $\left(a_{n}\right)_{n \geq 1}$ such that $\left(b_{n+1} / b_{n}\right)_{n \geq 1}$ converges?

Problem 2. (K) Suppose $n \geq 1$ is even. Prove that there exist vectors $v_{1}, \ldots, v_{n} \in\{-1,1\}^{n}$ with the following property: for any vector $u \in\{-1,1\}^{n}$ we can find $i \in\{1, \ldots, n\}$ such that $\left\langle v_{i}, u\right\rangle=0$. Here $\langle\cdot, \cdot\rangle$ stands for the standard Euclidean scalar product, namely $\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i}$.

Problem 3. (A) Let $a_{1}=a_{2}=1$ and $a_{n+1}=\frac{1}{a_{n}}+\frac{1}{a_{n-1}}$ for $n \geq 2$. Is the sequence $\left(a_{n}\right)_{n \geq 1}$ convergent?

Problem 4. (G) Let $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$. Consider the following two conditions:
(a) The functions $f_{i}$ are linearly independent over $\mathbb{R}$.
(b) There exist real numbers $x_{1}, \ldots, x_{n}$ such that the vectors

$$
u_{k}=\left(f_{1}\left(x_{k}\right), \ldots, f_{n}\left(x_{k}\right)\right), \quad k=1, \ldots, n
$$

are linearly independent.
Does (b) imply (a)? Does (a) imply (b)?

Problem 5. (K) Suppose we are given a collection of $2 n+1$ real numbers with the following property: if we remove any of the $2 n+1$ numbers, the remaining $2 n$ numbers can be split into two groups of $n$ numbers with the same sum of elements. Does it follow that all the $2 n+1$ numbers are equal?

Problem 6. $(\mathbf{A}+\mathbf{G}+\mathbf{K})$ Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that the following property is satisfied: for any set $A \subset\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ of cardinality $n$ there exists a strip $S \subset \mathbb{R}^{2}$ of width $1 / n$ (a strip is a region between two parallel lines and the width of a strip is the distance between these two lines) such that $\#(S \cap A) \geq f(n)$ ?

