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1 Classical Khintchine inequality

1.1 Warm up – C4,2

Suppose we are given a sequence ε1, . . . , εn of i.d.d. symmetric Bernoulli random variables, that is
random variables satisfying P (εi = 1) = P (εi = −1) = 1/2 and a sequence of real numbers a1, . . . , an.
Let us define S =

∑n
i=1 aiεi. The classical Khintchine inequality deals with moments of S, namely

∥S∥p = (E|S|p)1/p. Khintchine proved that for any p ≥ q > 0 there exists a constant Cp,q depending
only on p, q (that is, not depending on n and on the sequence (ai)), such that

∥S∥p ≤ Cp,q∥S∥q (1)

We shall assume that Cp,q denotes the best constant in this inequality. The main goal of the first part
of these notes is to give an overview of the known techniques leading to the derivation of Cp,q in the
case, when the constant is known. For historical remarks we refer the reader to Section 1.8.

Let us first observe that the second moment of S is particularly nice, namely

E|S|2 = E

(
n∑

i=1

aiεi

)2

= E

 n∑
i,j=1

aiajεiεj

 =
n∑

i,j=1

aiajEεiεj =
n∑

i=1

a2i ,

since due to independence for i ̸= j one has Eεiεj = EεiEεj = 0 and Eε2i = 1. Let us now try to
compute the fourth moment,

E|S|4 = E

(
n∑

i=1

aiεi

)4

= E

 n∑
i,j,k,l=1

aiajakalεiεjεkεl

 =
n∑

i,j,k,l=1

aiajakalEεiεjεkεl.

Observe that in order for the expectation Eεiεjεkεl to be nonzero, every index has to occur an even
number of times. Indeed, in general one has

Eεj11 ε
j2
2 · . . . · εjnn = Eεj11 Eεj22 · . . . · Eεjnn

and Eεjii = 1 when ji is even and Eεjii = Eεi = 0 when ji is odd. Therefore

Eεj11 ε
j2
2 · . . . · εjnn =

{
1 2|ji for all i
0 otherwise

(2)

Thus, either i = j = k = l, which contributes the sum
∑n

i=1 a
4
i , or the indexes form two pairs and

are equal in these pairs. For example, in front of the term a21a
2
2 we are going to have the coefficient

equal to the number of choices of (i, j, k, l) such that two of these indexes are equal to 1 and the other
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two equal to 2. The number of way of choosing such indexes is
(
4
2

)
= 6, since we just have to declare

which two indexes among these four will be equal to 1. As a consequence one gets

E|S|4 =
n∑

i=1

a4i + 6
∑
i<j

a2i a
2
j .

Observe that by homogeneity the inequality (1) does not change when we rescale all the ai by some
fixed number λ ̸= 0, that is consider λai instead of ai. Thus we can always assume that

∑n
i=1 a

2
i = 1.

In this case

1 =

(
n∑

i=1

a2i

)2

=
n∑

i=1

a4i + 2
∑
i<j

a2i a
2
j which implies 6

∑
i<j

a2i a
2
j = 3 − 3

n∑
i=1

a4i .

Therefore

E|S|4 = 3 − 2
n∑

i=1

a4i ≤ 3.

The constant C4,2 = 4
√

3 is optimal, as can be seen by taking a1 = . . . = an = n−1/2 in which case one
gets E|S|4 = 3 − 2

n → 3 when n→ ∞. In fact due to the inequality between means one has(
|a1|p + . . .+ |an|p

n

)1/p

≤
(
|a1|q + . . .+ |an|q

n

)1/q

, q > p > 0

with equality for a1 = . . . = an. In particular
∑n

i=1 a
4
i ≥ 1

n

(∑n
i=1 a

2
i

)2
= 1

n with equality for

a1 = . . . = an = n−1/2. This is fact shows that

E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
4

≤ E

∣∣∣∣∣
n∑

i=1

1√
n
εi

∣∣∣∣∣
4

,
n∑

i=1

a2i = 1.

In other words, the quantity C
(n)
4,2 = ∥

∑n
i=1 n

−1/2εi∥4 is the best n-dependent constant in (1).

1.2 Constants C2k,2

Let us now compute the 2k-th moment, where k ≥ 1 is an integer. Recall the multinomial identity:
for a positive integer p one has

(x1 + . . .+ xn)p =
∑

j1+...+jn=p

(
p

j1, . . . , jn

)
xj11 · . . . · xjnn , where

(
p

j1, . . . , jn

)
=

p!

j1! . . . jn!
.

Here the sum runs over all integers ki ≥ 0 with
∑n

i=1 ji = p. Applying this identity one gets

E|S|2k = E

(
n∑

i=1

aiεi

)2k

=
∑

j1+...+jn=2k

(
2k

j1, . . . , jn

)
aj11 . . . ajnn Eεj11 . . . εjnn

=
∑

k1+...+kn=k

(
2k

2k1, . . . , 2kn

)
a2k11 . . . a2knn .

where we have used (2).
We shall now present Khintchine’s derivation of the optimal constants C2k,2. We can again assume

that
∑n

i=1 a
2
i = 1. Let n! denote the product of all positive integers not exceeding n of the same parity

as n. Note also that (2n)!! = 2nn!. We claim that(
2k

2k1, . . . , 2kn

)
≤ (2k − 1)!!

(
k

k1, . . . , kn

)
.
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Indeed, under k1 + . . .+ kn = k we have(
2k

2k1, . . . , 2kn

)
=

(2k)!

(2k1)! . . . (2kn)!
=

(2k − 1)!!2kk!

(2k1)! . . . (2kn)!
=

(2k − 1)!!2k1 · . . . · 2knk!

(2k1)! . . . (2kn)!

≤ (2k − 1)!!

(
k

k1, . . . , kn

)
,

which follows from (2ki)! ≥ (2ki)!! = 2ki ki!. As a consequence one gets

E|S|2k ≤ (2k − 1)!!
∑

k1+...+kn=k

(
k

k1, . . . , kn

)
a2k11 . . . a2knn = (2k − 1)!!(a21 + . . .+ a2n)k = (2k − 1)!!.

Note that if G is a standard Gaussian random variable N (0, 1), namely G has density φ(t) =
(2π)−1/2e−t2/2, then EG2k = (2k − 1)!!. Indeed, integrating by parts and using φ′(t) = −tφ(t)
we get for k ≥ 1

EG2k =

∫
t2kφ(t)dt = −

∫
t2k−1φ′(t)dt = (2k − 1)

∫
t2k−2φ(t)dt = (2k − 1)EG2k−2.

Iterating gives the desired identity. We have established the bound E∥S∥2k ≤ E|G|2k, which is ∥S∥2k ≤
∥G∥2k∥S∥2. This means that C2k,2 = ∥G∥2k and the optimality can be seen by taking a1 = . . . = an =
n−1/2 and taking n→ ∞, as 1√

n

∑n
i=1 εi converges in distribution to G due to the central limit theorem.

This implies convergence of moments as supn ∥ 1√
n

∑n
i=1 εi∥2k+2 ≤ ∥G∥2k+2 as in general convergence

Xn → X in distribution together with supn ∥Xn∥p+ε <∞ for some p, ε > 0 imply ∥Xn∥p → ∥X∥p.
Remark 1. Let p ≥ 1 and assume that

∑n
i=1 a

2
i = 1. Then

E|G|p = E

∣∣∣∣∣
n∑

i=1

aiGi

∣∣∣∣∣
p

≥ E

∣∣∣∣∣
n∑

i=1

aiεi|Gi|

∣∣∣∣∣
p

≥ E

∣∣∣∣∣
n∑

i=1

aiεiE|Gi|

∣∣∣∣∣
p

=

(√
2

π

)p

E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
p

.

This shows that Cp,2 are finite for p ≥ 2.

1.3 Hölder boosting

In this subsection we are going to show that the constants Cp,q are finite for every p, q > 0. We need
the following lemma.

Lemma 1. Suppose S is a real random variable. Then the function t 7→ E|S|t is log-convex. In other
words, for every p < q < r one has

∥S∥q(r−p)
q ≤ ∥S∥p(r−q)

p ∥S∥r(q−p)
r . (3)

Proof. By Hölder’s inequality we have E|XY | ≤ (E|X|p)1/p(E|Y |q)1/q with p, q ≥ 1 satisfying 1
p+ 1

q = 1.

Using this with X = |S|λs, Y = |S|(1−λ)t and p = 1
λ , q = 1

1−λ , where λ ∈ [0, 1], we get

E|S|λs+(1−λ)t ≤ (E|S|s)λ(E|S|t)1−λ,

which is the desired log-concavity. To prove the second part it suffices to use this inequality with
λ = r−q

r−p and rewrite it in terms of moments of S.

Remark 2. Note that for p < q the well-known inequality ∥S∥p ≤ ∥S∥q is a consequence of the
convexity of t 7→ E|S|t. Indeed, the slopes

log
(

(E|S|p)
1
p

)
=

logE|S|p

p
=

logE|S|p − logE|S|0

p− 0
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Let us notice that in order to prove an inequality of the form ∥S∥p ≤ Cp,q∥S∥q with S =
∑n

i=1 aiεi,
by homogeneity we can always assume that ∥S∥2 = 1. To show the existence of Cp,q, it is enough to
prove that under ∥S∥2 = 1 one has Ap ≤ ∥S∥p ≤ Bp for some positive constants Ap, Bp. Then we get

∥S∥p ≤ Bp ≤ Bp

Aq
∥S∥q, which implies Cp,q ≤ Bp

Aq
.

Now, we always have, say, ∥S∥p ≤ ∥S∥2⌈p⌉ ≤ (2 ⌈p⌉ − 1)!!. To prove the lower bound we first
observe that if p ≥ 2 then ∥S∥p ≥ ∥S∥2 = 1. If p < 2 we use Lemma 1 with q = 2 and r = 4, obtaining

1 = ∥S∥2(4−p)
2 ≤ ∥S∥2pp ∥S∥4(2−p)

4 ≤ ∥S∥2pp 32−p,

which gives ∥S∥p ≥ 3
p−2
2p .

1.4 Constants Cp,2 for p ≥ 3

Let us prove the following theorem established by Pinelis in [71] and independently by Figiel, Hitczenko,
Johnson, Schechtman and Zinn in [28].

Theorem 2. For even functions Φ : R → R such that Φ′′ convex one has

EΦ

(
n∑

i=1

aiεi

)
≤ EΦ

(
n∑

i=1

aiXi

)
for any symmetric variance one independent random variables Xi.

We shall need the following lemma.

Lemma 3. Suppose Φ : R → R is an even function such that Φ′′ is convex. Then for every real
number s the function ψ(x) = Φ(

√
x+ s) + Φ(

√
x− s) is convex on R+.

Proof. We want to show that ψ′(x) = Φ′(
√
x+s)+Φ′(

√
x−s)

2
√
x

is non-decreasing. Equivalently, we would

like to show that ψ1(t) = Φ′(t+s)+Φ′(t−s)
t is non-decreasing. This would follow from the monotonicity

on R+ of slopes for ψ2(t) = Φ′(t + s) + Φ′(t − s), since ψ2(0) = 0 as Φ′ is odd. Thus it is enough to
show that ψ2 is convex or, equivalently, that ψ3(t) = Φ′′(t + s) + Φ′′(t − s) is non-decreasing on R+,
which is obvious, since ψ3 is an even convex function, as Φ′′ is even and convex.

Proof of Theorem 2. Let us take S =
∑n

i=2 aiXi. It is enough to show that EΦ(a1ε1+S) ≤ EΦ(a1X1+
S) for any random variable S and use this fact to exchange Xi for εi one by one. We can condition
on the values s of S. Thus, we are left with proving that EΦ(a1ε1 + s) ≤ EΦ(a1X1 + s). Let us
consider the function ψ from the above lemma. Now, observe that due to symmetry X1 has the same
distribution as ε1|X1|, where ε1 is independent of X1. Moreover, again by symmetry of X1 one can
assume that a1 > 0. Thus by Jensen’s inequality one has

EΦ(a1X1 + s) = EΦ(a1ε1|X1| + s) = EΦ

(
ε1

√
a21|X1|2 + s

)
≥ Eψ(a21X

2
1 )

≥ ψ(a21EX2
1 ) = ψ(a21) = EΦ(a1ε1 + s).

We are now ready to show that under
∑n

i=1 a
2
i = 1 one has E|S|p ≤ E|G|p for p ≥ 3 and thus

Cp,2 = ∥G∥p. The function Φ(x) = |x|p satisfies assumptions of Theorem 2 as Φ′′(x) = p(p− 1)|x|p−2

is convex. Let Xi = Gi be i.i.d. N (0, 1) random variables. Note that
∑n

i=1 aiGi is also an N (0, 1)
random variable and thus

E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
n∑

i=1

aiGi

∣∣∣∣∣
p

= E|G|p.

Let T be an independent copy of S, namely T =
∑n

i=1 aiε
′
i. Let Xi =

εi+ε′i√
2

. Then

S + T√
2

=

n∑
i=1

ai
εi + ε′i√

2
=

n∑
i=1

aiXi.
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Thus Theorem 2 implies E
∣∣∣S+T√

2

∣∣∣p ≥ E|S|p. The following conjecture was suggested by Zinn and

popularized by Pinelis (mathoverflow.net/questions/208349/).

Conjecture 1. Let S =
∑n

i=1 aiεi and let T be an independent copy of S. Then for p ∈ (2, 3) one

has E
∣∣∣S+T√

2

∣∣∣p ≥ E|S|p

By iterating this inequality and using central limit theorem one would easily get E|S|p ≤ E|G|p.
The latter is a known inequality due to Haagerup, however all known proofs are technical.

1.5 Schur monotonicity of ∥S∥p for p ≥ 3

Let us introduce some notation.

• For a vector x = (x1, . . . , xn) jest x∗1, . . . , x
∗
n be the nonincreasing rearrangement of coordinates

of x.

• By T -transformation we mean any linear function of the form

Tjk(x) = (x1, . . . , xj−1, (1 − λ)xj + λxk, xj+1, . . . , xk−1, λxj + (1 − λ)xk, xk+1, . . . , xn),

where λ ∈ [0, 1].

• A matrix P = (pij)
n
i,j=1 is called doubly stochastic if pij ≥ 0 and the sums of elements in each

column and row of P is equal to 1.

• The set of permutations of {1, . . . , n} will be denoted by Sn. For σ ∈ Sn and x = (x1, . . . , xn)
in Rn we also define xσ = (xσ(1), . . . , xσ(n)).

• A function F : Rn → R is said to be permutation symmetric if F (xσ) = F (σ) for every σ ∈ Sn.

• A function F : Rn → R is said to be Schur convex if x ≺ y implies F (x) ≤ F (y). Moreover, F
is Schur concave if the reverse inequality holds.

The following proposition gives equivalent conditions to the so-called Schur order.

Proposition 4 (Schur order). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. The
following conditions are equivalent:

(a) We have
∑k

i=1 x
∗
i ≤

∑k
i=1 y

∗
i for k = 1, . . . , n− 1 and

∑n
i=1 xi =

∑n
i=1 yi.

(b) There exists a doubly stochastic matrix P such that x = Py.

(c) Vector x is a convex combination of vectors yσ = (yσ(1), . . . , yσ(n)), where σ ∈ Sn

(d) Vector x is an image of y under composition of finitely many T -transformations.

If one of these conditions holds, we shall write x ≺ y and say that x majorizes y.

For the proof we refer the reader to the Appendix. In the sequel we are going to use the following
fundamental lemma.

Lemma 5. Suppose F : Rn → R is convex and permutation symmetric. Then F is Schur convex, that
is x ≺ y implies F (x) ≤ F (y). In particular, if f : R → R is convex, then

(x1, . . . , xn) ≺ (y1, . . . , yn) =⇒
n∑

i=1

f(xi) ≤
n∑

i=1

f(yi).
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Proof. From Proposition 4(c) there exists numbers λσ ≥ 0 summing up to one, such that x =∑
σ∈Sn

λσyσ. Thus

F (x) = F

(∑
σ∈Sn

λσyσ

)
≤
∑
σ∈Sn

λσF (yσ) =
∑
σ∈Sn

λσF (y) = F (y).

The second part follows by observing that F (x1, . . . , xn) =
∑n

i=1 f(xi) is convex and permutation
symmetric.

Remark 3. On the simplex {(x1, . . . , xn) ∈ Rn
+ :

∑n
i=1 xi = 1} one has the relations(

1

n
, . . . ,

1

n

)
≺ (x1, . . . , xn) ≺ (1, 0, . . . , 0).

To prove this, one can check e.g. condition (c), namely x =
∑n

i=1 xiei, where ei = (0, . . . , 0, 1, 0, . . . , 0)
with 1 on the ith coordinate. This shows the right inequality. To prove the left comparison, let us
observe that (

1

n
, . . . ,

1

n

)
=

1

n
(x1, . . . , xn) +

1

n
(x2, . . . , xn, x1) . . .+

1

n
(xn, x1, . . . , xn−1).

Remark 4. A function F : Rn → R is Schur convex if and only if it is Schur convex with respect to
any pair of coordinates. This follows from the fact that x ≺ y implies that x is an image of y under
composition of finitely many T -transformations. Indeed, note that x = (x1, x2) and y = (y1, y2) satisfy
y ≺ x if and only if y is a T -transformation of x, namely

(y1, y2) = ((1 − λ)x1 + λx2, λx1 + (1 − λ)x2) = (1 − λ)(x1, x2) + λ(x2, x1),

which follows from Proposition 4(c). If we denote zλ = (1 − λ)(x1, x2) + λ(x2, x1) then note that to
check Schur convexity of a function G of two variables we want to verify F (zλ) ≤ F (z0). Observe that
z1−λ is obtained by transposing coordinates of zλ and thus if G is permutation symmetric, it is enough
to show F (zλ) ≤ F (z0) only for λ ∈ [0, 12 ]. In fact for 0 ≤ λ ≤ µ ≤ 1

2 one has zµ ≺ zλ. Indeed, to see
this take the interval [z0, z1] and observe that it is symmetric with respect to the line ℓ = {x = y}.
As λ increases, the point zλ gets closer to ℓ and finally z1/2 ∈ ℓ. It is clear that zµ is in the interval
[zλ, z1−λ], see below.

•

•
•zµ

•

•

•

z0

z 1
2

z1

zλ

z1−λ

Figure 1: The point zµ is in [zλ, z1−λ].

As a consequence, in order to check Schur convexity of a function with two variables, it is enough to
prove monotonicity of [0, 12 ] ∋ λ 7→ G(zλ). In fact if G : R2

+ → R, we can always extend the interval
[z0, z1] on which the monotonicity is established to [(x1 + x2, 0), (0, x1 + x2)]. Thus, it is enough to
check that [0, 12 ] ∋ λ 7→ G((1 − λ)x, λx) is nonincreasing for any given x > 0.

Let us prove the following theorem, which is essentially due to Eaton [22] and Komorowski [45].
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Theorem 6. For even functions Φ : R → R such that Φ′′ is convex one has

(a21, . . . , a
2
n) ≺ (b21, . . . , b

2
n) =⇒ EΦ

(
n∑

i=1

biεi

)
≤ EΦ

(
n∑

i=1

aiεi

)

The following corollary is immediate.

Corollary 7. For p ≥ 3 one has

1 = E|ε1|p ≤ E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
n∑

i=1

1√
n
εi

∣∣∣∣∣
p

,
n∑

i=1

a2i = 1.

Proof of Theorem 6. By symmetry of εi we can assume that ai and bi are nonnegative. By Remark 4
and by conditioning, it is enough to check monotonicity of the function

[0, 1/2] ∋ λ 7−→ h(λ) = EΦ(ε1
√

(1 − λ)x+ ε2
√
λx+ s).

Recall that by Lemma 3 the function ψ(t) = 1
2Φ(−

√
x+ s) + 1

2Φ(
√
x+ s) is convex. We have

h(λ) = EΦ(ε3|ε1
√

(1 − λ)x+ ε2
√
λx| + s) = EΦ

(
ε3

√
x+ 2ε1ε2x

√
λ(1 − λ) + s

)
= Eψ(x+ 2ε1ε2x

√
λ(1 − λ)) =

1

2
ψ(x+ 2x

√
λ(1 − λ)) +

1

2
ψ(x− 2x

√
λ(1 − λ)).

Since 2
√
λ(1 − λ) increases from 0 to 1, it is enough to check that the function ψ(x+ t) + ψ(x− t) is

non-decreasing in t > 0, which is obvious, since it is a convex and symmetric function of t.

1.6 Cp,q for p, q even integers

1.6.1 Symmetric functions

Definition 1. A sequence (ak)k≥0 is called weakly log-concave if the inequality a2k ≥ ak+1ak−1 is
satisfied for all k ≥ 1. A sequence (ak)k≥0 is called log-concave if in addition the numbers ak are
nonnegative and {k : ak > 0} is a discrete interval.

For real numbers c1, c2, . . . , we define symmetric polynomials σ
(n)
k and symmetric functions σk via

σ
(n)
k =

∑
S⊆[n],|S|=k

∏
i∈S

ci, σk =
∑

S⊆N,|S|=k

∏
i∈S

ci

We also define σ
(n)
0 = σ0 = 1.

Proposition 8 (Newton inequalities). Suppose σ
(n)
k and σk are symmetric polynomials and functions

associated with real numbers c1, c2, . . .. Then

(a) the sequence
(
σ
(n)
k /

(
n
k

))
is weakly log-concave for k ≥ 0;

(b) if ck are positive, then the sequence (k!σk) is log-concave for k ≥ 0.

Remark 5. The condition ck > 0 is not essential. It allows to easily deduce that σ
(n)
k → σk when

n → ∞. The numbers σk might not be finite, but they will be finite if
∑∞

k=1 ck < ∞, which will be
the case in our applications.

Proof. Point (b) follows from (a) by taking the limit n→ ∞. To see this observe that from point (a)
we have (

σ
(n)
k(
n
k

) )2

≥
σ
(n)
k+1(
n

k+1

) · σ(n)k−1(
n

k−1

)
7



This can be written as

(k!σ
(n)
k )2 ≥ (k + 1)!σ

(n)
k+1 · (k − 1)!σ

(n)
k−1 ·

n− k

n− k + 1
.

Taking the limit n→ ∞ finishes the proof.
To prove point (a) let us assume without loss of generality that the numbers ck are nonzero and

take the real rooted polynomial

P (x) = (1 + c1x) . . . (1 + cnx) =

n∑
k=0

σ
(n)
k xk.

Operations P (x) → P (l)(x) and P (x) → xnP (x−1) preserve real-rootedness. Thus

Q(x) = P (j−1)(x) =

n∑
k=j−1

σ
(n)
k

k!

(k − j + 1)!
xk−j+1

is real rooted of degree n− j + 1. Next

R(x) = xn−j+1Q(x−1) =

n∑
k=j−1

σ
(n)
k k!

(k − j + 1)!
xn−k

is also real rooted of degree n− j + 1. Finally,

R(n−j−1)(x) =

j+1∑
k=j−1

σ
(n)
k k!(n− k)!xj−k+1

(k − j + 1)!(j − k + 1)!
=

1

2
τj−1x

2 + τjx+
1

2
τj+1,

where τj = σ
(n)
j j!(n− j)! =

σ
(n)
j

(nj)
·n!, is a real rooted quadratic polynomial. The discriminant ∆ of this

polynomial must therefore be nonnegative, which leads to τ2j ≥ τj−1τj+1 and finishes the proof.

1.6.2 Best constants via Hadamard factorization

We are going to show that for even integers p > q one has Cp,q = (E|G|p)1/p
(E|G|q)1/q . The proof presented here

can be found in [35]. For S =
∑n

i=1 aiεi we want to show

(E|S|p)
1
p ≤ (E|G|p)

1
p

(E|G|q)
1
q

(E|S|q)
1
q , p, q − even integers

Equivalently

(E|S|p)
1
p

(E|G|p)
1
p

≤ (E|S|q)
1
q

(E|G|q)
1
q

In other words, we want to show that the sequence bk = E|S|2k
E|G|2k is such that b

1/k
k is non-increasing. Let

us prove the following simple lemma.

Lemma 9. Let (bk)k≥0 be a log-concave sequence of positive real numbers with b0 = 1. Then the
sequence (bk)1/k is non-increasing for k ≥ 1.

Proof. Take ak = log bk. The goal is to prove that ak
k is non-increasing. Then ak+1 + ak−1 ≤ 2ak

for k ≥ 1. In other words δk = ak − ak−1 is non-increasing in k. We have ak
k = δ1+...+δk

k , where we
have used the fact that a0 = 0. We can see that all we have to show is that consecutive arithmetic
means of a non-increasing sequence are non-increasing. The inequality

δ1+...+δk+1

k+1 ≥ δ1+...+δk
k reduces

to kδk+1 ≤ δ1 + . . .+ δk which is true since δk+1 ≤ δi for i = 1, . . . , k.

8



Now, observe that for x > 0

Ee
√
2xS =

∑
l≥0

√
2x

l

l!
ESl =

∑
k≥0

√
2x

2k

(2k)!
ES2k

=
∑
k≥0

2kxk

(2k − 1)!!2kk!
ES2k =

∑
k≥0

xk

k!
· ES

2k

EG2k
=
∑
k≥0

bk
xk

k!

On the other hand

Ee
√
2xS = E

n∏
i=1

e
√
2xaiεi =

n∏
i=1

Ee
√
2xaiεi =

n∏
i=1

cosh
(√

2xai

)
Crucially

cosh(z) =

∞∏
l=1

(
1 +

4z2

π2(2l − 1)2

)
.

This gives

Ee
√
2xS =

n∏
i=1

∞∏
l=1

(
1 +

8a2i
π2(2l − 1)2

x

)
=
∏
i

(1 + cix).

Let σk be the k-th symmetric function of (ci). We obtained∑
k≥0

bk
xk

k!
= Ee

√
2xS =

∏
i

(1 + cix) =
∑
k≥0

σkx
k

Therefore bk = k!σk and thus this sequence is log-concave by Lemma 8.

1.6.3 Best constants via binomial convolutions

In the previous subsection we proved that the sequence bk = E|S|2k
E|G|2k is log-concave, which gave us best

constants Cp,q for even p, q. It tuns out that this property is closed under taking independent sums.
We introduce the following multidimensional definition.

Definition 2. We say that random vector X on Rn is ultra sub-Gaussian if it is rotation invariant

and the sequence
(
E|X|2k
E|G|2k

)
k≥0

is log-concave with G ∼ N (0, In), where In is the n×n identity matrix.

Therefore we have seen that S =
∑n

i=1 aiεi is ultra sub-Gaussian. An alternative proof of this fact is
based on the following theorem.

Theorem 10. Suppose X,Y are independent ultra sub-Gaussian random vectors. Then X+Y is also
ultra sub-Gaussian.

Proof. Let X1 be the first coordinate of X and let G1 be the first coordinate of G. Let θ be a uniform
vector on the unit sphere Sn−1 ⊆ Rn and let θ1 be its first coordinate. We have G ∼ θ|G| and since
X is rotation invariant we also have X ∼ θ|X|, where the factors are independent. Thus by projecting
G1 ∼ θ1|G| and X1 ∼ θ1|X|. In particular E|G1|p = E|θ1|pE|G|p and E|X1|p = E|θ1|pE|X|p, which

gives E|X|p
E|G|p = E|X1|p

E|G1|p . Since Y and X + Y are also rotation invariant, we have

ak :=
E|X|2k

E|G|2k
=

EX2k
1

EG2k
1

, bk :=
E|Y |2k

E|G|2k
=

EY 2k
1

EG2k
1

, ck =
E|X + Y |2k

E|G|2k
=

E(X1 + Y1)
2k

EG2k
1

.

Then by symmetry of X and Y we have

cn =
1

(2n− 1)!!

n∑
k=0

(
2n

2k

)
EX2k

1 EY 2n−2k
1 =

1

(2n− 1)!!

n∑
k=0

(
2n

2k

)
ak(2k − 1)!! · bn−k(2n− 2k − 1)!!

=
1

(2n− 1)!!

n∑
k=0

2nn!(2n− 1)!!

2kk!(2k − 1)!!2n−k(n− k)!(2n− 2k − 1)!!
ak(2k − 1)!! · bn−k(2n− 2k − 1)!!

=

n∑
k=0

(
n

k

)
akbn−k.

9



Therefore, it is enough to prove the following lemma, which we shall not do here.

Lemma 11 (Walkup, [82]). If (an)n≥0 and (bn)n≥0 are log-concave, then it binomial convolution
(cn)n≥0 defined as

cn =
n∑

k=0

(
n

k

)
akbn−k

is also log-concave.

For alternative proofs see [52, 32, 65, 58].

It is therefore enough to show that symmetric ±1 random variable ε is ultra sub-Gaussian. It is
enough to show that ε is a Gaussian divisor.

Definition 3. A real random vector X in Rn is a Gaussian divisor if G has the same distribution as
RX for some positive random variable R independent of X.

Lemma 12. Suppose X is a Gaussian divisor. Then X is ultra sub-Gaussian.

Proof. We have

E|X|p

E|G|p
=

E|X|pE|R|p

E|G|pE|R|p
=

E|RX|p

E|G|pE|R|p
=

E|G|p

E|G|pE|R|p
=

1

E|R|p
.

Since p 7→ E|R|p is log-convex, its reciprocal is log-concave.

Note that θ is a Gaussian divisor, since G = θ|G| and θ,G are independent. Moreover, a uniform
random variable U on the unit Euclidean ball is also a Gaussian divisor. In fact we have the following
lemma.

Lemma 13. If X is a rotation invariant random vector in Rn with radially decreasing density g(|x|),
then X has the same distribution as RU , where R has density −vnrnrg′(r) on (0,∞) and U is uniform
on the unit Euclidean ball, where vn stands for the volume of the unit Euclidean ball.

Proof. Let ur(x) = v−1
n r−n1|x|≤r be the density of rU . We have

g(|x|) =

∫ ∞

|x|
(−g′(r))dr =

∫ ∞

0
1{|x|≤r}(−g′(r))dr =

∫ ∞

0
ur(x)(−vnrng′(r))dr.

In fact we have proved the following theorem.
We have the following theorem.

Theorem 14. Let X1, . . . , Xn be independent ultra sub-Gaussian random vectors (e.g. random vectors
uniform of centered Euclidean spheres or centered Euclidean balls). Then S = X1 + . . .+Xn satisfies

(E|S|p)1/p ≤ (E∥G∥p)1/p

(E∥G∥q)1/q
(E|S|q)1/q, p > q even integers.

1.7 Haagerup’s work

Here we are going to present basic ideas from Haagerup’s paper [33]. Unfortunately, certain technical
parts are too complicated to present them here.
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1.7.1 Fourier transform

A simple change of variables s = xt together with computation of certain explicit integrals leads to
the formulas

|x|p =

{
Cp

∫∞
0

1−cos(xt)
tp+1 dt p ∈ (0, 2)

(−Cp)
∫∞
0

cos(xt)−1+ 1
2
x2t2

tp+1 dt p ∈ (2, 4)
, Cp =

2

π
sin
(pπ

2

)
Γ(p+ 1)

Note that the expression changes as we go with p above 2 in order to make the integral convergent. If
X is a symmetric real random variable then its characteristic function is

ϕX(t) = EeitX =
1

2
EeitX +

1

2
Ee−itX = E cos(Xt).

Therefore, we get the formulas

E|X|p =

{
Cp

∫∞
0

1−ϕX(t)
tp+1 dt p ∈ (0, 2)

(−Cp)
∫∞
0

ϕX(t)−1+ 1
2
EX2t2

tp+1 dt p ∈ (2, 4)
, Cp =

2

π
sin
(pπ

2

)
Γ(p+ 1)

Let us now take X = S =
∑n

k=1 akεk and assume that
∑n

k=1 a
2
k = 1. Then by independence

ϕX(t) =
∏
k=1

Eeitakεk =
n∏

k=1

cos(akt).

By concavity of the logarithm we have

xp11 . . . xpnn ≤ p1x1 + . . .+ pnxn, x1, . . . , xn, p1, . . . , pn ≥ 0, p1 + . . .+ pn = 1.

or taking yk = xpkk

y1 . . . yn ≤ p1y
1
p1
1 + . . .+ pny

1
pn
n , x1, . . . , xn, p1, . . . , pn ≥ 0, p1 + . . .+ pn = 1.

Thus

ϕX(t) ≤
n∏

k=1

| cos(akt)| ≤
n∑

k=1

a2k| cos(akt)|
1

a2
k .

Let us define the following function

Fp(s) =

 Cp

∫∞
0

1−| cos( t√
s
)|s

tp+1 dt p ∈ (0, 2)

(−Cp)
∫∞
0

| cos( t√
s
)|s−1+ 1

2
t2

tp+1 dt p ∈ (2, 4)
, Cp =

2

π
sin
(pπ

2

)
Γ(p+ 1)

Note that for p ∈ (0, 2) we get

E|X|p = Cp

∫ ∞

0

1 − ϕX(t)

tp+1
dt ≥ Cp

∫ ∞

0

1 −
∑n

k=1 a
2
k| cos(akt)|

1

a2
k

tp+1
dt

= Cp

∫ ∞

0

∑n
k=1 a

2
k

(
1 − | cos(akt)|

1

a2
k

)
tp+1

dt =
n∑

k=1

a2kF (a−2
k ).

Since (−Cp) > 0 for p ∈ (2, 4), in exactly the same way for p ∈ (2, 4) we get

E|X|p ≤
n∑

k=1

a2kFp(a
−2
k ).

11



1.7.2 Constant C2,1

It turns out that the function F1 is explicitly computable. We have

F1(s) =
1

π
√
s

∫ ∞

−∞

1 − | cos t|s

t2
dt =

1

π
√
s

∞∑
n=−∞

∫ π
2

−π
2

1 − (cos t)s

(t+ nπ)2
dt.

Now, 1
sin2 t

=
∑∞

n=−∞
1

(t+nπ)2
. Therefore

F1(s) =
1

π
√
s

∫ π
2

−π
2

1 − (cos t)s

sin2 t
dt =

2

π
√
s

∫ π
2

0

1 − (cos t)s

sin2 t
dt

Note that∫ π
2

0
(1 − (cos t)s)

(
− 1

tg t

)′
dt =

∫ π
2

0

s(cos t)s−1 sin t

tg t
dt = s

∫ π
2

0
(cos t)sdt =

√
π

Γ
(
s+1
2

)
Γ
(
s
2

) ,

since the boundary terms vanish by computing an appropriate limit. Hence

F1(s) =
2√
πs

Γ
(
s+1
2

)
Γ
(
s
2

) .

We now claim that F1(s) is increasing. Using Γ(x+ 1) = xΓ(x) one gets

F1(s+ 2) =

√
s

s+ 2
· s+ 1

s
F1(s) =

(
1 − 1

(s+ 1)2

)− 1
2

F1(s).

and by iterating

F (s+ 2n) = F1(s)

n−1∏
k=0

(
1 − 1

(s+ 2k + 1)2

)− 1
2

.

Taking the limit n→ ∞ the left hand side converges to
√

2/π and therefore

F1(s) =

√
2

π

∞∏
k=0

(
1 − 1

(s+ 2k + 1)2

) 1
2

.

Suppose now that |ak| ≤ 1√
2

for all k. Then

E|X| ≤
n∑

k=1

a2kF1(a
−2
k ) ≥

n∑
k=1

a2kF1(2) = F1(2) =
1√
2
.

If for some j we have |aj | ≥ 1√
2
, then

E|X| = E

∣∣∣∣∣
n∑

k=1

akεk

∣∣∣∣∣ = E

∣∣∣∣∣
n∑

k=1

akεkεj

∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
k=1

akEεkεj

∣∣∣∣∣ = |aj | ≥
1√
2
.

This proves that C2,1 =
√

2.

1.7.3 Constants C2,q for q ∈ (0, 2)

Case q0 ≤ q < 2 and ∀k |ak| ≤ 1√
2
. In this case a technical argument (simplified in [68]) shows that

Fq(s) ≥ Fp(∞) for s ≥ 2. Therefore

E|X|q ≥
n∑

k=1

a2kFq(a
−2
k ) ≥

n∑
k=1

a2kFq(∞) = Fq(∞) = E|G|q.
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Case q0 ≤ q < 2 and ∃k |ak| ≥ 1√
2
. Let Aq = C−q

2,q . By homogeneity we can assume that a1 = 1 and
want to prove

E|1 + a2ε2 + . . .+ anεn|q ≥ Aq(1 + a22 + . . .+ a2n)
q
2 .

We shall proceed by induction and strengthen induction hypothesis to

E|1 + a2ε2 + . . .+ anεn|q ≥ AqΦq(a
2
2 + . . .+ a2n),

where

Φq(x) =

{
ϕq(x) x ≥ 1
2ϕq(1) − ϕq(2 − x) x ∈ [0, 1]

, ϕq(x) = (1 + x)
q
2

In other words Φq on [0, 1] is obtained by reflecting the graph of ϕq with respect to (1, ϕq(1)). It is
not hard to prove that

Φq(x) ≥ ϕq(x), and Φq

(
x+ y

2

)
≤ Φq(x) + Φq(y)

2
, x, y ≥ 0,

x+ y

2
≤ 1.

Let x = a22 + . . . + a2n. Suppose that a1 = 1 is not the largest coefficient. Then x ≥ 1 and thus the
inequality reduces to its homogeneous version

E|1 + a2ε2 + . . .+ anεn|q ≥ Aq(1 + a22 + . . .+ a2n)
q
2 ,

This is
E|ε1 + a2ε2 + . . .+ anεn|q ≥ Aq(1 + a22 + . . .+ a2n)

q
2 ,

which by dividing by the largest ak and enumerating becomes an inequality of the form

E|1 + b2ε2 + . . .+ bnεn|q ≥ Aq(1 + b22 + . . .+ b2n)
q
2

with 1 being the largest coefficient. This is weaker than

E|1 + b2ε2 + . . .+ bnεn|q ≥ AqΦq(b
2
2 + . . .+ b2n)

with all 0 ≤ bk ≤ 1 and therefore we can assume that a1 = 1 is the largest coefficient.
Under this assumption, if x ≥ 1, then we are in the case maxk a

2
k ≤ 1 ≤ 1+x

2 = 1
2

∑n
k=1 a

2
k and

moreover Φp = ϕp, thus we are in the case established previously.
Finally if x ≤ 1 and n ≥ 3, then introduce notation x± = a22 + . . . a2n−2 + (an−1 ± an)2. Then by

induction hypothesis

E|1 + a2ε2 + . . .+ anεn|q =
1

2
E|1 + a2ε2 + . . .+ an−2εn−2 + (an−1 + an)εn−1|q

+
1

2
E|1 + a2ε2 + . . .+ an−2εn−2 + (an−1 − an)εn−1|q

≥ Φq(x+) + Φq(x−)

2
≥ Φq

(
x+ + x−

2

)
= Φq(x),

since 1
2(x+ + x−) = x ≤ 1.

Case 0 < q < q0. Let us now observe that by (3) with q < q0 < 2 we get

E|X|q ≥ (E|X|q0)
2−q
2−q0 ≥ (E|G|q0)

2−q
2−q0 = E

∣∣∣∣r1 + r2√
2

∣∣∣∣q ,
where the second inequality follows from the previous cases.
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1.7.4 Constants Cp,2 for p ∈ (2, 3)

This case relies on a very technical proof (see a simplification in [63]) of the fact that Fp(s) ≤ Fp(∞)
for s ≥

√
2, which shows that

E|X|p ≤
n∑

k=1

a2kFp(a
−2
k ) ≤

n∑
k=1

a2kFp(∞) = F (∞) = E|G|p,

which shows the inequality when |ak| ≤ 2−1/4 for all k. Now, if for some k one has |ak| ≥ 2−1/4, then
as we have seen at the very beginning, E|X|4 = 3 − 2

∑n
k=1 a

4
k ≤ 2 and therefore

(E|X|p)2 ≤ (E|X|2)4−p(EX4)p−2 ≤ 2p−2 ≤ (E|G|p)2,

where the last inequality is straightforward to check.

1.8 Bibliographical notes

Let us now briefly discuss the state of the art for the above classical Khintchine inequality (1). The
inequality was first considered a century ago in [40] by Khintchine in his study of the law of the
iterated logarithm and independently by Littlewood [53] in 1930. By monotonicity of moments we
easily see that Cp,q = 1 for p ≤ q. The best constants Cp,q are known when one of the numbers p, q
equals 2, in which case one of the sides of the inequality has a simple form. The optimal constant Cp,2

for p > 2 equals γp/γ2, where γp = (E|G|p)1/p for G ∼ N (0, 1). The equality holds asymptotically
when ai = n−1/2 and n→ ∞. For the constant C2,q with q ∈ (0, 2) a phase transition occurs, namely
there is q0 ∈ (1, 2) such that for q0 ≤ q ≤ 2 one has C2,q = γ2/γq, whereas for 0 < q ≤ q0 we have

C2,q = 2
1
q
− 1

2 , in which case equality holds for n = 2 and a1 = a2 = 1. In fact q0 is the solution to the

equation Γ( q+1
2 ) =

√
π
2 , q0 ≈ 1.84742. The constant Cp,2 for p even was found by Khintchine himself

in [40], whereas the constant Cp,2 for p ≥ 3 was established by Whittle in [83] and independently by
Young in [84] who was not aware of Whittle’s work. Szarek in [80] showed that optimal C2,1 equals

√
2,

answering the question of Littlewood from [53]. The remaining constants Cp,2 for p ∈ (2, 3) and C2,q

for q ∈ (0, 2) \ {1} were found by Haagerup in his celebrated work [33] using Fourier methods, see also
the article [68] of Nazarov and Podkorytov for a simpler proof for C2,q and the article [63] of Mordhorst
for a simpler proof in the case Cp,2 with p ∈ (2, 3), based on the idea of Nazarov and Podkorytov. In
the case of even p, q with p divisible by q the best constants were obtained by Czerwiński in [21]. In
[65] the optimal constants Cp,q for all even numbers p > q > 0 were found, see also a recent work [35]
for an alternative proof.

In fact for p ≥ 3 a much stronger control on the p-th moments is available. If the vector (a21, . . . , a
2
n)

majorizes (b21, . . . , b
2
n) in the Schur order, then for p ≥ 3 we have E|

∑n
i=1 biεi|p ≤ E|

∑n
i=1 aiεi|p. This

was proved by Eaton and Komorowski in [22] and [45] (Komorowski checked Eaton’s condition derived
for general function Φ in place of |x|p). Pinelis showed in [71] that for even Φ with Φ′′ convex one
has EΦ(

∑n
i=1 aiεi) ≤ EΦ(

∑n
i=1 aiXi) for any symmetric variance one independent random variables

Xi. This was also independently proved in [28]. Taking Φ(x) = |x|p for p ≥ 3 and Xi ∼ N (0, 1) gives
Cp,3 = γp.

2 Projections of Bn
p and Khinchine inequalities

Let us define
Bn

p = {(x1, . . . , xn) ∈ Rn : |x1|p + . . .+ |xn|p ≤ 1},

which is the unit ball in the ℓnp norm ∥x∥p = (
∑n

i=1 |xi|p)1/p for p ≥ 1. When p = ∞ one defines
∥x∥∞ = maxk=1,...,n |xk| and thus Bn

∞ = [−1, 1]n is the cube. In this section we shall discuss the
problem of finding orthogonal projections of Bn

p onto codimension one hyperplanes having maximal

and minimal (n− 1)-dimensional volume. By Hk we shall denote (1, . . . , 1, 0, . . . , 0)⊥ with k ones.

14



2.1 Projections of convex polytopes

Suppose we are give a convex polytope P in Rn and we want to project it onto a hyperplane a⊥, where
a is some unit vector. It is easy to derive a formula for the volume of such a projection. Let FP be the
set of faces of P . If F ∈ FP then |Proja⊥ F | = |F | · | ⟨a, n(F )⟩ |, where n(F ) is the unit normal vector
to F . Note that in Proja⊥ P every point is covered two times, so one gets the following expression for
the volume of projection

|Proja⊥ P | =
1

2

∑
F∈FP

|F | · | ⟨a, n(F )⟩ |.

Note that for p = ∞ the normal vectors are the standard basis vectors ±ei and therefore one gets the
formula

|Proja⊥ P | = 2n−1
∑
i=1

|ai|

Since by Cauchy-Schwarz

1 =
∑
i=1

a2i ≤
∑
i=1

|ai| ≤
√
n

(
n∑

i=1

a2i

)1/2

=
√
n,

the maximal projection is given by Hn and minimal by H1.

2.2 Projections of Bn
1

We shall consider a more delicate example of Bn
1 = {|x1|+ . . .+ |xn| ≤ 1}. It is not hard to see that the

boundary ∂Bn
1 consists of 2n faces of equal volume. These faces can be indexed by sequences of signs

ε = (ε1, . . . , εn) ∈ {−1, 1}n. The face Fε is contained in the affine hyperplanes ε1x1 + . . . εnxn = 1
and n(Fε) = n−1/2(ε1, . . . , εn). Thus one gets

|Proja⊥ B
n
1 | = Cn

∑
ε∈{−1,1}n

| ⟨ε, a⟩ | (4)

One can determine Cn plugging in a = e1. Let us rewrite our equality in a probabilistic form.
Let r1, . . . , rn be i.i.d. symmetric Bernoulli random variables, namely P (ri = ±1) = 1

2 . Since for
a = (a1, . . . , an) one has

∑
ε∈{−1,1}n | ⟨ε, a⟩ | = 2nE|

∑n
i=1 airi|, we get

|Proja⊥ B
n
1 | = 2nCnE

∣∣∣∣∣
n∑

i=1

airi

∣∣∣∣∣ .
Recall that we assume here that a is a unit vector. This gives a constraint on the second moment
E|
∑n

i=1 airi|2 = 1. We see that finding extremal projections of Bn
1 is equivalent to finding best

constants in the corresponding Khinchine inequality. The maximal projection is therefore given by
H1 and minimal by H2 by Szarek’s inequality.

2.3 General formula for projections

Let σK be the normalized surface area measure on ∂K and let S be the not normalized surface are
measure, that is S(A) = |∂K∩A| and σK(A) = |∂K∩A|/|∂K|. Let µK be the normalized cone volume
measure, that is, for A ⊆ ∂K let µK(A) = | conv({0} ∪ A)|/|K|. Let C denote its not normalized
version.

We say that K is a convex body if K is convex, compact and has non empty interior. With every
symmetric convex body K we can associate a norm ∥x∥K = min{t ≥ 0 : x ∈ tK}. We have the
following lemma due to Noar and Romik, see [64].

Lemma 15. If K is a symmetric convex body then σK is absolutely continuous with respect to µK
and for almost all x ∈ ∂K one has

dσK
dµK

(x) =
n|K|
|∂K|

|∇(∥ · ∥K)(x)|.
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Sketch of the proof. For points x such that x is perpendicular to the surface of K one has |x| ·dS(x) =
ndC(x). If the angel between the surface and x is α, then | cosα|·|x|·dS(x) = ndC(x). We clearly have
| cosα| = | ⟨n(x), x/|x|⟩ |. Let z = ∇∥ · ∥K(x). If x ∈ ∂K then 1 + ε = ∥x+ εx∥K ≈ ∥x∥K + ε ⟨z, x⟩ =
1 + ε ⟨z, x⟩, which gives ⟨z, x⟩ = 1. Also, z is a vector perpendicular to ∂K. Thus n(x) = z/|z|. We
obtain

| cosα| =
1

|x|
· | ⟨n(x), x⟩ | =

| ⟨z, x⟩ |
|x| · |z|

.

This gives
|∂K|dσK(x)

|∇∥ · ∥K(x)|
=

dS(x)

|∇∥ · ∥K(x)|
=

| ⟨z, x⟩ |
|z|

dS(x) = ndC(x) = n|K|dµK(x).

The usual Cauchy formula for the volume of projection (explained at the beginning for polytopes)
can be written as

|Proja⊥ K| =
1

2
|∂K|

∫
∂K

| ⟨n(x), a⟩ |dσK(x).

From Lemma 15 we therefore get

|Proja⊥ K| =
n

2
|K|

∫
∂K

| ⟨(∇∥ · ∥K)(x), a⟩ |dµK(x),

since (∇∥ · ∥K)(x) = n(x)|(∇∥ · ∥K)(x)|.

2.4 Probabilistic formula for projections of Bn
p

According to our formula we get

|Proja⊥ B
n
p | = C(p, n)

∫
∂Bn

p

∣∣∣∣∣
n∑

i=1

ai|xi|p−1 sgn(xi)

∣∣∣∣∣ dµBn
p
(x). (5)

The cone volume measure µBn
p

enjoys a probabilistic representation in terms of i.i.d. random
variables, discovered by Rachev and Rüschendorf in [75] and independently by Schechtman and Zinn
in [79]. Let us formulate a generalization of these results discussed in [74].

Lemma 16. Let K be a symmetric convex body and let Z be any random vector in Rn with density
of the form f(∥x∥K) for some continuous f : [0,∞) → [0,∞). Let U be a random variable uniform in
[0, 1], independent of Z. Then

(a) Z
∥Z∥K has distribution µK and U1/n Z

∥Z∥K is uniformly distributed on K,

(b) Z
∥Z∥K and ∥Z∥K are independent.

In particular, for K = Bn
p one can take Z = (Y1, . . . , Yn) where Yi are i.i.d. random variables having

densities (2Γ(1 + 1
p))−1e−|t|p.

Proof. We first claim that for any integrable h : Rn → R the following identity holds∫
h = n|K|

∫ ∞

0
rn−1

∫
∂K

h(rz)dµK(z)dr. (6)

To show it one can assume that h = 1A, where A = [a, b] ·A0, where A0 ⊂ ∂K, as these sets generate
the sigma algebra of Borel sets in Rn. For z ∈ ∂K and r > 0 we then have h(rz) = 1[a,b](r)1A0(z).
Thus (6) reduces to

|A| = |K|
(∫ b

a
nrn−1dr

)
µK(A0) = |K|(bn − an)µK(A0) = |[a, b]A0| (7)
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and is therefore true. Now, let us notice that for ϕ : Rn → R and ψ : R → R we have

E
[
ϕ

(
Z

∥Z∥K

)
ψ(∥Z∥K)

]
=

∫
Rn

ϕ

(
x

∥x∥K

)
ψ(∥x∥K)f(∥x∥K)dx

= n|K|
∫ ∞

0
ψ(r)f(r)rn−1dr

∫
∂K

ϕ(z)dµK(z).

Taking ϕ, ψ ≡ 1 we learn that n|K|
∫∞
0 f(r)rn−1dr = 1. Thus taking ψ ≡ and next ϕ ≡ 1 we arrive at

E
[
ϕ

(
Z

∥Z∥K

)]
=

∫
∂K

ϕ(z)dµK(z), E [ψ(∥Z∥K)] = n|K|
∫ ∞

0
ψ(r)f(r)rn−1dr.

The first equation shows that Z
∥Z∥K has distribution µK . Moreover, we get

E
[
ϕ

(
Z

∥Z∥K

)
ψ(∥Z∥K)

]
= E

[
ϕ

(
Z

∥Z∥K

)]
E [ψ(∥Z∥K)] ,

which shows (b). Finally (7) to gether with the fact that U1/n has density nrn−1 on [0, 1] shows that

|A|
|K|

= P
(
U1/n ∈ [a, b]

)
P
(

Z

∥Z∥K
∈ A0

)
= P

(
U1/n Z

∥Z∥K
∈ A

)
,

which shows the second part of point (a).

We can now prove the probabilistic formula for the volume of hyperplane projection of Bn
p .

Lemma 17. For p > 1 and every unit vector a ∈ Rn, we then have

voln−1(Proja⊥(Bn
p )) =

voln−1(B
n−1
p )

E|X1|
E

∣∣∣∣∣∣
n∑

j=1

ajXj

∣∣∣∣∣∣ , (8)

where here X1, . . . , Xn are i.i.d. random variables with density

fp(x) =
p

2(p− 1)Γ(1/p)
|x|

2−p
p−1 e−|x|

p
p−1

.

Proof. By (5) and Lemma 16 (a) for some constant cp,n we have

voln−1(Proja⊥ B
n
p ) = C(p, n)E

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣YiS
∣∣∣∣p−1

sgn

(
Yi
S

)∣∣∣∣∣ = C(p, n) · ES
p−1

ESp−1
· E

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣YiS
∣∣∣∣p−1

sgn (Yi)

∣∣∣∣∣
=
C(p, n)

ESp−1
· E

∣∣∣∣∣
n∑

i=1

ai |Yi|p−1 sgn (Yi)

∣∣∣∣∣ .
It now suffices to observe that Xi = |Yi|p−1 sgn (Yi) for p > 1 have densities fp. We then compute Cp,n

by taking a = e1.

2.5 Choquet order

We say that µ ≺ ν in the (symmetric) Choquet order if for any even convex function ϕ : Rn → [0,∞]
one has

∫
ϕ dµ ≤

∫
ϕ dν. We have the following simple lemma.

Lemma 18. Suppose µ ≺ ν are symmetric measures on Rk. Then for any even symmetric measure
λ on Rl one has µ⊗ λ ≺ ν ⊗ λ. In particular µ⊗n ≺ u⊗n.
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Proof. We have to show that∫
Rk+l

ϕ(x, y)dµ(x)dλ(y) ≤
∫
Rk+l

ϕ(x, y)dν(x)dλ(y).

In suffices to use the definition of Choquet order for µ and ν with ϕ̃(x) =
∫
Rl ϕ(x, y)dλ(y). This

function is even since

ϕ̃(−x) =

∫
Rl

ϕ(−x, y)dλ(y) =

∫
Rl

ϕ(x,−y)dλ(y) =

∫
Rl

ϕ(x, y)dλ(y) = ϕ̃(x),

since λ is symmetric.

We now provide a sufficient condition for µ to be smaller than ν in the Choquet order, on the real
line.

Lemma 19. Suppose f, g : R → [0,∞) are even probability densities satisfying
∫
|t|f(t)dt =

∫
|t|g(t)dt <

∞. Assume moreover that there are 0 < x < y such that {t ≥ 0 : g(t) < f(t)} = (x, y). Then the
measures µ, ν with densities f, g satisfy µ ≺ ν.

Proof. It suffices to prove that for any convex ϕ : [0,∞) → [0,∞] one has
∫
ϕ(t)f(t)dt ≤

∫
ϕ(t)g(t)dt.

Equivalently ∫
(ϕ(t) − (at+ b))(g(t) − f(t))dt ≥ 0,

where a, b are arbitrary real numbers. Let ψ(t) = ϕ(t) − (at + b). Choose a, b in such a way that
ψ(x) = ψ(y) = 0. Note that ψ is convex and thus ψ(t) ≤ 0 on [x, y] and ψ(t) ≥ 0 on [0, x]∪ [y,∞). In
other words ψ(g − f) is non-negative on [0,∞).

2.6 Largest projections for p ∈ [1, 2]

We shall show the inequality E|
∑n

i=1 aiX
(p)
i | ≤ E|X(p)

i |, where Xi are i.i.d. with densities fp. This
shows the inequality

|Proja⊥ B
n
p | ≤ |Proj(1,0,...,0)⊥ B

n
p |.

In fact we shall prove that for 1 ≤ p ≤ q ≤ ∞ one has

E|
∑n

i=1 aiX
(p)
i |

E|X(p)
1 |

≤
E|
∑n

i=1 aiX
(q)
i |

E|X(q)
1 |

and use it with q = 2, in which case fq is Gaussian and the right hand side is 1 (the sum of independent
Gaussian random variables is again Gaussian).

Let us introduce Y
(p)
i = X

(p)
i /E|X(p)

i |. Then E|Y (p)
i | = E|Y (q)

i | = 1. Our goal is to prove that

E

∣∣∣∣∣
n∑

i=1

aiY
(p)
i

∣∣∣∣∣ ≤ E

∣∣∣∣∣
n∑

i=1

aiY
(q)
i

∣∣∣∣∣ .
Since ϕ(x) = |

∑n
i=1 aixi| is symmetric and convex, it suffices to show that L(Y

(p)
i ) ≺ L(Y

(q)
i ) and

use Lemma 18. In order to show that L(Y
(p)
i ) ≺ L(Y

(q)
i ) we shall use Lemma 4. To this end one has

to check that the densities f̃p and f̃q of these random variables intersect in exactly two points and
that f̃q > f̃p near the origin (which is clear from the asymptotics). The fact that these two functions
intersect in at least two points follows from the next lemma. Below we don’t give a precise definition
of the number of sign change points as we shall use this notion only in very simple situations, where
the meaning of this terms is clear.

Lemma 20. Let k, n ≥ 1 be integers and let g : R → R be measurable. Suppose that g changes sign
at exactly k points. Assume moreover that

∫
R x

jg(x)dx = 0 for all j = 0, 1, . . . , n− 1. Then k ≥ n.
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Proof. We prove the lemma by contradiction. Assume that k ≤ n − 1. Let x1 < x2 < . . . < xk be
the sign change points of g. From our assumption, for every polynomial P of degree at most n − 1
one has

∫
Pg = 0. Let us take P (x) = (x − x1) . . . (x − xk) and h = Pg. We have

∫
h = 0. On the

other hand, h does not change sign since P changes sign exactly at the same points as g. Since h is
not identically zero, we get

∫
h ̸= 0, contradiction.

Using this lemma and the fact that
∫∞
0 tifp(t)dt =

∫∞
0 tifq(t)dt for i = 0, 1, we get that fp and fq

intersect in at least 2 points. We have

f̃p(t) = c1t
α1e−(t/d1)β1 , f̃q(t) = c2t

α2e−(t/d2)β2 ,

where α1 > α2 and β1 > β2.
The equation fp(t) = fq(t) on (0,∞) is of the form

w(t) := c+ (α1 − α2) log t+

(
t

d2

)β2

−
(
t

d1

)β1

= 0.

We have

v(t) := tw′(t) = α1 − α2 + β2

(
t

d2

)β2

− β1

(
t

d1

)β1

.

The inequality v′(t) ≥ 0 is equivalent to tβ2−β1 ≥ β21d
β2
2 β

−2
2 d−β1

1 , which holds on some interval [0, z].
Thus v is first increasing and then decreasing. Since v(0) > 0, v can have at most one root. By Roll’s
theorem w can have at most two roots.

In fact we have proved the following corollary.

Corollary 21. Let 1 ≤ p ≤ q ≤ ∞ and let a be a unit vector in Rn. Then

|Proja⊥ B
n
p |

|Bn−1
p |

≤
|Proja⊥ B

n
q |

|Bn−1
q |

.

2.7 Gaussian mixtures

We shall need the following definition.

Definition 4. A random variable X is called a (centered) Gaussian mixture if there exists a positive
random variable R and a standard Gaussian random variable Z, independent of R, such that X has
the same distribution as the product RZ.

For example, a random variable X with density of the form

f(x) =

m∑
j=1

pj
1√

2πσj
e
− x2

2σ2
j ,

where pj , σj > 0 are such that
∑m

j=1 pj = 1, is a Gaussian mixture corresponding to the discrete
random variable R with P(R = σj) = pj .

Recall that an infinitely differentiable function g : (0,∞) → R is called completely monotonic if
(−1)ng(n)(x) ≥ 0 for all x > 0 and n ≥ 0, where for n ≥ 1 we denote by g(n) the n-th derivative of g
and g(0) = g. A classical theorem of Bernstein asserts that g is completely monotonic if and only if it
is the Laplace transform of some measure, i.e. there exists a non-negative Borel measure µ on [0,∞)
such that

f(x) =

∫ ∞

0
e−txdµ(t), x > 0. (9)

Bernstein’s theorem implies the following equivalence.

Lemma 22. A symmetric random variable X with density f is a Gaussian mixture if and only if the
function x 7→ f(

√
x) is completely monotonic for x > 0.
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Proof. Let X be a Gaussian mixture RZ, where R is positive and Z is an independent standard
Gaussian random variable. Denote by ν the law of R. Clearly X is symmetric. Furthermore,

P(X ∈ A) = P(RZ ∈ A) =

∫ ∞

0
P(rZ ∈ A)dν(r) =

∫
A

∫ ∞

0

1√
2πr

e−
x2

2r2 dν(r)dx. (10)

This implies that X has a density

f(x) =
1√
2π

∫ ∞

0
e−

x2

2r2
dν(r)

r
. (11)

Thus, f(
√
x) is completely monotonic.

Now, for the converse, let X be a symmetric random variable with density f such that the function
x 7→ f(

√
x) is completely monotonic. By Bernstein’s theorem, there exists a non-negative Borel

measure µ supported on [0,∞) such that

f(
√
x) =

∫ ∞

0
e−txdµ(t), for every x > 0 (12)

or, equivalently, f(x) =
∫∞
0 e−tx2

dµ(t) for every x ∈ R. Notice that µ({0}) = 0, because otherwise f
would not be integrable. Now, for a subset A ⊆ R we have

P(X ∈ A) =

∫
A

∫ ∞

0
e−tx2

dµ(t)dx =

∫ ∞

0

∫
A
e−tx2

dxdµ(t)

=

∫ ∞

0

∫
√
2tA

1√
2π
e−x2/2dx

√
π

t
dµ(t) =

∫ ∞

0
γn(

√
2tA)dν(t),

where dν(t) =
√

π
t dµ(t). In particular, choosing A = R, we deduce that ν is a probability measure

supported on (0,∞). Let V be a random variable distributed according to ν. Clearly V is positive
almost surely. Define R = 1√

2V
and let Z be a standard Gaussian random variable, independent of R.

Then

P(RZ ∈ A) = P
(

1√
2V

· Z ∈ A

)
=

∫ ∞

0
γn(

√
2tA)dν(t) = P(X ∈ A),

that is, X has the same distribution as RZ.

The following simple lemma allows us to construct completely monotonic function.

Lemma 23. The following holds true:

(a) If g is a completely monotonic function on (0,∞) and h is positive and has a completely mono-
tonic derivative on (0,∞), then g ◦ h is also completely monotonic on (0,∞).

(b) If f, g are completely monotonic on (0,∞), then fg is also completely monotonic.

(c) The densities cpe
−|t|p are Gaussian mixtures for p ∈ (0, 2]. Also fp is the density of a Gaussian

mixture for p ≥ 2.

2.8 Extremal projections for p ≥ 2

The following lemma is crucial.

Lemma 24. Suppose X1, . . . , Xn are i.i.d. Gaussian mixtures and let Φ : R → R be even and such
that Ψ(x) = Φ(

√
x) is convex on [0,∞). Then

(a21, . . . , a
2
n) ⪯ (b21, . . . , b

2
n) =⇒ EΦ

(
n∑

i=1

aiXi

)
≤ EΦ

(
n∑

i=1

biXi

)
.

If Ψ(x) is concave then the inequality is reversed.
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Proof. Observe that Xi = RiZi for some independent Ri > 0 and Zi ∼ N (0, 1). Thus

n∑
i=1

aiXi =
n∑

i=1

aiRiZi ∼

(
n∑

i=1

a2iR
2
i

)1/2

Z1.

We therefore have

EΦ

(
n∑

i=1

aiXi

)
= EΨ

(
Z2
1

n∑
i=1

a2iR
2
i

)
,

which is clearly a permutation symmetric and convex function of (a21, . . . , a
2
n) and thus is Schur convex,

which finishes the proof of the lemma.

Recall that

|Proja⊥ B
n
p | = C1(p, n) · E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ .
From the last section we know that Xi are Gaussian mixtures. Thus, using the above lemma with
Φ(x) = |x|, we get the following theorem.

Theorem 25. Fix p ∈ (2,∞]. For two unit vectors a = (a1, . . . , an), b = (b1, . . . , bn) in Rn we have

(a21, . . . , a
2
n) ⪯ (b21, . . . , b

2
n) =⇒ |Proja⊥ B

n
p | ≥ |Projb⊥ B

n
p |.

In particular for any a ∈ Sn−1 we have

|Proj(1,0,...,0)⊥ B
n
p | ≤ |Proja⊥ B

n
p | ≤ |Projn−1/2(1,...,1)⊥ B

n
p |.

3 Extremal sections of Bn
p

We now turn to the dual question of finding extremal values of |Bn
p ∩ a⊥| for a ̸= 0.

3.1 Formula via negative moments

We are going to follow the idea of Kalton and Koldobsky. We begin with the following simple lemma.

Lemma 26. Suppose X is a real random variable with continuous bounded density f . Then

f(0) = lim
q→1−

1 − q

2
· E|X|−q.

Proof. Our goal is to show that f(0) = limq→1−
1−q
2 ·

∫
R |x|−qf(x)dx. Fix ε > 0 and δ > 0 such that

for |x| ≤ δ one has f(0) − ε ≤ f(x) ≤ f(0) + ε. There exists a constant M such that for |x| ≥ M we
have f(x) = 0. We first observe that

1 − q

2
·
∫
|x|>δ

|x|−qf(x)dx ≤ 1 − q

2
δ−q −−−−→

q→1−
0.

Moreover

(f(0) − ε)δ1−q ≤ 1 − q

2
·
∫
|x|≤δ

|x|−qf(x)dx ≤ (f(0) + ε)δ1−q

Taking q → 1− we therefore arrive at

f(0) − ε ≤ lim inf
q→1−

1 − q

2
·
∫
R
|x|−qf(x)dx ≤ lim sup

q→1−

1 − q

2
·
∫
R
|x|−qf(x)dx ≤ f(0) + ε.

Taking ε→ 0+ gives the result.
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Now suppose that X is uniform on some convex body K with |K| = 1. For a unit vector a let us
consider the section function

fa(t) = |K ∩ (a⊥ + ta)|

Clearly ∫ ∞

s
fa(t)dt = |K ∩ {⟨x, a⟩ ≥ s}| = P (⟨X, a⟩ ≥ s)

and thus fa is the density of ⟨a,X⟩. Therefore

|K ∩ a⊥| = fa(0) = lim
q→1−

1 − q

2
E |⟨X, a⟩|−q .

As for the case of projections, using X ∼ Y
S U

1/n, where S = ∥Y ∥p and Y = (Y1, . . . , Yn) with Yi i.i.d.

with densities cpe
−|t|p , we get

E| ⟨X, a⟩ |−q = EU− q
nE| ⟨Y/S, a⟩ |−q = EU− q

n · ES
−q

ES−q
E| ⟨Y/S, a⟩ |−q

=
EU− q

n

ES−q
E| ⟨Y, a⟩ |−q = cp,q,nE| ⟨Y, a⟩ |−q

Therefore

|Bn
p ∩ a⊥| = fa(0) = lim

q→1−
cp,q,n

1 − q

2
E

∣∣∣∣∣
n∑

i=1

aiYi

∣∣∣∣∣
−q

.

3.2 Gaussian mixture case

If p ∈ (1, 2) then Yi are Gaussian mixtures, Yi ∼ RiGi. Thus

n∑
i=1

aiYi ∼

(
n∑

i=1

a2iR
2
i

)1/2

G1.

Since limq→1−
1−q
2 E|G1|−q = 1√

2π
by Lemma 26, we get

|Bn
p ∩ a⊥| = lim

q→1−
cp,q,n(1 − q)E|G1|−qE

∣∣∣∣∣
n∑

i=1

a2iR
2
i

∣∣∣∣∣
− q

2

=

√
2

π
cp,1,n E

∣∣∣∣∣
n∑

i=1

a2iR
2
i

∣∣∣∣∣
− 1

2

.

According to Lemma 24 we get the following theorem.

Theorem 27. Let p ∈ [1, 2] and let (a21, . . . , a
2
n) ≺ (b21, . . . , b

2
n) for unit vectors a, b. Then |Bn

p ∩ a⊥| ≤
|Bn

p ∩ b⊥|. In particular
|Bn

p ∩Hn| ≤ |Bn
p ∩ a≺| ≤ |Bn

p ∩H1|.

3.3 Case p > 2

3.3.1 Minimal sections of the cube

According to Lemma 13 we can always write Yi ∼ RiUi, where Ui are uniform on [−1, 1] and Ri ∼
cpx

pe−xp
. Thus

|Bn
p ∩ a⊥| = lim

q→1−
cp,q,n(1 − q)E

∣∣∣∣∣
n∑

i=1

aiRiUi

∣∣∣∣∣
−q

Let us prove the following lemma.

Lemma 28 (Archimedes-König-Kwapień formula). Let U1, . . . , Un be i.i.d. uniform on [−1, 1] and
let ξ1, . . . , ξn be i.i.d. uniform on the unit Euclidean ball S2 in R3. Then

(1 − q)E
∣∣∣ n∑
i=1

xiUi

∣∣∣−q
= E

∣∣∣ n∑
i=1

xiξi

∣∣∣−q
.
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Proof. Due to the Archimedes hat-box theorem for any unit vector θ ∈ R3 we have ⟨ξi, θ⟩ ∼ Ui.
Moreover for v ∈ R3 and θ uniform on S2 we have

Eθ| ⟨v, θ⟩ |−q = |v|−q · 1

2

∫ 1

−1
|x|−qdx =

1

1 − q
|v|−q.

We get

1

1 − q
E
∣∣∣ n∑
i=1

xiξi

∣∣∣−q
= Eξ,θ

∣∣∣〈 n∑
i=1

xiξi, θ

〉∣∣∣−q
= EθEξ

∣∣∣ n∑
i=1

xi ⟨ξi, θ⟩
∣∣∣−q

= E
∣∣∣ n∑
i=1

xiUi

∣∣∣−q
.

Lemma 28 allows us the evaluate the limit

|Bn
p ∩ a⊥| = lim

q→1−
cp,q,n(1 − q)E

∣∣∣∣∣
n∑

i=1

aiRiUi

∣∣∣∣∣
−q

= lim
q→1−

cp,q,nE

∣∣∣∣∣
n∑

i=1

aiRiξi

∣∣∣∣∣
−q

= cp,1,nE

∣∣∣∣∣
n∑

i=1

aiRiξi

∣∣∣∣∣
−1

.

This gives

|Bn
p ∩ a⊥|
|Bn−1

p |
= Γ

(
1 +

1

p

)
E

∣∣∣∣∣
n∑

i=1

aiRiξi

∣∣∣∣∣
−1

.

Case p = ∞ is due to König and Koldobsky, [47], namely

|Bn
∞ ∩ a⊥|
|Bn−1

∞ |
= E

∣∣∣∣∣
n∑

i=1

aiξi

∣∣∣∣∣
−1

We show how this formula gives Hadwiger-Hensley theorem on minimal sections of the cube.

Theorem 29. We have |Bn
∞ ∩ a⊥| ≥ |Bn−1

∞ |.

Proof. We have

|Bn
∞ ∩ a⊥|
|Bn−1

∞ |
= E

∣∣∣∣∣
n∑

i=1

aiξi

∣∣∣∣∣
−1

= E

 n∑
i,j=1

aiaj ⟨ξi, ξj⟩

− 1
2

≥

 n∑
i,j=1

aiajE ⟨ξi, ξj⟩

− 1
2

=

(
n∑

i=1

a2i

)− 1
2

= 1.

3.3.2 Kanter’s lemma

We say that a measure µ is more peaked than a measure ν (to be denoted by µ ≼ ν) if for every
symmetric convex set K one has µ(K) ≤ ν(K).

We say that f is log-concave if f = e−V for some convex V : Rn → R ∪ {+∞}. We need the
following simple lemma.

Lemma 30. Suppose µ ≼ ν. Then for every even log concave function f one has
∫
fdµ ≤

∫
fdν.

Proof. We have
∫
fdµ =

∫∞
0 µ({x : f(x) ≥ t})dt and the sets {x : f(x) ≥ t} are symmetric and

convex.

We now formulate Kanter’s lemma.

Lemma 31. Suppose µ, ν are symmetric log-concave measures on Rn and µ ≼ ν. Then for every
symmetric log-concave measure λ on Rm we have µ⊗λ ≼ ν⊗λ. Moreover if µi ≼ νi then µ1⊗. . .⊗µk ≼
ν1 ⊗ . . .⊗ νk.
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Proof. It suffices to show the first part and for the second part apply induction. Define Kx = {y ∈
Rm : (x, y) ∈ K)}. We have

(µ⊗ λ)(K) =

∫
λ(Kx)dµ(x).

Since λ is symmetric and K−x = −Kx we get that f(x) = λ(Kx) is even. We prove that it is also log-
concave. Indeed, by convexity of K we have Kpx1+(1−p)x2

⊃ pKx1 +(1−p)Kx2 . Thus by log-concavity
of λ we get

f(px1 + (1−p)x2) = λ(Kpx1+(1−p)x2
) ≥ λ(pKx1 + (1−p)Kx2) ≥ λ(Kx1)pλ(Kx2)1−p = f(x1)

pf(x2)
1−p,

which shows that f is log-concave. Thus by the previous lemma we get

(µ⊗ λ)(K) =

∫
f(x)dµ(x) ≤

∫
f(x)dν(x) = (ν ⊗ λ)(K).

Lemma 32. Suppose symmetric measure on the real line µ, ν have densities f, g satisfying f(0) = g(0).
Then if f − g changes sign once from ”-” to ”+” on (0,∞), then µ ≼ ν.

Proof. Since µ, ν are symmetric it suffices to show that
∫ t
0 g ≥

∫ t
0 f . Suppose f − g changes its sign in

y0. In fact we shall show that for every decreasing ψ on [0,∞) one has
∫
ψf ≤

∫
ψg. Indeed, we have∫

ψ(y)(g(y) − f(y))dy =

∫
(ψ(y) − ψ(y0))(g(y) − f(y))dy ≥ 0,

as both factors change their signs at y0.

3.3.3 Minimal sections

Theorem 33. The function p 7→ |Bn
p∩a⊥|

|Bn−1
p | is non-decreasing in p on (1,∞). In particular

|Bn
p ∩ a⊥| ≥ |Bn−1

p |, p ≥ 2, and |Bn
p ∩ a⊥| ≤ |Bn−1

p |, p ≤ 2.

Proof. Let µp be the measure with density vp(t) = e−βp
p |t|p and let V

(p)
i be distributed according to

µp. We have

|Bn
p ∩ a⊥|
|Bn−1

p |
= lim

q→1−

1 − q

2
E

∣∣∣∣∣
n∑

i=1

aiV
(p)
i

∣∣∣∣∣
−q

.

In order to check that the normalization is correct we plug in a = (1, 0, . . . , 0) and use the fact that

lim
q→1−

1 − q

2
E
∣∣∣V (p)

1

∣∣∣−q
= vp(0) = 1.

Note that

E|X|−q = q E
∫ ∞

|X|
t−q−1dt = q E

∫ ∞

0
t−q−11|X|≤tdt = q

∫ ∞

0
t−q−1P (|X| ≤ t) dt.

It is therefore enough to show that

p 7→ P

(∣∣∣∣∣
n∑

i=1

aiV
(p)
i

∣∣∣∣∣ ≤ t

)
= µ⊗n

p ({x ∈ Rn : | ⟨x, a⟩ | ≤ t})

is non-decreasing. The set Ka,t = {x ∈ Rn : | ⟨x, a⟩ | ≤ t} is symmetric and convex. Moreover, for
p1 ≤ p2 we have µp1 ≼ µp1 since vp1 and vp2 intersect in only one point on R+. By Kanter’s lemma
we have µ⊗n

p1 ≼ µ⊗n
p2 and the assertion follows.
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3.4 Maximal section - Ball’s theorem

The goal of this section is to prove the following theorem.

Theorem 34. For any unit vector one has |Bn
∞ ∩ a⊥| ≤ 2n−1

√
2.

We mention that this celebrated fact provides a negative answer to the Busemann-Petty question
in high dimensions: for n ≥ 10 one has∣∣∣∣[−1

2
,

1

2

]n
∩ a⊥

∣∣∣∣ ≤ √
2 <

∣∣∣rnBn
2 ∩ a⊥

∣∣∣ ,
where rn is chosen in such a way that |rnBn

2 | = 1. Thus, even though all central sections of the cube
are strictly smaller than those of rnB

n
2 , the volumes are the same. Such strange examples exist only

in dimensions n ≥ 5.
We now proceed with the proof of Ball’s inequality. We shall consider the unit volume cube

C = Cn =
[
−1

2 ,
1
2

]n
. Without loss of generality we can assume that ai > 0 for all i. Suppose there

exists j such that aj ≥ 1/
√

2. In this case consider the section S = C ∩ a⊥ and project it onto e⊥j .
The volume of this projection is |S| · | ⟨a, ej⟩ = |S|aj . On the other hand this projection is contained
in Cn−1 and thus has volume at most 1. W get |S|aj ≤ 1 and thus |S| ≤ a−1

j ≤
√

2 and we are done.

Now, it suffices to assume that 0 < aj < 1/
√

2 for all j. Let Xj be i.i.d. uniform on [−1
2 ,

1
2 ] and

let fa be the density of
∑n

j=1 ajXj . The idea is to use the Fourier transform. We have

ϕa(t) := Eeit
∑n

j=1 ajXj =

n∏
j=1

EeitajXj =

n∏
j=1

∫ 1
2

− 1
2

eitajudu =

n∏
j=1

e
1
2
iajt − e−

1
2
iajt

iajt
=

n∏
j=1

sin(12ajt)
1
2ajt

.

We are going to use the Fourier inversion formula (valid when ϕa is integrable)

fa(x) =
1

2π

∫
e−itxϕa(t)dt.

Using this formula with x = 0 and changing variables 1
2 t = πu we arrive at

|C ∩ a⊥| = fa(0) =

∫ n∏
j=1

sin(πaju)

πaju
du.

Applying Hölder inequality (recall that
∑n

j=1 a
2
j = 1) we get

|C ∩ a⊥| ≤
∫ n∏

j=1

∣∣∣∣sin(πaju)

πaju

∣∣∣∣ du ≤
n∏

j=1

(∫ ∣∣∣∣sin(πaju)

πaju

∣∣∣∣ 1

a2
j du

)a2j

.

Therefore, it suffices to prove that ∫ ∣∣∣∣sin(πaju)

πaju

∣∣∣∣ 1

a2
j du ≤

√
2.

Let us substitute x = aju and introduce s = a−2
j > 2. Then we get the equivalent form of the

inequality ∫ ∣∣∣∣sinπxπx

∣∣∣∣s dx <

√
2

s
, s > 2.

This is the famous Ball’s integral inequality.
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3.4.1 Nazarov-Podkorytov lemma

Suppose f : R → [0,∞). The function

F (t) = |{x ∈ R : f(x) > t}|

is called the distribution function of f . Let Fl be the space of functions f : R → [0,∞) such that their
distribution functions are finite and fs is integrable for all s > l.

Lemma 35. Suppose f, g ∈ Fl have distribution functions F,G such that F − G changes sign from
” − ” to ” + ” at y0. Then

ϕ(s) =
1

sys0

∫
(fs − gs)

is increasing on (l,∞). In particular,∫
fs0 =

∫
gs0 =⇒

∫
fs ≥

∫
gs for all s ≥ s0.

Proof. We have ∫
R
f(x)dx =

∫
R

∫ f(x)

0
1dtdx =

∫
R

∫ ∞

0
1{t<f(x)}dxdt =

∫ ∞

0
F (t)dt.

Note that the distribution function of fs is F (y1/s). Thus∫
fs =

∫ ∞

0
F (y1/s)dy = s

∫ ∞

0
us−1F (u)du.

We get that

ϕ(s) =
1

y0

∫ ∞

0

(
y

y0

)s−1

(F (y) −G(y))dy

Suppose s1 > s2. Then

ϕ(s1) − ϕ(s2) =
1

y0

∫ ∞

0

((
y

y0

)s1−1

−
(
y

y0

)s2−1
)

(F (y) −G(y))dy ≥ 0,

since both factors change their signs in y0.

3.4.2 Proof of Ball’s integral inequality

Let us define

f(x) = e−πx2/2, g(x) =

∣∣∣∣sinπxπx

∣∣∣∣
We note that

∫
f2 =

∫
g2 = 1 and we want to prove the inequality

∫
gs <

∫
fs. We are going to use

Nazarov-Podkorytov lemma with s0 = 2. It is enough to check that F − G changes sign from ” − ”
to ” + ” on [0,∞). Note that F (y) = G(y) = 0 for y ≥ 1, so we only consider y ∈ (0, 1). We have

F (y) =
√

2
π ln( 1y ). The main problem is to estimate G(y).

The function g(x) has zeros for x ∈ Z. Let ym = max[m,m+1] g. We clearly have ym < 1
πm and

ym > g(m+ 1
2) = 1

π(m+ 1
2
)
. Thus ym ∈ ( 1

π(m+ 1
2
)
, 1
πm), which shows that the sequence ym is decreasing.

We have the following claims.

Claim 1. The function F −G changes sign at least once in (0, 1).

To show this we just observe that
∫∞
0 2y(F (y) −G(y))dy =

∫
(f2 − g2) = 0.
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Claim 2. The function F −G is positive on (y1, 1).

Note that if g(x) > y1 then y ∈ (0, 1). Moreover g(x) ≤ f(x) for x ∈ [0, 1], since

sinπx

πx
=

∞∏
k=1

(
1 − x2

k2

)
≤

∞∏
k=1

e−
x2

k2 = e−
π2

6
x2 ≤ e−

π
2
x2

= f(x).

Thus
G(y) = |{x ∈ (0, 1) : g(x) > y}| < |{x ∈ (0, 1) : f(x) > y}| ≤ F (y).

Claim 3. The function F −G is increasing on (0, y1).

It is enough to show that |G′(y)| > |F ′(y)| for y ∈ (ym+1, ym). For y ∈ (0, y1) such that y ̸= yj we
have

|G′(y)| =
∑

x>0: g(x)=y

1

|g′(x)|
.

If y ∈ (ym+1, ym) then the equation g(x) = y has:

• one root on (0, 1)

• two roots on (k, k + 1), k = 1, . . . ,m

• no roots on (m+ 1,∞).

For x ∈ (0, 1) we have

|g′(x)| =
sin(πx) − πx cos(πx)

πx2
=

1

πx2

∫ πx

0
t sin tdt ≤ 1

πx2

∫ πx

0
tdt =

π

2
.

For x ∈ (k, k + 1), k ≥ 1 we have

|g′(x)| =

∣∣∣∣cos(πx)

x
− sin(πx)

πx2

∣∣∣∣ ≤ 1

x

(
1 +

| sin(π(x− k))|
πx

)
≤ 1

x

(
1 +

π(x− k)

πk

)
=

1

k
.

Putting this together we get that for y ∈ (ym+1, ym) we have

|G′(y)| ≥ 2

π
+ 2

m∑
k=1

k =
2

π
+m+m2.

Since |F ′(y)| = 1

y
√

2π ln( 1
y
)

we get

|G′(y)|
|F ′(y)|

= |G′(y)|y

√
2π ln

(
1

y

)
≥
(

2

π
+m+m2

)
y

√
2π ln

(
1

y

)

We now claim that y

√
2π ln

(
1
y

)
is increasing on (0, y1). Note that y1 <

1
π < e−1/2. For 0 < y < e−/12

we have (
y2 ln

(
1

y

))′
= 2y ln

(
1

y

)
− y = y

(
2 ln

(
1

y

)
− 1

)
> 0.

For y > ym+1 >
1

π(m+ 3
2
)

we therefore get

|G′(y)|
|F ′(y)|

≥
2
π +m+m2

m+ 3
2

·

√
2

π
π ln

(
π

(
m+

3

2

))
≥
√

2

π
ln

5π

2
≥ 1.

as 2
π +m+m2 ≥ 1

2 +m+ 1 = 3
2 +m. The last inequality follows from ln 5x ≥ x for x ∈ [1, 2] (applied

to x = π/2), which can be checked only at the endpoint x = 1 (ln 5 > 1) and x = 2 (ln 10 > 2) as the
left hand side is concave.
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Bibliographical notes

Sections of ℓnp balls. The topic of sections of ℓnp balls is widely studied and this development relied
on quite a number of interesting and influential ideas. The first result concerning this question has been
obtained independently by Hadwiger in [34]) and Hensley in [36], who proved that |Bn

∞∩a⊥| ≥ |Bn
∞∩

H1|, and was motivated by Good’s question about solvability of systems of inequalities |Li(x)| ≤ 1,
where Li : Zn → R are linear forms in integer-valued variables. Ball proved in his celebrated paper
[2] that H2 gives the maximal section, providing a simple counterexample to the Busemann-Petty
conjecture from [14]. Ball’s proof is an application of the Fourier inversion formula together with a
brilliant use of Hölder’s inequality. In [27] distributional stability of this result for vectors a with
absolute values of coordinates at most 1/

√
2 is proved.

The case of finite p has been treated for the first time by Meyer and Pajor in [59], who showed
that for p ∈ [1, 2] the maximal section is given by H1, whereas for p ∈ [2,∞) this subspace gives the
minimal section. The proof relies on the monotonicity in p of the function p 7→ |Bn

p ∩H| · |Bk
p |−1 for

any k-dimensional subspace, where the notion of peakedness and Kanter’s lemma (see [39]) are used.
For p ∈ [1, 2] Koldobsky showed in [41], using a Fourier-analytic argument, that the minimal section
is given by the diagonal subspace Hn. See also [24] for a simple proofs in the case p ∈ [1, 2] using
the Gaussian mixture technique. Recently Eskenazis, Tkocz and the author proved in [26] that H2

is maximal not only for p = ∞, but also for every p > 1015. Stability estimates for codimension one
sections of Bn

p were established in [15].
The first result concerning lower dimensional sections is due to Vaaler [85], who proved that for

any k-dimensional subspace one has |Bn
∞ ∩ H| ≥ 2k with equality for subspaces spanned by some k

standard basis vectors, see also [1] for an alternative topological proof. As for the upper bound, Ball

proved in [3] that for any k-dimensional subspace H one has |Bn
∞ ∩H| ≤ min(

√
n/k

k
,
√

2
n−k

), which
is sharp when k divides n and when k ≥ n

2 . For k = 2 maximal sections has recently been found in
[37]. Meyer and Pajor in [59] proved that for any k-dimensional subspace H one has |Bn

p ∩H| ≤ |Bk
p |

for p ∈ [1, 2] and |Bn
p ∩H| ≥ |Bk

p | for p > 2. For p > 2 Barthe proved in [7] the inequality |Bn
p ∩H| ≤

(n/k)
k( 1

2
− 1

p
)|Bk

p |, which is sharp only when k divides n. For 2 ≤ k < n − 1 and p ∈ [1, 2) minimal
sections of Bn

p are unknown except for (k, p) = (2, 1) in which case Nazarov proved the sharp bound
|Bn

1 ∩H| ≥ n2 tg( π
2n) sin2( π

2n), see [15].
In the articles of Vaaler [85] and Meyer and Pajor [59] the authors point out that the analogues

of their results hold in the complex case, namely for any complex k-dimensional subspace H one has
|Bn

p,C ∩H| ≥ |Bk
p,C| for 2 ≤ p ≤ ∞, whereas reverse inequality holds for p ∈ [1, 2]. Minimal complex

codimension one sections for p ∈ [1, 2] are given by complex Hn, see the result of Koldobsky and
Zymonopoulou [43]. Finally, as we already mentioned, an analogue of Ball’s inequality in the complex
case is due to Oleszkiewicz and Pe lczyński who proved in [70] the inequality |Dn ∩ a⊥| ≤ |Dn ∩H2|.

Projections of ℓnp balls. The problem of finding C2,1 was posed by Littlewood in 1930 in [53],

where his famous 4
3 -inequality for bilinear forms was derived. It was Szarek who solved Littlewood’s

problem in [80], proving that cn = 1/
√

2. Szarek’s result was rephrased in terms of projections of
Bn

1 by Ball in [4], namely one has |Proja⊥(Bn
1 )| ≥ |ProjH2

(Bn
1 )|. Szarek’s inequality has now several

simplified proofs, see [33, 51, 81].
Barthe and Naor proved in [9], using the so-called convex ordering of densities, that H1 gives the

maximal projections for p ∈ (1, 2) and the minimal projections for p > 2. They also showed that Hn

gives the maximal projection for p > 2. In the problematic case of minimal projections for p ∈ (1, 2)
only the case p < 1 + 10−12 is known due to the recent work [26]. In [27] a distributional stability
of Szarek’s inequality was given in the case when |ai| ≤ 1/

√
2 for all i = 1, . . . , n, which leads to an

alternative proof for p close to 1, however with an additional restriction on the sequence (ai).
Lower dimensional projections of Bn

p are much less understood. The result of Meyer and Pajor from

[59] about sections trivially gives |ProjH(Bn
p )| ≥ |Bn

p ∩ H| ≥ |Bk
p | for every k-dimensional subspace

H and p > 2. Barthe in [8] proved for p ∈ [1, 2] the inequality |ProjH(Bn
p )| ≥ ( kn)

k( 1
p
− 1

2
)|Bk

p |, which
is sharp when k divides n. For the complex case, besides the fact that minimizers for p ≥ 2 are given
by H1, nothing seems to be known.
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For more information about sections and projections of ℓnp balls we refer the reader to the recent
survey [67] by Tkocz and the author.

Appendix A

Prékopa-Leindler inequality

We are going to prove the following fundamental theorem.

Theorem 36. Let f, g,m be nonnegative measerable functions on Rn and let λ ∈ [0, 1]. If for all
x, y ∈ Rn we have

m((1 − λ)x+ λy) ≥ f(x)1−λg(y)λ,

then ∫
Rn

m ≥
(∫

Rn

f

)1−λ(∫
Rn

g

)λ

. (13)

We first prove the one-dimensional Brunn-Minkowski inequality.

Lemma 37. Suppose A,B are non-empty Borel sets. Then |A+B| ≥ |A| + |B|.

Sketch of the proof. By simple approximation argument one can assume that A,B are compact. Shift-
ing A and B does not affect the inequality, so one can assume that inf A = 0 = supB. Then
A+B ⊃ A ∪B and A ∩B = {0}. Thus |A+B| ≥ |A| + |B|.

Remark 6. The sum of measurable sets is not always measurable. The sum of two Borel sets might
not be Borel, but it is always Lebesgue measurable.

We first give two proof of this fact in dimension n = 1.

Proof. Let us first justify the Prekopa-Leindler inequality in dimension one. We can assume, consid-
ering f1f≤M and g1g≤M instead of f and g, that f, g are bounded. If we multiply f, g,m by numbers
cf , cg, cm satisfying

cm = c1−λ
f cλg ,

then the hyphotesis and the thesis do not change. Therefore, taking cf = ∥f∥−1
∞ , cg = ∥g∥−1

∞ and

cm = ∥f∥−(1−λ)
∞ ∥g∥−λ

∞ we can assume (since we are in the situation when f and g are bounded) that
∥f∥∞ = ∥g∥∞ = 1. But then∫

R
m =

∫ +∞

0
|{m ≥ s}|ds,

∫
R
f =

∫ 1

0
|{f ≥ r}|dr,

∫
R
g =

∫ 1

0
|{g ≥ r}|dr

Note also that if x ∈ {f ≥ r} and y ∈ {g ≥ r} then by the assumption of the theorem we have
(1 − λ)x+ λy ∈ {m ≥ r}. Hence,

(1 − λ){f ≥ r} + λ{g ≥ r} ⊂ {m ≥ r}.

Moreover, the sets {f ≥ r} and {g ≥ r} are non-empty for r ∈ [0, 1). This is very important since we
want to use one-dimensional Brunn-Minkowski inequality. We have∫

m =

∫ +∞

0
|{m ≥ r}|dr ≥

∫ 1

0
|{m ≥ r}|dr ≥

∫ 1

0
|(1 − λ){f ≥ r} + λ{g ≥ r}|dr

≥ (1 − λ)

∫ 1

0
|{f ≥ r}|dr + λ

∫ 1

0
|{g ≥ r}|dr = (1 − λ)

∫
f + λ

∫
g ≥

(∫
f

)1−λ(∫
g

)λ

.

Suppose our inequality in true in dimension n − 1. We will prove it in dimension n. Suppose we
have a numbers y0, y1, y2 ∈ R satisfying y0 = (1 − λ)y1 + λy2. Define my0 , fy1 , gy2 : Rn−1 → R+ by

my0(x) = m(y0, x), fy1(x) = f(y1, x), gy2(x) = (y2, x),
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where x ∈ Rn−1. Note that since y0 = (1 − λ)y1 + λy2 we have

my0((1 − λ)x1 + λx2) = m((1 − λ)y1 + λy2, (1 − λ)x1 + λx2)

≥ f(y1, x1)
1−λg(y2, x2)

λ = fy1(x1)
1−λgy2(x2)

λ,

hence my0 , fy1 and gy2 satisfies the assumption of the (n−1)-dimensional Prékopa-Leindler inequality.
Therefore we have ∫

Rn−1

my0 ≥
(∫

Rn−1

fy1

)1−λ(∫
Rn−1

gy2

)λ

.

Define new functions M,F,G : R → R+

M(y0) =

∫
Rn−1

my0 , F (y1) =

∫
Rn−1

fy1 , G(y2) =

∫
Rn−1

gy2 .

We have seen (the above inequality) that when y0 = (1 − λ)y1 + λy2 then there holds

M((1 − λ)y1 + λy2) ≥ F (y1)
1−λG(y2)

λ.

Hence, by one-dimensional Prékopa-Leindler inequality we get∫
R
M ≥

(∫
R
F

)1−λ(∫
R
G

)λ

.

But ∫
R
M =

∫
Rn

m,

∫
R
F =

∫
Rn

f,

∫
R
G =

∫
Rn

g,

so the assertion follows.

Brunn-Minkowski inequality

Taking f = 1A, g = 1B and m = 1λA+(1−λ)B we get the multiplicative form of the Brunn-Minkowski
inequality

|λA+ (1 − λ)B| ≥ |A|λ|B|1−λ.

If we apply this inequality with K̃ = K/|K|1/n, L̃ = L/|L|1/n and λ̃ = λ|K|1/n
λ|K|1/n+(1−λ)|L|1/n . we get the

classical form of the Brunn-Minkowski inequality.

Theorem 38. If A,B are Borel non-empty sets, then for λ ∈ [0, 1] we have

|λA+ (1 − λ)B|1/n ≥ λ|A|1/n + (1 − λ)|B|1/n.

Remark 7. Note that the above can also be written in the form |A+B|1/n ≥ |A|1/n + |B|1/n.

Brunn’s principle

We shall prove the following theorem.

Theorem 39. Suppose K is a convex body in Rn and let u ∈ Sn−1. Then the function

t 7→ voln−1(K ∩ (u⊥ + tu))1/n−1

is concave on its support.

Proof. We can assume that u = e1. Let Kt = K ∩ (u⊥ + tu) = K ∩ {x1 = t} and consider these as
sets in Rn−1. We claim that λKt + (1 − λ)Ks ⊆ Kλt+(1−λ)s. Indeed, suppose a ∈ Kt and b ∈ Ks.
Then by convexity of K we have λ(t, a) + (1 − λ)(s, b) = (λt+ (1 − λ)s, λa+ (1 − λ)b) ∈ K and thus
λa + (1 − λ)b ∈ Kλt+(1−λ)s. Suppose Ks,Kt are non-empty (i.e. we are on the support of our map).
By Brunn-Minkowski we get

|Kλt+(1−λ)s|
1

n−1 ≥ |λKt + (1 − λ)Ks|
1

n−1 ≥ λ|Kt|
1

n−1 + (1 − λ)|Ks|
1

n−1 ,

which proves the desired concavity.

Corollary 40. If K is a symmetric convex set the the section having the largest section is always a
central section, that is a section passing through the origin.

Proof. The above section function is even and 1
n−1 -concave, so its maximum is at the origin.
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Isoperimetric inequality

For a compact sets K in Rn we define Kt = K + tBn
2 .

Theorem 41. Let K be a compact set in Rn and let B be a ball such that |K| = |B|. Then

(a) |Kt| ≥ |Bt| =

((
|K|
|Bn

2 |

)1/n
+ t

)n

|Bn
2 |,

(b) |∂K| ≥ |∂B| = n|K|
n−1
n |Bn

2 |
1
n .

Proof. Suppose B = rBn
2 . By the Brunn-Minkowski inequality we have

|Kt| = |K + tBn
2 | ≥

(
|K|

1
n + t|Bn

2 |
1
n

)n
=
(
|B|

1
n + t|Bn

2 |
1
n

)n
= (r + t)n|Bn

2 | = |(r + t)Bn
2 | = |B + tBn

2 | = |Bt|.

To prove the second part we recall that

|∂K| = lim inf
ε→0+

|K + εBn
2 | − |K|
ε

.

Thus from point (a) we get

|∂K| = lim inf
ε→0+

|Kε| − |K|
ε

≥ lim inf
ε→0+

|Bε| − |B|
ε

= |∂B|.

Log-concave measures and functions

We say that a measure µ on Rn is log-concave if µ(λA+ (1 − λ)B) ≥ µ(A)λµ(B)1−λ for all Borel sets
in Rn. We shall need the description of such measures due to Borel: µ is log-concave if and only if
either µ is a Dirac delta, or there exists an affine subspace H of certain dimension 1 ≤ d ≤ n and a
convex function V : H → R ∪ {+∞} such that µ has density e−V on H.

We now show that a measure with log-concave density is log-concave.

Theorem 42. Suppose µ is a measure with log-concave density. Then

µ(λA+ (1 − λ)B) ≥ µ(A)λµ(B)1−λ.

Proof. Let A,B be measurable in Rn and let h be the density of µ. Define f = 1Ah, g = 1Bh and
m = 1λA+(1−λ)Bh. Then these function clearly satisfy m(λx+ (1 − λ)y) ≥ f(x)λg(y)λ. Thus

|λA+ (1 − λ)B| =

∫
m ≥

(∫
f

)λ(∫
g

)1−λ

= |A|λ|B|1−λ.

Fact 1. Suppose f : Rn × Rm → R is log-concave. Then F (x) =
∫
Rm f(x, y)dy is also log-concave.

Proof. Define fx(y) = f(x, y), fx : Rm → R. Take x1, x2 ∈ Rn. The functions fλx1+(1−λ)x2
, fx1 , fx2

satisfy
fλx1+(1−λ)x2

(λy1 + (1 − λ)y2) ≥ fx1(y1)
λfx2(y2)

1−λ.

Thus by Prékopa-Leindler

F (λx1 + (1 − λ)x2) =

∫
fλx1+(1−λ)x2

≥
(∫

fx1

)λ(∫
fx2

)1−λ

= F (x1)
λF (x2)

1−λ.
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Fact 2. Let f, g be log-concave on Rn. Then f ∗ g is also log-concave.

Proof. The function (x, y) → f(y)g(x − y) is clearly log concave. Thus it suffices to integrate it in y
and use Fact 1.

Fact 3. Let f be log-concave on Rn and let v ∈ Rn be a fixed vector.

R ∋ t 7−→
∫
⟨x,v⟩≥t

f(x)dx

is also log-concave.

Proof. The function (x, t) 7→ f(x)1⟨x,v⟩≥t is log-concave (the function (x, t) 7→ 1⟨x,v⟩≥t is log-concave
as it is of the form 1K for a convex K with K being a half-space). It suffices to use Fact 1.

Appendix B

We are going to prove equivalences of conditions (a)-(d) from Proposition 4. We first show that (b)
implies (a).

Lemma 43. If P is doubly stochastic, then Py ≺ y for all y ∈ Rn in the sense of definition (a).

Proof. Let x = Py and let 1 = (1, . . . , 1). We can assume that x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn
since otherwise just take matrices of permutations Q and R such that x = Qx′ and y = Ry′, where
x′, y′ have non-increasing sequences of coordinates, and observe that x ≺ y if and only if x′ ≺ y′ and
x′ = Q−1x = Q−1Py = Q−1PRy′. Here Q−1PR is again doubly stochastic as a product of three
doubly stochastic. To see that a product of two doubly stochastic matrices is doubly stochastic we
observe that P is doubly stochastic if and only if P1 = 1 and P T1 = 1, where 1 = (1, . . . , 1). Thus if
P1, P2 are doubly stochastic then P2P11 = P21 = 1 and (P2P1)

T1 = P T
1 P

T
2 1 = P T

1 1 = 1.
Now, clearly 1Tx = 1TPy = (P T1)T y = 1T y, which means that

∑n
i=1 xi =

∑n
i=1 yi. Let tj =∑k

i=1 pij . Note that tj ∈ [0, 1] and
∑n

j=1 tj = k. We have

k∑
i=1

xi =
k∑

i=1

n∑
j=1

pijyj =
n∑

j=1

k∑
i=1

pijyj =
n∑

j=1

tjyj .

Thus

k∑
i=1

xi −
k∑

i=1

yi =

n∑
j=1

tjyj −
k∑

i=1

yi =

n∑
j=1

tjyj −
k∑

i=1

yi + yk

k − n∑
j=1

tj


=

k∑
j=1

(yj − yk)(tj − 1) +
n∑

j=k+1

tj(yj − yk) ≤ 0.

We now show that (a) implies (d) which clearly implies (b). Thus we get equivalence of (a), (b)
and (d).

Lemma 44. If x ≺ y in the sense of (a), then x can be obtained from y by applying finitely many
T -transformations. In particular, there exists a doubly stochastic matrix P such that x = Py.

Proof. We can assume that x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn since permutation matrices are com-
positions of finite number of T -transformations (transpositions of elements are T -transformation, just
take λ = 1). We can assume x ̸= y. Let j be the biggest index satisfying xj < yj (such j must exist
since x ̸= y and

∑n
i=1 xi =

∑n
i=1 yi) and then let k be the smallest index greater than j such that
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xk > yk (such an index must exist since otherwise
∑n

i=j xi <
∑n

i=j yi, which gives
∑j−1

i=1 xi >
∑j−1

i=1 yi,
contradiction with x ≺ y). Thus

yk < xk ≤ xj < yj , j < k.

Take δ = min(xk − yk, yj − xj) and consider yk + δ and yj − δ instead of yk and yj (this gives a new
vector y′). This is a T -transform. Note that after applying this operation the cardinality of the set
I = {i : xi = yi} increased. We shall prove that x ≺ y′ ≺ y. Then we can perform induction with
respects to |I| to finish the proof.

yn yk+1· · · yk

xk xk−1

· · · yj+1 xj yj yj−1 y1· · ·yk−1

xj+1

y′k

+δ −δ

Note that y′ ≺ y follows from the previous lemma. We shall show that x ≺ y′. Let sl(x) =
∑l

i=1 x
∗
i .

It is clear from the construction that (y′i)
∗ = y′i (see the above picture). We clearly have sl(x) ≥ sl(y

′)
for l ∈ [1, j−1]∪ [k+1, n], since then sl(y

′) = sl(y). Since sj−1(y
′) ≥ sj−1(x), y′j ≥ xj and y′l = yl = xl

for l ∈ [j + 1, k − 1] we also have sl(y
′) ≥ sl(x) for l ∈ [j, k].

Since a convex combination of permutation matrices is doubly stochastic, we get that (c) implies
(b). It suffices to show that (b) implies (c). It is enough to show that any doubly stochastic matrix
is a convex combination of permutation matrices.

Lemma 45. If P = (pij)
n
i,j=1 is doubly stochastic, then there exists a permutation (i1, . . . , in) of

{1, . . . , n}, such that p1i1 · . . . pnin > 0.

Proof. We shall use Hall’s marriage theorem. Let I be the set of rows and J the set of columns of P .
We shall build a bipartite graph with parts I and J as follows: for i ∈ I and j ∈ J there is an edge
between i and j if and only if pij > 0. It is enough to find a perfect matching in this graph. Now
we check Hall’s condition. Suppose we have a set of rows of cardinality k. Suppose all the non-zero
elements in these rows belong to l columns. Thus their sum s is at most l. On the other hand s = k.
Thus k ≤ l.

Lemma 46. (Birkhoff–von Neumann theorem) Every doubly stochastic matrix is a convex combination
of permutation matrices.

Proof. From the previous lemma there exists a permutation (i1, . . . , in) of {1, . . . , n} such that p1i1 ·
. . . pnin > 0. Let c = min{p1i1 , . . . , pnin} and let P ′ be a permutation matrix corresponding to
(i1, . . . , in). We can assume c < 1 since otherwise P is a permutation matrix. The matrix R = P−cP ′

1−c
is double stochastic and P = cP ′ + (1 − c)R. Note that R has less non-zero elements than P , so an
inductive reasoning gives the result.
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