
Recent Advances in Intelligent Information Systems
ISBN 978-83-60434-59-8, pages 669–682

Debellor: Open Source Modular Platform for

Scalable Data Mining

Marcin Wojnarski

Warsaw University, Faculty of Mathematics, Informatics and Mechanics
ul. Banacha 2, 02-097 Warszawa, Poland,
mwojnars@ns.onet.pl

Abstract

This paper introduces Debellor (www.debellor.org) – an open source extensible
data mining platform with stream-oriented architecture, where all data trans-
fers between elementary algorithms take the form of a stream of samples. Data
streaming enables implementation of scalable algorithms, which can efficiently pro-
cess large volumes of data, exceeding available memory. This is very important
for data mining research and applications, since the most challenging data mining
tasks involve voluminous data, either produced by a data source or generated at
some intermediate stage of a complex data processing network.

Advantages of data streaming are illustrated by experiments with clustering
time series. The experimental results show that even for moderate-size data sets
streaming is indispensable for successful execution of algorithms, otherwise the
algorithms run hundreds times slower or just crash due to memory shortage.

Stream architecture is particularly useful in such application domains as time
series analysis, image recognition or mining data streams. It is also the only
efficient architecture for implementation of online algorithms. Due to its scalability
and modularity Debellor was chosen as the basis for TunedTester application –
one of three pillars of TunedIT (tunedit.org) system for automatic evaluation of
machine learning algorithms. The current version of Debellor is 0.6.2.

Keywords: pipeline, online algorithm, framework, knowledge discovery

1 Introduction

In the fields of data mining and machine learning, there is frequently a need to pro-
cess large volumes of data, too big to fit in memory. This is particularly the case
in some application domains, like computer vision or mining data streams (Aggar-
wal, 2007; Gama and Gaber, 2007), where input data are usually voluminous. But
even in other domains, where input data are small, they can abruptly expand at
an intermediate stage of processing, e.g. due to extraction of windows from a time
series or an image (Viola and Jones, 2001). Most of ordinary algorithms are not
suitable for such tasks, because they try to keep all data in memory. Instead, spe-
cial algorithms are necessary, which make efficient use of memory. Such algorithms
will be called scalable.



670 Marcin Wojnarski

Another feature of data mining algorithms – besides scalability – which is very
desired nowadays is interoperability, i.e. a capability of the algorithm to be easily
connected with other algorithms. This property is more and more important, as
basically all newly created data mining systems – whether experimental or end-
user solutions – incorporate much more than just one algorithm.

It would be very worthful if algorithms were both scalable and interoperable.
Unfortunately, combining these two features is very difficult. Interoperability re-
quires that every algorithm is implemented as a separate module, with clearly
defined input and output. Obviously, data mining algorithm must take data as
its input, so the data must be fully materialized – generated and stored in a data
structure – just to invoke the algorithm, no matter what it actually does. And
materialization automatically precludes scalability of the algorithm.

In order to provide scalability and interoperability at the same time, algorithms
must be implemented in a special software architecture, which do not enforce data
materialization. Debellor1 – the data mining platform introduced in this paper
– defines such an architecture, based on the concept of data streaming. In De-
bellor, data are passed between interconnected algorithms sample-by-sample, as a
stream of samples, so they can be processed on the fly, without full materialization.
The idea of data streaming is inspired by architectures of database management
systems, which enable fast query execution on very large data tables.

Debellor is written in Java and distributed under GNU General Public License.
The most recent version is available at www.debellor.org. The algorithms currently
available include all classifiers from Rseslib and Weka libraries, all filters from
Weka and a reader of ARFF files. There are also several algorithms implemented
by Debellor itself, like Train&Test evaluation procedure.

2 Related Work

There is large amount of software that can be used to facilitate implementation of
new data mining algorithms. A common choice is to implement the algorithm in
an environment for numerical calculations: R2 (R Development Core Team, 2005),
Matlab, Octave3. The problem is that they do not define common architecture
for algorithms, so they do not automatically provide interoperability. Moreover,
the scripting languages of these environments are suitable rather for fast proto-
typing and running small experiments than for implementation of scalable and
interoperable algorithms.

Another possible choice is to take a data mining library written in a general-
purpose programming language (usually Java) – examples of such libraries are
Weka4 (Witten and Frank, 2005) or Rseslib5 (Bazan et al., 2004; Wojna and
Kowalski, 2008) – and try to fit the new algorithm into the architecture of the
library. However, these libraries preclude scalability of algorithms, because the

1The name originates from Latin debello (to conquer) and debellator (conqueror).
2http://www.r-project.org
3http://www.octave.org
4http://www.cs.waikato.ac.nz/ml/weka
5http://rsproject.mimuw.edu.pl



Debellor: Platform for Scalable Data Mining 671

whole training data must be materialized in memory before they can be passed to
an algorithm.

The concept of data streaming, called also pipelining, has been used in database
management systems (Garcia-Molina et al., 2001) for efficient query execution.
Elementary units capable of processing streams are called iterators in Garcia-
Molina et al. (2001).

The issue of scalability is related to the concept of online algorithms – the
training algorithms which perform updates of the underlying decision model after
every single presentation of a sample (Ripley, 1996; Bishop, 2006). The algorithms
which update the model only when the whole training set has been presented are
called batch.

3 Motivation

Scalable algorithms are indispensable in most of data mining tasks – every time
when data become larger than available memory. Even if initially memory seems
capacious enough to hold the data, it may appear during experiments that data
are larger and memory smaller than expected. There are many reasons for this:

1. Not the whole physical memory is available to the data mining algorithm at a
given time. Some part is used by operating system and other applications.

2. Experiment may incorporate many algorithms run in parallel – available mem-
ory must be partitioned between all of them. In the future, parallelization will
become more and more common due to parallelization of hardware architec-
tures, e.g., expressed by increasing number of cores in processors.

3. In a complex experiment, composed of many elementary algorithms, every
intermediate algorithm will generate another set of data. Total amount of
data will be much larger than the amount of source data alone.

4. For architectural reasons data must be stored in memory in general data struc-
tures, which take more memory than really needed in a given task. For ex-
ample, data may be composed of binary attributes and each value could be
stored on a single bit, but in fact each value takes 8 bytes or more, because
every attribute – whether it is numeric or binary – is stored in the same way.
Internal data representation used by a given platform is always a compromise
between generality and efficient memory usage.

5. Data generated at intermediate processing stages may be many times larger
than source data. For example:

• Input data may require decompression, e.g. JPEG images must be con-
verted to raw bitmaps to undergo processing. This may increase data size
even by a factor of 100.

• In image recognition, a single input image may be used to generate thou-
sands of subwindows that would undergo further processing (cf. Wojnarski,
2007). An input image of 1MB size may easily generate windows of 1GB
size or more. Similar situation occurs in speech recognition or time series
analysis.



672 Marcin Wojnarski

• Samples may be extended with synthetic (derived) features, e.g. multipli-
cations of all pairs of original features, which leads to quadratic increase in
the size of every sample.

• Training set may be extended with synthetic (derived) samples to increase
the amount of training data and improve learning of a decision system. For
example, this method is used in LeCun et al. 1998.

6. In some applications, like mining data streams (Aggarwal, 2007), input data
are potentially infinite, so scalability obviously becomes an issue.

7. Even if the volume of data is small at the stage of experiments, it may become
much bigger when the algorithm is deployed in a final product and must process
real-world instead of experimental data.

Further on, the graph of data flow between elementary algorithms in a data
mining system will be called a Data Processing Network (DPN). In general, we
will assume that DPN is a directed acyclic graph, so there are no loops of data
flow. Moreover, in the current version of Debellor, DPN can only have a form of
a single chain, without branches. Sample DPN is shown in Fig. 1.

Figure 1: Example of a Data Processing Network (DPN), composed of five elementary
algorithms (boxes). Arrows depict data flow between the algorithms

4 Data Streaming

Architectures of existing data mining systems utilize the batch model of data trans-
fer, where algorithms must take the whole data set as an argument for execution.
To run composite experiment, represented by a DPN with a number of algorithms,
an additional supervisor module is needed, responsible for invoking consecutive al-
gorithms and passing data sets between them. Batch data transfer enforces data
materialization, which precludes scalability of algorithms and DPN as a whole.
For example, in Weka, every classifier must be a subclass of Classifier class. Its
training algorithm must be implemented in the method:

buildClassifier(Instances) : void

The argument of type Instances is an array of training samples. This argument
must be created before calling buildClassifier, so the data must be fully mate-
rialized in memory just to invoke training algorithm, no matter what it actually
does. Similar situation takes place for clustering methods. The only way to avoid
severe performance degradation when processing large data is to generate data
iteratively, sample-by-sample, and instantly process created samples. In this way,
data may be generated and consumed on the fly, without materialization of the
whole set. This model of data transfer will be called iterative.



Debellor: Platform for Scalable Data Mining 673

Iterative data transfer solves the problem of high memory consumption, be-
cause only a fixed number of samples must be kept in memory in a given moment.
However, another problem arises: supervisor becomes responsible for controlling
flow of samples and the order of execution of algorithms. This control may be
very complex, because each elementary algorithm may have different input-output
characteristics. For this reason, algorithms themselves should be responsible for
controlling data flow. They must be implemented as components which can com-
municate with others without external control. Supervisor’s responsibility must be
limited to linking components together into DPN and invoking the last algorithm
– final receiver of all samples. Communication should take the form of a stream
of samples, transferred sequentially, in a fixed order decided by the sender. This
model of data transfer will be called a stream model. Component architecture and
data streaming are the features of Debellor which enable scalability of algorithms
implemented on this platform.

5 Debellor Data Mining Platform

5.1 Data Streams

Debellor’s components are called cells. Every cell is a Java class inheriting from
the base class Cell (package org.debellor.core). Cells may implement all kinds
of data processing algorithms, for example:

1. Decision algorithms: classification, regression, clustering, density estimation.

2. Transformations of samples and attributes.

3. Removal or insertion of samples and attributes.

4. Loading data from file, database etc.

5. Generation of synthetic data.

6. Buffering and reordering of samples.

7. Evaluation schemes: train&test, cross-validation, leave-one-out etc.

8. Collecting statistics.

9. Data visualization.

Cells may be connected into DPN by calling the setSource(Cell) method on
the receiving cell, for example:

Cell cell1 = ..., cell2 = ..., cell3 = ...;

cell2.setSource(cell1);

cell3.setSource(cell2);

The first cell will usually represent a file reader or a generator of synthetic data.
Intermediate cells may apply different kinds of data transformations, while the
last cell will usually implement a decision system or an evaluation procedure.

DPN can be used to process data by calling methods open(), next() and
close() on the last cell of DPN, for example:

cell3.open();

sample1 = cell3.next();



674 Marcin Wojnarski

sample2 = cell3.next();

sample3 = cell3.next();

...

cell3.close();

The above calls open communication session with cell3, retrieve some number of
processed samples and close the session. In order to realize each request, cell3
may communicate with its source cell, cell2, by invoking the same methods (open,
next, close) on cell2. And cell2 may in turn communicate with cell1. In this
way it is possible to generate output samples on the fly. The stream of samples
may flow through consecutive cells of DPN without buffering, so input data may
have unlimited volume.

Note that the user of DPN does not have to control sample flow by himself.
To obtain the next sample of processed data it is enough to call cell3.next(),
which will invoke – if needed – a cascade of calls to preceding cells.

Moreover, different cells may control the flow of samples differently. For ex-
ample, cells that implement classification algorithms will take one input sample
in order to generate one output sample. Filtering cells will take a couple of input
samples in order to generate one output sample that matches the filtering rule.
The image subwindow generator will produce many output samples out of a sin-
gle input sample. We can see that the cell’s interface is very flexible. It enables
implementation of various types of algorithms in the same framework and allows
to easily combine the algorithms into a complex DPN.

5.2 Trainable Cells

The cell may be trainable – before it can be used it must be trained how to process
data. Training a cell consists typically of connecting it with a source of training
data, setting parameter values and invoking its learning procedure declared in the
base class Cell as:

learn() : void

The behavior of learning procedure is specific to the Cell’s subclass actually used.
The term of “learning procedure” as used in Debellor has very wide meaning. It

includes not only generation of a decision system that could be used subsequently
for data processing, but also any other data-driven operation that only accumulates
some information (knowledge) internally in the cell, without generation of output
samples. For example, learning procedure may implement:

1. Calculation of data-driven parameters for a preprocessing algorithm, e.g., at-
tribute means for the normalization algorithm.

2. Calculation of data statistics, like a histogram of attribute values, for subse-
quent visualization.

3. Evaluation of another cell (Train&Test, Cross-validation, Leave-one-out, ...).

4. Buffering of input data, so that later on they can be delivered repeatedly to
other cells without recalculation.

Knowledge gained by the cell during learning can be erased by a call to erase().
After erasure the cell can be trained again.



Debellor: Platform for Scalable Data Mining 675

5.3 State of the Cell

Every cell object has a state variable attached, which indicates what cell operations
are allowed in a given moment. There are three possible states: EMPTY, CLOSED
and OPEN. Transitions between them are presented in Fig. 2. Each transition is
invoked by call to an appropriate method: learn(), erase(), open() or close().

Figure 2: Diagram of cell states and allowed transitions

Only a part of cell methods may be called in a given state. For example,
next() can be called only in OPEN state, while setSource() is allowed only in
EMPTY or CLOSED state. It is guaranteed by the base class implementation
that disallowed calls immediately end with an exception thrown. Thanks to this
automatic state control, connecting different cells together and building compos-
ite algorithms becomes easier and safer, because many possible mistakes or bugs
related to inter-cell communication are detected early. Otherwise, they could exist
unnoticed, generating incorrect results during data processing. Moreover, it is eas-
ier to implement new cells, because the authors do not have to check correctness
of method calls by themselves.

5.4 Immutability of Data

A very important concept related to data representation is immutability. Objects
which store data – instances of Sample class or Data subclasses – are immutable,
i.e. they cannot be modified after creation. Thanks to this property, data objects
can be safely shared by cells, without risk of accidental modification in one cell
that would affect operations of another cell.

Immutability of data objects yields many benefits:

1. Safety – cells written by different people may work together in a complex DPN
without interference.

2. Simplicity – the author of a new cell does not have to care about correctness
of access to data objects.

3. Efficiency – data objects do not have to be copied when transferred to another
cell. Without immutability, copying would be necessary to provide a basic
level of safety. Also, a number of samples may keep references to the same
data object.

4. Parallelization – if DPN is executed concurrently, no synchronization is needed
for access to shared data objects, so parallelization is simpler and more efficient.



676 Marcin Wojnarski

function kmeans(data) returns an array of centers

Initialize array centers
repeat

Set sum[1], . . . , sum[k], count[1], . . . , count[k] to zero
for i = 1..n do /* assign samples to clusters */

x = data[i]
j = clusterOf(x)
sum[j] = sum[j] + x
count[j] = count[j] + 1

end

for j = 1..k do /* reposition centers */
centers[j] = sum[j]/count[j]

end

until no center has been changed
return centers

Figure 3: Pseudocode illustrating k-means clustering algorithm implemented as a reg-
ular stand-alone function. The function takes an array of n samples (data) as argument
and returns k cluster centers. Both samples and centers are real-valued vectors. The
function clusterOf(x) returns index of the center that is closest to x

5.5 Example

To illustrate the usage of Debellor, we will show how to implement standard
k-means algorithm in stream architecture and how to employ it to data processing
in a several-cell DPN.

K-means (Jain et al., 1999; Ripley, 1996) is a popular clustering algorithm.
Given n input samples – numeric vectors of fixed length, x1,x2, . . . ,xn – it tries
to find cluster centers c1, . . . , ck which minimize the sum of squared distances of
samples to their closest center. This is done through iterative process with two
steps repeated alternately in a loop: (i) assignment of each sample to the nearest
cluster and (ii) repositioning of each center to the centroid of all samples in a
given cluster. The algorithm is presented in Fig. 3. As we can see, the common
implementation of k-means as a function is non-scalable, because it employs batch
model of data transfer: training data are passed as an array of samples, so they
must be generated and accumulated in memory before the function is called.

Stream implementation of k-means – as Debellor’s cell – is presented in Fig. 4.
In contrast to the standard implementation, training data are not passed explicitly,
as an array of samples. Instead, the algorithm retrieves samples one-by-one from
the source cell, so it can process arbitrarily large data sets. Note that despite
this algorithm employs stream method of data transfer, it employs batch method
of updating the decision model (the updates are performed after all samples have
been scanned). Thus, it is possible for batch (in terms of model update) algorithms
to utilize and benefit from stream architecture.



Debellor: Platform for Scalable Data Mining 677

class KMeans extends Cell
method learn()

Initialize array centers
repeat

Set sum[1], . . . , sum[k], count[1], . . . , count[k] to zero
(*) source.open()

for i = 1..n do

(*) x = source.next()
j = clusterOf(x)
sum[j] = sum[j] + x
count[j] = count[j] + 1

end

(*) source.close()
for j = 1..k do

centers[j] = sum[j]/count[j]
end

until no center has been changed

Figure 4: Pseudocode illustrating implementation of k-means as Debellor’s cell. Since
k-means is a learning algorithm (generates a decision model), it must be implemented
in method learn() of a Cell’s subclass. Input data are provided by the source cell, the
reference source being a field of Cell. The generated model is stored in the field centers

of class KMeans, method learn() does not return anything. The lines of code inserted or
modified relatively to the standard implementation are marked with asterisk (*)

Listing in Fig. 5 shows how to run a simple experiment: train a k-means
clusterer and apply it to several training samples, to label them with identifiers of
their clusters. Data are read from an ARFF file and simple preprocessing – removal
of the last attribute – is applied to all samples. Note that loading data from file
and preprocessing is executed only when the next input sample is requested by
the kmeans cell – in methods learn() and next().

6 Experimental Evaluation

6.1 Setup

In existing data mining systems, when data to be processed are too large to fit in
memory, they must be put in virtual memory. During execution of the algorithm,
parts of data are being swapped to disk by operating system, to make space for
other parts, currently requested. In this way, portions of data are constantly
moving between memory and disk, generating huge overhead on execution time of
the algorithm. In the presented experiments we wanted to estimate this overhead
and the performance gain that can be obtained through the use of Debellor’s data
streaming instead of swapping.



678 Marcin Wojnarski

/* 3 cells are created and linked into DPN */
Cell arff = new ArffReader();

arff.set("filename", "iris.arff"); /* parameter filename is set */

Cell remove = new WekaFilter("attribute.Remove");

remove.set("attributeIndices", "last");

remove.setSource(arff); /* cells arff and remove are linked */

Cell kmeans = new KMeans();

kmeans.set("numClusters", "10");

kmeans.setSource(remove);

/* k-means algorithm is executed */
kmeans.learn();

/* the clusterer is used to label 3 training samples with cluster identifiers */
kmeans.open();

Sample s1 = kmeans.next(),

s2 = kmeans.next(),

s3 = kmeans.next();

kmeans.close();

/* labelled samples are printed on screen */
System.out.println(s1 + "\n" + s2 + "\n" + s3);

Figure 5: Java code showing sample usage of Debellor cells: reading data from an ARFF
file, removal of an attribute, training and application of a k-means clusterer

For this purpose, we trained k-means (Jain et al., 1999; Ripley, 1996) cluster-
ing algorithm on time windows extracted from the time series that was used in
EUNITE6 2003 data mining competition. We compared execution times of two
variants of experiment:

1. batch, with time windows created in advance and buffered in memory,

2. stream, with time windows generated on the fly.

Data Processing Networks of both variants are presented in Fig. 6. In each of
them, we employed our stream implementation of k-means, sketched in Sect. 5.5
(KMeans cell in Fig. 6). In the first variant, we inserted a buffer into DPN just
before the KMeans cell – in this way we effectively obtained a batch algorithm. In
the second variant, the buffer was placed earlier in the chain of algorithms, before
window extraction. We could have dropped buffering at all, but then the data

6EUropean Network on Intelligent TEchnologies for Smart Adaptive Systems,
http://www.eunite.org



Debellor: Platform for Scalable Data Mining 679

(I)

(II)

Figure 6: DPN of the first (batch) and second (stream) variant of experiment

would be loaded from disk again in every training cycle, which was not necessary,
as the source data were small enough to fit in memory.

Source data were composed of a series of real-valued measurements from glass
production process, recorded in 9408 different time points separated by 15-minute
intervals. There were two kinds of measurements: 29 “input” and 5 “output”
values. In the experiment we used only “input” values, “output” ones were filtered
out by Weka filter for attribute removal (WekaFilter cell).

After loading from disk and dropping unnecessary attributes, the data occupied
5.7MB of memory. They were subsequently passed to TimeWindows cell, which
generated time windows of length W , on every possible offset from the beginning
of the input time series. Each window was created as a concatenation of W
consecutive samples of the series. Therefore, for input series of length T , composed
of A attributes, the resulting stream contained T −W +1 samples, each composed
of W ∗ A attributes. In this way, relatively small source data (5.7MB) generated
large data at further stages of DPN, e.g. 259MB for W = 50.

Since time effectiveness of swapping and memory management depends highly
on hardware setup, experiments were repeated in two different hardware environ-
ments: (A) a laptop PC with Intel Mobile Celeron 1.7 GHz CPU, 256MB RAM;
(B) a desktop PC with AMD Athlon XP 2100+ (1.74 GHz), 1GB RAM. Both
systems run under Microsoft Windows XP. Sun’s Java Virtual Machine (JVM)
1.6.0 was used. Number of clusters in k-means was 5.

6.2 Results

Results of experiments are presented in Table 1 and Fig. 7. Different lengths of
time windows were checked, for every length the size of generated training data
was different (given in the second column of the tables). In each trial, training
time of k-means was measured. These times are reported in normalized form,
i.e. the total training time in seconds is divided by the number of training cycles
and data size in MB. Normalized times can be directly compared across different
trials. Every table and figure presents results of both variants of the algorithm.

Time complexity of a single training cycle of k-means is a linear in the data size,
so normalized execution times should be similar across different values of window
length. However, for the batch variant, the times are constant only for small sizes



680 Marcin Wojnarski

Table 1: Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Corresponding sizes of training data are
given in the second column. Hardware environments A and B

Window length
Data size

[MB]

Normalized
execution time
(batch variant)

Normalized
execution time

(stream variant)
Hardware environment A

10 53 3.1 5.6
20 104 3.2 5.3
30 156 3.1 5.0
40 208 5.1 4.9
50 259 244.4 5.0
60 311 326.9 8.3
70 362 370.6 10.7
80 413 386.0 10.9
90 464 475.3 11.1

Hardware environment B
50 259 4.0 5.3
100 515 4.0 5.4
120 617 4.0 6.5
150 769 5.3 8.7
180 919 23.8 8.8
200 1019 50.7 8.8
220 1119 85.1 8.8
240 1218 111.1 9.1
250 1267 140.2 9.4
260 1317 crash 9.3

of data. At the point when data size gets close to the amount of physical memory
installed on the system, execution time suddenly jumps to a very high value, many
times larger than for smaller data sizes. It may even happen that from some point
the execution crashes due to memory shortage, despite JVM heap size set to the
highest possible value (1.3 GB on 32-bit system).

This dramatic slowdown is not present in the case of the stream algorithm,
which requires always the same amount of memory, at the level of 6MB. For small
data sizes this algorithm runs a bit slower, because training data must be generated
in each training cycle from the beginning. But for large data sizes it can be 40
times better, or even more (the curves in Fig. 7 rise very quickly, so we may suspect
that for larger data sizes the disparity between both variants is even bigger). The
batch variant is actually not usable.

What is also important, every stream implementation of a data mining algo-
rithm can be used in batch manner by simply preceding it with a buffer in DPN.
Thus, the user can choose the faster variant, depending on the data size. On the
other hand, batch implementation cannot be used in stream-based manner, rather
the algorithm must be redesigned and implemented again.



Debellor: Platform for Scalable Data Mining 681

(A)
0 100 200 300 400 500

0

100

200

300

400

500

Size of training data [MB]

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

 

 

batch variant
stream variant

(B)
200 400 600 800 1000 1200 1400
0

25

50

75

100

125

150

Size of training data [MB]

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

 

 

batch variant
stream variant

Figure 7: Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Hardware environments A and B

7 Conclusions

In this paper we introduced Debellor – a data mining platform with stream ar-
chitecture. We presented the concept of data streaming and proved through ex-
perimental evaluation that it enables much more efficient processing of large data
than the currently used method of batch data transfer. Stream architecture is
also more general. Every stream-based implementation can be used in batch man-
ner. Opposite is not true. Thanks to data streaming, algorithms implemented on
Debellor platform can be both scalable and interoperable.

Stream architecture has also weaknesses. Because of sequential access to data,
implementation of algorithms may be conceptually more difficult. Batch data
transfer is more intuitive for the programmer. Moreover, some algorithms may
inherently require random access to data. Although they can be implemented in
stream architecture, they have to buffer all data internally, so they will not benefit
from streaming.



682 Marcin Wojnarski

Development of Debellor will be continued. We plan to extend the architecture
to handle multi-input and multi-output cells as well as nesting of cells (e.g., to
implement meta-learning algorithms). We also want to implement serialization of
cells (i.e., saving to a file) and parallel execution of DPN.

It is also worth to mention that Debellor was chosen as the basis for Tuned-
Tester – an application for automatic evaluation of machine learning algorithms,
being a part of TunedIT (tunedit.org) integrated system which facilitates execu-
tion of reproducible experiments, comparison of results and collaboration between
researchers in the fields of data mining and machine learning.

Acknowledgement

The research has been partially supported by the grant N N516 368334 from
Ministry of Science and Higher Education of the Republic of Poland.

References

Charu C. Aggarwal, editor (2007), Data Streams: Models and Algorithms, Springer-
Verlag.

Jan G. Bazan, Marcin S. Szczuka, Arkadiusz Wojna, and Marcin Wojnarski (2004),
On the Evolution of Rough Set Exploration System, in Rough Sets and Current

Trends in Computing, volume 3066 of Lecture Notes in Computer Science, pp. 592–601,
Springer.

Christopher M. Bishop (2006), Pattern Recognition and Machine Learning, Springer.

Joao Gama and Mohamed Medhat Gaber, editors (2007), Learning from Data Streams:

Processing Techniques in Sensor Networks, Springer.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom (2001), Database

Systems: The Complete Book, Prentice Hall.

A. K. Jain, M. N. Murty, and P. J. Flynn (1999), Data clustering: a review, ACM

Computing Surveys, 31(3):264–323, ISSN 0360-0300.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner (1998), Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278–2324.

R Development Core Team (2005), R: A language and environment for statis-

tical computing, R Foundation for Statistical Computing, Vienna, Austria, URL
http://www.R-project.org.

Brian D. Ripley (1996), Pattern recognition and neural networks, Cambridge University
Press, Cambridge.

P. Viola and M. Jones (2001), Rapid object detection using a boosted cascade of simple
features, in IEEE Computer Vision and Pattern Recognition, volume 1, pp. 511–518.

Ian H. Witten and Eibe Frank (2005), Data Mining: Practical Machine Learning Tools

and Techniques, Morgan Kaufmann, San Francisco, 2 edition.

Arkadiusz Wojna and Lukasz Kowalski (2008), Rseslib: Programmer’s Guide, uRL:
http://rsproject.mimuw.edu.pl.

Marcin Wojnarski (2007), Absolute Contrasts in Face Detection with AdaBoost Cas-
cade, in Rough Sets and Knowledge Technology, volume 4481 of Lecture Notes in Com-

puter Science, pp. 174–180, Springer.


