JOURNAL OF COMPUTER AND SYSTEM SCIENCES §1, 400—403 {1995)

On the All-Pairs-Shortest-Path Problem in
Unweighted Undirected Graphs

RAIMUND SEIDEL *

Computer Science Division, University of California, Berkeley, Berkeley, California 94720

Received October 5, 1992

We present an algorithm, APD, that solves the distance version
of the all-pairs-shortest-path problem for undirected, unweighted
n-vertex graphs in time O(M(n)log n), where M(n) denotes the time
necessary to multiply two n xn matrices of small integers (which is
currently known to be o(n?37%)). We also address the problem of
actually finding a shortest path between each pair of vertices and
present a randomized algorithm that matches APD in its simplicity and
in its expected running time. € 1995 Academic Press, Inc.

1. COMPUTING ALL DISTANCES

In the following let G be an undirected, unweighted, con-
nected graph with vertex set {1,2,..,n} and adjacency
matrix 4; i.e., 4 is a 0-1 matrix with entries a;; = 1 iff vertices
i and j are adjacent in G. Let D denote the distance matrix
of G i.e., d,;is the number of edges on a shortest path joining
vertices i and j in G. Our first main result is the following:

THEOREM 1. Given the adjacency matrix A of an
undirected, unweighted, connected n-vertex graph G, the
algorithm APD stated below correctly computes the distance
matrix D of G in time O(M(n)log n), where M(n) denotes
the time necessary to multiply two nxn matrices of small

integers (which is currently known to be o(n>*"%)).

FuncTioN APD(A : n x n 01 matrix) : x n integer matrix.

letZ=A4 -4
let B be an n x n 0—1 matrix, where
by=1ifl i+ jand (a;=10rz;>0)

if b; =1 for all i # j then return n x n matrix D =28 — A4
let 7=APD(B)

let X=T 4
return n X n matrix D, where
do= {ZIU if x;>1,;- degree())
o2, -1 if x,<t, degree())

* Supported by NSF Presidential Young Investigator Award CCR-
9058440. E-mail address: seidel(cs.berkeley.edu.

0022-0000/95 $12.00 400

Copyright .C: 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

The following claims establish the correctness of the algo-
rithm APD and prove the time bound stated in Theorem 1.

CLamM 1. Let Z=A- A. There is a path of length2 in G
between vertices i and j iff z,,> 0.

Proof. There is a length-2 path joining / and j iff there is
a vertex k adjacent to both i and j, which is exactly the case
if =31 ch<n@utiy>0. |

Let G’ be the simple undirected n-vertex graph obtained
from G by connecting every two vertices i and j by an edge
iff there is a path of length 1 or 2 between / and j in G. Note
that the 0-1 matrix B computed in the algorithm is the
adjacency matrix of G'. G' is the complete graph iff G has
diameter at most 2, and in that case d,;=2 if ¢;=0 and
d;=1if a;= 1. Thus the algorithm is correct for graphs of
diameter at most 2.

Let ¢, denote the length of a shortest path joining i and j
in G

CLamM 2. For any pair i, j of vertices, d; even implies
d;=2t,, and d; odd implies d ;= 2r,— L

Proof. Observe that if for a pair i, of vertices d,,=2s
and i=1iy, 1, ... i2_,, I,=J is a shortest path in G, then
i=1iy. iy, 4, . bae_o 1, =7 18 a shortest path between i
and j in G’ and has length 5. Similarly, if d;=2s—1 and
I=1iy, 0y, Tog_ 3, Iy, I, =] 1s a shortest path in G,
then i =iy, i5, i4, v iay_4» i2,_ 2, 12, =/ 1S @ shortest path
between / and j in G’ and has length s. |}

Thus after the 7,’s have been computed recursively by
ADP(B), one only needs to determine the parities of the d,/’s
in order to deduce their values from the respective ¢,’s. How
those parities can be determined efficiently 1s shown by the
following claims, the first of which is trivial.

CLAM 3. Let iandj be a pair of distinct vertices in G. For
any neighbor k of j in G we have d;—1<d, <d;+1.
Moreover, there exists a neighbor k of jwithd, =d,;— 1.

ALL-PAIRS-SHORTEST-PATH PROBLEM

CLAM 4. Let i and j be a pair of distinct vertices in G:

for all neighbors k of jin G.

Sfor all neighbors k of j in G, and
Jfor some neighbor k of j in G.

deven=1,>1;

dyodd=1, <¢;
L <t

Proof. Assume that d;;=2s is even. Then, since by the
last claim that d,, > 25 — 1 for any neighbor & of j, Claim 2
implies 1, >s=1t,. Similarly, if d;=2s5—1 is odd, then,
since d, < 2s for any neighbor k of j, we have 1, <s=¢;and
d, =25 — 2 for some neighbor & of j. But for that neighbor
tp =s—1<s=t;holds. |

As a straightforward consequence of Claim 4 we have

CramMm 5. dy; even iff 24 cignborof; ti = t;- degree (),
and d;; 0dd iff 3 4 peignbororj e <li- degree; (/).

The correctness of the algorithm APD follows imme-
diately, since aneighborot‘j =2 chan Linlig =Xy

Let f(n,) be the running time of APD when applied to
a graph G with n vertices and of diameter . Since the
derived graph G’ clearly has diameter [§/27] we have

fin.)= M(n)+ O(n*) if 0<2,
TOZV M) + Oy +f(n, T2 if 6>2,
where M(n) denotes the time to multiply two n x » matrices.
For 6 > 1 the solution is

f(n, 6)=(2Tlog, 61— 1)- M(n) + O(n” log é).

Since d <n — 1 and since M(n) = Q(n?) this means that the
running time of APD is O(M(n) log n), which by the results
on fast matrix multiplication by Coppersmith and
Winograd [3] is O(n>*"®).

2. COMPUTING SHORTEST PATHS

Let us now consider the problem of computing for each
pair of vertices in graph G a shortest connecting path, and
not just the length of such a path. Again we deal only with
the case where G is undirected, unweighted, and connected
and has vertex set {1, ..., n}.

Note that we cannot compute all those shortest paths
explicitly in o(n*) time, since there are graphs with ©&(n?)
pairs of vertices whose connecting paths have lengths &(»)
each. Thus we only compute a data structure that allows
shortest connecting paths to be reconstructed in time
proportional to their lengths. This data structure will be the
so-called shortest path successor matrix S, where for each
vertex pair i # j the entry s, is a neighbor & of / that lies on
a shortest path from / to J.

Our strategy will to be compute the successor matrix S
from the distance matrix D. In particular, we will show that

57151/3-5

401

computing S from D essentially amounts to solving the
boolean product witness matrix problem, which asks to com-
pute for any given two 1 x n 0-1 matrices 4 and Ban nx n
integer “witness” matrix W so that

. {some k such thata, =1and b,,= 1, and
V=1 .
* | 0iff no such k exists.

THEOREM 2. Given the adjacency matrix A and the dis-
tance matrix D of an undirected, unweighted, connected
n-vertex graph G, a shortest path successor matrix of G can
be computed by solving three instances of the boolean product
witness matrix problem plus an additional O(n*) time.

Proof. Suppose we have distance matrix D and
adjacency matrix 4 of graph G at our disposal and we let |
and j be two vertices with d;=d >0. Then entry s, in the
successor matrix will be some neighbor k& of i with
dy;=d— 1. In other words, we want to find

some k such that (a, = 1) and (d;; =d — 1).

This means that determining the successors s,; for all vertex
pairs i, j with d;; = d can be achieved by solving the boolean
product witness matrix problem for 4 and B, where 4 is
the adjacency matrix of G and B'“' is the n x n 01 matrix
with b3 =1iff d,, =d — 1. Thus all entries of the successor
matrix S can be found by solving a boolean product witness
matrix problem for each d, 0 <d <n.

Of course, solving # — | instances of this problem is too
expensive. However, it suffices to deal with only three
instances. The key observation is that since d,—1<
dy; <d;+ 1 for any neighbor k of i it suffices to find

some k such that (a; = 1) and (d;;=d — 1 (mod 3)).

Thus for each =0, 1, 2 determining the successors s for
all vertex pairs /,j with d; mod 3 =r can be achieved by
solving the boolean product witness matrix problem for A
and D', where D" is the n x n 01 matrix with 4!/} = 1 iff
d,+1mod3=r. |

v

The function APSP below details our algorithm for
finding all shortest paths. For the solution of the three
instances of the boolean product witness matrix problem it
uses the function BPWM, which is also outlined below and
is analyzed in the next section. From that analysis we can
conclude the following corollary to Theorem 2:

COROLLARY 1. If two nxn matrices can be multiplied
in time O(n®), then APSP constructs shortest paths for all
pairs of vertices in expected time O(n“ log n) if @ >2 and in
expected time O(n*log? n) if =2,

402

FuncTioN APSP(A4: nxn0-1 matrix): nxn successor
matrix.

let D:=APD(A4)
for eachr=0.1,2 do
let D'’ be the n x n 0-1 matrix
with ¢ ' =1 iff d;; + I mod 3=
let W' .=BPWM(A, D)
return n x n matrix S,
where s, =w|/', with p =d,; mod 3

,j »
FunctioN BPWM(A4, B nxn 0-1 matrices): nxn

witness matrix.

let W:=—4-B
for each 7 =2’ where /=0,..[log,n]—1
[3.42log, n7] times
choose dindependent random numbersk,, k., ...,
drawn uniformly from {1, .., n}
let X be an 1 x d matrix with colurans k;a,, and Y
a d x n matrix with rows b, , (1 <i<d)
letC=X-Y
for each (i, j) s.t. w, <0 and ¢, is a witness for (4, /)
dow, :=c;
for each (i, /) s.t. w; <0 do w, :=some witness k for
(i, j), found by trying each k
return .

repeat

kt/*

3. WITNESSES FOR 0-1 MATRIX PRODUCTS

Given two n x n 0-1 matrices A and B we say that index
k is a witness for the index pair (i, j) iff gy =1 and b, = 1.
We say that an n x n integer matrix W is a boolean product
witness matrix for 4 and B iff

, 0 if there is no witness for (i, j), and
Wi {some witness & for (i, j) otherwise.

Above we describe a randomized algorithm BPWM that
computes a boolean product witness matrix. In its descrip-
tion we refer to column & of a matrix Z as =, to row k as
Zix- The expression A-B denotes the normal matrix
product between 4 and B.

THEOREM 3. If two nxn matrices can be multiplied in
time O(n”), then BPMW computes a boolean product
witness matrix for two nxn matrices A and B in expected
time O(n® log n) if @ >2 and in expected time O(n’ log? n)
ifo=2.

Let us first argue that BPWM correctly computes a
witness matrix.

CLamm 6. If 4 and B are nxn 0-1 matrices and
C=A-B, then for each 0<i, j<n the entry c; counts the
number of witnesses for (i, j).

Proof. Trivial, since ¢, =3 ., duby- |

RAIMUND SEIDEL

Thus if some entry w,, of matrix W in BPWM is zero,
then there is not witness for pair (4, j}. Any initially negative
w,; is explicitly reset to some witness for (4, j). Since the last
for each loop ensures that this happens to every negative
BPWM(4, B) indeed returns a boolean product witness
matrix for 4 and B.

What about the running time of BPWM? For each
d =2 the body of the big loop is executed O(log n) times
and each execution involves the multiplication of an nx d
with a d x n matrix plus additional O(n?) work (note that
testing whether a number is a witness for (i, j) can be done
in constant time). The matrix multiplication can be per-
formed in time O(n°d” *) (apply the O(n*) square matrix
multiplication algorithm to d x d submatrices of A and B in
turn) and thus dominates the running time. It follows that
the time necessary to perform the entire first for each loop
is O(log n) times

2 o(n?(2")* %) = o) x

0O/ <[logzn] 0</<TloganT

s —2)
2 [¢2) s

which is O(n® log n) if 0 > 2 and O(n” log” n) if = 2. This
is also the expected running time of the entire function
BPWM. if we can show that the expected running time of
the last for each loop is O(#?); i.e., for each pair (i, j) the
expected work is constant. For this it suffices to prove that
for any (4, j) for which a witness exists, the first for each loop
fails to find a witness with probability at most 1/a.

CLamM 7. Let A and B be n x n 0-1 matrices, let S be a
sequence of d integers k| k. ... k,, each between | and n,
and let matrices X and Y be defined as in the algorithm
BPWM and let C= X - Y. If for some pair (i, j) exactly one
index k; in S is a witness for (i, j), then ¢, =k ;.

Proof. 1f k, is the only index k, in S so that ¢, =1 and
by,=l.thenc, =% _, _ ka,b,, =k,

Let us now concentrate on some fixed pair (4, j) for which
witnesses exist, say, ¢ of them. The previous claim implies
that if during one of the iterations of the big for each loop
there is exactly one witness for (i, /) among the randomly
chosen numbers k,, ..., k,, then a witness for (i, j) is found
and assigned to w,.

We now need to argue that it is very unlikely that this fails
to happen. Consider the iterations for which n/2<cd<n
holds. The following claim implies that each of these itera-
tions fails to produce a witness for (i, j} with probability at
most 1 — 1,2e. Thus no witness is produced in all these itera-
tions with probability at most (1 — 1/2¢)7 249827 < | /n_and
hence a witness for (i, j) has to be found in the last for each
loop with probability at most 1/n, as claimed.

CLAIM 8. Let I be a set of n balls ¢ of which are colored
crimson. Assume that d times a ball is drawn from I uniformly

ALL-PAIRS-SHORTEST-PATH PROBLEM

at random and put back, where d satisfies nj2 < cd <n. Then
the probability that exactly once a crimson ball was drawn is
at least 1/2e.

Proof. The desired probability is d(c/n)(1 —c/n)? 1.
Since by the assumptions on d we have de/n > Land —c/n >
—1/d it follows that (de/n)(1 —c/m)* '> 31 —1/d) ' >
ze ! 1

4, DISCUSSION

Please note that our algorithms only involve integer
matrices' whose entries are less than n>. Thus the
O(M(n) log n) time bound holds for the usual RAM model
that assumes constant time primitive arithmetic and com-
parison operations on integers whose values are polynomial
in n. This is in contrast to previous methods [17, 6] that
solve the all-pairs-shortest-path problem by emulating so-
called “funny matrix multiplication” (i.e., matrix multiplica-
tion over a semiring whose operations are MIN and +) via
ordinary multiplication of matrices whose entries have
representation size not logarithmic, but superlinear in n. See
Pan’s book [15, Theorems 18.10, 23.6].

The main algorithm APD is somewhat of a curiosity. It
applies to the case of unweighted, undirected graphs, but it
does not seem to admit ready generalization to the weighted
and/or directed case. Algorithm APD owes a lot to work by
Galil and Margalit [9], who were the first to achieve a sub-
stantially subcubic bound for a dense version of the ali-
pairs-shortest-path problem. They also used the derived
graph G' but then employed a much more complicated
method to determine the parities of the d,s.

Randomized algorithms similar to BPWM have also
been discovered by Karger [12] and by Alon et al. [2]. The
latter group of authors has also managed to apply deran-
domization and has obtained a deterministic algorithm for
the boolean product witness matrix problem with a worst
case running time of O(M(n)log®"'’ n). Recently Dietz [4]
has obtained an o(M(n) log n) expected time bound.

Since the classic results had been established in the early
sixties, research on the all-pairs-shortest-paths problem saw
relatively little action [6, 8, 11, 7] until interest resurged in
the nineties [5, 13, 14, 1]. Galil and Margalit have been
undertaking a rather comprehensive study of the entire
area, and together with Alon and Naor they have achieved
a number of impressive results. In particular they [10] can

! For APD it s actually not too hard to come up with a variant that only
uses boolean matrix multiplication (no more than 4 [log, 61— 3 of them)
plus O(n* log &) overhead: use the mod 3 trick of APSP.

403

find distance matrices for undirected graphs with integer
edge weights with absolute values smaller than some con-
stant B in time O(n®logn). For directed graphs with
such edge weights they [1] can find the distance matrix
in time O(n'“**?), For B=1 they [2] can also find a
successor matrix in time O(n®) for undirected graphs and
in time O(n'“**7?) for directed graphs. Here O(f(n))
denotes O(f(n) log®"' n), the constant w < 2.376 denotes
the exponent for matrix multiplication, and the depen-
dence on B in the first two bounds is a small poly-
nomial.

REFERENCES

1. N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs
shortest path problem, in “Proceedings, 32nd FOCS, 1991.”
pp. 569-575.

2. N. Alon, Z. Galil, O. Margalit, and M. Naor, Witnesses for Boolean
matrix multiplication and for shortest paths, in “Proceedings, 33rd
FOCS, 1992,” pp. 417-426.

3. D. Coppersmith and S. Winograd, Matrix multiplication via
arithmetic progressions, J. Symbolic Comput. 9 (1990), 251-280.

4. P. Dietz, private communication.

5. T. Feder and R. Motwani, Clique partitions, graphs compression and
speeding-up algorithms, in “Proceedings, STOC, 1991,” pp. 123-133.

6. M. L. Fredman, New bounds on the complexity of the shortest path
problem, SIAM J. Comput. 5 (1976), 83-89.

7. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in
improved network optimization algorithms, Assoc. Comput. Mach.
{1987), 596-615.

8. D. B. Johnson, Efficient algorithms for shortest paths in sparse
networks, J. Assoc. Comput. Mach. (1977), 1-13.

9. Z. Galil and O. Margalit, On the exponent of the all pairs shortest path
problem for undirected graphs, manuscript, April 1991.

10. Z. Galil and O. Margalit, All pairs shortest distances for graphs with
small integer edge lengths, submitted.

11. H. N. Gabow, Scaling algorithms for network problems, J. Compur.
System Sci. 31 (1985), 148-168.

12. D. R. Karger, private communication.

13. D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path:
Time bounds for all-pairs shortest paths, in “Proceedings, 32nd FOCS,
1991, pp. 560-568.

14. C. C. McGeoch, Finding shortest paths with the optimal subgraph,
manuscript, 1992.

15. V. Pan, “How to Multiply Matrices Faster,” Lecture Notes in
Computer Science, Vol. 179, Springer-Verlag, New York/Berlin, 1984.

16. F. Romani, Shortest-path problem is not harder than matrix
multiplication, Inform. Process. Lett. 11 (1980), 134-136.

17. G. Yuval, An algorithm for finding all shortest paths using N**!
infinite-precision multiplications, Inform. Process. Letr. (1976),
155-156.

