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74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . . )

80% of aviation accidents involve human errors
(FAA estimation)

35% of aviation accidents in 2015–2019 in USA were caused by human error
(another study)

37% of train accidents in 2001–2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error
(Indiana University study)

errare humanum est



18

Michał Skrzypczak May a computer be wrong? 3 / 19

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology



19

Michał Skrzypczak May a computer be wrong? 3 / 19

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology



20

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors



21

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN:



22

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955



23

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)



24

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)



25

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)



26

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW:



27

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018



28

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018
‚ „ 2 ¨ 109 transistors of CPU
‚ „ 64 ¨ 109 transistors of RAM
‚ power rating 1–100W



29

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018
‚ „ 2 ¨ 109 transistors of CPU
‚ „ 64 ¨ 109 transistors of RAM
‚ power rating 1–100W
‚ average time between breakdowns:

1100–3285 years (RAM), 126–220 years (CPU)
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Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 “ 212

Mitigation techniques:
‚ Computers at ISS are based on i386 CPUs (1µm“ 100ˆ 10nm technology).

‚ Trippled computer systems in fly-by-wire aircrafts.
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Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
‚ June 13, 1994: error discovered by Thomas R. Nicely
‚ October 20, 1994: error reported
‚ December 20, 1994: Intel offers replacement of sold chips
‚ Total cost: 475 million $
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Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones
Approximately 100 times bigger dose than expected
ùùù 6 seriously overdosed patients, at least 3 fatalities
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Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had „3x more powerfull engines
Integer overflow occured

2114714831647` 1 “ ´2114714831648
ùùù explosion in 30th second of flight, estimated loss of 442 milion e
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Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown
ùùù impact at 22 m/s instead of 2.4 m/s, estimated loss of 100 milion $
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Correct programs!!!

Which science is always˚ right?

˚ Except some very rare cases. . .

MATHEMATICS!



76

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!



77

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program



78

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input



79

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation



80

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result



81

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!



82

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.



83

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:



84

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.



85

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs



86

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds



87

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!!



88

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!! [Hoare logic (1969)]



89

Michał Skrzypczak May a computer be wrong? 11 / 19
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P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!! [Hoare logic (1969)]

ùùù formal verification of programs
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Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

3. Design invariants: an annotatation pP of P
[ typically pP is three times longer than P ]

4. Automatically verify that

pP proves that rϕsP rψs holds.

. . . the program used for 4. is short and simple and everyone trusts it. . .
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Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

‚ 1997–99 full verification of Intel Pentium 4 CPU

‚ 2005 multiple subsystems of Airbus A380

‚ 2018 complete verification of Amazon’s implementation of TLS protocol

‚ . . .
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No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}
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No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}

Fact:  [Goldbach Conjecture] ðñ r sPGold rd
1 “ 1s

ùùù it is enough to show that  r sPGold rd
1 “ 1s. . .

[ even worse, as a program can enumerate proofs ]
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Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy
Specification: S : “no dispense without prior pay”
Correct executions: A˚ Ě rrSss Q xpay, fault, dispensey
Model-checking problem:

rrCss ???
Ď rrSss
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Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
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Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“
 

ρ P A˚ | ρ satisfies ϕ
(
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Specification: S : “no dispense without prior pay”
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C ˆ V ÝÑ˚ p_,Kq
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If that’s not enough. . .
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Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])
Analogue for branching executions!

ùùù The MSO theory of the full binary tree is decidable.

“The mother of all decidability results”
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2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).
‚ In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.
‚ Actual applications to simple drivers and devices.
‚ Interesting mathematical consequences.


