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74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

35% of aviation accidents in 20152019 in USA were caused by human error
(another study)

37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error

(Indiana University study)

errare humanum est
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Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

NOW: PC 2018
o ~ 2-10” transistors of CPU
e ~ 64 - 10" transistors of RAM
e power rating 1-100W

e average time between breakdowns:

1100-3285 years (RAM), 126-220 years (CPU)
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Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 = 212

Mitigation techniques:

e Computers at ISS are based on i386 CPUs (1um= 100 x 10nm technology).
e Trippled computer systems in fly-by-wire aircrafts.
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1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
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Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.

June 13, 1994: error discovered by Thomas R. Nicely

October 20, 1994: error reported
e December 20, 1994: Intel offers replacement of sold chips
Total cost: 475 million $
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Correct programs?
1986 computer-controlled radiotherapy method Therac-25
Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones
Approximately 100 times bigger dose than expected

v~ 6 seriously overdosed patients, at least 3 fatalities

P |
|
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Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had ~3x more powerfull engines

Integer overflow occured

2/147483'647 + 1 = —2'147'483/648

Michat Skrzypczak May a computer be wrong? 9/ 19



Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had ~3x more powerfull engines
Integer overflow occured
2'147'483'647 + 1 = —2'147'483'648

v explosion in 30th second of flight, estimated loss of 442 milion €
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Correct programs???
1999 Mars Polar Lander
Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown

v impact at 22 m/s instead of 2.4 m/s, estimated loss of 100 milion $
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Correct programs!!!

Which science is always* right?

MATHEMATICS!

* Except some very rare cases. . .
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Correct programs!!!

P d <10071017'°'7pn>:p> d/

program  input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements ).
shortly: [90] P [@D]
For instance: |d = 0] Peart [\/g —1<d < \/&]
So: such properties can be proven!!! [Hoare logic (1969)]

v~ formal verification of programs
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Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)
2. Write an implementation: a program P

3. Design invariants: an annotatation P of P

[ typically P is three times longer than P ]

4. Automatically verify that

P proves that [2] P [¢] holds.

... the program used for 4. is short and simple and everyone trusts it. ..
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Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
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[ even worse, as a program can enumerate proofs ]
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DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)
Specification: S “no DISPENSE without prior PAY”
Correct executions: A" 2 [[S] 2 {(PAY, FAULT, DISPENSE )

Model-checking problem:

[c] < [s]
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Application: To check if [C] € [S] it is enough to
1. Translate & into V
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2. regular expressions,

3. w-automata.

Mathematical consequences

v~ The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

Analogue for branching executions!
v The MSO theory of the full binary tree is decidable.

«“The mother of all decidability results~
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