May a computer be wrong?

MICHAL SKRZYPCZAK

Institute of Informatics

Latest Discoveries in Informatics
6th March 2024

Powered by BeamerikZ

Computers have layers. ..

Michal Skrzypczak May a computer be wrong? 1/ 19

Computers have layers. ..

Hardware:

Michal Skrzypczak May a computer be wrong? 1/ 19

Computers have layers. ..

Ee
Hardware: . - ' > Logic + Physics
~ SystemBUS)

Michatl Skrzypczak May a computer be wrong? 1/ 19

Computers have layers. ..

Software:

Ee
Hardware: . - ' > Logic + Physics
~ SystemBUS)

Michatl Skrzypczak May a computer be wrong? 1/ 19

Computers have layers. ..

- Gum

Software: > Mathematics

EMD @& |

Ee
Hardware: . - ' > Logic + Physics
~ SystemBUS)

Michatl Skrzypczak May a computer be wrong? 1/ 19

Computers have layers. ..

Organic:

- Gum

Software:

/

> Mathematics

> Logic + Physics

al |
~ SwemBUS J

Michatl Skrzypczak May a computer be wrong?

1/ 19

Computers have layers. ..

o . .

Michatl Skrzypczak May a computer be wrong? 1/ 19

> Psychology

> Logic + Physics

Computers have layers...

Organic:

/

> Psychology

» ” D = 5 : - - — ’
Int($("#slider_shuffle_number").e());
= d, function("check ra
if (0 < c.lengtr;) {
ice(e, 1); -
. .sPhce(" word:c[g]{{‘}(‘
X je: > g bsplice(® Vi
Software: . R
R B B pend (1 €
e - 03¢ d &&'st'outl)'appin {
(npiord-L2 prc]b
$0 T word™> * Vi c
t--).apPe" + 4 b[ed "
out 7L i-wor :
for (8

Hardware:

> Mathematics

> Logic + Physics

Michal Skrzypczak May a computer be wrong?

1/ 19

Computers have layers. ..

0 rg ani C : . A W ‘

/

> Psychology

» [} D = H H VA= it \
It ($("#slider_shuffle_number").e()); fncion
§ = d, function("check rand\uoefs\oe
g<*f L :';,f (@< c.length) { for '(:;:r
ice(e, 1);
sph::f‘“’ word:c[g]})i 3 3)
1<¢e8& b.sphice ’a #

Software:

/

Hardware:

> Mathematics

> Logic + Physics

Michatl Skrzypczak May a computer be wrong?

1/ 19

Organic errors

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

35% of aviation accidents in 20152019 in USA were caused by human error
(another study)

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

35% of aviation accidents in 20152019 in USA were caused by human error
(another study)

37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

35% of aviation accidents in 20152019 in USA were caused by human error
(another study)

37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error

(Indiana University study)

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability

(FBI, Verizon, IBM, ...)

80% of aviation accidents involve human errors

(FAA estimation)

35% of aviation accidents in 20152019 in USA were caused by human error
(another study)

37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error

(Indiana University study)

errare humanum est

Michal Skrzypczak May a computer be wrong? 2/ 19

Organic:

> Psychology

Software:

Hardware:

» = H
hInt($("#slider_shuffle nu
=d, function("check r
if (0 < c.length) {

e 8& b.splice(

> Mathematics

> Logic + Physics

Michal Skrzypczak

May a computer be wrong?

3/ 19

Hardware: > Logic + Physics

Michat Skrzypczak May a computer be wrong? 3/ 19

Hardware errors

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors

THEN:

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors

THEN: ENITAC 1945 — 1955

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

e maximal continuous operating time: 116 hours (1954)

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

e maximal continuous operating time: 116 hours (1954)

NOW:

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

e maximal continuous operating time: 116 hours (1954)

NOW: PC 2018

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

NOW: PC 2018
o ~ 2-10” transistors of CPU
e ~ 64 - 10" transistors of RAM
e power rating 1-100W

Michal Skrzypczak May a computer be wrong? 4/ 19

Hardware errors
THEN: ENIAC 1945 — 1955
e ~20’000 vacuum tubes
e ~5'000’000 hand-made solders
e power rating 150kW (~100 households)
e average time between breakdowns:

10 min. (1945) — >12 h (1955)

NOW: PC 2018
o ~ 2-10” transistors of CPU
e ~ 64 - 10" transistors of RAM
e power rating 1-100W

e average time between breakdowns:

1100-3285 years (RAM), 126-220 years (CPU)

Michal Skrzypczak May a computer be wrong? 4/ 19

Cosmic radiation

Michat Skrzypczak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm

Integrated circuits in “10nm” technology (2018)

46nm
(Hﬁn) linm
(g)
7nm
(Wg,,)

Michal Skrzypezak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm

Integrated circuits in “10nm” technology (2018)

46nm
Paths of width in hundreds of atoms! (Hg,) 18nm

(Lg)

7nm
(Wgip)

Michal Skrzypezak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm

Integrated circuits in “10nm” technology (2018)

46nm

Paths of width in hundreds of atoms! (Hg,) 18nm

(Ly)
9
v risk of Single Fvent Upset

7nm
(Wgip)

Michal Skrzypezak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm

Integrated circuits in “10nm” technology (2018)

46nm
Paths of width in hundreds of atoms! (Hg,) 1(f|!_nr)n
9
v risk of Single Fvent Upset
7nm
(Wgip)

Confirmed cases:

Michal Skrzypezak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(W)

Integrated circuits in “10nm” technology (2018)

46nm
Paths of width in hundreds of atoms! (Hg,) 1(f|!_nr)n
9
v risk of Single Fvent Upset
7nm
(Wgip)

Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

Michal Skrzypezak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(Wg)

Integrated circuits in “10nm” technology (2018)

46nm
Paths of width in hundreds of atoms! (Hg,) 1(f|!_nr)n
9

v risk of Single Fvent Upset

7nm
(Wep,)
Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

Michat Skrzypczak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(Wg)

Integrated circuits in “10nm” technology (2018)

46nm
Paths of width in hundreds of atoms! (Hg,) 1(f|!_nr)n
9

v risk of Single Fvent Upset

7nm
(Wep,)
Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 = 212

Michat Skrzypczak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(Wg)

Integrated circuits in “10nm” technology (2018)

46nm

Paths of width in hundreds of atoms! (Hg,) 18nm

(Ly)
9
v risk of Single Fvent Upset

7nm
(Wep,)
Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 = 212

Mitigation techniques:

Michat Skrzypczak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(W)

Integrated circuits in “10nm” technology (2018)

46nm

Paths of width in hundreds of atoms! (Hg,) 18nm

(Ly)
9
v risk of Single Fvent Upset

7nm
(Wep,)
Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 = 212

Mitigation techniques:

e Computers at ISS are based on i386 CPUs (1um= 100 x 10nm technology).

Michat Skrzypczak May a computer be wrong? 5/ 19

Cosmic radiation ~100nm
(W)

Integrated circuits in “10nm” technology (2018)

46nm

Paths of width in hundreds of atoms! (Hg,) 18nm

(Ly)
9
v risk of Single Fvent Upset

7nm
(Wep,)
Confirmed cases:

e In 1972 a communication satelite Hughes broke down for 96 seconds.

e In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 = 212

Mitigation techniques:

e Computers at ISS are based on i386 CPUs (1um= 100 x 10nm technology).
e Trippled computer systems in fly-by-wire aircrafts.

Michat Skrzypczak May a computer be wrong? 5/ 19

Hardware errors

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}

had 5 wrong entries.

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835

———— = 1.333820449136241002
311457727

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.

e June 13, 1994: error discovered by Thomas R. Nicely

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
e June 13, 1994: error discovered by Thomas R. Nicely
e October 20, 1994: error reported

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
e June 13, 1994: error discovered by Thomas R. Nicely
e October 20, 1994: error reported
e December 20, 1994: Intel offers replacement of sold chips

Michat Skrzypczak May a computer be wrong? 6/ 19

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from {—2, —1,0, 1,2}
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
4'195'835
3145727
4'195'835
3145727

= 1.333820449136241002

= 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.

June 13, 1994: error discovered by Thomas R. Nicely

October 20, 1994: error reported
e December 20, 1994: Intel offers replacement of sold chips
Total cost: 475 million $

Michat Skrzypczak May a computer be wrong? 6/ 19

Organic:

> Psychology

Software:

Hardware:

» = H
hInt($("#slider_shuffle nu
=d, function("check r
if (0 < c.length) {

e 8& b.splice(

> Mathematics

> Logic + Physics

Michal Skrzypczak

May a computer be wrong?

7/ 19

X ? F] =
der_shuffle_number").e()); ;
= d, function("check rand\ueef3\uorirs
. if (0 ¢ c.lengtt)l) { }fO" g (g;
ice(e, 1); :
e & b.sphizsuj i ,
1<ce8 p.splice(®s

Software: > Mathematics

Michat Skrzypczak May a computer be wrong? 7/ 19

Correct programs?

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code

Previously used hardware interlocks were exchanged to software ones

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25
Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones

Approximately 100 times bigger dose than expected

Michat Skrzypczak May a computer be wrong? 8/ 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25
Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones
Approximately 100 times bigger dose than expected

v~ 6 seriously overdosed patients, at least 3 fatalities

P |
|
= %
£:
=.*-F

Michal Skrzypczak May a computer be wrong?

8/ 19

Correct programs??

Michat Skrzypczak May a computer be wrong? 9/ 19

Correct programs??

1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)

Michat Skrzypczak May a computer be wrong? 9/ 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)

Original code of Ariane 4 was formally verified

Michat Skrzypczak May a computer be wrong? 9/ 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified

But Ariane 5 had ~3x more powerfull engines

Michat Skrzypczak May a computer be wrong? 9/ 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had ~3x more powerfull engines

Integer overflow occured

2/147483'647 + 1 = —2'147'483/648

Michat Skrzypczak May a computer be wrong? 9/ 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had ~3x more powerfull engines
Integer overflow occured
2'147'483'647 + 1 = —2'147'483'648

v explosion in 30th second of flight, estimated loss of 442 milion €

Michal Skrzypczak May a computer be wrong? 9/ 19

Correct programs???

Michat Skrzypczak May a computer be wrong? 10 / 19

Correct programs???

1999 Mars Polar Lander

Michat Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs

Michat Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander
Incorrect handling of sensor data from landing legs

Spurious touchdown detection at 40 meters above surface

Michal Skrzypczak May a computer be wrong?

10 / 19

Correct programs???
1999 Mars Polar Lander
Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface

Premature engines shutdown

Michal Skrzypczak May a computer be wrong?

10 / 19

Correct programs???
1999 Mars Polar Lander
Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown

v impact at 22 m/s instead of 2.4 m/s, estimated loss of 100 milion $

Michal Skrzypczak May a computer be wrong?

10 / 19

Correct programs!!!

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

Which science is always* right?

* Except some very rare cases. . .

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

Which science is always* right?

MATHEMATICS!

* Except some very rare cases. . .

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P

program

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d

program input

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

D.og P0PL P =P

program input computation

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <,0()a,017---7/)n>::0> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).
shortly: [g&] P [@D]

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).
shortly: [g&] P [@D]

For instance: |d = 0] Peart [\/g —1<d < \/&]

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).
shortly: [g&] P [@D]

For instance: |d = 0] Peart [\/g —1<d < \/&]

So: such properties can be proven!!!

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).
shortly: [g&] P [@D]

For instance: |d = 0] Peart [\/g —1<d < \/&]

So: such properties can be proven!!! [Hoare logic (1969)]

Michal Skrzypczak May a computer be wrong? 11/ 19

Correct programs!!!

P d <10071017'°'7pn>:p> d/

program input computation result

Fact 1: P. d, p, and d’ are sequences of bits v~ numbers!

Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions ¢

THEN the result d satisfies the requirements).
shortly: [90] P [@D]
For instance: |d = 0] Peart [\/g —1<d < \/&]
So: such properties can be proven!!! [Hoare logic (1969)]

v~ formal verification of programs

Michal Skrzypczak May a computer be wrong? 11/ 19

Formal verification workflow

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow

1. Write a specification: assumptions ¢ and requirements 1)

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)

2. Write an implementation: a program P

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)
2. Write an implementation: a program P

3. Design invariants: an annotatation P of P

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)
2. Write an implementation: a program P

3. Design invariants: an annotatation P of P

[typically P is three times longer than P]

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)
2. Write an implementation: a program P

3. Design invariants: an annotatation P of P

[typically P is three times longer than P]

4. Automatically verify that

P proves that [2] P [¢] holds.

Michal Skrzypczak May a computer be wrong? 12 /19

Formal verification workflow
1. Write a specification: assumptions ¢ and requirements 1)
2. Write an implementation: a program P

3. Design invariants: an annotatation P of P

[typically P is three times longer than P]

4. Automatically verify that

P proves that [2] P [¢] holds.

... the program used for 4. is short and simple and everyone trusts it. ..

Michal Skrzypczak May a computer be wrong? 12 /19

Applications of formal verification

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)
— 0 bugs found until 2009

13/ 19

Michal Skrzypczak May a computer be wrong?

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)
— 0 bugs found until 2009

e 1999 formal verification of a smart cards interpreter

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)
— 0 bugs found until 2009

e 1999 formal verification of a smart cards interpreter

e 2005 verification of VAL system, connecting terminals at CDG

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)
— 0 bugs found until 2009

e 1999 formal verification of a smart cards interpreter

e 2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)

— 0 bugs found until 2009
* B-method

e 1999 formal verification of a smart cards interpreter

e 2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe)

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
e 1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)

— 0 bugs found until 2009
* B-method

e 1999 formal verification of a smart cards interpreter

e 2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe)

e 199799 full verification of Intel Pentium 4 CPU

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)
— 0 bugs found until 2009

1999 formal verification of a smart cards interpreter

2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe

1997-99 full verification of Intel Pentium 4 CPU

2005 multiple subsystems of Airbus A380

Michal Skrzypczak May a computer be wrong?

>B-method

13/ 19

Applications of formal verification
1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)

— 0 bugs found until 2009
* B-method

1999 formal verification of a smart cards interpreter

2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe)

1997-99 full verification of Intel Pentium 4 CPU
2005 multiple subsystems of Airbus A380

2018 complete verification of Amazon’s implementation of TLS protocol

Michat Skrzypczak May a computer be wrong? 13/ 19

Applications of formal verification
1998 Ligne 14 of Paris Underground (autonomical)
Key elements of the traffic-control system
— 110’000 lines of code (including proofs)

— 0 bugs found until 2009
* B-method

1999 formal verification of a smart cards interpreter

2005 verification of VAL system, connecting terminals at CDG

v > 20 other locations around the globe)

1997-99 full verification of Intel Pentium 4 CPU
2005 multiple subsystems of Airbus A380

2018 complete verification of Amazon’s implementation of TLS protocol

Michat Skrzypczak May a computer be wrong? 13/ 19

No such thing as a free lunch...

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...
Conjecture (GOldbaCh [1742}) [AKA Hilbert’s 8th problem}

Every even number greater than 2 is a sum of two primes.

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...
Conjecture (GOldbaCh [1742}) [AKA Hilbert’s 8th problem}
Every even number greater than 2 is a sum of two primes.

| worth 1 milion $ |

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...
Conjecture (GOldbaCh [1742}) [AKA Hilbert’s 8th problem}
Every even number greater than 2 is a sum of two primes.

| worth 1 milion $ |

Pcold :

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...

Conjecture (GOldbaCh [1742}) [AKA Hilbert’s 8th problem}

Every even number greater than 2 is a sum of two primes.

| worth 1 milion $ |
Pcoid : n 1= 2;
while true do {
n:=n+ 2;
if (n is not a sum of two primes) then

return 1;

Michal Skrzypczak May a computer be wrong?

14/ 19

No such thing as a free lunch...
Conjecture (Goldbach [1742]) [aka milberes sth problem|
Every even number greater than 2 is a sum of two primes.
| worth 1 milion $ |
Pcod: n = 2;
while true do {
n:=n+ 2;
if (n is not a sum of two primes) then

return 1;

Fact: —|Goldbach Conjecture] <= []Pgoald = 1]

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...
Conjecture (Goldbach [1742]) [aka milberes sth problem|
Every even number greater than 2 is a sum of two primes.
| worth 1 milion $ |
Pcod: n = 2;
while true do {
n:=n+ 2;
if (n is not a sum of two primes) then

return 1;

Fact: —|Goldbach Conjecture] <= []Pgoald = 1]

v it is enough to show that —[| Paoa [d = 1]. ..

Michal Skrzypczak May a computer be wrong? 14/ 19

No such thing as a free lunch...
Conjecture (Goldbach [1742]) [aka milberes sth problem|
Every even number greater than 2 is a sum of two primes.
| worth 1 milion $ |
Pcod: n = 2;
while true do {
n:=n+ 2;
if (n is not a sum of two primes) then

return 1;

Fact: —|Goldbach Conjecture] <= []Pgoald = 1]
v it is enough to show that —[| Paoa [d = 1]. ..

[even worse, as a program can enumerate proofs]

Michal Skrzypczak May a computer be wrong?

14/ 19

LIt is all because of numbers”

Michat Skrzypczak May a computer be wrong? 15/ 19

LIt is all because of numbers” v~ consider numberless machines = automata

Michat Skrzypczak May a computer be wrong? 15/ 19

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE

Set of actions: A = {COFFEE, SOUP, PAY, ...}

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE

Set of actions: A = {COFFEE, SOUP, PAY, ...}

Possible executions: Ao (C]

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)
Specification: S “no DISPENSE without prior PAY”

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)
Specification: S “no DISPENSE without prior PAY”
Correct executions: Ao [S]

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)
Specification: S “no DISPENSE without prior PAY”
Correct executions: A" 2 [[S] 2 {(PAY, FAULT, DISPENSE)

Michat Skrzypczak May a computer be wrong? 15/ 19

NOZZLE

DISPENSE
Set of actions: A = {COFFEE, SOUP, PAY, ...}
Possible executions: A" 2 [[C]] 3 {(sOUP, PAY, FAULT, REPAIR)
Specification: S “no DISPENSE without prior PAY”
Correct executions: A" 2 [[S] 2 {(PAY, FAULT, DISPENSE)

Model-checking problem:

[c] < [s]

Michat Skrzypczak May a computer be wrong? 15/ 19

Specification: S: “no DISPENSE without prior PAY”

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

3. Verifier:

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V] & {pe A" |V accepts p}

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY s
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V]« {pe A" |V accepts p}

Theorem (Biichi, Elgot, Trachtenbrot [~1960))

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V] & {pe A" |V accepts p}

Theorem (Biichi, Elgot, Trachtenbrot [~1960))
[t is possible to effectively translate between 1., 2., and 3..

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V] & {pe A" |V accepts p}

Theorem (Biichi, Elgot, Trachtenbrot [~1960))
[t is possible to effectively translate between 1., 2., and 3..

Application: To check if [C] € [S] it is enough to

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V] & {pe A" |V accepts p}

Theorem (Biichi, Elgot, Trachtenbrot [~1960))
[t is possible to effectively translate between 1., 2., and 3..

Application: To check if [C] € [S] it is enough to
1. Translate & into V

Michat Skrzypczak May a computer be wrong? 16 / 19

Specification: S: “no DISPENSE without prior PAY”

1. Formula of MSO: @: Vt. DISPENSE(t) = 3t < t. PAY(?)
[l def {p e A" | p satisfies gp}

2. Regular expression: R: ["DISPENSE]" + ([DISPENSE]" - PAY - A")
(R + R Y[R U [R]. .-

PAY .
3. Verifier: V: 8

A —{PAY, DISPENSE} A

V] & {pe A" |V accepts p}

Theorem (Biichi, Elgot, Trachtenbrot [~1960))
[t is possible to effectively translate between 1., 2., and 3..

Application: To check if [C] € [S] it is enough to
1. Translate & into V

2. Check if
CxV—"(,1)

Michat Skrzypczak May a computer be wrong? 16 / 19

If that’s not enough. ..

Michat Skrzypczak May a computer be wrong? 17/ 19

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

DISPENSE

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

. . DISPENSE
Infinite executions: [C]|* < A¥

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

. . DISPENSE
Infinite executions: [C]|* < A¥

Specification: ,execution without CANCEL, infinitely many times DISPENSE”

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

. . DISPENSE
Infinite executions: [C]|* < A¥

Specification: ,execution without CANCEL, infinitely many times DISPENSE”

1. Formula of MSO: (Vt. =CANCEL(t)) = Vt. 3t' > t. DISPENSE(t)

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

. . DISPENSE
Infinite executions: [C]|* < A¥

Specification: ,execution without CANCEL, infinitely many times DISPENSE”
1. Formula of MSO: (Vt. =CANCEL(t)) = Vt. 3t' > t. DISPENSE(t)

2. Regular expression: A" - CANCEL- A™ + (A* : DISPENSE)OO

Michat Skrzypczak May a computer be wrong? 17/ 19

NOZZLE

. . DISPENSE
Infinite executions: [C]|* < A¥

Specification: ,execution without CANCEL, infinitely many times DISPENSE”
1. Formula of MSO: (Vt. =CANCEL(t)) = Vt. 3t' > t. DISPENSE(t)
2. Regular expression: A" - CANCEL- A™ + (A* : DISPENSE)OO

3. Verifier: ¢ o e

Michat Skrzypczak May a computer be wrong? 17/ 19

Theorem (Btichi [1962])

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

v The MSO theory of natural numbers is decidable.

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

v The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

v The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

Analogue for branching executions!

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

v The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

Analogue for branching executions!

v The MSO theory of the full binary tree is decidable.

Michat Skrzypczak May a computer be wrong? 18/ 19

Theorem (Btichi [1962])
It is possible to effectively translate between the following formalisms
for infinite executions(!):
1. formulae of MSO,
2. regular expressions,

3. w-automata.

Mathematical consequences

v~ The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

Analogue for branching executions!
v The MSO theory of the full binary tree is decidable.

«“The mother of all decidability results~

Michat Skrzypczak May a computer be wrong? 18/ 19

Summary

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.

e Hardware errors are rare (and one can make them even rarer).

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

e Their application requires effort (and skills = costs).

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.
e Their application requires effort (and skills = costs).

e In general it cannot be automatized.

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.
e Their application requires effort (and skills = costs).

e In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.
e Their application requires effort (and skills = costs).

e In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

e Actual applications to simple drivers and devices.

Michat Skrzypczak May a computer be wrong? 19/ 19

Summary

1. Computers may be wrong.
e Hardware errors are rare (and one can make them even rarer).

e Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.
e Their application requires effort (and skills = costs).

e In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.
e Actual applications to simple drivers and devices.

e Interesting mathematical consequences.

Michat Skrzypczak May a computer be wrong? 19/ 19

