May a computer be wrong?

MichaE Skrzypczak

Institute of Informatics

Latest Discoveries in Informatics
6th March 2024

Computers have layers.. .

Computers have layers...

Hardware:

Computers have layers...

Hardware:

Computers have layers...

Software:

Hardware:

Computers have layers...

Software:

Computers have layers...

Organic:

Computers have layers...

Organic:

 Sint(S("\#nlider_shuffle_number").e()); function("Liviti total:" $\mathbf{d} \leqslant \boldsymbol{f}$ M\& ($\boldsymbol{f}=\mathbf{d}$, function("check randlue0f3) ueef3rand: " $+f+$ 'titw

Software:

Hardware:
Logic + Physics

Computers have layers...

Organic:

Software:

Hardware:

Organic errors

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, ...)

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, ...)
80% of aviation accidents involve human errors
(FAA estimation)

Organic errors

74% of security breaches in 2023 involved a human vurnerability

> (FBI, Verizon, IBM, ...)
80% of aviation accidents involve human errors
(FAA estimation)
$\mathbf{3 5 \%}$ of aviation accidents in 2015-2019 in USA were caused by human error
(another study)

Organic errors

$\mathbf{7 4 \%}$ of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, ...)
80% of aviation accidents involve human errors
(FAA estimation)
35% of aviation accidents in 2015-2019 in USA were caused by human error (another study)
37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)

Organic errors

$\mathbf{7 4 \%}$ of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, ...)
80% of aviation accidents involve human errors
(FAA estimation)
$\mathbf{3 5 \%}$ of aviation accidents in 2015-2019 in USA were caused by human error (another study)
37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)
$\mathbf{9 3 \%}$ of car collisions in USA were caused by human error
(Indiana University study)

Organic errors

$\mathbf{7 4 \%}$ of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, ...)
80% of aviation accidents involve human errors
(FAA estimation)
$\mathbf{3 5 \%}$ of aviation accidents in 2015-2019 in USA were caused by human error (another study)
37% of train accidents in 2001-2005 in USA were caused by human error
(US DoT)
93% of car collisions in USA were caused by human error
(Indiana University study)

Organic:

Software:

\rightarrow
Snt(S("\#slider_shuffle_number").e()); function("LIMIT_totel:" + od); $\boldsymbol{d} \leqslant \boldsymbol{f}$ \&\& ($\boldsymbol{f}=\boldsymbol{d}$, function("check randlu00f3lueoffrand:
$\mathbf{d}=\mathbf{d}=\boldsymbol{f}, \mathrm{e}$; if $(0<c$. length $)\{$ for $($ vor $g=0 j g$ < c.lentivis
b, $\subset[a 1)$, $-1<$ e \&\& b.splice $(e, 1) ; \quad, \quad\} \quad\} \quad\} \quad \in=0(b)$,
b, $C[B]),-1<e$,

Hardware:

Logic + Physics

Organic:

Software:

Hardware:

Hardware errors

Hardware errors

THEN:

Hardware errors

THEN: ENIAC 1945 - 1955

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

- maximal continuous operating time: 116 hours (1954)

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

- maximal continuous operating time: 116 hours (1954)

NOW:

Hardware errors

THEN: ENIAC 1945-1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

- maximal continuous operating time: 116 hours (1954)

NOW: PC 2018

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

- maximal continuous operating time: 116 hours (1954)

NOW: PC 2018

- ~2 20^{9} transistors of CPU
- ~ $64 \cdot 10^{9}$ transistors of RAM
- power rating $1-100 \mathrm{~W}$

Hardware errors

THEN: ENIAC 1945 - 1955

- ~20'000 vacuum tubes
- ~5'000'000 hand-made solders
- power rating 150 kW (~ 100 households)
- average time between breakdowns:

10 min. (1945) $\rightarrow>12 \mathrm{~h}$ (1955)

- maximal continuous operating time: 116 hours (1954)

NOW: PC 2018

- $\sim 2 \cdot 10^{9}$ transistors of CPU
- ~ $64 \cdot 10^{9}$ transistors of RAM
- power rating $1-100 \mathrm{~W}$
- average time between breakdowns:
 1100-3285 years (RAM), 126-220 years (CPU)

Cosmic radiation

Cosmic radiation

Cosmic radiation

Cosmic radiation

Cosmic radiation

Confirmed cases:

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.
- In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.
- In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

$$
4096=2^{12}
$$

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.
- In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

$$
4096=2^{12}
$$

Mitigation techniques:

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.
- In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

$$
4096=2^{12}
$$

Mitigation techniques:

- Computers at ISS are based on i386 CPUs $(1 \mu \mathrm{~m}=100 \times 10 \mathrm{~nm}$ technology).

Cosmic radiation

Confirmed cases:

- In 1972 a communication satelite Hughes broke down for 96 seconds.
- In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

$$
4096=2^{12}
$$

Mitigation techniques:

- Computers at ISS are based on i386 CPUs $(1 \mu \mathrm{~m}=100 \times 10 \mathrm{~nm}$ technology).
- Trippled computer systems in $f l y$-by-wire aircrafts.

Hardware errors

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs
A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.

Hardware errors
 1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs
A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002
$$

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs
A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs
A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Only 1 in 9 billion divisions with random parameters produced wrong results.

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Only 1 in 9 billion divisions with random parameters produced wrong results.

- June 13, 1994: error discovered by Thomas R. Nicely

Hardware errors

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Only 1 in 9 billion divisions with random parameters produced wrong results.

- June 13, 1994: error discovered by Thomas R. Nicely
- October 20, 1994: error reported

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Only 1 in 9 billion divisions with random parameters produced wrong results.

- June 13, 1994: error discovered by Thomas R. Nicely
- October 20, 1994: error reported
- December 20, 1994: Intel offers replacement of sold chips

1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from $\{-2,-1,0,1,2\}$
had 5 wrong entries.
In unfavourable circumstances fourth significant decimal digit was wrong:

$$
\begin{aligned}
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333820449136241002 \\
& \frac{4^{\prime} 195^{\prime} 835}{3^{\prime} 145^{\prime} 727}=1.333739068902037589
\end{aligned}
$$

Only 1 in 9 billion divisions with random parameters produced wrong results.

- June 13, 1994: error discovered by Thomas R. Nicely
- October 20, 1994: error reported
- December 20, 1994: Intel offers replacement of sold chips
- Total cost: 475 million \$

Organic:

Software:

\rightarrow
Snt(S("\#slider_shuffle_number").e()); function("LIMIT_totel:" + od); $\boldsymbol{d} \leqslant \boldsymbol{f}$ \&\& ($\boldsymbol{f}=\boldsymbol{d}$, function("check randlu00f3lueoffrand:
$\mathbf{d}=\mathbf{d}=\boldsymbol{f}, \mathrm{e}$; if $(0<c$. length $)\{$ for $($ vor $g=0 j g$ < c.lentivis
b, $\subset[a 1)$, $-1<$ e \&\& b.splice $(e, 1) ; \quad, \quad\} \quad\} \quad\} \quad \in=0(b)$,

for ($c=0 ; c<d$.

Hardware:

organic:

Software:

Hardware:

Correct programs?

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Correct programs?

1986 computer-controlled radiotherapy method Therac-25
Race condition in concurrent code

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones Approximately 100 times bigger dose than expected

Correct programs?

1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones Approximately 100 times bigger dose than expected $\leadsto 6$ seriously overdosed patients, at least 3 fatalities

Correct programs??

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had $\sim 3 x$ more powerfull engines

1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had $\sim 3 \mathrm{x}$ more powerfull engines
Integer overflow occured

$$
2^{\prime} 147^{\prime} 483^{\prime} 647+1=-2^{\prime} 147^{\prime} 483^{\prime} 648
$$

Correct programs??

1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had $\sim 3 x$ more powerfull engines Integer overflow occured

$$
2^{\prime} 147^{\prime} 483^{\prime} 647+1=-2^{\prime} 147^{\prime} 483^{\prime} 648
$$

$\leadsto \leadsto$ explosion in 30th second of flight, estimated loss of 442 milion $€$

Correct programs???

Correct programs???

1999 Mars Polar Lander

Correct programs???

1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs

Correct programs???

1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface

Correct programs???

1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown

Correct programs???

1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown
\leadsto impact at $22 \mathrm{~m} / \mathrm{s}$ instead of $2.4 \mathrm{~m} / \mathrm{s}$, estimated loss of 100 milion $\$$

Correct programs!!!

Correct programs!!!

Which science is always* right?

* Except some very rare cases.

Correct programs!!!

Which science is always* right?

MATHEMATICS!

* Except some very rare cases.

Correct programs!!!

Correct programs!!!

\mathcal{P}
program

Correct programs!!!

$\mathcal{P}: d$
program input

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto}$
 program input computation

Correct programs!!!

Correct programs!!!

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!

Correct programs!!!

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Correct programs!!!

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $m \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF
an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $m \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF
an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

$$
\text { shortly: }[\varphi] \mathcal{P}[\psi]
$$

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input
computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF
an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

$$
\text { shortly: }[\varphi] \mathcal{P}[\psi]
$$

For instance: $\quad[d \geqslant 0] \mathcal{P}_{\text {sqrt }}\left[\sqrt{d}-1<d^{\prime} \leqslant \sqrt{d}\right]$

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input
computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF
an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

$$
\text { shortly: }[\varphi] \mathcal{P}[\psi]
$$

For instance: $\quad[d \geqslant 0] \mathcal{P}_{\text {sqrt }}\left[\sqrt{d}-1<d^{\prime} \leqslant \sqrt{d}\right]$
So: such properties can be proven!!!

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input
computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF
an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

$$
\text { shortly: }[\varphi] \mathcal{P}[\psi]
$$

For instance: $\quad[d \geqslant 0] \mathcal{P}_{\text {sqrt }}\left[\sqrt{d}-1<d^{\prime} \leqslant \sqrt{d}\right]$
So: such properties can be proven!!!
[Hoare logic (1969)]

Correct programs!!!

$\mathcal{P}: d \stackrel{\left\langle\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right\rangle=\rho}{\longmapsto} d^{\prime}$
program input
computation result

Fact 1: \mathcal{P}, d, ρ, and d^{\prime} are sequences of bits $\leadsto \leadsto$ numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:
IF an input d satisfies the assumptions φ
THEN the result d^{\prime} satisfies the requirements ψ.

$$
\text { shortly: }[\varphi] \mathcal{P}[\psi]
$$

For instance: $\quad[d \geqslant 0] \mathcal{P}_{\text {sqrt }}\left[\sqrt{d}-1<d^{\prime} \leqslant \sqrt{d}\right]$
So: such properties can be proven!!!
[Hoare logic (1969)]
$\leadsto \leadsto$ formal verification of programs

Formal verification workflow

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ
2. Write an implementation: a program \mathcal{P}

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ
2. Write an implementation: a program \mathcal{P}
3. Design invariants: an annotatation $\widehat{\mathcal{P}}$ of \mathcal{P}

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ
2. Write an implementation: a program \mathcal{P}
3. Design invariants: an annotatation $\widehat{\mathcal{P}}$ of \mathcal{P}
$[$ typically $\hat{\mathcal{P}}$ is three times longer than \mathcal{P}]

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ
2. Write an implementation: a program \mathcal{P}
3. Design invariants: an annotatation $\widehat{\mathcal{P}}$ of \mathcal{P}
$[$ typically $\hat{\mathcal{P}}$ is three times longer than $\mathcal{P}]$
4. Automatically verify that
$\widehat{\mathcal{P}}$ proves that $[\varphi] \mathcal{P}[\psi]$ holds.

Formal verification workflow

1. Write a specification: assumptions φ and requirements ψ
2. Write an implementation: a program \mathcal{P}
3. Design invariants: an annotatation $\hat{\mathcal{P}}$ of \mathcal{P}
$[$ typically $\hat{\mathcal{P}}$ is three times longer than $\mathcal{P}]$
4. Automatically verify that
$\hat{\mathcal{P}}$ proves that $[\varphi] \mathcal{P}[\psi]$ holds.
... the program used for 4 . is short and simple and everyone trusts it...

Applications of formal verification

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe
- 1997-99 full verification of Intel Pentium 4 CPU

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe
- 1997-99 full verification of Intel Pentium 4 CPU
- 2005 multiple subsystems of Airbus A380

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe
- 1997-99 full verification of Intel Pentium 4 CPU
- 2005 multiple subsystems of Airbus A380
- 2018 complete verification of Amazon's implementation of TLS protocol

Applications of formal verification

- 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

- 110'000 lines of code (including proofs)
- 0 bugs found until 2009
- 1999 formal verification of a smart cards interpreter
- 2005 verification of VAL system, connecting terminals at CDG $m>\geqslant 20$ other locations around the globe
- 1997-99 full verification of Intel Pentium 4 CPU
- 2005 multiple subsystems of Airbus A380
- 2018 complete verification of Amazon's implementation of TLS protocol

No such thing as a free lunch.. .

No such thing as a free lunch.. .

Conjecture (Goldbach [1742]) [AKA Hibert's sth problem]
Every even number greater than 2 is a sum of two primes.

No such thing as a free lunch. . .

Conjecture (Goldbach [1742]) [AKA Hilbert's sth problem]
Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]

No such thing as a free lunch. . .

Conjecture (Goldbach [1742]) [AKA Hilbert's sth problem]

Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]
$\mathcal{P}_{\text {Gold }}$:

No such thing as a free lunch.. .

Conjecture (Goldbach [1742]) [AKA Hilbert's sth problem]
Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]
$\mathcal{P}_{\text {Gold }}: \mathrm{n}:=2$;
while true do \{
n : $=$ n + 2;
if (n is not a sum of two primes) then
return 1;
\}

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hibert's sth problem]
Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]
$\mathcal{P}_{\text {Gold }}: \mathrm{n}:=2$; while true do \{ n : $=n+2$;
if (n is not a sum of two primes) then return 1;
\}
Fact: $\quad \neg[$ Goldbach Conjecture $] \Longleftrightarrow[] \mathcal{P}_{\text {Gold }}\left[d^{\prime}=1\right]$

No such thing as a free lunch.. .
Conjecture (Goldbach [1742]) [AKA Hibert's sth problem]
Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]
$\mathcal{P}_{\text {Gold }}: \mathrm{n}:=2$; while true do \{ $\mathrm{n}:=\mathrm{n}+2$;
if (n is not a sum of two primes) then
return 1;
\}
Fact: $\quad \neg[$ Goldbach Conjecture $] \Longleftrightarrow[] \mathcal{P}_{\text {Gold }}\left[d^{\prime}=1\right]$ $m \rightarrow$ it is enough to show that $\neg[] \mathcal{P}_{\text {Gold }}\left[d^{\prime}=1\right] \ldots$

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hibert's sth problem]
Every even number greater than 2 is a sum of two primes.
[worth 1 milion \$]
$\mathcal{P}_{\text {Gold }}: \mathrm{n}:=2$; while true do \{ n : $=n+2$;
if (n is not a sum of two primes) then
return 1;
\}
Fact: $\quad \neg[$ Goldbach Conjecture $] \Longleftrightarrow[] \mathcal{P}_{\text {Gold }}\left[d^{\prime}=1\right]$ $\leadsto \rightarrow$ it is enough to show that $\neg[] \mathcal{P}_{\text {Gold }}\left[d^{\prime}=1\right] \ldots$
[even worse, as a program can enumerate proofs]
"It is all because of numbers"

Set of actions:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$

Set of actions:

Possible executions:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$
$\mathrm{A}^{*} \supseteq \llbracket \mathcal{C} \rrbracket$

Set of actions:

Possible executions:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$
$\mathrm{A}^{*} \supseteq \llbracket \mathrm{C} \rrbracket \ni\langle$ SOUP, PAY, FAULT, REPAIR〉

Set of actions:
Possible executions:
Specification:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$
$\mathrm{A}^{*} \supseteq \llbracket C \rrbracket \ni\langle$ SOUP, PAY, FAULT, REPAIR〉
\mathcal{S} : "no DISPENSE without prior PAY"

Set of actions:
Possible executions:
Specification:
Correct executions:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$
$\mathrm{A}^{*} \supseteq \llbracket \mathcal{C} \rrbracket \ni\langle$ SOUP, PAY, FAULT, REPAIR〉
\mathcal{S} : "no DISPENSE without prior PAY"
$\mathrm{A}^{*} \supseteq \llbracket \mathcal{S} \rrbracket$

Set of actions:

Possible executions:
Specification:
Correct executions:
$\mathrm{A}=\{$ COFFEE, SOUP, PAY, $\ldots\}$
$\mathrm{A}^{*} \supseteq \llbracket \subset \rrbracket \ni\langle$ SOUP, PAY, FAULT, REPAIR〉
\mathcal{S} : "no DISPENSE without prior PAY"
$\mathrm{A}^{*} \supseteq \llbracket \mathcal{S} \rrbracket \ni\langle\mathrm{PAY}$, FAULT, DISPENSE \rangle

Set of actions:
Possible executions:
Specification:
Correct executions:
Model-checking problem:

$$
\llbracket c]\left[\frac{2 p}{c}\|s\|\right.
$$

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DISPENSE}(t) \Rightarrow \exists t^{\prime}<t . \operatorname{PAY}\left(t^{\prime}\right)$

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$
$\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho\right.$ satisfies $\left.\varphi\right\}$

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]* \cdot PAY $\left.\cdot \mathrm{A}^{*}\right)$

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]* \cdot PAY $\left.\cdot \mathrm{A}^{*}\right)$

$$
\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots
$$

Specification:
\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DiSPENSE}(t) \Rightarrow \exists t^{\prime}<t . \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]* \cdot PAY $\left.\cdot \mathrm{A}^{*}\right)$

$$
\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots
$$

3. Verifier:

Specification:
\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DisPENsE}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE $]^{*}+\left(\left[{ }^{\wedge} \text { DISPENSE }\right]^{*} \cdot\right.$ PAY $\left.\cdot \mathrm{A}^{*}\right)$

$$
\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots
$$

3. Verifier:
\mathcal{V} :

Specification:
\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DisPENsE}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \stackrel{\text { def }}{=}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE $]^{*}+\left(\left[{ }^{\wedge} \text { DISPENSE }\right]^{*} \cdot\right.$ PAY $\left.\cdot \mathrm{A}^{*}\right)$

$$
\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots
$$

3. Verifier:

$$
\llbracket \mathcal{V} \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \mathcal{V} \text { accepts } \rho\right\}
$$

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAy}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]** PAY $\left.\cdot \mathrm{A}^{*}\right)$ $\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots$
3. Verifier:

$\llbracket \mathcal{V} \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \mathcal{V}\right.$ accepts $\left.\rho\right\}$
Theorem (Büchi, Elgot, Trachtenbrot [1960])

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAy}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]** PAY $\left.\cdot \mathrm{A}^{*}\right)$ $\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots$
3. Verifier:

Theorem (Büchi, Elgot, Trachtenbrot [1960])
It is possible to effectively translate between 1., 2., and $\mathbf{3}$.

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DiSPEnse}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAy}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]** PAY $\left.\cdot \mathrm{A}^{*}\right)$ $\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots$
3. Verifier:

$$
\begin{aligned}
& \mathcal{V} \text { : } \\
& \llbracket \mathcal{V} \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \mathcal{V} \text { accepts } \rho\right\}
\end{aligned}
$$

Theorem (Büchi, Elgot, Trachtenbrot [1960])
It is possible to effectively translate between 1., 2., and $\mathbf{3}$.
Application: To check if $\llbracket \mathcal{C} \rrbracket \subseteq \llbracket \mathcal{S} \rrbracket$ it is enough to

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{DiSPEnse}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAy}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]** PAY $\left.\cdot \mathrm{A}^{*}\right)$ $\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots$
3. Verifier:

$$
\begin{aligned}
& v: \\
& \llbracket \mathcal{V} \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \mathcal{V} \text { accepts } \rho\right\}
\end{aligned}
$$

Theorem (Büchi, Elgot, Trachtenbrot [1960])
It is possible to effectively translate between 1., 2., and $\mathbf{3}$.
Application: To check if $\llbracket \mathcal{C} \rrbracket \subseteq \llbracket \mathcal{S} \rrbracket$ it is enough to

1. Translate \mathcal{S} into \mathcal{V}

Specification:

\mathcal{S} : "no DISPENSE without prior PAY"

1. Formula of MSO: $\quad \varphi: \quad \forall t . \operatorname{Dispense}(t) \Rightarrow \exists t^{\prime}<t \cdot \operatorname{PAY}\left(t^{\prime}\right)$

$$
\llbracket \varphi \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \rho \text { satisfies } \varphi\right\}
$$

2. Regular expression: $R:$ [^DISPENSE]* $+\left(\left[{ }^{\wedge}\right.\right.$ DISPENSE]* \cdot PAY $\left.\cdot \mathrm{A}^{*}\right)$ $\llbracket R_{1}+R_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket R_{1} \rrbracket \cup \llbracket R_{2} \rrbracket, \ldots$
3. Verifier:

$$
\begin{aligned}
& v: \\
& \llbracket \mathcal{V} \rrbracket \xlongequal{\text { def }}\left\{\rho \in \mathbf{A}^{*} \mid \mathcal{V} \text { accepts } \rho\right\}
\end{aligned}
$$

Theorem (Büchi, Elgot, Trachtenbrot [~1960])
It is possible to effectively translate between 1., 2., and $\mathbf{3}$.
Application: To check if $\llbracket \mathcal{C} \rrbracket \subseteq \llbracket \mathcal{S} \rrbracket$ it is enough to

1. Translate \mathcal{S} into \mathcal{V}
2. Check if

$$
\mathcal{C} \times \mathcal{V} \longrightarrow{ }^{*}(-, \perp)
$$

If that's not enough. . .

Infinite executions: $\llbracket \mathcal{C} \rrbracket^{\infty} \subseteq \mathrm{A}^{\omega}$

Infinite executions: $\llbracket \mathcal{C} \rrbracket^{\infty} \subseteq \mathrm{A}^{\omega}$
Specification: „execution without CANCEL, infinitely many times DISPENSE"

Infinite executions: $\llbracket \mathcal{C} \rrbracket^{\infty} \subseteq \mathrm{A}^{\omega}$ DISPENSE
Specification: „execution without CANCEL, infinitely many times DISPENSE"

1. Formula of MSO: $\quad(\forall t . \neg \operatorname{CANCEL}(t)) \Rightarrow \forall t . \exists t^{\prime}>t$. Dispense $\left(t^{\prime}\right)$

Infinite executions: $\llbracket \mathcal{C} \rrbracket^{\infty} \subseteq \mathrm{A}^{\omega}$ DISPENSE
Specification: „execution without CANCEL, infinitely many times DISPENSE"

1. Formula of MSO: $\quad(\forall t . \neg \operatorname{CANCEL}(t)) \Rightarrow \forall t . \exists t^{\prime}>t$. Dispense $\left(t^{\prime}\right)$
2. Regular expression: $\mathbf{A}^{*} \cdot$ CANCEL $\cdot \mathbf{A}^{\infty}+\left(\mathbf{A}^{*} \cdot \text { DISPENSE }\right)^{\infty}$

Infinite executions: $\llbracket \mathcal{C} \rrbracket^{\infty} \subseteq \mathrm{A}^{\omega}$ DISPENSE
Specification: „execution without CANCEL, infinitely many times DISPENSE"

1. Formula of MSO:

$$
(\forall t . \neg \operatorname{CANCEL}(t)) \Rightarrow \forall t . \exists t^{\prime}>t . \operatorname{DISPENSE}\left(t^{\prime}\right)
$$

2. Regular expression: $\mathbf{A}^{*} \cdot$ CANCEL $\cdot \mathbf{A}^{\infty}+\left(\mathbf{A}^{*} \cdot \text { DISPENSE }\right)^{\infty}$

3. Verifier:

Theorem (Büchi [1962])

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
$\leadsto \rightarrow$ The MSO theory of natural numbers is decidable.

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
\leadsto The MSO theory of natural numbers is decidable.
Theorem (Rabin [1969])

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences

\leadsto The MSO theory of natural numbers is decidable.
Theorem (Rabin [1969])
Analogue for branching executions!

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences

\leadsto The MSO theory of natural numbers is decidable.
Theorem (Rabin [1969])
Analogue for branching executions!
\leadsto The MSO theory of the full binary tree is decidable.

Theorem (Büchi [1962])

It is possible to effectively translate between the following formalisms for infinite executions(!):

1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences

\leadsto The MSO theory of natural numbers is decidable.
Theorem (Rabin [1969])
Analogue for branching executions!
$\leadsto \rightarrow$ The MSO theory of the full binary tree is decidable.
"The mother of all decidability results"

Summary

Summary

1. Computers may be wrong.

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

- Their application requires effort (and skills \Rightarrow costs).

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

- Their application requires effort (and skills \Rightarrow costs).
- In general it cannot be automatized.

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

- Their application requires effort (and skills \Rightarrow costs).
- In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

- Their application requires effort (and skills \Rightarrow costs).
- In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

- Actual applications to simple drivers and devices.

Summary

1. Computers may be wrong.

- Hardware errors are rare (and one can make them even rarer).
- Software errors are common (and it is hard to avoid them).

2. Methods of formal verification guarantee mathematical safety.

- Their application requires effort (and skills \Rightarrow costs).
- In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

- Actual applications to simple drivers and devices.
- Interesting mathematical consequences.

