
1

Powered by BeamerikZ

May a computer be wrong?

Michał Skrzypczak
Institute of Informatics

Latest Discoveries in Informatics
6th March 2024

2

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

3

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:

4

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:
CPU

System BUS

GPU

RAM I/O Logic + Physics

5

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:
CPU

System BUS

GPU

RAM I/O Logic + Physics

Software:

6

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:
CPU

System BUS

GPU

RAM I/O Logic + Physics

Software: OS

Compiler Driver

Program
GUI

Mathematics

7

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:
CPU

System BUS

GPU

RAM I/O Logic + Physics

Software: OS

Compiler Driver

Program
GUI

Mathematics

Organic:

8

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware:
CPU

System BUS

GPU

RAM I/O Logic + Physics

Software: OS

Compiler Driver

Program
GUI

Mathematics

Organic: Admin User Psychology

9

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology

10

Michał Skrzypczak May a computer be wrong? 1 / 19

Computers have layers. . .

Organic: Psychology

Hardware: Logic + Physics

Software: Mathematics

11

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

12

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

13

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

80% of aviation accidents involve human errors
(FAA estimation)

14

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

80% of aviation accidents involve human errors
(FAA estimation)

35% of aviation accidents in 2015–2019 in USA were caused by human error
(another study)

15

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

80% of aviation accidents involve human errors
(FAA estimation)

35% of aviation accidents in 2015–2019 in USA were caused by human error
(another study)

37% of train accidents in 2001–2005 in USA were caused by human error
(US DoT)

16

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

80% of aviation accidents involve human errors
(FAA estimation)

35% of aviation accidents in 2015–2019 in USA were caused by human error
(another study)

37% of train accidents in 2001–2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error
(Indiana University study)

17

Michał Skrzypczak May a computer be wrong? 2 / 19

Organic errors

74% of security breaches in 2023 involved a human vurnerability
(FBI, Verizon, IBM, . . .)

80% of aviation accidents involve human errors
(FAA estimation)

35% of aviation accidents in 2015–2019 in USA were caused by human error
(another study)

37% of train accidents in 2001–2005 in USA were caused by human error
(US DoT)

93% of car collisions in USA were caused by human error
(Indiana University study)

errare humanum est

18

Michał Skrzypczak May a computer be wrong? 3 / 19

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology

19

Michał Skrzypczak May a computer be wrong? 3 / 19

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology

20

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors

21

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN:

22

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955

23

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)

24

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)

25

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

26

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW:

27

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018

28

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018
‚ „ 2 ¨ 109 transistors of CPU
‚ „ 64 ¨ 109 transistors of RAM
‚ power rating 1–100W

29

Michał Skrzypczak May a computer be wrong? 4 / 19

Hardware errors
THEN: ENIAC 1945 – 1955
‚ „20’000 vacuum tubes
‚ „5’000’000 hand-made solders
‚ power rating 150kW („100 households)
‚ average time between breakdowns:

10 min. (1945) Ñ >12 h (1955)
‚ maximal continuous operating time: 116 hours (1954)

NOW: PC 2018
‚ „ 2 ¨ 109 transistors of CPU
‚ „ 64 ¨ 109 transistors of RAM
‚ power rating 1–100W
‚ average time between breakdowns:

1100–3285 years (RAM), 126–220 years (CPU)

30

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

31

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

32

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!

33

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

34

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:

35

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

36

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.

37

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 “ 212

38

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 “ 212

Mitigation techniques:

39

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 “ 212

Mitigation techniques:
‚ Computers at ISS are based on i386 CPUs (1µm“ 100ˆ 10nm technology).

40

Michał Skrzypczak May a computer be wrong? 5 / 19

Cosmic radiation

Integrated circuits in “10nm” technology (2018)

Paths of width in hundreds of atoms!
ùùù risk of Single Event Upset

Confirmed cases:
‚ In 1972 a communication satelite Hughes broke down for 96 seconds.

‚ In 2003 in Schaerbeek (Belgium) a candidate got 4096 too many votes.
4096 “ 212

Mitigation techniques:
‚ Computers at ISS are based on i386 CPUs (1µm“ 100ˆ 10nm technology).

‚ Trippled computer systems in fly-by-wire aircrafts.

41

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors

42

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

43

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

44

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:

45

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

46

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

47

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.

48

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
‚ June 13, 1994: error discovered by Thomas R. Nicely

49

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
‚ June 13, 1994: error discovered by Thomas R. Nicely
‚ October 20, 1994: error reported

50

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
‚ June 13, 1994: error discovered by Thomas R. Nicely
‚ October 20, 1994: error reported
‚ December 20, 1994: Intel offers replacement of sold chips

51

Michał Skrzypczak May a computer be wrong? 6 / 19

Hardware errors
1993 error in FDIV instruction of Intel Pentium CPUs

A pre-computed array of 1066 numbers from t´2,´1, 0, 1, 2u
had 5 wrong entries.

In unfavourable circumstances fourth significant decimal digit was wrong:
411951835
311451727

“ 1.333820449136241002

411951835
311451727

“ 1.333739068902037589

Only 1 in 9 billion divisions with random parameters produced wrong results.
‚ June 13, 1994: error discovered by Thomas R. Nicely
‚ October 20, 1994: error reported
‚ December 20, 1994: Intel offers replacement of sold chips
‚ Total cost: 475 million $

52

Michał Skrzypczak May a computer be wrong? 7 / 19

Hardware: Logic + Physics

Software: Mathematics

Organic: Psychology

53

Michał Skrzypczak May a computer be wrong? 7 / 19

Software: Mathematics

Hardware: Logic + Physics

Organic: Psychology

54

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?

55

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

56

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

57

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code

58

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones

59

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones
Approximately 100 times bigger dose than expected

60

Michał Skrzypczak May a computer be wrong? 8 / 19

Correct programs?
1986 computer-controlled radiotherapy method Therac-25

Race condition in concurrent code
Previously used hardware interlocks were exchanged to software ones
Approximately 100 times bigger dose than expected
ùùù 6 seriously overdosed patients, at least 3 fatalities

61

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??

62

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)

63

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified

64

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had „3x more powerfull engines

65

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had „3x more powerfull engines
Integer overflow occured

2114714831647` 1 “ ´2114714831648

66

Michał Skrzypczak May a computer be wrong? 9 / 19

Correct programs??
1996 Ariane 5 (ESA) rocket (software partially based on Ariane 4)
Original code of Ariane 4 was formally verified
But Ariane 5 had „3x more powerfull engines
Integer overflow occured

2114714831647` 1 “ ´2114714831648
ùùù explosion in 30th second of flight, estimated loss of 442 milion e

67

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???

68

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

69

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs

70

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface

71

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown

72

Michał Skrzypczak May a computer be wrong? 10 / 19

Correct programs???
1999 Mars Polar Lander

Incorrect handling of sensor data from landing legs
Spurious touchdown detection at 40 meters above surface
Premature engines shutdown
ùùù impact at 22 m/s instead of 2.4 m/s, estimated loss of 100 milion $

73

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

74

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

Which science is always˚ right?

˚ Except some very rare cases. . .

75

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

Which science is always˚ right?

˚ Except some very rare cases. . .

MATHEMATICS!

76

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

77

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

78

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

79

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

80

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

81

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!

82

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

83

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

84

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

85

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

86

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

87

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!!

88

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!! [Hoare logic (1969)]

89

Michał Skrzypczak May a computer be wrong? 11 / 19

Correct programs!!!

P
program

: d
input

xρ0, ρ1, . . . , ρny “ ρ

computation

d1

result

Fact 1: P , d, ρ, and d1 are sequences of bits ùùù numbers!
Fact 2: There exists a mathematical formula expressing the above property.

Therefore: the following condition is a mathematical property:

p q
IF an input d satisfies the assumptions ϕ
THEN the result d1 satisfies the requirements ψ.

shortly: rϕsP rψs

For instance: rd ě 0sPsqrt r
?
d´ 1 ă d1 ď

?
ds

So: such properties can be proven!!! [Hoare logic (1969)]

ùùù formal verification of programs

90

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

91

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

92

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

93

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

3. Design invariants: an annotatation pP of P

94

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

3. Design invariants: an annotatation pP of P
[typically pP is three times longer than P]

95

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

3. Design invariants: an annotatation pP of P
[typically pP is three times longer than P]

4. Automatically verify that

pP proves that rϕsP rψs holds.

96

Michał Skrzypczak May a computer be wrong? 12 / 19

Formal verification workflow

1.Write a specification: assumptions ϕ and requirements ψ

2.Write an implementation: a program P

3. Design invariants: an annotatation pP of P
[typically pP is three times longer than P]

4. Automatically verify that

pP proves that rϕsP rψs holds.

. . . the program used for 4. is short and simple and everyone trusts it. . .

97

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification

98

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system

99

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

100

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

101

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG

102

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

103

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

104

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

‚ 1997–99 full verification of Intel Pentium 4 CPU

105

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

‚ 1997–99 full verification of Intel Pentium 4 CPU

‚ 2005 multiple subsystems of Airbus A380

106

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

‚ 1997–99 full verification of Intel Pentium 4 CPU

‚ 2005 multiple subsystems of Airbus A380

‚ 2018 complete verification of Amazon’s implementation of TLS protocol

107

Michał Skrzypczak May a computer be wrong? 13 / 19

Applications of formal verification
‚ 1998 Ligne 14 of Paris Underground (autonomical)

Key elements of the traffic-control system
– 110’000 lines of code (including proofs)
– 0 bugs found until 2009

‚ 1999 formal verification of a smart cards interpreter

‚ 2005 verification of VAL system, connecting terminals at CDG
ùùù ě 20 other locations around the globe

B-method

‚ 1997–99 full verification of Intel Pentium 4 CPU

‚ 2005 multiple subsystems of Airbus A380

‚ 2018 complete verification of Amazon’s implementation of TLS protocol

‚ . . .

108

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .

109

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.

110

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

111

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold :

112

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}

113

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}

Fact: [Goldbach Conjecture] ðñ r sPGold rd
1 “ 1s

114

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}

Fact: [Goldbach Conjecture] ðñ r sPGold rd
1 “ 1s

ùùù it is enough to show that r sPGold rd
1 “ 1s. . .

115

Michał Skrzypczak May a computer be wrong? 14 / 19

No such thing as a free lunch. . .
Conjecture (Goldbach [1742]) [AKA Hilbert’s 8th problem]

Every even number greater than 2 is a sum of two primes.
r worth 1 milion $ s

PGold : n := 2;

while true do {

n := n + 2;

if (n is not a sum of two primes) then

return 1;

}

Fact: [Goldbach Conjecture] ðñ r sPGold rd
1 “ 1s

ùùù it is enough to show that r sPGold rd
1 “ 1s. . .

[even worse, as a program can enumerate proofs]

116

Michał Skrzypczak May a computer be wrong? 15 / 19

„It is all because of numbers”

117

Michał Skrzypczak May a computer be wrong? 15 / 19

„It is all because of numbers” ùùù consider numberless machines “ automata

118

Michał Skrzypczak May a computer be wrong? 15 / 19

119

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

120

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u

121

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss

122

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy

123

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy
Specification: S : “no dispense without prior pay”

124

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy
Specification: S : “no dispense without prior pay”
Correct executions: A˚ Ě rrSss

125

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy
Specification: S : “no dispense without prior pay”
Correct executions: A˚ Ě rrSss Q xpay, fault, dispensey

126

Michał Skrzypczak May a computer be wrong? 15 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

Set of actions: A “ tcoffee, soup, pay, . . . u
Possible executions: A˚ Ě rrCss Q xsoup, pay, fault, repairy
Specification: S : “no dispense without prior pay”
Correct executions: A˚ Ě rrSss Q xpay, fault, dispensey
Model-checking problem:

rrCss ???
Ď rrSss

127

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

128

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q

129

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

130

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

131

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

132

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier:

133

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

134

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

135

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

Theorem (Büchi, Elgot, Trachtenbrot [„1960])

136

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

Theorem (Büchi, Elgot, Trachtenbrot [„1960])
It is possible to effectively translate between 1., 2., and 3..

137

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

Theorem (Büchi, Elgot, Trachtenbrot [„1960])
It is possible to effectively translate between 1., 2., and 3..

Application: To check if rrCss Ď rrSss it is enough to

138

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

Theorem (Büchi, Elgot, Trachtenbrot [„1960])
It is possible to effectively translate between 1., 2., and 3..

Application: To check if rrCss Ď rrSss it is enough to
1. Translate S into V

139

Michał Skrzypczak May a computer be wrong? 16 / 19

Specification: S : “no dispense without prior pay”

1. Formula of MSO: ϕ: @t. dispenseptq ñ Dt1 ă t. paypt1q
rrϕss def

“

ρ P A˚ | ρ satisfies ϕ
(

2. Regular expression: R: rˆdispenses˚ `
`

rˆdispenses˚ ¨ pay ¨A˚
˘

rrR1 `R2ss
def
“ rrR1ss Y rrR2ss, . . .

3. Verifier: V :
K

A´tpay,dispenseu

dispense

pay

A

rrVss def
“

ρ P A˚ | V accepts ρ
(

Theorem (Büchi, Elgot, Trachtenbrot [„1960])
It is possible to effectively translate between 1., 2., and 3..

Application: To check if rrCss Ď rrSss it is enough to
1. Translate S into V
2. Check if

C ˆ V ÝÑ˚ p_,Kq

140

Michał Skrzypczak May a computer be wrong? 17 / 19

If that’s not enough. . .

141

Michał Skrzypczak May a computer be wrong? 17 / 19

142

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispense

143

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispenseInfinite executions: rrCss8 Ď Aω

144

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispenseInfinite executions: rrCss8 Ď Aω

Specification: „execution without cancel, infinitely many times dispense”

145

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispenseInfinite executions: rrCss8 Ď Aω

Specification: „execution without cancel, infinitely many times dispense”

1. Formula of MSO:
`

@t. cancelptq
˘

ñ @t. Dt1 ą t. dispensept1q

146

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispenseInfinite executions: rrCss8 Ď Aω

Specification: „execution without cancel, infinitely many times dispense”

1. Formula of MSO:
`

@t. cancelptq
˘

ñ @t. Dt1 ą t. dispensept1q

2. Regular expression: A˚ ¨ cancel ¨A8 `
`

A˚ ¨ dispense
˘8

147

Michał Skrzypczak May a computer be wrong? 17 / 19

C:
coffee

soup

sweet

cancel bitter

pay

cancel

sugar
ready

cancel sugar

depleted

pay

clean

nozzle

fault

brew
coffee

cancel

pay brew
coffee sw

eeten

clean
nozzle

fault pour

souprepair

dispenseInfinite executions: rrCss8 Ď Aω

Specification: „execution without cancel, infinitely many times dispense”

1. Formula of MSO:
`

@t. cancelptq
˘

ñ @t. Dt1 ą t. dispensept1q

2. Regular expression: A˚ ¨ cancel ¨A8 `
`

A˚ ¨ dispense
˘8

3. Verifier: ¨ ¨ ¨

148

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])

149

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

150

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences

151

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

152

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])

153

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])
Analogue for branching executions!

154

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])
Analogue for branching executions!

ùùù The MSO theory of the full binary tree is decidable.

155

Michał Skrzypczak May a computer be wrong? 18 / 19

Theorem (Büchi [1962])
It is possible to effectively translate between the following formalisms

for infinite executions(!):
1. formulae of MSO,
2. regular expressions,
3. ω-automata.

Mathematical consequences
ùùù The MSO theory of natural numbers is decidable.

Theorem (Rabin [1969])
Analogue for branching executions!

ùùù The MSO theory of the full binary tree is decidable.

“The mother of all decidability results”

156

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

157

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.

158

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).

159

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

160

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.

161

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).

162

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).
‚ In general it cannot be automatized.

163

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).
‚ In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.

164

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).
‚ In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.
‚ Actual applications to simple drivers and devices.

165

Michał Skrzypczak May a computer be wrong? 19 / 19

Summary

1. Computers may be wrong.
‚ Hardware errors are rare (and one can make them even rarer).
‚ Software errors are common (and it is hard to avoid them).

2.Methods of formal verification guarantee mathematical safety.
‚ Their application requires effort (and skills ñ costs).
‚ In general it cannot be automatized.

3. Verification of automata (= finite state machines) is easier.
‚ Actual applications to simple drivers and devices.
‚ Interesting mathematical consequences.

