
Tutorial from 04.06.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 10.06

1 Solutions of the homework problems
Exercise 1. Check that the function f : Nω Ñ X defined in Lemma 1 on
page 9 of lecture notes WZTM-12 is continuous, open, and surjective.

The function is constructed using a Souslin scheme pUsqsPNăω such that
Uăą “ X, Us is open, non-empty, Uŝ i Ď Us, Us “

Ť

iPN Uŝ i, diampUsq ď
2´lhpsq for s ‰ăą. Then one puts fpxq for x P Nω as the unique (!) member
of the intersection

Ş

nPN Uxæn
.

Please write down all the details, no “hand-waving” arguments :)

It was just an easy check. Everyone who tried managed to get it right. If
you have any questions about that, please contact me directly.

Exercise 2 (‹). Construct a set U Ď rNsℵ0 that is Ramsey null but comeagre
in the standard topology on rNsℵ0.

One idea is to take:

U “ tX P rNsℵ0 | t2n, 2n`1u Ď X for infinitely many n P Nu.

This set (if I’m correct) is a dense Gδ that is Ramsey null.
Alternative solution was proposed by Katarzyna Kowalik. Take j P N

and consider
Vj “

ď

sPt0,1uăω

“

ŝ p1jq,N{p|s| ` jq
‰

,

where we identify the sequence ŝ p1jq (concatenation of s with j ones) with
the corresponding set. I.e. Vj is a union ranging over all finite sequences s
of families of sets X P rNsℵ0 that agree with s, then contain j consecutive
numbers, and then anything. It is easy to see that each of the sets Vj is open
and dense in the standard topology. Therefore, their intersectionA “

Ş

jPN Vj
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is a dense Gδ. Notice that this set is essentially a variant of the comeagre set
of measure 0.

We claim that A is Ramsey null. Take t ă B with t P rNsăℵ0 and
B P rNsℵ0 . Consider C Ď B that is obtained by taking every second element:
if B “ tn0 ă n1 ă . . .u then C “ tn2i | i P Nu. We claim that rt, CsXA “ H.

Consider X P rt, Cs and take j “ maxptq ` 55. We claim that X R

Vj Ě A, which concludes the proof. Consider any s P t0, 1uăω, we need
to show that X R

“

ŝ p1jq,N{p|s| ` jq
‰

. However, by the choice of j and
C, we know that for every n there exists a number in n ` r0, jq def

“ tn, n `
1, . . . , n ` j ´ 1u that is not in X — it follows from the fact that n ` r0, jq
contains two consecutive numbers outside t (because j “ maxptq ` 55) and
C contains no two consecutive numbers. On the other hand, every member
of

“

ŝ p1jq,N{p|s| ` jq
‰

contains |s| ` r0, jq as a subset. A contradiction.

2 New material from WZTM-13
The next lecture notes (WZTM-13) continue the problems of selection. A
new definition is provided, of a uniformisation of a relation P Ď XˆY : it is
a subset P ˚ Ď P that is a graph of a function with the same projection onto
X as P .

One of the first results, Proposition on page 2 states that every relation
that has a Borel uniformisation must also have Borel projection, see the
homework Exercise 16 from tutorials from 7th May (solved in tutorials from
14th May).

The above observation shows that certain relations have no Borel uni-
formisations because their projections are not Borel (they are analytic (Σ1

1),
because the relations themselves are Borel).

The next step is to apply Kuratowski–Ryll–Nardzewski to show that Borel
relations with closed sections, such that the map X Q x ÞÑ Px P F pXq is
Borel admit Borel uniformisations (see page 5). For that, one considers the
following subset P Ď F pXq ˆX for a Polish space X, defined by

P
def
“

 

pF, xq | x P F, F P F pXq
(

.

Exercise 3. Show that the set P defined above is Borel in the Polish space
F pXq ˆX.
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As it turns out, one can partially get rid of the assumption that the
sections are closed, using Parametrisation Lemma from the bottom of page 6:
every Borel subset P Ď X ˆ Y can be parametrised by a closed subset
F Ď X ˆ Z for some Polish space Z. The parametrisation is witnessed by
a continuous bijection ϕ : F Ñ P such that ϕptxuˆFxq “ txuˆPx for every
x P X.

To achieve the above effect, first one takes a Polish topology τ 1 on P that
extends the one inherited from X ˆ Y and puts Z “ pP, τ 1q. Then we define

F
def
“

 

px, pq P X ˆ P | x “ projXppq
(

“
ď

xPX

`

txu ˆ ptxu ˆ Pxq
˘

ϕpx, pq
def
“ p for px, pq P F .

Exercise 4. Check that the set F defined above is closed in X ˆ Z. Check
that ϕ : F Ñ P is bijective and continuous (for the domain with the topology
inherited from F Ď X ˆ Z and codomain with the topology inherited from
P Ď X ˆ Y , i.e. τ). Moreover, verify that ϕptxu ˆ Fxq “ txu ˆ Px for every
x P X.

2.1 Large sections uniformisation
The next step is to provide Borel uniformisations of Borel sets with large
sections, i.e. sections outside a given σ-ideal, see Theorem on page 8.

The first stage of the proof of that theorem is a construction based on
Parametrisation Lemma, that allows us to assume that the relation under
consideration is closed. For that, one takes P Ď X ˆ Y , a Polish space Z,
and a closed subset F Ď X ˆZ for which there exists a continuous bijection
ϕ : F Ñ P as above.

Exercise 5. Verify that projXpF q “ projXpP q.

The next stage is to assume that the σ-ideals under consideration behave
like σ-ideal of meagre sets: no non-empty open set belongs to them (see
Step 2 on page 10).

The simplest applications of the above theorem are, where the σ-ideals
under consideration are constantly equal to the known σ-ideals of meagre
sets IMGR and of µ-measure 0 sets Iµ. For this purpose, we need to verify
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that both these σ-ideals I satisfy the assumption p‹q from page 8 of lecture
notes, i.e. that for every Borel set A Ď X ˆ Y we have

 

x P X | Ax R I
(

P BpXq.

Meagre sets We first consider the case of I “ IMGR. For that, we consider
a stronger property (denoted p˛qpAq) of a set A Ď XˆY : for every non-empty
open subset U Ď Y the set

pAqU
def
“

 

x P X | pAx X Uq is not meagre in Y
(

(2.1)

is Borel in X.

Exercise 6. Show that the family of Borel sets A Ď XˆY that satisfy prop-
erty p˛qpAq contains basic open sets in X ˆ Y and is closed under countable
unions and complements.

Then this family is itself a σ-algebra and must therefore coincide with
Borel sets.

Measurable sets We now consider the case of I “ Iµ. Thus, we need to
show that for every finite Borel measure on Y and every Borel set A Ď XˆY
the set tx P X | µpAxq ą 0u is Borel in X. It is achieved again by defining
certain property of Borel subsets ofXˆY : p˝qpAq holds if the map x ÞÑ µpAxq
is Borel measurable, as a function from X to R.

The approach here is similar as above, and roughly follows Kechris The-
orem 17.25, page 113.

First, since every pair of uncountable Polish spaces is Borel isomorphic,
without loss of generality we can assume that both X and Y are in fact Nω,
i.e. X ˆ Y is zero-dimensional.

Exercise 7. Prove that then every open set in NωˆNω is a countable disjoint
union of basic open sets of the form Ns ˆNr for s, r P Năω.

Exercise 8. Show that the family of Borel sets A Ď X ˆ Y that satisfy
property p˝qpAq contains all basic open sets in X ˆ Y and is closed under
countable disjoint unions and complements.

Thus, Exercise 7 guarantees that all open sets satisfy p˝qpAq. It means
that the following exercise concludes the proof.
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Exercise 9. Show that if C is a family of subsets of a Polish space X such
that all open sets belong to C and the family is closed under countable disjoint
unions and complements then BpXq Ď C.

Hint: consider, for any set A Ď X, the family of sets tB Ď X | AXB P Cu
and prove some properties of these families. You might use the following
definition:

Definition 2.1. We will say that a family of sets D Ď PpXq is a λ-algebra
if D is closed under complements and countable disjoint unions.

2.2 Novikov Separation Theorem
The next stage is a strengthening of the Lusin Separation Theorem (every
two disjoint analytic sets can be separated by a Borel set). Here, a variant of
separation in the limit is considered, where we ask a countable family of sets
to have empty intersection: see Theorem (Novikov) on page 12 of lecture
notes. It is then applied to normalise the shape of Borel subsets X ˆ Y
with all sections open (see Item (i)) or all sections closed (see Item (ii)), see
Theorem (Kunugui, Novikov) on page 15.

We first focus on Item (i): take a Borel subset A Ď X ˆ Y with all the
sections Ax open in Y . Fix a countable basis tVn | n P Nu of the Polish
topology on Y . We want to present A as

Ť

nPNBn ˆ Vn for some Borel sets
Bn Ď X (see the end of page 15).

To achieve the above effect, one first defines Cn def
“ tx P X | Vn Ď Axu for

n P N.

Exercise 10. Check directly that the sets Cn are coanalytic.

Exercise 11. Check that A “
Ť

nPNCn ˆ Vn.

We head towards applying Novikov Separation Theorem, so we put Zn “
Cn ˆ Vn.

Exercise 12. Check that the sets Zn are coanalytic.

Exercise 11 implies that A “
Ť

nPN Zn.

Exercise 13. Discuss how to apply Novikov Separation Theorem (page 12
of WZTM-13) to the family pZnqnPN to obtain Borel sets En Ď Zn with
Ť

nPNEn “ A.
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This allows us to put An def
“ projXpEnq and see that An P Σ1

1.

Exercise 14. Check that A “
Ť

nPNAn ˆ Vn.

Finally, one applies the Lusin Separation Theorem (see page 17) and find
Borel sets Bn satisfying An Ď Bn Ď Cn which conclude the proof.

2.3 Compact sections uniformisation
The next goal is to show that Borel sets with compact sections admit Borel
uniformisations, see 13.6 on page 17. One of the stages of that proof is the
observation that a projection of a closed subset P Ď X ˆY along a compact
space Y onto X is also closed. But we have already seen that, see Exercise 3
from 19th March.

This finally leads to a Theorem by Novikov about Borel maps that have
compact fibers (pre-images of points).

Exercise 15. Parse the proof of Theorem (Novikov) on page 19 of WZTM-13.
Consider precisely how the original Novikov theorem is applied and why the
rest follows from the Lusin–Souslin Theorem.

3 New material from WZTM-14
The next piece of material begins with some combinatorial tools used to
operate on trees. It partially recalls things that we’ve seen, mainly in tutorials
from 12ve and 19th March.

In particular, for a tree T Ď pA ˆ Bqăω and α P Aω by T pαq we denote
the section which is a tree on B defined as

T pxq
def
“ ts P Căω | xαælhpsq, sy P T u,

where we identify pAˆBqăω with pAăωq ˆ pBăωq.
The following exercise is left on page 7 of WZTM-14.

Exercise 16. Consider a fixed tree T Ď pA ˆ Bqăω. Then the function
α ÞÑ T pαq is a continuous function from Aω to TrB — the space of trees
on B.
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Another important combinatorial concept is the Kleene–Brouwer order-
ing, defined at the end of page 7. For two sequences s, t P Năω we put s ďKB t
if t Ď s or s ď t. In other words, descending sequences in the Kleene–Brouwer
ordering go down the tree or to the left. The crucial property of this order
is expressed by the following lemma.

Proposition 3.1 (Proposition on page 8). The Kleene–Brouwer order on
the nodes of a tree T is well-founded if and only if the tree T is well-founded.

Exercise 17. Check that the Kleene–Brouwer order is a linear order extend-
ing Ď.

Based on that order, one can construct a continuous reduction from
well-founded trees to well-founded orders. For that, one first fixes a bijection
h : NÑ Năω. The reduction f is defined as follows (see the end of page 10):
pn,mq P fpT q if and only if one of the following conditions hold

• hpmq P T , hpnq P T , and hpmq ďKB hpnq;

• hpmq R T and hpnq P T ;

• hpmq R T , hpnq R T , and m ď n.

Exercise 18. Check that the function f defined above indeed constructs a lin-
ear order and that it is continuous.

4 New homework
This time there are three problems: first two are rather simple, please choose
at most one of them to solve; and the third one is harder, you can solve it
separately. Thus, the only forbidden thing is to solve both of the first two
problems.

Exercise 19. Carefully solve Exercise 4 — please write down all the details!

Exercise 20. Solve Exercise 7 (again with all the details).

Exercise 21 (‹). Let X be a Polish space and E be the Effros Borel structure
on F pXq. Prove that the family of all perfect sets F P F pXq (sets with no
isolated points) is Borel in F pXq (i.e. belongs to E, the σ-algebra generated
by sets rU sF pXq).
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5 Old homework
In parallel you can still solve the following problem from one of the previous
homeworks. Solving it does not count to the restrictions of “at most one
problem”.

Exercise 22 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.

As a hint, you may focus on constructing C Ď X more than on finding
D Ď Y : begin by finding a Cantor set C such that the set

ty P Y | @x P C. px, yq P Ru

is dense in Y .
Another hint is as follows: if C Ď X is a Cantor set then it is compact.

We know that if F Ď X ˆC is closed then the projection projXpF q is closed
in X. What about projections as above of sets F that are Fσ?

6 Hints
Hint to Exercise 3 In fact P is Gδ: countable intersection of open sets.
Enumerate some fixed countable basis of X as pUnqnPN and for n P N define

Pn
def
“

`

rUnsF pXq ˆX
˘

Y
`

F pXq ˆ pX ´ Unq
˘

,

where rUnsF pXq “ tF P F pXq | F X Un ‰ Hu is a basic open set of F pXq.
Notice that each Pn is a Gδ set and therefore their intersection is also Gδ.
We claim that P “

Ş

nPN Pn. Clearly, if pF, xq P P (i.e. x P F ) then for
every n P N we have pF, xq P Pn. It remains to see that if for each n P N we
have pF, xq P Pn then x P F . Assume contrarily, as witnessed by some basic
open set Um such that x P Um while Um X F “ H. But then pF, xq R Pm,
because F R rUmsF pXq nor x P X ´ Um.

Hint to Exercise 5 Obvious from the definition.
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Hint to Exercise 6 See Kechris, Theorem 16.1, page 94.
First take A “ V ˆ W for V open in X and W open in Y . Consider

any non-empty open subset U Ď Y . If U XW “ H then the set pAqU (see
Equation (2.1)) equals H and is Borel in X. Otherwise, U XW is an open
subset of Y and Ax X U “ U XW for x P V . As Y is a Polish space and
U XW is non-empty open, it is not meagre in Y and pAqU “ V .

Now consider A “
Ť

nPNAn with all An having property p˛qpAnq. Take U
non-empty open in Y . We claim that

˜

ď

nPN
An

¸

U

“
ď

nPN
pAnqU .

Take x P p
Ť

nPNAnqU . Then Ax X U is not meagre in Y , which means that
at least one of pAnqxXU must not be meagre in U . But then x P pAnqU . For
the opposite implication, if x P pAnqU then clearly also x P pAqU , because
Ax Ě pAnqx.

Now let pUnqnPN be a countable basis of non-empty open sets in Y . We
claim that

`

pXˆY q ´ A
˘

U
“ X ´

č

UnĎU

pAqUn ,

which proves that the family under consideration is closed under comple-
ments, because if all the sets pAqUn are Borel then also the right-hand side
of the above equation is Borel.

Take x P X such that x P
`

pXˆY q ´ A
˘

U
. It means that pY ´ Axq X U

is not meagre in Y . Since A is Borel, each of its sections has Baire Property.
Therefore, there exists a basic open set Un Ď U such that pY ´ Axq X Un
is comeagre in Un. Then Ax X Un is meagre in Y and therefore x R pAqUn ,
which implies that x P X ´

Ş

UnĎU
pAqUn .

Now assume that x R
`

pXˆY q ´ A
˘

U
. It means that pY ´ Axq X U is

meagre in Y . But then for each Un Ď U we have that Ax X Un is comeagre
in Un, which implies that x P pAqUn and therefore x R X ´

Ş

UnĎU
pAqUn .

Hint to Exercise 8 The fact is again trivial for basic open sets of the form
Ns ˆNr. Closure under complement is also obvious, because

µ
`

pXˆY ´ Aqx
˘

“ µpY q ´ µpAxq.
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If pAnqnPN satisfy property p˝qpAnq and are disjoint then also their sections
pAnqx are disjoint. Thus, the mapping x ÞÑ µ

`
Ť

nPNpAnqx
˘

is the arithmeti-
cal sum of the mappings x ÞÑ µ

`

pAnqx
˘

. It is a standard fact of analysis that
arithmetical sum of a countable family of measurable mappings is measur-
able.

Hint to Exercise 9 See Kechris Theorem 10.1 (iii), page 65.
Recall Definition 2.1.
Without loss of generality we can assume that C is the smallest λ-alge-

bra containing open sets. We will first prove that C is closed under finite
intersections.

For any set A Ď X define LpAq as the family of sets B Ď X such that
AXB P C. Clearly LpAq is closed under countable disjoint unions. It is also
closed under complements, because if B P LpAq then AXB P C and therefore
(using complements and disjoint unions in C) we have

A´B “ X ´
`

pX ´ Aq Y pAXBq
˘

P C.

Therefore, LpAq is a λ-algebra. Notice that if A is open then all open sets
belong to LpAq and therefore (by minimality) C Ď LpAq. But this means that
if B P C then every open set A belongs to LpBq. Thus again by minimality
C Ď LpBq (now for any B P C). Thus, if A,B P C then AXB P C.

Now C must be closed under arbitrary unions, because every union
Ť

nPNAn
can be made disjoint by taking Bn “ An´

Ť

iănAi and this takes only finite
unions, finite intersections, and complements.

Thus, C is a σ-algebra that contains open sets, so BpXq Ď C.

Hint to Exercise 10 Each of the sets Cn can be defined as
 

x P X | @y P Un. px, yq P A
(

,

where the quantification ranges over a Polish space Un and the inner condition
is Borel in the product X ˆ Un (because A is Borel).

Hint to Exercise 11 Clearly if px, yq P
Ť

nPNCn ˆ Vn then px, yq P A.
Consider the opposite implication and take px, yq P A. By the assumption
that the sections Ax are open, we know that there is certain n P N such that
y P Vn Ď An. However, then x P Cn and y P Vn, so px, yq P Cn ˆ Vn.
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Hint to Exercise 12 In general if A Ď X and B Ď Y are in some boldfaced
pointclass Γ that is closed under finite intersections then AˆB Ď X ˆ Y is
also in Γ.

Hint to Exercise 13 The assumption of Novikov Separation Theorem (in
the coanalytic case) requires that

Ť

nPN Zn is the whole space. Here we only
know that

Ť

nPN Zn “ A. However, as A itself is Borel, its complement is
also Borel, so coanalytic. Thus, we can take Z´1 “ pX ˆ Y q ´ A and then
Ş

ně´1 Zn “ X ˆ Y , with all these sets coanalytic. This gives us Borel sets
En Ď Zn for n ě ´1 with

Ť

ně´1 En “ X ˆ Y . But since for each n P N we
know that En Ď Zn Ď A, we necessarily have E´1 “ Z´1 and

Ť

nPNEn “ A.

Hint to Exercise 14 First, as En Ď Zn alsoAn “ projZpEnq Ď projZpZnq “
Cn. Thus, AnˆVn Ď CnˆVn and therefore

Ť

nPNAnˆVn Ď A, see Exercise 11.
On the other hand, if px, yq P A then there exists n such that px, yq P En

and therefore x P An, while y P Vn (because En Ď Cn ˆ Vn). Therefore,
px, yq P An ˆ Vn.

Hint to Exercise 16 It is enough to check the preimages of single-coor-
dinates, i.e. that the preimage f´1`tT P TrB | s P T u

˘

is open. However, if
α P f´1`tT P TrB | s P T u

˘

then in fact Nαæ|s|
Ď f´1`tT P TrB | s P T u

˘

.

Hint to Exercise 17 It is just an easy check using the properties of the
lexicographic order. . .

Hint to Exercise 18 First, the domain of fpT q is split into two parts:
h´1pT q and the complement. Thus, it is enough to check each of them sepa-
rately. The complement is trivial (it is the standard order on N there). And
for the preimage it is again simple, because (up to h) it is the Kleene–Brouwer
ordering.
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