
Tutorial from 28.05.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 03.06

1 Solutions of the homework problems
Exercise 1. Show that the Ellentuck topology is Baire: if pUnqnPN is a count-
able family of dense open subsets of rNsℵ0 (in the Ellentuck topology) then
the intersection

Ş

nPN Un is also dense (in the Ellentuck topology).

Consider a family pUnqnPN as in the statement. Take s ă A, we will
construct X P rs, As such that X P

Ş

nPN Un. Without loss of generality
assume that Un`1 Ď Un.

Put s0 “ s and A0 “ A. For i “ 0, . . . assuming that si ă Ai is defined,
apply density of Ui to learn that there exists a basic open set rs1i, A1is Ď rsi, Ais

such that rs1i, A1is Ď Ui. Let ni “ minpA1iq and let si`1 “ s1i Y tniu, while
Ai`1 “ Ai ´ tniu. Then also rsi`1, Ai`1s Ď Ui. Notice that s0 Ĺ s1 . . . Take
X “

Ť

iPN si. By the construction we know that for every i P N we have
X P rsi, Ais and therefore X P

Ş

nPN Un. As s0 “ s and A0 “ A we also know
that X P rs, As.

Exercise 2 (‹). Let X be a Polish space and f : rNsℵ0 Ñ X be a Borel
function (in the normal topology on rNsℵ0). Show that there exists H P rNsℵ0

such that færHsℵ0 is continuous in the normal topology of rNsℵ0.

This is based on a solution by Damian Głodkowski.
Let pUnqnPN be a countable basis of X. We will inductively construct sets

A0 Ě A1 Ě . . . and a sequence a0 ă a1 ă . . . such that an P An for n P N.
Then, putting H “ tan | n P Nu will give the desired set H.

We will say that rs, Bs is homogeneous for Un if rs, Bs Ď f´1pUnq or
rs, Bs X f´1pUnq “ H. Since f´1pU0q is Borel, it is completely Ramsey, so
there exists a set B such that rH, Bs is homogeneous for U0. Let A0 “ B
and a0 be any element of A0.

Assume that A0, . . . , An and a0, . . . , an are defined.

1



Let P
`

ta0, . . . , anu
˘

“ tsi | i ă 2n`1u. As f´1pUn`1q is Borel so it is com-
pletely Ramsey. Thus, one can inductively construct a sequence of infinite
sets An{an Ě B0 Ě . . . Ě B2n`1´1 such that for each i we have rsi, Bis is ho-
mogeneous for Un`1. Let An`1 “ B2n`1´1 and let an`1 be any element of An`1
(clearly an`1 ą an). In particular, for each i we have rsi, An`1s Ď rsi, Bis and
therefore rsi, An`1s is homogeneous for Un`1.

Take H “ tan | n P Nu. Thus, it is enough to show that for each n the
set f´1pUnq X rHs

ℵ0 is open in rHsℵ0 . Notice that

rHsℵ0 “
ď

sPP
`

ta0,...,an´1u
˘

rs, H{an´1s.

However, for each s P P
`

ta0, . . . , an´1u
˘

we have rs, H{an´1s Ď rs, Ans

which means that rs, H{an´1s is homogeneous for Un. This implies that
f´1pUnq X rHs

ℵ0 is a finite union of sets of the form rs, H{an´1s. However,
these sets are open in rHsℵ0 in the standard topology. Thus f´1pUnqX rHs

ℵ0

is open in rHsℵ0 as a finite union of open sets.

2 New material

2.1 Completely Ramsey sets vs. Baire Property
This section replies more accurately to the questions that were raised for the
last Q&A session. Thanks to prof. Zakrzewski for clarifying some of these
topics.

First, the following two theorems from the lecture notes show that in the
Ellentuck topology, being Ramsey and Baire Property go hand-in-hand.

Theorem 2.1 (Page 19 of WZTM 11). A set is Ramsey null iff it is meagre
in the Ellentuck topology.

Theorem 2.2 (Ellentuck, Page 8 of WZTM 11). A set is completely Ramsey
iff it has Baire Property in the Ellentuck topology.

BP vs. Ramsey In general, having Baire Property in the usual topology
and in the Ellentuck topology are two different things.

One direction can be witnessed by the following example. Take any set
that is not Ramsey U Ď rNsℵ0 . Let E be the set of all even natural numbers.
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Consider
U 1 “

 

X P rEsℵ0 | tn | 2n P Xu P U
(

.

Then U 1 Ď rEsℵ0 and the latter set is meagre in rNsℵ0 (and of measure 0
in 2ω). However, U 1 is not completely Ramsey, because one cannot find
a homogeneous subset in rH, Es.

Another direction: a completely Ramsey set without BP can be con-
structed based on Exercise 17.

Set-theoretical assumptions Under the assumption that V “ L (a set
theoretical assumption that is equiconsistent with zfc) there exists a Bern-
stein set in ∆1

2prNsℵ0q. It is easy to see that such a set is not Ramsey
(otherwise it would either contain or be disjoint with a copy of the Cantor
set).

On the other hand, assuming Projective Determinacy (that guarantees
e.g. that all projective sets have Baire Property) one also gets that they are
all completely Ramsey (Harrington, Kechris [1981], see also Exercise 38.19
in Kechris).

2.2 Material from WZTM-12
In the current lecture notes standard Borel spaces are being introduced.

As a particular example, the Effros Borel space is given. For that, recall
the notions of KpXq and F pXq, see Section 1 from tutorials from 12.03.2020.

At the end of page 4 a representation of a certain set as
Ş

nPN Un for
Un`1 Ď Un open is given.

Exercise 3. Take a Polish space X. When a set A Ď X can be represented
as

Ş

nPN Un with Un`1 Ď Un and all Un open?

To prove that Effros Borel space is always standard, one invokes a map:

E
c
ÞÑ

`

n ÞÑ rE X Un ‰ Hs
˘

P 2ω,

where the square bracket equals 1 if the given condition is true.

Exercise 4. Show that for every set E Ď X we have cpEq “ cpEq.

Exercise 5. Prove that cæF pXq is injective.
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Then one takes Y “ cpF pXqq and notices that cæF pXq is an isomorphism
between the measurable spaces xF pXq, Ey and xY, BpY qy. Our aim is to show
that Y itself is Borel in 2ω.

Exercise 6. Check that the set G defined in mid page 6 is in fact a Gδ.

Exercise 7. Check that Y Ď G.

Thus, it remains to see that G Ď Y . For that one takes x P G and defines
a set E Ď X as containing certain points of X (defined relatively to x), see
upper half of page 7.

Exercise 8. Verify that x “ cpEq.

Another approach to the above problem can be based on the following
representation of Polish spaces.

Exercise 9. Let X be a Polish space. Show that X is homeomorphic to
a closed subset of Rω.

Hint: we already know that every Polish space is homeomorphic to a Gδ

subset of r0, 1sω. Thus, take X “
Ş

nPN Un in r0, 1sω and do something
smart :)

For that approach to work, one needs additionally to know the following.

Exercise 10. Let X be a Polish space. Show that KpXq is Borel in F pXq.

Hint: express the condition of being totally bounded using basic sets
rU sF pXq. Instead of saying that something covers K, joggle with basic open
sets as in the definition of G from Exercise 6.

2.3 Uniformisation results
The next step is a famous result of Ryll-Nardzewski. The basic idea is simple:
choose the left-most branch of every tree. However, to adjust the general
situation to the case of trees, based on the following lemma.

Exercise 11. How the inductive subsets Uŝ i are defined for a given Us in
Lemma 1 on page 9?

Exercise 12. Check that the function f defined as in the proof of Lemma 1
on page 9 is continuous, open, and surjective.
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Then comes the proof of Kuratowski–Ryll–Nardzewski, based on the func-
tion c that picks the left-most branch of the tree that corresponds to the given
closed subset of Nω.

Exercise 13. Prove that cpF q P F for the function c defined as at the top of
page 11 of lecture notes.

Then one checks that the function c defined that way is Borel by checking
the following.

Exercise 14. Verify equation just above Case 2 on page 11 of lecture notes.

Then one composes c with the (lifting of) appropriate surjective map
from Nω onto our given Polish space. This gives rise to a function d, see the
bottom of page 11.

Exercise 15. Check that dpF q P F for each non-empty closed set F P F pXq.

3 New homework
This time please choose at most one problem to solve!

Exercise 16. Carefully solve Exercise 12: check that the function f defined
in Lemma 1 on page 9 of lecture notes WZTM-12 is continuous, open, and
surjective. Please write down all the details, no “hand-waving” arguments :)

Exercise 17 (‹). Construct a set U Ď rNsℵ0 that is Ramsey null but comeagre
in the standard topology on rNsℵ0.

4 Old homework
In parallel you can still solve the following problem from one of the previous
homeworks. Solving it does not count to the restrictions of “at most one
problem”.

Exercise 18 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.
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As a hint, you may focus on constructing C Ď X more than on finding
D Ď Y : begin by finding a Cantor set C such that the set

ty P Y | @x P C. px, yq P Ru

is dense in Y .
Another hint is as follows: if C Ď X is a Cantor set then it is compact.

We know something about projections along compact coordinates, no?

5 Hints
Hint to Exercise 3 The answer is closed. First, let A be closed. Take
Un “

Ť

xPA Bpx, 2´nq. Clearly Un is open and
Ş

nPN Un “ A. It remains to
see that Un`1 Ď Un. Take any point y P Un`1. It means that there exists
y1 P Un`1 such that dpy, y1q ă 2´n´1. But then there exists x P A such that
dpy1, xq ă 2´n´1. Thus, dpy, xq ă 2´n, which implies that y P Un.

Now assume that A “
Ş

nPN Un as above. However, by the assumptions
on Un, we know that A “

Ş

nPN Un and as an intersection of closed sets A
must itself be closed.

Hint to Exercise 4 Take any coordinate n P N and notice that E XUn is
non-empty if and only if EXUn is non-empty (recall that E is the intersection
of all closed sets containing E).

Hint to Exercise 5 Take two distinct closed sets F ‰ F 1. Without loss of
generality assume that there exists x P F ´F 1. But then there exists a basic
open ball Un such that x P Un and Un X F 1 “ H. Therefore, cpF qpnq “ 1,
while cpF 1qpnq “ 0.

Hint to Exercise 6 First notice that the conditions like Un Ď Um or
Um Ď Un do not involve x and have no influence on its topological complexity
— from the point of view of x these are just facts about numbers. Thus, the
first part of the definition of G is equivalent to

č

pn,mqPS

tx P 2ω | xpnq “ 0u Y tx P 2ω | xpmq “ 1u,

where S “ tpn, mq | Un Ď Umu is fixed. This piece is closed (notice that we
changed the implication into a union).
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The second piece can be written in the same manner (you can put the
condition xpnq “ 1 inside the existential quantifier). Then the formula gets
the shape

č

pn,kqPS1

ď

mPS2
n,k

t. . .u,

for properly defined S 1 and S2n,k. The inner sets above are again clopen so
the whole set is a Gδ.

Hint to Exercise 7 Take any point y P Y as witnessed by F P F pXq such
that cpF q “ y. We need to show that y P G. We can do it separately, for
the two conditions of G. Take n, m P N such that Un Ď Um. Assume that
ypnq “ 1, what means that FXUn ‰ H. But then FXUm ‰ H and therefore
ypmq “ 1 as well.

Now consider the second condition and let n, k P N with k ą 0 be such
that ypnq “ 1. Thus, F XUn ‰ H. Let x P F XUn witness that. Similarly as
in Exercise 3 there exists a basic open set Um such that x P Um Ď Um Ď Un

and diampUmq ď
1
k
by taking sufficiently small ball around x. Then FXUm ‰

H because of x and the inner condition of G holds.

Hint to Exercise 8 Recall that x P G is any point. Take any coordinate
n P N, we need to check that xpnq “ cpEqpnq. First assume that xpnq “ 1.
By inductively applying the second part of the definition of G we obtain
a sequence of coordinates `i with `0 “ n satisfying the first three conditions
from the definition of E on page 7. Thus, the intersection

Ş

i U`i “ tzu is
a member of E. This means that cpEqpnq “ 1, because `0 “ n so z P UnXE.

Now assume that cpEqpnq “ 1, as witnessed by z P E X Un. Let `i be
a sequence of numbers witnessing the fact that z P E. In particular, for each
i we have xp`iq “ 1. By taking sufficiently large i (the second item implies
that the indices `i must be arbitrarily big) we know that diampU`iq ă

1
`i
and

so U`i Ď Un. Thus, the first part of the definition of G guarantees that as
xp`iq “ 1 also xpnq “ 1.

Hint to Exercise 9 See Kechris 4.17.
Put Fn “ r0, 1sω´Un closed. Define a function f : X Ñ Rω by fpxqp2nq “

xn, i.e. on even coordinates it is just an embedding. For an odd coordinate
let fpxqp2n`1q “ 1

dpx,Fnq
. Clearly f is injective. It is also easy to check that
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f is open. Thus, it remains to see that the image of X under f is closed in
Rω.

Assume that pxkqkPN is a sequence of points in X such that limkÑ8 fpxkq “
y exists. The even coordinates of fpxkq provide a unique candidate x for the
limit of xk. It remains to see that x P X to know that y “ fpxq P fpXq.
However, since the sequence

`

fpxkq
˘

kPN is convergent, the odd coordinates of
fpxkq must be bounded, so for each n the distances dpxk, Fnq are separated
from 0. Therefore, x P Un and x P X.

Hint to Exercise 10 Fix a countable basis Un of X that consists of balls
of rational diameters around some countable dense subset of X.

Consider the following definition:

KpXq “ tF P F pXq | @k P N. Ds P rNsăℵ0 . @n P s. diampUnq ă 2´k^covps, F qu,

where covps, F q is defined as:

@i P N. F X Ui ‰ H ñ Dn P s. Ui X Un ‰ H.

If
Ť

nPs Un Ě F then clearly covps, F q holds. Thus, if K is compact then
it satisfies the above definition.

Assume that a set F P F pXq satisfies the above definition. We want
to prove that it is totally bounded. Take ε ą 0 and let k be such that
2´k ă ε. Let s be a family of indices given by the above definition for k. Fix
s1 P rNsăℵ0 that is obtained from s by replacing in s each index n of a basic
ball Un by a bigger ball (but still with diameter smaller than ε). We claim
that

Ť

nPs1 Un Ě F , which concludes the proof.
Assume contrarily that there exists x P F ´

Ť

nPs1 Un. But then there
exists a ball Ui around x that is disjoint from all the sets Un for n P s —
because we’ve enlarged their radii to obtain s1. This violates the conditions
above, because Ui X Un “ H for each n P s.

Now, the condition covps, F q (for a fixed set s P rNsăℵ0) is a countable
intersection of complements of sets of the form rUisF pXq. Thus, the above def-
inition of KpXq is something like Π0

3: intersection of unions of intersections
of complements of basic open sets.

Hint to Exercise 11 One can cover the set Us by the countable family of
balls of radius at most 2´lhpsq´1, each contained in Us with its own closure.
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Hint to Exercise 13 Take F P F pXq non-empty. Let x “ cpF q as in the
definition of c. Notice that for each n P N the fact that xn “ k is witnessed
by some point xn P F XNx|n̂ k. Moreover, limnÑ8 xn “ x. Since F is closed
and all xn P F , we know that also x P F .

Hint to Exercise 14 We have s P Năω and n “ lhpsq.
First take F P c´1pNsq. Let x “ cpF q with s ĺ x. We know that

x P F and therefore F X Ns ‰ H. Consider t P Nn and assume for the
sake of contradiction that t ălex s and F X Nt ‰ H. Then one easily gets
a contradiction with the definition of x, because for some n1 ă n we must
have violated the minimality requirement.

Now assume that F satisfies the given conditions. Then one induc-
tively shows that in the definition of x “ cpF q the first n steps must equal
s0, s1, . . . , sn´1. Therefore, x P Ns witnesses that F P c´1pNsq.

Hint to Exercise 15 Take non-empty F P F pXq. Then one has T “

f´1pF q P F pNωq given by ΦpF q. By applying c one obtains cpT q P T . Then
fpcpT qq must belong to F , by the choice of T . But fpcpT qq “ dpF q.
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