
Tutorial from 21.05.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 27.05

1 Solutions of the homework problems
This time please choose at most one problem to solve!

Exercise 1. Show that if U0 and U1 are completely Ramsey then U0 Y U1 is
also completely Ramsey.

We will check it directly from the definition. Consider s ă B. First
use the fact that U0 is completely Ramsey to find B0 P rBs

ℵ0 such that
rs, B0s Ď U0 or rs, B0s X U0 “ H. In the first case rs, B0s Ď U0 Y U1 and
we are done, so assume that rs, B0s X U0 “ H. Use the fact that U1 is com-
pletely Ramsey for s ă B0 to find B1 P rB0s

ℵ0 such that either rs, B1s Ď U1
or rs, B1s XU1 “ H. Again in the first case we are done. If rs, B1s XU1 “ H

(while also rs, B1s X U0 “ H) then rs, B1s X pU0 Y U1q “ H and we are done
as well.

Exercise 2 (‹). Prove that there exists a family of ascending subsets U0 Ď

U1 Ď . . . of rNsℵ0 such that each of the sets Ui Ď rNsℵ0 is Ramsey but their
union U def

“
Ť

nPN Un is not Ramsey.

Let U Ď rNsℵ0 be any set that is not Ramsey. For n P N let

Un “ tA P U | minA ď nu.

Clearly Un is an ascending family of sets. Moreover, as each element of U has
certain minimum,

Ť

nPN Un “ U is not Ramsey. It remains to prove that for
every n P N the set Un is Ramsey. However,

“

tn`1, n`2, . . .u
‰ℵ0
X Un “ H.
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2 New material
We continue the previous exercises studying the lecture notes on Ellentuck
topology. Again, our aim is the fact that every Borel set in rNsℵ0 (in the
usual topology) is Ramsey.

Recall the notions of s ă A, etc from the previous exercises. In particular,
for s ă A we have

rs, As
def
“ tX P rNsℵ0 | s Ď X Ď psY Aqu.

See page 5 of WZTM-11.
Based on that, one defines (see page 7 of WZTM-11) the Ellentuck topol-

ogy on rNsℵ0 with basic open sets all the sets of the form rs, As for s ă A.

Exercise 3. Show that the Ellentuck topology extends the standard topology.

Exercise 4. Show that for any s ă A and r ă B either rs, As X rr, Bs “ H
or rs, As X rr, Bs “ rsY r, AXBs.

Since rH,Ns “ rNsℵ0 , it shows that the above family in fact generates
certain topology extending the standard one.

The following fact shows that locally the Ellentuck topology has countable
neighbourhoods.

Exercise 5. Show that for every point X P rNsℵ0 there exists a countable
family of basic open sets Un Ď rNsℵ0 (in the Ellentuck topology) such that
Ş

nPN Un “ tXu.

The following fact implies that the Ellentuck topology is not separable
(no countable dense subset).

Exercise 6. Show that in the Ellentuck topology there exists a family of
cardinality continuum of non-empty open subsets of rNsℵ0 that are pairwise
disjoint.

Entail that this topology is not Polish.

Exercise 7. Show that the Ellentuck topology is Baire: if pUnqnPN is a count-
able family of dense open subsets of rNsℵ0 (in the Ellentuck topology) then
the intersection

Ş

nPN Un is also dense (in the Ellentuck topology).
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Hint: you can check from the definition: take s ă A and construct a set
X P rs, As such that @n P N. X P Un.

Then the important result of Ellentuck is invoked: U Ď rNsℵ0 is com-
pletely Ramsey iff it has Baire Property in the Ellentuck topology.

From that one entails that analytic sets (in the standard topology) are
completely Ramsey, because of WZTM-7 p. 11 (see the beginning of page 9
in WZTM-11).

Then come the observations that we have discussed previously (pages 9–
13).

Now an important Lemma 1 on page 13 says that for any s ă A the whole
space rNsℵ0 is homeomorphic to rs, As. Thus, one can transfer topological
properties of rNsℵ0 to any local neighbourhood. It is then used in the proof
of Lemma 2 on page 14 to lift the fact that U is Ramsey to the fact that U
is completely Ramsey.

Exercise 8. Show that the family of nowehere dense subsets of rNsℵ0 (in the
Ellentuck topology) is a σ-ideal.

This all leads to the notion of a Ramsey null set U (page 18): for every
s ă A there exists B P rAsℵ0 with rs, Bs X U “ H. Clearly if U is Ramsey
null then it is nowhere dense (in the Ellentuck topology). But the converse
also holds (Theorem on page 19): if U is Ramsey null then it is meagre in
the Ellentuck topology. This fact is used in the final proof of Ellentuck’s
theorem (see pages 19–20).

2.1 Set that is not Ramsey
The following simple example was proposed by Dominika Regiec.

Take X Ď 2ω as the set from Exercise 1 from 23.04.2020 — X contains
exactly one from each pair of α, α1 P 2ω that differ on exactly one (or equiv-
alently an odd number) of positions. This set is constructed by choosing
a single member from each equivalence class of the relation „ defined as
α „ α1 if they differ on a finite number of positions; then we extend it to the
rest of the equivalence classes by even-differences.

Notice that rNsℵ0 as a subset of 2ω coincides with 2ω ´ r0ωs„: the equiv-
alence class of the sequence of only-zeros is exactly rNsăℵ0 .

Let U “ rNsℵ0 X X for the set X as above. Assume for the sake of
contradiction that U is Ramsey, i.e. rAsℵ0 Ď U (the dual case is analogous,
considering the complement of U). But since A P U then A ´ tminAu R U ,
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because they differ on a single position. However, A ´ tminAu P rAsℵ0 ,
a contradiction.

2.2 Rosenthal’s lemma
An important application of Galvin-Prikry theorem is explained in Kechris 19.E.
Let S be any set and `8pSq be the Banach space of bounded functions
f : S Ñ R with the norm |f |8 “ supsPS |fpsq|.

Theorem 2.1 (Rosenthal). If pfnqnPN is a bounded sequence in `8pSq then
there exists a subsequence pfnk

qkPN that is either pointwise convergent (for
every s P S the limit limkÑ8 fnk

psq exists); or there are positive constants
a, b ą 0 such that for any n P N and any c0, . . . , cn´1 P R we have

a
ÿ

i

|ci| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

ci ¨ fni

ˇ

ˇ

ˇ

ˇ

ˇ

8

ď b
ÿ

i

|ci|.

The second possibility above says that the functions fni
(up to some fixed

constants a, b ą 0) span a subspace of `8pSq in the same way as unit vectors
span the spaces Rn with the norm |x|1

def
“

ř

i |xi| for x P Rn (n “ 1, 2, . . .).
A rather direct application of this theorem is expressed by Corollary 19.21

of Kechris — please parse it :) It is a dychotomy theorem, that either a real
Banach space X embeds `1 or a variant of Banach-Alaoglu theorem holds:
the ball is weakly compact.

To prove Rosenthal’s theorem, one reduces it to the following lemma
about sequences of pairs of sets. First, we say that a pair pA,Bq of subsets
of S is disjoint if AXB “ H.

1. A sequence of disjoint pairs is independent if for every two finite
disjoint subsets F,G Ď N we have

č

nPF

An X
č

nPG

Bn ‰ H.

It means that although each single pair pAn, Bnq is disjoint, when n varies
then the sets overlap (one can take for instance F “ tnu and G “ tmu for
n ‰ m and obtain that An XBm ‰ H).

2. A sequence of disjoint pairs is convergent if for every x P X either:
(for almost all n we have x R An) or (for almost all n we have x R Bn).
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Lemma 2.2 (Lemma 19.24 in Kechris). Every sequence of disjoint pairs
either contains a convergent subsequence or an independent subsequence.

This is obtained via an application of Galvin-Prikry theorem. Define
P Ď rNsℵ0 by

tn0 ă n1 ă . . .u P P ô @k.

«

č

iăk,i even
Ani

X
č

iăk,i odd
Bni

‰ H

ff

.

Exercise 9. Show that P is closed in rNsℵ0 with the usual topology.

By Galvin-Prikry we obtain an infinite subset H Ď N such that either
rHsℵ0 Ď P or rHsℵ0 X P “ H. Let H “ tm0 ă m1 ă . . .u.

In the first case (see the proof in Kechris) the subsequence
`

pAm2i`1 , Bm2i`1q
˘

is independent (notice that all the indices here are odd).
In the second case the subsequence

`

pAmi
, Bmi

q
˘

is convergent.

3 New homework
This time please choose at most one problem to solve!

Exercise 10. Solve Exercise 7.

Exercise 11 (‹). Let X be a Polish space and f : rNsℵ0 Ñ X be a Borel
function (in the normal topology on rNsℵ0). Show that there exists H P rNsℵ0

such that færHsℵ0 is continuous in the normal topology of rNsℵ0.

4 Old homework
In parallel you can still solve the following problem from one of the previous
homeworks. Solving it does not count to the restrictions of “at most one
problem”.

Exercise 12 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.
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As a hint, you may focus on constructing C Ď X more than on finding
D Ď Y : begin by finding a Cantor set C such that the set

ty P Y | @x P C. px, yq P Ru

is dense in Y .
Another hint is as follows: if C Ď X is a Cantor set then it is compact.

We know something about projections along compact coordinates, no?

5 Hints
Hint to Exercise 3 We have already seen it in Exercise 3 of the previous
tutorials.

Hint to Exercise 4 First, if AXB is finite then clearly rs, AsXrr, Bs “ H.
So assume that AXB P rNsℵ0 . Now if neither s Ď r nor r Ď s then let n P szr
and n1 P rzs and by the symmetry let n ă n1. If X P rs, As X rr, Bs then
n P X but it is a contradiction, as n R r while n ă maxprq so n R B which
means that X R rr, Bs. Thus in that case we also have rs, As X rr, Bs “ H.

Therefore, assume by the symmetry that s Ď r. Now it is easy to check
that rs, As X rr, Bs “ rr, AXBs and r “ sY r.

Hint to Exercise 5 It is enough to take U “ rsn, Ans for sn “ X X

t0, . . . , nu and An “ N´ t0, . . . , nu.

Hint to Exercise 6 Fix a bijection ι between N and 2ăω. For each infinite
branch π P 2ω take Aπ “ ι´1pts P 2ăω | s ă πuq. Notice that if π ‰ π1 then
Aπ X Aπ1 is finite. Thus, rH, Aπs X rH, Aπ1s “ H. As there is continuum
possible branches π, the family

`

rH, Aπs
˘

πP2ω has the desired properties.

Hint to Exercise 8 First observe that if F Ď F 1 and F 1 is nowhere dense
(i.e. pF 1q has empty interior) then also F is nowhere dense. Thus it is enough
to show that this family is closed under countable unions. But this follows
from Lemma 3 on page 16 that says that any countable union of nowhere
dense sets is nowhere dense itself.

Hint to Exercise 9 Notice that if tn0 ă n1 ă . . .u R P then it is witnessed
by some k P N and for some s P 2k we have Ns X rNsℵ0 X P “ H.
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