
Tutorial from 14.05.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 20.05

1 Solutions of the homework problems
Exercise 1. Prove that if B Ď X ˆ Y is Borel and all its sections Bx for
x P X are at most countable then the projection πXpBq is Borel itself.

First apply the theorem of Luzin–Novikov (WZTM-9 p. 13) to observe
that B is a countable union of Borel sets Fn in X ˆ Y such that for each
x P X we have |pFnqx| ď 1. Clearly πXpBq “

Ť

nPN πXpFnq, so it is enough
to show that each of the sets πXpFnq is Borel in X.

Take n P N. Apply the theorem of Luzin–Souslin (WZTM-5 p. 10) to
the function f “ πX : X ˆ Y Ñ X and the set Fn Ď X ˆ Y . This function
is continuous, so in particular Borel. Moreover, it is injective on the Borel
set Fn. Therefore, πXpFnq is Borel in X.

There is a totally different and quite fancy solution by Mateusz Przy-
borowski, but it invokes a theorem not covered in this lecture (see Kechris,
Theorem 18.11).

Exercise 2 (‹). Show that there exists a partition of r2ωs2 into infinitely
many pieces pPiqiPN such that the pieces are clopen (i.e. P ˚i is clopen in
tpx, yq P 2ω ˆ 2ω | x ‰ yu) and this partition does not admit any homo-
geneous copy of the Cantor set.

Let Pn for n P N contain a pair tα, βu for α ‰ β if ∆pα, βq def
“ mintn |

αpnq ‰ βpnqu “ n. Clearly the sets Pn form a partition of r2ωs2. Moreover,
P ˚n is clopen in tpα, βq P 2ω ˆ 2ω | α ‰ βu as the sum of the basic sets
N0n̂ 0 ˆN0n̂ 1 YN0n̂ 1 ˆN0n̂ 0.

Now assume for the sake of contradiction that there exists an n-homo-
geneous set A of cardinality greater than 2: A Ě tα0, α1, α2u. But then
by the pigeonhole principle either α0pnq “ α1pnq, or α1pnq “ α2pnq, or
α0pnq “ α2pnq, contradicting the fact that A is homogeneous for Pn.
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2 New material
This time the lecture notes provide a technical development aiming at the
following theorem:

Theorem 2.1. Every Borel set in rNsℵ0 is Ramsey.

This is achieved via a bit of a detour, with invocation of the so-called
Ellentuck topology. The following two tutorials will help you digest that
material in a bottom-up fashion: we begin with the down-to=/the-ground
combinatorics and then wrap it up into the more abstract topological argu-
ment.

For the following notation see page 5 of lecture notes.
First, rAsℵ0 is the family of all infinite subsets of A, while rAsăℵ0 contains

all finite subsets of A. Elements of rNsℵ0 will be denoted using capital letters
A, X, Y , Z, while the elements of rNsăℵ0 using lowercase letters s, r, t. Thus,
when B P rXsℵ0 then it means that B Ď X and B is infinite.

We treat rNsℵ0 as a Gδ subset of 2ω, identified with the sequences con-
taining infinitely many 1s (this set used to be denote G at some early stage
of our journey). Thus, rNsℵ0 is a Polish space with the topology generated by
the sets of the form Ns X rNsℵ0 . This topology is explained at the beginning
of subsection 11.2 of lecture notes, see pages 2–3.

Exercise 3. Notice that the above basic sets of rNsℵ0 are of the form

tA P rNsℵ0 | @i ď n. i P Aô i P ru,

for some n P N and r Ď t0, . . . , nu P rNsăℵ0.

In other words, the basic sets of the topology on rNsℵ0 require some small
numbers to belong or not belong to A, leaving all the rest unspecified.

From the topological perspective, we treat elements A P rNsℵ0 as points
(however, it makes sense to say that A Ď B for a pair of points A,B P rNsℵ0).
We think of sets U Ď rNsℵ0 as subsets of our topological space, thus it makes
sense to say that U Ď rNsℵ0 is Borel or analytic.

For the sake of clarity, we put maxpHq “ ´1 when treating H P rNsăℵ0 .
For n P NY t´1u, s P rNsăℵ0 , and A P rNsℵ0 we write:

• s ă A if maxpsq ă minpAq,

• A{n “ tm P A | m ą nu,
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• if s ă A then rs, As def“ tX P rNsℵ0 | s Ď X Ď psYAqu.
As mentioned in lecture notes (again see page 5), X P rs, As iff X X

t0, . . . ,maxpsqu “ s and all other elements of X come from A — notice
relationship with Exercise 3.

2.1 Ramsey sets
Now we move to mid of page 3 of lecture notes to study the concept of
Ramsey sets.
Definition 2.2. A set U Ď rNsℵ0 is Ramsey if there exists a set A P rNsℵ0

such that either rAsℵ0 Ď U or rAsℵ0 X U “ H.
The very nice example on page 1 of the lecture notes defines

U “ P0 “
!

A P rNsℵ0 | A “ min
ĺ

`

rAsℵ0
˘

)

for some well-order ĺ of rNsℵ0 (such a well-order could be used to define
a well-ordering of R and therefore requires some variant of the axiom of
choice). Then it is proved (first half of page 2) that this set is not Ramsey.
Please digest it!
Exercise 4. The family of all sets U Ď rNsℵ0 that are Ramsey is closed under
complement: if U is Ramsey then rNsℵ0 ´ U is also Ramsey.

As it turns out, sets that are Ramsey are not closed under union: there
are U0 and U1 Ramsey with U0YU1 not Ramsey, for that example on page 4
is used. The example goes as follows: we identify N with t0, 1u ˆ N and
fix a subset U Ď rNsℵ0 that is not Ramsey. Based on that, we define U0 “

tt0uˆA | A P Uu Ď rt0, 1uˆNsℵ0 and U1 “ tt1uˆA | A R Uu Ď rt0, 1uˆNsℵ0 .
Exercise 5. Show that both U0 and U1 are Ramsey in rt0, 1u ˆ Nsℵ0.
Exercise 6. Show that U0 Y U1 is not Ramsey in rt0, 1u ˆ Nsℵ0.

2.2 Completely Ramsey sets
As often in mathematics, to prove more we need to require more. Here
“more” means completely Ramsey sets. Such set is in a sense everywhere
Ramsey: U Ď rNsℵ0 is completely Ramsey if for every s ă B there exists
A P rBsℵ0 such that rs, As Ď U or rs, As X U “ H.

[see page 6 of lecture notes for the definition of completely Ramsey sets]
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Exercise 7. Show that if U is completely Ramsey then it is Ramsey.

Notice that r P 2ăω encodes certain finite set r̄ Ď N of positions i where
rpiq “ 1. However, contrary to the case of rs, As, such r P 2ăω requires
that some positions do not belong to elements of Nr. In particular, for
r “ ă0, 1, 1, 0, 1, 0ą, we have r̄ “ t1, 2, 4u and maxpr̄q “ 4 but r additionally
requires that 5 does not belong to any member of Nr. Notice that in that
example |r| “ 6 and always r̄ Ď t0, . . . , |r| ´ 1u.

The above fact is claimed at the end of page 6 of lecture notes.

Exercise 8. Take r P 2ăω and let U “ NrXrNsℵ0. Show that U is completely
Ramsey.

In general it follows from the lecture notes that the family of sets that
are completely Ramsey forms a σ-algebra. We will see it later. For now, we
can prove something weaker.

Exercise 9. Show that if U0 and U1 are completely Ramsey then U0 Y U1 is
also completely Ramsey.

Exercise 10. Show that if U0 and U1 are completely Ramsey then U0XU1 is
also completely Ramsey.

The next portion of lecture notes (on pages 7, 8) regards Ellentuck topol-
ogy and is left for the next tutorials.

2.3 Accept or reject
We are back to combinatorics in the middle of page 9 of lecture notes. We
consider fixed (and known from the context) set U Ď rNsℵ0 . Take s ă Y and
say that:

• Y accepts s if rs, Y s Ď U ,

• Y rejects s if for every X P rY sℵ0 we have rs,Xs Ę U .

Exercise 11 (Observation 1 from page 9). If Y accepts (rejects) s and Z P
rY sℵ0 then Z accepts (rejects) s.

In other words, think about a fixed s, and smaller and smaller subsets
X P rY sℵ0 . Then:
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1. Y accepts s if all these subsets X have the property that rs,Xs Ď U
(which boils down to saying that rs, Y s Ď U , as Y is the biggest of
possible X P rY sℵ0);

2. Y can be undecided yet, when rs, Y s Ę U but for some X P rY sℵ0 we
have rs,Xs Ď U — not all hope is lost, and we might shrink Y to X to
make it accept s;

3. Y rejects s if all hope is lost, because no matter which X P rY sℵ0 we
choose, there exists A P rs,Xs such that A R U (the choice of A depends
on the choice of X).

Exercise 12 (Observation 2 from page 9). Given any s ă Y there exists
X P rY sℵ0 such that either X accepts s or X rejects s.
Exercise 13 (Observation 3 from page 10). Given any Y and s1,. . . ,sn with
si ă Y for i “ 1, . . . , n there exists X P rY sℵ0 such that for each i “ 1, . . . , n
either X accepts si or X rejects si (it might accept for some i and reject for
other).

Then there comes Observation 4 from page 10 which constructs a set
Z (via a kind of diagonal argument) such that for every s P rZsăℵ0 either
Z{maxpsq rejects s of Z{maxpsq accepts s. Such Z is called decisive.

Please study that construction carefully, as it will reappear!
This all leads to Observation 5 from page 11 which shows how to make

a decisive set even better. This proof again uses diagonalisation as in Obser-
vation 4 (I’m not entirely sure about the word “diagonalisation”, but it does
have such a flavour. . . ).

The rest of the lecture notes is devoted to certain facts about the Ellentuck
topology, which are based on Observation 5 and related arguments. We leave
it for the next week :)

3 New homework
This time please choose at most one problem to solve!
Exercise 14. Solve Exercise 9.
Exercise 15 (‹). Prove that there exists a family of ascending subsets U0 Ď

U1 Ď . . . of rNsℵ0 such that each of the sets Ui Ď rNsℵ0 is Ramsey but their
union U def

“
Ť

nPN Un is not Ramsey.
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4 Old homework
In parallel you can still solve the following problem from one of the previous
homeworks. Solving it does not count to the restrictions of “at most one
problem”.

Exercise 16 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.

As a hint, you may focus on constructing C Ď X more than on finding
D Ď Y : begin by finding a Cantor set C such that the set

ty P Y | @x P C. px, yq P Ru

is dense in Y .

5 Hints
Hint to Exercise 3 Notice that A P Ns X rNsℵ0 if and only if

@i ă |s|. spnq “ 1 ô i P A.

Thus, one can take n “ |s| ´ 1 and r “ ti ď n | spiq “ 1u.

Hint to Exercise 4 It is obvious, because the definition is symmetric by
taking rNsℵ0 ´ U instead of U .

Hint to Exercise 5 Both sets are Ramsey for the same reason: take i “ 0
and A “ t1u ˆ N. Then rAsℵ0 X U0 “ H and we are done.

Hint to Exercise 6 Assume towards the contradiction that there exists
A P rt0, 1u ˆ Nsℵ0 such that rAsℵ0 Ď U0 Y U1 or rAsℵ0 X pU0 Y U1q “ H.

Since A is infinite, it must contain infinitely many pairs of the form pi, nq
for i “ 0 or for i “ 1. Thus, without loss of generality assume that A “

tiu ˆA1 for i P t0, 1u and some infinite A1 Ď N (making A smaller while still
infinite does not change anything). Then either rAsℵ0 Ď Ui or rAsℵ0XUi “ H
(the set U1´i does not play any role in these inclusions). But this implies that
rA1sℵ0 Ď U or rA1sℵ0 X U “ H, contradicting the fact that U is not Ramsey.
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Hint to Exercise 7 For s “ H and B “ N we get that U is just Ramsey.

Hint to Exercise 8 Consider any s ă B. Recall the notion of r̄ for
r P 2ăω from above Exercise 8. Let n “ |r| ´ 1. If r̄ ‰ s X t0, . . . , nu
then rs, B{ns X U “ H (please check it!) and we are done. So assume that
r̄ “ sX t0, . . . , nu. But then rs, B{ns Ď U and we are done again.

What is the role of B{n instead of B above?

Hint to Exercise 10 Observe that the family of completely Ramsey sets
(in the same manner as in Exercise 4) is closed under complements. Then
use Exercise 9 and the fact that U0 X U1 “ pU c

0 Y U c
1q

c.

Hint to Exercise 11 Both statements are obvious: if Y accepts s then
we use the fact that rs, Zs Ď rs, Y s, if Y rejects s then we use the fact that
rZsℵ0 Ď rY sℵ0 .

Hint to Exercise 12 As indicated in lecture notes: if some X P rY sℵ0

accepts s then we take such X. Otherwise, X “ Y already rejects s.

Hint to Exercise 13 Apply Exercise 12 inductively, shrinking the set
Y Ě X1 Ě X2 Ě . . . Ě Xn, with all Xi infinite in such a way that Xi either
accepts or rejects si. In the meantime use Exercise 11 to notice that we
cannot break the condition that (Xi either accepts or rejects si) by taking
even smaller sets Xi`1, Xi`2,. . .
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