Tutorial from 07.05.2020

[ am willing to answer your questions and comments.
You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 13.05

1 Solutions of the homework problems

Exercise 1. Construct Borel graphs on 2% that have the following properties
(one graph for each property):

1. countably many connected components,
2. continuum many connected components, each of cardinality continuum,

3. one connected component but for each n there are o, B € 2¥ such that
the length of the shortest walk from « to § is at least n.

In each of the above points, argue why the constructed graph is Borel!
Show that if G is a Borel graph on a Polish space X then each connected
component of G is an analytic subset of X.

1. Let (0" 1", 0™ 1" 8) be connected by an edge if o # 5 (by 0" we denote
the sequence of n zeros). The connected components are sets of the
form {0 1"« | @ € 2¥} and a single connected component 0¥. The
graph is a countable union of open sets — open.

2. Let (o, ) be connected by an edge if a # [ and for every n we have
a(2n) = (2n). The graph is closed and its connected components are
given by the even positions of sequences.

3. Add the following edges between o # [3:

e when «, € Q and differ on exactly one position,
e when oo = 0 and § = 1%,

e when o, 3 ¢ Q.



The graph is clearly Borel because QQ is Borel. Moreover, it has one
connected component. However, the shortest walk from 0“ to 1™ 0“
has length n (in terms of edges, or n+1 in terms of vertices).

Let G be a Borel graph. For n = 1... define C,, as

C, = {(xo,a:nﬂ) | 21, .. @0 (20, 21), .+, (Tpy Tpy1) € G*}.

It is easy to check that each of the sets C,, is analytic. Put C' = J,_, C, and
notice that C' is analytic as well. Observe that C' is an equivalence relation
and its equivalence classes are connected components of G. Each section of C
is an analytic set itself (continuous pre-image of an analytic set is analytic).

Exercise 2 (x). Assume that X is a non-empty perfect Polish space and
R < X2 is a comeagre set. Prove that there exists a Cantor set C < X and
a comeagre set D < X such that C' x D < R.

No-one has solved that exercise so it stays open for the next week :)

Notice that there is a certain difficulty here. Consider X = [0, 1] and
R = X?—{(z,x) | x € [0,1]} dense and open. Notice that there is no open
set C' < X and dense Gs set D < X such that C x D < R!

2 New material

First, the standard infinite Ramsey theorem is given.

Theorem 2.1 (Ramsey). If Py u P, is a partition of [N]* then there is
an infinite set A = N that is homogeneous: either [A]* is a subset of Py or
Of Pl-

Exercise 3. Prove the above fact inductively.

You might construct A inductively, asking for an infinite set [, € N (fix
Iy = N): is there ny € I such that for infinitely many m € I, we have
{ng,m} € Fy. If yes, take such ny and define I 1 = {m € I}, | {ng, m} € Fy}.
If for some k there is no such ny then one can easily construct (via another
induction) A < [}, with [A]? € P;.

Entail the following variant from the binary one:

Exercise 4 (Ramsey). If PByu Py U ... U By is a partition of [N]? then there
is an infinite set A = N that is homogeneous: [A]* < P; for some i.
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The example of Sierpinski shows that one cannot directly extend Ram-
sey’s theorem to other cardinalities. Take a fixed well-order < on R. Define
a graph G< on R by putting (z,y) € G% if z # y and (:L' <yer< y)

Exercise 5. Assume that X < R s well-ordered by the standard order <
on R. Prove that | X| < Ny.

Exercise 6. Show that the Sierpinski graph G< does not have any uncount-
able clique nor uncountable anti-clique.

Galvin’s theorem (page 3 of the notes) says that if a graph has Baire
Property then there is a Cantor homogeneous set (clique or anti-clique). Its
proof is based on Mycielski-Kuratowski but it requires a bit more. .. It gives
a nice corollary about BP-measurable functions (page 6).

Exercise 7. Prove inductively the more general variant of Galvin’s theorem
(middle of page 7): if [ X]? is partitioned into Py U ... U P,_1 with all these
sets having Baire Property then there exists a homogeneous Cantor set.

Another way of extending Galvin’s theorem would be to go to triples.

Theorem 2.2 (Ramsey). If [N]? = Py u ... U B,y is a partition of the
three-element subsets of N then there exists a homogeneous infinite set A € N
such that [A]* < P; for some i.

The next stage of the lecture notes is an example showing that one cannot
extend Galvin’s result to triples. First, given two a # [ € 2“ one defines
A(a, ) = min{n | a(n) # S(n)}. Then, let P, contain a triple {a, 8,~} if
@ <jex B <iex 7 and A(a, 3) < A(B,7). Dually, P; contains such a triple if

Ale, B) > A(B, 7).
Recall that if P < [X]" then P* = {(z1,...,x,) | {z1,...,3,} € P}.

Exercise 8. Check that both P§ and Py as subsets of {(c, 3,7) € (29)3 | a #
B AB#~y Ay #a} are clopen.

In the above exercise it is important to remove the diagonal, when speak-
ing about the fact that P* are clopen. This disappears later, when we require
them to be open, because the sets like {(z,y) € X® | x # y} are open them-
selves.



Exercise 9. Show that if A < 2¥ is a 0-homogeneous set for the above
partition (i.e. [A]*> S By) then all points except at most one in A are isolated.
Entail that A is at most countable.

Check the same for 1-homogeneous A.

Then the lecture notes move to OCA*(A) — Open Colouring Axiomx
for a set A: if Py U P is a partition of [A]* such that P} is open in A? (as
an induced subspace of X?) then either:

e there exists a 0-homogeneous Cantor set;

e A is a countable union of 1-homogeneous sets.

The presented theorem by Farah and Todorcevi¢ asserts that for all sets
A that are analytic. In its proof, it is first important to notice the following
simple fact.

Exercise 10. If OCA*(A) for A< X holds and f: X — Y is a continuous
function between Polish spaces then OCA*(f(A)) holds as well.

Thus, instead of showing OC A*(A) one can show OCA*(X) with X being
some Polish space whose continuous image is A.

The rest of the proof is an analogue of the Cantor-Bendixson theorem:
instead of the o-ideal of countable sets, we work with the o-ideal of countable
unions of 1-homogeneous sets.

Exercise 11. Let T be a o-ideal on a Polish space X, assume that X ¢ T (I
is not full) and [X|=% € T — all finite subsets of X belong to Z. Then one
can partition X =Y 0 U with a perfect (no isolated points) set' Y ¢ T and
an open set U € . Moreover, if V is an open subset of X and V nY #
then V-nY ¢ T (V nY is a relatively open subset of Y ).

Hint from the lecture notes: put U = | J{U,, | U,, € Z} for some countable
basis (Up,)nen of the topology of X.

This allows us to conclude the proof of the theorem by Farah and Todor-
cevic, see page 12.

Based on that, we can have the following strengthening of the perfect set
property for analytic sets.

Proposition 2.3. Assume that f: X — Y is a Borel function between Polish
spaces X and Y. If the range of f is uncountable then there is a Cantor set
C < X such that f1- is injective.



Take as A the graph of f,i.e. A = {(z,y) | f(z) = y} (our basic space is
X xY). Clearly, A is Borel and therefore analytic. Consider the partition
of [A]?> = Py u P, with P, containing {(z,v), (z/,y")} if y # ¢/. It is clear
that Pg is open in A? so it is an open partition. Apply OCA*(A) to that
partition.

Exercise 12. Assume that there exists a 0-homogeneous Cantor set. Entail
that there is a Cantor set C < X such that f1. is injective.

Exercise 13. Assume that A is a countable union of 1-homogeneous sets.
Entail that the range of f is countable.

Then yet another application is given, see the theorem by von Douwen and
Przymusinski on page 14. In its proof, we have a Polish space X and an ana-
lytic set A = X?. We partition [A]? (again this is essentially a subspace of X
(1)) into Py u Py with Py containing {(z1, x2), (y1,y2)} if (x1,22), (y1,y2) € A
and moreover {z1, 22} N {y1,y2} = .

Exercise 14. Check that B} is open in A* with the topology induced from
X4

Exercise 15. Assume that A is a countable union of 1-homogeneous sets.
Show that A can be covered by a countable union of lines — sets of the from
X x {xzo} or{zo} x X.

3 New homework

This time you are allowed to solve both problems if you like :)

The first exercise should be doable by invoking some known principles
from the lecture — please invoke them precisely and write down carefully all
the remaining reasoning.

Exercise 16. Prove that if B < X x Y is Borel and all its sections B, for
x € X are at most countable then the projection mwx(B) is Borel itself.

Exercise 17 (x). Show that there exists a partition of [2¥]? into infinitely
many pieces (P;)ien such that the pieces are clopen (i.e. P is clopen in

{(z,y) € 2¥ x 2¥ | © # y}) and this partition does not admit any homo-
geneous copy of the Cantor set.



4 Old homework

In parallel you can still solve the following problem from the previous home-
work.

Exercise 18 (x). Assume that X is a non-empty perfect Polish space and
R < X? is a comeagre set. Prove that there exists a Cantor set C < X and
a comeagre set D < X such that C' x D < R.

5 Hints

Hint to Exercise 3 Take I, = N and inductively proceed as suggested. If
forall k = 0, ... there is a respective number ny, then the set A = {n;, | k € N}
is 0-homogeneous. Assume that at some stage k the respective number ny
does not exist. I.e. the infinite set J, = I} has the property that for every n €
Jo there is only finitely many m € Jy with {n,m} € Py. Proceed inductively
for £ = 0,... taking n, = min J, and J,;q = {m € Jy | {ng,m} ¢ Pg}. Then
the sets J; are all infinite and the construction of (ny)eny must succeed.

Hint to Exercise 4 Induction on ¢. For ¢ = 0 trivial, for ¢ = 2 the
basic Ramsey. Assume the thesis for ¢, consider Py u ... P, and treat it as
Py, ..., (Pr—1UPFy). Apply the previous result and if the set A is homogeneous
for P,_1 u P, apply the standard Ramsey once again for the infinite set A
and the partition P,_; u P,.

Hint to Exercise 5 Notice that for easy x € X there exists a rational
number ¢, such that + = max{y € X | y < ¢.}: if £ = max X then take
any rational greater than x, otherwise take 2’ = min{y € X | y > x} and
any rational in [z, 2’). Thus, the function z — ¢, is an injection of X into
rationals Q.

Hint to Exercise 6 First take any clique X in G<. By the definition
of G< it means that the orders < and < coincide on X. Therefore, X is
well-ordered by <. Use Exercise 5.

In the case when X is an anti-clique, the orders > and < coincide on X,
so we can apply Exercise 5 to —X = {—z | z € X}.



Hint to Exercise 7 The same induction as in Exercise 4 — in the case
when [C]* € P,_; U P, apply standard Galvin again to the perfect Polish
space C.

Hint to Exercise 8 Notice that if («, 5,7) € B§ then it is witnessed by
some finite prefixes (al,,81,,7,). Therefore, B} is open. The same holds
for P;". However, Bj U P; is the whole set

{(a,8,7) € 2 [a#BAB#yry+#al},

Hint to Exercise 9 Take any non-<,-maximal point « in A and let
v >lex @ Witness that. Let A(a,y) = n. Assume for the sake of contradiction
that there exists 8 # a € A such that A(«, ) > n. Notice that it implies
that 8 <jex v and A(S,~) = n. Thus, no matter whether o <jex 5 or f <jex @@
we have a contradiction with the fact that {«, 5,7} € P.

The case of P; is analogous, take any non-<j.,-minimal point v in A.

Now, if a set A consists of purely isolated points then there is at most as
many points in A as basic open sets of our space. So |A| < V.

Hint to Exercise 10 Take Pyu P, = [f(A)]? with Py open in f(A)?. Take
Ry containing {z,y} if Py contains {f(z), f(y)}. Let Ry be the remainder of
[A]%. Then R is open in A?. Apply OCA*(A) to the partition Ry u Ry =
AP

Consider the first case that there exists a 0-homogeneous Cantor set C'
in A, ie. [C]? < Ry. Notice that f must be injective on C, because if
{z,y} € Ry then not only z # y but also f(z) # f(y). Therefore, f(C)
is a 0-homogeneous Cantor set (homogeneous for Py) — injectivity of f is
important here, because if f(C') was a singleton, we’d be left with nothing. . .

Now assume that A is a countable union of 1-homogeneous sets (F},)nen.
Consider the sets f(F,,). Observe that if x # y € f(F,) would satisfy {x,y} €
Py then some two points in F},, would be connected by Ry, contradicting the
assumption that F), is 1-homogeneous. Therefore, f(F},) is 1-homogeneous
(homogeneous for P;). Thus, f(A) is a countable union of 1-homogeneous

sets f(Fp).

Hint to Exercise 11 Using the hint to take U = |J{U,, | U, € I} for
some countable basis (U, )nen of the topology of X we see that U € Z. Take
Y=X-U.



If Y contained any isolated point {yo} =Y n U, for some n then U, € T
as a subset of the union of U € Z and {yo} € Z. Therefore, Y has no isolated
points. Clearly, if we had Y € Z then X =Y u U € Z while we assumed that
X¢T.

Take any open subset V' of X such that V nY # ¢J. We aim at showing
that V nY ¢ Z. Let U, < V be any basic set such that U, n'Y # ¢J. It is
enough to show that U, nY ¢ Z, as U, nY < VY. Butif U,nY e T
then U, € Z because U also belongs to Z, and then U, nY = (.

Hint to Exercise 12 Take a 0-homogeneous cantor set C' € X xY. By the
definition of Py we know that if (z,y), (2,y’) € C are two distinct elements of
C then y # /. As A is the graph of f it means that also x # x’. Therefore,
the projection of C' onto X is also a Cantor set (the projection operation is
injective on C'). We claim that this projection (denoted C”) has the property
that f]. is injective. However, if x # 2/ € C’ then (z, f(x)), (z/, f(2)) € C
because C' € A and therefore by the choice of Py we have f(z) # f(a').

Hint to Exercise 13 Each 1-homogeneous set must contain points (z,y)
of fixed second coordinate y.

Hint to Exercise 14 It is enough to notice that the condition {(z,y) €
X? | x # y} is open and then take some finite intersections.

Hint to Exercise 15 It is enough to show that if I is a 1-homogeneous set
then F' is contained in a finite union sets of the form X x {x¢} or {zo} x X.
Take any (z,y) € F and observe that

Fc{r}xX u{y}xX u Xx{z} u Xx{y}.
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