
Tutorial from 07.05.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Wednesday 13.05

1 Solutions of the homework problems
Exercise 1. Construct Borel graphs on 2ω that have the following properties
(one graph for each property):

1. countably many connected components,

2. continuum many connected components, each of cardinality continuum,

3. one connected component but for each n there are α, β P 2ω such that
the length of the shortest walk from α to β is at least n.

In each of the above points, argue why the constructed graph is Borel!
Show that if G is a Borel graph on a Polish space X then each connected

component of G is an analytic subset of X.

1. Let p0nˆ1̂ α, 0nˆ1̂ βq be connected by an edge if α ‰ β (by 0n we denote
the sequence of n zeros). The connected components are sets of the
form t0nˆ1̂ α | α P 2ωu and a single connected component 0ω. The
graph is a countable union of open sets — open.

2. Let pα, βq be connected by an edge if α ‰ β and for every n we have
αp2nq “ βp2nq. The graph is closed and its connected components are
given by the even positions of sequences.

3. Add the following edges between α ‰ β:

• when α, β P Q and differ on exactly one position,
• when α “ 0ω and β “ 1ω,
• when α, β R Q.
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The graph is clearly Borel because Q is Borel. Moreover, it has one
connected component. However, the shortest walk from 0ω to 1nˆ0ω
has length n (in terms of edges, or n`1 in terms of vertices).

Let G be a Borel graph. For n “ 1 . . . define Cn as

Cn “
 

px0, xn`1q | Dx1, . . . , xn. px0, x1q, . . . , pxn, xn`1q P G
˚
(

.

It is easy to check that each of the sets Cn is analytic. Put C “
Ť

ną0 Cn and
notice that C is analytic as well. Observe that C is an equivalence relation
and its equivalence classes are connected components of G. Each section of C
is an analytic set itself (continuous pre-image of an analytic set is analytic).
Exercise 2 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.

No-one has solved that exercise so it stays open for the next week :)
Notice that there is a certain difficulty here. Consider X “ r0, 1s and

R “ X2 ´ tpx, xq | x P r0, 1su dense and open. Notice that there is no open
set C Ď X and dense Gδ set D Ď X such that C ˆD Ď R!

2 New material
First, the standard infinite Ramsey theorem is given.

Theorem 2.1 (Ramsey). If P0 Y P1 is a partition of rNs2 then there is
an infinite set A Ď N that is homogeneous: either rAs2 is a subset of P0 or
of P1.

Exercise 3. Prove the above fact inductively.

You might construct A inductively, asking for an infinite set Ik Ď N (fix
I0 “ N): is there nk P Ik such that for infinitely many m P Ik we have
tnk,mu P P0. If yes, take such nk and define Ik`1 “ tm P Ik | tnk,mu P P0u.
If for some k there is no such nk then one can easily construct (via another
induction) A Ď Ik with rAs2 Ď P1.

Entail the following variant from the binary one:

Exercise 4 (Ramsey). If P0 YP1 Y . . .YP` is a partition of rNs2 then there
is an infinite set A Ď N that is homogeneous: rAs2 Ď Pi for some i.
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The example of Sierpiński shows that one cannot directly extend Ram-
sey’s theorem to other cardinalities. Take a fixed well-order ĺ on R. Define
a graph Gĺ on R by putting px, yq P G˚ĺ if x ‰ y and

`

x ă y ô x ă y
˘

.

Exercise 5. Assume that X Ď R is well-ordered by the standard order ď
on R. Prove that |X| ď ℵ0.

Exercise 6. Show that the Sierpiński graph Gĺ does not have any uncount-
able clique nor uncountable anti-clique.

Galvin’s theorem (page 3 of the notes) says that if a graph has Baire
Property then there is a Cantor homogeneous set (clique or anti-clique). Its
proof is based on Mycielski-Kuratowski but it requires a bit more. . . It gives
a nice corollary about BP-measurable functions (page 6).

Exercise 7. Prove inductively the more general variant of Galvin’s theorem
(middle of page 7): if rXs2 is partitioned into P0 Y . . .Y Pn´1 with all these
sets having Baire Property then there exists a homogeneous Cantor set.

Another way of extending Galvin’s theorem would be to go to triples.

Theorem 2.2 (Ramsey). If rNs3 “ P0 Y . . . Y Pn´1 is a partition of the
three-element subsets of N then there exists a homogeneous infinite set A Ď N
such that rAs3 Ď Pi for some i.

The next stage of the lecture notes is an example showing that one cannot
extend Galvin’s result to triples. First, given two α ‰ β P 2ω one defines
∆pα, βq “ mintn | αpnq ‰ βpnqu. Then, let P0 contain a triple tα, β, γu if
α ălex β ălex γ and ∆pα, βq ď ∆pβ, γq. Dually, P1 contains such a triple if
∆pα, βq ą ∆pβ, γq.

Recall that if P Ď rXsn then P ˚ “
 

px1, . . . , xnq | tx1, . . . , xnu P P
(

.

Exercise 8. Check that both P ˚0 and P ˚1 as subsets of tpα, β, γq P p2ωq3 | α ‰
β ^ β ‰ γ ^ γ ‰ αu are clopen.

In the above exercise it is important to remove the diagonal, when speak-
ing about the fact that P ˚i are clopen. This disappears later, when we require
them to be open, because the sets like tpx, yq P X3 | x ‰ yu are open them-
selves.
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Exercise 9. Show that if A Ď 2ω is a 0-homogeneous set for the above
partition (i.e. rAs2 Ď P0) then all points except at most one in A are isolated.
Entail that A is at most countable.

Check the same for 1-homogeneous A.

Then the lecture notes move to OCA˚pAq — Open Colouring Axiom‹
for a set A: if P0 Y P1 is a partition of rAs2 such that P ˚0 is open in A2 (as
an induced subspace of X2) then either:

• there exists a 0-homogeneous Cantor set;

• A is a countable union of 1-homogeneous sets.

The presented theorem by Farah and Todorčević asserts that for all sets
A that are analytic. In its proof, it is first important to notice the following
simple fact.

Exercise 10. If OCA˚pAq for A Ď X holds and f : X Ñ Y is a continuous
function between Polish spaces then OCA˚pfpAqq holds as well.

Thus, instead of showing OCA˚pAq one can show OCA˚pXq withX being
some Polish space whose continuous image is A.

The rest of the proof is an analogue of the Cantor-Bendixson theorem:
instead of the σ-ideal of countable sets, we work with the σ-ideal of countable
unions of 1-homogeneous sets.

Exercise 11. Let I be a σ-ideal on a Polish space X, assume that X R I (I
is not full) and rXsăℵ0 Ď I — all finite subsets of X belong to I. Then one
can partition X “ Y Y U with a perfect (no isolated points) set Y R I and
an open set U P I. Moreover, if V is an open subset of X and V X Y ‰ H
then V X Y R I (V X Y is a relatively open subset of Y ).

Hint from the lecture notes: put U “
Ť

tUn | Un P Iu for some countable
basis pUnqnPN of the topology of X.

This allows us to conclude the proof of the theorem by Farah and Todor-
čević, see page 12.

Based on that, we can have the following strengthening of the perfect set
property for analytic sets.

Proposition 2.3. Assume that f : X Ñ Y is a Borel function between Polish
spaces X and Y . If the range of f is uncountable then there is a Cantor set
C Ď X such that fæC is injective.
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Take as A the graph of f , i.e. A “ tpx, yq | fpxq “ yu (our basic space is
X ˆ Y ). Clearly, A is Borel and therefore analytic. Consider the partition
of rAs2 “ P0 Y P1 with P0 containing tpx, yq, px1, y1qu if y ‰ y1. It is clear
that P ˚0 is open in A2 so it is an open partition. Apply OCA˚pAq to that
partition.

Exercise 12. Assume that there exists a 0-homogeneous Cantor set. Entail
that there is a Cantor set C Ď X such that fæC is injective.

Exercise 13. Assume that A is a countable union of 1-homogeneous sets.
Entail that the range of f is countable.

Then yet another application is given, see the theorem by von Douwen and
Przymusiński on page 14. In its proof, we have a Polish space X and an ana-
lytic set A Ď X2. We partition rAs2 (again this is essentially a subspace ofX4

(!)) into P0 Y P1 with P0 containing tpx1, x2q, py1, y2qu if px1, x2q, py1, y2q P A
and moreover tx1, x2u X ty1, y2u “ H.

Exercise 14. Check that P ˚0 is open in A2 with the topology induced from
X4.

Exercise 15. Assume that A is a countable union of 1-homogeneous sets.
Show that A can be covered by a countable union of lines — sets of the from
X ˆ tx0u or tx0u ˆX.

3 New homework
This time you are allowed to solve both problems if you like :)

The first exercise should be doable by invoking some known principles
from the lecture — please invoke them precisely and write down carefully all
the remaining reasoning.

Exercise 16. Prove that if B Ď X ˆ Y is Borel and all its sections Bx for
x P X are at most countable then the projection πXpBq is Borel itself.

Exercise 17 (‹). Show that there exists a partition of r2ωs2 into infinitely
many pieces pPiqiPN such that the pieces are clopen (i.e. P ˚i is clopen in
tpx, yq P 2ω ˆ 2ω | x ‰ yu) and this partition does not admit any homo-
geneous copy of the Cantor set.
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4 Old homework
In parallel you can still solve the following problem from the previous home-
work.

Exercise 18 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.

5 Hints
Hint to Exercise 3 Take I0 “ N and inductively proceed as suggested. If
for all k “ 0, . . . there is a respective number nk then the set A “ tnk | k P Nu
is 0-homogeneous. Assume that at some stage k the respective number nk
does not exist. I.e. the infinite set J0 “ Ik has the property that for every n P
J0 there is only finitely many m P J0 with tn,mu P P0. Proceed inductively
for ` “ 0, . . . taking n` “ min J` and J``1 “

 

m P J` | tn`,mu R P0
(

. Then
the sets J` are all infinite and the construction of pn`q`PN must succeed.

Hint to Exercise 4 Induction on `. For ` “ 0 trivial, for ` “ 2 the
basic Ramsey. Assume the thesis for `, consider P0 Y . . . P` and treat it as
P0, . . . , pP`´1YP`q. Apply the previous result and if the set A is homogeneous
for P`´1 Y P` apply the standard Ramsey once again for the infinite set A
and the partition P`´1 Y P`.

Hint to Exercise 5 Notice that for easy x P X there exists a rational
number qx such that x “ maxty P X | y ď qxu: if x “ maxX then take
any rational greater than x, otherwise take x1 “ minty P X | y ą xu and
any rational in rx, x1q. Thus, the function x ÞÑ qx is an injection of X into
rationals Q.

Hint to Exercise 6 First take any clique X in Gĺ. By the definition
of Gĺ it means that the orders ď and ĺ coincide on X. Therefore, X is
well-ordered by ď. Use Exercise 5.

In the case when X is an anti-clique, the orders ě and ĺ coincide on X,
so we can apply Exercise 5 to ´X “ t´x | x P Xu.
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Hint to Exercise 7 The same induction as in Exercise 4 — in the case
when rCs2 Ď P`´1 Y P` apply standard Galvin again to the perfect Polish
space C.

Hint to Exercise 8 Notice that if pα, β, γq P P ˚0 then it is witnessed by
some finite prefixes pαæn, βæn, γænq. Therefore, P ˚0 is open. The same holds
for P ˚1 . However, P ˚0 Y P ˚1 is the whole set

tpα, β, γq P p2ωq3 | α ‰ β ^ β ‰ γ ^ γ ‰ αu.

Hint to Exercise 9 Take any non-ďlex-maximal point α in A and let
γ ąlex α witness that. Let ∆pα, γq “ n. Assume for the sake of contradiction
that there exists β ‰ α P A such that ∆pα, βq ą n. Notice that it implies
that β ălex γ and ∆pβ, γq “ n. Thus, no matter whether α ălex β or β ălex α
we have a contradiction with the fact that tα, β, γu P P0.

The case of P1 is analogous, take any non-ďlex-minimal point γ in A.
Now, if a set A consists of purely isolated points then there is at most as

many points in A as basic open sets of our space. So |A| ď ℵ0.

Hint to Exercise 10 Take P0YP1 “ rfpAqs
2 with P ˚0 open in fpAq2. Take

R0 containing tx, yu if P0 contains tfpxq, fpyqu. Let R1 be the remainder of
rAs2. Then R˚0 is open in A2. Apply OCA˚pAq to the partition R0 Y R1 “

rAs2.
Consider the first case that there exists a 0-homogeneous Cantor set C

in A, i.e. rCs2 Ď R0. Notice that f must be injective on C, because if
tx, yu P R0 then not only x ‰ y but also fpxq ‰ fpyq. Therefore, fpCq
is a 0-homogeneous Cantor set (homogeneous for P0) — injectivity of f is
important here, because if fpCq was a singleton, we’d be left with nothing. . .

Now assume that A is a countable union of 1-homogeneous sets pFnqnPN.
Consider the sets fpFnq. Observe that if x ‰ y P fpFnq would satisfy tx, yu P
P0 then some two points in Fn would be connected by R0, contradicting the
assumption that Fn is 1-homogeneous. Therefore, fpFnq is 1-homogeneous
(homogeneous for P1). Thus, fpAq is a countable union of 1-homogeneous
sets fpFnq.

Hint to Exercise 11 Using the hint to take U “
Ť

tUn | Un P Iu for
some countable basis pUnqnPN of the topology of X we see that U P I. Take
Y “ X ´ U .
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If Y contained any isolated point ty0u “ Y X Un for some n then Un P I
as a subset of the union of U P I and ty0u P I. Therefore, Y has no isolated
points. Clearly, if we had Y P I then X “ Y YU P I while we assumed that
X R I.

Take any open subset V of X such that V X Y ‰ H. We aim at showing
that V X Y R I. Let Un Ď V be any basic set such that Un X Y ‰ H. It is
enough to show that Un X Y R I, as Un X Y Ď V X Y . But if Un X Y P I
then Un P I because U also belongs to I, and then Un X Y “ H.

Hint to Exercise 12 Take a 0-homogeneous cantor set C Ď XˆY . By the
definition of P0 we know that if px, yq, px1, y1q P C are two distinct elements of
C then y ‰ y1. As A is the graph of f it means that also x ‰ x1. Therefore,
the projection of C onto X is also a Cantor set (the projection operation is
injective on C). We claim that this projection (denoted C 1) has the property
that fæC1 is injective. However, if x ‰ x1 P C 1 then px, fpxqq, px1, fpx1qq P C
because C Ď A and therefore by the choice of P0 we have fpxq ‰ fpx1q.

Hint to Exercise 13 Each 1-homogeneous set must contain points px, yq
of fixed second coordinate y.

Hint to Exercise 14 It is enough to notice that the condition tpx, yq P
X2 | x ‰ yu is open and then take some finite intersections.

Hint to Exercise 15 It is enough to show that if F is a 1-homogeneous set
then F is contained in a finite union sets of the form X ˆ tx0u or tx0u ˆX.

Take any px, yq P F and observe that

F Ď txuˆX Y tyuˆX YXˆtxu YXˆtyu.
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