
Tutorial from 30.04.2020

I am willing to answer your questions and comments.

You can gain points for indicating non-trivial mistakes in the notes!

Homework deadline: 24:00 on Thursday 07.05

1 Solutions of the homework problems
Exercise 1. Let X1, . . . , Xn be non-empty perfect Polish spaces. If A is
comeagre in

ś

iďnXi then there exist copies of the Cantor set C1, . . . , Cn in
X1, . . . , Xn respectively such that

ś

iďnCi Ď A.
Let X be a non-empty perfect Polish space and n ě 1. If A P BPpXnq ´

MGRpXnq (i.e. A has Baire Property but is not meagre) then there exist
copies of the Cantor set C1, . . . , Cn in X such that

ś

iďnCi Ď A.

This argument is based on a solution by Anna Balicka.
Consider the first part of the statement. W.l.o.g. assume that A is a dense

Gδ being an intersection of a descending family of open sets Un.
It is enough to repeat the construction from the lecture, this time con-

structing n Cantor schemes V i
s for i “ 1, . . . , n and s P 2ăω. They need to

satisfy the standard conditions on monotonicity (if s ă r then V i
r Ď V i

s ),
diameters diampV i

s q ď 2´|s|), and disjointness (if s ‰ r P 2n then V i
s X V i

r “

H). Moreover, we ensure that for each choice of s1, . . . , sn P 2n we have
V 1
s1 ˆ . . .ˆ V

n
sn
Ď Un Ď A. The inductive step of defining pVsqsP2n`1 assuming

that we have pVsqsP2n is even simpler than in the lecture notes because by
density of Un`1 we know that there is some basic open set there — i.e. a
product of some basic sets in X.

The second part follows from the first one, because under the given as-
sumptions, A is comeagre in some basic open set U1ˆ . . .ˆUn of Xn and we
an invoke the first part for the perfect Polish spaces Xi “ Ui for i “ 1, . . . , n.

Exercise 2 (‹). Show that there exists a copy of the Cantor set C Ď R whose
members are linearly independent over Q: if x1, . . . , xn P C are pairwise
distinct and

ř

iďn qi ¨ xi “ 0 for some rational numbers q1, . . . , qn P Q then
all the numbers qi equal 0.
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This argument is based on solutions by Damian Głodkowski and Tomasz
Przybyłowski.

For each n consider the set Hn “ Qn ´ tp0, . . . , 0qu. Notice that Hn is
countable and for each ~q P Hn the set F~q “ tpx1, . . . , xnq P Rn |

řn
i“1 ~qi ¨ xi “

0u is meagre in Rn. Therefore, Fn “
Ť

~qPHn
F~q is also meagre in Rn. Take

An “ Rn ´ Fn, and put nn “ n. Apply the stronger variant of Mycielski–
Kuratowski Theorem (page 16 of lecture notes WZMT-8, see Exercise 3 be-
low) to the sequence An Ď Rnn . The obtained Cantor set C is easily the
desired set independent over Q.

2 New material

2.1 Continuation of the previous topic
We will now prove the more general version of the theorem by Mycielski–
Kuratowski (it is stated on page 16 of the lecture notes WZTM-8).

Exercise 3. Let X be a non-empty perfect Polish space. For every sequence
of positive integers pnkqkPN and a sequence of sets pAkqkPN such that Ak is
comeagre in Xnk , there exists a homeomorphic copy of the Cantor set C Ď X
such that for every k we have

 

~x P Cnk | @i ‰ j. xi ‰ xj
(

Ď Ak.

Idea (spoiler alert!): repeat the previous construction: w.l.o.g. assume
that each Ak is a dense Gδ, i.e. Ak “

Ş

iPN Uk,i for Uk,i open and dense. Con-
struct inductively a Cantor scheme, making sure that the respective products
are contained in more and more of the sets Uk,i.

2.2 2ω as a topological group
The set 2 “ t0, 1u has the natural structure of the additive group Z2 (some-
times addition is also called XOR). This operation can be extended to 2ω in
the coordinate-wise way.

Exercise 4. Prove that addition is continuous as a function 2ω ˆ 2ω Ñ 2ω.

Notice that the sequence constantly equal 0 is the neutral element of this
addition.
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Exercise 5. Is there an inverse operation in 2ω: given α P 2ω can one find
α´1 such that α ` α´1 “ α´1 ` α “ 0.

Therefore, we know that 2ω is a topological group: both addition and
inverse are continuous functions.

Now, the lecture notes denote the set of sequences ultimately equal 0 by
Q and call them rationals.

Exercise 6. Show that Q is a subgroup of 2ω.

This leads to the idea of a quotient: we call two elements α, β P 2ω
equivalent (denoted α „ β) if α ´ β P Q. The Vitali set S constructed in
lecture notes is just a selector of the layers of the quotient — it contains
a single element from each equivalence class of „.

If α P 2ω and A Ď 2ω then by α ` A we denote the set tα ` β | β P Au.

Exercise 7. Notice that if S is a Vitali set then tq`SuqPQ is a split of 2ω into
countably many homoemorphic pairwise disjoint subsets. (it was previously
claimed here that the sets are dense, which in general doesn’t have to be the
case)

2.3 Graphs
This lecture is devoted to descriptive graph theory. We view a graph as the
set of its oriented edges G˚ Ď V pGq2 and study the topological complexity
of that set (assuming V pGq to be some nice Polish space, like 2ω). The only
two requirements about G˚ are that it is symmetric (if px, yq P G˚ then
py, xq P G˚) and anti-reflexive (px, xq R G˚) [this last condition is not entirely
kosher, some graph theorists would allow self-loops but in the end it does
not matter much].

Then the standard graph theoretic notions of a walk, clique, anti-clique,
and colouring by some set Z are defined. Homomorphisms of graphs are
defined as for relational structures: the image of an edge must be an edge
but some new edges may arise in the range of the homomorphism.

Then on page 4 a very special graph G0 on 2ω is constructed. Notice that
the actual structure of that graph depends on the choice of the sequences
sn, thus G0 is in fact a family of graphs. On the other hand, it is possible
to inductively construct some sequence sn satisfying the requirements (see
page 5) so one should think about G0 as a constructive object — contrary to
the setX from the previous exercises or the related Vitali set from Exercise 7.
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Exercise 8. Check that G0 Ď 2ω ˆ 2ω is Fσ.

Exercise 9. Show that G0 has no isolated points.

Then proposition at the end of page 6 shows, that the connected compo-
nents of G0 are precisely the equivalence classes of the relation „ from the
end of Subsection 2.2. The proof of this result is not entirely trivial, because
we can only swap 0 with 1 (or 1 with 0) at the end of a sequence sn for some
n P N. Thus, some inductive construction is needed to show how to construct
a (possibly very long) walk from α to β under the assumption that α „ β.

Exercise 10. Assume that α differs from β on N positions tn0, . . . , nNu.
Can we give some upper bound on the length of the shortest walk from α to
β in G0?

We know that that each connected component of G0 is an equivalence
class of „. Moreover, each edge of G0 swaps one position of the given word.
Thus, we can go chess-like: some vertices are white, others are black, every
two neighbours have distinct colours, so every loop has even length. This
leads to the following realisation from page 9.

Exercise 11. The graph G0 is 2-colourable.

Similarly as in the exercise about a set X that is sensitive to changing
single bits, no 2-colouring of G0 can have Baire property (seen as a set of
vertices of colour 0 and the complement coloured 1).

2.4 Lusin–Novikov theorem
The next step is an introduction (luckily for us without a proof) of the
celebrated result by Kechris, Solecki, and Todorčević.

Theorem 2.1 (Kechris–Solecki–Todorčević). If G is an analytic graph on
a Polish space X then either it has a Borel N-colouring or one can continu-
ously embed G0 into G.

Notice that the definition of a Z-colouring does not depend on the actual
structure of Z, only on its cardinality, so we could say that the first possibility
above says that G admits any ℵ0-colouring.

The first application of this result is Lusin-Novikov theorem (that can
also be proved more directly), see page 13 of the notes.
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Theorem 2.2 (Lusin–Novikov). Take B Ď XˆY that is Borel. Then either
B is a union of graphs of countably many Borel partial functions X á Y ; or
B has an uncountable vertical section.

Exercise 12. Show that if B Ď X ˆ Y is Borel and has an uncountable
section then there is a section of B that contains a copy of the Cantor set.

To prove the above theorem, a graph G on X ˆ Y (i.e. G Ď pX ˆ Y q2) is
defined:

G “
 `

px, yq, px1, y1q
˘

| x “ x1 ^ y ‰ y1 ^ px, yq P B ^ px1, y1q P B
(

.

In other words, the edges of G allow to move within a vertical section of B
between one point and another. However, the strongly connected components
of G are all contained in single vertical sections of B (i.e. the x coordinate is
constant).

Exercise 13. Show that G is a Borel graph (i.e. it is just a Borel subset of
X ˆ Y ˆX ˆ Y ).

Since all Borel sets are analytic, one can apply KST and study the two
possibilities. The first case is almost trivial, while the second requires a bit
more work: we find a candidate for a section Bx0 for some x0 P X and argue
that this section cannot be countable, because then G0 would be a union of
countably many closed anti-cliques.

2.5 Silver’s theorem
The next (and final) application of KST is Silver’s theorem on coanalytic
equivalence relations. Please carefully study its proof, because it nicely em-
braces the results that we have seen so far!

Silver’s theorem easily implies the following claim (that we already know).

Exercise 14. Let A Ď X be an uncountable analytic subset of a Polish
space X. Then A contains a copy of the Cantor set.

Can you deduce the above result directly from KST’s Theorem?
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3 New homework
Please choose at most one exercise this time. You can solve the first one
partially — I will grant some points for the separate items there. Most
probably the whole exercise will be worth more than 1 point.

Exercise 15. Construct Borel graphs on 2ω that have the following properties
(one graph for each property):

1. countably many connected components,

2. continuum many connected components, each of cardinality continuum,

3. one connected component but for each n there are α, β P 2ω such that
the length of the shortest walk from α to β is at least n.

In each of the above points, argue why the constructed graph is Borel!
Show that if G is a Borel graph on a Polish space X then each connected

component of G is an analytic subset of X.

Exercise 16 (‹). Assume that X is a non-empty perfect Polish space and
R Ď X2 is a comeagre set. Prove that there exists a Cantor set C Ď X and
a comeagre set D Ď X such that C ˆD Ď R.

4 Hints
Hint to Exercise 3 I hope that the idea given in the main body is enough.
If anything is not clear here, please write to me directly and we can discuss
it during next Zoom office hours.

Hint to Exercise 4 One way is to notice that it is continuous when com-
posed with projections: the function 2ω ˆ 2ω Ñ 2 that returns the nth bit of
α ` β is continuous.

Hint to Exercise 5 In fact α ` α “ 0 for each α, so the inverse is the
identity function (that is continuous).

Hint to Exercise 6 I hope that it is clear: if α and β have almost only
0’s then α` β also has almost only 0’s. The inverse is identity so nothing to
check here.
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Hint to Exercise 7 First, if α P 2ω then S contains a unique member α1
of the „ equivalence class of α. Therefore, q “ α1 ´ α has the property that
α P q ` S.

Assume that α P q ` S X q1 ` S, as witnessed by β, β1 P S such that
q` β “ q1` β1 “ α. But then β „ β1 because β ´ β1 “ q1´ q P Q and by the
choice of S we know that β “ β1. But then q “ q1.

Hint to Exercise 8 G0 can be written as the union ranging for n P N of
the set

tpsn̂ 0̂ x, sn̂ 1̂ xq | x P 2ωu, (4.1)
and its reverse (swap 0 and 1) to make the relation symmetric. Thus, it is
enough to show that the set in (4.1) is closed. But it is the intersection of the
sets requiring that the first n positions equal sn on both coordinates; that
the n`1th positions are 0 and 1; and that each of the remaining positions
is equal on both coordinates. All those sets are basic in 2ω ˆ 2ω so their
intersection is closed. Please check that carefully if you feel unsure about
that argument.

Hint to Exercise 9 Every point α P 2ω has an edge to α1 defined as α
with swapped first position, because sn “ăą.

Hint to Exercise 10

Hint to Exercise 11 The formula for the colouring is given in the lecture
notes. One easily checks that it is in fact a 2-colouring (i.e. each edge connects
two vertices of distinct colours) similarly as in the set X from the previous
exercises. Again, contact me if it isn’t clear!

Hint to Exercise 12 If B Ď X ˆ Y is Borel then each of its sections Bx0

is Borel in Y : take a function y ÞÑ px0, yq and take the preimage of B —
preimages of Borel sets are Borel, because it is the case for closed sets, and
preimages go well with (countable) Boolean operations. What does it exactly
mean to “go well”? :)

Hint to Exercise 13 The definition of G is just an intersection of two
copies of B (on the first two coordinates and on the last two coordinates)
and the set of px, y, x1, y1q such that y ‰ y1 — this set is open.
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Hint to Exercise 14 Consider the set E Ď X ˆ X of pairs px, yq such
that either x, y R A or x “ y. Check that since A is analytic, E is coanalytic.
Check that E is an equivalence relation. Apply Silver’s theorem. Notice
that the equivalence classes of E are of two kinds: either txu for x P A and
a single class X ´ A.

If E has countably many equivalence classes then A is countable.
If there is a copy of Cantor set C that is E independent, then at most one

point of C belongs to X ´ A and all the other points belong to A. We can
now cut C into two sub-Cantors and one of them must be fully contained in
A.
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